PDF

Uniaxial Stretching of a Rectangular Membrane
Introduction
The numerical treatment of thin structures with a membrane model is much simpler than with a shell model due to the assumption of zero bending stiffness. However, for some load cases this assumption is disadvantageous. For instance, when a membrane is subjected to compressive stresses, it may trigger wrinkling when these reach a critical level defined by the bending stiffness.This undesirable limitation can be overcame with the incorporation of a wrinkling model that removes these instabilities.
In this example, a rectangular membrane is stretched uniaxially, which results in wrinkling in the central region. The wrinkling region and stress distribution depends on the geometry, loading conditions, and material properties. The analytical results are used to verify the numerical solution.
Model Definition
A rectangular sheet 1 m in length, 0.5 m in width, and 1 mm thick is stretched in the longitudinal direction.
One of the short edges is fixed, while a prescribed displacement of 1 mm is applied on the opposite edge. The long edges are unconstrained.
The sheet is made of a linear elastic material, and both isotropic and orthotropic scenarios are analyzed. The material properties are given in Table 1.
Material Properties
E1
  ν12
ν23
ν13
E1/(2(1+ν12))
G12
G12
G12
G12
Results and Discussions
The numerical and analytical results are compared side by side in the same figure. For this particular problem, wrinkling occurs in the 2nd local direction as uniaxial stretching is applied in the 1st local direction.
The analytical expression for the wrinkling measure for isotropic and orthotropic materials is derived from the equality
which gives the expression for the wrinkling measure as
Figure 1 and Figure 2 show the wrinkled regions for the isotropic and orthotropic cases. The results match the analytical values for both scenarios. For the isotropic case, the whole central region is wrinkled, while for the orthotropic case, only the areas along the long edges are wrinkled.
Figure 3 and Figure 4 show the measure of wrinkling in the membrane. Again, in both isotropic and orthotropic cases the results match the analytical expressions. The region of maximum wrinkling is the region where maximum compressive stress could have developed without a wrinkling model.
The first principal stress and the tensile direction for the isotropic and orthotropic cases are shown in Figure 5 and Figure 6. Figure 7 and Figure 8 show the second principal stress along the wrinkling direction. As expected, the direction of wrinkling is perpendicular to the loading direction in uniaxial stretching. The lowest value of the second principal stress is nearly zero. Both figures show no compressive stresses.
Figure 1: Wrinkled region, isotropic material.
Figure 2: Wrinkled region, orthotropic material.
Figure 3: Measure of wrinkling, isotropic material.
Figure 4: Measure of wrinkling, orthotropic material.
Figure 5: First principal stress, isotropic material.
Figure 6: First principal stress, orthotropic material.
Figure 7: Second principal stress, isotropic material.
Figure 8: Second principal stress, orthotropic material.
Notes About the COMSOL Implementation
A wrinkling model based on the modified deformation gradient is incorporated within the membrane theory using the Wrinkling feature, which solves a set of nonlinear equations with the Newton–Raphson method.
Since the unstressed membrane does not have stiffness in the normal direction, a very small spring support is added in order to stabilize the model.
Application Library path: Structural_Mechanics_Module/Buckling_and_Wrinkling/membrane_uniaxial_stretching
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Structural Mechanics>Membrane (mbrn).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select General Studies>Stationary.
6
Global Definitions
Geometric Parameters
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, type Geometric Parameters in the Label text field.
3
Locate the Parameters section. In the table, enter the following settings:
Isotropic Material Properties
1
In the Home toolbar, click  Parameters and choose Add>Parameters.
2
In the Settings window for Parameters, type Isotropic Material Properties in the Label text field.
3
Locate the Parameters section. Click  Load from File.
4
Browse to the model’s Application Libraries folder and double-click the file membrane_uniaxial_stretching_isotropic_properties.txt.
Orthotropic Material Properties
1
In the Home toolbar, click  Parameters and choose Add>Parameters.
2
In the Settings window for Parameters, type Orthotropic Material Properties in the Label text field.
3
Locate the Parameters section. Click  Load from File.
4
Browse to the model’s Application Libraries folder and double-click the file membrane_uniaxial_stretching_orthotropic_properties.txt.
Definitions
Variables 1
1
In the Model Builder window, expand the Component 1 (comp1)>Definitions node.
2
Right-click Definitions and choose Variables.
3
In the Settings window for Variables, locate the Variables section.
4
Geometry 1
Work Plane 1 (wp1)
In the Geometry toolbar, click  Work Plane.
Work Plane 1 (wp1)>Plane Geometry
In the Model Builder window, click Plane Geometry.
Work Plane 1 (wp1)>Rectangle 1 (r1)
1
In the Work Plane toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type L.
4
In the Height text field, type W.
5
Click  Build Selected.
Membrane (mbrn)
Linear Elastic Material 1
1
In the Model Builder window, under Component 1 (comp1)>Membrane (mbrn) click Linear Elastic Material 1.
2
In the Settings window for Linear Elastic Material, locate the Linear Elastic Material section.
3
From the Solid model list, choose Orthotropic.
Wrinkling 1
In the Physics toolbar, click  Attributes and choose Wrinkling.
Thickness and Offset 1
1
In the Model Builder window, under Component 1 (comp1)>Membrane (mbrn) click Thickness and Offset 1.
2
In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3
In the d text field, type th.
Fixed Constraint 1
1
In the Physics toolbar, click  Edges and choose Fixed Constraint.
2
Prescribed Displacement 1
1
In the Physics toolbar, click  Edges and choose Prescribed Displacement.
2
3
In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.
4
Select the Prescribed in x direction check box.
5
In the u0x text field, type 1[mm].
6
Select the Prescribed in y direction check box.
7
Select the Prescribed in z direction check box.
Add a spring support in the thickness direction in order to achieve numerical stability for this problem.
Spring Foundation 1
1
In the Physics toolbar, click  Boundaries and choose Spring Foundation.
2
In the Settings window for Spring Foundation, locate the Boundary Selection section.
3
From the Selection list, choose All boundaries.
4
Locate the Spring section. From the list, choose Symmetric.
5
In the kA table, enter the following settings:
Add a Material Switch node in order to run same study with different materials.
Materials
Material Switch 1 (sw1)
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose More Materials>Material Switch.
Isotropic Material
1
In the Model Builder window, right-click Material Switch 1 (sw1) and choose Blank Material.
Orthotropic elastic properties are asked by the material due to the settings in the physics features. The isotropic material can however be defined by adding the isotropic properties manually. The orthotropic properties will be calculated automatically by synchronization rules.
2
In the Settings window for Material, type Isotropic Material in the Label text field.
3
Locate the Material Properties section. In the Material properties tree, select Solid Mechanics>Linear Elastic Material>Young’s Modulus and Poisson’s Ratio.
4
Click  Add to Material.
5
Locate the Material Contents section. In the table, enter the following settings:
Material Switch 1 may show a warning. You can ignore it since the orthotropic material properties are well defined by the synchronization rules.
Orthotropic Material
1
In the Model Builder window, right-click Material Switch 1 (sw1) and choose Blank Material.
2
In the Settings window for Material, type Orthotropic Material in the Label text field.
3
Locate the Material Contents section. In the table, enter the following settings:
Mesh 1
Mapped 1
1
In the Mesh toolbar, click  Boundary and choose Mapped.
2
Size
1
In the Model Builder window, click Size.
2
In the Settings window for Size, locate the Element Size section.
3
From the Predefined list, choose Finer.
Convert 1
1
In the Mesh toolbar, click  Modify and choose Convert.
2
In the Settings window for Convert, locate the Element Split Method section.
3
From the Element split method list, choose Insert center points.
4
Click  Build All.
Study 1
Material Sweep
1
In the Study toolbar, click  Material Sweep.
2
In the Settings window for Material Sweep, locate the Study Settings section.
3
Solution 1 (sol1)
1
In the Study toolbar, click  Show Default Solver.
2
In the Model Builder window, expand the Solution 1 (sol1) node.
3
In the Model Builder window, expand the Study 1>Solver Configurations>Solution 1 (sol1)>Stationary Solver 1 node, then click Fully Coupled 1.
4
In the Settings window for Fully Coupled, click to expand the Method and Termination section.
5
From the Termination criterion list, choose Solution and residual.
6
In the Model Builder window, click Study 1.
7
In the Settings window for Study, locate the Study Settings section.
8
Clear the Generate default plots check box.
9
In the Study toolbar, click  Compute.
Results
Wrinkled Region
1
In the Home toolbar, click  Add Plot Group and choose 3D Plot Group.
2
In the Settings window for 3D Plot Group, type Wrinkled Region in the Label text field.
3
Locate the Data section. From the Dataset list, choose Study 1/Parametric Solutions 1 (sol2).
4
From the Material Switch 1 list, choose Isotropic Material.
5
Click to expand the Plot Array section. Select the Enable check box.
6
From the Array axis list, choose y.
7
In the Relative padding text field, type 0.5.
Surface 1
1
In the Wrinkled Region toolbar, click  Surface.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Membrane>Wrinkling>mbrn.iswrinkled - Is wrinkled.
3
Click to expand the Quality section. From the Smoothing list, choose None.
Surface 2
1
Right-click Surface 1 and choose Duplicate.
2
In the Settings window for Surface, locate the Expression section.
3
In the Expression text field, type iswrinkled_ana.
4
Click to expand the Inherit Style section. From the Plot list, choose Surface 1.
5
Click to expand the Title section. From the Title type list, choose None.
6
In the Wrinkled Region toolbar, click  Plot.
Wrinkled Region
In the Model Builder window, click Wrinkled Region.
Annotation 1
1
In the Wrinkled Region toolbar, click  Annotation.
2
In the Settings window for Annotation, locate the Annotation section.
3
In the Text text field, type Computed.
4
Locate the Position section. In the X text field, type L/2.
5
Locate the Coloring and Style section. Clear the Show point check box.
6
Click to expand the Plot Array section. Select the Manual indexing check box.
Wrinkled Region
In the Model Builder window, click Wrinkled Region.
Annotation 2
1
In the Wrinkled Region toolbar, click  Annotation.
2
In the Settings window for Annotation, locate the Annotation section.
3
In the Text text field, type Analytical.
4
Locate the Position section. In the X text field, type L/2.
5
In the Y text field, type W.
6
Locate the Coloring and Style section. Clear the Show point check box.
7
From the Anchor point list, choose Lower right.
8
Locate the Plot Array section. Select the Manual indexing check box.
9
In the Index text field, type 1.
10
Click the  Zoom Extents button in the Graphics toolbar.
Wrinkled Region
1
In the Model Builder window, click Wrinkled Region.
2
In the Settings window for 3D Plot Group, locate the Plot Settings section.
3
From the View list, choose New view.
4
In the Wrinkled Region toolbar, click  Plot.
5
Click the  Show Grid button in the Graphics toolbar.
Wrinkling Measure
1
Right-click Wrinkled Region and choose Duplicate.
2
In the Settings window for 3D Plot Group, type Wrinkling Measure in the Label text field.
Surface 1
1
In the Model Builder window, expand the Wrinkling Measure node, then click Surface 1.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Membrane>Wrinkling>mbrn.lemm1.wr1.Beta - Wrinkling measure, material frame.
3
Locate the Quality section. From the Smoothing list, choose Inside material domains.
Surface 2
1
In the Model Builder window, click Surface 2.
2
In the Settings window for Surface, locate the Expression section.
3
In the Expression text field, type Beta_ana.
4
Locate the Quality section. From the Smoothing list, choose Inside material domains.
5
In the Wrinkling Measure toolbar, click  Plot.
First Principal Stress
1
In the Home toolbar, click  Add Plot Group and choose 3D Plot Group.
2
In the Settings window for 3D Plot Group, type First Principal Stress in the Label text field.
3
Locate the Data section. From the Dataset list, choose Study 1/Parametric Solutions 1 (sol2).
4
From the Material Switch 1 list, choose Isotropic Material.
5
Locate the Color Legend section. Select the Show maximum and minimum values check box.
Surface 1
1
Right-click First Principal Stress and choose Surface.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Membrane>Stress>Principal stresses>mbrn.sp1 - First principal stress - N/m².
3
Locate the Coloring and Style section. From the Color table list, choose Prism.
Arrow Surface 1
1
In the Model Builder window, right-click First Principal Stress and choose Arrow Surface.
2
In the Settings window for Arrow Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Membrane>Wrinkling>mbrn.lemm1.wr1.tnx,...,mbrn.lemm1.wr1.tnz - Tension field direction, spatial frame.
First Principal Stress
Click the  Zoom Extents button in the Graphics toolbar.
Second Principal Stress
1
Right-click First Principal Stress and choose Duplicate.
2
In the Settings window for 3D Plot Group, type Second Principal Stress in the Label text field.
Surface 1
1
In the Model Builder window, expand the Second Principal Stress node, then click Surface 1.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Membrane>Stress>Principal stresses>mbrn.sp2 - Second principal stress - N/m².
Arrow Surface 1
1
In the Model Builder window, click Arrow Surface 1.
2
In the Settings window for Arrow Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Membrane>Wrinkling>mbrn.lemm1.wr1.wnx,...,mbrn.lemm1.wr1.wnz - Wrinkling direction, spatial frame.
3
In the Second Principal Stress toolbar, click  Plot.
Second Principal Stress
In the Model Builder window, collapse the Results>Second Principal Stress node.
Now, group all plots for isotropic materials, and duplicate them for plotting results with orthotropic material.
First Principal Stress, Second Principal Stress, Wrinkled Region, Wrinkling Measure
1
In the Model Builder window, under Results, Ctrl-click to select Wrinkled Region, Wrinkling Measure, First Principal Stress, and Second Principal Stress.
2
Isotropic Material
In the Settings window for Group, type Isotropic Material in the Label text field.
Orthotropic Material
1
Right-click Isotropic Material and choose Duplicate.
2
In the Settings window for Group, type Orthotropic Material in the Label text field.
Wrinkled Region 1
1
In the Model Builder window, expand the Orthotropic Material node, then click Wrinkled Region 1.
2
In the Settings window for 3D Plot Group, locate the Data section.
3
From the Material Switch 1 list, choose Orthotropic Material.
4
In the Wrinkled Region 1 toolbar, click  Plot.
Wrinkling Measure 1
1
In the Model Builder window, click Wrinkling Measure 1.
2
In the Settings window for 3D Plot Group, locate the Data section.
3
From the Material Switch 1 list, choose Orthotropic Material.
Surface 1
1
In the Model Builder window, expand the Wrinkling Measure 1 node, then click Surface 1.
2
In the Settings window for Surface, click to expand the Range section.
3
Select the Manual color range check box.
4
Set the Maximum value to 1.2E-5.
5
In the Wrinkling Measure 1 toolbar, click  Plot.
First Principal Stress 1
1
In the Model Builder window, under Results>Orthotropic Material click First Principal Stress 1.
2
In the Settings window for 3D Plot Group, locate the Data section.
3
From the Material Switch 1 list, choose Orthotropic Material.
4
In the First Principal Stress 1 toolbar, click  Plot.
Second Principal Stress 1
1
In the Model Builder window, click Second Principal Stress 1.
2
In the Settings window for 3D Plot Group, locate the Data section.
3
From the Material Switch 1 list, choose Orthotropic Material.
4
In the Second Principal Stress 1 toolbar, click  Plot.