PDF

Petzval Lens STOP Analysis Isothermal Sweep
Introduction
Many optical systems are required to be operated in extreme environments, where temperature changes are significant. This will invariably induce deformations in the optical geometry. In order to simulate the effects of structural and thermal deformation on the optical performance of a lens a structural-thermal-optical performance (STOP) analysis should be performed. In this tutorial an integrated STOP analysis is demonstrated.
The Petzval Lens STOP Analysis tutorial is used as the basis for this model. In that example, a Petzval lens is modeled together with a simple barrel geometry (see Figure 1) and subjected to uniform temperature of 25°C. In this tutorial, a Parametric Sweep over a range of temperatures is performed. The assumption remains that the lens assembly is isothermal. At each temperature the effect on the image quality and focus position is computed.
A simulation of this kind could be used as the basis for confirming or optimizing an athermal lens assembly design. The STOP analysis could be also be extended to include surface-to-surface radiation or a non-linear material model for the elastomeric mounts. See Petzval Lens STOP Analysis with Surface-to-Surface Radiation and Petzval Lens STOP Analysis with Hyperelasticity for example simulations made at a single nominal temperature.
Figure 1: An overview of the Petzval Lens STOP analysis geometry. The lenses are shown in blue, the lens supports are colored red, and the detector assembly is dark gray. A simple barrel assembly connects these elements.
Model Definition
Details of the lens simulated in this tutorial can be found in the Petzval Lens tutorial (see Ref. 1, p. 191). For this model a simple barrel geometry and detector assembly has been added. The instructions for creating the geometry used in this model can be found in the appendix of Petzval Lens STOP Analysis. The material properties and all other details of the simulation remain unchanged.
Results and Discussion
A Parametric Sweep is performed across a range of temperatures; T0 = 25°C, 0°C, +25°C, and +50°C. The ray trace is performed using three wavelengths (475 nm, 550 nm, and 625 nm) over three field angles (0°, 3.5°, and 7.0°). After ensuring that the Ray 1 dataset is using a solution from the parametric sweep, it is possible to step through the Parameter values on each of the Temperature and Displacements plots to see the results.
Figure 2 to Figure 5 show the temperature (which is uniform) together with the von Mises stress along the cross-sections. The stresses are greatest at the extrema of the temperature ranges, where the results of the large difference in the coefficients of thermal expansion (CTE) of the elements in the second lens group becomes apparent.
Figure 6 to Figure 9 shows the same stress plots together with the absolute lens displacement.
In Figure 10 the image quality on the nominal image plane is shown as a function of temperature. The nominal image plane is the detector surface after deformation. Figure 11 shows the image quality on the “best focus” image surface. In the current tutorial this is defined as the plane where the on-axis spot size is minimized. The focus offsets are summarized in Table 1. The first column in this table gives the offset between the deformed detector surface and it’s location at T0 = 20°C. The second column is the offset between the “best focus” image plane and the deformed detector surface.
 
Nominal
Δz = z(T)z(T = 20°C)
Best focus
Δz = zbest focusz(T)
6.3 μm
Figure 2: A ray trace shown together with a 3/4 section view of the Petzval lens assembly. The von Mises Stress field is on the cross-sections. In this figure the temperature is T = -25°C.
Figure 3: A ray trace shown together with a 3/4 section view of the Petzval lens assembly. The von Mises Stress field is on the cross-sections. In this figure the temperature is T = 0°C.
Figure 4: A ray trace shown together with a 3/4 section view of the Petzval lens assembly. The von Mises Stress field is on the cross-sections. In this figure the temperature is T = 25°C.
Figure 5: A ray trace shown together with a 3/4 section view of the Petzval lens assembly. The von Mises Stress field is on the cross-sections. In this figure the temperature is T = 50°C.
Figure 6: In this ray trace, the displacement field is shown together with the von Mises stress for a temperature T = -25°C.
Figure 7: In this ray trace, the displacement field is shown together with the von Mises stress for a temperature T = 0°C.
Figure 8: In this ray trace, the displacement field is shown together with the von Mises stress for a temperature T = 25°C.
Figure 9: In this ray trace, the displacement field is shown together with the von Mises stress for a temperature T = 50°C.
Figure 10: The image quality on the nominal image plane as a function of temperature. This plane is coincident with the detector surface after deformation. Δz = z(T) - z(T=20°C).
Figure 11: Image quality on the best focus plane as a function of temperature. This is the plane on which the on-axis RMS spot size is minimized. Δz = z(best focus) - z(T).
References
1. M.J. Kidger, Fundamental Optical Design. Bellingham WA, USA: SPIE Press, 2001.
2. https://www.us.schott.com/english/index.html.
3. http://www.oharacorp.com/catalog.html.
4. M.A. Salama, W.M. Rowe, and R.K. Yasui, “Thermoelatic Analysis of Solar Cell Arrays and their Material Properties”, Technical Memorandum 33-626, NASA, 1973.
5. T.M. Mower, “Thermomechanical behavior of aerospace-grade RTV (silicone adhesive).” International Journal of Adhesions and Adhesives 87 (2018): 64-72.
6. P.R. Yoder, Jr., Opto-Mechanical Systems Design, Bellingham WA, USA: SPIE Press, 2006.
Application Library path: Ray_Optics_Module/Structural_Thermal_Optical_Performance_Analysis/petzval_lens_stop_analysis_isothermal_sweep
Modeling Instructions
Root
Open the Petzval Lens STOP Analysis model.
Application Libraries
1
From the File menu, choose Application Libraries.
2
In the Application Libraries window, select Ray Optics Module>Structural Thermal Optical Performance Analysis>petzval_lens_stop_analysis in the tree.
3
Study 1
Update the study settings so that the existing results can be reused.
1
In the Model Builder window, click Study 1.
2
In the Settings window for Study, locate the Study Settings section.
3
Clear the Generate default plots check box.
4
Clear the Generate convergence plots check box.
Parametric Sweep
1
In the Study toolbar, click  Parametric Sweep.
2
In the Settings window for Parametric Sweep, locate the Study Settings section.
3
4
5
In the Study toolbar, click  Compute.
Results
1
In the Model Builder window, click Results.
2
In the Settings window for Results, locate the Update of Results section.
3
Select the Only plot when requested check box.
Ray 1
1
In the Model Builder window, expand the Results>Datasets node, then click Ray 1.
2
In the Settings window for Ray, locate the Ray Solution section.
3
From the Solution list, choose Parametric Solutions 1 (sol3). This is the solution dataset for the parametric sweep.
To see the effect on the stress and displacement fields, cycle through the parameter sweep steps in each of the existing Temperature and Displacement plots.
Temperature
1
In the Model Builder window, under Results click Temperature.
2
In the Settings window for 3D Plot Group, locate the Data section.
3
From the Parameter value (T0 (degC)) list, choose -25.
4
In the Temperature toolbar, click  Plot. Compare to Figure 2.
5
From the Parameter value (T0 (degC)) list, choose 0.
6
In the Temperature toolbar, click  Plot. Compare to Figure 3.
7
From the Parameter value (T0 (degC)) list, choose 25.
8
In the Temperature toolbar, click  Plot. Compare to Figure 4.
9
From the Parameter value (T0 (degC)) list, choose 50.
10
In the Temperature toolbar, click  Plot. Compare to Figure 5.
Displacement
1
In the Model Builder window, click Displacement.
2
In the Settings window for 3D Plot Group, locate the Data section.
3
From the Parameter value (T0 (degC)) list, choose -25.
4
In the Displacement toolbar, click  Plot. Compare to Figure 6.
5
From the Parameter value (T0 (degC)) list, choose 0.
6
In the Displacement toolbar, click  Plot. Compare to Figure 7.
7
From the Parameter value (T0 (degC)) list, choose 25.
8
In the Displacement toolbar, click  Plot. Compare to Figure 8.
9
From the Parameter value (T0 (degC)) list, choose 50.
10
In the Displacement toolbar, click  Plot. Compare to Figure 9.
Intersection Point 3D 1
In the following steps the Intersection Point datasets are duplicated so that they can be referred to a single temperature. These will be used to create spot diagrams as a function of temperature.
1
In the Model Builder window, under Results>Datasets click Intersection Point 3D 1.
2
In the Settings window for Intersection Point 3D, locate the Data section.
3
From the Parameter selection (T0) list, choose From list.
4
In the Parameter values (T0 (degC)) list, select -25.
5
Locate the Extra Time Steps section. From the Maximum number of extra time steps rendered list, choose All.
Intersection Point 3D 3
1
Right-click Results>Datasets>Intersection Point 3D 1 and choose Duplicate.
2
In the Settings window for Intersection Point 3D, locate the Data section.
3
In the Parameter values (T0 (degC)) list, select 0.
Intersection Point 3D 4
1
Right-click Intersection Point 3D 3 and choose Duplicate.
2
In the Settings window for Intersection Point 3D, locate the Data section.
3
In the Parameter values (T0 (degC)) list, select 25.
Intersection Point 3D 5
1
Right-click Intersection Point 3D 4 and choose Duplicate.
2
In the Settings window for Intersection Point 3D, locate the Data section.
3
In the Parameter values (T0 (degC)) list, select 50.
Spot Diagram 1
1
In the Model Builder window, expand the Results>Spot Diagram, Nominal node, then click Spot Diagram 1.
2
In the Settings window for Spot Diagram, click to expand the Annotations section.
3
Clear the Show spot coordinates check box.
4
From the Position list, choose Above spot.
Spot Diagram 2
1
Right-click Results>Spot Diagram, Nominal>Spot Diagram 1 and choose Duplicate.
2
In the Settings window for Spot Diagram, locate the Data section.
3
From the Image surface list, choose Intersection Point 3D 3.
4
Click to expand the Position section. In the x text field, type 0.1.
5
Click to expand the Inherit Style section. From the Plot list, choose Spot Diagram 1.
Spot Diagram 3
1
Right-click Spot Diagram 2 and choose Duplicate.
2
In the Settings window for Spot Diagram, locate the Data section.
3
From the Image surface list, choose Intersection Point 3D 4.
4
Locate the Position section. In the x text field, type 0.2.
Spot Diagram 4
1
Right-click Spot Diagram 3 and choose Duplicate.
2
In the Settings window for Spot Diagram, locate the Data section.
3
From the Image surface list, choose Intersection Point 3D 5.
4
Locate the Position section. In the x text field, type 0.3.
Annotation 1
1
In the Model Builder window, right-click Spot Diagram, Nominal and choose Annotation.
2
In the Settings window for Annotation, locate the Data section.
3
From the Dataset list, choose Ray 1.
4
From the Parameter value (T0 (degC)) list, choose -25.
5
Locate the Annotation section. In the Text text field, type $T = eval(T0-0[degC])^\circ$C \\ $\Delta z = eval((aveop1(z)-z_image)/1[um])\,\unicode{\mu}$m. The position of the undeformed image plane is z_image.
6
From the Geometry level list, choose Global.
7
Locate the Position section. In the y text field, type -0.01.
8
Click to expand the Advanced section. In the Expression precision text field, type 3.
9
Locate the Annotation section. Select the LaTeX markup check box.
10
Locate the Coloring and Style section. Clear the Show point check box.
11
From the Anchor point list, choose Middle left.
Annotation 2
1
Right-click Annotation 1 and choose Duplicate.
2
In the Settings window for Annotation, locate the Data section.
3
From the Parameter value (T0 (degC)) list, choose 0.
4
Locate the Position section. In the x text field, type 0.1.
Annotation 3
1
Right-click Annotation 2 and choose Duplicate.
2
In the Settings window for Annotation, locate the Data section.
3
From the Parameter value (T0 (degC)) list, choose 25.
4
Locate the Position section. In the x text field, type 0.2.
Annotation 4
1
Right-click Annotation 3 and choose Duplicate.
2
In the Settings window for Annotation, locate the Data section.
3
From the Parameter value (T0 (degC)) list, choose 50.
4
Locate the Position section. In the x text field, type 0.3.
5
In the Spot Diagram, Nominal toolbar, click  Plot.
6
Click the  Zoom Extents button in the Graphics toolbar. The figure should match to Figure 10.
Intersection Point 3D 2
1
In the Model Builder window, under Results>Datasets click Intersection Point 3D 2.
2
In the Settings window for Intersection Point 3D, locate the Data section.
3
From the Parameter selection (T0) list, choose From list.
4
In the Parameter values (T0 (degC)) list, select -25.
Intersection Point 3D 6
1
Right-click Results>Datasets>Intersection Point 3D 2 and choose Duplicate.
2
In the Settings window for Intersection Point 3D, locate the Data section.
3
In the Parameter values (T0 (degC)) list, select 0.
Intersection Point 3D 7
1
Right-click Intersection Point 3D 6 and choose Duplicate.
2
In the Settings window for Intersection Point 3D, locate the Data section.
3
In the Parameter values (T0 (degC)) list, select 25.
Intersection Point 3D 8
1
Right-click Intersection Point 3D 7 and choose Duplicate.
2
In the Settings window for Intersection Point 3D, locate the Data section.
3
In the Parameter values (T0 (degC)) list, select 50.
Spot Diagram 1
1
In the Model Builder window, under Results>Spot Diagram, Best Focus click Spot Diagram 1.
2
In the Settings window for Spot Diagram, locate the Layout section.
3
In the Vertical padding factor text field, type 2.
4
Click to collapse the Layout section. Locate the Annotations section. Clear the Show spot coordinates check box.
5
From the Position list, choose Above spot.
6
Click to collapse the Annotations section. Locate the Filters section. Select the Filter by release feature index check box.
7
In the Spot Diagram, Best Focus toolbar, click  Plot.
8
Click to expand the Focal Plane Orientation section. Click Recompute Focal Plane Dataset.
9
Locate the Filters section. Clear the Filter by release feature index check box.
Spot Diagram 2
1
Right-click Results>Spot Diagram, Best Focus>Spot Diagram 1 and choose Duplicate.
2
In the Settings window for Spot Diagram, locate the Data section.
3
From the Image surface list, choose Intersection Point 3D 6.
4
Locate the Filters section. Select the Filter by release feature index check box.
5
In the Spot Diagram, Best Focus toolbar, click  Plot.
6
Locate the Focal Plane Orientation section. Click Recompute Focal Plane Dataset.
7
Locate the Filters section. Clear the Filter by release feature index check box.
8
Locate the Position section. In the x text field, type 0.1.
9
Locate the Inherit Style section. From the Plot list, choose Spot Diagram 1.
Spot Diagram 3
1
Right-click Spot Diagram 2 and choose Duplicate.
2
In the Settings window for Spot Diagram, locate the Data section.
3
From the Image surface list, choose Intersection Point 3D 7.
4
Locate the Filters section. Select the Filter by release feature index check box.
5
In the Spot Diagram, Best Focus toolbar, click  Plot.
6
Locate the Focal Plane Orientation section. Click Recompute Focal Plane Dataset.
7
Locate the Filters section. Clear the Filter by release feature index check box.
8
Locate the Position section. In the x text field, type 0.2.
Spot Diagram 4
1
Right-click Spot Diagram 3 and choose Duplicate.
2
In the Settings window for Spot Diagram, locate the Data section.
3
From the Image surface list, choose Intersection Point 3D 8.
4
Locate the Filters section. Select the Filter by release feature index check box.
5
In the Spot Diagram, Best Focus toolbar, click  Plot.
6
Locate the Focal Plane Orientation section. Click Recompute Focal Plane Dataset.
7
Locate the Filters section. Clear the Filter by release feature index check box.
8
Locate the Position section. In the x text field, type 0.3.
Annotation 1
1
In the Model Builder window, right-click Spot Diagram, Best Focus and choose Annotation.
2
In the Settings window for Annotation, locate the Data section.
3
From the Dataset list, choose Ray 1.
4
From the Parameter value (T0 (degC)) list, choose -25.
5
Locate the Annotation section. In the Text text field, type $T = eval(T0-0[degC])^\circ$C \\ $\Delta z = eval((162.79248823021723[mm]-aveop1(z))/1[um])\,\unicode{\mu}$m. The numerical value is the z-component of the Intersection Point 3D dataset for this plot.
6
From the Geometry level list, choose Global.
7
Locate the Advanced section. In the Expression precision text field, type 3.
8
Locate the Annotation section. Select the LaTeX markup check box.
9
Locate the Coloring and Style section. Clear the Show point check box.
Annotation 2
1
Right-click Annotation 1 and choose Duplicate.
2
In the Settings window for Annotation, locate the Annotation section.
3
In the Text text field, type $T = eval(T0-0[degC])^\circ$C \\ $\Delta z = eval((162.78305987604173[mm]-aveop1(z))/1[um])\,\unicode{\mu}$m.
4
Locate the Data section. From the Parameter value (T0 (degC)) list, choose 0.
5
Locate the Position section. In the x text field, type 0.1.
Annotation 3
1
Right-click Annotation 2 and choose Duplicate.
2
In the Settings window for Annotation, locate the Annotation section.
3
In the Text text field, type $T = eval(T0-0[degC])^\circ$C \\ $\Delta z = eval((162.7738443879646[mm]-aveop1(z))/1[um])\,\unicode{\mu}$m.
4
Locate the Data section. From the Parameter value (T0 (degC)) list, choose 25.
5
Locate the Position section. In the x text field, type 0.2.
Annotation 4
1
Right-click Annotation 3 and choose Duplicate.
2
In the Settings window for Annotation, locate the Annotation section.
3
In the Text text field, type $T = eval(T0-0[degC])^\circ$C \\ $\Delta z = eval((162.76447789300707[mm]-aveop1(z))/1[um])\,\unicode{\mu}$m.
4
Locate the Data section. From the Parameter value (T0 (degC)) list, choose 50.
5
Locate the Position section. In the x text field, type 0.3.
6
In the Spot Diagram, Best Focus toolbar, click  Plot.
7
Click the  Zoom Extents button in the Graphics toolbar. The figure should match Figure 11.