|
|
This section is only present when Hyperelastic Material is used in the Layered Shell interface. See the documentation for the Hyperelastic Material node in the Layered Shell chapter.
|
|
|
|
•
|
If the Compressible, coupled option is selected, specify the Volumetric strain energy density — Simo-Pister or Miehe.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
|
The Discretization section is available when you use mixed formulation. To display the section, click the Show More Options button (
![]() |
See also Reduced Integration and Hourglass Stabilization in the Structural Mechanics Theory chapter.
|