1
|
2
|
3
|
Click Add.
|
4
|
Click Study.
|
5
|
6
|
Click Done.
|
1
|
2
|
1
|
2
|
3
|
4
|
5
|
6
|
1
|
2
|
3
|
Find the Mesh frame coordinates subsection. From the Geometry shape function list, choose Cubic Lagrange. The ray tracing algorithm used by the Geometrical Optics interface computes the refracted ray direction based on a discretized geometry via the underlying finite element mesh. A cubic geometry shape order usually introduces less discretization error compared to the default, which uses linear and quadratic polynomials.
|
1
|
In the Model Builder window, under Component 1 (comp1) right-click Definitions and choose Variables.
|
2
|
1
|
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
|
2
|
1
|
2
|
3
|
In the Maximum number of secondary rays text field, type 0. This model is only concerned with the transmitted (refracted) rays and not the reflected ones, so set the maximum number of secondary rays to 0.
|
4
|
Select the Use geometry normals for ray-boundary interactions check box. In this simulation, the geometry normals are used to apply the boundary conditions on all refracting surfaces. This is appropriate for the highest accuracy ray traces in single-physics simulations, where the geometry is not deformed.
|
1
|
In the Model Builder window, under Component 1 (comp1)>Geometrical Optics (gop) click Material Discontinuity 1.
|
2
|
3
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
1
|
2
|
3
|
4
|
1
|
2
|
3
|
4
|
5
|
6
|
1
|
2
|
3
|
1
|
In the Model Builder window, expand the Results>Ray Diagram 1>Ray Trajectories 1 node, then click Color Expression 1.
|
2
|
3
|
4
|
1
|
2
|
3
|
4
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
1
|
2
|
3
|
4
|
5
|
1
|
2
|
3
|
4
|
5
|
6
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
1
|
2
|
3
|
4
|