PDF

Edge Effects in a Spirally Wound Lithium-Ion Battery
Introduction
Due to the large differences in length scales in a lithium-ion battery, with the thickness of the different layers typically being several orders of magnitude smaller than the extension in the sheet direction, a lithium-ion battery is often well represented by a one-dimensional model. However, the packing and stacking of the battery may cause edge effects which motivate modeling in higher dimensions.
This example investigates the geometrical effects that occur when a constructing a lithium-ion battery by spirally winding the active battery components to construct a cylindrical “jelly-roll” battery.
Model Definition
The battery is constructed by winding a laminated bi-battery sheet into a spiral, which is placed in a cylinder and filled with liquid electrolyte. The battery model consists of the following parts (See Figure 1):
The spiral revolves three full laps.
Figure 1: Modeled geometry. Spirally wound bi-battery in circular casing filled with liquid electrolyte.
The Lithium-Ion Battery interface is used to model the battery. For a detailed model description, see the accompanying example 1D Isothermal Lithium-Ion Battery found in the Battery Design Module Application Libraries.
The negative current collector at the outer end of the spiral is grounded, and a current density condition is applied to the end of the positive current collector at the inner end of the spiral.
The load cycle investigated is a constant discharge of the battery to approximately 50% state-of-charge. Two different constant discharge rates are compared, 1C and 10C, where 1C corresponds to the discharge current needed for a 100% discharges in one hour, and 10C a ten times higher discharge current. A 10,000 second relaxation simulation after the 1C discharge is also performed.
Results and Discussion
Figure 2 shows the cell potential versus time during the 1C discharge.
Figure 2: Cell potential versus time during the 1C discharge.
Figure 3 and Figure 4 show the relative lithium concentration at the surface of the electrode particles for the negative and positive porous electrode regions at the end of the 1C discharge (t = 1800 s). Due to the resulting large electrolyte resistivity for lithium transport from and to the innermost and outermost parts of the spiral, these areas of the porous electrodes are hardly discharged at all.
The discharge rate is higher for the negative electrode at the inner end of the spiral and at the outer end for the positive electrodes. This is an effect of the outermost or innermost porous electrode regions contributing to the electrochemical current close to the spiral ends.
These locally higher discharge rates at the ends typically results in a shorter lifetime for these regions than for the inner parts of the spiral, which are discharged more uniformly. However, for a battery with more windings, the relative area of these end regions is small compared to the inner part of the spiral.
Figure 3: Relative lithium concentration at the surface of the negative electrode particles during at t = 1800 s for the 1C discharge.
For this system, there is an excess of negative porous electrode material, and therefore the negative electrode does not get fully depleted in areas where the positive electrode reaches lithium saturation (a relative lithium concentration close to unity in relation to the maximum possible concentration).
Figure 4: Relative lithium concentration at the surface of the positive electrode particles during at t = 1800 s for the 1C discharge.
Figure 5 shows the electrolyte potential at the end of the 1C discharge cycle (t = 1800 s). There is a significant drop in potential from the outer liquid electrolyte region through the spiral into the inner electrolyte region. This is an effect of the outermost and innermost porous electrode regions being discharged at a much lower rate than the rest of the system due to large ohmic drops in the electrolyte, and thereby in effect having almost constant equilibrium potentials throughout the discharge. The potential gradients indicate that there is a current flowing also in the spiral direction close to the spiral ends.
Figure 5: Electrolyte potential at t = 1800 s for the 1C discharge.
Figure 6 shows the electrolyte salt concentration at the end of the 1C discharge (t = 1800 s). The concentration gradients close to the spiral ends are due to the current flowing in the spiral direction.
Figure 6: Electrolyte salt concentration at t = 1800 s for the 1C discharge.
The plots for the 10C discharge of cell voltage versus time, lithium concentrations, the electrolyte potential, and electrolyte salt concentration and lithium concentrations are shown in Figure 7 to Figure 11.
Figure 7: Cell potential versus time during the 10C discharge.
Figure 8: Relative lithium concentration at the surface of the negative electrode particles during at t = 180 s for the 10C discharge.
Figure 9: Relative lithium concentration at the surface of the positive electrode particles during at t = 180 s for the 10C discharge.
The higher discharge rates result in higher gradients in the battery direction compared to the spiral direction, giving less pronounced edge effects and a more uniform discharge.
Figure 10: Electrolyte potential at t = 180 s for the 10C discharge.
Figure 11: Electrolyte salt concentration at t = 180 s for the 10C discharge.
Figure 12 to Figure 16 depict the cell potential, lithium concentrations, electrolyte potential, and electrolyte salt concentration at the end of a 10,000 s relaxation simulation after the 50% discharge at 1C. After approx 3 h of relaxation the battery has not yet reached complete equilibrium.
The first steep rise in cell voltage (Figure 12) is closely related to the same relaxation phenomenon seen in the 1D Isothermal Lithium-Ion Battery model, whereas the slower rise after the first minutes is attributed to moving lithium to and from the outermost and innermost part of the spiral, a process that is very slow due to the long traveling distance in the spiral direction.
Figure 12: Cell potential versus time during the relaxation simulation.
Figure 13: Electrolyte potential at t = 10,000 s for the relaxation simulation.
Figure 14: Electrolyte salt concentration at t = 10,000 s for the relaxation simulation.
Figure 15: Relative lithium concentration at the surface of the negative electrode particles during at t = 10,000 s for the relaxation simulation.
Figure 16: Relative lithium concentration at the surface of the positive electrode particles during at t = 10,000 s for the relaxation simulation.
Notes About the COMSOL Implementation
To minimize the computation time, the element order has been decreased to 1 for the potentials and the electrolyte concentration variables, and a quite coarse mapped mesh is used. 1D battery simulations were made in order to check that the accuracy of the results were not significantly compromised when minimizing the computational degrees of freedom in this way.
Reference
1. M. Doyle, J. Newman, A.S. Gozdz, C.N. Schmutz, and J.M. Tarascon, “Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells,” J. Electrochem. Soc., vol. 143, no. 6, pp. 1890–1903, 1996.
Application Library path: Battery_Design_Module/Batteries,_Lithium-Ion/li_battery_spiral_2d
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  2D.
2
In the Select Physics tree, select Electrochemistry>Batteries>Lithium-Ion Battery (liion).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Time Dependent with Initialization.
6
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Click  Load from File.
4
Analytic 1 (an1)
Add the following functions to be used when drawing the spiral.
1
In the Home toolbar, click  Functions and choose Global>Analytic.
2
In the Settings window for Analytic, type spiralX in the Function name text field.
3
Locate the Definition section. In the Expression text field, type -(s/(2*pi)*D_tot+R)*sin(s).
4
In the Arguments text field, type s, R.
5
Locate the Units section. In the Arguments text field, type 1, m.
6
In the Function text field, type m.
Analytic 2 (spiralX2)
1
Right-click Analytic 1 (an1) and choose Duplicate.
2
In the Settings window for Analytic, type spiralY in the Function name text field.
3
Locate the Definition section. In the Expression text field, type -(s/(2*pi)*D_tot+R)*cos(s).
Geometry 1
Now draw the spiral, consisting of eight different layers.
Parametric Curve 1 (pc1)
1
In the Geometry toolbar, click  More Primitives and choose Parametric Curve.
2
In the Settings window for Parametric Curve, locate the Parameter section.
3
In the Maximum text field, type w_tot+2*pi.
4
Locate the Expressions section. In the x text field, type spiralX(s,r0).
5
In the y text field, type spiralY(s,r0).
6
Click  Build Selected.
Parametric Curve 2 (pc2)
1
Right-click Parametric Curve 1 (pc1) and choose Duplicate.
2
In the Settings window for Parametric Curve, locate the Expressions section.
3
In the x text field, type spiralX(s,r0+a1).
4
In the y text field, type spiralY(s,r0+a1).
5
Click  Build Selected.
Parametric Curve 3 (pc3)
1
Right-click Parametric Curve 2 (pc2) and choose Duplicate.
2
In the Settings window for Parametric Curve, locate the Expressions section.
3
In the x text field, type spiralX(s,r0+a1+a2).
4
In the y text field, type spiralY(s,r0+a1+a2).
5
Click  Build Selected.
Parametric Curve 4 (pc4)
1
Right-click Parametric Curve 3 (pc3) and choose Duplicate.
2
In the Settings window for Parametric Curve, locate the Expressions section.
3
In the x text field, type spiralX(s,r0+a1+a2+a3).
4
In the y text field, type spiralY(s,r0+a1+a2+a3).
5
Click  Build Selected.
Parametric Curve 5 (pc5)
1
Right-click Parametric Curve 4 (pc4) and choose Duplicate.
2
In the Settings window for Parametric Curve, locate the Expressions section.
3
In the x text field, type spiralX(s,r0+a1+a2+a3+a4).
4
In the y text field, type spiralY(s,r0+a1+a2+a3+a4).
5
Click  Build Selected.
Parametric Curve 6 (pc6)
1
Right-click Parametric Curve 5 (pc5) and choose Duplicate.
2
In the Settings window for Parametric Curve, locate the Expressions section.
3
In the x text field, type spiralX(s,r0+a1+a2+a3+a4+a5).
4
In the y text field, type spiralY(s,r0+a1+a2+a3+a4+a5).
5
Click  Build Selected.
Parametric Curve 7 (pc7)
1
Right-click Parametric Curve 6 (pc6) and choose Duplicate.
2
In the Settings window for Parametric Curve, locate the Expressions section.
3
In the x text field, type spiralX(s,r0+a1+a2+a3+a4+a5+a6).
4
In the y text field, type spiralY(s,r0+a1+a2+a3+a4+a5+a6).
5
Click  Build Selected.
Parametric Curve 8 (pc8)
1
Right-click Parametric Curve 7 (pc7) and choose Duplicate.
2
In the Settings window for Parametric Curve, locate the Expressions section.
3
In the x text field, type spiralX(s,r0+a1+a2+a3+a4+a5+a6+a7).
4
In the y text field, type spiralY(s,r0+a1+a2+a3+a4+a5+a6+a7).
5
Click  Build Selected.
Parametric Curve 9 (pc9)
1
In the Geometry toolbar, click  More Primitives and choose Parametric Curve.
2
In the Settings window for Parametric Curve, locate the Parameter section.
3
In the Maximum text field, type D_tot*(laps+1).
4
Locate the Expressions section. In the x text field, type 0.
5
In the y text field, type -(s+r0).
6
Click  Build Selected.
Convert to Solid 1 (csol1)
1
In the Geometry toolbar, click  Conversions and choose Convert to Solid.
2
Click in the Graphics window and then press Ctrl+A to select all objects.
3
In the Settings window for Convert to Solid, click  Build Selected.
Circle 1 (c1)
1
In the Geometry toolbar, click  Circle.
2
In the Settings window for Circle, locate the Size and Shape section.
3
In the Radius text field, type D_tot*(laps+1.25)+r0.
4
Locate the Position section. In the x text field, type D_tot/4.
5
In the y text field, type -D_tot/4.
6
Click  Build All Objects.
Definitions
Next, make selections of the various domains to use later on when setting up the physics.
Positive current collector
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, type Positive current collector in the Label text field.
3
Negative current collector
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, type Negative current collector in the Label text field.
3
Positive porous electrode
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, type Positive porous electrode in the Label text field.
3
Negative porous electrode
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, type Negative porous electrode in the Label text field.
3
Electrolyte
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, type Electrolyte in the Label text field.
3
Negative terminal
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, type Negative terminal in the Label text field.
3
Locate the Input Entities section. From the Geometric entity level list, choose Boundary.
4
Positive terminal
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, type Positive terminal in the Label text field.
3
Locate the Input Entities section. From the Geometric entity level list, choose Boundary.
4
Electrolyte outside
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, type Electrolyte outside in the Label text field.
3
Spiral battery
1
In the Definitions toolbar, click  Union.
2
In the Settings window for Union, type Spiral battery in the Label text field.
3
Locate the Input Entities section. Under Selections to add, click  Add.
4
In the Add dialog box, in the Selections to add list, choose Positive current collector, Negative current collector, Positive porous electrode, Negative porous electrode, and Electrolyte.
5
Positive + Electrolyte + Negative
1
In the Definitions toolbar, click  Union.
2
In the Settings window for Union, type Positive + Electrolyte + Negative in the Label text field.
3
Locate the Input Entities section. Under Selections to add, click  Add.
4
In the Add dialog box, in the Selections to add list, choose Positive porous electrode, Negative porous electrode, Electrolyte, and Electrolyte outside.
5
Materials
Use data from the material library for the current collector materials.
Add Material
1
In the Home toolbar, click  Add Material to open the Add Material window.
2
Go to the Add Material window.
3
In the tree, select Built-in>Aluminum.
4
Click Add to Component in the window toolbar.
5
In the tree, select Built-in>Copper.
6
Click Add to Component in the window toolbar.
Materials
Aluminum (mat1)
1
In the Model Builder window, under Component 1 (comp1)>Materials click Aluminum (mat1).
2
In the Settings window for Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Positive current collector.
Copper (mat2)
1
In the Model Builder window, click Copper (mat2).
2
In the Settings window for Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Negative current collector.
Add Material
Use the Battery Material Library to set up the material properties for the electrolyte and electrode materials. By adding the electrolyte material to the model first, this material becomes the default material for all domains.
Note: In the Materials node, cEeqref denotes the maximum lithium concentration in the active material.
1
Go to the Add Material window.
2
In the tree, select Battery>Electrolytes>LiPF6 in 1:2 EC:DMC and p(VdF-HFP) (Polymer electrolyte, Li-ion Battery).
3
Click Add to Component in the window toolbar.
4
In the tree, select Battery>Electrodes>Graphite Electrode, LixC6 MCMB (Negative, Li-ion Battery).
5
Click Add to Component in the window toolbar.
6
In the tree, select Battery>Electrodes>LMO Electrode, LiMn2O4 Spinel (Positive, Li-ion Battery).
7
Click Add to Component in the window toolbar.
8
In the Home toolbar, click  Add Material to close the Add Material window.
Materials
LiPF6 in 1:2 EC:DMC and p(VdF-HFP) (Polymer electrolyte, Li-ion Battery) (mat3)
1
In the Model Builder window, under Component 1 (comp1)>Materials click LiPF6 in 1:2 EC:DMC and p(VdF-HFP) (Polymer electrolyte, Li-ion Battery) (mat3).
2
In the Settings window for Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Positive + Electrolyte + Negative.
Lithium-Ion Battery (liion)
Now start defining the battery physics model.
Porous Electrode 1
1
In the Model Builder window, under Component 1 (comp1) right-click Lithium-Ion Battery (liion) and choose Porous Electrode.
2
In the Settings window for Porous Electrode, locate the Domain Selection section.
3
From the Selection list, choose Negative porous electrode.
4
Locate the Electrode Properties section. From the Electrode material list, choose Graphite Electrode, LixC6 MCMB (Negative, Li-ion Battery) (mat4).
5
Locate the Porous Matrix Properties section. In the εs text field, type epss_neg.
6
In the εl text field, type epsl_neg.
Particle Intercalation 1
1
In the Model Builder window, expand the Porous Electrode 1 node, then click Particle Intercalation 1.
2
In the Settings window for Particle Intercalation, locate the Material section.
3
From the Particle material list, choose Graphite Electrode, LixC6 MCMB (Negative, Li-ion Battery) (mat4).
4
Locate the Species Settings section. In the cs,init text field, type cs0_neg.
5
Locate the Particle Transport Properties section. In the rp text field, type rp_neg.
6
Click to expand the Particle Discretization section. In the Nel text field, type 3.
Porous Electrode Reaction 1
1
In the Model Builder window, click Porous Electrode Reaction 1.
2
In the Settings window for Porous Electrode Reaction, locate the Material section.
3
From the Material list, choose Graphite Electrode, LixC6 MCMB (Negative, Li-ion Battery) (mat4).
4
Locate the Electrode Kinetics section. In the i0,ref(T) text field, type i0ref_neg.
5
In the αa text field, type aA_neg.
6
In the αc text field, type aC_neg.
Porous Electrode 2
1
In the Physics toolbar, click  Domains and choose Porous Electrode.
2
In the Settings window for Porous Electrode, locate the Domain Selection section.
3
From the Selection list, choose Positive porous electrode.
4
Locate the Electrode Properties section. From the Electrode material list, choose LMO Electrode, LiMn2O4 Spinel (Positive, Li-ion Battery) (mat5).
5
Locate the Porous Matrix Properties section. In the εs text field, type epss_pos.
6
In the εl text field, type epsl_pos.
Particle Intercalation 1
1
In the Model Builder window, expand the Porous Electrode 2 node, then click Particle Intercalation 1.
2
In the Settings window for Particle Intercalation, locate the Material section.
3
From the Particle material list, choose LMO Electrode, LiMn2O4 Spinel (Positive, Li-ion Battery) (mat5).
4
Locate the Species Settings section. In the cs,init text field, type cs0_pos.
5
Locate the Particle Transport Properties section. In the rp text field, type rp_pos.
6
Locate the Particle Discretization section. In the Nel text field, type 5.
Porous Electrode Reaction 1
1
In the Model Builder window, click Porous Electrode Reaction 1.
2
In the Settings window for Porous Electrode Reaction, locate the Material section.
3
From the Material list, choose LMO Electrode, LiMn2O4 Spinel (Positive, Li-ion Battery) (mat5).
4
Locate the Electrode Kinetics section. In the i0,ref(T) text field, type i0ref_pos.
5
In the αa text field, type aA_pos.
6
In the αc text field, type aC_pos.
Electrode 1
1
In the Physics toolbar, click  Domains and choose Electrode.
2
In the Settings window for Electrode, locate the Domain Selection section.
3
From the Selection list, choose Negative current collector.
Electrode 2
1
In the Physics toolbar, click  Domains and choose Electrode.
2
In the Settings window for Electrode, locate the Domain Selection section.
3
From the Selection list, choose Positive current collector.
Electric Ground 1
1
In the Physics toolbar, click  Boundaries and choose Electric Ground.
2
In the Settings window for Electric Ground, locate the Boundary Selection section.
3
From the Selection list, choose Negative terminal.
Electrode Current Density - 1C Discharge
1
In the Physics toolbar, click  Boundaries and choose Electrode Current Density.
This node will be used in the 1C discharge study.
2
In the Settings window for Electrode Current Density, type Electrode Current Density - 1C Discharge in the Label text field.
3
Locate the Boundary Selection section. From the Selection list, choose Positive terminal.
4
Locate the Electrode Current Density section. In the in,s text field, type i_app_1C.
Electrode Current Density - 10C Discharge
Create a second electrode current density node to be used for the 10 C discharge study
1
Right-click Electrode Current Density - 1C Discharge and choose Duplicate.
2
In the Settings window for Electrode Current Density, type Electrode Current Density - 10C Discharge in the Label text field.
3
Locate the Electrode Current Density section. In the in,s text field, type 10*i_app_1C.
Set the element order to one for the potentials and the electrolyte concentration variables in the battery model to reduce the computation time.
4
In the Model Builder window, click Lithium-Ion Battery (liion).
5
In the Settings window for Lithium-Ion Battery, click to expand the Discretization section.
6
From the Electrolyte potential list, choose Linear.
7
From the Electrolyte salt concentration list, choose Linear.
8
From the Electric potential list, choose Linear.
Mesh 1
Now start building the mesh. In the spiral direction you can expect low gradients. Use a mapped mesh to reflect this and to optimize the number of elements.
Edge 1
1
In the Mesh toolbar, click  Edge.
2
Distribution 1
1
Right-click Edge 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Distribution section.
3
In the Number of elements text field, type 1.
Edge 2
1
In the Mesh toolbar, click  Edge.
2
Distribution 1
1
Right-click Edge 2 and choose Distribution.
2
In the Settings window for Distribution, locate the Distribution section.
3
In the Number of elements text field, type 4.
Edge 3
1
In the Mesh toolbar, click  Edge.
2
Distribution 1
1
Right-click Edge 3 and choose Distribution.
2
In the Settings window for Distribution, locate the Distribution section.
3
In the Number of elements text field, type 10.
Edge 4
1
In the Mesh toolbar, click  Edge.
2
Distribution 1
1
Right-click Edge 4 and choose Distribution.
2
In the Settings window for Distribution, locate the Distribution section.
3
In the Number of elements text field, type 6.
Edge 5
1
In the Mesh toolbar, click  Edge.
2
Distribution 1
1
Right-click Edge 5 and choose Distribution.
2
In the Settings window for Distribution, locate the Distribution section.
3
From the Distribution type list, choose Explicit.
4
In the Relative placement of vertices along edge text field, type 0 5e-5 10^range(-4,0.25,-2) range(2e-2,1e-2,0.98) (1-10^range(-2,-0.25,-4)) 0.99995 1.
Mapped 1
1
In the Mesh toolbar, click  Mapped.
2
In the Settings window for Mapped, locate the Domain Selection section.
3
From the Geometric entity level list, choose Domain.
4
From the Selection list, choose Spiral battery.
Free Triangular 1
1
In the Mesh toolbar, click  Free Triangular.
2
In the Model Builder window, right-click Mesh 1 and choose Build All.
Definitions (comp1)
Add a probe to store the average potential of the positive terminal for all solver time steps.
Boundary Probe 1 (bnd1)
1
In the Definitions toolbar, click  Probes and choose Boundary Probe.
2
In the Settings window for Boundary Probe, locate the Source Selection section.
3
From the Selection list, choose Positive terminal.
4
Click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Lithium-Ion Battery>phis - Electric potential - V.
Study 1
Step 2: Time Dependent
1
In the Model Builder window, under Study 1 click Step 2: Time Dependent.
2
In the Settings window for Time Dependent, locate the Study Settings section.
3
In the Output times text field, type range(0,300,1800).
4
Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.
5
In the Physics and variables selection tree, select Component 1 (comp1)>Lithium-Ion Battery (liion)>Electrode Current Density - 10C Discharge.
6
Click  Disable.
7
In the Model Builder window, click Study 1.
8
In the Settings window for Study, type Study 1 - 1 C Discharge in the Label text field.
9
In the Home toolbar, click  Compute.
Results
Electrolyte Salt Concentration (liion)
1
In the Model Builder window, under Results click Electrolyte Salt Concentration (liion).
2
In the Settings window for 2D Plot Group, click to expand the Title section.
3
From the Title type list, choose Label.
Height Expression 1
1
In the Model Builder window, expand the Electrolyte Salt Concentration (liion) node.
2
Right-click Surface 1 and choose Height Expression.
3
In the Electrolyte Salt Concentration (liion) toolbar, click  Plot.
Electrolyte Potential (liion)
1
In the Model Builder window, click Electrolyte Potential (liion).
2
In the Settings window for 2D Plot Group, locate the Title section.
3
From the Title type list, choose Label.
Height Expression 1
1
In the Model Builder window, expand the Electrolyte Potential (liion) node.
2
Right-click Surface 1 and choose Height Expression.
3
In the Electrolyte Potential (liion) toolbar, click  Plot.
Probe Plot Group 7
1
In the Model Builder window, click Probe Plot Group 7.
2
In the Settings window for 1D Plot Group, click to expand the Title section.
3
From the Title type list, choose Manual.
4
In the Title text area, type Cell potential vs. time.
5
Locate the Plot Settings section. Select the x-axis label check box.
6
Select the y-axis label check box.
7
8
In the Probe Plot Group 7 toolbar, click  Plot.
Study 1 - 1 C Discharge/Solution 1 (4) (sol1)
In the Results toolbar, click  More Datasets and choose Solution.
Selection
1
In the Results toolbar, click  Attributes and choose Selection.
2
In the Settings window for Selection, locate the Geometric Entity Selection section.
3
From the Geometric entity level list, choose Domain.
4
From the Selection list, choose Negative porous electrode.
Study 1 - 1 C Discharge/Solution 1 (5) (sol1)
In the Results toolbar, click  More Datasets and choose Solution.
Selection
1
In the Results toolbar, click  Attributes and choose Selection.
2
In the Settings window for Selection, locate the Geometric Entity Selection section.
3
From the Geometric entity level list, choose Domain.
4
From the Selection list, choose Positive porous electrode.
Relative Li Concentration at Surface of Negative Electrode Particles
1
In the Results toolbar, click  2D Plot Group.
2
In the Settings window for 2D Plot Group, type Relative Li Concentration at Surface of Negative Electrode Particles in the Label text field.
3
Locate the Title section. From the Title type list, choose Label.
4
Locate the Data section. From the Dataset list, choose Study 1 - 1 C Discharge/Solution 1 (4) (sol1).
Surface 1
1
Right-click Relative Li Concentration at Surface of Negative Electrode Particles and choose Surface.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Lithium-Ion Battery>Particle intercalation>liion.socloc_surface - Local electrode material state-of-charge, particle surface.
Height Expression 1
1
Right-click Surface 1 and choose Height Expression.
2
In the Relative Li Concentration at Surface of Negative Electrode Particles toolbar, click  Plot.
Relative Li Concentration at Surface of Positive Electrode Particles
1
In the Home toolbar, click  Add Plot Group and choose 2D Plot Group.
2
In the Settings window for 2D Plot Group, type Relative Li Concentration at Surface of Positive Electrode Particles in the Label text field.
3
Locate the Data section. From the Dataset list, choose Study 1 - 1 C Discharge/Solution 1 (5) (sol1).
4
Locate the Title section. From the Title type list, choose Label.
Surface 1
1
Right-click Relative Li Concentration at Surface of Positive Electrode Particles and choose Surface.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Lithium-Ion Battery>Particle intercalation>liion.socloc_surface - Local electrode material state-of-charge, particle surface.
Height Expression 1
1
Right-click Surface 1 and choose Height Expression.
2
In the Relative Li Concentration at Surface of Positive Electrode Particles toolbar, click  Plot.
Root
Now, perform a new simulation for a 10 C discharge current.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Time Dependent with Initialization.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 2
Step 2: Time Dependent
1
In the Model Builder window, under Study 2 click Step 2: Time Dependent.
2
In the Settings window for Time Dependent, locate the Study Settings section.
3
In the Output times text field, type range(0,30,90) 105.
4
Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.
5
In the Physics and variables selection tree, select Component 1 (comp1)>Lithium-Ion Battery (liion)>Electrode Current Density - 1C Discharge.
6
Click  Disable.
7
In the Model Builder window, click Study 2.
8
In the Settings window for Study, type Study 2 - 10 C Discharge in the Label text field.
9
Locate the Study Settings section. Clear the Generate default plots check box.
10
In the Home toolbar, click  Compute.
Results
Electrolyte Potential (liion)
1
In the Model Builder window, under Results click Electrolyte Potential (liion).
2
In the Settings window for 2D Plot Group, locate the Data section.
3
From the Dataset list, choose Study 2 - 10 C Discharge/Solution 3 (sol3).
4
In the Electrolyte Potential (liion) toolbar, click  Plot.
Electrolyte Salt Concentration (liion)
1
In the Model Builder window, click Electrolyte Salt Concentration (liion).
2
In the Settings window for 2D Plot Group, locate the Data section.
3
From the Dataset list, choose Study 2 - 10 C Discharge/Solution 3 (sol3).
4
In the Electrolyte Salt Concentration (liion) toolbar, click  Plot.
5
Click the  Zoom Extents button in the Graphics toolbar.
Study 1 - 1 C Discharge/Solution 1 (4) (sol1)
1
In the Model Builder window, under Results>Datasets click Study 1 - 1 C Discharge/Solution 1 (4) (sol1).
2
In the Settings window for Solution, locate the Solution section.
3
From the Solution list, choose Solution 3 (sol3).
Study 1 - 1 C Discharge/Solution 1 (5) (sol1)
1
In the Model Builder window, under Results>Datasets click Study 1 - 1 C Discharge/Solution 1 (5) (sol1).
2
In the Settings window for Solution, locate the Solution section.
3
From the Solution list, choose Solution 3 (sol3).
Relative Li Concentration at Surface of Negative Electrode Particles
1
In the Model Builder window, click Relative Li Concentration at Surface of Negative Electrode Particles.
2
In the Relative Li Concentration at Surface of Negative Electrode Particles toolbar, click  Plot.
3
Click the  Zoom Extents button in the Graphics toolbar.
4
In the Relative Li Concentration at Surface of Negative Electrode Particles toolbar, click  Plot.
Relative Li Concentration at Surface of Positive Electrode Particles
1
In the Model Builder window, click Relative Li Concentration at Surface of Positive Electrode Particles.
2
In the Relative Li Concentration at Surface of Positive Electrode Particles toolbar, click  Plot.
3
Click the  Zoom Extents button in the Graphics toolbar.
Root
Finally, perform a simulation of the relaxation phenomena occurring in the battery after discharge at zero net cell current. Use the end of the 1C discharge as initial values.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Time Dependent.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 3
Step 1: Time Dependent
1
In the Settings window for Time Dependent, locate the Study Settings section.
2
In the Output times text field, type 0 10^range(-1,1,5).
3
Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.
4
In the Physics and variables selection tree, select Component 1 (comp1)>Lithium-Ion Battery (liion)>Electrode Current Density - 1C Discharge.
5
Click  Disable.
6
In the Physics and variables selection tree, select Component 1 (comp1)>Lithium-Ion Battery (liion)>Electrode Current Density - 10C Discharge.
7
Click  Disable.
8
Click to expand the Values of Dependent Variables section. Find the Initial values of variables solved for subsection. From the Settings list, choose User controlled.
9
From the Method list, choose Solution.
10
From the Study list, choose Study 1 - 1 C Discharge, Time Dependent.
11
In the Model Builder window, click Study 3.
12
In the Settings window for Study, type Study 3 - Relaxation after 1C Discharge in the Label text field.
13
Locate the Study Settings section. Clear the Generate default plots check box.
14
In the Home toolbar, click  Compute.
Results
Study 2 - 10 C Discharge/Solution 3 (4) (sol3)
1
In the Model Builder window, under Results>Datasets click Study 2 - 10 C Discharge/Solution 3 (4) (sol3).
2
In the Settings window for Solution, locate the Solution section.
3
From the Solution list, choose Solution 5 (sol5).
Study 2 - 10 C Discharge/Solution 3 (5) (sol3)
1
In the Model Builder window, under Results>Datasets click Study 2 - 10 C Discharge/Solution 3 (5) (sol3).
2
In the Settings window for Solution, locate the Solution section.
3
From the Solution list, choose Solution 5 (sol5).
Electrolyte Salt Concentration (liion)
1
In the Model Builder window, click Electrolyte Salt Concentration (liion).
2
In the Settings window for 2D Plot Group, locate the Data section.
3
From the Dataset list, choose Study 3 - Relaxation after 1C Discharge/Solution 5 (8) (sol5).
4
In the Electrolyte Salt Concentration (liion) toolbar, click  Plot.
5
Electrolyte Potential (liion)
1
In the Model Builder window, click Electrolyte Potential (liion).
2
In the Settings window for 2D Plot Group, locate the Data section.
3
From the Dataset list, choose Study 3 - Relaxation after 1C Discharge/Solution 5 (8) (sol5).
4
In the Electrolyte Potential (liion) toolbar, click  Plot.
Electrolyte Salt Concentration (liion)
1
In the Model Builder window, click Electrolyte Salt Concentration (liion).
2
In the Electrolyte Salt Concentration (liion) toolbar, click  Plot.
Relative Li Concentration at Surface of Negative Electrode Particles
1
In the Model Builder window, click Relative Li Concentration at Surface of Negative Electrode Particles.
2
In the Relative Li Concentration at Surface of Negative Electrode Particles toolbar, click  Plot.
3
Relative Li Concentration at Surface of Positive Electrode Particles
1
In the Model Builder window, click Relative Li Concentration at Surface of Positive Electrode Particles.
2
In the Relative Li Concentration at Surface of Positive Electrode Particles toolbar, click  Plot.
3
Click the  Zoom Extents button in the Graphics toolbar.