|
|
This section is only present when Hyperelastic Material is used in the Layered Shell interface. See the documentation for the Hyperelastic Material node in the Layered Shell chapter.
|
|
|
|
•
|
If the Compressible, coupled option is selected, specify the Volumetric strain energy density — Simo-Pister or Miehe.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K uses values From material.
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
|
The Discretization section is available when you use mixed formulation. To display the section, click the Show More Options button () and select Advanced Physics Options in the Show More Options dialog box.
|
See also Reduced Integration and Hourglass Stabilization in the Structural Mechanics Theory chapter.
|