The phase transformation defines how one phase forms (the destination phase) at the expense of another (the source phase). Select Source phase ξs and
Destination phase ξd from the list of defined phases. Select a
Phase transformation model —
Leblond–Devaux,
Johnson–Mehl–Avrami–Kolmogorov,
Kirkaldy–Venugopalan, simplified,
Microstructure based,
Koistinen–Marburger,
Hyperbolic rate, or
User defined.
Select a Formulation —
Time and equilibrium,
General coefficients,
TTT diagram data, or
Parameterized TTT diagram.
|
•
|
For Time and equilibrium, select an Equilibrium phase fraction  from the list. For User defined, specify an expression for  . Specify a Time constant τs → d.
|
|
•
|
For General coefficients, specify the expressions for Ks → d and Ls → d. For TTT diagram data, select an Equilibrium phase fraction  from the list. For User defined, specify an expression for  . Specify the Relative phase fraction X1, and the Transformation time t1.
|
|
•
|
For Parameterized TTT diagram, select an Equilibrium phase fraction  from the list. For User defined, specify an expression for  . Specify the Relative phase fraction X1. In the TTT Curve 1 section, specify the transformation times tL, tN, and tU corresponding to points on the lower part, the “nose”, and the upper part of the TTT curve at the relative phase fraction X1. Specify the corresponding transformation temperatures TL, TN, and TU, and the TTT curve shape parameters qNL and qNU.
|
If applicable, select Define temperature limits, and select the
Lower temperature limit Tl and the
Upper temperature limit Tu from the respective lists. For the
User defined options, specify, respectively, expressions for
Tl and
Tu.
|
|
The Equilibrium phase fraction, Lower temperature limit, and Upper temperature limit lists used by phase transformation nodes are populated by values calculated by the Steel Composition node.
|
Select a Formulation —
Time, equilibrium and exponent,
TTT diagram data,
TTT diagram data, fixed exponent,
Parameterized TTT diagram, or
Parameterized TTT diagram, fixed exponent.
|
•
|
For Time, equilibrium and exponent, select an Equilibrium phase fraction  from the list. For User defined, specify an expression for  . Specify the Time constant τs → d, and the Avrami exponent ns → d.
|
|
•
|
For TTT diagram data, select an Equilibrium phase fraction  from the list. For User defined, specify an expression for  . Specify the Relative phase fraction X1, the Transformation time t1, the Relative phase fraction X2, and the Transformation time t2.
|
|
•
|
For TTT diagram data, fixed exponent, select an Equilibrium phase fraction  from the list. For User defined, specify an expression for  . Specify the Avrami exponent ns → d, the Relative phase fraction X1, and the Transformation time t1.
|
|
•
|
For Parameterized TTT diagram, select an Equilibrium phase fraction  from the list. For User defined, specify an expression for  . Specify the Relative phase fraction X1, and the Relative phase fraction X2. In the TTT Curve 1 section, specify the transformation times tL, tN, and tU corresponding to points on the lower part, the “nose”, and the upper part of the TTT curve at the Relative phase fraction X1. Specify the corresponding transformation temperatures TL, TN, and TU, and the TTT curve shape parameters qNL and qNU. In the TTT Curve 2 section, specify the parameters for the TTT curve at the Relative phase fraction X2.
|
|
•
|
For Parameterized TTT diagram, fixed exponent, select an Equilibrium phase fraction  from the list. For User defined, specify an expression for  . Specify the Avrami exponent ns → d, and the Relative phase fraction X1. In the TTT Curve 1 section, specify the transformation times tL, tN, and tU corresponding to points on the lower part, the “nose”, and the upper part of the TTT curve at the Relative phase fraction X1. Specify the corresponding transformation temperatures TL, TN, and TU, and the TTT curve shape parameters qNL and qNU.
|
If the rate term in the phase transformation model is to account for a nonzero initial phase fraction of the source phase, select Include effect of initial phase fraction. If applicable, select
Define temperature limits, and select the
Lower temperature limit Tl and the
Upper temperature limit Tu from the respective lists. For the
User defined options, specify, respectively, expressions for
Tl and
Tu.
Select a Formulation —
Rate coefficient,
TTT diagram data, or
Parameterized TTT diagram.
|
•
|
For Rate coefficient, select an Equilibrium phase fraction  from the list. For User defined, specify an expression for  . Specify the Reference rate  .
|
|
•
|
For TTT diagram data, select an Equilibrium phase fraction  from the list. For User defined, specify an expression for  . Specify the Relative phase fraction X1, and the Transformation time t1.
|
|
•
|
For Parameterized TTT diagram, select an Equilibrium phase fraction  from the list. For User defined, specify an expression for  . Specify the Relative phase fraction X1. In the TTT Curve 1 section, specify the transformation times tL, tN, and tU corresponding to points on the lower part, the “nose”, and the upper part of the TTT curve at the relative phase fraction X1. Specify the corresponding transformation temperatures TL, TN, and TU, and the TTT curve shape parameters qNL and qNU.
|
The rate term can be modified from its original form. If applicable, select Include retardation term, and specify the
Retardation coefficient Cr. If applicable, select
Define temperature limits, and select the
Lower temperature limit Tl and the
Upper temperature limit Tu from the respective lists. For the
User defined options, specify, respectively, expressions for
Tl and
Tu.
Select an Equilibrium phase fraction 
from the list. For
User defined, specify an expression for

. Select a
Phase transformation function f from the list. For
User defined, specify an expression for
f. Select a
Rate exponent a from the list. Select an
Undercooling exponent m from the list. Select the
Lower temperature limit Tl and the
Upper temperature limit Tu from the respective lists.
The rate term can be modified from its original form. If applicable, select Include retardation term, and select a
Retardation coefficient Cr from the list. For
User defined, specify an expression for
Cr.
Select a Formulation —
Koistinen–Marburger coefficient or
Martensite finish temperature.
|
•
|
For Koistinen–Marburger coefficient, specify the Martensite start temperature Ms and, if applicable, select Stress-dependent start temperature. Specify the Koistinen–Marburger coefficient β.
|
|
•
|
For Martensite finish temperature, specify the Martensite start temperature Ms and, if applicable, select Stress-dependent start temperature. Specify the Martensite finish temperature M90.
|
If Stress-dependent start temperature has been selected, you have to specify how stresses affect the
Martensite start temperature Ms.
If Incomplete transformation has been selected, specify the
Minimum retained source phase fraction 
.
Specify the Hyperbolic rate constant Ps → d and select an
Equilibrium phase fraction 
from the list. For
User defined, specify an expression for

. If applicable, select
Define temperature limits, and select the
Lower temperature limit Tl and the
Upper temperature limit Tu from the respective lists. For the
User defined options, specify, respectively, expressions for
Tl and
Tu.
Specify the Lower temperature limit Tl and the
Upper temperature limit Tu from the respective lists. For the
User defined options, specify, respectively, expressions for
Tl and
Tu.
Specify the Eutectoid austenite fraction 
from the list. For
User defined, specify an expression for

. Under the
Time parameter section, specify
q1 and
q2, and then specify the
Avrami exponent ns → d. Specify the
Lower temperature limit Tl and the
Upper temperature limit Tu from the respective lists. For the
User defined options, specify, respectively, expressions for
Tl and
Tu.
Specify the Phase transformation contribution As → d. The expression defines the rate at which the destination phase forms, at the expense of the source phase.
If applicable, select Define temperature limits, and select the
Lower temperature limit Tl and the
Upper temperature limit Tu from the respective lists. For the
User defined options, specify, respectively, expressions for
Tl and
Tu.
This section is active if you have selected Enable phase transformation latent heat at the physics interface level. You can specify the latent heat
ΔHs → d that is released during the phase transformation.
The Transformation-induced plasticity checkbox is available if you have selected
Enable transformation-induced plasticity at the physics interface level. In case of transformation-induced plasticity, select
Transformation-induced-plasticity parameter —
Thermal strain based or
User defined. The
Thermal strain based option is available if
Enable phase plasticity and
Enable thermal strains have been selected at the physics interface level. For
User defined, enter a value or an expression for the transformation-induced-plasticity parameter

directly. Select the
Saturation function Φ —
Abrassart,
Desalos,
Leblond,
Tanaka, or
User defined. For
User defined, enter an expression for the derivative of the saturation function.
The Plastic recovery for destination phase checkbox is available if the
Enable thermal strains has been selected at the physics interface level. If you have selected
Plastic recovery for destination phase, you can specify the
Plastic memory coefficient Θs → d. The default value is zero, which means that no plastic straining in the source phase will be carried over to the destination phase.
|
|
If you have selected Parameterized TTT Diagram or Parameterized TTT Diagram, Fixed Exponent, you can visualize the TTT curve corresponding to the entered parameters in the TTT curve 1 or TTT Curve 2 sections.
|
The smoothing parameters ΔT and
ΔMs each defines a temperature span across which the phase transformation rate term is smoothly ramped. In the limit of a zero smoothing parameter value, the ramping reduces to a Heaviside step function.