PDF

Evaluation of Dynamic Coefficients of a Plain Journal Bearing
Introduction
When analyzing rotors, it is common that bearings are modeled through their effective dynamic coefficients about a static equilibrium position. This example demonstrates a method to compute such coefficients for a plain journal bearing. Computed coefficients are compared to analytical values obtained from solving Reynolds equation, using a short bearing approximation. To make the comparison meaningful, the length of the bearing is taken to be much smaller than its diameter.
Model Definition
The plain journal bearing has a radius of 0.1 m, and a length of 0.04 m. The angular velocity of the journal is 1000 rad/s, and the clearance between the journal and the bearing is 0.0001 m. The viscosity and density of the lubricant are taken as 0.02 Pa·s and 866 kg/m3, respectively. To find the equilibrium position corresponding to different static loads, the journal weight is varied from 500 N to 50,000 N.
Bearing stiffness and damping coefficients are computed for the equilibrium positions by solving a perturbed form of Reynolds equation.
The dimensionless stiffness and damping coefficients obtained from an analytical solution of Reynolds equation (Ref. 1) are:
and
The parameter ε is the relative eccentricity of the journal. Q is given by
Scaling factors for the above dimensionless parameters are k0 = W/C for stiffness and c0 = W/(CΩ) for damping. The bearing load is W, C is the clearance, and Ω is the angular speed of the journal.
Results and Discussion
Figure 1 shows how the journal eccentricity changes with the static load on the bearing. The figure shows that with increasing load, its effect on eccentricity decreases. This clearly depicts the nonlinear behavior of the bearing.
Figure 1: Eccentricity vs load.
Figure 2 shows the computed attitude angle with respect to loading direction, compared to the analytical curve. For small loads the curves coincide. With increasing loads, the journal becomes increasingly eccentric in the bearing. This produces a difference in shear forces at the minimum and maximum film thickness locations. The difference results in a net force on the journal. In high eccentricity cases, the journal equilibrium location is determined by the balance of external loads on the bearing, and the pressure and shear forces.
Figure 2: Attitude angle vs load.
The maximum film pressure and minimum film thickness are two important performance parameters for a bearing. These are plotted in Figure 3.
Figure 3: Maximum pressure and minimum film thickness vs load.
Figure 4 and Figure 5 compare the computed values of the dimensionless stiffness and dimensionless damping coefficient with the corresponding analytical values. The computed values match the analytical values.
Figure 4: Dimensionless stiffness.
Figure 5: Dimensionless damping.
Reference
1. J.S. Rao, Rotor Dynamics, section 7.6, pp. 179–191, New Age International (P) Limited, 2014.
Application Library path: Rotordynamics_Module/Verification_Examples/journal_bearing_dynamic_coefficients
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Structural Mechanics>Rotordynamics>Hydrodynamic Bearing (hdb).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select General Studies>Stationary.
6
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Geometry 1
Cylinder 1 (cyl1)
1
In the Geometry toolbar, click  Cylinder.
2
In the Settings window for Cylinder, locate the Object Type section.
3
From the Type list, choose Surface.
4
Locate the Size and Shape section. In the Radius text field, type Rj.
5
In the Height text field, type H.
6
Locate the Axis section. From the Axis type list, choose x-axis.
7
Click  Build All Objects.
Define the variables for the analytical stiffness and damping.
Definitions
Variables 1
1
In the Model Builder window, expand the Component 1 (comp1)>Definitions node.
2
Right-click Definitions and choose Variables.
3
In the Settings window for Variables, locate the Variables section.
4
Hydrodynamic Bearing (hdb)
1
In the Model Builder window, under Component 1 (comp1) click Hydrodynamic Bearing (hdb).
2
In the Settings window for Hydrodynamic Bearing, locate the Dynamic Coefficients section.
3
Select the Calculate dynamic coefficients check box.
Hydrodynamic Journal Bearing 1
1
In the Model Builder window, under Component 1 (comp1)>Hydrodynamic Bearing (hdb) click Hydrodynamic Journal Bearing 1.
2
In the Settings window for Hydrodynamic Journal Bearing, locate the Bearing Properties section.
3
In the C text field, type C.
4
Locate the Journal Properties section. From the Specify list, choose Load.
5
Specify the Wj vector as
6
Specify the uJ0 vector as
7
In the Ω text field, type Omega.
Choose the Gümbel boundary condition to consider the film with positive pressure only to participate in the load equilibrium.
8
Locate the Film Boundary Condition section. From the Film type list, choose Gümbel.
9
Locate the Fluid Properties section. From the μ list, choose User defined. In the associated text field, type mu0.
10
From the ρ list, choose User defined. In the associated text field, type rho0.
Use a mapped mesh to resolve the pressure.
Mesh 1
Mapped 1
1
In the Mesh toolbar, click  Boundary and choose Mapped.
2
In the Settings window for Mapped, locate the Boundary Selection section.
3
From the Selection list, choose All boundaries.
Distribution 1
1
Right-click Mapped 1 and choose Distribution.
2
3
In the Settings window for Distribution, locate the Distribution section.
4
In the Number of elements text field, type 15.
Distribution 2
1
In the Model Builder window, right-click Mapped 1 and choose Distribution.
2
3
In the Settings window for Distribution, locate the Distribution section.
4
In the Number of elements text field, type 4.
5
Click  Build All.
Study 1
Step 1: Stationary
1
In the Model Builder window, under Study 1 click Step 1: Stationary.
2
In the Settings window for Stationary, click to expand the Study Extensions section.
3
Select the Auxiliary sweep check box.
4
5
6
In the Home toolbar, click  Compute.
Results
Fluid Pressure (hdb)
In the Fluid Pressure (hdb) toolbar, click  Plot.
Use the following instructions to plot the eccentricity versus load curve shown in Figure 1.
Eccentricity
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Eccentricity in the Label text field.
Global 1
1
Right-click Eccentricity and choose Global.
2
In the Settings window for Global, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Hydrodynamic Bearing>Hydrodynamic Journal Bearing 1>hdb.hjb1.ec_rel - Relative eccentricity.
3
Click to expand the Coloring and Style section. In the Width text field, type 2.
4
In the Eccentricity toolbar, click  Plot.
5
Right-click Global 1 and choose Show Legends.
Eccentricity
1
In the Model Builder window, click Eccentricity.
2
In the Settings window for 1D Plot Group, click to expand the Title section.
3
From the Title type list, choose None.
4
In the Eccentricity toolbar, click  Plot.
To compare the computed and analytical attitude angles shown in Figure 2, follow the below instructions.
Attitude Angle
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Attitude Angle in the Label text field.
Global 1
1
Right-click Attitude Angle and choose Global.
2
In the Settings window for Global, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Hydrodynamic Bearing>Hydrodynamic Journal Bearing 1>hdb.hjb1.phia - Attitude angle - rad.
3
Locate the y-Axis Data section. In the table, enter the following settings:
4
Locate the Coloring and Style section. In the Width text field, type 3.
Global 2
1
In the Model Builder window, right-click Attitude Angle and choose Global.
2
In the Settings window for Global, locate the y-Axis Data section.
3
4
Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose None.
5
Find the Line markers subsection. From the Marker list, choose Cycle.
6
In the Number text field, type 50.
7
In the Attitude Angle toolbar, click  Plot.
Attitude Angle
1
In the Model Builder window, click Attitude Angle.
2
In the Settings window for 1D Plot Group, locate the Plot Settings section.
3
Select the y-axis label check box.
4
5
Locate the Title section. From the Title type list, choose None.
Duplicate the eccentricity plot and follow the instructions below to plot the maximum pressure, and minimum film thickness curves, as shown in Figure 3.
Pressure and Film Thickness
1
In the Model Builder window, right-click Eccentricity and choose Duplicate.
2
In the Settings window for 1D Plot Group, type Pressure and Film Thickness in the Label text field.
Global 1
1
In the Model Builder window, expand the Pressure and Film Thickness node, then click Global 1.
2
In the Settings window for Global, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Hydrodynamic Bearing>Journal and bearing properties>hdb.hjb1.p_max - Maximum bearing pressure - Pa.
Global 2
1
Right-click Results>Pressure and Film Thickness>Global 1 and choose Duplicate.
2
In the Settings window for Global, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Hydrodynamic Bearing>Journal and bearing properties>hdb.hjb1.h_min - Minimum film thickness - m.
Pressure and Film Thickness
1
In the Model Builder window, click Pressure and Film Thickness.
2
In the Settings window for 1D Plot Group, locate the Plot Settings section.
3
Select the Two y-axes check box.
4
In the table, select the Plot on secondary y-axis check box for Global 2.
5
Right-click Pressure and Film Thickness and choose Show Legends.
6
In the Pressure and Film Thickness toolbar, click  Plot.
Figure 4 compares the computed dimensionless stiffness to its analytical counterpart. Follow the instructions below to generate this plot.
Bearing Stiffness
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Bearing Stiffness in the Label text field.
Global 1
1
Right-click Bearing Stiffness and choose Global.
2
In the Settings window for Global, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Hydrodynamic Bearing>Dynamic coefficients>hdb.hjb1.k22 - Bearing stiffness, local yy component - N/m.
3
Click Add Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Hydrodynamic Bearing>Dynamic coefficients>hdb.hjb1.k23 - Bearing stiffness, local yz component - N/m.
4
Click Add Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Hydrodynamic Bearing>Dynamic coefficients>hdb.hjb1.k32 - Bearing stiffness, local zy component - N/m.
5
Click Add Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Hydrodynamic Bearing>Dynamic coefficients>hdb.hjb1.k33 - Bearing stiffness, local zz component - N/m.
6
Locate the y-Axis Data section. In the table, enter the following settings:
7
Locate the Coloring and Style section. In the Width text field, type 3.
Global 2
1
In the Model Builder window, right-click Bearing Stiffness and choose Global.
2
In the Settings window for Global, locate the y-Axis Data section.
3
4
Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose None.
5
Find the Line markers subsection. From the Marker list, choose Cycle.
6
In the Number text field, type 50.
Bearing Stiffness
1
In the Model Builder window, click Bearing Stiffness.
2
In the Settings window for 1D Plot Group, locate the Plot Settings section.
3
Select the y-axis label check box.
4
In the associated text field, type Dimensionless Stiffness.
5
Locate the Title section. From the Title type list, choose None.
6
Locate the Legend section. From the Position list, choose Lower right.
Figure 5 compares the computed dimensionless damping to its analytical counterpart. Follow the instructions below to generate this plot.
Bearing Damping Coefficient
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Bearing Damping Coefficient in the Label text field.
Global 1
1
Right-click Bearing Damping Coefficient and choose Global.
2
In the Settings window for Global, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Hydrodynamic Bearing>Dynamic coefficients>hdb.hjb1.c22 - Bearing damping coefficient, local yy component - N·s/m.
3
Locate the y-Axis Data section. In the table, enter the following settings:
4
Locate the Coloring and Style section. In the Width text field, type 3.
Global 2
1
In the Model Builder window, right-click Bearing Damping Coefficient and choose Global.
2
In the Settings window for Global, locate the y-Axis Data section.
3
4
Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose None.
5
Find the Line markers subsection. From the Marker list, choose Cycle.
6
In the Number text field, type 50.
7
In the Bearing Damping Coefficient toolbar, click  Plot.
Bearing Damping Coefficient
1
In the Model Builder window, click Bearing Damping Coefficient.
2
In the Settings window for 1D Plot Group, locate the Title section.
3
From the Title type list, choose None.
4
Locate the Plot Settings section. Select the y-axis label check box.
5