PDF

Rössler Attractor
Introduction
A Rössler attractor is a system of three nonlinear ordinary differential equations. The Rössler attractor is similar in nature to the Lorenz attractor. The coupled nonlinear equations can be solved using the Massless formulation available in the Mathematical Particle Tracing interface.
Model Definition
The governing differential equations for a Rössler attractor are
where a, b, and c are constants. This model uses the original parameters used by Rössler: a = 0.2, b = 0.2 and c = 5.7. The particles are released from an initial grid in the y direction at x = 0 and z = 0. In total, 31 particles are released uniformly between y = 3 and y = 8.
In this example, None is selected from the Unit system list, and so the coordinates are dimensionless.
Results and Discussion
After the initial release of the particles, they travel counterclockwise in the xy-plane at z = 0. Once they cross to the positive side of the yz-plane the particles rise very sharply in the z direction. The particles with the largest radial coordinate in the xy-plane acquire the highest velocity and thus reach the highest point the z direction; see Figure 1. The region where the particles reach high elevations in a short period of time is called the upswing region. The particles with the outermost radial coordinate entering the upswing region end up at the innermost radial coordinate after the downswing region.
The average particle velocity is plotted in Figure 2. There is a double-peak in maximum velocity, corresponding to the upswing and downswing regions. A Poincaré map showing the intersection of the trajectories with the xz-plane is included in Figure 3. For x < 0 in this plane the particle z-coordinate is very small, while for x > 0 it can vary significantly.
Figure 1: Plot of the Rössler attractor after 10 seconds.
Figure 2: Plot of the average particle velocity versus time.
Figure 3: Particle trajectories with a Poincaré map superimposed (red dots) and Poincaré section shown (gray cut plane).
Reference
1. Wikipedia, http://en.wikipedia.org/wiki/R%C3%B6ssler_attractor
Application Library path: Particle_Tracing_Module/Tutorials/rossler_attractor
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Mathematics>Mathematical Particle Tracing (pt).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select General Studies>Time Dependent.
6
Geometry 1
The geometry is designated to be large enough so that the particle trajectories do not make contact with the walls.
Cylinder 1 (cyl1)
1
In the Geometry toolbar, click  Cylinder.
2
In the Settings window for Cylinder, locate the Size and Shape section.
3
In the Radius text field, type 15.
4
In the Height text field, type 40.
5
Locate the Position section. In the z text field, type -5.
6
In the Geometry toolbar, click  Build All.
Component 1 (comp1)
1
In the Model Builder window, click Component 1 (comp1).
2
In the Settings window for Component, locate the General section.
3
From the Unit system list, choose None.
Global Definitions
Define the constants a, b and c as parameters. This means they could, in principle, be varied as part of a Parametric Sweep when solving.
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Mathematical Particle Tracing (pt)
The Massless formulation allows a system of first order ordinary differential equations to be solved.
1
In the Model Builder window, under Component 1 (comp1) click Mathematical Particle Tracing (pt).
2
In the Settings window for Mathematical Particle Tracing, locate the Particle Release and Propagation section.
3
From the Formulation list, choose Massless.
Particle Properties 1
1
In the Model Builder window, under Component 1 (comp1)>Mathematical Particle Tracing (pt) click Particle Properties 1.
2
In the Settings window for Particle Properties, locate the Particle Velocity section.
3
Specify the v vector as
Release from Grid 1
1
In the Physics toolbar, click  Global and choose Release from Grid.
2
In the Settings window for Release from Grid, locate the Initial Coordinates section.
3
In the qy,0 text field, type range(3,5/30,8).
Study 1
Step 1: Time Dependent
1
In the Model Builder window, under Study 1 click Step 1: Time Dependent.
2
In the Settings window for Time Dependent, locate the Study Settings section.
3
In the Output times text field, type range(0,0.02,10).
4
In the Home toolbar, click  Compute.
Results
Particle Trajectories 1
Render the particle trajectories as ribbons. The default ribbon orientation is in the direction of the unit binormal, or the direction out of the plane tangent to the curved trajectory.
1
In the Model Builder window, expand the Particle Trajectories (pt) node, then click Particle Trajectories 1.
2
In the Settings window for Particle Trajectories, locate the Coloring and Style section.
3
Find the Line style subsection. From the Type list, choose Ribbon.
4
Select the Width scale factor check box.
5
6
Find the Point style subsection. From the Type list, choose None.
Particle Trajectories (pt)
1
In the Model Builder window, click Particle Trajectories (pt).
2
In the Settings window for 3D Plot Group, locate the Plot Settings section.
3
Clear the Plot dataset edges check box.
4
In the Particle Trajectories (pt) toolbar, click  Plot.
5
Click the  Go to Default View button in the Graphics toolbar. The plot should look like Figure 1.
Now plot the average particle velocity using the 1D Plot Group and a Particle plot type.
Average Particle Velocity Magnitude
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Average Particle Velocity Magnitude in the Label text field.
3
Locate the Data section. From the Dataset list, choose Particle 1.
Particle 1
1
In the Average Particle Velocity Magnitude toolbar, click  More Plots and choose Particle.
2
In the Settings window for Particle, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Mathematical Particle Tracing>Velocity and energy>pt.V - Particle velocity magnitude - m/s.
3
Locate the Data Series Operation section. From the Operation list, choose Average.
Color Expression 1
1
Right-click Particle 1 and choose Color Expression.
2
In the Settings window for Color Expression, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Mathematical Particle Tracing>Particle position>qz - Particle position, z component - m.
3
In the Average Particle Velocity Magnitude toolbar, click  Plot. The plot should look like Figure 2.
A Cut Plane dataset can be used to visualize how the particles cross a specific area of interest in the modeling domain. A Poincaré map is created using the intersection points of the trajectories with the plane.
Cut Plane 1
1
In the Results toolbar, click  Cut Plane.
2
In the Settings window for Cut Plane, locate the Plane Data section.
3
From the Plane list, choose ZX-planes.
4
Locate the Data section. From the Dataset list, choose Particle 1.
Particle Trajectories and Poincaré Map
1
In the Model Builder window, right-click Particle Trajectories (pt) and choose Duplicate.
2
In the Settings window for 3D Plot Group, type Particle Trajectories and Poincaré Map in the Label text field.
Particle Trajectories 1
1
In the Model Builder window, expand the Particle Trajectories and Poincaré Map node, then click Particle Trajectories 1.
2
In the Settings window for Particle Trajectories, locate the Coloring and Style section.
3
Find the Line style subsection. From the Type list, choose Tube.
4
In the Tube radius expression text field, type 10.
Surface 1
1
In the Model Builder window, right-click Particle Trajectories and Poincaré Map and choose Surface.
2
In the Settings window for Surface, locate the Data section.
3
From the Dataset list, choose Cut Plane 1.
4
Locate the Coloring and Style section. From the Coloring list, choose Uniform.
5
From the Color list, choose Gray.
6
Click the  Transparency button in the Graphics toolbar.
Particle Trajectories and Poincaré Map
In the Model Builder window, click Particle Trajectories and Poincaré Map.
Poincaré Map 1
1
In the Particle Trajectories and Poincaré Map toolbar, click  More Plots and choose Poincaré Map.
2
In the Settings window for Poincaré Map, locate the Data section.
3
From the Cut plane list, choose Cut Plane 1.
4
In the Particle Trajectories and Poincaré Map toolbar, click  Plot.
5
Locate the Coloring and Style section. Select the Radius scale factor check box.
6
7
In the Particle Trajectories and Poincaré Map toolbar, click  Plot.
8
Click the  Zoom Extents button in the Graphics toolbar. The plot should look like Figure 3.