|
|
|
This section is only present when Hyperelastic Material is used in the Layered Shell interface. See the documentation for the Hyperelastic Material node in the Layered Shell chapter.
|
|
|
|
|
|
•
|
If the Compressible, coupled option is selected, specify the Volumetric strain energy density — Simo–Pister or Miehe.
|
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K, and for the Polynomial option the parameters K2 and K3, use values From material.
|
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K, and for the Polynomial option the parameters K2 and K3, use values From material.
|
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K, and for the Polynomial option the parameters K2 and K3, use values From material.
|
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K, and for the Polynomial option the parameters K2 and K3, use values From material.
|
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K, and for the Polynomial option the parameters K2 and K3, use values From material.
|
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K, and for the Polynomial option the parameters K2 and K3, use values From material.
|
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K, and for the Polynomial option the parameters K2 and K3, use values From material.
|
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K, and for the Polynomial option the parameters K2 and K3, use values From material.
|
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K, and for the Polynomial option the parameters K2 and K3, use values From material.
|
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K, and for the Polynomial option the parameters K2 and K3, use values From material.
|
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K, and for the Polynomial option the parameters K2 and K3, use values From material.
|
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K, and for the Polynomial option the parameters K2 and K3, use values From material.
|
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K, and for the Polynomial option the parameters K2 and K3, use values From material.
|
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
|
•
|
If the Compressible, uncoupled option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The Bulk modulus K, and for the Polynomial option the parameters K2 and K3, use values From material.
|
|
•
|
If the Nearly incompressible option is selected, specify the Volumetric strain energy density — Quadratic, Polynomial, Logarithmic, Hartmann–Neff, Miehe, Simo–Taylor, or User defined. The pressure formulation is selected from the Use mixed formulation list, and the default value for the Bulk modulus κ is 100 times the equivalent shear modulus.
|
|
•
|
If the Incompressible option is selected, an extra variable and weak constraint is added to enforce the incompressibility condition Jel = 1.
|
|
|
The option Domain ODEs (legacy) is not available in the interfaces intended for time-explicit dynamic analysis.
|
|
The Discretization section is available when you use mixed formulation. To display the section, click the Show More Options button (
|
|
The Energy sampling and Hessian methods are available in the Solid Mechanics and Solid Mechanics, Explicit Dynamics interfaces.
The Flanagan–Belytschko method is only available in the Solid Mechanics, Explicit Dynamics interface and should only be used with the Explicit Dynamics study step.
|
|
•
|
When using the Manual option, select Shear stabilization or Volumetric stabilization. When Shear stabilization is selected, enter a stabilization shear modulus, Gstb. The value should be in the order of magnitude of the equivalent shear modulus.
|
|
•
|
When Volumetric stabilization is selected, enter a stabilization bulk modulus, Kstb. The value should be in the order of magnitude of the equivalent bulk modulus.
|
|
See also Reduced Integration and Hourglass Stabilization in the Structural Mechanics Theory chapter and Using Reduced Integration in the Structural Mechanics Modeling chapter.
|