11. M.L. Parks, E. de Sturler, G. Mackey, D.D. Johnson, and S. Maiti, “Recycling Krylov Subspaces of Linear Systems,” Siam J. Sci. Comput., vol. 28, no. 5, 2006,
https://doi.org/10.1137/040607277.
12. Y. Saad, Iterative Methods for Sparse Linear Systems, Boston, 1996.
14. B. Metsch, Algebraic Multigrid (AMG) for Saddle Point-Systems, PhD thesis, Bonn, 2013.
16. S.C. Eisenstat and H.F. Walker, Choosing the Forcing Terms in an Inexact Newton Method, Technical report CRPC-TR94463, May 1994, Center for Research on Parallel Computation, Houston, TX.
17. U. Meier Yang, Parallel Algebraic Multigrid Methods — High Performance Preconditioners, LLNL.
24. Y. Saad, ILUT: A Dual Threshold Incomplete LU Factorization, Report umsi-92-38, Computer Science Department, University of Minnesota, available from
www-users.cse.umn.edu/~saad/.
25. W. Hackbusch, Multi-grid Methods and Applications, Springer-Verlag, Berlin, 1985.
30. E. Agullo, L. Giraud, A. Guermouche, A. Haidar, and J. Roman, “Parallel algebraic domain decomposition solver for the solution of augmented systems,” Adv. Eng. Softw., vols. 60–61, pp. 23–30, 2013,
https://doi.org/10.1016/j.advengsoft.2012.07.004.
36. H.M Bücker, A transpose-free 1-norm quasi-minimal residual algorithm for non-Hermitian linear systems, FZJ-ZAM-IB-9706.
37. K. Stüben, Algebraic Multigrid (AMG): An Introduction with Applications, GMD Report 70, GMD, 1999.
38. C. Wagner, Introduction to Algebraic Multigrid, course notes, University of Heidelberg, 1999.