PDF

Jelly Roll Using a Flattened Geometry
Introduction
This example replicates the results of the Jelly Roll tutorial example using a flattened representation of the wound spiral-based geometry. See that model entry for details on the background, original geometry, materials, and the general physics setup.
The spiraling aspects of the true jelly roll geometry are a bit cumbersome to work with, in regards to, for instance, visualizing simulation results in the layers, or introducing additional geometry objects like multiple tabs in the interior of the jelly roll.
In this tutorial we perform the model calculations on a flattened (not rolled) version of the jelly roll. In the flattened geometry representation, special boundary conditions are needed in order to coupled geometrically detached boundaries together mathematically.
The flattened geometry has the advantage of requiring less mesh elements since the local curvature of the roll does not need to be resolved but with the disadvantage that the transport equations on the flattened geometry neglect the effect of the local curvature of the layers. However, as seen when comparing the temperature and potential profiles, the flattened geometry accurately reproduces the original the jelly roll tutorial, indicating that we can perform this flattening transformation with only a limited effect on the results.
Model Definition
As for the original jelly roll model, this tutorial uses a pseudostationary approach, only accounting for the ohmic voltage losses in the electronic conductors and the electrolyte and the activation overpotentials due to the charge transfer reactions in the electrodes. The current distribution is modeled using a Secondary Current Distribution interface.
In the current distribution model, a ground condition is used at the negative terminal, where as a 1C total current condition is applied at the positive terminal.
The temperature distribution in the jelly roll is modeled using a Heat Transfer interface, applying the resulting heat sources from the current distribution model using an Electrochemical Heating multiphysics node. A convective cooling boundary condition on the outer area of the jelly roll is used, prescribing a cooling heat flux being proportional to the surface temperature and the exterior temperature (25°C).
Figure 1 shows the model geometry. Each layer in the roll, as well as the tabs, are drawn as rectangular blocks. The layers are 60 mm high.
Figure 1: Model geometry.
In the original spiral geometry all layers in the roll differ in length. This is due to the winding of the spiral in combination with a different starting radius at the center of the spiral for each layer. In the flattened geometry representation we will approximate this effect by grouping the layers into two parts, centered around the positive and negative current collectors, with the length of the layers in each part being based on the corresponding current collector (approximately 22.8 and 20.6 cm, respectively). Each separator is split into two domains at mid thickness, with one domain placed in the negative part, and one domain placed in the positive part. In order to be able to use mapped meshes with the same amount of elements at the mid-separator boundaries (see below about linear extrusion operators), the geometry is finalized as an assembly, with assembly pair boundaries located between the separators and the electrodes.
Figure 2 shows the meshed model geometry as seen from above, scaled 100 times in the through-plane direction. An offset distance has been added between the negative and positive parts for easier visualization and selection handling in the user interface. The mesh is swept in the through-plane direction.
Figure 2: Model geometry, seen from above, scaled 100 times in the through-plane direction. The location of the mid-separator source and destination boundaries, used for coupling the negative and positive parts together, are indicated in the figure.
In order to couple the temperature and electrolyte potentials, and the corresponding local fluxes of heat and current, along the mid-separator boundaries between the two parts, linear extrusion operators are added. The linear extrusion operators maps each point on a source boundary to its corresponding location at a destination boundary.
The linear extrusion operators are then used to define pointwise constraints on the destination boundaries, prescribing continuity in temperature and potential according to and . This condition is accomplished internally by balancing the local fluxes of heat and current, scaled by the relative differences in area of the source and destination boundaries. Mapped meshes are used on the source and destination boundaries, ensuring the same amount of mesh elements, with a one-to-one mapping of the mesh node points. This avoids spurious oscillations in the solution.
Results and Discussion
Figure 3 and Figure 4 show the simulated potential distribution in the negative and positive current collectors, respectively, for the jelly roll when subjected to a 1C discharge.
Figure 3: Potential in the negative current collector and tab.
Figure 4: Potential in the positive current collector and tab.
Figure 5 shows the corresponding temperature distribution. In all, Figure 3 to Figure 5 reproduce the results of the original Jelly Roll tutorial very closely.
Figure 5: Temperature distribution.
The flattened geometry now allows for easy visualization of the cross-separator current densities as shown in Figure 6 and Figure 7.
Figure 6: Current distribution in the through-plane direction of one of the separators.
Figure 7: Current distribution in the through-plane direction of the other separator
Current distribution plots like this are valuable input to a battery designer, since they indicate significantly higher current densities in the area close to the tabs. We should remember that our model is pseudostationary, meaning that it is not accounting for redistribution of lithium in the cell. If the cell were to run for longer times, the current distribution plots shown above would eventually even out to a more homogeneous profile, as the distribution would accommodate for changes in local equilibrium potentials. However, a battery being cycled for short times around fixed state of charge would be exposed to more electrochemical wear in the areas close to the tabs, possibly resulting in accelerated aging.
Application Library path: Battery_Design_Module/Thermal_Management/jelly_roll_flattened
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Electrochemistry>Primary and Secondary Current Distribution>Secondary Current Distribution (cd).
3
Click Add.
4
In the Select Physics tree, select Heat Transfer>Heat Transfer in Solids (ht).
5
Click Add.
6
In the Select Physics tree, select Heat Transfer.
7
Click  Study.
8
In the Select Study tree, select General Studies>Stationary.
9
Geometry 1
Insert a geometry sequence from a file.
1
In the Geometry toolbar, click Insert Sequence and choose Insert Sequence.
2
3
In the Geometry toolbar, click  Build All.
Definitions
Add a view with scaling in the y-direction to facilitate selections in the graphics window while setting up the physics and meshing
View 5
In the Model Builder window, under Component 1 (comp1) right-click Definitions and choose View.
Camera
1
In the Model Builder window, expand the View 5 node, then click Camera.
2
In the Settings window for Camera, locate the Camera section.
3
From the View scale list, choose Manual.
4
In the y scale text field, type 100.
5
Click  Update.
6
Click the  Go to XY View button in the Graphics toolbar.
7
Click the  Go to Default View button in the Graphics toolbar.
Geometry 1
In the Model Builder window, collapse the Component 1 (comp1)>Geometry 1 node.
Global Definitions
Geometry Parameters
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, type Geometry Parameters in the Label text field.
Physics Parameters
1
In the Home toolbar, click  Parameters and choose Add>Parameters.
2
In the Settings window for Parameters, type Physics Parameters in the Label text field.
3
Locate the Parameters section. Click  Load from File.
4
Materials
In the Home toolbar, click  Windows and choose Add Material from Library.
Add Material
1
Go to the Add Material window.
2
In the tree, select Built-in>Aluminum.
3
Right-click and choose Add to Component 1 (comp1).
4
In the tree, select Built-in>Copper.
5
Right-click and choose Add to Component 1 (comp1).
6
In the tree, select Battery>Electrodes>Graphite, LixC6 MCMB (Negative, Li-ion Battery).
7
Right-click and choose Add to Component 1 (comp1).
8
In the tree, select Battery>Electrodes>NMC 111, LiNi0.33Mn0.33Co0.33O2 (Positive, Li-ion Battery).
9
Right-click and choose Add to Component 1 (comp1).
10
In the tree, select Battery>Electrolytes>LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery).
11
Right-click and choose Add to Component 1 (comp1).
12
In the Home toolbar, click  Add Material to close the Add Material window.
Materials
Aluminum (mat1)
1
In the Settings window for Material, locate the Geometric Entity Selection section.
2
From the Selection list, choose Positive CC and Tab.
Copper (mat2)
1
In the Model Builder window, click Copper (mat2).
2
In the Settings window for Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Negative CC.
Graphite, LixC6 MCMB (Negative, Li-ion Battery) (mat3)
1
In the Model Builder window, click Graphite, LixC6 MCMB (Negative, Li-ion Battery) (mat3).
2
In the Settings window for Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Negative Electrodes.
NMC 111, LiNi0.33Mn0.33Co0.33O2 (Positive, Li-ion Battery) (mat4)
1
In the Model Builder window, click NMC 111, LiNi0.33Mn0.33Co0.33O2 (Positive, Li-ion Battery) (mat4).
2
In the Settings window for Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Positive Electrodes.
LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery) (mat5)
1
In the Model Builder window, click LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery) (mat5).
2
In the Settings window for Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Separators.
Nickel
The negative tab consists of nickel metal, which is not available in the material library. Add a blank material node for nickel for now. We will add the required parameters later.
1
In the Model Builder window, right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Nickel in the Label text field.
3
Locate the Geometric Entity Selection section. From the Selection list, choose Negative Tab.
Secondary Current Distribution (cd)
Electrolyte 1
Now start defining the current distribution model.
1
In the Model Builder window, under Component 1 (comp1)>Secondary Current Distribution (cd) click Electrolyte 1.
2
In the Settings window for Electrolyte, locate the Electrolyte section.
3
From the σl list, choose User defined. In the associated text field, type sigmal_eff.
Electrode 1
1
In the Physics toolbar, click  Domains and choose Electrode.
2
In the Settings window for Electrode, locate the Domain Selection section.
3
From the Selection list, choose CCs and Tabs.
The electrode node defines electronic conduction in the metal phase domains. The conductivity is taken from the Material nodes by default, so no additional settings are needed here.
Porous Electrode 1
1
In the Physics toolbar, click  Domains and choose Porous Electrode.
The porous electrode node defines the both electronic and ionic conduction in the electrode and electrolyte phases, respectively. Since we use the same settings in the positive and negative electrode materials in this tutorial, it suffices to use one single node.
2
In the Settings window for Porous Electrode, locate the Domain Selection section.
3
From the Selection list, choose Electrodes.
4
Locate the Electrolyte Current Conduction section. From the σl list, choose User defined. In the associated text field, type sigmal_eff.
5
From the Effective conductivity correction list, choose No correction.
6
Locate the Electrode Current Conduction section. From the σs list, choose User defined. In the associated text field, type sigmas_eff.
7
From the Effective conductivity correction list, choose No correction.
Porous Electrode Reaction 1
In this tutorial we are only interested in the voltage losses, not the resulting cell voltage. Therefore we use the default value of 0 V for the equilibrium potential in both electrodes. The resulting potential at the positive current terminal will thereby equal the total polarization of the cell.
1
In the Model Builder window, click Porous Electrode Reaction 1.
2
In the Settings window for Porous Electrode Reaction, locate the Electrode Kinetics section.
3
From the Kinetics expression type list, choose Butler-Volmer.
4
In the i0 text field, type i0.
5
Locate the Active Specific Surface Area section. In the av text field, type Av.
Electric Ground 1
1
In the Physics toolbar, click  Boundaries and choose Electric Ground.
2
In the Settings window for Electric Ground, locate the Boundary Selection section.
3
From the Selection list, choose Negative Current Terminal.
Electrode Current 1
1
In the Physics toolbar, click  Boundaries and choose Electrode Current.
2
In the Settings window for Electrode Current, locate the Boundary Selection section.
3
From the Selection list, choose Positive Current Terminal.
4
Locate the Electrode Current section. In the Is,total text field, type I_1C.
Heat Transfer in Solids (ht)
1
In the Model Builder window, under Component 1 (comp1) click Heat Transfer in Solids (ht).
2
In the Settings window for Heat Transfer in Solids, click to expand the Discretization section.
3
From the Temperature list, choose Linear.
Solid 1
1
In the Model Builder window, under Component 1 (comp1)>Heat Transfer in Solids (ht) click Solid 1.
2
In the Settings window for Solid, locate the Thermodynamics, Solid section.
3
From the ρ list, choose User defined. From the Cp list, choose User defined.
Initial Values 1
1
In the Model Builder window, click Initial Values 1.
2
In the Settings window for Initial Values, locate the Initial Values section.
3
In the T text field, type T_ext.
Heat Flux 1
1
In the Physics toolbar, click  Boundaries and choose Heat Flux.
2
In the Settings window for Heat Flux, locate the Boundary Selection section.
3
From the Selection list, choose Cooling Boundaries.
4
Locate the Heat Flux section. From the Flux type list, choose Convective heat flux.
5
In the h text field, type hT.
6
In the Text text field, type T_ext.
Multiphysics
Electrochemical Heating 1 (ech1)
In the Physics toolbar, click  Multiphysics Couplings and choose Domain>Electrochemical Heating.
Materials
LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery) (mat5)
1
In the Model Builder window, under Component 1 (comp1)>Materials click LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery) (mat5).
2
In the Settings window for Material, locate the Material Contents section.
3
Nickel (mat6)
1
In the Model Builder window, click Nickel (mat6).
2
In the Settings window for Material, locate the Material Contents section.
3
Definitions
Linear Extrusion 1 (linext1)
1
In the Definitions toolbar, click  Nonlocal Couplings and choose Linear Extrusion.
2
In the Settings window for Linear Extrusion, locate the Source Selection section.
3
From the Geometric entity level list, choose Boundary.
4
From the Selection list, choose Source Boundary 1.
5
Locate the Source Vertices section. Click to select the  Activate Selection toggle button.
6
7
Locate the Destination Vertices section. Click to select the  Activate Selection toggle button.
8
9
Locate the Source Vertices section. Click to select the  Activate Selection toggle button.
10
11
Locate the Destination Vertices section. Click to select the  Activate Selection toggle button.
12
13
Locate the Source Vertices section. Click to select the  Activate Selection toggle button.
14
15
Locate the Destination Vertices section. Click to select the  Activate Selection toggle button.
16
17
Locate the Source Vertices section. Click to select the  Activate Selection toggle button.
18
19
Locate the Destination Vertices section. Click to select the  Activate Selection toggle button.
20
Linear Extrusion 2 (linext2)
1
In the Definitions toolbar, click  Nonlocal Couplings and choose Linear Extrusion.
2
In the Settings window for Linear Extrusion, locate the Source Selection section.
3
From the Geometric entity level list, choose Boundary.
4
From the Selection list, choose Source Boundary 2.
5
Click the  Zoom Extents button in the Graphics toolbar.
6
Locate the Source Vertices section. Click to select the  Activate Selection toggle button.
7
8
Click to select the  Activate Selection toggle button.
9
10
Click to select the  Activate Selection toggle button.
11
12
Click to select the  Activate Selection toggle button.
13
14
Locate the Destination Vertices section. Click to select the  Activate Selection toggle button.
15
16
Click to select the  Activate Selection toggle button.
17
18
Click to select the  Activate Selection toggle button.
19
20
Click to select the  Activate Selection toggle button.
21
Secondary Current Distribution (cd)
In the Model Builder window, under Component 1 (comp1) click Secondary Current Distribution (cd).
Electrolyte Potential Coupling 1
1
In the Physics toolbar, click  Boundaries and choose Electrolyte Potential.
2
In the Settings window for Electrolyte Potential, type Electrolyte Potential Coupling 1 in the Label text field.
3
Locate the Boundary Selection section. From the Selection list, choose Destination Boundary 1.
4
Locate the Electrolyte Potential section. In the φl,bnd text field, type linext1(phil).
Electrolyte Potential Coupling 2
1
Right-click Electrolyte Potential Coupling 1 and choose Duplicate.
2
In the Settings window for Electrolyte Potential, type Electrolyte Potential Coupling 2 in the Label text field.
3
Locate the Boundary Selection section. From the Selection list, choose Destination Boundary 2.
4
Locate the Electrolyte Potential section. In the φl,bnd text field, type linext2(phil).
Heat Transfer in Solids (ht)
In the Model Builder window, under Component 1 (comp1) click Heat Transfer in Solids (ht).
Temperature Coupling 1
1
In the Physics toolbar, click  Boundaries and choose Temperature.
2
In the Settings window for Temperature, type Temperature Coupling 1 in the Label text field.
3
Locate the Boundary Selection section. From the Selection list, choose Destination Boundary 1.
4
Locate the Temperature section. In the T0 text field, type linext1(T).
Temperature Coupling 2
1
Right-click Temperature Coupling 1 and choose Duplicate.
2
In the Settings window for Temperature, type Temperature Coupling 2 in the Label text field.
3
Locate the Boundary Selection section. From the Selection list, choose Destination Boundary 2.
4
Locate the Temperature section. In the T0 text field, type linext2(T).
Replace the default Continuity condition with four periodic conditions. This is a work around due to an issue with the current implementation of the default Continuity condition and will not be needed in future versions.
5
Click the  Show More Options button in the Model Builder toolbar.
6
In the Show More Options dialog box, in the tree, select the check box for the node Physics>Advanced Physics Options.
7
Secondary Current Distribution (cd)
Continuity 1
1
In the Model Builder window, under Component 1 (comp1)>Secondary Current Distribution (cd) click Continuity 1.
2
In the Settings window for Continuity, locate the Advanced section.
3
Select the Disconnect pair check box.
Continuity Condition 1
1
In the Physics toolbar, click  Boundaries and choose Periodic Condition.
2
In the Settings window for Periodic Condition, type Continuity Condition 1 in the Label text field.
3
Continuity Condition 2
1
In the Physics toolbar, click  Boundaries and choose Periodic Condition.
2
In the Settings window for Periodic Condition, type Continuity Condition 2 in the Label text field.
3
Continuity Condition 3
1
In the Physics toolbar, click  Boundaries and choose Periodic Condition.
2
In the Settings window for Periodic Condition, locate the Periodic Condition section.
3
Clear the Apply for electrode phase check box.
4
In the Label text field, type Continuity Condition 3.
5
Continuity Condition 4
1
In the Physics toolbar, click  Boundaries and choose Periodic Condition.
2
In the Settings window for Periodic Condition, locate the Periodic Condition section.
3
Clear the Apply for electrode phase check box.
4
In the Label text field, type Continuity Condition 4.
5
Mesh 1
Size 1
1
In the Model Builder window, under Component 1 (comp1) right-click Mesh 1 and choose Size.
2
In the Settings window for Size, locate the Geometric Entity Selection section.
3
From the Geometric entity level list, choose Edge.
4
From the Selection list, choose Mesh Size Edges.
5
Locate the Element Size section. Click the Custom button.
6
Locate the Element Size Parameters section. Select the Maximum element size check box.
7
Size
1
In the Model Builder window, click Size.
2
In the Settings window for Size, locate the Element Size section.
3
Click the Custom button.
4
Locate the Element Size Parameters section. In the Maximum element size text field, type H_mesh.
5
In the Minimum element size text field, type D_sep/2.
Free Quad 1
1
In the Mesh toolbar, click  Boundary and choose Free Quad.
2
In the Settings window for Free Quad, locate the Boundary Selection section.
3
From the Selection list, choose Quad Mesh Boundaries.
4
Click  Build Selected.
Mapped 1
1
In the Mesh toolbar, click  Boundary and choose Mapped.
2
In the Settings window for Mapped, locate the Boundary Selection section.
3
From the Selection list, choose Extrusion and Coupling Boundaries.
Distribution 1
1
Right-click Mapped 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Edge Selection section.
3
From the Selection list, choose Mapped Mesh Distribution Edges 1.
4
Locate the Distribution section. In the Number of elements text field, type round(L_cc_neg/H_mesh).
Distribution 2
1
In the Model Builder window, right-click Mapped 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Edge Selection section.
3
From the Selection list, choose Mapped Mesh Distribution Edges 2.
4
Locate the Distribution section. In the Number of elements text field, type round(H_jr/H_mesh).
5
Click  Build Selected.
Swept 1
In the Mesh toolbar, click  Swept.
Distribution 1
1
Right-click Swept 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Domain Selection section.
3
From the Selection list, choose Separators.
4
Locate the Distribution section. In the Number of elements text field, type 2.
Distribution 2
1
In the Model Builder window, right-click Swept 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Domain Selection section.
3
From the Selection list, choose Electrodes.
Distribution 3
1
Right-click Swept 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Domain Selection section.
3
From the Selection list, choose CCs and Tabs.
4
Locate the Distribution section. In the Number of elements text field, type 2.
5
Click  Build All.
6
Click the  Go to XY View button in the Graphics toolbar.
7
Click the  Go to Default View button in the Graphics toolbar.
Study 1
Stationary 2
1
In the Study toolbar, click  Study Steps and choose Stationary>Stationary.
2
In the Settings window for Stationary, locate the Physics and Variables Selection section.
3
Step 1: Stationary
1
In the Model Builder window, click Step 1: Stationary.
2
In the Settings window for Stationary, locate the Physics and Variables Selection section.
3
4
In the Model Builder window, click Study 1.
5
In the Settings window for Study, locate the Study Settings section.
6
Clear the Generate default plots check box.
7
In the Study toolbar, click  Compute.
Results
Temperature
1
In the Home toolbar, click  Add Plot Group and choose 3D Plot Group.
2
In the Settings window for 3D Plot Group, type Temperature in the Label text field.
Volume 1
1
Right-click Temperature and choose Volume.
2
In the Settings window for Volume, locate the Expression section.
3
In the Expression text field, type T.
4
From the Unit list, choose degC.
5
Locate the Coloring and Style section. From the Color table list, choose HeatCameraLight.
Temperature
1
In the Model Builder window, click Temperature.
2
In the Settings window for 3D Plot Group, click to expand the Title section.
3
From the Title type list, choose Label.
4
Locate the Color Legend section. Select the Show maximum and minimum values check box.
5
Select the Show units check box.
6
Click the  Zoom Extents button in the Graphics toolbar.
7
In the Temperature toolbar, click  Plot.
8
In the Graphics window toolbar, clicknext to  Go to Default View, then choose Go to View 1.
Electrode Potential wrt Negative Terminal
1
In the Home toolbar, click  Add Plot Group and choose 3D Plot Group.
2
In the Settings window for 3D Plot Group, type Electrode Potential wrt Negative Terminal in the Label text field.
3
Locate the Title section. From the Title type list, choose Label.
4
Locate the Color Legend section. Select the Show units check box.
Volume 1
1
Right-click Electrode Potential wrt Negative Terminal and choose Volume.
2
In the Settings window for Volume, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Secondary Current Distribution>cd.phis - Electric potential - V.
3
Locate the Expression section. From the Unit list, choose mV.
4
In the Electrode Potential wrt Negative Terminal toolbar, click  Plot.
Selection 1
1
Right-click Volume 1 and choose Selection.
2
In the Settings window for Selection, locate the Selection section.
3
From the Selection list, choose Negative CC and Tab.
4
In the Electrode Potential wrt Negative Terminal toolbar, click  Plot.
Electrode Potential wrt Positive Terminal
1
In the Model Builder window, right-click Electrode Potential wrt Negative Terminal and choose Duplicate.
2
In the Settings window for 3D Plot Group, type Electrode Potential wrt Positive Terminal in the Label text field.
Volume 1
1
In the Model Builder window, expand the Electrode Potential wrt Positive Terminal node, then click Volume 1.
2
In the Settings window for Volume, click Insert Expression (Ctrl+Space) in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Secondary Current Distribution>cd.phis0_ec1 - Electric potential on boundary - V.
3
Locate the Expression section. In the Expression text field, type cd.phis-cd.phis0_ec1.
4
From the Unit list, choose mV.
Selection 1
1
In the Model Builder window, expand the Volume 1 node, then click Selection 1.
2
In the Settings window for Selection, locate the Selection section.
3
From the Selection list, choose Positive CC and Tab.
4
In the Electrode Potential wrt Positive Terminal toolbar, click  Plot.
Electrolyte Current Density, Separator 1
1
In the Home toolbar, click  Add Plot Group and choose 3D Plot Group.
2
In the Settings window for 3D Plot Group, type Electrolyte Current Density, Separator 1 in the Label text field.
Surface 1
1
Right-click Electrolyte Current Density, Separator 1 and choose Surface.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Secondary Current Distribution>cd.nIl - Normal electrolyte current density - A/m².
3
Locate the Expression section. In the Expression text field, type abs(cd.nIl).
Selection 1
1
Right-click Surface 1 and choose Selection.
2
In the Settings window for Selection, locate the Selection section.
3
From the Selection list, choose Destination Boundary 1.
Electrolyte Current Density, Separator 1
1
In the Model Builder window, under Results click Electrolyte Current Density, Separator 1.
2
In the Settings window for 3D Plot Group, locate the Title section.
3
From the Title type list, choose Manual.
4
In the Title text area, type Current Density (A/m<sup>2</sup>).
5
In the Electrolyte Current Density, Separator 1 toolbar, click  Plot.
Electrolyte Current Density, Separator 2
1
Right-click Electrolyte Current Density, Separator 1 and choose Duplicate.
2
In the Model Builder window, click Electrolyte Current Density, Separator 1.1.
3
In the Settings window for 3D Plot Group, type Electrolyte Current Density, Separator 2 in the Label text field.
Selection 1
1
In the Model Builder window, expand the Results>Electrolyte Current Density, Separator 2>Surface 1 node, then click Selection 1.
2
In the Settings window for Selection, locate the Selection section.
3
From the Selection list, choose Destination Boundary 2.
4
In the Electrolyte Current Density, Separator 2 toolbar, click  Plot.