PDF

Double Gauss Lens — Parametric Sweep
Introduction
This tutorial is an extension of the Double Gauss Lens tutorial. The double Gauss lens is a multiple element objective lens commonly used in imaging systems. It is capable of high quality imagery over moderately large field angles, at modest to high speed.
The model is constructed using multiple instances of standard parts from the built-in Part Library for the Ray Optics Module. Next, a parametric sweep over multiple wavelengths and field angles is made. Finally, the resulting ray and spot diagrams are displayed.
Figure 1: Overview of a double Gauss lens. In this view the marginal rays of an on-axis trace are shown, together with the chief ray of 4 additional fields.
Model Definition
The double Gauss lens simulated in this study is an f/1.7, 100.2 mm focal length, 19° field of view lens by Lautebacher & Brendel (Agfa Camera Werk Ag, U.S. Patent 2784643), from Ref. 1, p. 323. The parameters of this lens are shown in Table 1 and an overview of the lens can be seen in Figure 1. The instructions for creating the lens geometry can be found in the Appendix — Geometry Instructions of the Double Gauss Lens tutorial.
 
75.050
9.000
33.0
270.700
0.100
33.0
39.270
16.510
27.5
2.000
27.5
25.650
10.990
19.5
13.000
18.6
-31.870
7.030
18.5
8.980
21.0
-43.510
0.100
21.0
221.140
7.980
23.0
-88.790
61.418
23.0
42.5
In addition to the lens parameters used to define the lens geometry, a set of parameters are required to define the ray trace. These are detailed in Table 2. The parameters defining the scope of the parametric sweep can be found in Table 3.
λvac
550 nm
θx
0°
Nominal x field angle
θy
0°
Nominal y field angle
Nring
18
Number of hexapolar rings (Nring = 18 will give a total of 1027 rays)
Pnom
58.941 mm
Pfac1
-1.15
Pfac2
-0.60
 
λnum
λmid
550 nm
λstep
100 nm
λmin/max
θx,num
Number of x fields
θy,num
Number of y fields
θx,step
0°
x field step
θy,step
10°
y field step
θx,min
0°
Minimum x field
θx,max
Maximum x field
θy,min
0°
Minimum y field
θy,max
Maximum y field
Several of the parameters defined in Table 2 are used to derive additional parameters such as the ray direction vector components, the stop and image plane z-coordinates, as well as the entrance pupil location. Table 4 gives the expressions used to derived these parameters. Note that the pupil shift factor is used in a empirical approximation to ensure that the chief ray passes through the center of the stop at all field angles.
vx
tan θx
vy
tan θy
vz
zstop
Stop z-coordinate, where Tc,n is the central thickness of element n and Tn is the separation between elements n and n+1. Note that the stop is the 4th element in the Double Gauss lens
zimage
Image plane z-coordinate, where Tc,n is the central thickness of element n and Tn is the separation between elements n and n+1. Including the stop, the Double Gauss lens has 7 elements.
Pfac
Pfac1 + Pfac2 sin θ
Δxpupil
zpupil + Pfac zstop)tan θx
Pupil shift, x-coordinate
Δypupil
zpupil + Pfac zstop)tan θy
Pupil shift, y-coordinate
Results and Discussion
The double Gauss lens geometry is created by inserting each lens element (including the stop) sequentially. That is, each sequent element is placed relative to the prior one. This process is simplified by making use of the predefined work planes within the part instances.
It is important to appreciate that the ray tracing method used by the Geometrical Optics interface is inherently nonsequential, so the same result could be obtained by placing part instances within the geometry in any order. In order to limit the rays to those which reach the focal plane, additional aperture stops and obstructions are added to the geometry. These items can also be placed by using the predefined work planes from each of the lens part instances. The double Gauss lens geometry sequence is shown in Figure 2.
The results of a ray trace made with 3 different wavelengths and two field points can be seen in Figure 3. In this view the ray trajectories are colored by the normalized radial distance from the centroid of each monochromatic spot. This makes it possible to visualize the relative contribution of the rays to the final image quality to be easily visualized.
Figure 2: The double Gauss lens geometry sequence.
Figure 3: Ray diagram of the double Gauss lens colored by their radial distance from the centroid on the image plane.
Figure 4 and Figure 5 show spot diagrams from the on axis and off axis fields respectively. The spots are colored according to wavelength, and the root mean square (RMS) spot radius for each wavelength is also shown.
Figure 4: Spot diagram for the on axis field (field 1).
Figure 5: Spot diagram for the off axis field (field 2).
Reference
1. W.J. Smith, Modern lens design, vol. 2. New York, NY, USA: McGraw-Hill, 2005.
Application Library path: Ray_Optics_Module/Lenses_Cameras_and_Telescopes/double_gauss_lens_parametric
Note: This tutorial extends the Double Gauss Lens tutorial. The Application Library path for that simulation is: Ray_Optics_Module/Lenses_Cameras_and_Telescopes/double_gauss_lens.
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Optics>Ray Optics>Geometrical Optics (gop).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Ray Tracing.
6
Global Definitions
Parameters 1: Lens Prescription
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, type Parameters 1: Lens Prescription in the Label text field.
. The lens prescription will be added when the geometry sequence is inserted in the following section.
Parameters 2: General
The Double Gauss Lens Parametric simulation parameters can be loaded from a text file.
1
In the Home toolbar, click  Parameters and choose Add>Parameters.
2
In the Settings window for Parameters, type Parameters 2: General in the Label text field.
3
Locate the Parameters section. Click  Load from File.
4
Component 1 (comp1)
1
In the Model Builder window, click Component 1 (comp1).
2
In the Settings window for Component, locate the General section.
3
Find the Mesh frame coordinates subsection. From the Geometry shape function list, choose Cubic Lagrange. The ray tracing algorithm used by the Geometrical Optics interface computes the refracted ray direction based on a discretized geometry via the underlying finite element mesh. A cubic geometry shape order usually introduces less discretization error compared to the default, which uses linear and quadratic polynomials.
Definitions
Load the variable definitions from a text file. These variables are used during postprocessing of the results. Note that the withsol variables have been defined to reflect the range of the parametric sweep.
Variables 1
1
In the Model Builder window, expand the Component 1 (comp1)>Definitions node.
2
Right-click Definitions and choose Variables.
3
In the Settings window for Variables, locate the Variables section.
4
Click  Load from File.
5
Double Gauss Lens
Insert the prepared geometry sequence from file. You can read the instructions for creating the geometry in the appendix. Following insertion, the lens definitions will be available in the Parameters node.
1
In the Model Builder window, under Component 1 (comp1) click Geometry 1.
2
In the Settings window for Geometry, type Double Gauss Lens in the Label text field.
3
In the Geometry toolbar, click  Insert Sequence.
4
5
In the Geometry toolbar, click  Build All.
6
Click the  Orthographic Projection button in the Graphics toolbar. Orient the view to place the z-axis (optical axis) horizontal and the y-axis vertical.
7
Click the  Zoom Extents button in the Graphics toolbar. Compare the resulting geometry to Figure 2.
Add Material
1
In the Home toolbar, click  Add Material to open the Add Material window.
2
Go to the Add Material window.
3
In the tree, select Optical>Glasses>Optical Glass: Hoya>Hoya LAF3.
4
Click Add to Component in the window toolbar.
5
In the tree, select Optical>Glasses>Optical Glass: Hoya>Hoya BAF11.
6
Click Add to Component in the window toolbar.
7
In the tree, select Optical>Glasses>Optical Glass: Schott>Schott N-SF5.
8
Click Add to Component in the window toolbar.
9
In the Home toolbar, click  Add Material to close the Add Material window.
Materials
Hoya LAF3 (mat1)
1
In the Model Builder window, under Component 1 (comp1)>Materials click Hoya LAF3 (mat1).
2
In the Settings window for Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Lens Material 1. Each of the 6 lenses has been assigned to one of three lens material selections.
Hoya BAF11 (mat2)
1
In the Model Builder window, click Hoya BAF11 (mat2).
2
In the Settings window for Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Lens Material 2.
Schott N-SF5 (mat3)
1
In the Model Builder window, click Schott N-SF5 (mat3).
2
In the Settings window for Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Lens Material 3.
Geometrical Optics (gop)
1
In the Model Builder window, under Component 1 (comp1) click Geometrical Optics (gop).
2
In the Settings window for Geometrical Optics, locate the Ray Release and Propagation section.
3
In the Maximum number of secondary rays text field, type 0. In this simulation stray light is not being traced, so reflected rays will not be produced at the lens surfaces.
4
Select the Use geometry normals for ray-boundary interactions check box. In this simulation, the geometry normals are used to apply the boundary conditions on all refracting surfaces. This is appropriate for the highest accuracy ray traces in single-physics simulations, where the geometry is not deformed.
The following variables are not needed to trace the rays but may be useful during postprocessing.
5
Locate the Additional Variables section. Select the Compute optical path length check box.
6
Select the Count reflections check box.
7
Select the Store ray status data check box.
Medium Properties 1
1
In the Model Builder window, under Component 1 (comp1)>Geometrical Optics (gop) click Medium Properties 1.
2
In the Settings window for Medium Properties, locate the Medium Properties section.
3
From the Optical dispersion model list, choose Get dispersion model from material. Each of the materials added above contain the optical dispersion coefficients which can be used to compute the refractive index as a function of wavelength.
Material Discontinuity 1
1
In the Model Builder window, click Material Discontinuity 1.
2
In the Settings window for Material Discontinuity, locate the Rays to Release section.
3
From the Release reflected rays list, choose Never.
Ray Properties 1
1
In the Model Builder window, click Ray Properties 1.
2
In the Settings window for Ray Properties, locate the Ray Properties section.
3
In the λ0 text field, type lam_vac. This wavelength was defined in the Parameters node. It will be updated during the Parameteric Sweep.
Release from Grid 1
Release the rays from a hexapolar grid, using quantities defined in the Parameters node.
1
In the Physics toolbar, click  Global and choose Release from Grid.
2
In the Settings window for Release from Grid, locate the Initial Coordinates section.
3
From the Grid type list, choose Hexapolar.
4
Specify the qc vector as
The Center location of the hexapolar grid will change according to the field angle.
5
Specify the rc vector as
The Cylinder axis direction is the same as the global optical axis.
6
In the Rc text field, type P_nom/2.
7
In the Nc text field, type N_ring.
8
Locate the Ray Direction Vector section. Specify the L0 vector as
The Ray direction vector is calculated using the field angles defined in the Parameters node.
Obstructions
1
In the Physics toolbar, click  Boundaries and choose Wall.
2
In the Settings window for Wall, type Obstructions in the Label text field.
3
Locate the Boundary Selection section. From the Selection list, choose Obstructions.
4
Locate the Wall Condition section. From the Wall condition list, choose Disappear.
Stop
1
In the Physics toolbar, click  Boundaries and choose Wall.
2
In the Settings window for Wall, type Stop in the Label text field.
3
Locate the Boundary Selection section. From the Selection list, choose Aperture Stop.
4
Locate the Wall Condition section. From the Wall condition list, choose Disappear.
Image
1
In the Physics toolbar, click  Boundaries and choose Wall.
2
In the Settings window for Wall, type Image in the Label text field.
3
Locate the Boundary Selection section. From the Selection list, choose Image Plane. The default Wall condition (Freeze) will be used.
Mesh 1
In the Model Builder window, under Component 1 (comp1) right-click Mesh 1 and choose Build All. The default physics-controlled mesh settings can be used in this simulation.
Study 1
In the following steps a parametric sweep study is constructed allowing the Double Gauss lens to be traced over multiple wavelengths and field angles.
1
In the Model Builder window, click Study 1.
2
In the Settings window for Study, locate the Study Settings section.
3
Clear the Generate default plots check box. In this study, the plots will be created manually.
4
Clear the Generate convergence plots check box.
Parametric Sweep
1
In the Study toolbar, click  Parametric Sweep.
2
In the Settings window for Parametric Sweep, locate the Study Settings section.
3
From the Sweep type list, choose All combinations.
4
5
6
Step 1: Ray Tracing
1
In the Model Builder window, click Step 1: Ray Tracing.
2
In the Settings window for Ray Tracing, locate the Study Settings section.
3
From the Time-step specification list, choose Specify maximum path length.
4
From the Length unit list, choose mm.
5
In the Lengths text field, type 0 200. The maximum optical path length is sufficient for rays released at large field angles to reach the image plane.
6
In the Study toolbar, click  Compute.
Results
Create a plot showing the ray trajectories with color expressions, as well as a spot diagram in the image plane.
In the Model Builder window, expand the Results node.
Ray 1
Create a Ray dataset to use with the Ray Diagrams.
1
In the Model Builder window, expand the Results>Datasets node.
2
Right-click Results>Datasets and choose More Datasets>Ray.
3
In the Settings window for Ray, locate the Ray Solution section.
4
From the Solution list, choose Parametric Solutions 1 (sol2).
Create a Cut Plane dataset to make image plane spot diagrams.
Image Plane
1
In the Results toolbar, click  Cut Plane.
2
In the Settings window for Cut Plane, type Image Plane in the Label text field.
3
Locate the Data section. From the Dataset list, choose Ray 1.
4
Locate the Plane Data section. From the Plane list, choose xy-planes.
5
In the z-coordinate text field, type z_image.
Ray Diagram
In the following steps, a ray diagram is created showing all field angles and wavelengths and a custom color expression is added.
Ray Diagram
1
In the Results toolbar, click  3D Plot Group.
2
In the Settings window for 3D Plot Group, type Ray Diagram in the Label text field.
3
Click to expand the Title section. From the Title type list, choose None.
4
Locate the Plot Settings section. Clear the Plot dataset edges check box. The lenses will be rendered using a Mesh plot.
Mesh 1
Create a Mesh plot to render the lens elements as solids.
1
Right-click Ray Diagram and choose Mesh.
2
In the Settings window for Mesh, click to expand the Title section.
3
Locate the Level section. From the Level list, choose Volume.
4
Locate the Coloring and Style section. From the Element color list, choose Gray.
5
From the Wireframe color list, choose None.
Ray Diagram
Add Surface plots to show the stop and image plane.
Surface 1
1
In the Model Builder window, right-click Ray Diagram and choose Surface.
2
In the Settings window for Surface, locate the Data section.
3
From the Dataset list, choose Study 1/Solution 1 (sol1).
4
Locate the Coloring and Style section. From the Coloring list, choose Uniform.
5
From the Color list, choose Gray.
Selection 1
1
Right-click Surface 1 and choose Selection.
2
In the Settings window for Selection, locate the Selection section.
3
From the Selection list, choose Aperture Stop.
Surface 2
In the Model Builder window, under Results>Ray Diagram right-click Surface 1 and choose Duplicate.
Selection 1
1
In the Model Builder window, expand the Surface 2 node, then click Selection 1.
2
In the Settings window for Selection, locate the Selection section.
3
From the Selection list, choose Image Plane.
Ray Diagram
In the Model Builder window, click Ray Diagram.
Ray Trajectories 1
1
In the Ray Diagram toolbar, click  More Plots and choose Ray Trajectories.
2
In the Settings window for Ray Trajectories, locate the Data section.
3
From the Dataset list, choose Ray 1.
4
From the Parameter value (lam_vac (nm)) list, choose 450.
5
From the Parameter value (theta_y (deg)) list, choose 0.
6
Click to expand the Title section. From the Title type list, choose None.
Color Expression 1
1
Right-click Ray Trajectories 1 and choose Color Expression.
Color the rays according to the normalized radial distance from the centroid.
2
In the Settings window for Color Expression, locate the Expression section.
3
In the Expression text field, type at('last',gop.rall/gop.rmaxall).
Filter 1
1
In the Model Builder window, right-click Ray Trajectories 1 and choose Filter.
Select only rays that reach the image plane; i.e., the final ray status (fs) is 2 (frozen).
2
In the Settings window for Filter, locate the Ray Selection section.
3
From the Rays to include list, choose Logical expression.
4
In the Logical expression for inclusion text field, type gop.fs==2.
Ray Trajectories 1
For all other wavelength and field angles, the details used for the first wavelength and field angle can be duplicated.
Ray Trajectories 2
1
Right-click Ray Trajectories 1 and choose Duplicate.
2
In the Settings window for Ray Trajectories, locate the Data section.
3
From the Parameter value (lam_vac (nm)) list, choose 550.
4
Click to expand the Inherit Style section. From the Plot list, choose Ray Trajectories 1. This step only needs to be taken on the first duplication.
Ray Trajectories 3
1
Right-click Ray Trajectories 2 and choose Duplicate.
2
In the Settings window for Ray Trajectories, locate the Data section.
3
From the Parameter value (lam_vac (nm)) list, choose 650.
Ray Trajectories 4
1
Right-click Ray Trajectories 3 and choose Duplicate.
2
In the Settings window for Ray Trajectories, locate the Data section.
3
From the Parameter value (lam_vac (nm)) list, choose 450.
4
From the Parameter value (theta_y (deg)) list, choose 10.
Ray Trajectories 5
1
Right-click Ray Trajectories 4 and choose Duplicate.
2
In the Settings window for Ray Trajectories, locate the Data section.
3
From the Parameter value (lam_vac (nm)) list, choose 550.
Ray Trajectories 6
1
Right-click Ray Trajectories 5 and choose Duplicate.
2
In the Settings window for Ray Trajectories, locate the Data section.
3
From the Parameter value (lam_vac (nm)) list, choose 650.
Spot Diagrams
In the following steps, image plane spot diagrams for each field angle are created, and custom color expressions are added.
First, create a spot diagram for the on-axis field.
Spot Diagram 1
1
In the Home toolbar, click  Add Plot Group and choose 2D Plot Group.
2
In the Settings window for 2D Plot Group, type Spot Diagram 1 in the Label text field.
3
Click to expand the Title section. From the Title type list, choose None.
4
Locate the Plot Settings section. Select the x-axis label check box.
5
6
Select the y-axis label check box.
7
8
Locate the Color Legend section. Select the Show units check box.
Poincaré Map 1
1
In the Spot Diagram 1 toolbar, click  More Plots and choose Poincaré Map.
2
In the Settings window for Poincaré Map, locate the Data section.
3
From the Cut plane list, choose Image Plane.
4
From the Parameter value (lam_vac (nm)) list, choose 450.
5
From the Parameter value (theta_y (deg)) list, choose 0.
Color Expression 1
1
Right-click Poincaré Map 1 and choose Color Expression.
2
In the Settings window for Color Expression, locate the Expression section.
3
In the Expression text field, type lam_vac.
4
From the Unit list, choose nm.
5
Click to expand the Range section. Select the Manual color range check box.
6
In the Minimum text field, type 375.
7
In the Maximum text field, type 725.
8
Locate the Coloring and Style section. From the Color table list, choose Spectrum.
Poincaré Map 2
1
In the Model Builder window, under Results>Spot Diagram 1 right-click Poincaré Map 1 and choose Duplicate.
2
In the Settings window for Poincaré Map, locate the Data section.
3
From the Parameter value (lam_vac (nm)) list, choose 550.
4
Click to expand the Inherit Style section. From the Plot list, choose Poincaré Map 1.
Poincaré Map 3
1
Right-click Poincaré Map 2 and choose Duplicate.
2
In the Settings window for Poincaré Map, locate the Data section.
3
From the Parameter value (lam_vac (nm)) list, choose 650.
Annotation 1
1
In the Model Builder window, right-click Spot Diagram 1 and choose Annotation.
2
In the Settings window for Annotation, locate the Data section.
3
From the Dataset list, choose Study 1/Solution 1 (sol1).
4
Locate the Annotation section. In the Text text field, type Wavelengths: \\ $\lambda$ = eval(lam1/1[nm]), eval(lam2/1[nm]), eval(lam3/1[nm]) nm.
5
Select the Allow evaluation of expressions check box.
6
From the Geometry level list, choose Global.
7
Locate the Position section. In the X text field, type qx_ave0-1.5*r_max.
8
In the Y text field, type qy_ave0+1.5*r_max.
9
Click to expand the Advanced section. In the Expression precision text field, type 4.
10
Locate the Coloring and Style section. Select the LaTeX markup check box.
11
Clear the Show point check box.
12
Select the Show frame check box.
Annotation 2
1
Right-click Annotation 1 and choose Duplicate.
2
In the Settings window for Annotation, locate the Annotation section.
3
In the Text text field, type Field: \\ $\left[\theta_\textrm{x},\theta_\textrm{y}\right] = \left[eval(theta_x0/1[deg])^\circ,eval(theta_y0/1[deg])^\circ\right]$.
4
Locate the Position section. In the X text field, type qx_ave0+1.5*r_max.
5
Locate the Advanced section. In the Expression precision text field, type 3.
6
Locate the Coloring and Style section. From the Anchor point list, choose Upper right.
Annotation 3
1
Right-click Annotation 2 and choose Duplicate.
2
In the Settings window for Annotation, locate the Annotation section.
3
In the Text text field, type Spot sizes: \\ $\lambda$ = eval(lam1/1[nm]) nm: $r_\textrm{rms} = eval(1e3*r_rms0_1)~\mu$m; $r_\textrm{max} = eval(r_max0_1/1[um])~\mu$m \\ $\lambda$ = eval(lam2/1[nm]) nm: $r_\textrm{rms} = eval(1e3*r_rms0_2)~\mu$m; $r_\textrm{max} = eval(r_max0_2/1[um])~\mu$m \\ $\lambda$ = eval(lam3/1[nm]) nm: $r_\textrm{rms} = eval(1e3*r_rms0_3)~\mu$m; $r_\textrm{max} = eval(r_max0_3/1[um])~\mu$m \\ Centroid: $[x,y] = [eval(qx_ave0),eval(qy_ave0)]$ mm.
4
Locate the Position section. In the X text field, type qx_ave0.
5
In the Y text field, type qy_ave0-1.30*r_max.
6
Locate the Advanced section. In the Expression precision text field, type 4.
7
Locate the Coloring and Style section. From the Anchor point list, choose Lower middle.
8
In the Spot Diagram 1 toolbar, click  Plot.
9
Click the  Zoom Extents button in the Graphics toolbar. Compare the plot to Figure 4.
Now, create a spot diagram for the off-axis field.
Spot Diagram 2
1
In the Model Builder window, right-click Spot Diagram 1 and choose Duplicate.
2
In the Settings window for 2D Plot Group, type Spot Diagram 2 in the Label text field.
Poincaré Map 1
1
In the Model Builder window, expand the Spot Diagram 2 node, then click Poincaré Map 1.
2
In the Settings window for Poincaré Map, locate the Data section.
3
From the Parameter value (theta_y (deg)) list, choose 10.
Poincaré Map 2
1
In the Model Builder window, click Poincaré Map 2.
2
In the Settings window for Poincaré Map, locate the Data section.
3
From the Parameter value (theta_y (deg)) list, choose 10.
Poincaré Map 3
1
In the Model Builder window, click Poincaré Map 3.
2
In the Settings window for Poincaré Map, locate the Data section.
3
From the Parameter value (theta_y (deg)) list, choose 10.
Annotation 1
1
In the Model Builder window, click Annotation 1.
2
In the Settings window for Annotation, locate the Position section.
3
In the X text field, type qx_ave1-1.5*r_max.
4
In the Y text field, type qy_ave1+1.5*r_max.
Annotation 2
1
In the Model Builder window, click Annotation 2.
2
In the Settings window for Annotation, locate the Annotation section.
3
In the Text text field, type Field: \\ $\left[\theta_\textrm{x},\theta_\textrm{y}\right] = \left[eval(theta_x1/1[deg])^\circ,eval(theta_y1/1[deg])^\circ\right]$.
4
Locate the Position section. In the X text field, type qx_ave1+1.5*r_max.
5
In the Y text field, type qy_ave1+1.5*r_max.
Annotation 3
1
In the Model Builder window, click Annotation 3.
2
In the Settings window for Annotation, locate the Annotation section.
3
In the Text text field, type Spot sizes: \\ $\lambda$ = eval(lam1/1[nm]) nm: $r_\textrm{rms} = eval(1e3*r_rms1_1)~\mu$m; $r_\textrm{max} = eval(r_max1_1/1[um])~\mu$m \\ $\lambda$ = eval(lam2/1[nm]) nm: $r_\textrm{rms} = eval(1e3*r_rms1_2)~\mu$m; $r_\textrm{max} = eval(r_max1_2/1[um])~\mu$m \\ $\lambda$ = eval(lam3/1[nm]) nm: $r_\textrm{rms} = eval(1e3*r_rms1_3)~\mu$m; $r_\textrm{max} = eval(r_max1_3/1[um])~\mu$m \\ Centroid: $[x,y] = [eval(qx_ave1),eval(qy_ave1)]$ mm.
4
Locate the Position section. In the X text field, type qx_ave1.
5
In the Y text field, type qy_ave1-1.30*r_max.
6
In the Spot Diagram 2 toolbar, click  Plot.
7
Click the  Zoom Extents button in the Graphics toolbar. Compare the resulting image to Figure 5.
Appendix — Geometry Instructions
The lens geometry is identical to that used in the Double Gauss Lens tutorial: Ray_Optics_Module/Lenses_Cameras_and_Telescopes/double_gauss_lens. For details instructions see Appendix — Geometry Instructions.