
COMSOL Multiphysics
Model Manager Reference Manual

C o n t a c t I n f o r m a t i o n

Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries
or search for an address and phone number. You can also visit the Worldwide Sales Offices
page at www.comsol.com/contact/offices for address and contact information.

If you need to contact Support, an online request form is located on the COMSOL Access
page at www.comsol.com/support/case. Useful links:

• Support Center: www.comsol.com/support

• Product Download: www.comsol.com/product-download

• Product Updates: www.comsol.com/product-update

• COMSOL Blog: www.comsol.com/blogs

• Discussion Forum: www.comsol.com/forum

• Events: www.comsol.com/events

• COMSOL Video Gallery: www.comsol.com/videos

• Support Knowledge Base: www.comsol.com/support/knowledgebase

• Learning Center: https://www.comsol.com/support/learning-center

Part number: CM020017

M o d e l M a n a g e r R e f e r e n c e M a n u a l
© 1998–2024 COMSOL

Protected by patents listed on www.comsol.com/patents, or see Help > About COMSOL Multiphysics on
the File menu in the COMSOL Desktop for less detailed lists of U.S. Patents that may apply. Patents
pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License
Agreement (www.comsol.com/sla) and may be used or copied only under the terms of the license
agreement.

COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Compiler,
COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other
trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products
are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such
trademark owners, see www.comsol.com/trademarks.

Version: COMSOL 6.3

https://www.comsol.com/contact/
https://www.comsol.com/contact/offices/
https://www.comsol.com/support/case/
https://www.comsol.com/support/
https://www.comsol.com/product-download/
https://www.comsol.com/product-update
https://www.comsol.com/blogs/
https://www.comsol.com/forum/
https://www.comsol.com/events/
https://www.comsol.com/videos/
https://www.comsol.com/support/knowledgebase/
www.comsol.com/patents/
https://www.comsol.com/sla/
https://www.comsol.com/trademarks/
https://www.comsol.com/support/learning-center

C o n t e n t s

C h a p t e r 1 : I n t r o d u c t i o n

About the Model Manager 10

What Can You Do with the Model Manager? 10

Where Do I Access the Documentation?. 12

Overview of the Manual 14

C h a p t e r 2 : M o d e l M a n a g e r T o o l s

Introduction 19

Adding Databases 21

The Add Database Window. 22

New Local Database . 22

Opening a Local Database 23

Connecting to a Server Database. 25

Backward Compatibility for Model Manager. 29

Databases in the COMSOL Modeling Environment 30

Opening Models from Databases 30

Saving Models to Databases 32

Saving Drafts of Models . 38

Geometry Parts Saved in Databases. 39

Inserting Parts and Other Model Contents from Databases 39

The Versions Window for the COMSOL Desktop Model 40

Comparing Models Saved in Databases 44

Running COMSOL Batch with Models in Databases. 45

Selecting Files in Databases as Input Sources 47

Selecting Files in Databases as Output Targets. 49

Loading and Saving Auxiliary Data Files Stored in Databases 51

The Auxiliary Data Window for Database Input and Output 52
C O N T E N T S | 3

4 | C O N T E N T S
The Model Manager Workspace 55

Opening the Model Manager Workspace. 55

The Home Toolbar . 55

The Database Toolbar . 57

The Maintenance Toolbar 59

The Model Manager Workspace Windows 60

Overview of a Model Manager Database 63

Models. 63

Files . 68

Tags. 72

Items . 73

Commits . 74

Branches . 77

Snapshots . 79

Locations . 80

Repositories . 81

Users . 82

Groups . 82

Permission Templates . 83

Browsing Databases 85

The Model Manager Window 85

The Databases Window . 89

The Settings Window . 92

The Commits Window . 94

Activating a Database . 95

The Versions Window. 95

The References Window . 99

Opening Models . 103

Running Applications . 106

Inserting Contents from Models 106

Previewing Files . 109

Comparing Models . 109

Copying Model and File Locations 110

Organization of Models and Files 113

Assigning Tags to Items 113

Organizing Items in Repositories 117

Basic Version Control 118

Saving Versions . 118

Adding and Removing Tag Assignments 121

Deleting Items . 121

Recording Snapshots . 123

Bulk Operations 125

Importing Files . 125

Exporting Items . 128

User Management 130

Managing Users . 130

Managing Groups . 131

Access Control 133

Owners . 133

Granting Permissions . 134

Permission Catalog . 136

Permission Levels . 139

Reusing Permission Assignments Using Permission Templates 141

Maintenance 143

Estimating Disk Space Usage 143

Built, Computed, and Plotted Data 145

Permanently Deleting Models and Data Files 146

Collecting Models and Files for Maintenance 147

The Maintenance Window 149

Database Administration 154

Database Configurations 154

Updating Search Index . 157

Database Cleanup . 157

Compacting Local Databases 158

Moving and Deleting Local Databases 158

Backup for Local Databases 159
C O N T E N T S | 5

6 | C O N T E N T S
C h a p t e r 3 : S e a r c h i n g a n d F i l t e r i n g

Searching Versions 162

Searching Latest Versions for Locations 162

Searching All Versions in the Database 164

Sorting Search Results . 165

Search History. 166

Full Text Search 167

Combining Full Text Search Words 167

Matched Fields. 168

Item and Content Filters 170

Field Types . 170

The Filter Dialog . 173

Item Filters . 175

Content Filters . 178

Applied Filter Pills . 182

The Model Manager Search Syntax 183

Basic Field Expressions 184

Combining Expressions 188

Searching Nodes and Settings in the Model Tree 189

Search Syntax Completion 192

Search Syntax Catalog . 193

C h a p t e r 4 : A d v a n c e d V e r s i o n C o n t r o l

Branching 200

The Branch as a Sequence of Commits 200

Creating a New Branch 201

Merging 205

Merging Changes to a Target Branch 205

The Merge Window . 206

Reverting 209

Reverting Changes on a Branch 209

The Revert Window . 209

C h a p t e r 5 : W o r k i n g w i t h M o d e l s i n D a t a b a s e s

Example: Modeling Using Version Control 214

Creating the Database . 214

Model Wizard Setup . 215

Saving a First Version . 216

Saving More Versions . 217

Working With a Draft of the Model 219

Comparing Versions . 225

Excluding Built, Computed, and Plotted Data 226

Importing Auxiliary Data to the Database 227

The Model Manager Workspace 229

Example: Browsing, Organizing, and Searching Models and

Data Files 231

Downloading the Demo Database for Model Manager 231

Searching and Browsing the Demo Database 232

Using a Tag Tree for Organization and Retrieval in a Database 238

Creating and Assigning Tags. 241

Searching on Model Contents 247

Using the Model Manager Search Syntax 251

Example: Using Advanced Version Control Tools in the Model

Manager 254

Using a Draft to Update a Single Model 254

Working with Commits 259

Using a Branch to Update Many Models 264
C O N T E N T S | 7

8 | C O N T E N T S
C h a p t e r 6 : M o d e l M a n a g e r A P I

Getting Started with the API 274

Accessing the Model Manager API 275

Connecting to Model Manager Databases 277

Navigating a Model Manager Database 278

Reading Settings . 280

Creating and Updating Database Objects. 282

Advanced Database Operations Using Parameter Objects 283

Querying Database Objects 284

Version Control Management of Models and Files 288

Items and Versions . 288

Searching . 289

Basic Loading and Saving of Models 290

Importing Items . 291

Exporting Items . 293

Querying Versions . 294

Working with Input and Output 296

Advanced Save Operations for Items 298

C h a p t e r 7 : G l o s s a r y

Glossary of Terms 302

Index 307

 1
I n t r o d u c t i o n
Read this guide to learn how to use the Model Manager, a set of tools for helping
you with version control of models and data files. The Model Manager is available
directly from the COMSOL Desktop® and includes comprehensive functionality
for saving, searching, organizing, and sharing models and data files stored in a
Model Manager database. A database can either be created locally on your
computer for personal use or you can set up a server database, hosted by a Model
Manager server, for collaborative use.

In this chapter:

• About the Model Manager

• Overview of the Manual
9

10 | C H A P T E R
Abou t t h e Mode l Manag e r
In this section:

• What Can You Do with the Model Manager?

• Where Do I Access the Documentation?

What Can You Do with the Model Manager?

When working with a simulation model for an extended period of time, you will
inevitably have a need to keep a backup of old versions. You may, for example, want to
recover an older version in case your current modeling work goes astray, or perhaps
you want to use an older version as a template for a completely new model. Your
solution to this may vary from something as straightforward as saving files with
different filenames on your local hard drive, saving to a file-based version control
system, or by uploading files to a product lifecycle management (PLM) system
provided by your organization. If you are working on models in a collaborative setting,
you are also used to sharing files with your coworkers, for example via email, by placing
them on a shared file system, or by allowing your coworkers to download them from
a centralized version control system or PLM system.

As the amount of simulation models and data grows, you and your coworkers might
find yourselves spending a large part of your time managing these models and data.
This may involve working with multiple tools and software — keeping you away from
your main modeling and simulation work. Some of the challenges and concerns you
might face are:

• Efficient storage of models. Store only relevant data for the purpose of archiving and
future retrieval, all while keeping disk space usage manageable.

• Automatic extraction of model metadata. Extract metadata when saving simulation
models so that you and others may later find them, without requiring manual data
entry for keywords and other search terms.

• Reuse of models. Use previously saved simulation models and data as building
blocks when creating new models, perhaps generating an extensive library of
reusable parts.

• Track and compare changes to models over time. Get an automatic audit trail for
your simulation models to compare and restore older versions, or to reproduce
modeling steps.
1 : I N T R O D U C T I O N

• Manage relationships between models and data files. Find out which simulation
models use a particular data file as input or what simulation model generated a
particular data file as output.

• Access control. Control who can find, open, and save simulation models and data.

The Model Manager comes with a set of tools for addressing these points — all while
staying within the COMSOL Desktop modeling environment. From the COMSOL
Desktop, you can create a new database on your own computer to keep track of your
private models and data files, or you and your colleagues may share such models and
files by uploading them to a server database accessed via a Model Manager server.

A Model Manager database is tailor-made for the storage needs of a model built in
COMSOL Multiphysics®. The Model Manager makes sure to never store duplicates
of simulation data when saving multiple versions of the same model. You can also avoid
storing built, computed, and plotted data that may instead be reproduced from the
model when needed.

The powerful Model Manager search syntax enables you to search deep into models
based on their properties, features, settings, and other metadata. You may, for example,
perform search queries answering:

• Which models use a Time Dependent study step?

• Which models have a Length parameter between 5 cm and 15 cm?

• Which models were last saved by me?

The Model Manager also comes with standard version control tools such as viewing
the version history of models and data files, automatically detecting version conflicts
when saving, and comparing versions with each other. You can, for example, open an
older model version to create a completely new model with its own split-off version
history, or see all the changes made to a model from one version to the next.

You can do exploratory work on an existing model in a database by creating a draft of
the model. The draft is version controlled in its own right, enabling you to experiment
with various simulation ideas without polluting the version history of the original
model. Once you have finished your draft work, you may choose to either keep it as a
new version of the original model or discard it.

More advanced version control tools such as branching, merging, and reverting are
also available. Branching enables you, for example, to work on an entire collection of
models and data files in isolation, while at the same time postponing the decision
whether or not your changes are worth preserving. Reverting enables you, for
A B O U T T H E M O D E L M A N A G E R | 11

12 | C H A P T E R
example, to restore models and data files that you have previously deleted, perhaps by
accident.

The Model Manager also comes with an application programming interface (API) for
use with the Java® programming language. The Model Manager API enables you to
easily perform repetitive tasks by writing and running a few lines of code from the
COMSOL Desktop. The API also enables you to perform more advanced database
operations that would otherwise be difficult to do using built-in Model Manager tools.

When using a server database accessed via a Model Manager server, you can control
who can access models and data files by setting permissions. You can, for example, set
which users are permitted to open or save a particular model, or set which users are
permitted to search and browse a collection of models. You can also use the web-based
asset management system included with a Model Manager server installation to link
your simulation models and results to various documents, presentations, project notes,
slides, and other supplementary files and metadata — all while keeping everything in
the same database storing your models. Using the asset management system is also a
simple way of collaborating on simulation projects with people in your organization
who may not have access to the COMSOL Multiphysics software. Simulation
engineers can, for example, share output files from simulation runs by exporting them
to the Model Manager server, while other engineers can upload new versions of data
files via the Model Manager server web interface — versions which are then
immediately available to the simulation engineer from the COMSOL Desktop.

Where Do I Access the Documentation?

A number of online resources have more information about COMSOL, including
licensing and technical information. The electronic documentation, topic-based (or
context-based) help, and the Application Libraries are all accessed through the
COMSOL Desktop.

C O N T A C T I N G C O M S O L B Y E M A I L

For general product information, contact COMSOL at info@comsol.com.

If you are reading the documentation as a PDF file on your computer,
the blue links do not work to open an application or content
referenced in a different guide. However, if you are using the Help
system in COMSOL Multiphysics, these links work to open other
modules, application examples, and documentation sets.
1 : I N T R O D U C T I O N

C O M S O L A C C E S S A N D T E C H N I C A L S U P P O R T

To receive technical support from COMSOL for the COMSOL products, please
contact your local COMSOL representative or send your questions to
support@comsol.com. An automatic notification and a case number will be sent to you
by email. You can also access technical support, software updates, license information,
and other resources by registering for a COMSOL Access account.

C O M S O L O N L I N E R E S O U R C E S

COMSOL website www.comsol.com

Contact COMSOL www.comsol.com/contact

COMSOL Access www.comsol.com/access

Support Center www.comsol.com/support

Product Download www.comsol.com/product-download

Product Updates www.comsol.com/product-update

COMSOL Blog www.comsol.com/blogs

Discussion Forum www.comsol.com/forum

Events www.comsol.com/events

COMSOL Application Gallery www.comsol.com/models

COMSOL Video Gallery www.comsol.com/videos

Learning Center www.comsol.com/support/learning-center

Support Knowledge Base www.comsol.com/support/knowledgebase
A B O U T T H E M O D E L M A N A G E R | 13

https://www.comsol.com
https://www.comsol.com/contact
https://www.comsol.com/access
https://www.comsol.com/support
https://www.comsol.com/product-download
https://www.comsol.com/product-update
https://www.comsol.com/blogs
https://www.comsol.com/forum
https://www.comsol.com/events
https://www.comsol.com/models
https://www.comsol.com/videos
https://www.comsol.com/support/learning-center
https://www.comsol.com/support/knowledgebase

14 | C H A P T E R
Ove r v i ew o f t h e Manua l
This Model Manager Reference Manual contains information that helps you get
started with the Model Manager in the COMSOL Multiphysics product. The
information in this guide is specific to this functionality. Instructions on how to use
COMSOL in general are included with the COMSOL Multiphysics Reference
Manual.

Instructions on how to install, configure, and administer a Model Manager server is
found in the Model Manager Server Manual. That manual also contains information
about the asset management system included with a Model Manager server
installation.

T A B L E O F C O N T E N T S A N D I N D E X

To help you navigate through this guide, see the Contents section and Index.

T O O L S

The Model Manager Tools chapter has an overview of the tools available in the
COMSOL Desktop and includes information about Adding Databases, Databases in
the COMSOL Modeling Environment, and The Model Manager Workspace.

S E A R C H

The Searching and Filtering chapter gives a detailed description of the search and
filtering capabilities of a Model Manager database, including an overview of The
Model Manager Search Syntax.

V E R S I O N C O N T R O L

The Advanced Version Control chapter introduces more advanced tools for version
control management in the Model Manager, including Branching, Merging, and
Reverting.

As detailed in the section Where Do I Access the Documentation?, this
information can also be searched from the COMSOL Multiphysics
software Help system.
1 : I N T R O D U C T I O N

T U T O R I A L S

The Working with Models in Databases chapter showcases how the Model Manager
tools can be integrated into your modeling workflow by way of a few example tutorials.

A P I

The Model Manager API chapter contains examples that show how to perform various
tasks involving Model Manager databases by writing and running a few lines of Java®

code from the COMSOL Desktop.

G L O S S A R Y

The Glossary chapter gives a summary of various concepts and terms specific to a
Model Manager database.
O V E R V I E W O F T H E M A N U A L | 15

16 | C H A P T E R
 1 : I N T R O D U C T I O N

 2
M o d e l M a n a g e r T o o l s
This chapter provides an overview of the tools available in the Model Manager that
enables you to save, search, organize, and share models and data files stored in a
Model Manager database. To quickly get started with models in databases, see the
tutorial Example: Modeling Using Version Control.

In this chapter:

• Introduction

• Adding Databases

• Databases in the COMSOL Modeling Environment

• The Model Manager Workspace

• Overview of a Model Manager Database

• Browsing Databases

• Organization of Models and Files

• Basic Version Control

• Bulk Operations

• User Management

• Access Control
17

18 | C H A P T E R
• Maintenance

• Database Administration
2 : M O D E L M A N A G E R T O O L S

I n t r o du c t i o n
The Model Manager includes an extensive set of tools for working with version-
controlled models and data files stored in databases. These tools are integrated into the
COMSOL Desktop modeling environment (the Model Builder, the Application
Builder, and the Physics Builder), enabling you to seamlessly switch between models
and data files stored on the file system and in a Model Manager database.

Some of the key Model Manager tools that you will encounter in your everyday
modeling workflow are:

• Opening a model from a database from the Open window. See Opening Models
from Databases to learn how you can find models to open.

• Saving a model to a database from the Save window. See Saving Models to Databases
to learn how you can save your modeling work as a new version in a database.

• Reusing components, materials, physics and other model contents via the Select

Model window. See Inserting Parts and Other Model Contents from Databases to
learn how you can copy such contents from models stored in databases into the
model currently opened in the COMSOL Desktop. See also Geometry Parts Saved
in Databases to learn how you can reference geometry parts stored in databases in
your models.

• Accessing older versions of a model from the Versions window. See The Versions
Window for the COMSOL Desktop Model to learn how you can access previously
saved versions of your model, including opening a version, restoring a version, or
comparing two versions with each other.

• Selecting data files stored in a database as sources for input or targets for output in
the Select File window. See Selecting Files in Databases as Input Sources to learn how
you can import data into a model from a data file stored in a database. See Selecting
Files in Databases as Output Targets to learn how you can export data from a model
to a data file stored in a database.

In this, and in many other chapters, the term model will be used as a
catch-all that also includes applications and physics. The term data file is
a catch-all for other types of files that models may depend on as input or
generate as output — including, for example, CAD data, interpolation
functions, plots, and reports. See the Glossary for more details.
I N T R O D U C T I O N | 19

20 | C H A P T E R
You can quickly get started with the Model Manager by creating a new database stored
locally on your computer. See Adding Databases and New Local Database to learn how
you can create such a database directly from within the COMSOL Desktop.

If you have installed a Model Manager server, you can also connect to its server
database from within the COMSOL Desktop — see Connecting to a Server Database.
Read more about installing, configuring, and administrating a Model Manager server
in the Model Manager Server Manual.

The Model Manager comes with a dedicated workspace for database-specific tools such
as browsing, organizing, and administrating your databases. See The Model Manager
Workspace and further sections in this chapter to learn, for example, how you can
browse and administer your configured databases in The Databases Window, search
for models and data files in The Model Manager Window, and view settings, features,
properties, and other metadata of your saved models in The Settings Window.

The Model Manager is supported on the same platforms as COMSOL
Multiphysics®: Windows®, Linux®, and macOS.

The Model Manager tools are default enabled in the COMSOL Desktop
environment. You can hide all Model Manager functionality via the
Preferences window by clearing the Enable Model Manager checkbox on the
Model Manager page. A program restart is required.
2 : M O D E L M A N A G E R T O O L S

Add i n g Da t a b a s e s
The COMSOL Desktop supports connecting to both a local database stored on the
same computer that COMSOL Multiphysics is running on, as well as to a server
database accessed via a Model Manager server. You can connect to as many databases
as you like, and COMSOL Multiphysics will remember connected databases between
program sessions. Connecting to a local or server database is also supported when
Running COMSOL Multiphysics in Client–Server Mode.

A local database is intended for single-user use and is the recommended database when
you want to keep your own models and data files under version control, without
necessarily intending for others to see and work with them. It can also be useful when
you just want to try out the various features that Model Manager offers. A server
database is intended for multiple-user use and is the recommended database when you
are working on models and data files in a collaborative setting.

Support for creating local databases is included with the COMSOL Multiphysics
installation and requires no additional modules, software, or running processes. A
server database requires a running Model Manager server, which can either be started
on the same computer as COMSOL Multiphysics or on another computer that
COMSOL Multiphysics has network access to.

To add a new database, do one of the following:

• In the Open window, the Save window, the Select File window, the Select Model

window, or the Export window, choose Add Database () from the list of options.

• In the Model Manager workspace, click the Add Database button () in the
Database section in the Home toolbar.

In this section:

• The Add Database Window

• New Local Database

• Opening a Local Database

• Connecting to a Server Database

• Backward Compatibility for Model Manager
A D D I N G D A T A B A S E S | 21

22 | C H A P T E R
The Add Database Window

From the Add Database window:

• Click the New Local Database button () to create a new Model Manager database
that will be stored locally on your computer.

• Click the Open Local Database button () to add an existing Model Manager
database stored locally on your computer.

• Click the Connect to Server Database button () to connect to a server database
via a Model Manager server.

New Local Database

To create a new local database on your computer:

1 Under Database name, write the name of the new database as stored on the file
system.

The database name can only contain characters that are valid for a directory name
and filename. The name will also be used as the initial label of the database in the
COMSOL Desktop, although this label can later be changed — see Database
Configurations.

2 Under Databases directory, write the path to the parent directory that will contain
the new database. You can also keep the suggested, prefilled directory path.

The database itself will be created as a subdirectory inside this directory.

3 Click the Add Database button () to create the new database.

• New Local Database

• Opening a Local Database

• Connecting to a Server Database

Creating a database on a network or cloud drive is not supported and
COMSOL Multiphysics will report an error if it detects such a file system
path. This includes placing the database in a local folder on your computer
that is mapped to an external cloud drive via two-way synchronization.
For more information, see https://www.comsol.com/support/
knowledgebase/1295.
2 : M O D E L M A N A G E R T O O L S

A L O C A L D A T A B A S E O N T H E F I L E S Y S T E M

The created database consists of a directory with the name specified by the Database

name field, located within the parent directory specified by the field under Databases

directory in the New Local Database window. This database directory contains:

• An SQLite® database file with the same name as the directory. Its file extension is
mphdb.

• A resources directory containing files whose file sizes are deemed too large to
store directly inside the SQLite® database file. These files can, for example, be built,
computed, and plotted data generated by models, or standalone data files such as
CAD data, interpolation functions, and reports.

• An indexes directory containing files used by Model Manager for searching and
filtering. The file contents in this directory is automatically created by Model
Manager using the data stored in the SQLite® database file and, as a result, may be
safely skipped in backups.

Opening a Local Database

You can add an already created database to the COMSOL Desktop. This is useful, for
example, if you want to move a local database created on another computer to your
current computer or if you want to restore a database whose database directory has
previously been backed up by external backup software.

The field under Databases directory contains a prefilled default directory
path appropriate for the underlying operating system. You can change this
default from the Preferences window in the Directory for local databases

field on the Model Manager page.

The database directory also contains an index directory used for
backward compatibility when the database is accessed from a COMSOL
Multiphysics 6.0 installation. This directory and its file contents are
created automatically as needed and may be safely skipped in backups.

Backup for Local Databases
A D D I N G D A T A B A S E S | 23

24 | C H A P T E R
From the Open dialog, browse to and choose the SQLite® database file for the database
you want to add. Click the Open button to add the database.

Model Manager will check that it can connect to the SQLite® database file, as well as
check that the resources directory and the indexes directory for the database, as
described in A Local Database on the File System, are found next to the SQLite®

database file. If the indexes directory cannot be found, Model Manager will recreate
the directory and its file contents using the data stored in the SQLite® database file. If
all checks succeed, the Model Manager database is added to the COMSOL Desktop.
Otherwise, the Open Local Database window is shown.

1 Write the path to the SQLite® database file under Database file.

2 Write the path to the resources directory under Resources directory.

3 Write the path to the indexes directory under Search indexes directory.

4 Write a label for the database under Label.

5 Click the Add Database button () to add the database to the COMSOL Desktop.

O P E N I N G A L O C A L D A T A B A S E F R O M M U L T I P L E C O M S O L M U L T I P H Y S I C S

P R O C E S S E S

You can access the same local database from multiple COMSOL Multiphysics program
sessions as long as these program sessions run on the same computer that stores the
database. There are, however, a few caveats to keep in mind:

• Changes saved from one COMSOL Multiphysics program session may not be
immediately visible to other program sessions.

• Some advanced search and filter functionality, as described in Searching and
Filtering, will only be available to the first program session that connects to the local
database. Other program sessions use a simplified search.

Connecting to a local database from multiple COMSOL Multiphysics program
sessions running on different computers by, for example, trying to place the local

Adding a database stored on a network or cloud drive is not supported
and COMSOL Multiphysics will report an error if it detects such a file
system path. This includes placing the database in a local folder on your
computer that is mapped to an external cloud drive via two-way
synchronization. For more information, see https://www.comsol.com/
support/knowledgebase/1295.
2 : M O D E L M A N A G E R T O O L S

database on a network drive or a cloud drive, or use some other type of sharing or
synchronization tool is not supported.

Connecting to a Server Database

You can connect to a server database via a Model Manager server running either locally
on your computer or on a server computer in your organization’s internal network.

1 Write the server address to the Model Manager server under Server.

2 Select the Require secure connection checkbox to require that the network
connection is made using a secure connection, with transport layer security provided
by HTTPS (as opposed to plain HTTP). A warning message is shown if the
checkbox is cleared.

You can leave out the port number if using a secure connection and the server is
listening on port 443 or, if using a nonsecure connection, port 80. Otherwise,
include a colon followed by the port number in the Server field — for example,
modelmanager.my-company.com:8181 for a Model Manager server listening on
8181.

3 Write your user account credentials used to authenticate with the Model Manager
server under User. You can opt to remember the provided password between

Use a server database accessed via a Model Manager server when working
in a multiple-user or multiple-computer environment.

See the Model Manager Server Manual for instructions on how to
install, update, configure, and otherwise administer a Model Manager
server.

If you are connecting to the Model Manager server for the first time using
the administrator account set up when installing the server, you must first
change the temporary password given during the installation. Log in to
the Model Manager server from a web browser using your temporary
password. If the web browser is running on the same computer as Model
Manager server, the server address is http://localhost:<port> where
<port> is the port number set during installation — default 8181. Enter
your new password in the dialog and click Save.
A D D I N G D A T A B A S E S | 25

26 | C H A P T E R
program sessions by selecting the Remember password checkbox. The password will
be stored in an encrypted form on the local file system.

4 Write a label to be used in the COMSOL Desktop for the server database under
Label.

5 Click the Connect button () to connect to the Model Manager server.

A secure connection attempt is still made even if you have not selected the Require

secure connection checkbox. Only if that connection attempt fails, and the checkbox is
cleared, will COMSOL Multiphysics fall back to a nonsecure connection via plain
HTTP.

C O N N E C T I N G T O A N O N D E F A U L T D A T A B A S E

A Model Manager server can host more than one Model Manager database. An
administrator may, for example, have set up multiple databases to be used by different
departments in your organization or a secondary database used to store older archival
data that can afford having a simplified backup plan.

One of the databases in a Model Manager server may be set as the default server
database from the Model Manager server web interface by an administrator. This is
also the server database that you connect to when following the previous steps. You
can also choose to connect to a nondefault database using its so-called database alias,
if such an alias has been set by an administrator from the web interface. Append /db/

You are strongly recommended to connect to the Model Manager server
using a secure connection, with transport layer security provided by
HTTPS. Connecting via plain HTTP will send all data, including your
credentials, in an unencrypted cleartext format. See the Model Manager
Server Manual for configuring a Model Manager server to use secure
connections.

To connect to a Model Manager server running on, for example, port
8181 on the same computer as COMSOL Multiphysics, write
localhost:8181 in the Server field.

To change your user account credentials or any other settings used to
connect to an already added Model Manager server database, see
Database Configurations.
2 : M O D E L M A N A G E R T O O L S

<alias> to the server address in the Server field — for example, modelmanager.my-
company.com:8181/db/my-secondary-database for a server database with alias
my-secondary-database. Repeat the connection steps for every server database you
want to add to the COMSOL Desktop.

C O N N E C T I N G V I A A C O M S O L M U L T I P H Y S I C S S E R V E R

When a COMSOL Multiphysics client is connected to a COMSOL Multiphysics server
running on another host computer, the communication is typically over a nonsecure
channel. This means that any credentials written in the user interface on the client
computer would be sent to the COMSOL Multiphysics server computer in an
unencrypted cleartext format. For this reason, Model Manager does not allow writing
a password in the Connect to Server Database window when running in client–server
mode unless it detects that the client–server connection is over a secure channel. You
are instead met with a message in the Connect to Server Database window informing
you that a secure password prompt will be shown when connecting to the database.

1 Fill out the connection details as you would when connecting from a standalone
COMSOL Multiphysics program session, except you will not provide a password.

2 Click the Connect button ().

A Progress dialog is shown informing you to provide credentials for the Model
Manager server in the COMSOL Multiphysics server’s console window.

3 In the console window for the started COMSOL Multiphysics server process, press
Enter in order to provide your credentials. Write your username and password when
prompted. You can also choose to remember your password for the Model Manager

See the Model Manager Server Manual for how to configure server
databases via the Model Manager server web interface including, for
example, giving them database aliases.

The database alias as set via the Model Manager server web interface is not
the same as the alias you can set for a database configuration in the
COMSOL Desktop — see Database Configurations. The latter is an
alternative identifier to be used when connecting to either a local or a
server database via method code using the Model Manager API.
A D D I N G D A T A B A S E S | 27

28 | C H A P T E R
server, in which case the password will be stored in an encrypted form on the local
file system of the COMSOL Multiphysics server computer.

When you have finished providing your credentials, the Progress dialog is
automatically closed, and a connection to the Model Manager server is established.

T R O U B L E S H O O T I N G

The following are some common error messages when connecting to a Model
Manager server and suggestions on how to address them:

The server address could not be resolved. The server address in the Server field does
not match the address of any server in your organization’s internal network. Verify that
you have written the correct server address. Alternatively, if you are able to log in to
the web interface of the Model Manager server using a web browser, click on the
COMSOL logo in the upper-left corner to make sure you are on the start page, and
then copy the web page’s link address from the web browser’s address field. That link
address should then be pasted into the Server field.

Connection timed out/Connection refused. This typically happens when the server
computer was found in your organization’s internal network but the Model Manager
server itself is currently not running on that server computer. It can also happen if you
have missed providing, or provided the wrong, port number for the Model Manager
server.

The current password is temporary and must be changed. Log in to the Model Manager

server web interface with this user account to change the temporary password. You
are trying to log in using the temporary password set for the default administrative user
account created during installation of the Model Manager server. First log in to the
Model Manager server’s web interface using a web browser and change the temporary
password when prompted. Use the same link address in the web browser as written in
the Server field.

To avoid having to provide your credentials in the COMSOL
Multiphysics server’s console window, either tunnel the connection
between the COMSOL Multiphysics client and the COMSOL
Multiphysics server using a secure SSH connection, or first provide the
credentials with Remember password selected using a local COMSOL
Multiphysics instance running on the COMSOL Multiphysics server
computer.
2 : M O D E L M A N A G E R T O O L S

Database configuration is not activated. The default server database has been
deactivated by an administrator of the Model Manager server. The server database
needs to be activated again via the Model Manager server’s web interface before you
can connect from COMSOL Multiphysics.

No default database configured. The administrator of the Model Manager server has
not set a default database for the server. One of the configured server databases has to
be set as the default one via the Model Manager server’s web interface before you can
connect from COMSOL Multiphysics.

Backward Compatibility for Model Manager

When COMSOL Multiphysics connects to a local Model Manager database created
using an older COMSOL Multiphysics version, the database will be automatically
upgraded to support any functionality added in the newer version. This upgrade does
not modify the storage format of models and data files, however, so older versions of
COMSOL Multiphysics will still be able to load models and data files from the
database even after this upgrade — an important use case when you, for example, need
to recompute a database-stored model using the exact same version of COMSOL
Multiphysics the model was initially solved in.

When you connect from a newer version of COMSOL Multiphysics to a server
database hosted by an older version of Model Manager server, the Model Manager
server will not be aware of any newer functionality supported by COMSOL
Multiphysics. In this case, such functionality will either be hidden or disabled in the
COMSOL Desktop environment.

The opposite case is similar: When you connect from an older version of COMSOL
Multiphysics to a server database hosted by a newer version of Model Manager server,
you will not have access to all functionality supported by the newer server from the
COMSOL Desktop environment. Same as for local databases, you will still be able to
load older models and data files from the server database though.

Models saved in a Model Manager database have the same version
requirement constraint as models stored as MPH-files on the file system:
a model saved to a Model Manager database from a newer version of
COMSOL Multiphysics cannot be opened from an older version of
COMSOL Multiphysics.
A D D I N G D A T A B A S E S | 29

30 | C H A P T E R
Da t aba s e s i n t h e COMSOL Mode l i n g
En v i r o nmen t

The Model Manager tools are integrated with the COMSOL Desktop modeling
environment — wherever you interact with models and data files on the file system,
there is typically equivalent functionality for interacting with such models and data files
in a database. In this section, you will find details on where and how you typically
encounter the Model Manager tools in the COMSOL Desktop.

• Opening Models from Databases

• Saving Models to Databases

• Saving Drafts of Models

• Geometry Parts Saved in Databases

• Inserting Parts and Other Model Contents from Databases

• The Versions Window for the COMSOL Desktop Model

• Comparing Models Saved in Databases

• Running COMSOL Batch with Models in Databases

• Selecting Files in Databases as Input Sources

• Selecting Files in Databases as Output Targets

• Loading and Saving Auxiliary Data Files Stored in Databases

• The Auxiliary Data Window for Database Input and Output

Opening Models from Databases

From the Open window, you can find and open versions of models from one of your
configured databases (see Adding Databases). Choose the database that you want to
open a model from in the list of options on the left. Choose Add Database () if you
want to add a new database.

The Open window is shown with a list of models saved in the database. Select a model
and click the Open button () to open the model in the COMSOL Desktop. If a
model is also an application, you can click Run () to launch and run the application
directly.
2 : M O D E L M A N A G E R T O O L S

You can also right-click a model to open it or, if the model is also an application, run
it. Select Set Tags () to modify the tag assignments of a model — see also Assigning
Tags.

F I N D I N G M O D E L S T O O P E N

You find models to open by writing search expressions in the search field and clicking
the Search button () or pressing Enter. You can write plain search words and any
number of filter expressions using The Model Manager Search Syntax. Plain search
words will match on the title, description, assigned tags, and filename of a model. Press
Ctrl+Space to get completion assistance when writing filter expressions — see Search
Syntax Completion.

You can also apply separate Item and Content Filters via The Filter Dialog. Select a
filter from the Add Filter menu button () in the toolbar to open the dialog. Applied
filters are shown below the search field — see Applied Filter Pills.

You search for the latest versions of models on a specific branch by default. To search
among all versions ever saved in the database, click the expand button next to Latest

Versions for Location menu button () and select All Versions in Database (). See
Searching Versions for more details on these two search modes. To redo a previous
search, select one of the entries in the Search History menu list () — see also Search
History.

Each entry in the result list contains the title of the model in that version, the time
when the version was saved, the name of the user that saved the version, and —
depending on the search mode — either the tags assigned to the model or the
repository and branch the model version was saved in. The search result is sorted on
title, with a maximum of 100 models that match the search initially included in the
result list. Click the Show More button () to append the next 100 matches to the
list. You can set another value for this default page size in the Result Page Size field on
the Model Manager page in the Preferences window.

The Open Window in the COMSOL Multiphysics Reference Manual.

• Opening Models

• Running Applications
D A T A B A S E S I N T H E C O M S O L M O D E L I N G E N V I R O N M E N T | 31

32 | C H A P T E R
You can change the sort field and sort order of the search result from the toolbar. Click
the expand button next to the sort field button to select another sort field than the
default Title () sort field — see also Sorting Search Results. The selected sort field
and sort order for the Open window is remembered between program sessions.

T H E O P E N W I N D O W T O O L B A R

The toolbar above the search field contains the following toolbar buttons:

• Click the Refresh button () to refresh the search result while keeping the search
expression and applied filters unchanged.

• Click the Show More button () to append more matching models to the search
result.

• Click the Search History menu button () to select a previous search that you want
to redo.

• Click the Reset button () to clear the current search expression and applied
filters.

• Click the Add Filter menu button () to apply a filter.

• Click the sort field button to toggle the sort order of the search result between
ascending and descending order. Click the expand button to select another sort
field.

S E L E C T L O C A T I O N I N D A T A B A S E

You can change which subset of latest model versions to search for by selecting another
commit location — see also Searching Versions and Locations. Click the link button
above the search field to open The Select Location Dialog to select which location to
search. The link button is hidden if there is only one location available in the database,
which is the default for a new database, or when All Versions in Database () is
selected.

Saving Models to Databases

Any model opened in the COMSOL Desktop that is not protected with a password
can be saved as a version to a Model Manager database. Model Manager will
automatically detect if the opened model has previously been saved to the database

Searching and Filtering
2 : M O D E L M A N A G E R T O O L S

and, if so, save a new version of the existing model. This is true even if the model has
been saved as an MPH file on the file system, closed, and then reopened from the file
system at some intermediate point. It is also true if you save a model back-and-forth
between different databases — for example, opening a model stored in a server
database, saving it to a local database on your computer, and then saving it back as a
new version to the server database.

From the Save window, you can save a new version of the model opened in the
COMSOL Desktop to one of your configured databases. Choose the database that you
want to save a model to in the list of options on the left. Choose Add Database () if
you want to add a new database.

The Save window can appear with four different headers depending on the model’s
presence in the selected database:

• Save new: The opened model has never before been saved to the database. A new
model will be created in the database with an associated first version. If the model
was originally opened from another database, it will use the same unique identifier
in the new database as it did in the original database — thus enabling you to save it
back to the original database as a new version at some later point.

• Save version: The database contains previously saved versions of the opened model.
A new version of an existing model will be saved to the database.

• Save version from draft: The opened model is a draft version. A new version of the
regular model that the draft was originally created from will be saved to the
database.

• Save new from draft: The opened model is a draft version, but the regular model that
the draft was originally created from does not exist in the database. This may happen
if you, or another user, permanently deletes the regular model in the database while
the draft is open in the COMSOL Desktop, or if you decide to save the draft to
another database. As for Save new, a new model will be created in the database with
an associated first version.

The Save Window in the COMSOL Multiphysics Reference Manual.

Saving Drafts of Models
D A T A B A S E S I N T H E C O M S O L M O D E L I N G E N V I R O N M E N T | 33

34 | C H A P T E R
To save a model version:

1 Write the title for the model version in the Title field.

This title is kept in sync with the corresponding field in the Presentation section in
the root node’s Settings window. The title cannot be left empty.

2 Write an optional save comment in the Comments field.

You can later read and update this save comment in The Versions Window or The
Commits Window. You can also find your model version by applying a filter on the
comment text.

3 Change the target branch for the save by clicking the Location link button and
selecting another branch in The Select Location Dialog.

The Location link button is hidden if the database only contains a single branch,
which is the default for a new database.

4 Click the Save button () to save a new version of the model.

If you want to force the creation of a new model instead, click the expand button
next to the Save button () and select Save as New () — see Splitting a Model
Version History in Two.

T H E I N F O R M A T I O N S E C T I O N

The Information section in the Save window displays additional information concerning
the save. When saving a new version of an existing model in the database, this includes
both when, and by whom, various versions were saved:

• Latest version: The most recent version of the model being saved. The latest version
depends on the target branch set in the Location field.

• Current version: The version that the current model in the COMSOL Desktop was
opened from. Only shown for Save version if the current version is not the same as
the latest version — see Save Conflicts.

• Current draft version: The version that the current draft in the COMSOL Desktop
was opened from. Only shown for Save new from draft.

Only changing the title of a model already saved in a database does not
mean that you will create a new model. While providing a descriptive title
helps you with later finding it in the database, it has no bearing on the
database identity of the model.
2 : M O D E L M A N A G E R T O O L S

The panel can also contain information messages () that may be of interest, as well
as warning messages () signaling, for example, that the opened model is in conflict
with the latest version.

Save Conflicts
When the Save window is shown, Model Manager will make a preemptive check that
the model to be saved is not in conflict with the latest, already saved, version in the
database. Such a conflict can arise, for example, if:

• The latest model version saved in the database is not the same version that the model
in the COMSOL Desktop was opened from. Your coworker may, for example, have
opened the same model as you, made some changes, and then saved before you now
try to save it.

• The latest model version saved in the database is not the same version as a draft was
originally created from. You and your coworker may, for example, have both started
working on two separate drafts, and then your coworker saved their draft back to
the original model before you now try to save it back to the same model. See Saving
Drafts of Models for more details.

• The model in the COMSOL Desktop has been deleted on the target branch before
you now try to save it.

Clicking the Save button () while there are save conflicts opens a dialog asking if
you want to save anyway. Click Save to ignore all conflicts, or Cancel for closing the
dialog without saving. You can also click Compare with Latest () to open the
Comparison Result window to compare the opened COMSOL Desktop model with the
latest version in the database. See Comparing the Opened Model in the COMSOL
Desktop With the Latest Version for further details.

T H E D E S C R I P T I O N S E C T I O N

The Description section in the Save window shows the current description of the model.
As for the Title field, changes to the description are kept in sync with the corresponding
field in the Presentation section in the root node’s Settings window.

Use the Description field for information that should carry over between
different versions of the model. Use the Comments field for information
that only applies to the specific model version being saved.
D A T A B A S E S I N T H E C O M S O L M O D E L I N G E N V I R O N M E N T | 35

36 | C H A P T E R
T H E T A G S S E C T I O N

The Tags section shows the tags assigned to the model as a collection of tag pills. You
can assign tags already present in the database, as well as create new tags that should
be assigned. You can assign as many tags as you like. Click a tag pill and select Remove

() to remove a tag assignment.

Any changes made to the assigned tags in the Tags section are saved to the database
first when you save the model.

Click the Add Tag button () to find an existing tag to assign to the model. Write the
title of the tag in the text field to filter the popup list of available tags. The matching
tags are shown with their title followed by the titles of their parent tags, if any, within
parentheses. Either double-click a tag in the list or select a tag and press Enter to assign
it to the model.

Click the Set Tags button () to open the Set Tags dialog. The dialog contains a tag
tree of all available tags. Select a checkbox for a tag in order to assign the tag to the
model. Clear a selected checkbox to remove a tag assignment. Click Clear Tags ()
to clear all selections. You can filter the tree of available tags by writing a tag title in the
text field above the tree. Click OK to finish the tag assignment.

If the tag you want to assign is not present in the database, you can create a new tag
from the Tags section. Click the New Tag button () to open the New Tag dialog.

1 In the Title field on the General tab, write the title for the new tag.

2 Select the tags that the new tag itself should be assigned — in other words, its
parent tags — in the tag tree on the Parent tags tab. You can filter the tree of
available parent tags by writing a tag title in the text field above the tree.

3 Write an optional save comment for the created tag in the Comments field.

4 Click OK to create the tag in the database.

See Assigning Tags to Items to learn how tags may help you in organizing
your models and data files in a Model Manager database.

Unlike the other tag operations in the Tags section, the new tag is
immediately saved to the database when you click OK in the New Tag

dialog. The assignment of the new tag to the model is, however, first saved
when the model is saved.
2 : M O D E L M A N A G E R T O O L S

T H E A U X I L I A R Y D A T A S E C T I O N

The Auxiliary Data section is shown in the Save window if the model references any
auxiliary data files that are version controlled in a Model Manager database and those
data files currently have unsaved changes in the current COMSOL Multiphysics
program session. Saving the model gives you the opportunity of simultaneously saving
these data files to the same target branch that the model is saved to.

The section contains a table with the following columns:

• The Save column — a checkbox that, if selected, specifies that a new version of the
data file should be saved when the model is saved.

• The Title column — the title of the data file. You can change the title by editing
directly in the table cell.

• The Files column — the number of files to be saved. May be more than one in the
case of a fileset — see Files.

• An icon column — shows an information icon when a previous version of the data
file is not already present in the target branch, or a warning icon if there are version
conflicts for the data file. The icon’s tooltip gives further details.

Select a row in the table and click Details () to see further details on an auxiliary
data file.

P E R M I S S I O N C H E C K

When saving to a server database via a Model Manager server, the Model Manager
server will check that you fulfill the permission requirements to save a new version of
the model. This involves checking that you are permitted to:

• Save in the repository containing the target branch.

• Save in the target branch.

• Save versions of the model.

You may want to double-check that a tag with the same title is not already
present in the database before creating a new tag as Model Manager will
not prevent such duplicates.

• Loading and Saving Auxiliary Data Files Stored in Databases

• The Auxiliary Data Window for Database Input and Output
D A T A B A S E S I N T H E C O M S O L M O D E L I N G E N V I R O N M E N T | 37

38 | C H A P T E R
Only the first two requirements apply when creating a new model in the database. If
there is any auxiliary data that will be saved with the model, a permission check will
also be made for saving versions of these items.

A preemptive permission check is performed when the Save window is opened. If the
check fails, a link button() that opens a dialog explaining why it failed appears next
to the Save button () — see The Permission Requirements Dialog.

Saving Drafts of Models

To save a draft of the model opened in the COMSOL Desktop, go to the File menu
and select Save Draft (). You can also press the keyboard shortcut Ctrl+S.

A draft model behaves in exactly the same way as a regular model in the database,
except that a draft offers a streamlined way of saving it back as a new version of the
model it originated from.

Working with a new draft model in the COMSOL Desktop typically involves these
steps:

1 Open a regular model from a database.

2 From the File menu, select Save Draft (), or press Ctrl+S, to save a first version of
a new draft of the opened model.

Permission Levels

The Save Draft () option is only available if the model is opened from,
or last saved to, a database.

The keyboard shortcut Ctrl+S either saves the current model to the file
system, or as a draft in the database, depending on where the model was
last saved. The file system is the default for unsaved models.

See also Example: Modeling Using Version Control for a tutorial that
involves using a draft in the COMSOL modeling environment.
2 : M O D E L M A N A G E R T O O L S

3 Work on the draft, intermittently selecting Save Draft () or pressing Ctrl+S to
save additional draft versions.

4 From the File menu, select Save as Version (). Click Save () to save the opened
draft as a new version of the original model. Click Save as New () to create a new
model from the draft. See Saving Models to Databases.

You can also open an existing draft model from the Open window — perhaps in order
to continue working on a draft created in a previous COMSOL Multiphysics program
session.

Geometry Parts Saved in Databases

You can version control geometry parts in a Model Manager database by saving the
corresponding model containing the part via, for example, the Save window — much
like you would save any other model to a database. Model Manager will automatically
detect if a saved model version contains any reusable geometry parts and, if so, store
associated metadata in the database. This enables you, for example, to easily find such
model versions by applying a Part filter when searching in the database.

If you load a part stored in a database into the model opened in the COMSOL
Desktop and then save the model to the same database as the part, Model Manager
will store an explicit reference link between the saved version and the part’s version.
This helps you to keep track of, for example, which models are currently using a
particular part, as well as preventing the part from being permanently deleted — see
Reference-tracking in Model Manager for further details.

Inserting Parts and Other Model Contents from Databases

From the Select Model window, you can find and select models stored in a database to
load one of their geometry parts or to insert one of their components, geometry
sequences, physics, or materials into the model opened in the COMSOL Desktop.

Drafts

Using Geometry Parts in the COMSOL Multiphysics Reference Manual
D A T A B A S E S I N T H E C O M S O L M O D E L I N G E N V I R O N M E N T | 39

40 | C H A P T E R
Choose the database that you want to select from in the list of options on the left.
Choose Add Database () if you want to add a new database.

The Select Model window is opened when you, for example, click:

• Insert Components From () in the Add Component menu in Model Builder’s Home

toolbar.

• Insert Physics From () in the Insert Physics menu in Model Builder’s Physics

toolbar.

• Insert Sequence From () in the Insert Sequence menu in the Model Builder’s
Geometry toolbar.

• Import Materials From () in the Import Materials menu in Model Builder’s
Materials toolbar.

• Load Part From () in the Load Part menu in Model Builder’s Geometry toolbar. A
Part filter () on Geometry is automatically applied in the Select Model window.

The Select Model window for a database offers identical search and filter functionality
as the Open window — see Opening Models from Databases. Click the Select button
() once you have found and selected the sought-after model version.

The Versions Window for the COMSOL Desktop Model

The Versions window in the Model Builder workspace shows the history of the model
opened in the COMSOL Desktop when that model is opened from a database or was
last saved to a database. You can use the Versions window to, for example, quickly get
an overview of recently saved versions, compare what was changed between two
versions, open older versions, or even restore an older version as a new latest version.

The window contains a table with versions of the model sorted in chronological order,
most recent first. A maximum of 100 versions are initially retrieved from the database.

You can also load geometry parts or insert components, geometry
sequences, physics, and materials — as well as parameters — directly from
the Contents section in the Settings window for a model version. See
Inserting Contents from Models for details.

From the Windows menu () in the Layout section of Model Builder’s
Home toolbar, select Versions () to open the Versions window.
2 : M O D E L M A N A G E R T O O L S

Click the Show More button () to append the next 100 versions to the table. You
can set another value for this default page size in the Result Page Size field on the Model

Manager page in the Preferences window. The version that is opened in the COMSOL
Desktop is highlighted in bold, which typically is the first table row.

The table columns are:

• The type column — the type of the model version represented by an icon. See Item
Version Types and Item Save Types.

• The Title column — the title set for the model in that version.

• The Saved column — the time when the version was saved.

• The Saved By column — the name of the user that saved the version.

• The Branch column — the target branch the version was saved in. There is only a
single branch, default named Main, when creating a new database.

• The Comments column — the optional comment provided when the version was
saved.

T H E V E R S I O N S W I N D O W T O O L B A R

The toolbar above the table contains the following toolbar buttons:

• Click the Refresh button () to refresh the table in case a new version has been
saved. The table will automatically refresh if you save a new version to the database
from the COMSOL Desktop.

• Click the Show More button () to append older versions to the table.

• Click the Version Details button () to open The Version Details Dialog
containing more information on a specific version.

• Click the Open button () to open a selected version in the COMSOL Desktop.

• Click the Run button () to launch and run a selected version in the COMSOL
Desktop. Only enabled if the selected version is an application.

• Click the Compare button () to compare a selected version with the model
opened in the COMSOL Desktop. Select two versions to compare them with each
other. See Comparing Models Saved in Databases.

• Click the Restore Version button () to save the selected version as a new latest
version of the model opened in the COMSOL Desktop. The target branch for the
save is the same as that of the opened model version. See Restore Version for further
details.

If you right-click a model version, you can also:
D A T A B A S E S I N T H E C O M S O L M O D E L I N G E N V I R O N M E N T | 41

42 | C H A P T E R
• Select Disk Space Usage () to see an estimate of the required disk space usage if
the model version is saved to the file system. See Estimating Disk Space Usage.

• Select Copy Location () to copy a text string with a URI that uniquely identifies
the model version in the database to the clipboard. See Copying Model and File
Locations.

• Select Clear Computed Data () to clear all built, computed, and plotted data of
the model version. Data shared with other model versions via deduplication will not
be deleted from the database. Clearing cannot be undone. See Built, Computed,
and Plotted Data.

• Select Permanently Delete () to permanently delete the model version in the
database. Data shared with other model versions via deduplication is not deleted.
Permanently deleting cannot be undone. See Permanently Deleting Models and
Data Files.

Estimating disk space usage, clearing computed data, and permanently deleting is also
supported when selecting multiple model versions in the table.

S P L I T T I N G A M O D E L V E R S I O N H I S T O R Y I N T W O

When you create a new model from an existing model, for example by saving a new
draft or selecting Save as New () in the Save window, the Model Manager database
stores a reference to the origin model from the new model (or rather, the version of
the original model that was saved from). You can think of the new model as being split
off from the original model, such that the new model receives its own identity and
version history.

The Versions window helps you keep track of a model’s potential origin by including
the versions of the latter up to the source version that the new model was created from
in the window’s table — see Figure 2-1 for a schematic representation. Versions of the
origin model saved after the current model was created are not included in the table,
owing to the fact that their changes are not included in the current model.

You are likely to first encounter this split-off in the Versions window when saving a new
draft from a regular model — see Saving Drafts of Models. The top table rows
correspond to the versions of the saved draft. The remaining table rows are the versions
of the regular model that the draft originated from.
2 : M O D E L M A N A G E R T O O L S

Figure 2-1: A schematic of the version history of three models, with the chronological order
of versions read from left to right. The first version of the middle model was created from
the third version of the top model, and the first version of the bottom model was created
from the second version of the middle model. The version history of the top model includes
three versions, that of the middle model includes six versions, and that of the bottom model
includes seven versions. The history of the bottom model does not include the third version
of the middle model as that was saved after the bottom model was split off.

T H E V E R S I O N S W I N D O W A N D M U L T I P L E B R A N C H E S

The version history of a model becomes even more complex once you create additional
branches in your Model Manager database. The Versions window shows the history of
the model with respect to the latest version on a particular branch, with the intent of
visualizing how one version has progressed to the next by going upward in the table
until reaching that latest version. Versions of the model saved on other branches are
not included in the table unless the current branch was created from one of those other
branches — see also Branching. If so, versions saved on that parent branch are
appended at the bottom of the table if the version was saved before the current branch
was created. Other versions on the parent branch saved at a more recent date, or
versions saved on unrelated branches, are excluded by the assumption that they
correspond to independent work done in parallel and whose changes are thus
unrelated to the model version currently opened in the COMSOL Desktop.

1 2 3

1 32

1 2

You can see all versions of a model, irrespective of branch, by adding the
model to The Maintenance Window in the Model Manager workspace.
From the window, you gain a complete overview of the full footprint of
the model in the database, but may lose a sense of how the model has
evolved over time.
D A T A B A S E S I N T H E C O M S O L M O D E L I N G E N V I R O N M E N T | 43

44 | C H A P T E R
Comparing Models Saved in Databases

The Comparison Result window enables you to compare versions of models stored in
databases. In this section, you will see five different ways you can encounter
comparisons involving such models:

• Comparing Two Versions From a Model’s History

• Comparing Two Models

• Comparing a Version With the Opened Model in the COMSOL Desktop

• Comparing the Opened Model in the COMSOL Desktop With the Saved Version

• Comparing the Opened Model in the COMSOL Desktop With the Latest Version

C O M P A R I N G T W O V E R S I O N S F R O M A M O D E L ’ S H I S T O R Y

If you select two model versions in the Versions window and click Compare (), the
Comparison Result window will open with the older version shown on the left, labeled
as Older Version, and the newer version on the right, labeled as Newer Version. The
versions need not belong to the same model: the older version may, for example,
belong to an origin model of the newer version’s model — see Splitting a Model
Version History in Two. Since model versions are immutable in the database, it is not
possible to merge or override any differences from the Comparison Result window.

C O M P A R I N G T W O M O D E L S

If you select two models in The Model Manager Window or The Databases Window
and click Compare (), the Comparison Result window will open with one of the
models labeled as First and the other as Second. The compared versions depend on the
context where the models were selected. Selecting two models when Searching in
Branches will compare the latest versions of each respective model. Selecting when
Searching in Snapshots and Commits will compare the versions that were the latest at
the time of the corresponding commit. Similar to when comparing two versions from
a model’s history, it is not possible to merge or override any differences in the
Comparison Result window.

Comparing Models and Applications in the COMSOL Multiphysics
Reference Manual
2 : M O D E L M A N A G E R T O O L S

C O M P A R I N G A V E R S I O N W I T H T H E O P E N E D M O D E L I N T H E C O M S O L

D E S K T O P

If you select a single model version and click Compare (), the Comparison Result

window will open with a comparison between the model opened in the COMSOL
Desktop, labeled Opened, and the selected version, labeled Saved version.

Right-click the top node in the Differences tree and select Merge Changes to Opened

() to merge all changes marked as incoming (that is, changes to the model tree
made in the selected model version) into the desktop model. All changes marked as
outgoing (that is, changes made to the model tree in the desktop model) are left alone.

Right-click any node in the Differences tree and select Override Difference in Opened

() to write all changes in that node to the opened model, regardless if any changes
are incoming or outgoing, effectively reverting any changes you have made in the
desktop model.

C O M P A R I N G T H E O P E N E D M O D E L I N T H E C O M S O L D E S K T O P W I T H T H E

S A V E D V E R S I O N

After having opened a model version from a database and worked on it for a while in
the COMSOL Desktop, you may want to see all changes you have made. As a shortcut
to selecting the corresponding saved version in the Versions window and clicking
Compare () from the window’s toolbar, you can click Compare with Saved () in
the Model Builder’s Developer toolbar. The Comparison Result window is opened with
a comparison between the model in the COMSOL Desktop and the version it was
loaded from.

C O M P A R I N G T H E O P E N E D M O D E L I N T H E C O M S O L D E S K T O P W I T H T H E

L A T E S T V E R S I O N

If you encounter a version conflict when trying to save a new version of the model
opened in the COMSOL Desktop, you can open the Comparison Result window with
a comparison between the desktop model, labeled Opened, and the latest version of the
model being saved, labeled Latest Version — see also Save Conflicts. Similar to
Comparing a Version With the Opened Model in the COMSOL Desktop, you can
merge changes and override differences into the desktop model to include those
changes you want to keep from the latest version.

Running COMSOL Batch with Models in Databases

The COMSOL Multiphysics batch mode, when launched from a command-line
interface, supports using models stored in a Model Manager database as both source
D A T A B A S E S I N T H E C O M S O L M O D E L I N G E N V I R O N M E N T | 45

46 | C H A P T E R
input and target output for the simulation run. You specify a model version as input
using the command-line argument -inputfile with a model version location as its
value — see Copying Model and File Locations. The output is specified using the
command-line argument -outputfile and a second model version location. The
output of the simulation run is saved as a new version for the same model and branch
that the version specified by the output argument belongs to. You may skip the output
argument altogether, in which case it defaults to that of the input argument. You may
also combine a model version in a database as input with an MPH file on the file system
as output, and vice versa.

You can stop a batch run involving a model version by launching a new batch process
using the same arguments as the first process but with an additional -stop argument.
The batch run can be restarted using an additional -continue argument. For the case
when the output is saved to a database, however, it becomes important to use the
model version that was saved when the previous batch run was stopped as a new
argument value for -inputfile. Otherwise, you will end up recomputing all solutions
already obtained by the previous batch run. You would typically find the saved model
version as the latest version of the model by browsing the corresponding branch in the
Model Manager workspace, or via the Model Manager API using the -outputfile

argument of the previous run as an “anchor” — see Navigating a Model Manager
Database.

In case of a failure or otherwise interrupted run, and when the output target is a
database, an attempt is first made to save the current run as a model version to be used

The model version location must typically be quoted when used in a
command-line interface since it contains characters that are commonly
reserved as operators in the shell. Write, for example, -inputfile
"<model-version-location>".

When running COMSOL Multiphysics in batch mode, various log and
status files are continuously written by the batch processes. These files are
always stored on the file system.

See COMSOL Batch Commands (Windows) and COMSOL Batch
Commands (Linux) in the COMSOL Multiphysics Reference Manual
for general details on running batch from a command-line interface.
2 : M O D E L M A N A G E R T O O L S

later as a recovery. If this save fails, a recovery is instead saved on the file system. You
can recover the batch run by launching a new batch process with the extra -recover
argument in addition to the arguments used by the previously failed batch run.

Selecting Files in Databases as Input Sources

Data files stored in a Model Manager database can be used as input for models in the
same way you can use files stored on the file system as input. From the Select File

window for an input setting, you can find and select files from one of your configured
databases to use as input source for the model opened in the COMSOL Desktop.
Choose the database that you want to select files from in the list of options on the left.
Choose Add Database () if you want to add a new database.

The Select File window for a database offers similar search and filter functionality as the
Open and Select Model windows, although adapted for searching data files. Click Select

() once you have found and selected a file in the result list to use as input. If the
selected data is a fileset, you will be asked to select one of its file resources via the Select

File from Fileset dialog.

You should not use the recovery model version for the -inputfile

argument when recovering a failed batch run. That version will be
automatically discovered by the recovering process.

The Select File window is, for example, opened when you click the expand
button next to Browse () and select Browse From () for a model
input setting in the Settings window in the Model Builder workspace. It
is also opened when you click the expand button next to Load from File

() and select Load From () for a table in the Settings window in the
Model Builder workspace.
D A T A B A S E S I N T H E C O M S O L M O D E L I N G E N V I R O N M E N T | 47

48 | C H A P T E R
You can also right-click a file in the list to select it as input. Select Preview File () to
open the file with the default application for its file type — see also Previewing Files.
Select Set Tags () to modify the tag assignment of the file — see also Assigning Tags.

F I N D I N G D A T A F I L E S

You find data files by writing search expressions in the search field and clicking the
Search button () or pressing Enter. You can write plain search words and any
number of filter expressions using The Model Manager Search Syntax. Plain search
words will match on the title, description, assigned tags, and filename — or, for a
fileset, filenames — of a data file. Press Ctrl+Space to get completion assistance when
writing filter expressions — see Search Syntax Completion. The search can be
restricted by an explicit file type filter set in the list next to the search field.

You can also apply separate Item Filters via The Filter Dialog. Select a filter from the
Add Filter menu button () in the toolbar to open the dialog. Applied filters are
shown below the search field — see Applied Filter Pills.

You search for the latest versions of files on a specific branch by default. To search
among all versions ever saved in the database, click the expand button next to Latest

Versions for Location menu button () and select All Versions in Database (). See
Searching Versions for more details on these two search modes. To redo a previous
search, select one of the entries in the Search History menu list () — see also Search
History.

Each entry in the result list contains the title of the file in that version, the time when
the version was saved, the name of the user that saved the version, and — depending
on the search mode — either the tags assigned to the file or the repository and branch
the file version was saved in. The search result is sorted on title, with a maximum of
100 files that match the search initially included in the result list. Click the Show More

button () to append the next 100 matches to the list. You can set another value for
this default page size in the Result Page Size field on the Model Manager page in the
Preferences window.

Selecting a data file from a Model Manager database via the Select File

window and clicking Select () typically only specifies a source for the
input. The actual loading of the input data from the database often
happens later — either automatically when the data is needed or manually
by, for example, clicking an Import button. See Loading and Saving
Auxiliary Data Files Stored in Databases for more details.
2 : M O D E L M A N A G E R T O O L S

You can change the sort field and sort order of the search result from the toolbar. Click
the expand button next to the sort field button to select another sort field than the
default Title () sort field — see also Sorting Search Results. The selected sort field
and sort order for the Select File window is remembered between program sessions.

T H E S E L E C T F I L E W I N D O W T O O L B A R

The toolbar above the search field contains the following toolbar buttons:

• Click the Refresh button () to refresh the search result while keeping the search
expression and applied filters unchanged.

• Click the Show More button () to append more matching files to the search
result.

• Click the Search History menu button () to select a previous search that you want
to redo.

• Click the Reset button () to clear the current search expression and applied
filters.

• Click the Add Filter button () to apply a filter.

• Click the sort field button to toggle the sort order of the search result between
ascending and descending order. Click the expand button to select another sort
field.

S E L E C T L O C A T I O N I N D A T A B A S E

You can change which file versions to search for by selecting another location — see
Searching Versions and Locations. Click the link button above the search field to open
The Select Location Dialog to select which location to search. The link button is
hidden if there is only one location available in the database, which is the default for a
new database, or when All Versions in Database () is selected.

Selecting Files in Databases as Output Targets

Output data generated by a model can be stored as data files in a Model Manager
database in the same way you can store such output as files on the file system. From
the Select File window for an output setting, you can either specify a new file or select
an existing file in one of your configured databases to use as output target for the

Searching and Filtering
D A T A B A S E S I N T H E C O M S O L M O D E L I N G E N V I R O N M E N T | 49

50 | C H A P T E R
model opened in the COMSOL Desktop. Choose the database that you want to select
files from in the list of options on the left. Choose Add Database () if you want to
add a new database.

Click the Select New radio button in the Select File window for a database to specify a
new file target. Write a title for the output data in the Title field. The Filename field will
be automatically populated with a suggested filename for the main output file based
on the title and the output’s file extension.

Change the target branch for the output by clicking the Location link button and
selecting another branch in The Select Location Dialog. The Location link button is
hidden if the database only contains a single branch, which is the default for a new
database, or when All Versions in Database () is selected.

Click the Select Existing radio button to find and select an existing data file as output
target. The window offers the same search and filter functionality as when selecting a
data file from a database as input source — see Selecting Files in Databases as Input
Sources.

Click Select () once you have specified a file to use as target for the output.

The Select File window is, for example, opened when you click the expand
button next to Browse () and select Browse From () for a model
output setting in the Settings window in the Model Builder workspace.

Selecting a data file from a Model Manager database via the Select File

window and clicking Select () only specifies a target for the output.
The actual writing and saving of the output data to the database happens
later — either directly by clicking, for example, an Export button or as a
two-step procedure in which the output is first written to a temporary
folder on the local file system and then manually saved to the database.
See Loading and Saving Auxiliary Data Files Stored in Databases for more
details.
2 : M O D E L M A N A G E R T O O L S

Loading and Saving Auxiliary Data Files Stored in Databases

File versions stored in a database that are referenced as auxiliary data by a model
opened in the COMSOL Desktop — either as input source or output target — are
loaded on-demand from the database to a temporary working copy directory located
on the computer running COMSOL Multiphysics (the server computer when running
COMSOL Multiphysics in client–server mode). Any input read by the model, and any
output written by the model, goes via files in this directory.

There are various situations in which the model will write to the files in the working
copy directory. You may, for example, have added an Export to File node () for a
Parametric Sweep such that, when the corresponding study is computed, export nodes
in the Model Builder tree run for different parameter values. When Model Manager
detects that there are unsaved changes written by the model to the working copy
directory, those changes can be saved as a new file version when the model itself is
saved via the Save window — see Saving Models to Databases. You can also save a new
file version directly via the Auxiliary Data window — see The Auxiliary Data Window
for Database Input and Output.

E X P O R T I N G O U T P U T D I R E C T L Y T O A D A T A B A S E

You can save output to a database from nodes in the Model Builder tree with export
functionality. If you have specified a database as the output target via the Select File

window, you can click an Export button (), or something similar, to export and save
the output as a new file version.

Switching to the All Versions in Database () search mode and selecting
an existing version as output target that is not the latest version on a
branch will inevitably lead to a version conflict once you try to save any
written output to the database. You can choose to manually ignore this
conflict from the Export window — see Loading and Saving Auxiliary
Data Files Stored in Databases.

Changes in working copy directories are not automatically saved when
running an external COMSOL Multiphysics batch process. In this case,
you can use the Model Manager API from a model method to save the
working copy contents as a new file version.
D A T A B A S E S I N T H E C O M S O L M O D E L I N G E N V I R O N M E N T | 51

52 | C H A P T E R
For better control over the saved file version, you can also perform the export via the
Export window. This enables you, for example, to write a custom save comment or
change the tag assignments of the file. Choose the database that you want to export to
in the list of options on the left. Choose Add Database () if you want to add a new
database.

To export output data and save it as a new file version:

1 Write the title for the file version in the Title field.

2 Write the filename of the main output file in the Filename field.

3 Write an optional save comment in the Comments field.

You can later read and update this save comment in The Versions Window or The
Commits Window. You can also find your file version by applying a filter on the
comment text.

4 Click the Save button () to export output data and save it as a new file version.

If you want to force the creation of a new data file instead, click the expand button
next to the Save button () and select Save as New ().

The Export window is otherwise similar to the Save window used to save a new model
version — see Saving Models to Databases. You can change the target branch for the
export by clicking the Location link button and selecting another branch in The Select
Location Dialog. The Location link button is hidden if the database only contains a
single branch, which is the default for a new database. There is also an Information

section displaying additional information concerning the saved file, a Description

section for changing the file’s description, and a Tags section for setting the assigned
tags of the file.

The Auxiliary Data Window for Database Input and Output

The Auxiliary Data window includes models and data files stored in a database that are
referenced in the opened model as input or output. This includes, for example,

The Export window is, for example, opened when you click the expand
button next to Export () and select Export To () in the Settings

window in the Model Builder workspace.
2 : M O D E L M A N A G E R T O O L S

interpolation functions, geometry parts, CAD assemblies, plots, reports, as well as
many other types of auxiliary data for a model. For such items, you can:

• Show all versions in The Versions Window in the Model Manager workspace. Click
the Show Location button () in the toolbar. This is useful, for example, if you
want to see potentially newer versions for a referenced model or data file in the
database.

• Save a new version of a data file in the database using the file contents found in the
working copy directory for the version. Click the Save as Version button () in the
toolbar and save a new version in the Save File dialog. This is useful, for example, if
the model has written output data in the current COMSOL Multiphysics program
session and that output has not yet been saved to the database. See also Loading and
Saving Auxiliary Data Files Stored in Databases.

• Update the reference to the latest version of the model or data file in the database.
Click the Update to Latest Version button () in the toolbar.

You can also see the current status of a referenced model or file version:

• Database not connected — the status could not be determined as the database is not
connected. Right-click a table row and select Connect to database (), or open the
Model Manager workspace and activate the database from the Database section of
the Home toolbar — see Activating a Database.

• Up to date — the referenced version is the latest version.

• Newer versions exist — a later version exist on the same branch as the referenced
version.

• Not authorized to access item — you do not meet the current permission
requirements for accessing the model or data file. See Permission Levels.

• Not available in database — the referenced version has been permanently deleted in
the database.

• Unsaved changes — the model has written output to the working copy directory of
the file version in the current COMSOL Multiphysics program session and that
output has not yet been saved to the database.

You can import referenced models and data files stored on the file system into the same
database as the model, thereby placing them under version control. Select the items
you want to import in the table and click Import to Database () in the toolbar —
see Importing Files.
D A T A B A S E S I N T H E C O M S O L M O D E L I N G E N V I R O N M E N T | 53

54 | C H A P T E R
You can also save a new version of a referenced data file already present in the database
by updating it from The Settings Window in the Model Manager workspace — see File
Settings. Select the file in the Auxiliary Data window’s table and click the Update to

Latest Version button () to use the new file version in the model.

The Auxiliary Data Window in the COMSOL Multiphysics Reference
Manual
2 : M O D E L M A N A G E R T O O L S

Th e Mode l Manag e r Wo rk s p a c e
Apart from the Model Manager tools integrated with the Model Builder, Application
Builder, and Physics Builder workspaces — see Databases in the COMSOL Modeling
Environment — the Model Manager comes with a dedicated workspace for database-
specific tasks. In this section, you will find a brief overview of this workspace. Later
sections will discuss each part of the workspace in more depth.

• Opening the Model Manager Workspace

• The Home Toolbar

• The Database Toolbar

• The Maintenance Toolbar

• The Model Manager Workspace Windows

Opening the Model Manager Workspace

To open the Model Manager workspace, click the Model Manager () button in the
Workspace section of the Home toolbar in either the Model Builder workspace, the
Application Builder workspace (if running on Windows®), or the Physics Builder
workspace. You can also press the keyboard shortcut Ctrl+Shift+J. The COMSOL
Desktop switches to display the toolbar for the Model Manager, as well as opens
windows belonging to the Model Manager workspace. A connection attempt is made
to the most recently used database upon opening the workspace.

To return from the Model Manager workspace to one of the other workspaces, click
on the corresponding button in the Workspace section of the Model Manager’s Home

toolbar. You can also press Ctrl+Shift+M for Model Builder and Ctrl+Shift+A for
Application Builder.

The Home Toolbar

The Home toolbar contains buttons for the more commonly performed tasks in the
Model Manager workspace.
T H E M O D E L M A N A G E R W O R K S P A C E | 55

56 | C H A P T E R
T H E W O R K S P A C E S E C T I O N

This section contains buttons for switching to other workspaces in the COMSOL
Desktop:

• The Model Builder button () or Physics Builder button (), depending on if a
model or physics is opened in the COMSOL Desktop. You can also use the
keyboard shortcut Ctrl+M.

• The Application Builder button () if running on Windows®. You can also use the
keyboard shortcut Ctrl+A.

T H E D A T A B A S E S E C T I O N

This section contains buttons for adding databases, switching the active database in the
Model Manager workspace, as well as importing and exporting items in a database.

• The Activate Database button, to refresh the active database in the workspace. Click
the lower part of the button and select one of the databases to set it as active. See
Activating a Database.

• The Add Database button (), to open the Add Database window for adding a new
database. See The Add Database Window.

• The Import button (), to import files from the file system into a database. See
Importing Files.

• The Export button (), to export items from a database to the file system. See
Exporting Items.

• The New Tag button (), to create a new tag in a database. See Creating New Tags.

T H E I T E M S E C T I O N

This section contains buttons that target items in the database — that is, models, data
files, and tags.

• The Open button () to open a model in the COMSOL Desktop. See Opening
Models.

• The Run button () to launch and run an application in the COMSOL Desktop.
See Running Applications.

• The Preview File button () to open a data file using the default application for its
file type. See Previewing Files.

• The Compare button () to compare models in the Comparison Result window. See
Comparing Models.
2 : M O D E L M A N A G E R T O O L S

• The Set Tags button () to set the assigned tags of models, data files, or other tags.
See Assigning Tags.

• The Delete button () to delete items. This action is not permanent and can be
reverted. See Deleting Items.

T H E L A Y O U T S E C T I O N

The Layout section contains the following functionality for opening and rearranging
windows in the Model Manager workspace:

• The Windows menu (), for opening windows that are closed by default.

• The Reset Desktop button (), to reset the desktop layout to its default state. This
will close all windows except The Model Manager Window and The Settings
Window.

The Database Toolbar

The Database toolbar contains buttons for tasks common to a database shared between
multiple users — that is, a server database accessed via a Model Manager server.

T H E D A T A B A S E S E C T I O N

This section contains the same Activate Database button and Add Database button also
available in the Database section on The Home Toolbar. The Databases button ()
toggles the visibility of The Databases Window.

T H E R E P O S I T O R Y S E C T I O N

This section contains buttons for Advanced Version Control functionality:

• The Repository button (), to add a new repository in a database. See Adding
Repositories.

• The Branch button (), to create a new branch from an existing branch, snapshot,
or commit. See Creating a New Branch.

• The Snapshot button (), to record a point-in-time snapshot of all items with
respect to a particular commit. See Recording Snapshots.

• The Merge button (), to merge modifications of items with respect to a source
location into a target branch. See Merging.
T H E M O D E L M A N A G E R W O R K S P A C E | 57

58 | C H A P T E R
T H E P E R M I S S I O N S S E C T I O N

The Permissions section contains buttons for controlling access to various objects in the
database, including setting ownership and permission requirements:

• Click the Owner button () to set the user that owns a database object. A single
user may be set as the owner of multiple database objects at once by first selecting
all target objects in a window. See Transfer Ownership.

• Click the Permissions () button to set the permission requirements for a database
object. See Granting Permissions.

• Click the Permission Template () button to create a new template of predefined
permission requirements that can be reused for database objects. See Creating your
own Permission Templates.

T H E U S E R S S E C T I O N

This section contains buttons for managing users and groups:

• The User button (), to add a new user in the database. See Adding Users.

• The Group button (), to add a new group in the database. See Adding Groups.

T H E S T A T I S T I C S S E C T I O N

This section contains a Disk Space Usage menu () with options for estimating the
disk space usage of model and file versions — see Estimating Disk Space Usage. The
possible options are:

• Version Selection () — Estimate the disk space usage of the selected versions.

• Item Selection () — For the current selection, estimate the disk space usage of all
versions belonging to the same items or the items’ drafts.

• Search Result () — Estimate the disk space usage of all versions matched by the
current search in the Model Manager window. Only available for the All Versions in

Database () search mode.

T H E M A I N T E N A N C E S E C T I O N

This section contains an Add to Maintenance menu () with options for adding model
and file versions to The Maintenance Window. The possible options are:

• Version Selection () — Add the selected versions in the Model Manager window to
the Maintenance window. Only available for the All Versions in Database () search
mode.
2 : M O D E L M A N A G E R T O O L S

• Item Selection () — For the current selection, add all versions belonging to the
same items or the items’ drafts to the Maintenance window.

• Search Result () — Add all versions matched by the current search in the Model

Manager window to the Maintenance window. Only available for the All Versions in

Database () search mode.

The Maintenance Toolbar

The Maintenance toolbar contains menus with options for performing maintenance
operations targeting model and file versions added to the Maintenance window. The
toolbar is only visible when the Maintenance window is opened.

T H E S T A T I S T I C S S E C T I O N

This section contains a Disk Space Usage menu () with options similar to those
available in the Statistics section on The Database Toolbar.

• Version Selection () — Estimate the disk space usage of the selected versions.

• Item Selection () — For the current selection, estimate the disk space usage of all
versions belonging to the same items or the items’ drafts.

• All in Maintenance () — Estimate the disk space usage of all versions currently
targeted in the Maintenance window, irrespective of any selections.

T H E C O M P U T E D D A T A S E C T I O N

This section contains a Clear Computed Data menu () with options for clearing built,
computed, and plotted data of model versions in the Maintenance window — see Built,
Computed, and Plotted Data. The possible options are:

• Version Selection () — Clear built, computed, and plotted data of the selected
model versions. Clearing cannot be undone.

• Item Selection () — Clear built, computed, and plotted data of all versions
belonging to the selected models or their drafts. Clearing cannot be undone.

• Drafts of Item Selection () — Clear built, computed, and plotted data of all
versions belonging to the selected models’ drafts. Data belonging to the selected
models themselves will not be affected. Clearing cannot be undone.

• All in Maintenance () — Clear built, computed, and plotted data of all model
versions currently targeted in the Maintenance window, irrespective of any selections.
Clearing cannot be undone.
T H E M O D E L M A N A G E R W O R K S P A C E | 59

60 | C H A P T E R
T H E V E R S I O N S S E C T I O N

This section contains a Permanently Delete menu () with options for permanently
deleting model and file versions in the Maintenance window — see Built, Computed,
and Plotted Data. The possible options are:

• Version Selection () — Permanently delete the selected versions. This deletion
cannot be undone.

• Item Selection () — Permanently delete all versions belonging to the selected
items or their drafts. This deletion cannot be undone.

• Drafts of Item Selection () — Permanently delete all versions belonging to the
selected items’ drafts. The selected items themselves will not be deleted. This
deletion cannot be undone.

• All in Maintenance () — Permanently delete all versions currently targeted in the
Maintenance window. This deletion cannot be undone.

The Model Manager Workspace Windows

When you open the Model Manager workspace, you will see two windows in the
COMSOL Desktop by default:

• The Model Manager Window — used primarily to search for models and data files.

• The Settings Window — used to show settings for various database objects, as well
as update and save them in the database. See also Overview of a Model Manager
Database.

You can always restore the COMSOL Desktop to this layout by clicking the Reset

Desktop button () in the Layout section of The Home Toolbar. From the Windows

menu () in the same section, you can open the following optional windows in the
workspace:

• The Material Browser window — used to browse materials in your configured
material libraries.

• The Application Libraries, Part Libraries, and Add-in Libraries windows — used to find
MPH-files in your configured libraries for applications, geometry parts, and add-ins,
respectively.

• The Java Shell window — used to run Java® code interactively.

• The Chatbot window — used to have a conversation with a chatbot.

• The Data Viewer window — used, for example, to inspect local variables in the Java

Shell window.
2 : M O D E L M A N A G E R T O O L S

• The Comparison Result window — used to compare model versions saved in the
database. See also Comparing Models Saved in Databases.

• The Databases Window — used to browse, organize, and administer your
configured databases via The Databases Tree.

• The Commits Window — used to view the commit history of a branch, optionally
filtered to only include commits that involve a particular item.

• The Versions Window — used to view the version history of an item with respect to
a branch.

• The Maintenance Window — used to perform maintenance operations for item
versions.

• The References Window — used to view relations between model and file versions.
See also The Auxiliary Data Window for Database Input and Output.

The Model Manager, Databases, Commits, Versions, Maintenance, and References windows
play a central role in the Model Manager workspace and for its toolbars — whichever
has focus determines the target for the buttons in The Home Toolbar and The
Database Toolbar. You may, for example, have selected one model in the Databases

window and another model in the Model Manager window. The window that has focus
determines which model is opened if you click the Open button () in the Item

section of the Home toolbar. You can identify the window currently in focus by its title
having a brighter color than the other windows.

The selection in the Model Manager window, the Databases window, and the
Maintenance window also determines what is shown in the Commits, Versions, and
References windows, again depending on which one of these three former windows has
focus. If you select a model in the Model Manager window when searching in a branch,
for example, you will see commits involving that model in the Commits window, a
version history for the model in the Versions window, and all item versions that the
model reference in the References window. Moreover, the selection in any of these six
windows determines what is shown in the Settings window.

The selection in the Databases window determines the searched location in the Model

Manager window, as well as the selected branch in the Commits and Versions windows.
If you select a branch tree node in The Databases Tree, for example, the Model Manager

You can turn off the automatic selection linking in the Commits, Versions,
References, and Settings windows by clicking the Link with Selection button
() in their respective toolbars. Click once more to turn on the linking.
T H E M O D E L M A N A G E R W O R K S P A C E | 61

62 | C H A P T E R
window will automatically switch to search with respect to that branch. Similarly, if you
change the current location via The Select Location Dialog in the Model Manager

window, the Commits window, or the Versions window, the corresponding tree node is
automatically selected in The Databases Tree and the current locations in the other
windows are updated accordingly.
2 : M O D E L M A N A G E R T O O L S

Ove r v i ew o f a Mode l Manag e r
Da t a b a s e

You will encounter several concepts and terms when working with Model Manager
databases that are specific to the Model Manager tools. This section contains a guide
to these concepts and terms — you may want to skip ahead to the next section,
Browsing Databases, and refer back to this section as needed. See also the Glossary.

In this section:

Models

You can create a model in a Model Manager database by, for example, saving the model
opened in the COMSOL Desktop or by importing a model directly from the file
system.

Every time you save a model, a new model version is created. This does not mean that
a full copy of the model is saved anew in the database — Model Manager is able to
reuse any data it finds unmodified between versions. This includes the model tree itself,
any binary data used for geometries, meshes, solutions, and results, as well as any other

• Models

• Files

• Tags

• Items

• Commits

• Branches

• Snapshots

• Locations

• Repositories

• Users

• Groups

• Permission Templates

A common feature of the objects described in this section is that they all
have an underlying key that uniquely identifies them in the database.
Unlike, for example, changing the filename of a file on the file system, you
can safely change the label, name, and title of any database object without
worrying about, for example, that other objects lose references they
might have to the renamed object.
O V E R V I E W O F A M O D E L M A N A G E R D A T A B A S E | 63

64 | C H A P T E R
data that the model may use. Once saved, a model version cannot be modified (except
for clearing generated data that can be recreated from the model, that is, Built,
Computed, and Plotted Data). You can be confident that what you save to the database
will always be returned when opening the model version again, given that you open it
in the same COMSOL Multiphysics version as the model version was originally saved
in.

I T E M V E R S I O N T Y P E S

Versions of models come in three different item version types:

• Model (), which is the standard type obtained, for example, when creating a new
model from the Model Builder.

• Application (), which is a model that also has an application UI as defined in the
Application Builder.

• Physics (), which is the type obtained when saving from the Physics Builder.

You may notice that a model can start out as the first type for its first couple of versions,
but then transition into the second type once you save a version in which you have
added an application UI. The opposite transition will occur if you save a version in
which you have removed the application UI.

I T E M S A V E T Y P E S

Models can be created in the database as two different item save types:

• Regular (represented by one of the icons for Item Version Types)

• Draft ()

Unlike Item Version Types, the item save type of a model is fixed for all its versions.

There is a subtle distinction between a model and all the versions of the
model in a database. You set Access Control on the models themselves,
while you open, save, search, and organize versions of the models. The
same remark applies to any of the Items in a Model Manager database.

• Saving Models to Databases

• Importing Files
2 : M O D E L M A N A G E R T O O L S

Regular Models
A regular model is one that has been created in the database by saving a new model via
the Save window or by importing a model directly from the file system. You can think
of a regular model as the main result of your modeling work. Each version represents
a clear transition in which you made enough progress that it is worth keeping the
version around for future reference. Perhaps you want to go back to one of the older
model versions and from that create a completely new model (with its own set of model
versions), or perhaps the model version that you save corresponds to a step in which
your modeling work is completed, and it is time for your coworker to take over.

Drafts
A draft model is one that has been created by going to the File menu and selecting Save

Draft (), or by pressing Ctrl+S, when a regular model is opened in the COMSOL
Desktop.

A draft model is version controlled in the same way as a regular model: The first time
you select Save Draft, a new draft model is created in the database. Selecting Save Draft

after that will save new versions of that same draft model. You may think of a draft as
an ancillary model used for saving intermediate changes, without muddying the
version history of the main regular model.

The database stores a reference between the draft and the version of the regular model
the draft originated from. This is analogous to how regular models created from
existing models via Save as New in the Save window remembers their origin — see
Splitting a Model Version History in Two. The stored reference enables Model

Saving Drafts of Models

The draft is automatically set with a Private permission template when you
create a new draft in a server database accessed via a Model Manager
server — see Predefined Permission Templates. Only you, as its owner,
will be able to open or save the draft unless you change its permissions,
although other users may still see it in search results.
O V E R V I E W O F A M O D E L M A N A G E R D A T A B A S E | 65

66 | C H A P T E R
Manager, for example, to automatically discover if a newer version has been saved of
the regular model after the draft was created — see Save Conflicts.

A schematic of a possible history of a regular model and a draft model created from the
former. Starting from the left, four model versions of a regular model have been saved. A
draft was then created from the fourth version, after which three versions of the draft have
been saved.

Once you are finished with your draft, you can open the Save window and save the
current draft as a version of the original model. The draft will be automatically deleted
in the process, although this deletion is not permanent — you can, for example, find
the deleted draft via the Settings window for the corresponding commit, see Commits,
or when Searching All Versions in the Database.

You can create multiple drafts from the same regular model, each draft having its own
identity and version history, by repeatedly opening a version of a regular model and
pressing Ctrl+S. You and your coworker may, for example, both start working on your
own drafts of the same regular model, perhaps with the intention of combining your
work once you are finished using the Comparison Result window.

A schematic of a possible history of a regular model and two drafts models saved in a
database. The middle row starting from the left represents four model versions of a regular
model. From the fourth model version, two drafts (bottom and top rows) have been
independently created. Two versions of the bottom row draft, and three versions of the top
row draft, have been saved. The top row draft’s latest version has then been saved back to
the original regular model as a fifth version, automatically deleting the top row draft in
the process (represented by the x-mark). The bottom draft may have been discarded,
awaiting, for example, its owner to manually delete it.

1

1

42 3

2 3

1

1

542 3

1

2 3

2

x

2 : M O D E L M A N A G E R T O O L S

M O D E L S E T T I N G S

The Settings window for a model shows settings for a specific version of the model.
Update any of the settings and click the Save button () to save a new version of the
model. You can write an optional save comment. Click OK to save.

The Version Section
This section displays the following fields:

• Location. The commit location in the database in which the model version is saved.
See Locations.

• Saved. The time when the model version was saved.

• Saved by. The display name of the user that saved the model version.

• Saved in. The COMSOL Multiphysics version that the model version was saved in.

• Title. The title of the model in the saved version.

The title is the same as shown in the Title field in the Presentation section in the root
node’s Settings window for a model opened in the COMSOL Desktop.

• Filename. The filename used by the model version if exporting it to the file system.

• Update from. An optional field in which the path to a file on the file system can be
specified to save a new version of the model from that file.

a Click the Browse button.

b Select a file on the file system and click the Open button.

c Click the Save button ().

You can update from any model file that can be opened in COMSOL Multiphysics.
The saved model version will first be converted to the current COMSOL
Multiphysics version.

• Description. The description of the model in the saved version.

The description is the same as shown in the Description field in the Presentation

section in the root node’s Settings window for a model opened in the COMSOL
Desktop.

The Contents Section
This section displays the model tree as it looked when the model version was saved to
the database. Use the Collapse button () and Expand button () to collapse and
expand nodes in the tree.

Select a node in the tree and click Details () in the toolbar below the tree to open
the Details dialog. The dialog contains node field values and setting field values for the
O V E R V I E W O F A M O D E L M A N A G E R D A T A B A S E | 67

68 | C H A P T E R
selected model tree node. The Node table in the dialog shows the values for the
properties of a node. The available properties will differ between node types. The
Settings table shows settings for the node.

Select a node and click Open Node () to open the model in the COMSOL Desktop
with the model tree node automatically selected in the user interface.

Some node types support being inserted into the model currently opened in the
COMSOL Desktop. Select, for example, a component or a geometry part node in the
model tree and click Insert into Model (). You will be asked to select a target parent
node for the insertion if there is more than one target available in the opened model.
See Inserting Contents from Models for further details.

You can also select one or more nodes and click Copy () or press Ctrl+C to copy the
current selection to clipboard. The copied nodes can be pasted into the tree of the
model opened in the COMSOL Desktop — right-click a node in the Model Builder,
Application Builder, or Physics Builder tree and select Paste () or press Ctrl+V. Not
all nodes in the Contents section can be copied and not all nodes in the model can be
the target for a paste. The tree being copied from and the tree being pasted to can,
however, belong to different COMSOL Multiphysics program sessions.

The Tags Section
This section displays the Tags assigned to the model as a collection of tag pills.

Files

You can import any type of file into a Model Manager database. A file that is not
recognized as a COMSOL Multiphysics file (that is, with the file extension mph) or a
Physics Builder file (that is, with the file extension mphphb) is referred to as a data file,
or just file, in a Model Manager database.

You can find models in the database by searching on the node properties
and settings shown in the Details dialog for a model tree node. See
Content Filters and The Model Manager Search Syntax for further
details.

See also The Tags Section for Items.
2 : M O D E L M A N A G E R T O O L S

Files are version controlled in exactly the same way as Models. For example, when you
import from the file system, a new file is created in the database with an associated first
version. You can update an existing file in the database by selecting a file on the file
system and saving it as a new version from the File Settings window. You can also, for
example, update a file in the database by using it as an output target for auxiliary data
used by a model.

You may wonder why COMSOL Multiphysics simulation models and data files are two
different concepts in a Model Manager database, when they are all “just files” when
stored on a file system. The main reason for the distinction is their respective storage
characteristics and supported search functionality. The known internal structure of a
model enables efficient data reuse between versions, as well as searching deep within a
model’s content using The Model Manager Search Syntax. A data file is stored in the
database as a chunk of binary or text data whose contents is opaque to Model Manager.

I T E M V E R S I O N T Y P E S

Versions of files come in two different item version types:

• File (), which is the standard type obtained when the version consist of just a
single file when stored on the file system. Examples include a text file containing
interpolation function data or a movie file for a results animation.

• Fileset (), which is a version consisting of multiple binary or text files when stored
on the file system. Examples include CAD data consisting of a main CAD assembly
file and one or more external component files that the assembly reference, or an
HTML report consisting of a main HTML document and one or more image files
referenced by the document.

• Loading and Saving Auxiliary Data Files Stored in Databases

• Importing Files
O V E R V I E W O F A M O D E L M A N A G E R D A T A B A S E | 69

70 | C H A P T E R
You may notice that a file can, for example, start out as the first type for its first couple
of versions, but then transition into the second type if you save a version that contains
multiple files.

An individual binary or text file that belongs to a file version is referred to as a file
resource in order to distinguish it from the version-controlled file itself, with the latter
having additional metadata such as a title, a description text, and possible tag
assignments — see File Settings. A fileset is thus a file version containing multiple file
resources.

F I L E S E T T I N G S

The Settings window for a file shows settings for a specific version of the file. Update
any of the settings and click the Save button () to save a new version of the file. You
can write an optional save comment. Click OK to save.

The Version Section
This section displays the following fields:

• Location. The commit location in the database in which the file version is saved. See
Locations.

• Saved. The time when the file version was saved.

• Saved by. The display name of the user that saved the file version.

• Title. The title of the file in the saved version.

• File size. The size of the file version when stored on the file system. For a fileset, this
is the sum of the individual file sizes.

• Description. The description of the file in the saved version.

The title is automatically set to the filename when importing a file from the file system
into a Model Manager database. You are free to change the title to something else,
however — the unique identity of the file itself in the database will not be affected.

Whether or not multiple data files stored on the file system should be
saved as separate files or as a single fileset in a Model Manager database is
best answered depending on if the data is naturally version controlled as a
“collective whole” or not. Prefer assigning Tags if all you want to
accomplish is some organizational grouping in your database.
2 : M O D E L M A N A G E R T O O L S

The Contents Section
This section shows a table with all file resources associated with the file version. The
table has a File and Size column for the filename and file size respectively of each file
resource. A file version with zero or multiple file resources is a fileset; a file version with
a single file resource is a plain file.

File resources in a file version may be organized into a hierarchy of directories. A
directory is shown with a triangle symbol next to its name in the File column. Click the
triangle to list the file resources and, possibly, subdirectories found inside that
directory. File resources found on the top level in the table are thought of as belonging
to an implicit root directory.

Click the Add button () to add a file from the file system as a new file resource to
the table. If either no file resource or a file resource on the top level is currently selected
in the table, the new file resource will also be added to the top level. To add a file
resource under an existing directory, either select that directory or a file resource found
inside the directory. A confirmation dialog for replacing is shown if an existing file
resource with the same filename already exists.

You can also add an entire folder from the file system to the table. Click the expand
button and select Add Folder () in the menu. The folder itself, as well as all files and
subfolders inside the folder, are added to the table at the position determined by the
current selection in the same way as a single file is added.

Click the Remove button () to remove selected file resources and directories from
the table. Click the Replace button () to replace a selected file or a directory in the
table with a file or directory from the file system. Only the contents will be updated —
the replaced file resource or directory will keep its current name.

If you have a license for the CAD Import Module available when adding
or replacing with a CAD assembly file, an attempt will be made to
automatically resolve and include external component files that the
assembly references.

A directory hierarchy of a file version is only stored implicitly in the
database via the relative paths, with respect to the implicit root directory,
of the file resources. No information is stored about the directories
themselves. As a consequence, an empty directory selected via Add Folder

() is ignored by Model Manager.
O V E R V I E W O F A M O D E L M A N A G E R D A T A B A S E | 71

72 | C H A P T E R
Select a file resource and click Preview File () to open the file resource with the
default application for its file type. The preview will include any locally modified file
resource in the table.

The Tags Section
This section displays the Tags assigned to the file as a collection of tag pills.

Tags

A tag () is used to label and organize models, files, and even other tags in the
database — see Assigning Tags to Items to learn more. Tags can be created, for
example, by importing them from folders on the file system or by manually creating
new tags from within the Model Manager workspace.

Similar to Models and Files, tags are version controlled in the database. Whenever you
save a tag in the database — for example by giving it a new title — a new version of the
tag is created. Changing the title of a tag does not mean that other items lose their tag
assignment — you will still be able to find items with the tag assigned using the new
title. Unlike versions of models and files, however, versions of tags do not have any
underlying content associated with them.

T A G S E T T I N G S

The Settings window for a tag shows settings for a specific version of the tag. Update
any of the settings and click the Save button () to save a new version of the tag. You
can write an optional save comment. Click OK to save.

A fileset with a deeply nested hierarchy is expected to be rare. The prime
example of a fileset with a hierarchy is an HTML report with a main
HTML file at the top and associated images inside a folder.

See also The Tags Section for Items.

• Importing Files

• Creating New Tags
2 : M O D E L M A N A G E R T O O L S

The Version Section
This section displays the following fields:

• Location. The commit location in the database in which the tag version is saved. See
Locations.

• Saved. The time when the tag version was saved.

• Saved by. The display name of the user that saved the tag version.

• Title. The title of the tag in the saved version.

The Tags Section
This section displays the parent tags assigned to the tag as a collection of tag pills.

Items

Models, Files, and Tags are collectively referred to as items in a Model Manager
database. Items share many common features and functionality, including:

• Items are version controlled. Every time you save an item, a new version is created
in the database.

• Items can be labeled and organized in the database by Adding and Removing Tag
Assignments and by Organizing Items in Repositories.

• Items can be imported and exported from and to the file system via Bulk
Operations.

• Item versions can be found via Searching and Filtering.

• Items support Advanced Version Control such as Branching, Reverting, and
Merging.

I T E M S E T T I N G S

The Settings window for an item shows settings for a specific version of the item. Some
settings are unique to a model, file, or tag, while others are shared by all items. Update
any of the settings and click the Save button () to save a new version of the item.
You can write an optional save comment. Click OK to save.

See also The Tags Section for Items.
O V E R V I E W O F A M O D E L M A N A G E R D A T A B A S E | 73

74 | C H A P T E R
The Tags Section
All items have a Tags section in their Settings window that displays the Tags currently
assigned to the item as a collection of tag pills. Click a tag pill and select Remove ()
to remove a tag assignment.

Click the Add Tag button () in the section’s toolbar to find an existing tag to assign
to the item. Write the title of the tag in the text field to filter the popup list of available
tags. The matching tags are shown with their title followed by the titles of their parent
tags, if any, within parentheses. Either double-click a tag in the list or select a tag and
press Enter to assign it to the item.

Click the Set Tags button () to open the Set Tags dialog. The dialog contains a tag
tree of all available tags. Select a checkbox for a tag in order to assign the tag to the
item. Clear a selected checkbox to remove a tag assignment. Click Clear Tags () to
clear all selections in the tree. You can filter the tree of available tags by writing a tag
title in the text field above the tree. Click OK to finish the tag assignment.

Commits

A commit () is a set of related changes made to Items — that is, Models, Files, and
Tags — within a single database save operation. This includes anything from saving
item versions, changing the assigned tags of items, or deleting items, to creating a new
branch, merging into a branch, and reverting a commit. The changes are saved to the
database as a “unit” and, as such, can also be reverted as a unit.

A commit saved in the database includes:

• The branch that the commit was saved to — see Branches.

• The time when the commit was saved.

• The user that saved the commit.

• An optional commit comment provided by the user.

• The set of related changes made to items in the commit.

Use the dialog opened via the Set Tags button () on The Home
Toolbar in the Model Manager workspace over the Settings window if you
only want to update the assigned tags of an item without saving a new
version — see also Adding and Removing Tag Assignments. That dialog
also supports updating the assigned tags of multiple items at once.
2 : M O D E L M A N A G E R T O O L S

See Figure 2-3 for an example of a commit taken from the tutorial Example: Modeling
Using Version Control in which a draft has been saved back as a new version of its
original model.

Given a particular commit, you can browse and search the versions of items that were
the latest versions at the time of that commit. A schematic representation of this is
shown in Figure 2-2: In the first commit, a first version of a model A and a model B
were saved. In the second commit, a second version of model A was saved, a first
version of a tag T was saved, and model B was tagged by T. In the third commit, model
A was deleted and a second version of model B was saved. The database can be browsed
and searched with respect to each of the three commits, with each big circle
surrounding what you will find.

Figure 2-2: A schematic of three hypothetical commits (big circles) saved in a database.
You can browse and search versions and tag assignments with respect to any one of these
commits.

C O M M I T S E T T I N G S

The Settings window for a commit shows the branch the commit was saved to, the
point in time when the commit was saved, the user that saved the commit, and any
comments provided with the commit. You will also find a table with the set of changes
made to Items in the commit.

A1

B1

A2

B1 B2

T1 T1

A synonym to commit often found in other version control systems is
revision.

• Locations

• Basic Version Control

• Searching Versions
O V E R V I E W O F A M O D E L M A N A G E R D A T A B A S E | 75

76 | C H A P T E R
You can update the comments for the commit. Rewrite the text as you see fit and click
the Save button ().

The General Section
This section displays the following fields:

• Location. The database, repository, and branch that the commit was saved to.

• Date. The point in the time when the commit was saved.

• User. The name of the user that saved the commit.

• Comments. The optionally provided comments when the commit was saved.

The Changes Section
This section shows a table with the set of related item changes made in the commit.
Each change entry in the table is represented by the latest version of the affected item
at the time of the commit. Apart from changes corresponding to saving a new version,
this also includes deletions and tag assignments of items.

From the toolbar below the table, you can:

• Click the Open button () to open a model version. Only enabled for a change
that involved a model.

For a Model Manager server database, only an administrator or the user
that saved the commit can update the comments.
2 : M O D E L M A N A G E R T O O L S

• Click the Preview File button () to open a file version using the default
application for its file type. Only enabled for a change that involved a file.

• Click the Version Details button () to open The Version Details Dialog
containing more information on a version.

Figure 2-3: The Settings window for a commit in which a new version has been saved of a
model, and a draft has been deleted.

Branches

A branch () is a chronologically ordered sequence of Commits saved in the
database. The sequence of commits form a history of things that has happened to
Items in the database including, for example, saved versions, tag assignments, and
deletions. An important commit in a branch is the one saved most recently — that is,
the latest commit on the sequence.

When browsing and searching in the branch, one finds the latest version of each item
saved on the branch as well as the items’ currently assigned tags. Two branches in the
same repository will typically not return the same latest version or assigned tags for an
item if work on the item is being done in parallel on the branches. The two branches
can be synchronized by merging changes to items made in the first branch into the
second branch and vice versa.
O V E R V I E W O F A M O D E L M A N A G E R D A T A B A S E | 77

78 | C H A P T E R
The branch itself is typically used as a representative in the Model Manager workspace
to specify that you want search or browse the latest item versions in Model Manager:

• Expand a branch node () in The Databases Tree to browse the latest versions of
all items, given that Items is selected in the Show menu () in The Databases
Window Toolbar.

• Select a branch in The Select Location Dialog to search the latest model and file
versions in the Open, Select File, Select Model, and Model Manager windows. This is
also the default choice in these windows.

• Select a branch in The Select Location Dialog to export the latest versions from the
Export dialog.

You can create a new branch from an existing parent branch by branching off from a
particular source commit. This introduces an alternative commit history that runs in
parallel with that of the parent branch — see Branching.

D E F A U L T B R A N C H

An initial, default, branch () is automatically created for a new repository. This is
the branch that all save actions targeting that repository use by default.

You can change the default branch in case you have created multiple branches in a
repository. Select the corresponding branch tree node in the Databases tree, right-click,
and select Set Default Branch ().

B R A N C H S E T T I N G S

The Settings window for a branch shows:

• Database. The label of the database that the branch belongs to.

• Repository. The name of the repository that the branch belongs to.

When referring to the latest versions of items in a Model Manager
database without any additional qualifications, it is always understood as
being with respect to a particular branch.

Creating a New Branch
2 : M O D E L M A N A G E R T O O L S

• Name. The name of the branch.

• Search. The type of item data that can be searched in the branch. Select Item fields

and content in the list to enable the full Model Manager search functionality for the
branch. Select Only item fields to restrict the filtering support to those that target the
field values of models and files, not filters targeting their contents. See also
Searching in Branches.

Clicking the Save button () saves the Name and Search fields for the branch.

Snapshots

A snapshot () is a reference to a particular commit on a branch.

The snapshot itself is typically used as a representative, or recording, of the item
versions that were the latest at the time of the commit:

• Expand a snapshot node () in The Databases Tree to browse the recorded item
versions, given that Items is selected in the Show menu () in The Databases
Window Toolbar.

• Select a snapshot in The Select Location Dialog to search the recorded model and
file versions in the Open, Select File, Select Model, and Model Manager windows.

• Select a snapshot in The Select Location Dialog to export the recorded versions
from the Export dialog.

S N A P S H O T S E T T I N G S

The Settings window for a snapshot shows:

• Database. The label of the database that the snapshot belongs to.

• Repository. The name of the repository that the snapshot belongs to.

• Date. The timestamp of the commit that the snapshot references.

• Name. The name of the snapshot.

• Commits

• Branches

Recording Snapshots
O V E R V I E W O F A M O D E L M A N A G E R D A T A B A S E | 79

80 | C H A P T E R
Clicking the Save button () saves the Name field for the snapshot.

Locations

Commits, Branches, and Snapshots are all referred to as commit locations, or
locations, in Model Manager. Each location is a commit in its own right or acts as a
representative of a particular commit:

• Branch. The most recent commit saved on the chronologically ordered sequence of
commits.

• Snapshot. The commit that the snapshot references.

A branch location is the most common, and useful, of the three types. By browsing and
searching with respect to such a location, you are guaranteed to see the latest version
of each item.

T H E S E L E C T L O C A T I O N D I A L O G

You can select a branch or, depending on context, snapshot for a particular window via
the Select Location dialog. You open the dialog by clicking on a location link button,
seen here in the upper-right corner of The Model Manager Window:

A search result in the Model Manager window obtained for a specific branch. The matched
item versions are the latest versions for their corresponding items and with respect to the
selected branch location.

In the tree in the Select Location dialog, expand nodes until you reach a branch or
snapshot leaf node, select the leaf node, and click OK. You can also select a nonleaf
node, in which case a suitable default location is automatically inferred based on the
selection. If Deleted Branches or Deleted Snapshots has been selected in the Show menu

The text of a location link button is shown with the name of the branch
or snapshot. A commit is shown with its date. Typically the label of the
database and the name of the repository are also included in the text, such
that the text format is Database (Repository/Location).
2 : M O D E L M A N A G E R T O O L S

() in The Databases Window Toolbar, such branches or snapshots will also be
available in the dialog.

Repositories

A repository () is a container for a collection of items and their versions in the
database. When the database is created, a first repository is automatically added for
you.

You would typically add more repositories to the database if you want to restrict access
to a collection of items for a particular set of Users and Groups. By Granting
Permissions on the repository, you can, for example, restrict who is able to browse and
search the item versions in the repository.

Each repository contains one or more branches. Whenever you add a new repository,
an initial Default Branch in that repository is created.

D E F A U L T R E P O S I T O R Y

If you have added multiple repositories to the database, Model Manager tries to
remember the repository you last accessed in, for example, the Open, Select File, and
Select Model windows. You can also set one of the repositories as the default repository
(). Analogous to the Default Branch, this is the repository that all save actions
targeting the database use by default.

The first repository created in the database is initially set as the default one. To change
the default, select the corresponding repository tree node in the Databases tree, right-
click, and select Set Default Repository ().

R E P O S I T O R Y S E T T I N G S

The Settings window for a repository shows:

• Database. The label of the database that the repository belongs to.

• Name. The name of the repository.

• Default Branch Name. The name of the repository’s Default Branch.

Clicking the Save button () saves the Name field for the repository.

Adding Repositories
O V E R V I E W O F A M O D E L M A N A G E R D A T A B A S E | 81

82 | C H A P T E R
Users

A user () is someone who has connected to a Model Manager database. For a local
database, the user is created with the user account name on your computer. For a
server database, the user is created using the credentials you provide when connecting
to the Model Manager server — see Connecting to a Server Database.

A user in a Model Manager database is primarily used to identify the individual that has
saved a commit, the owner of a database object, or the individuals that have been
granted permissions for a database object.

U S E R S E T T I N G S

The Settings window for a user shows:

• Database. The label of the database that the user belongs to.

• Name. The username of the user.

• Display Name. An alternative name used for display purposes.

• Group Memberships. The groups in the database that the user is a member of.

Clicking the Save button () saves the display name and the group memberships for
the user.

Group Memberships
Click Add to add the user as a member to a group in the database. In the Search dialog,
type a name or display name for groups and click the Search button. Select groups in
the search result table and click OK.

Select groups in the Group Memberships list and click Remove to remove group
memberships from the user.

Click the Save button () to save any changed group memberships to the database.

Groups

A group () is a collection of users and other groups. You typically create groups to
more easily manage permissions common to several users in the database.

Managing Users
2 : M O D E L M A N A G E R T O O L S

G R O U P S E T T I N G S

The Settings window for a group shows:

• Database. The label of the database that the group belongs to.

• Name. The name of the group.

• Display Name. An alternative name used for display purposes.

• Group Members. The users, and other groups, in the database that are members of
the group.

Clicking the Save button () saves the display name and the group members for the
group.

Group Members
Click Add to find a user, or another group, in the database to add as a member to the
current group. In the Search dialog, type a name or display name for users and groups
and click the Search button. Select users and groups in the search result table and click
OK.

Select users and groups in the Group Memberships list and click Remove to remove
group members from the group.

Click the Save button () to save any changed group members to the database.

Permission Templates

A permission template () is a saved list of permission assignments for a set of users
and groups that you can apply to database objects. You can, for example, use a
permission template to reuse the same permissions for a large collection of models,
only having to update in one place — the permission template itself — in case you want
to change these permissions.

Group membership is transitive: if a user is a member of a group, which
in turn is a member of another group, the user is considered a member of
the latter group as well.

Managing Groups
O V E R V I E W O F A M O D E L M A N A G E R D A T A B A S E | 83

84 | C H A P T E R
Model Manager comes with three Predefined Permission Templates, descriptively
named Public, Protected, and Private, for each of the database objects that you can
control access to. You can also create custom permission templates for Models and
Files — see Creating your own Permission Templates.

P E R M I S S I O N T E M P L A T E S E T T I N G S

The Settings window for a permission template shows:

• Database. The label of the database that the permission template belongs to.

• Name. The name of the permission template.

• Type. The object type that the permission template can be applied to. Either Model

or File.

• A table containing the permission assignments of the permission template.

Clicking the Save button () saves the Name field and permission assignments for the
permission template.

Permission Assignments
Click Add to add permissions for a user or group to the permission template. In the Add

dialog, type a name or display name for users and groups and click the Search button.
Select the user or group you want to add in the search result table. You can also select
the special Everyone or Owner options — see Everyone and Owner. At the bottom of
the dialog, select the permissions to assign the selection. Click OK to add the
permission assignment.

Select a row in the permission assignment table and click Edit to change the
permissions for the selection. Click Remove to remove the selection from the table.

Click the Save button () to save any changed permission assignments to the
database.

Reusing Permission Assignments Using Permission Templates
2 : M O D E L M A N A G E R T O O L S

B r ow s i n g Da t a b a s e s
For models and data files stored on the file system, there is typically only one way to
browse them — what you see is what you get. Taking the same approach in a Model
Manager database could, however, quickly become confusing and hard to navigate —
models with hundreds of versions may take up an entire search result, making models
with only a few versions harder to find. As the title of a model rarely changes, you
would also have to meticulously compare dates when opening a model version to know
you are working off the most recent.

In this section, you will learn how various windows in the Model Manager workspace
can be used to browse and search in useful subsets of model and file versions in your
databases — including browsing and searching the latest versions of items, listing the
version history of a particular item, listing the history of all changes made to items, as
well as navigating the relationships between different versions.

The Model Manager Window

Use the Model Manager window to find versions of Models and Files by writing search
expressions in the search field and clicking the Search button () or pressing Enter.
You can write plain search words and any number of filter expressions using The Model
Manager Search Syntax. Plain search words will match on the titles, descriptions,
assigned tags, and filenames of versions. Press Ctrl+Space to get completion assistance
when writing filter expressions — see Search Syntax Completion.

You can also apply separate Item and Content Filters via The Filter Dialog. Select a
filter from the Add Filter menu button () in the toolbar to open the dialog. Applied
filters are shown below the search field — see Applied Filter Pills.

• The Model Manager Window

• The Databases Window

• The Settings Window

• The Commits Window

• Activating a Database

• The Versions Window

• The References Window

• Opening Models

• Running Applications

• Previewing Files

• Comparing Models

• Copying Model and File Locations
B R O W S I N G D A T A B A S E S | 85

86 | C H A P T E R
The searched location is initially set to the Default Branch in the Default Repository,
which means searching for the latest versions of models and files with respect to this
branch. Click the top-right link button above the Search button () to select another
location to search via The Select Location Dialog.

To search among all versions ever saved in the database, click the expand button next
to the Latest Versions for Location menu button () and select All Versions in Database

(). You can also toggle between these two search modes by clicking the menu
button itself — see Searching Versions for more details. To redo a previous search,
select one of the entries in the Search History menu list () — see also Search History.

You can switch the presentation of the search result between either a Table View or a
Tree View when Latest Versions for Location () is selected — the former primarily
used when you want to quickly find a particular item and the latter when you want to
browse a larger collection of items. Only the Table View is available when All Versions

in Database () is selected.

You can change the sort field and sort order of the search result from the toolbar. Click
the expand button next to the sort field button to select another sort field than the
default Title () sort field — see also Sorting Search Results. The selected sort field
and sort order for the Model Manager window are remembered between program
sessions.

T H E M O D E L M A N A G E R W I N D O W T O O L B A R

The toolbar in the Model Manager window contains the following toolbar buttons:

• Click the Refresh button () to refresh the search result while keeping the search
expression and applied filters unchanged.

Searching and Filtering

If Model Manager detects that a commit has been saved on a searched
branch, an information message () is displayed at the bottom of the
Model Manager window. This includes commits made by you from within
the COMSOL Desktop as well as commits made by your coworkers if
connected to a server database. Either click the information message text
itself or the Refresh button () to see any updated results.
2 : M O D E L M A N A G E R T O O L S

• Click the Show More button () to include more matching models and files in the
search result. The button is disabled when the Tree View is shown for a branch.

• Click the Search History menu button () to select a previous search that you want
to redo.

• Click the Reset button () to clear the current search expression and applied
filters.

• Click the Add Filter button () to apply a filter.

• Click the sort field button to toggle the sort order of the search result between
ascending and descending order. Click the expand button to select another sort
field.

• Click the Table button () to view the search result in a table. The button is
disabled when All Versions in Database () is selected.

• Click the Tree button () to view the search result in a tree. The button is disabled
when All Versions in Database () is selected.

T A B L E V I E W

The table view of the search result shows matching model and file versions in a table.
For the Latest Versions for Location () search mode, the columns are:

• The type column — the type of the model or file represented by an icon. See Item
Version Types and Item Save Types.

• The Title column — the title set for the model or file in that version.

• The Tags column — the tags set for the model or file with respect to the searched
location.

• The Saved column — the time when the version was saved.

• The Saved By column — the name of the user that saved the version.

• The Owner column — the name of the user that owns the model or file.

For the All Versions in Database () search mode, the columns are:

• The type column — the type of the model or file represented by an icon. See Item
Version Types and Item Save Types.

• The Title column — the title set for the model or file in that version.

• The Saved column — the time when the version was saved.

• The Saved By column — the name of the user that saved the version.

• The Owner column — the name of the user that owns the model or file.
B R O W S I N G D A T A B A S E S | 87

88 | C H A P T E R
• The Repository column — the repository the version was saved in.

• The Branch column — the branch the version was saved in.

• The Comments column — the optional comment provided when the version was
saved.

A maximum of 100 versions that matched the search are initially included in the table.
Click the Show More button () in the toolbar to append the next 100 matches to
the list. You can set another value for this default page size in the Result Page Size field
on the Model Manager page in the Preferences window.

T R E E V I E W

The tree view of the search result shows matching model and file versions under their
assigned tags in The Tag Tree. Given that an item may be assigned multiple tags, you
can encounter the same model or file in multiple positions in the tree. Each model or
file tree node shows the title set for the version, the time when the version was saved,
and the name of the user that saved the version. The appearance and behavior of the
tree differ somewhat depending on if you are searching item versions with respect to
Branches or with respect to Snapshots or Commits, with the former typically offering
a richer experience — see also Searching Latest Versions for Locations.

Searching in Branches
When searching in a branch, the tree view shows a count of the number of matching
models and files found under each tag node within parentheses next to the tag’s title.
If you have created a large number of tags in your database, the count may be shown
first when you expand a tag node (with ellipses shown within parentheses until then).

If you have not written a search expression in the search field or added any filters, tags
that are not assigned to any items are also included in the tree. This enables you to
browse through all items in The Tag Tree — tags included. If there is a search
expression or applied filter, tags are excluded from the tree if the count is known to be
zero.

Using the Table View is recommended when you expect to find a small
number of models and data files for your search expression and applied
filters.

Using the Tree View is recommended when you expect to browse
through a large search result of potentially thousands of items.
2 : M O D E L M A N A G E R T O O L S

A maximum of 100 versions that matched the search are initially included under a tag
tree node. When more results are available under a tag node, a Show More tree node
() can be expanded to reveal the next 100 versions. You can set another value for
this default page size in the Result Page Size field on the Model Manager page in the
Preferences window.

Searching in Snapshots and Commits
When searching versions in a snapshot or commit, the tree view shows the first 100
matching versions (sorted on title), irrespective of their assigned tags. You can append
more search results to the tag tree until all matching versions have been fetched by
repeatedly clicking the Show More button () in the toolbar.

The Databases Window

The Databases window shows a tree with all databases you have added in the COMSOL
Desktop. You typically use the tree to browse and administer the content of databases,
including, for example, edit Database Configurations, add Repositories, create
Branches, record Snapshots, and, for server databases, manage Users and Groups.

Click the Step In button () to show a subtree of the tree in the window. You can
continue stepping into nodes until only leaf nodes are visible. Click Step Back () to
return one step, or Step Home () to show the whole tree. You can toggle the
visibility and appearance of various nodes in the Show menu () and the Item Tree

Node Text menu ().

T O G G L I N G T H E D A T A B A S E S W I N D O W

Click the Databases button () in the Database toolbar to toggle the visibility of the
Databases window.

There is a subtle difference between the tag tree shown in the tree view
of the Model Manager window when searching in Snapshots and the
corresponding tag tree shown in The Databases Tree. For the former tree,
you only see the tags assigned to models and files that are included in the
search result. This means that more and more tags may show up when you
repeatedly click the Show More button () in the toolbar. Tags that are
not assigned to any models or files will never show up. For the latter tree,
you always see all tags at a fixed level when you expand a tree node.
B R O W S I N G D A T A B A S E S | 89

90 | C H A P T E R
T H E D A T A B A S E S W I N D O W T O O L B A R

The toolbar in the Databases window contains the following toolbar buttons:

• Click the Step Home button () to show all nodes in the Databases window’s tree;
that is, to return to the default tree view after stepping into nodes.

• Click the Step Back button () to show the nodes previously shown before
stepping into a node.

• Click the Step In button () to only show the child nodes, and their descendants,
of a selected node in the Databases window’s tree.

• Click the Refresh button () to refresh the child nodes of the selected node.

• Click the Show menu () to set visibility options for nodes.

• Click the Item Tree Node Text menu () to set text options for nodes
corresponding to models and files.

T H E D A T A B A S E S T R E E

The top nodes in the Databases window’s tree are the Database Configurations of all
databases that have been added to the COMSOL Desktop: local databases and server
databases accessed via a Model Manager server.

The child nodes to the databases configurations consist of all Repositories you are
authorized to see, as well as a Security node () containing child nodes related to user
management. The Security node is hidden for a local database.

Each repository node contains a Branches node () and a Snapshots node (). The
Branches node and the Snapshots node contain all Branches and Snapshots, respectively,
you are authorized to see.

Each of the branch and snapshot nodes contain the latest versions of Items — that is,
Models, Files, and Tags — with respect to the point in time of the corresponding
commit. For a branch node, these are the latest versions at the present time, while for
a snapshot, these are the versions that were the most recent ones at the time of the
snapshot’s referenced commit.

See Locations and Commits for a discussion on how a branch and
snapshot are associated with a specific commit, and how that commit in
turn identify a subset of latest versions in the database.
2 : M O D E L M A N A G E R T O O L S

The items are further organized into a subtree based on their assigned tags with respect
to the corresponding commit — see also The Tag Tree. You may think of the branch
node or snapshot node as representing a root tag in this subtree.

The items under a tag node are sorted on title, with a maximum of 100 models and
files initially shown. When more items are available under a tag node, a Show More tree
node () can be expanded to reveal the next 100 items. You can set another value
for this default page size in the Result Page Size field on the Model Manager page in the
Preferences window.

The Security node contains a Users node (), a Groups node (), and a Permission

Templates node (). Each one contains, respectively, all Users, Groups, and custom
Permission Templates in the database.

Deleting and Restoring Unversioned Database Objects
You can delete Repositories, Branches, Snapshots, Users, Groups, and Permission
Templates by right-clicking their corresponding tree nodes and selecting Delete ().
This deletion is not permanent but rather marks these database objects as hidden in the
COMSOL Desktop by default.

Clicking Show () enables you to show deleted (hidden) nodes in the tree. You can
right-click such nodes and select Restore () to remove their hide-marker, making
them visible again everywhere in the COMSOL Desktop. The options set via the Show

toolbar button also determines the visibility of deleted repositories, branches, and
snapshots in The Select Location Dialog.

Permission templates can also be permanently deleted. Right-click and select Delete

Permanently (). This requires that the permission template is not assigned to any
items.

Select Items in the Show menu button () to see items under branch and
snapshot nodes.

Right-click a node and select Refresh () to refresh all child nodes of
that node. You may find this useful, for example, to see changes made in
a server database from another COMSOL Multiphysics program session,
perhaps run by your coworker.
B R O W S I N G D A T A B A S E S | 91

92 | C H A P T E R
The Settings Window

The Settings window shows settings for the database object selected in The Model
Manager Window, The Databases Window, The Commits Window, The Versions
Window, The Maintenance Window, or The References Window (depending on
which window has focus). Click Link with Selection () to disable this automatic
linking. You can still update the Settings window with a new database object by right-
clicking the object and selecting Settings ().

You use the Settings window to view and update an object stored in the database. To
update the object, change any of its values in the Settings window’s fields and click the
Save button (). In contrast to the Settings windows in the Model Builder, the
Application Builder, or the Physics Builder workspaces, changes made in the window
are not automatically saved to the database. The Reset button () will be enabled
when there are unsaved changes to an object shown in the Settings window.

Model Manager will try to remember unsaved changes for an object during the
program session: If you change some fields for a database object, select another
database object in one of the other windows (so that the Settings window is updated),
and then return to the first database object, your unsaved changes for the object will
still be there. This enables you to save the changes to the database at your convenience.
Model Manager will also show a warning dialog if you have unsaved changes when the
Settings window is updated with a new database object.

When you click the Save button () for a model, file, or tag, a dialog is shown in
which you can provide an optional commit comment. Click OK to save a new version
of the item. If you have made any changes to the tag pills in the Tags section, the

Remember to click Save () to save any changes made to an object in
the Settings window.

You can disable the warning for unsaved changes: clear the Warn if the

Settings window contains unsaved changes checkbox on the Model Manager

page in the Preferences window.
2 : M O D E L M A N A G E R T O O L S

assigned tags of the item are also updated. Clicking Save for any other database object
immediately saves the changes to the database.

T H E S E T T I N G S W I N D O W T O O L B A R

The toolbar in the Settings window contains the following toolbar buttons:

• Click the Link with Selection button () to enable or disable whether to
automatically update the Settings window based on the current selection in the
Model Manager, Databases, Commits, Versions, Maintenance, or References window
(which ever has focus).

• Click the Save button () to write any changes made in the Settings window to the
database.

• Click the Reset button () to reload the shown object in the Settings window from
the database, thereby discarding any pending changes you have in the window. The
button is disabled if no changes have been detected.

For models, files, and tags, the Save button () is only enabled when
viewing the settings with respect to a branch location. Only then are you
guaranteed to update from the latest version of the item when saving.
The button is disabled when viewing settings with respect to a fixed
commit, which is the case for a selection in the Versions, Maintenance, or
References windows, or for a selection in the Model Manager window when
searching all versions in the database.

• Model Settings

• File Settings

• Tag Settings

• Commit Settings

• Branch Settings

• Snapshot Settings

• Repository Settings

• User Settings

• Group Settings

• Permission Template Settings
B R O W S I N G D A T A B A S E S | 93

94 | C H A P T E R
The Commits Window

You use the Commits window to view the history of all Commits saved in a branch.
Click the link button to select another branch in The Select Location Dialog.

The commits are shown in a table with a maximum of 100 most recent commits
initially retrieved from the database. Click Show More () to append the next 100
commits to the table. You can set another value for this default page size in the Result

Page Size field on the Model Manager page in the Preferences window.

If the branch was created from another branch, older commits on the parent branch
are also appended in the table. The table columns are:

• The Date column — the time when the commit was saved.

• The User column — the name of the user that saved the commit.

• The Branch column — the name of the branch that the commit belongs to.

• The Comments column — the optionally provided comments when the commit was
saved.

Select a row in the table to see the corresponding Commit Settings in The Settings
Window. This enables you to, for example, update the comments of the commit or see
the set of related item changes saved in the commit.

The commit history shown in the table follows the current selection in The Model
Manager Window or The Databases Window (depending on which window has
focus). If you select a particular item in one of these windows, only commits involving
that item are shown in the table. To see all commits in the corresponding branch, press
Ctrl and click the selected item to deselect it or simply select a branch tree node in the
The Databases Window.

Click Link with Selection () to disable the automatic linking. You can still update the
Commits window with a new database object by right-clicking the object and selecting
Commits (), when available.

T H E C O M M I T S W I N D O W T O O L B A R

The toolbar in the Commits window contains the following toolbar buttons:

• Click the Refresh button () to refresh the table to see any new commits that have
been saved on the branch. The table will automatically refresh if you save a new
commit to the branch from the COMSOL Desktop.

• Click the Show More button () to append older commits to the table.
2 : M O D E L M A N A G E R T O O L S

• Click the Link with Selection button () to enable or disable whether to
automatically update the Commits window based on the current selection in the
Model Manager window or the Databases window (which ever has focus).

• Click the Branch button () to open The Create Branch Dialog to branch off from
the selected commit.

• Click the Snapshot button () to record a snapshot for the selected commit.

• Click the Merge button () to open The Merge Window to merge all changes
made up to the selected commit to a target branch.

• Click the Revert button () to open The Revert Window for the selected commit.

If you right-click a commit in the table, you can also

• Select Export () to export all versions of items that were the latest versions at the
time of the commit to the file system — see Exporting Items.

• Select Search in Commit () to set the selected commit as the location in The
Model Manager Window. You can then search for all versions of items that were the
latest versions at the time of the commit. See also Searching in Snapshots and
Commits.

Activating a Database

You can select one of your configured databases from the menu in the Database section
in the Home toolbar to activate it in the Model Manager workspace. This will:

• Automatically connect to the database if it was not already connected. You may be
prompted for credentials if connecting to a server database.

• Set the location in The Model Manager Window and The Commits Window to the
default branch in the default repository of the database.

• Select the default branch in the default repository in The Databases Tree.

The Versions Window

The Versions window in the Model Manager workspace shows the version history of
an item — that, is a model, file, or tag — with respect to the latest version on a

When you click Revert () for a commit, the inverse of the set of
changes shown in The Changes Section of the Settings window can be
applied from The Revert Window.
B R O W S I N G D A T A B A S E S | 95

96 | C H A P T E R
particular branch. The version history entries correspond to a subset of Commits on
the branch for which a new version of the item was saved. Click the link button in the
upper right corner to select another branch in The Select Location Dialog. If the
branch was created from another branch, older versions saved on the parent branch are
also appended to the table. If the item was created from another item — via, for
example, Save as New () in the Save or Export windows — the version history of that
item is appended as well.

The version history shown in the window follows the current item selection in The
Model Manager Window or The Databases Window (depending on which window has
focus). Click Link with Selection () to disable this automatic linking. You can still
update the Versions window with a new item by right-clicking and selecting Versions

().

The versions are shown in a table sorted in chronological order. A maximum of 100
most recent versions are initially retrieved. Click the Show More button () to append
the next 100 versions to the table. You can set another value for this default page size
in the Result Page Size field on the Model Manager page in the Preferences window. If a
viewed model is opened in the COMSOL Desktop, the table row for the
corresponding model version is highlighted in bold in the table.

The table columns are:

• The type column — the type of the item represented by an icon.

• The Title column — the title set for the item in that version.

As for The Versions Window for the COMSOL Desktop Model, the
Versions window in the Model Manager workspace is used to visualize
how one version has progressed to the next by going upward in the table
until reaching the latest version on the selected branch. Versions saved on
a parent branch after the selected branch was created are not included in
the table by the assumption that they correspond to independent work
done in parallel and whose changes are not reflected in the latest version.

You can see all versions of an item, irrespective of branch, by adding the
item to The Maintenance Window in the Model Manager workspace.
From the window, you gain a complete overview of the full footprint of
the item in the database, but may lose a sense of how the item has evolved
over time.
2 : M O D E L M A N A G E R T O O L S

• The Saved column — the time when the version was saved.

• The Saved By column — the name of the user that saved the version.

• The Branch column — the target branch of the commit in which the version was
saved.

• The Comments column — the optional comment provided when the version was
saved.

Select a row in the table to see the corresponding settings for the model, file, or tag in
The Settings Window at the point in time the version was saved.

T H E V E R S I O N S W I N D O W T O O L B A R

The toolbar in the Versions window contains the following toolbar buttons:

• Click the Refresh button () to refresh the table in case any new versions have been
saved. The table will automatically refresh if you save a new version on the branch
from the COMSOL Desktop.

• Click the Show More button () to append older versions to the table.

• Click the Link with Selection button () to enable or disable whether to
automatically update the Versions window based on the current selection in the
Model Manager window or the Databases window (which ever has focus).

• Click the Version Details button () to open The Version Details Dialog
containing more information on the version.

• Click the Open button () to open a selected model version in the COMSOL
Desktop.

• Click the Run button () to launch and run a selected version in the COMSOL
Desktop. Only enabled if the selected version is an application.

• Click the Preview File button () to open a selected file version using the default
application for its file type. See Previewing Files.

• Click the Compare button () to compare a selected model version with the model
opened in the COMSOL Desktop. Select two model versions to compare them with
each other.

• Click the References button () to open The References Window to view all
references between the selected version and other item versions.

• Click the Restore Version button () to save the selected version as a new latest
version of the item whose version history is shown in the window. The target branch
for the save is given by the currently selected branch in the location link button. See
Restore Version for further details.
B R O W S I N G D A T A B A S E S | 97

98 | C H A P T E R
If you right-click a version in the table, you can also

• Select Disk Space Usage () to see an estimate of the required disk space usage if
the version is saved to the file system. See Estimating Disk Space Usage.

• Select Export () to export the version to the file system — see Exporting Items.

• Select Export to New Local Database () to export the version to a new local
database — see Export to New Local Database.

• Select Branch () to create a new branch from the commit that the version was
saved in.

• Select Snapshot () to record a snapshot of the commit that the version was saved
in.

• Select Copy Location () to copy a text string with a URI that uniquely identifies
a model or file version in the database to the clipboard. See Copying Model and File
Locations for what you can do with this text string.

• Select Clear Computed Data () to clear all built, computed, and plotted data of a
model version. Data shared with other model versions via deduplication will not be
deleted from the database. Clearing cannot be undone. See Built, Computed, and
Plotted Data.

• Select Permanently Delete () to permanently delete a version in the database.
Data shared with other versions via deduplication is not deleted. Permanently
deleting cannot be undone. See Permanently Deleting Models and Data Files.

• Select Settings () to update the Settings window with the version even if the Link

with Selection button () is disabled in the latter window.

Estimating disk space usage, clearing computed data, and permanently deleting is also
supported when selecting multiple versions in the table.

T H E V E R S I O N D E T A I L S D I A L O G

The Version Details dialog shows further details for an item version. The following is
shown for all items:

• Location — the database, repository, and branch that the version was saved to.

• Saved — the time when the version was saved.

• Saved by — the name of the user that saved the version.

• Title — the title set on the item in the saved version.

• Comments — the optional comments provided when the version was saved.
2 : M O D E L M A N A G E R T O O L S

For a model version:

• Saved in — the COMSOL Multiphysics versions that the model version was saved in.

• Item save type — if the model is a regular model or a draft model.

• Item version type — if it is a model, application, or physics.

• Filename. The filename used by the model version when exporting it to the file
system.

• Description. The description of the model in the saved version.

For a file version:

• Item version type — if it is a file or fileset.

• File size. The size of the file version when stored on the file system. For a fileset, this
is the total size of all files.

• Description. The description of the file in the saved version.

Click the Edit Comments button () to update the comments for the commit that the
version was saved in — see also Commit Settings. Click Save to save the updated
comments to the database. Click Cancel to revert back to the original comments.

E X P O R T T O N E W L O C A L D A T A B A S E

You can export a single model version to a new local database by right-clicking a
version in the Versions window and selecting Export to New Local Database (). Select
a name for the database directory in the New Local Database dialog and click Save. You
can then open the created database in the COMSOL Desktop — see Opening a Local
Database.

The References Window

You use the References window to view and browse versions that are referenced from a
particular version or, conversely, versions that are referencing a particular version. This

For a Model Manager server database, only an administrator or the user
that saved the version can update the comments.

You can find an older version in your database based on its commit
comment by selecting All Versions in Database () in the Model Manager

window, for example, and applying a Commit Comment filter.
B R O W S I N G D A T A B A S E S | 99

100 | C H A P T E R
enables you, for example, to discover model-file and model-part relationships without
first having to open a model in the COMSOL Desktop.

The references shown in the window follows the current version selection in The
Model Manager Window, The Databases Window, The Versions Window, or The
Maintenance Window (depending on which window has focus). Click Link with

Selection () to disable this automatic linking. You can still update the References

window with a new version by right-clicking and selecting References ().

You can view either referenced versions or referencing versions by clicking Show

Referenced Versions () or Show Referencing Versions (), respectively. If you open
the window for a selected model version that does not contain reusable geometry
parts, referenced versions are shown by default. For a file version or a model version
containing such parts, referencing versions are shown. The title of the selected version
is shown at the top of the window. If a model version reference found in the table is
opened in the COMSOL Desktop, the corresponding table row is highlighted in bold.

The referenced or referencing versions are shown in a table sorted in chronological
order. A maximum of 100 most recent versions are initially shown. Click the Show More

button () to append the next 100 versions to the table. You can set another value
for this default page size in the Result Page Size field on the Model Manager page in the
Preferences window.

The table columns are:

• The type column — the type of the item represented by an icon.

• The Title column — the title set for the item in that version.

• The Reference Type column — the type of reference between a model version and a
file version describing in what way they are related.

• The Saved column — the time in which the version was saved.

• The Saved By column — the name of the user that saved the version.

• The Repository column — the repository that the version belongs to.

The versions listed in the References window for a model version
correspond to the subset of entries in the Auxiliary Data window whose
Location column point to the database. These entries can either be data
files used as input or output, or geometry parts used as input.
2 : M O D E L M A N A G E R T O O L S

• The Branch column — the target branch in which the version was saved.

• The Comments column — the optional comment provided when the version was
saved.

Select a row in the table to see the corresponding settings for the referenced model or
file in The Settings Window at the point in time the version was saved.

You can iteratively explore how different item versions depend on each other by
repeatedly selecting a row in the table and clicking References ().

T H E R E F E R E N C E S W I N D O W T O O L B A R

The toolbar in the References window contains the following toolbar buttons:

• Click the Refresh button () to refresh the table in case any new version references
have been created. The table will automatically refresh if you save a new version to
the database from the COMSOL Desktop.

• Click the Show More button () to append older versions to the table.

• Click the Link with Selection button () to enable or disable whether to
automatically update the References window based on the current selection in the
Model Manager window, the Databases window, the Versions window, or the
Maintenance window (which ever has focus).

• Click the Version Details button () to open The Version Details Dialog
containing more information on the version.

• Click the Open button () to open a selected model version in the COMSOL
Desktop.

• Click the Run button () to launch and run a selected version in the COMSOL
Desktop. Only enabled if the selected version is an application.

• Click the Preview File button () to open a selected file version using the default
application for its file type. See Previewing Files.

• Click the Compare button () to compare a selected model version with the model
opened in the COMSOL Desktop. Select two model versions to compare them with
each other.

The database protects the referential integrity between item versions: a
file version that is referenced by a model version, for example, cannot be
permanently deleted, as long as both versions are saved in the same
database.
B R O W S I N G D A T A B A S E S | 101

102 | C H A P T E R
• Click the References button () to show version references for the selected version.

• Click the Show Drafts button () to enable or disable whether to include version
references that are draft versions.

• Click the Show Referenced Versions button () to show versions that are referenced
by the viewed version (as indicated by the title next to the toolbar).

• Click the Show Referencing Versions button () to show versions that are
referencing the viewed version (as indicated by the title next to the toolbar).

• Select from the Reference Types menu () the types of references to include in the
table. The available options are Input File, Output File, and Geometry Part.

If you right-click a version in the table, you can also

• Select Disk Space Usage () to see an estimate of the required disk space usage if
the version is saved to the file system. See Estimating Disk Space Usage.

• Select Export () to export the version to the file system — see Exporting Items.

• Select Export to New Local Database () to export the version to a new local
database — see Export to New Local Database.

• Select Branch () to create a new branch from the commit that the version was
saved in.

• Select Snapshot () to record a snapshot of the commit that the version was saved
in.

• Select Copy Location () to copy a text string with a URI that uniquely identifies
a model or file version in the database to the clipboard. See Copying Model and File
Locations for what you can do with this text string.

• Select Clear Computed Data () to clear all built, computed, and plotted data of a
model version. Data shared with other model versions via deduplication will not be
deleted from the database. Clearing cannot be undone. See Built, Computed, and
Plotted Data.

• Select Permanently Delete () to permanently delete a version in the database.
Data shared with other versions via deduplication is not deleted. Permanently
deleting cannot be undone. See Permanently Deleting Models and Data Files.

You will only be able to perform this deletion for versions that are not referenced by
other versions.
2 : M O D E L M A N A G E R T O O L S

• Select Restore Version () to save the selected version as a new latest version. The
target item and target branch for the save is the same as that of the selected version.
See Restore Version for further details.

• Select Settings () to update the Settings window with the version even if the Link

with Selection button () is disabled in the latter window.

R E F E R E N C E - T R A C K I N G I N M O D E L M A N A G E R

Model Manager keeps explicit track of references between versions when those
versions are all stored in the same database. To see versions from other databases that
are referenced by a model version, open the model version in the COMSOL Desktop
and scan the Auxiliary Data window for input or output with a database set in the
Location column.

References between a model version and other item versions are automatically
discovered and tracked when a model is saved to a database. Model Manager looks for
versions referenced in the model tree of the saved model and matches them with
versions stored in the target database. This reference-tracking mechanism may lead to
some surprising results that are good to be aware of:

• If you export output from the model opened in the COMSOL Desktop directly to
a database, the resulting saved file version will not be referenced in the database
until you also save a new version of the model in that database. See also Loading
and Saving Auxiliary Data Files Stored in Databases.

• If you update a file from the Model Manager workspace — for example via the
Settings window — the saved file version will not be referenced by any model
version, even if the previous file version was referenced. To see the references for the
older file version, open The Versions Window for the file item, select the older
version, and click the References button ().

• If you open the References window for a file version, you are likely to discover that
it is referenced by a whole sequence of model versions. For a file version with
reference type Output file, the oldest model version in that sequence is likely the best
candidate for reproducing the output.

Opening Models

You can open a model version in the COMSOL Desktop from The Model Manager
Window, The Databases Tree, or The Maintenance Window by double-clicking a
model version or by selecting a model version and clicking Open () in the Item
B R O W S I N G D A T A B A S E S | 103

104 | C H A P T E R
section of the Home toolbar. You can also double-click or click Open from the toolbars
of other windows in the Model Manager workspace that show model versions.

When you try to open a model version from the Open window or the Model Manager

window and the searched location is set to a branch, or when you try to open from the
Databases tree under a branch node, Model Manager first checks if any newer versions
of drafts of the model exist on the same branch. If so, The Open Dialog is shown in
which you can choose to open one of these newer draft versions instead. This helps
you, for example, from accidentally creating a new draft when one is already ongoing
— perhaps created and made accessible to you by one of your coworkers. If there is
instead a newer version of the model itself — saved after any potential draft versions
of the model — that version is automatically opened by Model Manager.

A similar safeguard exists for the Versions window: When you try to open the latest
version visible in the window, Model Manager checks if a later version has been saved
to the same branch and, if so, gives you the choice to open that one instead. As in the
previous case, this version may have been saved by a coworker while you were working
elsewhere in the COMSOL Desktop. This check, however, does not include other
drafts of the model.

T H E O P E N D I A L O G

The Open dialog shows model versions that Model Manager assumes may be of
particular interest when you try to open a model version that you expect to be the
latest one. The contents of the dialog depend on the window: For a window that
shows the latest versions of multiple models with respect to a branch, the versions are
presented as a tree with the root node being the latest version of the model initially
selected. Child nodes are the latest versions of drafts created from that model. For a
window that shows the version history of a specific model, two versions are instead
shown in a table — the selected version thought to be the latest one (bottom row) and
the actual latest version found when checking the branch in the database (top row).
Select one of the tree nodes or table rows and click Open to open a model version in
the COMSOL Desktop.

P R E V E N T I N G S I M U L T A N E O U S A C C E S S

While Model Manager has no concept of automatically locking a model for exclusive
access by a single user, you can achieve the same effect via permissions — see Granting
2 : M O D E L M A N A G E R T O O L S

Permissions. You can, for example, assign the Open model permission or Save model

permission exclusively to yourself so that only you can open or save versions of a model.

O P E N I N G A M O D E L O N A C L U S T E R

You can open a model stored in a database on a cluster as long as the cluster’s root
node can connect to the database. In the Preferences window, select From intermediate

file in the Load model on nonroot nodes list on the Cluster page under the Model Manager

page to only require that the root node can connect. Select Direct from database in case
also nonroot nodes can connect.

N E T W O R K C O N N E C T I O N I S S U E S

When you open a model from a database, binary data such as meshes, geometries,
solutions, and result plots are only loaded on-demand. This reduces, for example,
unnecessary bandwidth usage when connected to a server database via a Model
Manager server.

If you experience network connection issues when COMSOL Multiphysics needs to
load such binary data from the database, you will be asked to save any ongoing
modeling work as a recovery on the file system. The model can be opened from
recovery once the network connection is reestablished.

If a simulation model is being developed in a collaborative setting, and
you want to guarantee that only one person is modifying the model at a
time, assign a Protected permission template and hand over the model by
changing its owner — see Owners.

When From intermediate file is selected, the model is first saved as a
temporary file on the root node’s file system and then transferred to all
nonroot nodes by copying the file. When Direct from database is selected,
all nodes load the model directly from the database without any
intermediate step.

Keeping and Opening Recovery Files in the COMSOL Multiphysics
Reference Manual
B R O W S I N G D A T A B A S E S | 105

106 | C H A P T E R
Running Applications

Click Run () in the Item section of the Home toolbar to launch and run an
application version () from The Model Manager Window, The Databases Tree, or
The Maintenance Window. You can also click Run from the toolbars of other windows
in the Model Manager workspace that show application versions.

Much like when Opening Models, Model Manager first checks for the presence of
other versions that may be of interest when you try to run an application version that
you expect to be the latest one. If any are found, the Run dialog is shown in which you
can choose to run one of these versions instead. Select one of the tree nodes or table
rows and click Run to launch and run an application version in the COMSOL Desktop.

Inserting Contents from Models

You can insert components, geometry parts, parameters, and other model contents
from versions in your database into the model currently opened in the COMSOL
Desktop. This is a useful way of reusing modeling setups from existing models when
you, for example, start with a new model.

From the Settings window of a model version, select the node you want to insert into
the opened model from the model tree in the Contents section. Click Insert into Model

() in the toolbar below the tree to insert the selected node.

Many nodes in the Contents section also support being copied to clipboard. This
enables you, for example, to copy nodes from a model version in one COMSOL
Multiphysics program session into the model opened in another program session:
Select one or more nodes and click Copy () or press Ctrl+C. Right-click a node in

Only a subset of all node types support insertion. The Insert into Model

button () is disabled for unsupported selections.

The Insert into Model button () is a useful alternative to Inserting Parts
and Other Model Contents from Databases via the Select Model window
when you want to reuse multiple model tree nodes from the same source
model. Going via the Contents section also has the advantage that you can
right away select which node you want to insert from a source model in
case the model has multiple such nodes of the same type.
2 : M O D E L M A N A G E R T O O L S

the Model Builder, Application Builder, or Physics Builder tree and select Paste ()
or press Ctrl+V.

C O M P O N E N T S , G E O M E T R I E S , M A T E R I A L S , A N D P H Y S I C S

Select a component, geometry sequence, material, or physics node and click Insert into

Model () to insert the selected node. If there is more than one target available in the
opened model, the Insert into Model dialog is shown giving you a list of possible targets
for the insertion. Select a target parent node and click OK. The node is copied into the
opened model and then selected in the Model Builder window.

G E O M E T R Y P A R T S

Select a geometry part and click Insert into Model () to insert the selected part under
Global Definitions > Geometry Parts in the model opened in the COMSOL Desktop.
Unlike the plain copying done when inserting Components, Geometries, Materials,
and Physics, the geometry part is loaded as auxiliary data into the model tree with a
reference back to its source model version.

If the opened model contains components or geometry parts with the same space
dimension as the selected geometry part, you have the option to also create a part
instance of the inserted part. From the Insert into Model dialog:

1 In the Insert As list, select Geometry part.

2 Select the Create part instance in geometry checkbox.

3 Select a geometry under one of the available geometry parts and components in the
tree.

4 Click OK.

The geometry part is loaded into the model and a new part instance is created.

• Geometry Parts Saved in Databases

• The Auxiliary Data Window for Database Input and Output

• Reference-tracking in Model Manager
B R O W S I N G D A T A B A S E S | 107

108 | C H A P T E R
You can also insert the geometry sequence of the part as a plain copy into the opened
model. Select Copy of geometry sequence in the Insert As list, select a target geometry,
and click OK. In this case, no reference to the source model version is included.

P A R A M E T E R S

You can insert parameters from a model version in the database into the model opened
in the COMSOL Desktop. Perhaps you have a list of parameters whose names and
values you find yourself reusing over and over again in your modeling work. You can
then save these parameters with a model in your database to be used as a template
source for parameters when creating new models.

Select a Parameters node and click Insert into Model () to insert its list of parameters
into the opened model. You can also click Details () to get a preview of the
parameters in the Settings table of the Details dialog — see also Model Settings.

For a model in the COMSOL Desktop with a single Parameters node having an empty
parameter list, the inserted parameters are added to the existing node’s list. The label
of the Parameters node is also updated to that of the selected node’s label. For a model
in the COMSOL Desktop that already contains parameters, the inserted parameters
are instead added as a new Parameters node. Any Cases nodes present under the select
Parameters node are inserted as well.

The Copy of geometry sequence option may be used, for example, to create
a new part by starting from the sequence of an existing part. Create a new
part under Global Definitions in the Model Builder window with the same
space dimension as the existing part in the database. Select the existing
part in the Contents section, click Insert into Model (), and select the
new part as the target for the copy.

Only global parameters found under Global Definitions support insertion.
Inserting local parameters is not supported.

An initial Parameters node with an empty parameter list is automatically
added when you create a new blank model in the Model Builder
workspace. You may want to insert your list of parameters from the
existing model version before writing any new parameters to avoid ending
up with multiple Parameters nodes in the new model.
2 : M O D E L M A N A G E R T O O L S

Parameter Name Collisions
An Insert into Model dialog is shown asking you what to do if there are any name
collisions between the parameters being inserted and the ones already present in the
opened model. Select Overwrite to replace the current values of such duplicate
parameters with those being inserted from. Select Rename Duplicates to instead rename
inserted parameters found to be duplicates by appending a numerical suffix to their
names. Other parameters, having no name collisions, are inserted as previously
described.

Previewing Files

You can preview a data file by opening it with the default application for its file type.
Double-click a file version, or select a file version in The Model Manager Window, The
Databases Tree, or The Maintenance Window and click Preview File () in the Item

section of the Home toolbar. You can also click Preview File from the toolbars of other
windows that show file versions in the Model Manager workspace. If the file version is
a fileset, you will be asked to select which file resource to preview from the Select File

from Fileset dialog. Select a row in the table and click OK.

Previewing a file can also be done from the Contents section in the Settings window for
a file version — see File Settings. Select the file resource to preview in the table and
click Preview File () in the toolbar below.

Comparing Models

You can compare the model opened in the COMSOL Desktop with a model version
from The Model Manager Window, The Databases Tree, or The Maintenance
Window by selecting the version and clicking Compare () in the Item section of the
Home toolbar. You can compare two model versions with each other by selecting two
versions and clicking Compare (). You can also click Compare from the toolbars of
other windows that show model versions in the Model Manager workspace.

Comparing Models Saved in Databases
B R O W S I N G D A T A B A S E S | 109

110 | C H A P T E R
Copying Model and File Locations

A model version or a file version stored in a Model Manager database can be uniquely
identified using an item version location. This is a text string URI that you can copy
to your computer’s clipboard by right-clicking an item version in the Model Manager
workspace and selecting Copy Location ().

U S I N G C O P Y L O C A T I O N W I T H M O D E L S

You can use Copy Location () to open a specific model version in another COMSOL
Multiphysics program session:

1 Right-click a model version in the Model Manager workspace and select Copy

Location ().

A text string URI that uniquely identifies the model version is copied to your
computer’s clipboard.

2 From the File menu in another COMSOL Multiphysics program session, select Open

From ().

3 Select the Clipboard menu option in the Open window. The model version is shown
as a single option in the list on the right. Click Open ().

An identical Clipboard menu option also appears in the Select Model window when you
have copied a model version location — see Inserting Parts and Other Model Contents
from Databases.

You can also use Copy Location () to change the source of a loaded geometry part
found in the model opened in the COMSOL Desktop, as long as the old part and the
new part use the same node tag:

1 Right-click a model version containing the geometry part in the Model Manager
workspace and select Copy Location ().

2 Open the Model Builder workspace and select the Loaded Part in the Model Builder

window.

3 In the File section of the Settings window, click the Location menu () and select
Paste Location ().

An item version location should not be confused with a commit location.
The former identifies an item version stored in a Model Manager
database; the latter identifies a commit in a Model Manager database —
see also Commits and Locations.
2 : M O D E L M A N A G E R T O O L S

4 Click Reload () to load the geometry part into the model.

The location text string URI can also be used to access the model version via method
code using the Model Manager API or to specify input and output when Running
COMSOL Batch with Models in Databases. While the URI itself has a rather opaque
format, you can recognize the URI by it always starting with dbmodel:///.

U S I N G C O P Y L O C A T I O N W I T H F I L E S

For a file version, you can use Copy Location () to reference the file version from an
input or output setting in the model opened in the COMSOL Desktop:

1 Right-click a file version in the Model Manager workspace and select Copy Location

(). If the file version is a fileset, you will be asked to select which file resource
whose file location you want to copy via the Select File from Fileset dialog. Select a
row in the table and click OK.

A text string URI that uniquely identifies the file resource is copied to your
computer’s clipboard.

2 Open the Model Builder or Application Builder workspace and select a model tree
node that has a Filename field with a Location menu() in the Settings window.

3 Paste the copied location into the Filename field.

The filename of the file resource, and the database the file belongs to, is displayed
as a label in the Filename field. Depending on the input or output nature of the
setting, you can now import or export data from or to the file in the database.

Using the Copy Location action from The Versions Window is a good
alternative to finding the version via the Select Model window when you
want to reference an older version of a geometry part.

Inserting Parts and Other Model Contents from Databases

Using the Copy Location action from The Versions Window is a good
alternative to finding the version via the Select File window when you want
to reference an older version of a data file.
B R O W S I N G D A T A B A S E S | 111

112 | C H A P T E R
The location text string URI can also be used to access the file version via method code
using the Model Manager API. While the URI itself has a rather opaque format, you
can recognize the URI by it always starting with dbfile:///.

• Selecting Files in Databases as Input Sources

• Selecting Files in Databases as Output Targets

• Loading and Saving Auxiliary Data Files Stored in Databases
2 : M O D E L M A N A G E R T O O L S

Organ i z a t i o n o f Mode l s a nd F i l e s
Model Manager supports two means of organizing models and files in a database —
assigning Tags to them and placing them in Repositories. The first primarily helps you
with search and workflow management, the second with access control.

In this section:

• Assigning Tags to Items

• Organizing Items in Repositories

Assigning Tags to Items

You can assign Tags to your models and data files to help you with organizing them in
the database. You can even assign tags to the tags themselves, thereby building a
hierarchical tree structure of tags — see The Tag Tree. In this regard, tags may remind
you of folders on the file system. But tags go beyond that:

• You can find models and data files in the database by searching on their assigned tags
— either by matching textually on tag titles via Full Text Search or by applying a Tag
filter on the unique keys of tags. You can even find models and data files by searching
on ancestor tags — that is, tags assigned to the items’ tags themselves. For example,
if you create an Interpolation Functions tag and assign it a My Project parent
tag, you may assign the former tag to data files and then find those same data files
by filtering on the latter tag.

• You can assign multiple tags to a model, data file, or even to a tag itself.

• Tag assignments are version controlled. A new commit is saved on the branch
whenever you add or remove assigned tags for an item — see Adding and Removing
Tag Assignments. This has the benefit that:

- You can track changes to the assigned tags of items over time, giving you an
organizational history. Perhaps you introduce tags for different stages in your
modeling workflow, say In Progress, To Review, Approved, and Needs More

Work.

- You can revert any updated tag assignments from The Revert Window.

- You can search items based on their tag assignments as they were at a particular
time. Perhaps you want to find all items that were assigned a tag, say In
O R G A N I Z A T I O N O F M O D E L S A N D F I L E S | 113

114 | C H A P T E R
Progress, a month ago, or merely see what the tag tree looked like — see The
Tag Tree for details.

• The settings for tags are version controlled. If you change the title of a tag and click
Save () in the Settings window, a new version of the tag is created. Any tag
assignments involving the saved tag will, however, be left unchanged.

C R E A T I N G N E W T A G S

Click New Tag () in the Database section of the Home toolbar to open the New Tag

dialog. The Location field shows the database, repository, and branch that the new tag
will be created in.

1 In the General tab, write the title for the new tag in the Title field.

2 Select the Add to selected models and files checkbox if you want the new tag to be
automatically assigned to the current selection of model and files in The Model
Manager Window or The Databases Window (depending on which window has
focus). The checkbox is disabled if no models or files are selected.

3 In the Parent tags tab, select tags in The Tag Tree that will be assigned to the new
tag — in other words, its parent tags. Leaving all nodes in the tree cleared will create
the new tag under the root. You can filter the tree of available parent tags by writing
a tag title in the text field above the tree.

The tree is empty when you create your first tag.

4 In the Comments field, write an optional comment for the associated commit.

5 Click OK to save the first version of the new tag in the database.

If a tag version is selected in The Model Manager Window or The Databases Window
when you click New Tag (), that tag will be initially selected as a parent tag in The
Tag Tree in the New Tag dialog.

You can see your new tag under the branch node in The Databases Tree if you have
selected Items when clicking Show () in the Databases window’s toolbar. You can
also see it in the Tree View in The Model Manager Window as long as you have not
written any search expressions in the search field or applied any filters.

T H E T A G T R E E

Since tags can be assigned to other tags, items in a Model Manager database can be
represented as tree nodes in an hierarchical tree structure. Items assigned a particular
tag appear as child nodes to the tag node in tree. You can find a particular item in
2 : M O D E L M A N A G E R T O O L S

multiple positions in the tree as items can be assigned more than one tag. You can think
of items not assigned any tags at all as placed under a hidden root tag.

You can browse the tag tree in The Databases Window if you have selected Items in
the Show menu () or in the The Model Manager Window if you have selected the
Tree button (). Expanding a branch tree node in the former window or searching
a branch in the latter window shows the tag assignments at present time — see also
Searching in Branches. To browse the tag assignments at some point in the past:

1 Right-click one of your branches under the Branches node () in the Databases

window and select Commits ().

2 In the opened Commits window, right-click one of the commits in the table and
select Search in Commit ().

3 The Tree View in the Model Manager window is updated to show the tag assignments
as they were at the time the commit was saved.

If you have created a snapshot to record a specific commit, you can expand its tree
node in the Databases window to see the tag tree at the time the recorded commit was
saved — see also Searching in Snapshots and Commits.

A S S I G N I N G T A G S

To assign already created tags to an item, do one of the following:

• Select the item in The Model Manager Window or The Databases Window and click
the Set Tags button () in the Item section of the Home toolbar. You can select
multiple models and files if you want to set the tag assignments of more than one
item at once — see also Adding and Removing Tag Assignments.

• Set assigned tags from the Tags section in the Settings window of Items. Do not
forget to click Save () in the Settings window to save any changed tag
assignments.

To help you with identifying the regular model that a draft originated
from, the draft node is placed as a child node to the regular model node
in the tag tree, whenever both the model and draft share the same
assigned tag. See also Item Save Types.
O R G A N I Z A T I O N O F M O D E L S A N D F I L E S | 115

116 | C H A P T E R
• Set assigned tags from the Tags section in the Save window when saving a model
version or in the Export window when exporting a file version — see also Saving
Models to Databases and Exporting Output Directly to a Database.

• Select to import folders as tags when bulk importing files from the file system — see
also Importing Files.

All four options sets the tag assignments via a commit. The second, third, and fourth
option also save a new version of the item. The first option does not, which may be
preferable as to not create unnecessary Save Conflicts if, for example, a model item
happens to be simultaneously open in the COMSOL Desktop.

G U I D E L I N E S O N T A G T R E E S E T U P

Model Manager will neither prevent you from creating tags having multiple parent
tags, nor will it prevent you from creating tags having the same title. While this gives
you complete freedom in setting up your tag tree, there are some pros and cons that
should be weighed.

Assigning more than one parent tag to a tag enables you to have multiple
organizational subtrees with overlapping contents. You can, for example, have a main
subtree used to uniquely categorize all your models and data files based on
characteristics — much like files in folders on the file system. The tag layout in that
subtree, once created, would seldom change. You can then have various other subtrees
used to organize projects in which you want to work with whole collections of models
and data files from the main subtree — rather than assigning the project tag to all those
items directly, you assign it to some of the items’ assigned tags. This requires some
discipline, though, to not end up with a tag tree that is hard to navigate.

By creating multiple tags with the same title, you can organizationally separate
different collections of models and data files in the tag tree while still labeling these
items using a common concept. This enables you, and your coworkers, to easily find
the items when searching on the tag title, without making it difficult to browse them
when navigating the tag tree. Having the same title for different tags will make it
harder, though, to quickly identify where in the tag tree a specific item is located when
viewing it in a result table or list. Moreover, you must now remember to select all of
them when applying a corresponding filter for the common concept represented by the
tags.
2 : M O D E L M A N A G E R T O O L S

Organizing Items in Repositories

You can create multiple Repositories if you want to group your models and data files
into separate containers in the database. You may, for example, want to set up
permissions that differ between various collections of models — perhaps hiding
sensitive models from all but a select group of users.

A D D I N G R E P O S I T O R I E S

Click Repository () in the Repository section of the Home toolbar to open the Add

Repository dialog. The Database field shows the label of the database in which the
repository will be created.

1 Write the name of the new repository in the Name field.

2 Write the name of the initial, default, branch in the Default branch name field — see
Default Branch.

3 You can provide an optional comment for the initial commit that will be saved when
the branch is created in the Comments field.

4 You can set up permissions for the new repository in the Permissions field. This field
is only shown if connected to a server database via a Model Manager server. See
Granting Permissions.

5 Click OK to add the repository.

The added repository appears as a new child node to the corresponding database node
in The Databases Tree.

There is nothing preventing you from saving versions of the same model
or data file in more than one repository — for example by changing to a
branch in another repository when saving from the Save or Export

window. Doing so, however, will make it difficult to track how an item has
evolved over time via its different versions, as well as make it harder to
reason about the Access Control of the item. You may be better off saving
a new item from the existing item using Save as New () in the Save or
Export window — in this way, you keep items within their respective
repositories, while still being able to track how a new item in one
repository evolved from an existing item in another. See also Splitting a
Model Version History in Two.
O R G A N I Z A T I O N O F M O D E L S A N D F I L E S | 117

118 | C H A P T E R
Ba s i c V e r s i o n Con t r o l
You modify items — that is, models, files, and tags — in the database by saving a
commit on a branch. The set of changes in such a commit can be categorized as:

• Added, updated, and restored items — these are changes that save new versions of
items.

• Added and removed tags — these are changes that modify the assigned tags of an
item.

• Deleted items — these are changes that effectively hide items on a branch.

Commits involving the first category of changes have a direct correspondence with the
table entries in The Versions Window — each version is saved in a commit. The latter
two categories, which do not save new versions, only appear in The Commits Window.

You can provide an optional commit comment when saving a new commit. Oftentimes
a comment describing the changes is already suggested. The comments can later be
read and modified from The Commits Window or from The Versions Window. You
can also find versions saved in a particular commit by applying a filter on the comment
in The Model Manager Window.

In this section:

• Saving Versions

• Adding and Removing Tag Assignments

• Deleting Items

• Recording Snapshots

Saving Versions

There are various ways in which you can save a new version of an item, both within the
Model Manager workspace and from one of the other workspaces. You can, for
example, save a new version of the model opened in the COMSOL Desktop from the
File menu by clicking Save Draft (), Save as Version (), or Save To () — see
Saving Models to Databases.

Advanced Version Control
2 : M O D E L M A N A G E R T O O L S

In the Model Manager workspace, you can save a new version by clicking Save ()
in the Settings window. For a model this will, for example, update the model’s title,
description, and filename, but leave the model tree, as well as any binary data like
meshes, geometries, and solutions, unchanged. Other examples of saving versions
include:

• Exporting output from a model directly to the database — see Exporting Output
Directly to a Database.

• Importing files on the file system into the database — see Importing Files.

• Creating a new tag — see Creating New Tags

• Renaming an item — see Rename Item

• Restoring an older item version as a new latest version — see Restore Version.

• Merging updated items from a source branch to a target branch — see Merging.

• Reverting a commit that included added, updated, or deleted items — see
Reverting.

R E N A M E I T E M

From The Model Manager Window or The Databases Tree, right-click and select
Rename (), or press the keyboard shortcut F2, to change the title of an item via the
Rename Item dialog. The Location field shows the database, repository, and branch that
the item will be renamed on

1 Write the new title for the item in the Title field.

2 Write an optional comment in the Comments field.

3 Click OK to save the renamed item as a new version in the database.

You generally want to avoid saving a new version of the model opened in
the COMSOL Desktop from the Model Manager workspace. Otherwise
you will get Save Conflicts when trying to save a new version of the
desktop model.

Creating a New Branch does not save new versions of the items included
on the new branch — each item version on the new branch is initially the
same as that on the parent branch.
B A S I C V E R S I O N C O N T R O L | 119

120 | C H A P T E R
R E S T O R E V E R S I O N

You can restore an older version in the version history of an item as the new latest
version. This enables you to, for example, recover an older model version without first
having to open it in the COMSOL Desktop and manually save it as a new version via
Save as Version ().

From The Versions Window, click Restore Version () to open the Restore Item

Version dialog. The Location field shows the database, repository, and branch that the
item version will be restored to. The title of the restored version is shown in the Title

field.

1 Write an optional comment in the Comments field.

2 Click OK to perform the restore.

Restoring Versus Reverting
The use case for restoring a version versus that of reverting a commit in which a version
was saved are best exemplified via two examples:

• You have created a draft from a model and then saved ten versions of that draft. By
the tenth version, you realize that the modeling setup has gone wrong for the draft,
and that things started to go bad by version four. Solved by restoring version three
from The Versions Window such that a version eleven, identical to version three, is
saved directly in the database.

• You have decided to save what you, initially, think is a finished draft back to its
original model. Such an action simultaneously saves a new version of the original
model and deletes the draft. You then realize that you did this too soon — there
were more things you wanted to first change in the draft. Solved by reverting the
commit in which the draft was saved back to the original model from The Commits

The target item when restoring a version in The Versions Window is given
by the item whose version history is currently shown, which may not be
the same item that the selected version belongs to. For example, restoring
from a selected version of a regular model via the version history of a
draft, with the draft created from that regular model, saves a new latest
version of the draft.

Reverting Changes on a Branch
2 : M O D E L M A N A G E R T O O L S

Window: the draft is added back to the branch and the model is updated to its
previous version before it was overwritten by the draft.

Adding and Removing Tag Assignments

You can modify the assigned tags of an item without saving a new version. This is useful
if you, for example, want to change the tags of the model that is opened in the
COMSOL Desktop without introducing Save Conflicts. You can also modify the tag
assignments of multiple items at once — for example by assigning all of them with the
same tag.

From The Model Manager Window or The Databases Window, select one or more
items and click the Set Tags button () in the Item section of the Home toolbar to
open the Set Tags dialog. The Location field shows the database, repository, and branch
in which the assigned tags will be modified. The Item field indicates the item, or items,
whose tag assignments will be modified.

1 Under Tags, select and clear checkboxes for tags that will be added and removed,
respectively. Leaving all nodes in the tree cleared will remove all tags from the item
and place the item under the root tag — see also The Tag Tree. You can filter the
tree of available tags by writing a tag title in the text field above the tree.

If multiple items were selected when you opened the Set Tags dialog, some
checkboxes may be shown in an indeterminate state. These correspond to tags that
some, but not all, of the items were assigned prior to opening the dialog. Leaving
the checkboxes in their indeterminate state means that the corresponding tag
assignments will not be modified — an item that already had the tag assigned will
keep that tag, an item that did not have the tag will not gain it.

2 Write an optional save comment in the Comments field.

3 Click OK to save the new tag assignments to the database.

You can create a new tag from the Set Tags dialog. Click New Tag () to open the New

Tag dialog — see Creating New Tags. Once created, the new tag is added to the tag
tree in the Set Tags dialog in an initially selected state.

Deleting Items

You can delete an item in the database that you no longer have any need for. The item
and all its versions will still remain in the database after deletion, but will be excluded
when browsing or searching the latest versions of items. You can still find the item and
B A S I C V E R S I O N C O N T R O L | 121

122 | C H A P T E R
its versions by, for example, Searching in Snapshots and Commits or by Searching All
Versions in the Database.

D E L E T I N G M O D E L S A N D F I L E S

Select one or more models and files and click Delete () in the Item section of the
Home toolbar to open the Delete Item dialog. You can also press the Del key. The
Location field shows the database, repository, and branch that the items will be deleted
on. All items that will be deleted are shown in a table under Items.

1 Write an optional comment in the Comments field.

2 Click OK to delete the items in the database.

D E L E T I N G T A G S

Select a tag and click Delete () in the Item section of the Home toolbar to open the
Delete Tag dialog. The Location field shows the database, repository, and branch that
the tag will be deleted on. The Title field shows the title of the latest version of the tag.

1 In the Tagged Items field:

- Select Remove tag assignment to unassign the tag from any items that the tag is
currently assigned to. Items that were only assigned the deleted tag will be found
under the root tag in The Tag Tree after the deletion.

- Select Assign nearest ancestor tag to unassign the tag from any items that the tag
is currently assigned to and instead assign the tag’s parent tags to these items.
This option is only available if the tag to be deleted has parent tags other than the
root tag.

As with all commits, the deletion targets a specific branch. If you have
created other branches that include the selected items, the items will
remain visible on those branches.

To find a model or file previously deleted on a branch, select Latest

Versions for Location () in The Model Manager Window and the set the
searched location to a snapshot created before the item was deleted. You
can also browse to a commit saved before the item was deleted in The
Commits Window for the branch, right-click the commit, and select
Search in Commit (). In both cases you can find the item by searching
in the Model Manager window.
2 : M O D E L M A N A G E R T O O L S

2 Write an optional comment for the associated commit in the Comments field.

3 Click OK to delete the tag. Any items that were assigned the deleted tag will have
their tag assignments updated as specified by the Tagged Items value.

Recording Snapshots

You can save a reference to a particular commit in a repository by recording a snapshot.
You may, for example, find snapshots useful when:

• You have reached a stage in your modeling workflow when the versions of a
collection of models and files on a branch have reached a finished state. Via the
snapshot, you can easily find all these versions in the future.

• You repeatedly want to browse in the database based on how it looked at the time
of the commit. See Searching in Snapshots and Commits.

Recorded snapshots are shown under the Snapshots node in The Databases Tree. Click
Show () in the Databases windows toolbar and select Items to see the
correspondingly recorded item versions.

Click Snapshot () in the Repository section of the Home toolbar to open The Record
Snapshot Dialog. When The Model Manager Window has focus and the searched
location is a branch, the latest versions will be recorded. The same is true when The
Databases Window has focus and a node in a branch subtree is selected.

T H E R E C O R D S N A P S H O T D I A L O G

The Location field shows the database, repository, and branch where the snapshot is
recorded. The Date field shows the time of the corresponding commit that will be
referenced by the snapshot.

1 Write a name for the new snapshot in the Name field.

2 You can set up permissions for the new snapshot in the Permissions field. This field
is only shown if connected to a server database via a Model Manager server. See
Granting Permissions.

3 Click OK to record the new snapshot.

Snapshots
B A S I C V E R S I O N C O N T R O L | 123

124 | C H A P T E R
The recorded snapshot appears as a new child node to the Snapshots node in The
Databases Tree.
2 : M O D E L M A N A G E R T O O L S

Bu l k Ope r a t i o n s
Model Manager supports bulk import and bulk export of models and data files to and
from the file system.

In this section:

• Importing Files

• Exporting Items

Importing Files

You can import models and data files from the file system directly into a database
without, for example, having to open each model in the COMSOL Desktop and
manually save it. You can also choose to preserve any folder organization you made on
the file system by importing folders as Tags. Files inside a folder will then be assigned
the corresponding tag.

Click Import () in the Database section of the Home toolbar to open the Import

dialog. A Target Location for the imported files will be automatically suggested based
on the current selection in The Model Manager Window, The Databases Window, or
The Maintenance Window (depending on which window has focus). You can change
the target by clicking the link button and choosing another branch in The Select
Location Dialog.

• Click Add Folder () to add a folder containing files to import. Files in subfolders
will also be included.

• Click Add File () to add a file to import.

• Click Exclude File () to exclude selected files from being imported.

The files to import are shown in a table with columns:

• The type column — the type of file to import based on its file extension represented
by an icon. The types are () for mph, () for mphphb, and () for any other
file extension.

Imported models will be converted to the format used by the current
COMSOL Multiphysics version.
B U L K O P E R A T I O N S | 125

126 | C H A P T E R
• The File column — the filename of the file to import.

• The Source column — the directory path to the folder that was selected if added via
Add Folder or the file path if added via Add File.

Click OK to begin the import. Clicking Stop in the progress window stops the import,
but already imported files are not removed from the database. You can see a summary
of the import in the Messages window in the Model Builder workspace once the import
finishes.

I M P O R T O P T I O N S

The import procedure can be configured under Options in the Import dialog.

Select the Include auxiliary files found in imported models checkbox to automatically
import files on the file system that are referenced as input by an MPH file. This
includes, for example, interpolation functions, geometry parts, CAD assemblies, and
many other types of auxiliary data used by a model. The model will be automatically
updated so that it references the corresponding auxiliary data saved in the database.
Files referenced as output by a model are not imported.

In the Tags list:

• Select None to not assign any tags to imported items.

• Select Import subfolders as tags to import all subfolders found under a directory path
in the Source column as Tags. Imported models and files found in these subfolders
will be assigned the corresponding tags.

• Select Use existing tags to select tags to assign to imported models and files among
tags already present in the database.

If you have a license for the CAD Import Module available when
importing a CAD assembly file, an attempt will be made to automatically
resolve and include external component files that the assembly references.

The import functionality in the Model Manager workspace only lets you
import the files as separate items in the database, with one version for each
item. If you have, for example, a collection of MPH files that you want to
import as versions of the same model, you can accomplish this instead by
writing custom method code using the Model Manager API.
2 : M O D E L M A N A G E R T O O L S

In the Computed data list:

• Select Include or exclude based on application settings if built, computed, and plotted
data of an MPH file should be included or excluded in the imported model based
on the corresponding save settings on the model’s root node and the save settings
in the Preferences window. See also The Root Settings Window in the COMSOL
Multiphysics Reference Manual.

• Select Include to include built, computed, and plotted data of an MPH file in the
imported model, regardless of any save settings.

• Select Exclude to exclude built, computed, and plotted data of an MPH file in the
imported model, regardless of any save settings.

I M P O R T T O T A R G E T T A G

You can import models and data files into the database so that all items are placed
under a specific tag in The Tag Tree.

Right-click a tag and select Import (). The Import dialog opens with the title of the
selected tag shown in a Target tag field. You add folders and files to import in exactly
the same way as before — the only difference is that Use existing tags is not available
under Tags.

Built, Computed, and Plotted Data

Importing a large number of files with a complicated folder structure and
auxiliary file dependencies may require a bit of planning to get the desired
result. You are encouraged to first create a throwaway local database in
which you can experiment with your import — perhaps clicking Stop

when only a subset of your files have been imported.

Model Manager will detect and skip duplicate files, that is files with the
same filename and file content. This includes both files that you have
explicitly added to the table in the Import dialog, as well as referenced
auxiliary files if you have selected Include auxiliary files found in imported

models. If duplicate files are located in different subfolders, and you have
selected Import subfolders as tags, the imported files will still be assigned
tags corresponding to all those subfolders.
B U L K O P E R A T I O N S | 127

128 | C H A P T E R
Exporting Items

You can export models and data files from the database to the file system. Any tag
organization you have made can be preserved on the file system by exporting tags as
subfolders. Models and data files assigned a specific tag will be exported to the
corresponding subfolder.

Click Export () in the Database section of the Home toolbar to open the Export

dialog. The Source Location field shows the location from which versions of items will
be exported. Click the link button or Browse button in the Target folder field to select
a folder on the file system to which the items will be exported.

The models and files that will be exported are shown in a table with a type column and
an Item column with the title of the corresponding item version. The models and files
in the table are based on the current selection in The Model Manager Window, The
Databases Window, The Commits Window, The Versions Window, The References
Window, or The Maintenance Window (depending on which window has focus):

• Selecting a location — that is, a branch, snapshot, or commit — gives the latest
versions of all items with respect to the corresponding commit of the location — see
also Locations.

• Selecting tags gives the latest versions of all items that are assigned those tags or are
assigned a tag with a selected tag as an ancestor in The Tag Tree.

• Selecting models or files gives their latest version with respect to the corresponding
commit of the browsed location.

Select table rows and click Exclude () to exclude models and files in the table from
being exported. Click OK to begin the export. You can see a summary of the export in
the Messages window in the Model Builder workspace once the export finishes.

The file resources of a fileset will be exported to a directory whose
directory name is the title of the fileset.

The export functionality in the Model Manager workspace only lets you
export the latest version of each item selected for the export. If you want
to export, for example, multiple versions of the same model as separate
MPH files, you can accomplish this instead by writing custom method
code using the Model Manager API.
2 : M O D E L M A N A G E R T O O L S

E X P O R T O P T I O N S

The export procedure can be configured under Options in the Export dialog.

Select the Include auxiliary files found in exported models checkbox to automatically
export model and file versions located in the database that are referenced by an
exported model version. The model will be automatically updated so that it references
the corresponding files on the file system. Item versions referenced as output by a
model are not exported.

Select the Export tags as subfolders checkbox to export tags assigned to exported items
as subfolders on the file system, with exported files placed inside these subfolders.

In the Computed data list:

• Select Include or exclude based on application settings if built, computed, and plotted
data of a model version should be included or excluded in the exported MPH file
based on the corresponding save settings on the model’s root node and the save
settings in the Preferences window. See also The Root Settings Window in the
COMSOL Multiphysics Reference Manual.

• Select Include to include built, computed, and plotted data of a model version in the
exported MPH file, regardless of any save settings.

• Select Exclude to exclude built, computed, and plotted data of a model version in the
exported MPH file, regardless of any save settings.

If you select Export tags as subfolders, and an exported item version has
multiple tags, only one of these tags will be exported as a subfolder (the
first one when sorting tag titles alphabetically). This includes items that
you have explicitly added to the table in the Export dialog and any
referenced auxiliary files if you have selected Include auxiliary files found in

exported models.

Built, Computed, and Plotted Data
B U L K O P E R A T I O N S | 129

130 | C H A P T E R
U s e r Manag emen t
Model Manager comes with tools for managing users, as well as groups of users, in a
server database accessed via a Model Manager server.

In this section:

• Managing Users

• Managing Groups

Managing Users

You can manage Users in a Model Manager server database from the Model Manager
workspace. You can, for example, see all users that have been active in the database or
add users as members to Groups. The latter is useful, for example, if the Model
Manager server has been set up with an authentication scheme that does not support
providing such group memberships from an external credentials storage when a user
logs in.

When you connect and authenticate with a Model Manager server, a new user will be
automatically created in the database.

A D D I N G U S E R S

There may be situations where you want to add a new user to the server database
before the user has connected for the first time. One example is when you preemptively
want to grant them permissions to various database objects.

Click User () in the Users section in the Database toolbar to open the Add User

dialog. The Database field shows the label of the database in which the user will be
added.

All user management functionality is either hidden or disabled for a local
database in the Model Manager workspace.

See also Users in the Model Manager Server Manual.
2 : M O D E L M A N A G E R T O O L S

1 Write the username of the user in the Name field. This username should match the
one used when authenticating with the Model Manager server.

2 Write an alternative display name for the new user in the Display Name field. This is
the name that will primarily be shown in the user interface.

3 All groups that the new user will be set as a member of is shown as a list under Group

memberships.

a Click Add to open the Search dialog in which you can search for groups via their
names and display names.

b Select groups in the table and click OK to add them to the list.

Select groups in the list and click Remove to remove them from the list.

4 Click OK in the Add User dialog to add the user to the database.

The added user appears as a new child node to the Users node under Security in The
Databases Tree.

Managing Groups

You can manage Groups of users in a Model Manager server database from the Model
Manager workspace. You can, for example, see all groups in the database or add a new
group to the database. The latter is useful, for example, if the Model Manager server
has been set up with an authentication scheme that does not support providing groups
from an external credentials storage when a user logs in to the server.

A D D I N G G R O U P S

Click Group () in the Users section in the Database toolbar to open the Add Group

dialog. The Database field shows the label of the database in which the group will be
added.

1 Write the name of the group in the Name field.

The username in the Name field is the same one used to authenticate with
the Model Manager server.

See also Groups in the Model Manager Server Manual.
U S E R M A N A G E M E N T | 131

132 | C H A P T E R
2 Write a display name for the new group in the Display Name field. This is the name
that will primarily be shown in the user interface.

3 You can add existing users or other groups as members to the new group under
Group members.

a Click Add to open the Search dialog in which you can search for users and groups
via their names and display names.

b Select users and groups in the table and click OK to add them to the list.

Select users and groups in the list and click Remove to remove them from the list.

4 Click OK in the Add Group dialog to add the group to the database.

The added group appears as a new child node to the Groups node under Security in The
Databases Tree.
2 : M O D E L M A N A G E R T O O L S

A c c e s s C on t r o l
You can set up permissions to control access to items stored in a server database
accessed via a Model Manager server. You can define these at various levels in The
Databases Tree — from coarse-grained permissions set on Repositories to fine-grained
permissions set on individual Models and Files.

When you authenticate with a Model Manager server, the server matches the provided
username with a user stored in the database. Your user, as well as any groups that you
are a member of, are checked whenever you perform a database action that requires
authorization. The one exception is if you authenticate using an administrator account,
in which case authorization checks automatically pass.

In this section, you will find answers to:

• Who can set permissions? See Owners.

• How are permissions set? See Granting Permissions

• What permissions can be set for database objects? See Permission Catalog.

• How do permissions combine to control access to models and files? See Permission
Levels.

• How can the same permission assignments be reused between different database
objects? See Reusing Permission Assignments Using Permission Templates.

Owners

You control who can set permissions on database objects via ownerships — every object
has an owner, which is one of the Users in the database. Except for administrators, only
the owner can change a database object’s permissions. The user that creates an object
is automatically set as its initial owner.

T R A N S F E R O W N E R S H I P

You can transfer the ownership of a database object to another user if you own the
object, or if you are authenticated as an administrator.

All access control functionality is either hidden or disabled for a local
database in the Model Manager workspace.
A C C E S S C O N T R O L | 133

134 | C H A P T E R
Click Owner () in the Permissions section of the Database toolbar. The Owner dialog
is opened for the current selection in The Model Manager Window, The Databases
Window, or The Maintenance Window (depending on which window has focus).

The Database field shows the label of the database that the object belongs to, the Name

field shows the name of the object, and the Current owner field shows the username of
the user that owns the object. If setting the ownership of multiple database objects at
once, the Name field shows the static text <Multiple selected>. Under New Owner,
write the name or display name of the user to transfer ownership to in the search field.
Click Search. Select one of the users in the table and click OK to save the new ownership.

Granting Permissions

You can grant permissions to the following database objects:

There is also a set of global permissions for the database itself — see Granting Database
Permissions.

You can change the permissions for a database object if you own the object, or if you
are authenticated as an administrator.

Click Permissions () in the Permissions section of the Database toolbar. The
Permissions dialog is opened for the current selection in The Model Manager Window,
The Databases Window, or The Maintenance Window (depending on which window
has focus).

The Database field shows the label of the database that the object belongs to, the Name

field shows the name of the object, and the Current owner field shows the username of
the user that owns the object.

You can select different types of database objects when setting their
common owner. This includes, for example, setting the same owner of a
repository and a branch.

• Repositories

• Branches

• Snapshots

• Models

• Files

• Tags
2 : M O D E L M A N A G E R T O O L S

1 In the Permissions list:

a Select None to not set any permission requirements on the database object. See
also Permission Levels to learn how an object may still be protected by a parent
object in The Databases Tree.

b Select Public, Protected, or Private to set one of the Predefined Permission
Templates.

c Select one of the previously created permission templates — see Creating your
own Permission Templates.

d Select Custom to set up Custom Permissions for the database object.

2 Click OK to save the permissions for the database object.

C U S T O M P E R M I S S I O N S

Selecting Custom in the Permissions field enables you to customize the permissions for
a database object. Granted permissions and their grantees — that is, users or groups —
are shown in a table with the following columns:

• The type column — the type of the grantee represented by an icon.

• The Name column — the name of the grantee.

• The Permissions column — all granted permissions.

Click the Add button to add another user or group with a set of permissions.

1 In the opened Add dialog, write the names or display names of users and groups in
the search field. Click Search.

2 Select a user or group in the table.

3 Under Permissions, select the permissions to grant the user or group. Use Select all

to grant all permissions.

4 Click OK to add the granted permissions and the grantee to the table.

Select a row in the table and click the Edit button to modify already granted
permissions. In the opened Edit dialog, select and clear the Permissions checkboxes
accordingly.

Click the Remove button to remove a grantee from the table.

The set of grantees and corresponding granted permissions is known as
an access-control list (ACL).
A C C E S S C O N T R O L | 135

136 | C H A P T E R
E V E R Y O N E A N D O W N E R

You can grant permissions to a special group, Everyone, that automatically includes all
users. Use this when you, for example, want to grant a subset of permissions to all users
but restrict another subset of permissions to only some users and groups.

The user that is the owner of a database object can be implicitly granted permissions
by adding an Owner from the Add dialog. Use this when you, for example, want to make
sure that the permissions are transferred to the correct user when ownership is changed
— see Transfer Ownership.

G R A N T I N G D A T A B A S E P E R M I S S I O N S

You can grant permissions for actions that target the database itself. You can think of
this as delegating a few administrative tasks that would otherwise be restricted to
administrators. Only administrators can grant database permissions.

Right-click a database node in The Databases Tree and select Database Permissions

() to open the Database Permissions dialog. The Database field shows the label of
the database.

You add, edit, and remove granted permissions and their grantees in a table in the same
way as when selecting Custom in the Permissions field for a database object, except that
Everyone and Owner are not available — see Custom Permissions.

Permission Catalog

This section contains a catalog of all permissions available for database objects.
2 : M O D E L M A N A G E R T O O L S

D A T A B A S E

R E P O S I T O R Y

TABLE 2-1: ALL AVAILABLE PERMISSIONS FOR THE DATABASE ITSELF.

PERMISSION DESCRIPTION

Add repositories Allowed to create a new repository.

Cleanup Allowed to perform manual data deduplication and other
database cleanup actions.

Clear computed data Allowed to clear built, computed, and plotted data of model
versions.

Index Allowed to perform maintenance operations on search
indexes.

Manage security Allowed to create, delete, edit, and restore users, groups,
and permission templates.

Permanently delete items Allowed to permanently delete versions of models and files.

See disk space usage Allowed to see the disk space usage of model and file
versions.

TABLE 2-2: ALL AVAILABLE PERMISSIONS FOR REPOSITORIES.

PERMISSION DESCRIPTION

Create branch Allowed to create a new branch inside the repository.

Delete repository Allowed to delete the repository.

Record snapshot Allowed to record a new snapshot inside the repository.

Restore repository Allowed to restore the repository when deleted.

Save in repository Allowed to save commits as well as perform any other save
operation inside the repository. This is, for example, a
necessary permission for saving branches, snapshots, and
item versions inside the repository.

Save repository Allowed to save the repository itself to, for example, rename
it.

See repository Allowed to see the repository in the user interface. This is,
for example, a necessary permission for browsing items
inside the repository.

Set default branch Allowed to set the default branch inside the repository.
A C C E S S C O N T R O L | 137

138 | C H A P T E R
B R A N C H

S N A P S H O T

M O D E L

TABLE 2-3: ALL AVAILABLE PERMISSIONS FOR BRANCHES.

PERMISSION DESCRIPTION

Delete branch Allowed to delete the branch.

Restore branch Allowed to restore the branch when deleted.

Save in branch Allowed to save commits as well as perform any other save
operation inside the branch. This is, for example, a necessary
permission for saving item versions on the branch.

Save branch Allowed to save the branch itself to, for example, rename it
or change search capabilities.

See branch Allowed to see the branch in the user interface. This is, for
example, a necessary permission for browsing all item
versions on the branch.

TABLE 2-4: ALL AVAILABLE PERMISSIONS FOR SNAPSHOTS.

PERMISSION DESCRIPTION

Delete snapshot Allowed to delete the snapshot.

Restore snapshot Allowed to restore the snapshot when deleted.

Save snapshot Allowed to save the snapshot itself to, for example, rename
it.

See snapshot Allowed to see the snapshot in the user interface. This is, for
example, a necessary permission for browsing the latest item
versions with respect to the snapshot’s referenced commit.

TABLE 2-5: ALL AVAILABLE PERMISSIONS FOR MODELS.

PERMISSION DESCRIPTION

Delete model Allowed to delete the model.

Open model Allowed to open the model’s versions.

Save model Allowed to save versions of the model.
2 : M O D E L M A N A G E R T O O L S

F I L E

T A G

Permission Levels

When Model Manager authorizes a database action that targets item versions on a
branch, it consults up to three levels of protection — the repository that the items
belong to, the branch the item versions belong to, and, possibly, the items themselves.
An analogous level consultation is done for item versions recorded by a snapshot.

P E R M I S S I O N C O M B I N A T I O N S F O R B R A N C H E S

The necessary permission combinations for possible database actions that target item
versions on a branch are summarized as follows:

TABLE 2-6: ALL AVAILABLE PERMISSIONS FOR FILES.

PERMISSION DESCRIPTION

Delete file Allowed to delete the file.

Download file Allowed to download the file’s versions.

Save file Allowed to save versions of the file.

TABLE 2-7: ALL AVAILABLE PERMISSIONS FOR TAGS.

PERMISSION DESCRIPTION

Delete tag Allowed to delete the tag.

Save tag Allowed to save versions of the tag.

TABLE 2-8: NECESSARY PERMISSION COMBINATIONS FOR PERFORMING POSSIBLE DATABASE ACTIONS THAT
TARGET ITEMS ON A BRANCH.

ACTION REPOSITORY BRANCH ITEM

Browse and search item versions See repository See branch N/A

Open a model in the COMSOL
Desktop

See repository See branch Open model

Download data files See repository See branch Download file

Create a new item Save in repository Save in branch N/A

Assign tags to items Save in repository Save in branch N/A

Save a new model version Save in repository Save in branch Save model

Save a new file version Save in repository Save in branch Save file

Save a new tag version Save in repository Save in branch Save tag

Delete a model Save in repository Save in branch Delete model
A C C E S S C O N T R O L | 139

140 | C H A P T E R
You may wonder why access to models and data files cannot be controlled via their
assigned tags? After all, tags have many similarities with folders on the file system, and
access to files on the file system can typically be controlled via folder permissions. The
motivation is twofold:

• Models and files can have several tags, that is, they can appear in multiple places in
The Tag Tree.

• Tag assignments are version controlled via commits — see Adding and Removing
Tag Assignments.

This makes it hard to reason about the access granted to a model or file. An item could
perhaps be protected under one tag’s permissions but exposed under another tag’s
permissions. An item could be protected under a tag at the present time, but older
versions may be exposed in the commit history if the item was previously tagged by
another tag with less restrictive permissions.

Delete a file Save in repository Save in branch Delete file

Delete a tag Save in repository Save in branch Delete tag

TABLE 2-8: NECESSARY PERMISSION COMBINATIONS FOR PERFORMING POSSIBLE DATABASE ACTIONS THAT
TARGET ITEMS ON A BRANCH.

ACTION REPOSITORY BRANCH ITEM

An important takeaway from Table 2-8 is that if you grant a See repository

permission and a See branch permission to users, they will be able to see
settings of all models and files with versions on the branch via, for
example, The Model Manager Window, The Databases Window, or The
Versions Window. If some models contain sensitive information exposed
through, for example, the Contents section in the Model Settings, you
must restrict access to the repository or branch to protect it. Limiting who
can open an individual model should not be relied upon to keep its inner
workings secret.
2 : M O D E L M A N A G E R T O O L S

P E R M I S S I O N C O M B I N A T I O N S F O R S N A P S H O T S

The necessary permission combinations for possible database actions that target the
item versions recorded by a snapshot are summarized as follows (there are no database
actions that save to the database):

T H E P E R M I S S I O N R E Q U I R E M E N T S D I A L O G

Model Manager performs a preemptive authorization check whenever you open a
window or dialog that is intended for saving to the database. If the check fails, a link
button () whose button text summarizes why the check failed is shown.

Click the link button to open a dialog with the necessary permission requirements
shown in a table. Select the Show only nongranted required permissions checkbox to
only see permission requirements that you lack.

Reusing Permission Assignments Using Permission Templates

You can create your own Permission Templates to reuse permission assignments for
different database objects. This saves you the tedious work of manually granting the
same set of permissions to users and groups for multiple database object. Creating your
own permission templates also enables you to propagate permission requirement
changes to multiple database objects by only updating the permissions in one place —
the permission assignments of the permission template itself.

TABLE 2-9: NECESSARY PERMISSION COMBINATIONS FOR PERFORMING POSSIBLE DATABASE ACTIONS THAT
TARGET THE ITEM VERSION RECORDED BY A SNAPSHOT.

ACTION REPOSITORY SNAPSHOT ITEM

Browse and search item versions See repository See snapshot N/A

Open a model in the COMSOL
Desktop

See repository See snapshot Open model

Download data files See repository See snapshot Download file

Updating the permission assignments for a permission template affects
not only future applications of the template but also the permissions of
database objects to which the template has already been applied.
A C C E S S C O N T R O L | 141

142 | C H A P T E R
P R E D E F I N E D P E R M I S S I O N T E M P L A T E S

Model Manager comes with three predefined permission templates for each of the
database object types — Public, Protected, and Private. Dividing the permissions in the
Permission Catalog into read permissions and write permissions:

C R E A T I N G Y O U R O W N P E R M I S S I O N T E M P L A T E S

You can create new permission templates for models or files in the Model Manager
workspace.

Click Permission Template () in the Permissions section of the Database toolbar to
open the Add Permission Template dialog. The Database field shows the label of the
database in which the template is added.

1 Write the name of the permission template in the Name field.

2 Select whether to add a Model or File permission template in the Type field.

3 You add, edit, and remove granted permissions and their grantees in a table in the
same way as when selecting Custom in the Permissions field for a database object —
see Custom Permissions.

4 Click OK to add the new permission template to the database.

The added permission template appears as a new child node to the Permission

Templates node under Security in The Databases Tree.

TABLE 2-10: THE PERMISSIONS GRANTED FOR THE PREDEFINED PERMISSION TEMPLATES.

PERMISSION TEMPLATE NAME GRANTED READ PERMISSIONS GRANTED WRITE PERMISSIONS

Public Everyone Everyone

Protected Everyone Owner

Private Owner Owner
2 : M O D E L M A N A G E R T O O L S

Ma i n t e n an c e
A challenge with archiving simulation data is the inevitable growth of disk space usage,
regardless if such data is stored in a database or on the file system. Oftentimes you will
not be able to persist some, or all, of the Built, Computed, and Plotted Data generated
by your models for longer periods of time due to the sheer amount of storage capacity
that would be required.

In this section, you will find various ways in which Model Manager can help you keep
the total size of your simulation data under control via maintenance operations.
Performing these maintenance operations for a server database accessed via a Model
Manager server typically requires that you have authenticated using an administrator
account or have been granted the relevant database permissions — see Granting
Database Permissions.

• Estimating Disk Space Usage

• Built, Computed, and Plotted Data

• Permanently Deleting Models and Data Files

• Collecting Models and Files for Maintenance

• The Maintenance Window

Estimating Disk Space Usage

The disk space required to store a model version in a database depends on the size of
the model contents and the size of both computed and other data associated with the
model. For a file version, it depends on the size of the binary or text data of the
individual file resources.

Model Manager enables you to estimate the disk space usage for various sets of versions
including, but not limited to:

• A selection of versions in a window.

• All versions belonging to a selection of items in a window.

• All versions matching a search in the Model Manager window, independent of if all
versions are currently shown in the table or if there are more results to retrieve via
Show More ().

• All versions currently targeted in the Maintenance window.
M A I N T E N A N C E | 143

144 | C H A P T E R
With Latest Versions for Location () selected in the Model Manager window, click Disk

Space Usage () in the Statistics section on the Database toolbar and select Version

Selection () to open The Estimated Disk Space Usage Dialog for the current
selection. This will compute the disk space usage of the latest versions of items for the
searched location. To compute the disk space usage of all versions belonging to the
same items as the selected versions, select Item Selection () in the Disk Space Usage

menu ().

With All Versions in Database () selected in the Model Manager window, you can also
select Search Result () in the Disk Space Usage menu (). This will compute the
disk space usage of all versions that are matched by the current search term and applied
search filters.

T H E E S T I M A T E D D I S K S P A C E U S A G E D I A L O G

The Estimated Disk Space Usage dialog — opened, for example, via the Disk Space Usage

menu () on the Database toolbar — contains an estimate of the total disk space
usage of a set of model and file versions. A textual description of the set of versions is
shown under Selection type. Under Disk space, you will find:

• Versions — the number of versions included in the estimate.

• Data — the disk space usage of the versions in bytes.

• Computed data — the disk space usage of all Built, Computed, and Plotted Data of
the versions in bytes.

A variant of the dialog is shown when estimating the disk space usage of all versions of
items via the Item Selection option () in the Disk Space Usage menu (). As a
convenience, all versions of the items’ drafts are automatically included in the estimate:
Under Disk space - total, you will find the total disk space usage of both the items and

As a special case for the Search Result () option, you can leave out any
search term and search filters in the Model Manager window to obtain the
disk space usage of all versions in the database.

Estimating Disk Space Usage as a Maintenance Operation
2 : M O D E L M A N A G E R T O O L S

all drafts created from those items. Under Disk space - drafts, you will find the disk
space usage of only the drafts.

Built, Computed, and Plotted Data

A significant contribution to the overall disk space required for storing your models
comes from generated simulation data. This includes built geometries and meshes,
computed solutions, and results plots — built, computed, and plotted data for short.
For large models, it is often unfeasible for you or your organization to keep this data
around for longer periods of time, preferring instead to regenerate the data by
rerunning a simulation as needed.

There are two ways in which you can avoid storing built, computed, and plotted data
in your databases:

• Exclude the data altogether already when saving a model to the database. See the
Save section of The Root Settings Window in the COMSOL Multiphysics Reference
Manual.

• Delete the data directly in the database by clearing it from all model versions that
reference it — see also Clearing Computed Data as a Maintenance Operation.

Summing the estimated disk space usage numbers obtained for different
sets of versions may result in an overestimate as identical data used by
different versions is never duplicated in the database, but will still be
included in the usage estimate for each set.

You can see the COMSOL Multiphysics version that a model version was
saved in from the Saved in field in Model Settings. This is useful when you
want to regenerate built, computed, or plotted data for a model version
whose data is no longer present in the database using that same COMSOL
Multiphysics version.
M A I N T E N A N C E | 145

146 | C H A P T E R
To clear built, computed, and plotted data from model versions in the database, you
can for example:

• Right-click versions in The Versions Window for a model and select Clear Computed

Data ().

• Select one of the options in the Clear Computed Data menu () on The
Maintenance Toolbar, which is available for versions in The Maintenance Window
when the window has focus.

Permanently Deleting Models and Data Files

You can permanently delete versions of models and data files in a Model Manager
database as a way of reducing disk space usage. You may, for example, want to get rid
of old drafts that you no longer have any use for or some particular version that is
unsuitable to keep in the database.

Rebuilding a geometry using a COMSOL Multiphysics version or
operating system different from the one the previously cleared geometry
was built in may require you to first adapt geometry feature settings —
possibly resulting in a rebuilt geometry that differs from the original one.
This could affect simulation outcomes. A similar remark holds true when
rebuilding a previously cleared mesh.

Clearing Computed Data as a Maintenance Operation

Beware that permanently deleted versions cannot be recovered unless you
have a backup of your database.
2 : M O D E L M A N A G E R T O O L S

You can permanently delete versions of models and files by:

• Right-clicking versions in The Versions Window for an item and selecting
Permanently Delete ().

• Select one of the options in the Permanently Delete menu () on The Maintenance
Toolbar, which is available for versions in The Maintenance Window when the
window has focus.

Permanently deleting versions will remove most traces of them ever existing in the
database. If you find, for example, a commit for which the Changes table is surprisingly
empty in the Commit Settings, chances are that this commit involved saving a version
that now has been permanently deleted. The commit comment, if any, may give a clue
of what saving that version entailed.

Collecting Models and Files for Maintenance

The Versions window may be used to perform maintenance operations on a few
versions belonging to the same model or file. Select the targeted versions, right-click,
and then select the maintenance operation you have in mind from the context menu.

Maintenance operations that target a more complex collection of versions typically
involves the following steps:

1 Finding the versions you want to target by searching and filtering in the Model

Manager window.

2 Adding versions from the search result in the Model Manager window to the
Maintenance window.

3 Selecting a maintenance operation that targets either a selection of versions or all
versions in the Maintenance window from the Maintenance toolbar.

Steps one and two may be repeated before proceeding to step three.

Since Model Manager does not duplicate unchanged data when saving
versions of a model, do not be surprised if permanently deleting a single
version does not reclaim much disk space.

Permanently Deleting Versions as a Maintenance Operation
M A I N T E N A N C E | 147

148 | C H A P T E R
The sets of versions that you can add to the Maintenance window are similar to the ones
available when Estimating Disk Space Usage:

• A selection of versions in the Model Manager window.

• All versions belonging to the same items as a selection of versions in the Model

Manager window.

• All versions matching the search in the Model Manager window, independent of if all
versions are currently shown in the table or if there are more results to retrieve via
Show More ().

With Latest Versions for Location () selected in the Model Manager window, click Add

to Maintenance () in the Maintenance section on the Database toolbar and select Item

Selection () — all versions belonging to the same items, or the items’ drafts, of the
current selection are added to the Maintenance window.

With All Versions in Database () selected in the Model Manager window, select Version

Selection () in the Add to Maintenance menu () to add the currently selected
versions to the Maintenance window. Select Search Result () in the Add to

Maintenance menu () to add the current search term and applied search filters as an
“implicit selection rule for versions” to the Maintenance window.

The Search Result option () is by far the most powerful one. It enables you, for
example, to target:

• All draft versions with a saved date older than some fixed time by applying a Item
Save Type filter and a Saved filter.

• All versions with built, computed, and plotted data with a file size larger than some
value by applying a Computed Data filer.

• All versions saved by yourself by applying a Saved By filter.

At most one search result can be included in the Maintenance window if
the search expression uses full text search words. Consider replacing the
full text search words with Title, Description, and Tag filters if you want
to add multiple search results.

The Search Result option () enables you to target versions in the
Maintenance window without requiring you to first having to retrieve
them all as separate table rows in the Model Manager window. This is
useful, for example, when the versions number in the thousands.
2 : M O D E L M A N A G E R T O O L S

The Maintenance Window

The Maintenance window in the Model Manager workspace may be used to perform
maintenance operations targeting versions added to the window from The Model
Manager Window and The Databases Window. This includes, for example, clearing
Built, Computed, and Plotted Data from model versions or Permanently Deleting
Models and Data Files. You can also use it as a browsing tool for exploring the total
version footprint of items that you have added to the window from other windows in
the workspace.

The model and file versions are shown in a table, with the versions grouped together
in top level table rows based on how they were added to the window:

• Versions added via a Version Selection () are shown first with one table row per
version.

• Versions added as an Item Selection () are shown as one table row per item. Click
the triangle symbol next to the icon to show versions belonging to the item or the
item’s drafts as separate table rows.

All versions in all repositories and branches that an item has been saved to and that
you are authorized to see are included.

• Versions added as a Search Result () are shown as a single table row representing
the search expression — click the triangle symbol to show versions matching the
search expression.

The versions under an Item Selection () or a Search Result () are sorted in
chronological order. A maximum of 100 most recently saved versions are initially
shown. Click the triangle symbol for a Show More table row () to append the next
100 versions to the table. You can set another value for this default page size in the
Result Page Size field on the Model Manager page in the Preferences window.

The table columns are:

• The Target column — a description of the targeted versions. The title in the case of
a single version, a representative title chosen from one of its versions in the case of
an item, or a summary of the search expression in the case of a search result.

• The Saved column — the time when a version was saved.

Collecting Models and Files for Maintenance
M A I N T E N A N C E | 149

150 | C H A P T E R
• The Saved By column — the name of the user that saved a version.

• The Repository column — the repository that a version was saved in.

• The Branch column — the branch that a version was saved in.

• The Comments column — the optional comment provided when a version was
saved.

T H E M A I N T E N A N C E W I N D O W T O O L B A R

The toolbar in the Maintenance window contains the following toolbar buttons:

• Click the Refresh button () to refresh the table in case any new versions have been
saved. The table will automatically refresh if you save a new version to the database
from the COMSOL Desktop.

• Click the Clear button () to the clear the table.

• Click the Remove from Maintenance button () to remove top level table rows
from the table.

T H E S E T T I N G S W I N D O W F O R I T E M S

The top level table row for an Item Selection () in the Maintenance window is a
representation of the item itself in the database. The Settings window shows a summary
of the item and its associated versions in the database.

The General Section
This section shows the database of the item in the Database field and its item save type
in the Item save type field.

The Disk Space Usage Section
This section shows disk space usage statistics of the item and all its drafts. The fields are:

• Versions — the total number of versions of the item and the item’s drafts.

Viewing the version table rows under an item in the Maintenance window
as “the version history” of a model or file can often be misleading. Since
versions of a model’s drafts are included in the table, and these drafts may
have been worked on in parallel by multiple users, going from one version
to the next in the table may not represent how the model has evolved over
time. A similar observation holds when a model or file has been worked
on in parallel on multiple branches. A more honest version history of an
item is best viewed from The Versions Window.
2 : M O D E L M A N A G E R T O O L S

• Data — the disk space usage of the versions in bytes.

• Computed data — the disk space usage of all Built, Computed, and Plotted Data of
the versions in bytes.

E S T I M A T I N G D I S K S P A C E U S A G E A S A M A I N T E N A N C E O P E R A T I O N

You can estimate the total disk space usage of versions targeted in the Maintenance

window. From the Disk Space Usage menu () in The Statistics Section on The
Maintenance Toolbar, select Version Selection () or Item Selection () to estimate
the disk space usage for the current table selection. Select All in Maintenance () to
estimate the disk space usage for all versions in the Maintenance window, independent
of any table selection or if all Show More table rows () have been expanded.

C L E A R I N G C O M P U T E D D A T A A S A M A I N T E N A N C E O P E R A T I O N

You can clear built, computed, and plotted data of model versions targeted in the
Maintenance window. From the Clear Computed Data menu () in The Computed
Data Section on The Maintenance Toolbar, select Version Selection () to clear such
data from the current selection of versions. For a selection of items, select Item

Selection () to clear all versions of the models and their drafts. To only clear the
item’s drafts, select Drafts of Item Selection (). Select All in Maintenance () to clear
such data of all versions in the Maintenance window, independent of any table selection
or if all Show More table rows () have been expanded.

You will be asked to confirm that you want to clear the built, computed, and plotted
data of the model versions.

Clearing computed data of versions in the database is done via batched transactions.
You may stop the clearing at any point by clicking the Stop button, but all versions
processed up to that point will already have been permanently cleared. Clearing a
model version in itself does not physically delete the computed data — the data may,
for example, be shared with other versions via deduplication. Once all batches of

Estimating Disk Space Usage

Clearing built, computed, and plotted data of a model version is
permanent and cannot be undone. You will either need to regenerate the
data by recomputing it or restore the database in its entirety from a
backup.
M A I N T E N A N C E | 151

152 | C H A P T E R
versions have been cleared, Model Manager will automatically proceed by permanently
deleting all computed data that is no longer used by any version via a separate database
cleanup operation.

P E R M A N E N T L Y D E L E T I N G V E R S I O N S A S A M A I N T E N A N C E O P E R A T I O N

You can permanently delete versions targeted in the Maintenance window. From the
Permanently Delete menu () in The Versions Section on The Maintenance Toolbar,
select Version Selection () to permanently delete the current selection of versions.
For a selection of items, select Item Selection () to permanently delete all versions
of the items and their drafts. To only permanently delete the item’s drafts, select Drafts

of Item Selection (). Select All in Maintenance () to permanently delete all
versions in the Maintenance window, independent of any table selection or if all Show

More table rows () have been expanded.

You will be asked to confirm that you want to proceed with the permanent deletion of
the versions.

Model Manager does not allow permanently deleting a version if that version is
referenced by another version that is not set to be deleted. If you include such a version
when targeting an explicit selection in the Maintenance window, the permanent
deletion will be immediately canceled by Model Manager with nothing deleted in the
database. If you include such a version for the All in Maintenance option (), that
version will be excluded from the deletion but the deletion of other versions will still
be allowed to proceed.

Permanently deleting versions in the database is done via batched transactions. You
may stop the deletion at any point by clicking the Stop button, but all versions
processed up to that point will already have been permanently deleted. Any data that

Database Cleanup

Permanently deleting versions cannot be undone. You will need to restore
the database in its entirety from a backup in case of an accidental deletion.

Reference-tracking in Model Manager
2 : M O D E L M A N A G E R T O O L S

potentially may be shared with other versions via deduplication will not be deleted
during this initial batch processing. Once all batches of versions have been deleted,
Model Manager will automatically proceed by permanently deleting data that is no
longer used by any version via a separate database cleanup operation.

Database Cleanup
M A I N T E N A N C E | 153

154 | C H A P T E R
Da t aba s e Adm i n i s t r a t i o n
In this section, you will find details on how you can administer your configured
databases within the Model Manager workspace. You will also learn how to move,
delete, and perform backups of databases stored locally on your computer.

• Database Configurations

• Updating Search Index

• Database Cleanup

• Compacting Local Databases

• Moving and Deleting Local Databases

• Backup for Local Databases

Database Configurations

You can manage added databases in the COMSOL Desktop from the top nodes in The
Databases Tree. Right-click and select Delete Configuration () to remove an added
database from the COMSOL Desktop. This will only delete the configuration for the
database, not the database itself.

D A T A B A S E S E T T I N G S

The Settings window for a database shows its configuration in the COMSOL Desktop.
Click the Save button () to update the current configuration.

Saving the configuration automatically disconnects the database from the COMSOL
Desktop. Click anywhere in the Model Manager workspace that requires database
access to reconnect.

The General Section
This section shows the label of the database in the Label field and its optional alias in
the Alias field. When set, the alias must only contain lowercase Latin alphabet
2 : M O D E L M A N A G E R T O O L S

characters, numerical characters, underscores, and dashes. The alias must not contain
more than 100 characters.

The Storage Section
This section is only shown for a local database. The fields are:

• Database file. The path to the SQLite® database file on the file system.

• Resources directory. The path to the resources directory on the file system.

• Search indexes directory. The path to the search indexes directory on the file system.

Click the Show in System Explorer button () to open the database directory in the
system explorer native to the operating system.

Click the Compact button () to compact the database file — see Compacting Local
Databases.

Click the Refresh Connection button () to refresh the connection to the local
database. The current connection, if any, is closed, all changes made in the window are
saved, and then a new connection is established. You may find this useful if another,
no-longer running, COMSOL session was already connected to the database when the
current session connected, and you now want to enable full search capabilities for the
current session — see Opening a Local Database from Multiple COMSOL
Multiphysics Processes.

Both the label and the alias field are only stored in the configuration used
to connect to the Model Manager database — they are not stored inside
the database itself. If you remove a database from the COMSOL Desktop
by deleting its configuration and then add it again, you will need to write
these values anew.

The alias of a Model Manager database can be used as a read-friendly,
alternative, identifier when accessing the database via the Model Manager
API.

A Local Database on the File System
D A T A B A S E A D M I N I S T R A T I O N | 155

156 | C H A P T E R
The Connection Section
This section is only shown for a server database accessed via a Model Manager server.
The fields are:

• Server. The server address to the Model Manager server.

• Require secure connection. Selected if the network connection is required to use a
secure connection, with transport layer security provided by HTTPS (as opposed to
plain HTTP). A warning message is shown if the checkbox is cleared.

• Username. The username used when connecting to the server.

• Password. The password used when connecting to the server. The current password
is not accessible.

The Password field is hidden when running COMSOL Multiphysics in client–server
mode — see also Connecting Via a COMSOL Multiphysics Server.

• Remember password. Selected if the password is remembered between program
sessions. The password is stored in an encrypted form on the local file system.

Click the Test Connection button () to test if the filled-in values in the Connection

section can be used to successfully connect to the Model Manager server database.

Click the Refresh Connection button () to refresh the connection to the server
database. The current connection, if any, is closed, all changes made in the window are
saved, and then a new connection is established.

The Information Section
This section is only shown for a server database accessed via a Model Manager server.
When connected, the Server version field displays the current version number of the
Model Manager server. Otherwise, a message is displayed informing you that the
server database is not connected. Click the message to reconnect.

Connecting to a Server Database

COMSOL Desktop disconnects from a connected Model Manager server
when you click the Save button () in the Settings window. You can
reestablish the connection by, for example, activating the database in the
Model Manager workspace — see Activating a Database.
2 : M O D E L M A N A G E R T O O L S

C H A N G I N G U S E R A C C O U N T C R E D E N T I A L S

When connecting to a Model Manager server database via The Add Database Window,
Model Manager stores the username and — if you selected the Remember Password

checkbox — the (encrypted) password in the created database configuration. This
enables you to automatically connect to the server database in future program sessions.

You can change the user account credentials you use to connect to the server database.
This includes, for example, using a new password or if you want to connect with a
different user account.

1 Select the database node in The Databases Tree.

2 In The Connection Section in the Settings window, write the username and
password of the user account you want to connect with under User.

3 Click the Test Connection button () to test that the account credentials are
correct.

4 Click the Save button () to save the new account credentials in the database
configuration.

The new user account will be used in the current and any future program sessions
until you repeat the previous steps.

Updating Search Index

Model Manager uses a specialized search index when searching and filtering item
versions. Under normal program execution, Model Manager automatically pushes any
updates made to items in the database to this search index, both for a local database
and for a server database. This push may fail, however — for a Model Manager server,
for example, due to intermittent network issues when the Model Manager server
process tries to communicate with the process managing the search index.

You can manually trigger the push of changes to the search index, thereby letting the
search index catch up with any changes made in the database. Right-click a database
node in The Databases Tree and select Index () to push changes made on all
branches. Do the same for a branch node to only push changes made on that branch.

Database Cleanup

When you clear built, computed, and plotted data of model versions, or permanently
delete model and file versions, Model Manager automatically detects and deletes
unused data that may have been previously shared between versions via data
D A T A B A S E A D M I N I S T R A T I O N | 157

158 | C H A P T E R
deduplication. If the process is unexpectedly terminated while this cleanup is ongoing,
for example if there is a power failure, that data will remain in the database until the
next time you run such a maintenance operation. Right-click a database node in The
Databases Tree and select Cleanup () to manually run the cleanup. This may take a
few seconds up to several minutes depending on the size of the database.

Compacting Local Databases

You can optimize a local database by compacting its SQLite® database file. Right-click
the database node in The Databases Tree and select Compact () to open the
Compact dialog. The File size field shows the current size of the SQLite® database file
and the Estimated file size after compacting field shows the estimated size after the file
has been compacted. Click OK to compact the file. This may take a few seconds up to
several minutes depending on the size of the database file.

Moving and Deleting Local Databases

You can move a Model Manager database stored locally on your computer to another
file system location:

1 Open The Databases Window in the Model Manager workspace and select the top
database tree node for the database you want to move. In The Settings Window,
under Storage, note the file system location of your database. You can also click the
Show in System Explorer button () to open the database directory in the system
explorer native to the operating system.

2 Right-click the database tree node and select Delete Configuration () to delete the
configuration for the database.

3 Move the directory containing your database to the new location on your
computer’s file system — see also A Local Database on the File System.

4 Click the Add Database button () in the Database section in the Home toolbar.

• Clearing Computed Data as a Maintenance Operation

• Permanently Deleting Versions as a Maintenance Operation

A Local Database on the File System
2 : M O D E L M A N A G E R T O O L S

5 Click the Open Local Database button () and select the SQLite® database file in
the moved database directory — see also Opening a Local Database. Model
Manager will automatically connect to the local database in the new location.

To permanently delete a local Model Manager database, follow the previous steps but
instead delete the database directory on the file system after you have deleted the
configuration for the database.

Backup for Local Databases

Local Model Manager databases can be backed up using any regular backup software
used for backing up the workstation. Make sure to include all files and subdirectories
in the database directory as described in A Local Database on the File System: the
SQLite® database file, the resources directory, and the indexes directory. You may
reduce the total disk space usage of your backups by optionally skipping the indexes
directory as its file contents can always be recreated by Model Manager.

To restore a previously backed-up database directory, copy the database directory and
all its file contents from your backup location to your computer and follow the steps
in Opening a Local Database.

It may be tempting to place the database directory in a local folder on
your computer that is automatically synchronized using cloud storage
software with a remote cloud drive. This is not supported, however, and
COMSOL Multiphysics will report an error if it detects such a file system
path. For more information, see https://www.comsol.com/support/
knowledgebase/1295.

See the Model Manager Server Manual for backup and restore of a
Model Manager server database.
D A T A B A S E A D M I N I S T R A T I O N | 159

https://www.comsol.com/support/knowledgebase/1295
https://www.comsol.com/support/knowledgebase/1295

160 | C H A P T E R
 2 : M O D E L M A N A G E R T O O L S

 3
S e a r c h i n g a n d F i l t e r i n g
In this chapter you will learn how to search for models and data files in a Model
Manager database. You will see how you can match such items by performing both
full text searches, as well as by applying various filter criteria. You will also learn how
you can search “deep” within the model tree, matching models on their node
properties, parameters, features, and other settings.

In this chapter:

• Searching Versions

• Full Text Search

• Item and Content Filters

• The Model Manager Search Syntax
161

162 | C H A P T E R
S e a r c h i n g V e r s i o n s
Whenever you search for model versions and file versions in a Model Manager
database, you can select between two search modes: Latest Versions for Location ()
or All Versions in Database (). These two modes correspond to searching in the
subset of versions that are the latest versions saved on a particular branch or in the set
of all versions ever saved to the database, respectively.

You can toggle between the two search modes by clicking the menu button next to the
Search button () in a window with Model Manager search functionality — that is,
the Model Manager window, the Open window, the Select File window or the Select Model

window. You can also click the expand button next to the menu button and select the
desired search mode from the menu.

A typical use case for selecting the first mode is when you want to open a model for
editing in the COMSOL Desktop. For that, you generally want to be sure that you are
starting off from the latest version of the model on its branch. The second mode is
useful when you want to find versions in order to perform maintenance operations on
them. This includes, for example, computing versions’ total disk space usage or
clearing versions’ built, computed, and plotted data.

Searching Latest Versions for Locations

There are two ways you can specify the subset of latest versions that you want to search
for when the Latest Versions for Location () search mode is selected:

• The latest versions on a branch at the present time. This is the most commonly used
subset for most workflows in the COMSOL Desktop that involve the Model
Manager search functionality.

• The versions that were the latest on a branch at some particular point in time in the
past. This can be useful, for example, when you need to go back to the state of a
branch as it was at the time of some project milestone.

The Latest Versions for Location () search mode is the default mode in
all windows with Model Manager search functionality. It is also the
recommended search mode for typical workflows involving the Model
Manager — see Databases in the COMSOL Modeling Environment.
3 : S E A R C H I N G A N D F I L T E R I N G

These two subsets correspond to searching with respect to different types of Locations
in a database. In this section you will learn how the search capabilities of Model
Manager differ when searching in such locations.

S E A R C H I N G I N B R A N C H E S

Select a branch in The Select Location Dialog to search for the latest versions of models
and files in that branch at the present time. This is also the default location type when
you select a database from the list on the left in the Open, Select File, and Select Model

windows, or in the Model Manager window when Activating a Database in the Model
Manager workspace.

Which search tools are available when searching for the latest versions in the branch is
determined by the value selected in the Search list found in the branch’s Settings

window — see Branch Settings. Select Item fields and content in the list to enable the
full Model Manager search functionality for the branch. This includes both all Full
Text Search tools and all Item and Content Filters. Select Only item fields to restrict the
filtering support to those that target the field values of models and files, not filters
targeting their contents.

The Item fields and content value is the preferred and default selection for the main
branch in a repository. There is, however, a cost in terms of disk space usage by the
additional search data required for the corresponding search index — see also
Updating Search Index. You may want to select Only item fields when:

• You create a new branch off the main branch that contains only a few models and
files. Finding a particular model or file is then a matter of simply scanning a short
list of items — that is, no advanced content filtering is required.

• You create a new branch off the main branch on which models and files will rarely
be added or updated. Advanced content filtering can then be performed on the
main branch — selecting the corresponding version of an item on the new branch

The location link button used to open The Select Location Dialog is
hidden in the Open, Select File, and Select Model windows when a database
only contains a single branch and no snapshots.
S E A R C H I N G V E R S I O N S | 163

164 | C H A P T E R
may be done, for example, from The Versions Window or from The Maintenance
Window.

S E A R C H I N G I N S N A P S H O T S A N D C O M M I T S

Select a snapshot in The Select Location Dialog, or right-click a commit and select
Search in Commit () in The Commits Window, to search for the versions that were
the latest at a fixed point in time — the saved date of the corresponding commit — on
a particular branch. You may find this useful if, for example, you want to find a version
of an old model or file that has been deleted on the branch, or if you perhaps want to
see how the branch was organized with tags at the time of the commit.

Searching the latest versions with respect to a snapshot or a manually selected commit
is limited functionality-wise as compared to Searching in Branches. You can perform
full text searches by selecting Text or search on the titles of assigned tags by selecting
Tags from the list next to the Search button () in The Model Manager Window.
Other search windows offer only full text search. You can also apply a separate filter on
file type extensions from a list in the Select File window. Other Item and Content Filters
or The Model Manager Search Syntax are not available.

Searching All Versions in the Database

When the All Versions in Database () search mode is selected, you can match any
item version in the database irrespective of which branch it was saved to or if it is the
latest version of its corresponding item. The location link button, available in a search
window’s upper right corner when Searching Latest Versions for Locations, is hidden
for this search mode and, in the case of the Model Manager window, replaced by the
label of the database.

When Opening a Local Database from Multiple COMSOL Multiphysics
Processes, the search functionality will be further limited to that used
when Searching in Snapshots and Commits for all processes except the
first one to open the database.

The Add Filter menu button () is disabled in the Open, Select File, Select

Model, and Model Manager windows’ toolbars when you search with
respect to a snapshot or commit.
3 : S E A R C H I N G A N D F I L T E R I N G

The All Versions in Database () search mode lets you browse and search the database
in its entirety at the expense of possibly hard-to-navigate search results with often
identically-titled versions. It is primarily suited for when you want to define a selection
of versions based on various filter criteria in order to perform maintenance operations
on them via The Maintenance Window or when you want to find an older version by
applying filters on commit comments, saved dates, or other history-related item fields.

The search mode supports full text search and all Item Filters expect for Tag. No
Content Filters except Part are supported.

Sorting Search Results

The results returned when searching for item versions in a Model Manager database
are sorted alphabetically on their titles by default. When a branch is selected in the
Latest Versions for Location () search mode or when using the All Versions in

Database () search mode, you may select one of the following sort fields:

• Title () — sort on the title of an item version.

• Saved () — sort on the date when an item version was saved.

• Size () — sort on the estimated disk space usage of an item version if the version
is exported to the file system.

• Computed Data () — sort on the estimated disk space usage of an item version’s
built, computed, and plotted data if the version is exported to the file system.

• Rank () — sort on the relevance ranking of an individual item version found in
the search result. Item versions that are deemed more relevant for the search
expression are sorted before those with less relevance.

Unsupported filters are disabled in the Add Filter menu () when you
select the All Versions in Database () search mode in the Open, Select

File, Select Model, and Model Manager windows.

When Opening a Local Database from Multiple COMSOL Multiphysics
Processes, the search functionality in the All Versions in Database ()
search mode will be further limited to only support full text search for all
processes except the first one to open the database. No filters are
supported
S E A R C H I N G V E R S I O N S | 165

166 | C H A P T E R
The Title sort field uses ascending sort order by default; the other sort fields use
descending sort order by default. All but the Rank sort field support switching between
ascending and descending sort order.

Changing sort field or sort order is not supported when Searching in Snapshots and
Commits — the search result is always sorted alphabetically on titles.

Search History

You can reapply previous searches made in a Model Manager database via the Search

History menu list () in the Model Manager, Open, Select File, and Select Model

window’s toolbars. This may be useful, for example, if you have applied various filters
in one window and now quickly want to reuse those filters in another window.

A new entry is added to the top of the list every time you perform a new search —
either by clicking the Search button () or by pressing Enter. The entry contains the
search term used in the search field as well as any applied filters — see Applied Filter
Pills. At most 20 unique search entries are shown in the list. If a previous search made
in another window used filters that are not applicable in the current window, the
corresponding entry will be excluded in the current window’s search history list.

Selecting an entry resets the search term and the filters, thereby replacing any existing
search term and filters already set in the window. Select Clear Search History () to
clear the list of all its entries.

Each Model Manager database you add to the COMSOL Desktop keeps its own list
of previous searches. If you want to reuse a previous search in another database, select
the entry in the Search History menu list () of the first database from the Model

Manager window and then activate the other database via the Database section on the
Home toolbar — see Activating a Database. The Model Manager window will
automatically update with the activated database as the search target while keeping the
existing search term and applied filters.

The Open, Select File, Select Model, and Model Manager windows will each
remember the last applied sort field and sort order made in the window
between program sessions.
3 : S E A R C H I N G A N D F I L T E R I N G

Fu l l T e x t S e a r c h
A fast way for you to find models and files in a Model Manager database is to write
individual search words, separated by spaces, in the search input field of the Open, Select

File, Select Model, or Model Manager window and click the Search button (). In this
section, you will learn how Model Manager performs a full text search to match these
search words against fields shown in The Settings Window for models and files.

In this section:

• Combining Full Text Search Words

• Matched Fields

Combining Full Text Search Words

Model Manager combines all search words that you write with AND-logic. In practical
terms this means that the models and files included in a returned search result are such
that all search words matched at least once in one of the searched fields.

An example from the Application Libraries window: If you import busbar.mph found
under COMSOL Multiphysics > Multiphysics into a database, it may, for example, have the
following fields:

• Title: Electrical Heating in a Busbar

• Description: This example analyzes the resistive heating of a busbar designed to
conduct direct current.

• Tags: Multiphysics

You can find this model by writing some or all of the search words: busbar example
multiphysics. The first word, busbar, matches on a word in the title and the
description, the second word, example, matches a word in the description, and the last
word, multiphysics, matches an assigned tag.

You can use a wildcard asterisk character in a search word to match zero or more
arbitrary characters when searching the latest versions in a branch or when searching
all versions in the database — see Searching Versions. Appending, for example, a

Search words match in a case-insensitive way when searching in Model
Manager.
F U L L T E X T S E A R C H | 167

168 | C H A P T E R
wildcard to a search word will match that word against the beginning of a word or the
whole word in the searched text. See also Wildcard Matching.

You can also match on phrases — that is, multiple words in a sequence — by enclosing
search words in quotation marks. Searching on "conduct direct current" will
match in the description in the example, while other permutations of these search
words will not match. See also Phrase Matching.

Including a wildcard asterisk character or using phrase quotation marks have no special
meaning when Searching in Snapshots and Commits. Model Manager will, however,
automatically append an implicit wildcard to each search word in those cases.

Matched Fields

The fields that a full text search will match against differ slightly depending on the
selected search mode and, in the case of Latest Versions for Location (), the selected
location type.

M A T C H E D F I E L D S W H E N S E A R C H I N G I N B R A N C H E S

Full text search words match the following Model Settings and File Settings when
searching the latest versions on a branch:

• The Title field of a model and file version.

• The Description field of a model and file version.

Leading and trailing punctuation markers — for example, dots and
hyphens — are ignored when searching words in a field of type Text Field.
That is why the trailing dot in current can be omitted.

• Searching in Branches

• Searching in Snapshots and Commits

• Searching All Versions in the Database
3 : S E A R C H I N G A N D F I L T E R I N G

• The Filename field of a model version and all filenames of a file version’s file resources
as listed in the file version’s Contents section. The file type extension is considered
as a part of the filename.

• The title of assigned Tags. Either tags assigned directly to an item or an ancestor to
such a tag in The Tag Tree.

M A T C H E D F I E L D S W H E N S E A R C H I N G I N S N A P S H O T S A N D C O M M I T S

Full text search words match the following Model Settings and File Settings when
searching the latest versions with respect to a snapshot or a manually selected commit
in a branch:

• The Title field of a model and file version.

• The Description field of a model and file version.

• The Filename field of a model version.

• The file type extensions of a file version’s file resources as found in the Contents

section.

M A T C H E D F I E L D S W H E N S E A R C H I N G A L L V E R S I O N S I N T H E D A T A B A S E

Full text search words match the following Model Settings and File Settings when
searching all versions in a database:

• The Title field of a model and file version.

• The Description field of a model and file version.

• The Filename field of a model version and all filenames of a file version’s file resources
as listed in the file version’s Contents section. The file type extension is considered
as a part of the filename.

Unlike when Searching in Snapshots and Commits, the full text search
does not match separately against file type extensions. You can, however,
search on such extensions using a File Type filter.

Selecting Tags instead of the default Text in the list next to the Search

button () in The Model Manager Window matches search words on
the title of assigned tags — either tags assigned directly to an item or an
ancestor to such a tag in The Tag Tree.
F U L L T E X T S E A R C H | 169

170 | C H A P T E R
I t em and Con t e n t F i l t e r s
In this section you will learn how to apply the predefined filters available from the Filter

dialog. To learn how to write your own custom filters, see The Model Manager Search
Syntax.

• Field Types

• The Filter Dialog

• Item Filters

• Content Filters

• Applied Filter Pills

Field Types

The Item Filters and Content Filters that are available in the Model Manager search
tools can be categorized based on the types of fields that they match on. These field
types affect, for example, how the search words specified in a Full Text Search or the
field values specified in filters are interpreted when searching the database.

T E X T F I E L D

A filter on a text field matches search words in a text. Individual “words” in the text
are obtained by splitting on spaces, punctuation markers, and other delimiter
characters. Examples of text fields are the title and description of a model or file
version.

Filters match in a case-insensitive way in Model Manager.

• Text Field

• Keyword Field

• Date Field

• Numeric Field

• File Size Field

• Boolean Field

• Selection Field
3 : S E A R C H I N G A N D F I L T E R I N G

K E Y W O R D F I E L D

A filter on a keyword field matches a search word against a string value. Keyword fields
are typically found for short, name-like, search data, such as the filename of a model
version.

To include spaces in a keyword field’s value, precede each space using a backslash
character — see Escaping Reserved Characters.

D A T E F I E L D

A filter on a date field matches against a date and time value. You can specify the date
and time format according to the localization rules for the language set in the
COMSOL Desktop or according to the ISO-8601 standard format. An example of a
date field is the saved date of a model or file version.

Dates and times can either be matched exactly or as an interval. The intervals can be
open on one or both sides. See also Range Matching. You can also specify intervals
from a select set of date shorthands. This includes, for example, TODAY for the current
day and CURRENTWEEK for a date interval covering the current week. See Table 3-6 for
the complete list.

If you omit the backslash character before a space in the value for a
keyword field, the value will be interpreted as two words combined with
Boolean AND-logic — see Basic Field Expressions. The search word
electrical heating busbar.mph for a filename field is equivalent to
electrical AND heating AND busbar.mph — an expression that can
never match the filename of a model (a model can have at most one
filename). Write electrical\ heating\ busbar.mph instead.

The following are all valid date and time values for a date filter matching
August 24, 2021, 2:30 p.m. when running the COMSOL Desktop with
language set to English:

• 8/24/21

• 8/24/21, 2:30:00 PM

• 2021-08-24

• 2021-08-24T14:30:00
I T E M A N D C O N T E N T F I L T E R S | 171

172 | C H A P T E R
N U M E R I C F I E L D

A filter on a numeric field matches on a real or complex scalar value. An example of a
numeric field is the last computation time of a study, or a numerical setting or
parameter value. The implicit unit used for dimensioned scalar values depends on the
context.

Numeric fields can either be matched exactly or by specifying intervals for the real and
imaginary parts separately. The intervals can be open on one or both sides. See also
Range Matching.

F I L E S I Z E F I E L D

A filter on a file size field is a variant of a real Numeric Field. It matches on a file size
value expressed in bytes. An example is the total size of all Built, Computed, and
Plotted Data of a model version.

The field value expression is written as a numerical value and a byte unit expression —
a unit multiple based on the byte. The supported byte unit expressions are B, KB, MB,
GB, and TB. These expressions are defined using the nonstandardized but, in the
context of computer memory, often conventional binary memory format:

• B = 1 byte

• KB = 1024 bytes

• MB = 10242 bytes

• GB = 10243 bytes

• TB = 10244 bytes

The space between the real value and the byte unit is optional, but if included, the
space itself must be preceded by a backslash character — see Escaping Reserved
Characters. You may also omit the byte unit expression altogether, in which case the
unit is assumed to be in bytes.

Filters on file sizes are typically most useful as ranges. To help with this, the Model
Manager search tools will automatically apply transformation rules to such field
expression values: A field expression value that is not written as a range will be
automatically converted into a range, while a numerical value inside a range will either
be suitably decreased or suitably increased depending on if it is a lower bound or an
upper bound. These transformation rules align with the rounding rules applied when
file sizes are shown in the Model Manager workspace — rounding rules that are
typically also found in the system explorers of various operating systems:

• A file size less than 1 KB is shown as is.
3 : S E A R C H I N G A N D F I L T E R I N G

• A file size in the kilobyte range, that is greater or equal to 1 KB but less than 1 MB,
are shown in KB rounded up to the nearest integer.

• A file size in the megabyte, gigabyte, or terabyte ranges are shown in MB, GB, or
TB respectively, rounded using the round-half-up-algorithm to one decimal.

These rounding rules imply, for example, that file size values between 1025 bytes and
2048 bytes are all shown as 2 KB in the Model Manager workspace. To match on all
item versions shown with these sizes, Model Manager will thus automatically transform
the filter expression @fileSize:2KB to @fileSize:[1025 TO 2048]. These
rounding rules also guarantee that you will disjointly cover the entire range up to say
4 KB using first @fileSize:[0 TO 2KB] and then @fileSize:[3KB TO 4KB], that
is as long as you use the same number of decimal places and the same unit for the upper
bound of the first interval and the lower bound of the second interval when splitting
an interval into two.

To avoid Model Manager applying any transformation rules, write your field
expression value using the B byte unit expression or, equivalently, leave out the byte
unit expression altogether.

B O O L E A N F I E L D

A filter on a Boolean field matches on either true or false. An example is whether
or not a 1D or 2D component is axisymmetric.

S E L E C T I O N F I E L D

A filter on a selection field is a specialized filter that involves selecting values from a
predetermined set. Examples include Item Save Types of models or the user that saved
a model or file version.

The Filter Dialog

You can apply filters to a model and file search from the Filter dialog. Click the Add

Filter button () from the toolbar of the Open, Select File, Select Model, or Model

Manager windows. Select one of the Item Filters or Content Filters in the menu. The
Filter dialog is opened with fields and options appropriate for the selected filter.

The Filter field shows the name of the selected filter. The other input fields depend on
which of the filters you selected.

Select any of the Filter Options under Options to quickly modify how the filter’s field
values will be combined and interpreted. You can see a preview of the corresponding
I T E M A N D C O N T E N T F I L T E R S | 173

174 | C H A P T E R
filter query expression written using The Model Manager Search Syntax under Filter

query preview.

Click the Customize filter query button () to replace the filter query with your own
customized query.

Click OK to apply the field values as a new filter.

F I L T E R O P T I O N S

You can modify how filters are applied in the Filter dialog by selecting one of the filter
options under Options.

Select Prefix match to automatically append a wildcard to each search word in a Text
Field or at the end of a Keyword Field. See also Wildcard Matching.

Select Match all terms to replace the OR-logic used between search words in an input
field for a Text Field or selected checkboxes in a Selection Field with AND-logic.

Select Match whole phrase to require that the search words match a sequence of words
(that is, a phrase) in a Text Field or Keyword Field. See also Phrase Matching.

Spaces entered in an input field for a Text Field in the Filter dialog will be
automatically replaced by Boolean OR operators by default — note the
generated filter query expression under Filter query preview. This is in
contrast to when writing a custom filter query using The Model Manager
Search Syntax in which spaces are interpreted as Boolean AND if no
Boolean operator is explicitly written.

Spaces entered in an input field for a Keyword Field in the Filter dialog
will be automatically escaped — see Escaping Reserved Characters.

You include a wildcard by writing an asterisk character in a search word.
The wildcard will match any number of arbitrary characters.

You match search words as a phrase by enclosing them in quotation
marks.
3 : S E A R C H I N G A N D F I L T E R I N G

Select Negate match to require that the specified field values do not match any models
or files in the search result. See also Negated Matching.

Item Filters

Item filters match on field values typically found in the Version section and Tags section
for Model Settings and File Settings.

T I T L E

The Title filter () is a Text Field filter that matches on the title of a model or file
version. You may find this filter useful when the searched title is a word commonly
found also in descriptions and tags, such that performing a Full Text Search would
yield too many results.

D E S C R I P T I O N

The Description filter () is a Text Field filter that matches on the description of a
model or file. Similar to an Title filter, you may find this useful when the searched
description is also a common title or tag.

T A G

The Tag filter () is a Selection Field filter that matches on the assigned tags of a
model or file with respect to a branch. Select one or more tags in The Tag Tree shown

• Title

• Description

• Tag

• Item Version Type

• Item Save Type

• Saved

• Saved By

• Commit Comment

• Size

• Computed Data

• Filename

• File Type

• Owner
I T E M A N D C O N T E N T F I L T E R S | 175

176 | C H A P T E R
in the Filter dialog. Click Clear Tags () to clear all selections — the filter will then
match on all items.

I T E M V E R S I O N T Y P E

The Item Version Type filter () is a Selection Field filter on the Item Version Types
of a model or file version. Select from Model, Application, Physics, File, and Fileset.

I T E M S A V E T Y P E

The Item Save Type filter () is a Selection Field filter on the Item Save Types of a
model or file (the latter only has regular as available item save type) that a version
belongs to. Select from Regular and Draft.

S A V E D

The Saved filter () is a Date Field filter for when a version was saved. Select one of
the date shorthands in the Range list to use a preset date interval. Select Manual and
write a start date in the From field and an end date in the To field. Leave one or both
input fields empty to not set a corresponding bound.

S A V E D B Y

The Saved By filter () is a Selection Field filter on the user that saved a version. Write
the name or display name of a user in the Name field. Spaces in names are automatically
escaped with backslashes.

C O M M I T C O M M E N T

The Commit Comment filter () is a Text Field filter that matches on the commit
comment written when saving a model or file version.

You will notice that the generated filter query under Filter query preview

does not show the titles of the tags, but rather their unique keys in the
database. This is to ensure that you find exactly the items tagged by the
selected tag, and not items tagged by a tag that happen to share the same
title.

The Tag filter () is not available when Searching All Versions in the
Database.
3 : S E A R C H I N G A N D F I L T E R I N G

S I Z E

The Size filter () is a File Size Field filter on the estimated disk space usage of a
version when stored on the file system.

C O M P U T E D D A T A

The Computed Data filter () is a File Size Field filter on the estimated disk space
usage of the built, computed, and plotted data of a model version when stored on the
file system.

F I L E N A M E

The Filename filter () is a Keyword Field filter on the filename of a model version
or the file resources of a file version. The filename includes the file type extension as a
suffix.

F I L E T Y P E

The File Type filter () is a combined Selection Field and Keyword Field filter on the
file type extension of a file. Select a file type extension from the Predefined field, or
manually type file type extensions, separated by spaces, in the Manual keyword field.

O W N E R

The Owner filter () is a Selection Field filter on the current owner of a model or file
that a version belongs to. Write the name or display name of a user in the Name field.
Spaces in names are automatically escaped with backslashes.

Unlike other Keyword Field filters in the Filter dialog, in which spaces are
escaped with backslash, spaces between file extensions will instead be
automatically replaced with Boolean OR operators.
I T E M A N D C O N T E N T F I L T E R S | 177

178 | C H A P T E R
Content Filters

Content filters match on values in The Contents Section of Model Settings — that is,
on node properties, parameters, features, and other settings in the model tree of a
model.

P A R A M E T E R

The Parameter filter () is a combined Keyword Field, Text Field, and Numeric Field
filter on parameters in a Parameters node. You can create a filter by combining:

• The parameter name as a Keyword Field in the Name field.

• The parameter description as a Text Field in the Description field.

• The parameter expression, including units, as a Keyword Field in the Value field.

• The parameter value, excluding units, as a real scalar Numeric Field in the From and
To range fields. Leave one or both input fields empty to not set a corresponding
bound.

• Parameter

• Setting

• Part

• Space Dimension

• Physics

• Study Step

• Node Type

• Label

• Name

• Tag

• Created

• Author

• Version

• Comment

• Last Modified

• Last Modified By

Searching Nodes and Settings in the Model Tree

The parameter value uses the unit system as set in the model when it was
saved to the database.

Parameters in the COMSOL Multiphysics Reference Manual
3 : S E A R C H I N G A N D F I L T E R I N G

S E T T I N G

The Setting filter () is a combined Keyword Field and Text Field filter on general
settings found in the Settings window for a node. You can create a filter by combining:

• The name of a setting as a Keyword Field in the Name field. This is an identifier of
the setting that is not visible in the Model Builder, Application Builder, or Physics
Builder Settings windows. You can find the name of a particular setting in the Name

column in the Details dialog for a node in The Contents Section.

• The description of a setting as a Text Field in the Description field.

• The value of a setting as a Keyword Field in the Value field.

• The value of a setting when accessed via the COMSOL API as a Keyword Field in
the API value field.

P A R T

The Part filter () is a Selection Field filter on model parts found inside the model
tree that may be reused by other models as auxiliary data. The only supported part is
Geometry.

S P A C E D I M E N S I O N

The Space Dimension filter () is a Selection Field filter on the space dimension of a
Component node. Select from 3D, Axial Symmetry (2D), 2D, Axial Symmetry (1D), 1D, and
0D.

Not all node settings can be searched in the database. You can see which
settings are available by, for example, finding a model that has the node
type you want to search, select the node in The Contents Section, click
the Details button (), and examine the rows in the Settings table in the
opened Details dialog.

Geometry Parts Saved in Databases

The Component Node in the COMSOL Multiphysics Reference Manual
I T E M A N D C O N T E N T F I L T E R S | 179

180 | C H A P T E R
P H Y S I C S

The Physics filter () is a Selection Field filter on physics interfaces used by a model.
You select physics interfaces you want to filter on from a tree. Select a space dimension
in the Show available physics for field to filter the tree on physics interfaces available for
that dimension. You can also filter the tree by writing the name of a physics interface
in the search field above the tree.

S T U D Y S T E P

The Study Step filter () is a Selection Field filter on study steps used by a model.
Select the study steps you want to filter on from the shown list.

N O D E T Y P E

The Node Type filter () is a combined Text Field and Keyword Field filter for finding
models with nodes of a particular type. You can create a filter be combining:

• The node type as shown in the user interface as a Text Field in the Type field.

• The node type as used in the COMSOL API as a Keyword Field in the API type field.

• The node class as used in the COMSOL API as a Keyword Field in the API class field.

You typically include a filter on the API type or API class fields to narrow the search
when the Type field alone matches too wide.

N O D E P R O P E R T I E S

You can filter on node properties as shown in the Properties window for a node.

Label
The Label filter () is a Text Field filter on a node’s label.

The Physics Nodes in the COMSOL Multiphysics Reference Manual

Study and Study Step Types in the COMSOL Multiphysics Reference
Manual

Click the Model Tree Node Text button () and select Type to see a node’s
type in the Model Builder tree.
3 : S E A R C H I N G A N D F I L T E R I N G

Name
The Name filter () is a Keyword Field filter on a node’s name.

Tag
The Tag filter () is a Keyword Field filter a node’s tag.

Created
The Created filter () is a Date Field filter for when the node was created.

Author
The Author filter () is a Keyword Field filter on the node’s Author field in the
Properties window.

Version
The Version filter () is a Keyword Field filter on the node’s Version field in the
Properties window.

Comment
The Comment filter () is a Text Field filter on the node’s Comments field in the
Properties window.

Last Modified
The Last Modified filter () is a Date Field filter for when the node was last modified.
Except for the root node, this field is only available from the model object via the
COMSOL API. Only a subset of all node types automatically update this value.

Last Modified By
The Last Modified By filter () is a Keyword Field filter on the last modified by value
accessible from the model object via the COMSOL API. Only a subset of all node types
automatically update this value.

The value in a node’s Author field is written as a general string value in the
Properties window and need not correspond to any Users in a database.

The value in a node’s Version field is written as a general string in the
Properties window and does not correspond to any particular model
version in a database.
I T E M A N D C O N T E N T F I L T E R S | 181

182 | C H A P T E R
Applied Filter Pills

The currently applied filters in the Open, Select File, Select Model, and Model Manager

windows are shown as filter pills above the search result.The pill’s text is a short
summary of the filter. Click a pill and select Edit () to edit an existing filter via The
Filter Dialog. Select Remove () to remove a filter.

The filters are combined using AND-logic when searching, meaning that each item
version found in the search result satisfy the conditions of all filters. Click a pill and
select Disable () to temporarily disable the application of that filter in the search.
Editing a disabled filter via The Filter Dialog will not automatically enable it. Click a
disabled filter pill and select Enable () to enable it again.

Selecting All Versions in Database () when an unsupported filter for that search
mode has already been applied will automatically disable the filter and show a warning
triangle () on the pill. The same will happen if connecting to an older Model
Manager server database that does not support the corresponding filter expression. It
will not be possible to edit or enable the filter unless returning to a search target for
which the filter is supported.
3 : S E A R C H I N G A N D F I L T E R I N G

Th e Mode l Manag e r S e a r c h S y n t a x
The filter functionality in Model Manager is based on a tailor-made search syntax
adapted for searching deep within a COMSOL Multiphysics simulation model. You
may have seen examples of this syntax already in the Filter query preview field in The
Filter Dialog. The syntax enables you to write filter queries that find models whose
node properties, parameters, features, and other settings satisfy arbitrarily complex
constraints. As an example, you can write a custom filter query that matches all models
that have an axisymmetric 2D component, for which the component uses a particular
physics interface and a particular material.

In this section, you will learn how you can formulate such custom filter queries. Via
examples of gradually increasing complexity, you will see how to write simple
expressions for filters on single fields, how you can combine such field expressions
using Boolean logic, and finally how you can nest field expressions based on the nested
node hierarchy in the model tree. The section ends with a complete listing of all
available field expressions in the Model Manager search syntax.

• Basic Field Expressions

• Combining Expressions

• Searching Nodes and Settings in the Model Tree

• Search Syntax Completion

• Search Syntax Catalog

The Model Manager search syntax is only available when searching the
latest versions in a branch or when searching all versions in the database.
It is not available when searching the latest versions with respect to a
snapshot or a commit. See also Searching Versions.

The examples in this section will generally refer to Models. You can write
analogous filter queries for Files using the item field expressions in the
Search Syntax Catalog.
T H E M O D E L M A N A G E R S E A R C H S Y N T A X | 183

184 | C H A P T E R
Basic Field Expressions

A filter consists of one more field expressions combined with Boolean operators — for
example, AND, OR, and NOT — and other grouping operators. Each field expression
specifies which field is searched and the field value being searched on. The field also
has a particular type which dictates how the field value will be interpreted by Model
Manager — see Field Types.

You write a field expression using an @-notation of the general form:

@<field-name>:<field-value>

with <field-name> equal to the name of one of the available fields in Table 3-1, and
<field-value> equal to the value being filtered on. Write, for example,

@title:busbar

to find all versions whose title contain the word busbar. To match on several search
words, enclose the words with parentheses. Write

@title:(electrical busbar)

to find all versions whose title contain both the words electrical and busbar.

A space between two search words is automatically interpreted as a Boolean AND in the
Model Manager search syntax. The previous expression is thus equivalent to:

@title:(electrical AND busbar)

Write

@title:(electrical OR busbar)

if you want to find all versions whose title contain either electrical or busbar.

Field expressions can be written for other Field Types than a simple Text Field. Write

@saved:9/17/21

You may have noticed that spaces in the input field for a Text Field in The
Filter Dialog are automatically replaced by a Boolean OR in the
corresponding Filter query preview. Select Match all terms under Options

to change this to AND instead.
3 : S E A R C H I N G A N D F I L T E R I N G

to find all versions saved on September 17, 2021 using a Date Field.

You can enter a custom filter query either directly in the search field in the Open, Select

File, Select Model, and Model Manager windows, or apply it as a separate filter in Applied
Filter Pills by first clicking the Customize filter query button () from The Filter
Dialog.

If you want to combine full text search with a custom filter query, write the former first.
The following is valid:

electrical busbar @description:example

and matches on all versions with a title, description, filename, or assigned tags
containing the words electrical and busbar, and that has a description containing
the word example. The following is not valid:

electrical @description:example busbar

and results in an error message.

C O N T R O L L I N G P R E C E D E N C E U S I N G P A R E N T H E S E S

A Boolean AND takes precedence over a Boolean OR in the Model Manager search
syntax. The filter

@title:(electrical AND busbar OR tuning AND fork)

matches versions whose title either contains both electrical and busbar, or whose
title contain both tuning and fork. You can override this operator precedence with
parentheses. Write

@title:(electrical AND (busbar OR tuning AND fork))

to match all versions whose title contain electrical, and either the single word
busbar or the two words tuning and fork.

You can write the field name in a case-insensitive way. Thus
@saved:9/17/21 works fine.

Write all plain search words first, optionally followed by a custom filter
query.
T H E M O D E L M A N A G E R S E A R C H S Y N T A X | 185

186 | C H A P T E R
W I L D C A R D M A T C H I N G

You can use an asterisk character as a wildcard symbol that matches on zero or more
arbitrary characters. The filter

@title:electric*

matches on all versions whose title begin with electric.

You can match on versions that have any value set for a field by using a single wildcard
symbol. Write

@description:*

to find all versions with a nonempty description. This can also be written using the
special ANY symbol:

@description:ANY

which may feel more intuitive.

P H R A S E M A T C H I N G

You can match on phrases — that is, multiple words in a sequence — by enclosing
them in quotation marks. Write

@title:"electrical heating"

to match on versions whose title contains electrical followed by heating. You can
also combine phrase search with ordinary search. Write

@title:("electrical heating" busbar)

You can use a wildcard symbol anywhere in a search word. Placing it at the
start (that is, a postfix search) may, however, result in slow query times.
The exception is when the field value only contains a single wildcard
symbol, and nothing else.

Wildcard matching on search words that include punctuation markers —
for example, periods, commas, colons, and hyphens — may lead to
surprising results when used in a full text search or in a Text Field filter
due to how the search splits text into word tokens. You are recommended
to avoid using wildcards for such search words. A Keyword Field filter
does not have this limitation.
3 : S E A R C H I N G A N D F I L T E R I N G

to match on versions whose title contains electrical followed by heating, as well
as the word busbar, for example, Electrical Heating in a Busbar.

N E G A T E D M A T C H I N G

You can reverse the match logic using the special NOT symbol. Write

@title:(NOT busbar)

to find all versions whose title does not contain the word busbar. The NOT symbol
takes precedence over both AND and OR, although you can override this precedence
with parentheses. Write

@title:(NOT (electrical busbar))

to find all versions whose title does not contain the words electrical and busbar.

R A N G E M A T C H I N G

A filter on a Date Field, a Numeric Field, and a File Size Field can be written as
inclusive ranges. Write

@saved:[9/1/21 TO 9/30/21]

to find all versions saved for the month of September in 2021. Use a wildcard symbol
for unbounded ranges. The filter

@saved:[* TO 8/31/21]

matches on all versions that have not been saved after August 2021. You may also leave
out the wildcard symbol altogether as long as you include a space before the TO

symbol. The following is equivalent to the previous expression:

@saved:[TO 8/31/21]

Ranges are also supported for a Text Field or Keyword Field filter and corresponds to
matching in between two boundary words when ordering search words
lexicographically. The usefulness of this, however, is rather limited.

Wildcard Matching inside a phrase is not supported.

You can exclude the parentheses if the NOT is followed by a single word.
Thus @title:NOT busbar is equivalent to the first example.
T H E M O D E L M A N A G E R S E A R C H S Y N T A X | 187

188 | C H A P T E R
E S C A P I N G R E S E R V E D C H A R A C T E R S

Some characters serve special purposes in the Model Manager search syntax and are
therefore considered as reserved characters. If you want to search on words that
contain such characters, precede them by a backslash. Write

@tag:(\[In Progress\])

to match all items assigned the tag with title [In Progress]. The enclosing
parentheses are necessary as there are two search words, [In and Progress].

The ten reserved characters are:

{ } () [] " : \ SPACE

The last one is a common pitfall when writing a filter on a Keyword Field that matches
a string containing a space character. Write

@filename:electrical\ heating\ busbar.mph

to match versions with filename electrical heating busbar.mph. Parentheses are
not necessary here because the field value is considered as one search word as the two
space characters have been escaped.

Combining Expressions

You can combine any number of field expressions to form more complicated filter
queries. Write

@title:busbar @description:example

to find all versions whose title contain the word busbar and whose description contain
the word example. As for search words in the field value of a single field expression, a
space character between two field expressions is interpreted as a Boolean AND. Write

@title:busbar OR @description:example

to combine the two field expressions with a Boolean OR.

You can also use parentheses to control operator precedence. Write

@itemSaveType:draft AND (@owner:Alice OR @savedBy:Alice)

to find all drafts that are either owned or were saved by user Alice.
3 : S E A R C H I N G A N D F I L T E R I N G

Searching Nodes and Settings in the Model Tree

You can find models by matching on their node properties, features, and settings in the
model tree. You use a similar search syntax for field expressions involving these nodes
as when searching on general item fields — see Basic Field Expressions.

In this section you will learn how to write basic filter queries that match on models
with a particular node or setting, as well as advanced filter queries that match on
models in which a particular node or setting is nested within other nodes.

B A S I C N O D E F I E L D E X P R E S S I O N S

You write a basic node field expression filter using an @-notation of the general form:

@node{@<field-name>:<field-value>}

with <field-name> equal to the name of one of the available fields in Table 3-5 and
<field-value> equal to the value being filtered on. Write, for example,

@node{@type:rotor}

to find all models with nodes of a type that contains the word rotor. With this, you
can, for example, find models that have a Frozen Rotor study step, or models that have
a Beam Rotor interface. Write

@node{@type:(beam AND rotor)}

to narrow the search to the latter models.

You can match a node on several properties, features, and settings by combining several
expressions within @node{…}. Write

@node{@type:(beam rotor) @comment:"Use axial vibration"}

Matching the model tree contents of models is only available when
searching the latest versions on a branch and with Item fields and content

configured — see Searching in Branches.

You can leave out the Boolean AND as Model Manager automatically adds
this whenever there is a space between two search words or two field
expressions.
T H E M O D E L M A N A G E R S E A R C H S Y N T A X | 189

190 | C H A P T E R
to find a model with a Beam Rotor interface for which a certain comment has been
written in the Comments field in the Properties window for the node — see also Phrase
Matching.

A node field expression can also be combined with item field expressions, as well as
with other node field expressions. Write

@savedBy:Alice @node{@type:(beam rotor)}

to find models with a Beam Rotor interface that were saved by user Alice.

U S I N G N A M E D N O D E S

Oftentimes you want to find models with a node of a particular type. One challenge
that you then face is that the Type field for a Node Type may match wider than you
perhaps anticipated. Writing

@node{@type:(time dependent)}

will match on Time Dependent study steps. But it will also match on Time-Dependent
Solvers, which may not be what you wanted. Write

@node{@apiClass:StudyFeature @type:(time dependent)}

to only match on the study step.

You can find the API class, as well as all other node fields, of a particular node in the
Node table in the Details dialog opened from The Contents Section. These often have
a technical name that may be challenging to remember. To help you with this, Model
Manager comes with a set of predefined named nodes that work as aliases. You will
match on only a Time Dependent study step by writing

@studyStep{@type:(time dependent)}

A complete listing of all named nodes is given in Table 3-4.

You use an API type field expression when a named node is not enough to distinguish
types. Writing

@physics{@type:(electric currents)}

will match on models with an Electric Currents interface. But it will also match on
models with an Electric Currents in Layered Shells interface. Write

@physics{@apiType:ConductiveMedia}

to only match the former physics interface.
3 : S E A R C H I N G A N D F I L T E R I N G

B A S I C S E T T I N G F I E L D E X P R E S S I O N S

You write a basic setting field expression filter using an @-notation of the general form:

@setting{@<field-name>:<field-value>}

with <field-name> equal to the name of one of the available fields in Table 3-3 and
<field-value> equal to the value being filtered on. As for node field expressions, you
can include several expressions within @setting{…}. Write, for example,

@setting{@description:Length @value:9\[cm\]}

to find all models with a setting Length having value 9[cm] — see also Escaping
Reserved Characters. When the setting is a scalar, you can also match on a range of
values:

@setting{@description:Length @scalarReal:[0.05 TO 0.15]}

You can find the available settings of a particular node under Setting in the Details

dialog opened from The Contents Section. You may find it useful, for example, to
include a filter on the Name setting field whenever the Description setting field matches
too wide.

N E S T E D N O D E A N D S E T T I N G M A T C H I N G

You can write custom filter queries that match on settings for a particular node by
nesting @setting{…} within @node{…}, or within any of the names nodes. Write

@parameters{@setting{@description:Length @scalarReal:0.09}}

to match a parameter setting on a Parameters node.

There is no limit on the number of setting field expressions you can include. Write, for
example,

@parameters{@created:[9/1/21 TO 9/31/21]
@setting{@description:Length @scalarReal:0.09}
@setting{@description:Width @scalarReal:0.05}}

to find models with a Parameters node created in September 2021, such that the node
has a Length parameter with value 9[cm] and a Width parameter with value 5[cm].

The scalar length values are written in the unit system of the model, unlike
the textual length value in the previous example that matched on the
exact string including the unit name.
T H E M O D E L M A N A G E R S E A R C H S Y N T A X | 191

192 | C H A P T E R
You can also nest two or more node field expressions inside each other. Write, for
example,

@component{@spaceDimension:2 @physics{@apiType:ConductiveMedia}}

to find all models with a 2D component that contains an Electric Currents interface.

Search Syntax Completion

You can press Ctrl+Space when the cursor is placed in the search field in the Open,
Select File, Select Model, and Model Manager windows to get completion assistance for
the Model Manager search syntax. The opened completion menu contains one or
more of the following submenus:

• Field expressions. The names of item and content filters for use in field expressions.

• Node and setting expressions. The names of nodes and settings for use in nested
content filters.

• Field values. Available field values to filter on for a specific field expression.

• Symbols. The symbols used for range expressions, subexpressions, or boolean
expressions.

The available submenus and their options depend on the text preceding the cursor
location so that a valid syntax expression can still be formulated upon completion.
While the menu is still open, you can continue to type in the search field to further
narrow down the suggested completions. Once you select something in the menu, the
current text in the search field will be adjusted accordingly.

The Model Manager search syntax supports nesting node field expressions
five levels deep in the model tree.

While Model Manager will help you with completing the beginning of a
node or setting expression, including appending the opening curly brace
symbol ({), you must also remember to end the expression with a closing
curly brace symbol (}).

If some parts of the text preceding the cursor location contain syntax
errors, Model Manager will still attempt to complete a portion of the text
“closest” to the cursor into a valid expression.
3 : S E A R C H I N G A N D F I L T E R I N G

You can write spaceDim and press Ctrl+Space, for example, to complete the expression
used to filter on all models with components having a specific space dimension:

1 Select the Field expressions > @node{@spaceDimension: option from the opened
menu.

2 Write an integer space dimension and a closing curly brace, say
@node{@spaceDimension:2}.

3 Press Enter to find all models with the sought-after space dimension.

Or, you can write @tag: and press Ctrl+Space to find models and data files by their tag
assignments. Continue to type in the search field to narrow down to a specific tag title
under Field values in the opened menu.

Completion of field values is only supported by a subset of all item and content filters.
This includes filters involving tag assignments or users, file type extension filters,
Selection Field filters of built-in type, Boolean Field filters, and date shorthands of
Date Field filters.

Search Syntax Catalog

In this section, you will find a summary of all field expressions and symbols available
in the Model Manager search syntax:

• Table 3-1 contains item field expressions that match on basic fields of models and
files.

• Table 3-2 contains node field expressions that match on node types and properties.

• Table 3-3 contains setting field expressions that match on node settings.

Many completion options support matching on both the actual value to
be completed and the option’s accompanying descriptive text while
continuing to type with the menu open. This includes, for example, the
Field expressions submenu for which you can match on either the field
identifier or one of the words in the field description.

The @tag:<field-value> filter matches on the title of assigned tags as a
Text Field filter. Use @tagKey:<field-value> if you have created
multiple tags in the database having the same title and you only want
results for one of them.
T H E M O D E L M A N A G E R S E A R C H S Y N T A X | 193

194 | C H A P T E R
• Table 3-4 contains the various expressions used to write plain and nested node and
setting filters.

• Table 3-5 contains symbols available in the search syntax.

If you are uncertain of what field values are available for a Selection Field
with built-in values, write any character and press Enter. Model Manager
will show an error dialog containing supported values.

TABLE 3-1: FIELD EXPRESSIONS FOR ITEM FIELDS.

SYNTAX TYPE DESCRIPTION

@branch:... Selection The name of the branch that an item version is saved
to. Escape spaces or other reserved characters in
names with backslash.

@commitComment: Text The commit comment written when the item
version was saved.

@computedData:... File Size The estimated disk space usage of all built,
computed, and plotted data of a model version
when stored on the file system.

@description:… Text The description of an item version.

@filename:… Keyword The filename used when exporting an item version
to the file system.

@fileType:… Keyword The file type extensions of the file resources
belonging to a file version.

@itemKey:... Selection The unique key of the item that an item version
belongs to.

@itemSaveType:… Selection The item save type of the item that an item version
belongs to.

@itemType:… Selection The item type of the item that an item version
belongs to.

@itemVersionKey:... Selection The unique key of an item version.

@itemVersionType:... Selection The item version type of an item version.

@lastModified:… Date The instant in time when an item was last modified
with respect to a branch. May be used in place of
@saved:...

@lastModifiedBy:… Selection The name or display name of the user that last
modified an item with respect to a branch. Escape
spaces or other reserved characters in names with
backslash. May be used in place of @savedBy:...
3 : S E A R C H I N G A N D F I L T E R I N G

@originItemKey:... Selection The unique key of the origin item to the item that an
item version belongs to.

@owner:… Selection The name or display name of the user that owns the
item. Escape spaces or other reserved characters in
names with backslash.

@part:... Selection A reusable model part in a model version.

@repository:... Selection The name of the repository that an item version is
saved to. Escape spaces or other reserved
characters in names with backslash.

@saved:... Date The instant in time when an item version was saved.

@savedBy:... Selection The name or display name of the user that saved an
item version. Escape spaces or other reserved
characters in names with backslash.

@size:... File size The estimated disk space usage of an item version
when stored on the file system.

@tag:… Text The titles of tags assigned to an item with respect to
a branch.

@tagKey:… Selection The unique keys of tags assigned to an item with
respect to a branch.

@title:… Text The title of an item version.

TABLE 3-2: FIELD EXPRESSIONS FOR NODE FIELDS.

SYNTAX TYPE DESCRIPTION

@apiClass:… Keyword The class of a node in the COMSOL API.

@apiType:… Keyword The node type as represented in the
COMSOL API.

@author:… Text The author property of a node.

@axisymmetric:… Boolean The axisymmetric property of a Component
or Geometry node.

@comment:… Text The comment property of a node.

@created:… Date The instant in time when a node was created.

@label:… Text The label of a node.

@lastComputationDate:... Date The instant in time when a Study node was
last solved.

@lastComputationTime:… Numeric The computation time in seconds when a
Study node was last solved.

TABLE 3-1: FIELD EXPRESSIONS FOR ITEM FIELDS.

SYNTAX TYPE DESCRIPTION
T H E M O D E L M A N A G E R S E A R C H S Y N T A X | 195

196 | C H A P T E R
@lastComputationVersion:... Keyword The COMSOL version that a Study node was
last solved in.

@lastModified:… Date The instant in time when a node was last
modified.

@lastModifiedBy:… Text The last modified by property of a node.

@name:… Keyword The name of a node.

@spaceDimension:… Numeric The spatial dimension of a Component or
Geometry node.

@tag:… Keyword The tag of a node.

@type:… Text The node type as shown in the user
interface.

@version:… Text The version property of a node.

TABLE 3-3: FIELD EXPRESSIONS FOR SETTING FIELDS.

SYNTAX TYPE DESCRIPTION

@apiValue:… Keyword The value of a setting as returned in the
COMSOL API.

@description:… Text The description of a setting.

@name:… Keyword The identifier name of a setting.

@scalarImag:… Numeric The imaginary part of a scalar setting value.

@scalarReal:… Numeric The real part of a scalar setting value.

@value:… Keyword The value of a setting.

TABLE 3-4: NODE AND SETTING EXPRESSIONS.

SYNTAX API CLASS DESCRIPTION

@commonDefinition{…} CommonFeature A common definition node.

@component{…} ModelNode A Component node.

@geometry{…} GeomSequence A Geometry node.

@material{…} Material A Material node.

@mesh{…} MeshSequence A Mesh node.

@model{…} Model The root node of a model.

@multiphysicsCoupling{…} MultiphysicsCoupling A Multiphysics coupling node.

@node{…} N/A An arbitrary node.

@nodeGroup{…} NodeGroup A Node Group.

@parameters{…} ModelParamGroup A Parameters node.

TABLE 3-2: FIELD EXPRESSIONS FOR NODE FIELDS.

SYNTAX TYPE DESCRIPTION
3 : S E A R C H I N G A N D F I L T E R I N G

TABLE 3-6: DATE SHORTHANDS IN THE MODEL MANAGER SEARCH SYNTAX.

@physics{…} Physics A Physics node.

@results{…} Results The Results node.

@setting{…} N/A A node setting.

@study{…} Study A Study node.

@studyStep{…} StudyFeature A Study Step node.

TABLE 3-5: SYMBOLS IN THE MODEL MANAGER SEARCH SYNTAX.

SYNTAX DESCRIPTION

* A wildcard in a search word.

AND Combines two field values or field expressions with a Boolean AND.

OR Combines two field values or field expressions with a Boolean OR.

NOT Negates a field value or field expression.

ANY An alias for a field value containing a single wildcard.

(…) Enclosing field values or field expressions.

{…} Enclosing expressions inside a node or setting filter.

[… TO …] A field range value.

"…" Quotation marks enclosing a sequence of search words as a phrase.

\<c> Backslash escaping one of the ten reserved search syntax characters.

SYNTAX DESCRIPTION

TODAY Shorthand for an interval covering the current day.

YESTERDAY Shorthand for an interval covering yesterday.

CURRENTWEEK Shorthand for an interval covering the current week.

CURRENTMONTH Shorthand for an interval covering the current month.

CURRENTYEAR Shorthand for an interval covering the current year.

TABLE 3-4: NODE AND SETTING EXPRESSIONS.

SYNTAX API CLASS DESCRIPTION
T H E M O D E L M A N A G E R S E A R C H S Y N T A X | 197

198 | C H A P T E R
 3 : S E A R C H I N G A N D F I L T E R I N G

 4
A d v a n c e d V e r s i o n C o n t r o l
In this chapter, you will learn how you can experiment with a collection of models
and data files in a Model Manager database by creating an alternative, perhaps
private, commit history. If your experiments are successful, you can then
incorporate the updated models and files as new versions in the main commit
history. You will also learn how to undo changes in your commit history.

In this chapter:

• Branching

• Merging

• Reverting
199

200 | C H A P T E R
B r an c h i n g
In this section you will see how you can create an alternative commit history in a
repository by creating a new branch from an existing branch, also known as branching
off from the existing branch. You may, for example, find branching useful when:

• You and your team of coworkers save your ongoing work on models and data files
on a branch private to the team, and then publish the finished work on a branch
shared with your organization. Perhaps there are multiple teams publishing to this
latter branch.

• You start a project involving one or more models and data files already present in
the database, but you are uncertain what the end result is going to be. Perhaps the
modifications you plan to make will result in new versions of the existing models, or
perhaps you want to create entirely new models. Perhaps you decide to discard the
modifications altogether. By branching, you can postpone these decisions until the
project is finished.

• You want to experiment with a single model in a way that is hidden from other users.
You therefore forgo the more lightweight, and recommended, way of Saving Drafts
of Models — opting to create a branch that uses a Private permission template,

In this section:

• The Branch as a Sequence of Commits

• Creating a New Branch

The Branch as a Sequence of Commits

An initial branch is automatically created when you add a new repository in a database.
This is especially true for the initial repository automatically added when you create a
new database. Any set of changes to items — that is, model, files, and tags — are saved
in commits on this branch. See Basic Version Control for more details.

You may think of a branch as a sequence, or history, of such commits. Each commit
identifies a collection of versions that were the most recently saved, or latest, at the

Prefer Repositories over Branches if you want to create independent silos
of models and data files.
4 : A D V A N C E D V E R S I O N C O N T R O L

time of the commit. Any particular version could have been saved in that particular
commit, or in a previous commit. Each commit also identifies the tag assignments to
items at the time of the commit. By comparing the collections of item versions, as well
as the assigned tags of items, present in two different commits, Model Manager can
infer all item changes done in-between the first commit and the second commit. See
Figure 2-2 for a schematic representation of a branch containing three commits.

Creating a New Branch

You can select any commit on a branch to create a new branch from that source
commit. This starts a new sequence of commits that runs in parallel with the first
sequence. When the branch is created, the collections of versions and assigned tags will
be identical in the source commit and on the new branch. But as soon as you start
saving new versions and reassigning tags, the branches will diverge. See Figure 4-1,
which is a continuation of Figure 2-2, for a schematic representation.

A good mental picture is to think of a tree in which the initial branch is the trunk of
the tree, with an initial commit saved at the base of the trunk (at the ground), and
successive commits stacked on top of each other. Other branches created off the main

Use The Select Location Dialog, or click branch nodes () in The
Databases Tree, to switch between branches in The Model Manager
Workspace Windows.

The Branch as a Sequence of Commits

• Prefer saving a draft over creating a new branch if all you want to do is
experiment with a model, without necessarily affecting its version
history. See Saving Drafts of Models.

• Prefer using Save as New () if you want to create a copy of a model.
Changes to the copy can later be merged to the original model via the
Comparison Result window. See Saving Models to Databases and
Comparing a Version With the Opened Model in the COMSOL
Desktop.
B R A N C H I N G | 201

202 | C H A P T E R
branch correspond to tree branches shooting out from the trunk. A repository can be
thought of as the tree itself.

Figure 4-1: A schematic representation of a repository containing two branches. A second
branch has been created off the main branch’s second commit. In the third commit on the
main branch, the model A was deleted. On the new branch’s second commit, a new version
of model A was instead saved. Browsing the latest versions on the main branch will return
model versions B3 and C1. Browsing on the new branch will return A3 and B1.

A1

B1

A2

B1

B2

T1

T1

B3

T1

C1

A2

B1

T1

A3

B1

T1
4 : A D V A N C E D V E R S I O N C O N T R O L

To create a branch from a particular source commit, do one of the following:

• Select a branch node () in The Databases Tree and click the Branch button ()
in the Repository section of the Database toolbar. The source commit is the latest
commit on the branch.

• Select a snapshot node () in The Databases Tree and click the Branch button
() in the Repository section of the Database toolbar. The source commit is the
commit that the snapshot references.

• Select a commit table row in The Commits Window and click the Branch button
() in the window’s toolbar.

In all cases, The Create Branch Dialog is opened.

P A R T I A L B R A N C H E S

You can create a partial branch that contains a subset of all items that were present in
the source commit. Select models and files in The Databases Tree or The Model
Manager Window to include those items in the new branch. Select tags to include all
items that are tagged by the selected tag. All tag assignments present in the source
commit will be mirrored on the new branch as well.

T H E C R E A T E B R A N C H D I A L O G

You create the new branch from the Create Branch dialog. The Database field shows the
database in which the branch is created, and the Repository field shows the repository
that the source commit and new branch both belong to.

1 Write the name of the new branch in the Name field.

2 Write an optional comment for the initial commit that will be made for the new
branch in the Comments field.

3 Select Item fields and content in the Search list for complete search and filter support
on the new branch; otherwise, select Only item fields — see also Searching in
Branches.

Creating a new branch is a fairly cheap operation in a Model Manager
database in terms of actual data storage. No data is copied except for the
small amount of metadata necessary for determining which items are
initially present on the branch. There is, however, a cost in terms of disk
space usage if a search index is created for the branch — see also Searching
in Branches.
B R A N C H I N G | 203

204 | C H A P T E R
4 In the Selection list:

- Select All to include all items from the source commit.

- Select Current selection to only include the items whose versions were selected
when the dialog was opened. The selected item versions are displayed in a table
under the Selection field. Select a table row and click the Exclude button () to
exclude the item from the new branch.

- Select Empty to create a branch that does not include any initial items at all.

5 You can set up permissions for the new branch in the Permissions field. This field is
only shown if connected to a server database via a Model Manager server. See
Granting Permissions.

6 Click OK to create the new branch in the database.

The created branch appears as a new child node to the Branches node in The Databases
Tree.

An empty branch is, for example, useful if you only intend to create new
models on the branch. You can later merge these models to the source
branch.

An initial commit is always made on a new branch. If you open the
Commit Settings for this commit you will see that the Changes table is,
however, empty — no new versions or tag assignments are saved in the
database in that initial commit.
4 : A D V A N C E D V E R S I O N C O N T R O L

Me r g i n g
After you have created a new branch and made changes to items on that branch, you
will eventually want to transfer these changes back to its parent branch. In this section,
you will learn how you can merge such changes to a branch.

• Merging Changes to a Target Branch

• The Merge Window

Merging Changes to a Target Branch

You merge item changes to a target branch by first selecting a source commit on a
source branch. Changes made on the source branch up to and including the source
commit will be made available for merging into the target branch. The merge itself will
create a new commit on the target branch that includes all item changes you decided
to merge.

To merge from a particular source commit, do one of the following:

• Select a branch node () in The Databases Tree and click the Merge button ()
in the Repository section of the Database toolbar. The source commit is the latest
commit on the branch.

• Select a snapshot node () in The Databases Tree and click the Merge button
() in the Repository section of the Database toolbar. The source commit is the
commit that the snapshot references.

• Select a commit table row in The Commits Window and click the Merge button
() in the window’s toolbar.

In all cases, The Merge Window is opened with a suggested target branch.

To make two branches “equal” to each other in terms of their latest item
versions, you first need to merge all changes from the latest commit on
the first branch to the second branch, and then repeat this in the opposite
direction.
M E R G I N G | 205

206 | C H A P T E R
The Merge Window

You use the Merge window to select and merge item changes made on a source branch,
up to a particular source commit, to a target branch.

The Source field shows the location corresponding to the source commit for which the
window was opened. Click the link button to select a new branch or snapshot as source
in The Select Location Dialog. The Target field shows the location corresponding to
the target branch for the merge. Click the link button to select another branch.

The window contains a table with item changes made on the source branch that are
not present in the target branch. The table columns are:

• The type column — the type of the changed item represented by an icon.

• The Source Change column — a description of the item change.

• The Conflicting Target Changes column — one or more changes on the target branch
that are incompatible, or in conflict, with the source change.

• The Selection column — an icon representing whether to include the source change
(), ignore the source change (), or if there is a conflict ().

Click the Merge Changes button () to open The Merge Dialog after you have
decided which changes to merge and resolved any merge conflicts.

T H E M E R G E W I N D O W T O O L B A R

The toolbar in the Merge window contains the following toolbar buttons:

• Click the Refresh button () to refresh the table in case any new commits have
been saved on the target branch.

• Click the Take Source button () to include a source change in the merge. This is
the default choice.

Merging Changes to a Target Branch

Resolving Merge Conflicts
4 : A D V A N C E D V E R S I O N C O N T R O L

• Click the Keep Target button () to ignore a source change, keeping the target as
is.

• Click the Merge Changes button () to open The Merge Dialog.

R E S O L V I N G M E R G E C O N F L I C T S

When you work with a collection of items with versions on multiple branches, you will
inevitably encounter conflicting changes when merging from a source branch to a
target branch. Such merge conflicts can arise, for example, when:

• Versions of the same item have been saved on both branches.

• An item has been saved on one branch but has been deleted on the other branch.

• An item has been assigned a tag on one branch, but that tag has been deleted on the
other branch.

Merge conflicts are indicated in the Selection icon column by (). Select the table
row and click the Take Source button () to overwrite all conflicting changes on the
target branch with the corresponding source change. Click the Keep Target button
() to keep the target unchanged by skipping the source change.

Merging Conflicting Model Updates
The all or nothing choice for including a source change may be too coarse when a
model has been updated on both branches. The model version on the source branch
and the model version on the target branch can contain independent updates to the
model tree, and it would then makes sense to incorporate both updates in a merged
model version on the target branch. You can proceed as follows:

1 Open the model version on the target branch in the COMSOL Desktop.

2 Select the model version on the source branch in The Model Manager Window and
click the Compare button () in the Item section of the Home toolbar.

The Comparison Result window is opened with a comparison between the model in
the COMSOL Desktop — that is, the target model version — and the selected
source model version.

3 Merge the changes you want to keep from the source model version into the opened
model using the merge functionality in the Comparison Result window.

4 From the File menu, select Save as Version ().

5 Save a new version of the model to the target branch from the Save window. This
becomes the merged model version.
M E R G I N G | 207

208 | C H A P T E R
6 Click the Refresh button () in the Merge window’s toolbar to recompute source
and target branch changes.

7 If there is still a conflict between the source branch and target branch for the model
update, which is expected, select the row and click the Keep Target button () to
keep the merged model version on the target.

If there is more than one update conflict between a model version on the source
branch and the target branch, repeat these steps for each one. Once finished, finish the
merge by clicking Merge Changes ().

T H E M E R G E D I A L O G

The Merge dialog gives you a final chance to either go through with the merge or cancel
it (except for any manually merged model versions already saved on the target branch
— see Merging Conflicting Model Updates). The Source location field shows the
location of the source commit, and the Target location field shows the target branch.
You can write an optional comment in the Comments field for the commit created by
the merge.

The table shows all changes that will be applied to the target branch by the merge
commit. These changes may differ from the original source changes shown in the
Merge window depending on which changes were included, which were skipped, and
potential merge conflict resolutions.

Click OK to merge the changes in the database.

Once a source commit has been merged into a target branch, any changes
on the source branch that were skipped will not show up in the Merge

window the next time you open the window for a newer source commit.
To include such older source changes, manually perform them on the
target branch.

You may find the number of source changes in the Merge window
overwhelming if there has been many commits on the source branch. One
solution is to first merge from an older commit on the source branch, and
then progressively work yourself up to the latest commit. One drawback
is that this requires more than one merge commit on the target branch,
which may unnecessarily pollute the commit history on that branch.
4 : A D V A N C E D V E R S I O N C O N T R O L

Re v e r t i n g
In this section, you will learn how to undo some or all of the changes saved in a
commit. This is valuable, for example, when you want restore a previously deleted
model or file, revert to the version of an item that existed before a commit, or even
revert a merge.

• Reverting Changes on a Branch

• The Revert Window

Reverting Changes on a Branch

When you revert a commit on a branch, Model Manager takes the set of changes done
in the commit and computes the corresponding reverse changes. These changes are
then saved as a new commit on the branch. A created item will be deleted, a deleted
item will be recreated, and an updated item will be replaced by its previous version. A
tag added to an item will be removed, and a tag removed from an item will be added.

Select a commit table row in The Commits Window and click the Revert button ()
in the toolbar to open The Revert Window for the selected commit.

The Revert Window

You use the Revert window to select and apply changes to a branch such that they
revert changes made in a commit.

There is a subtle difference between restoring a version — see Restore
Version — and reverting a commit in which a version was saved. When
selecting and restoring a version, you save that version as the new latest
version. When selecting and reverting a commit, you save the version that
preceded the commit’s version as the new latest version.

Reverting Changes on a Branch
R E V E R T I N G | 209

210 | C H A P T E R
The window contains a table with the reverting item changes. The table columns are:

• The type column — the type of the item to change represented by an icon.

• The Change to Apply column — a description of the reverting item change.

• The Conflicting Latest Changes column — one or more later changes on the branch
that are incompatible, or in conflict, with a reverting change.

• The Selection column — an icon representing whether to apply the reverting change
(), ignore the change (), or if there is a conflict ().

Click the Apply Revert button () to open The Apply Revert Dialog after you have
decided which changes to apply and resolved any revert conflicts.

T H E R E V E R T W I N D O W T O O L B A R

The toolbar in the Revert window contains the following toolbar buttons:

• Click the Refresh button () to refresh the table in case any new commits have
been saved on the branch.

• Click the Take Change to Apply button () to apply a reverting change to the
branch.

• Click the Keep Latest Change button () to skip a reverting change, keeping the
latest change as is.

• Click the Apply Revert button () to open The Apply Revert Dialog.

R E S O L V I N G R E V E R T C O N F L I C T S

When you revert a commit on a branch, you may discover that the reverse changes are
in conflict with the current item versions on the branch. Such revert conflicts can arise,
for example, when:

• Reverting a commit in which an item version was saved, but a newer version of the
item exists on the branch.

• Reverting a commit in which an item version was saved, but the item has been
deleted on the branch in a newer commit.

• Reverting a commit in which an item was assigned a tag, but the tag has itself been
deleted on the branch in a newer commit.

Resolving Revert Conflicts
4 : A D V A N C E D V E R S I O N C O N T R O L

Revert conflicts are indicated in the Selection icon column by (). Select the table
row and click the Take Change to Apply button () to overwrite all conflicting latest
changes on the branch with the corresponding reverting change. Click the Keep Latest

Change button () to keep the target unchanged by skipping the reverting change.

Resolving Conflicting Model Versions
Unlike merging from a source branch to a target branch, you may see less need to
manually merge the model trees of conflicting model versions when reverting a
commit on a branch — see Merging Conflicting Model Updates. Nevertheless, you
can proceed as follows:

1 Open the older model version you want to revert to in the COMSOL Desktop.

2 Select the latest model version on the branch in The Model Manager Window and
click the Compare button () in the toolbar.

The Comparison Result window is opened with a comparison between the model in
the COMSOL Desktop — that is, the older model version to revert to — and the
latest model version.

3 Merge the changes you want to keep from the latest model version into the opened
model using the merge functionality in the Comparison Result window.

4 From the File menu, select Save as Version ().

5 Save a new version of the model to the branch from the Save window — this
becomes the reverted model version. There will inevitably be Save Conflicts with the
latest model version. Choose to ignore them.

6 Click the Refresh button () in the Revert window’s toolbar to recompute
changes.

7 If there is still a conflict between the version being reverted to and the latest version
for the model, which is expected, select the row and click the Keep Latest Change

button () to keep the latest model version.

If there is more than one conflict between an older model version being reverted to
and a latest model version, repeat these steps for each one. Once finished, finish the
revert by clicking Apply Revert ().

T H E A P P L Y R E V E R T D I A L O G

The Apply Revert dialog gives you a final chance to either go through with the revert
or cancel it (except for any manually reverted model versions already saved on the
target branch — see Resolving Conflicting Model Versions). The Location field shows
R E V E R T I N G | 211

212 | C H A P T E R
the branch on which the revert is made. You can write an optional comment in the
Comments field for the commit created by the revert.

The table shows all changes that will be applied to the branch by the revert commit.
These changes may differ from the original changes shown in the Revert window
depending on which changes were included, which were skipped, and potential revert
conflict resolutions.

Click OK to apply the changes in the database.
4 : A D V A N C E D V E R S I O N C O N T R O L

 5
W o r k i n g w i t h M o d e l s i n D a t a b a s e s
This chapter showcases the Model Manager tools available in the COMSOL
Desktop modeling environment by way of a few tutorials. You will, for example,
learn how to open and save versions of models in a database, how to browse,
organize, and search models in a database, and how to use advanced version control
tools such as reverting commits and creating branches.

In this chapter:

• Example: Modeling Using Version Control

• Example: Browsing, Organizing, and Searching Models and Data Files

• Example: Using Advanced Version Control Tools in the Model Manager
213

214 | C H A P T E R
Examp l e : Mode l i n g U s i n g V e r s i o n
Con t r o l

This section introduces some of the Model Manager tools you will typically encounter
when working with models and data files stored in databases. The section uses a
streamlined version of the tutorial Example 1: Structural Analysis of a Wrench found
in Introduction to COMSOL Multiphysics. You are encouraged to first work through
that tutorial if you are new to the COMSOL Multiphysics software.

• Creating the Database

• Model Wizard Setup

• Saving a First Version

• Saving More Versions

• Working With a Draft of the Model

• Comparing Versions

• Excluding Built, Computed, and Plotted Data

• Importing Auxiliary Data to the Database

• The Model Manager Workspace

Creating the Database

You are strongly recommended to create a new local database when working through
the steps of this tutorial.

1 From the File menu, select Open From ().

2 In the Open window, choose Add Database () in the list of options.

3 In the Add Database window, choose New Local Database ().
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

4 In the New Local Database window, write Modeling Example as the name for the
new database in the Name field.

5 Click Add Database ().

A progress window is displayed informing you that the database is being created on the
file system. Once finished, the Open window is shown with the newly created database
selected in the list.

From the Open window, you can search the database for models to open. At the
moment your database is empty. Click Cancel ().

Model Wizard Setup

You will use the Model Wizard to quickly get started with a new model for the structural
integrity of a wrench.

1 From the File menu, select New. Choose Model Wizard in the New window.

2 In the Select Space Dimension window, choose 3D.

3 In Select Physics, select Structural Mechanics > Solid Mechanics (solid) (). Click Add.
Click Study () to continue.

4 In Select Study, click Stationary () under General Studies. Click Done ().

Adding Databases
E X A M P L E : M O D E L I N G U S I N G V E R S I O N C O N T R O L | 215

216 | C H A P T E R
A new 3D solid mechanics model using a stationary study is initialized in the
COMSOL Desktop.

Saving a First Version

Now is a good time to place your new model under version control by saving it to your
database.

1 From the File menu, select Save To ().

2 In the Save window, choose your newly created database, Modeling Example, in
the list of options.

The Save window shows the selected database set as the target for the save. The
header reads Save new as the model is not yet present in the database.

3 Write 3D stationary solid mechanics in the empty Title field.

4 You can write an optional comment describing what you are saving in the Comments

field. Write Setup for a 3D solid mechanics model using a stationary

study.

5 Click the Save button ().

A first version of the model is now saved in the database.

Click the root node in the Model Builder window. The Title field in the Presentation

section of the Settings window has been updated with the title you gave when saving.

Saving Models to Databases
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

Saving More Versions

The model uses a geometry that was previously created and stored in the COMSOL
native CAD format mphbin.

1 In the Model Builder window, right-click Geometry 1 () and select Import ().

2 In the Settings window for Import, from the Source list, select COMSOL Multiphysics

file.

3 Click Browse () and locate the file wrench.mphbin in the application library
folder of the COMSOL installation folder. Its default location in Windows is

C:\Program Files\COMSOL\COMSOL63\Multiphysics\applications\
COMSOL_Multiphysics\Structural_Mechanics\wrench.mphbin

Double-click to add, or click Open.

4 Click Import () to display the geometry in the Graphics window.

5 Select Geometry 1 () and click the Build All () button in the Settings window.

COMSOL Multiphysics supports automatically detecting and cleaning up small details
in an imported geometry that may prevent successful meshing and simulation. To
analyze the imported wrench geometry for such details:

1 Select Solid Mechanics (solid) ().

2 In the opened Geometry Cleanup dialog, select Clean up Automatically.

3 Once the cleanup finishes, you may see a warning that the geometry still has a few
issues in the Settings window. For the purpose of this tutorial, you can ignore this.

With a geometry added to the model, save a second version:

1 From the File menu, select Save as Version ().

The Save window opens with your database preselected in the list of options. The
header reads Save version as the model already exists in the database. The same title
you gave when saving the first version is suggested also for this second version.

2 In the Title field, change the title to Structural analysis of a wrench.

Geometry Cleanup in the COMSOL Multiphysics Reference Manual.
E X A M P L E : M O D E L I N G U S I N G V E R S I O N C O N T R O L | 217

218 | C H A P T E R
3 Write Added a geometry for a wrench in the Comments field.

4 Click the Save button ().

You now have two versions of the model saved in your database.

Add a description to your model and save a third version:

1 Click the root node in the Model Builder window.

2 In the Description field under the Presentation section, write Analysis of the

mechanical stress level in a wrench.

3 From the File menu, select Save as Version ().

4 Expand the Description section on the right in Save window. The text area is prefilled
with the same description you wrote in the Presentation section. You could have also
written your new description directly here.

5 Write Added a description in the Comments field. Click Save ().

T H E V E R S I O N S W I N D O W

You have, up to this point, saved three versions of your model in the database.

From the Windows menu () in the Layout section of Model Builder’s Home toolbar,
select Versions () to open the Versions window. You will see your three versions in
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

a table. The top table row is highlighted in bold as it is opened in the COMSOL
Desktop.

You can open an older version from the Versions window:

1 Select the bottom row in the table and click the Open button () in the toolbar.
You can also double-click the row. Select No if you are asked to save any unsaved
changes.

The first version is opened in the COMSOL Desktop. There is no Import () node
under the Geometry 1 () node, and the Description field is empty.

2 Select the middle row in the table and click Open ().

The second version is opened in the COMSOL Desktop — the import node is now
present under the geometry node, but the Description field is still empty.

3 Select the top row in the table and click Open ().

The third, and latest, version is opened in the COMSOL Desktop.

Working With a Draft of the Model

It may have crossed your mind that saving a new model version requires several steps
— especially as compared to just pressing Ctrl+S for a model opened from the file
system. You need to open the Save window, perhaps think of a comment describing
your changes (although the comment is not required), and then click the Save button
(). You might even realize after saving multiple versions that your modeling work
has gone in the wrong direction. You would then have a version history cluttered with
unwanted versions.

The Versions Window for the COMSOL Desktop Model
E X A M P L E : M O D E L I N G U S I N G V E R S I O N C O N T R O L | 219

220 | C H A P T E R
A more lightweight option when working on a model is to save a draft of the model.
You can save versions of this draft without affecting the original model. Once you are
happy with your draft, you can save it back as a new version of the original model. You
may of course choose to discard your draft altogether — instead opening the original
model and, perhaps, starting a new draft.

S T A R T I N G A D R A F T

You are going to continue the modeling of the wrench using a draft. Make sure that
you have opened the latest (top) version in the Versions window.

Add a generic steel material for the wrench and save your work as a new draft.

1 Right-click Component 1 > Materials () and select Add Material from Library ().

2 In the Add Material window, click to expand the Built-In tree node. Scroll down to
find Structural steel, right-click, and select Add to Component 1.

3 Close the Add Material window.

4 From the File menu, select Save Draft (). You can also press the keyboard shortcut
Ctrl+S.

You have created a first version of a draft of the model. You can see this draft version
as a new row in the Versions window on top of the three versions of the original model.
The draft version uses a separate pen icon () to distinguish it from the regular
versions (). Note that the regular versions belong to the original model, not the
draft itself — they are included in the table to make it easier for you to track where the
draft originated from.

Saving Drafts of Models
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

S A V I N G A D D I T I O N A L D R A F T V E R S I O N S

Specify the load applied to the wrench and save your draft changes.

1 Select Parameters 1 () in the Model Builder window.

2 In the Settings window’s Parameters table, enter these settings:

- In the Name column, enter F.

- In the Expression column, enter 150[N].

- In the Description column, enter Applied Force.

3 From the File menu, select Save Draft ().

Selecting Save Draft a second time creates a second version of your draft — the Versions

window now shows two draft versions and three regular versions. As for the regular
versions of the original model, you can inspect an older draft version by selecting the
row in the table and clicking Open ().

A draft is a model in its own right in the database — existing side by side with the
original model. You can switch back and forth between them in the COMSOL
Desktop simply by opening one or the other. To demonstrate this:

1 From the File menu, select Open From ().

2 In the Open window, choose your database, Modeling Example, in the list of
options.

The Open window shows the latest version of the draft () and the latest version
of the original model () in the search result.
E X A M P L E : M O D E L I N G U S I N G V E R S I O N C O N T R O L | 221

222 | C H A P T E R
3 Select the version of the original model () and click the Open button ().

Model Manager detects that there is an ongoing draft of the original model with a
draft version newer than the latest version of the model. A dialog is shown in which
you can choose to open that draft version instead.

4 Select the top node in the tree in the dialog and click Open to open the original
model. The latest version of the model is opened in the COMSOL Desktop —
neither the Structural steel material node nor the Parameters setting is present in the
model tree, as expected.

You could at this point continue working with the original model, thereby implicitly
discarding your draft work. The draft itself can be manually deleted from the database
at some later time.

Choosing instead to continue with your draft, open its latest version again:

1 From the File menu, select Open From ().

2 In the Open window, choose your database in the list of options.

3 Select the draft version () and click Open ().

Finish the component setup by defining boundary conditions and mesh settings:

1 Right-click Solid Mechanics (solid) () and select Fixed Constraints ().

Opening Models from Databases
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

2 In the Graphics window, rotate the geometry and select the front surface of the
partially modeled bolt. The Boundary number in the Selection list is 35.

3 Right-click Solid Mechanics (solid) () once more and select Boundary Load ().

4 Select the top socket face (boundary 111) in the Graphics window.

5 In the Settings window for Boundary Load, under Force, select Total force as the Load

type and enter -F in the text field for the z component.

6 Select Mesh 1 (). In the Settings window for Mesh, under Physics-Controlled Mesh,
select Finer from the Element size list.

7 Click the Build All () button in the Settings window.
E X A M P L E : M O D E L I N G U S I N G V E R S I O N C O N T R O L | 223

224 | C H A P T E R
With the basic setup finished, select Save Draft () in the File menu to save a third
draft version.

F I N I S H I N G Y O U R D R A F T

With the component setup finished, it is time to save your draft work back to the
original model:

1 From the File menu, select Save as Version ().

The Save window opens with your database preselected in the list. The header reads
Save version from draft as a new version of the original model will be saved from the
draft.

2 Write Finished model for the von Mises stress in a steel wrench in the
Comments field.

3 Click the Save button ().
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

Open the Versions window to see that all draft versions are now gone and replaced by
your new, fourth, version of the original model.

Comparing Versions

You can see all changes made to the model when you saved it from your draft.

1 Right-click the second row from the top in the Versions window and select Compare

().

The Comparison Result window is opened with a comparison between the current
model in the COMSOL Desktop and the selected version.

2 In the Comparison Result window, click the Expand All button () in the toolbar.

3 The expanded tree shows, for example, the force parameter, the steel material, the
mesh settings, and the two boundary conditions, added from your draft.

You can also compare two versions with each other:

The draft is automatically deleted when you save it back to the original
model. This deletion is not permanent though — see Deleting Items and
references therein to learn how you may recover your draft.
E X A M P L E : M O D E L I N G U S I N G V E R S I O N C O N T R O L | 225

226 | C H A P T E R
1 Select the second and third rows in the Versions window, right-click either one, and
select Compare ().

The Comparison Result window is updated with a comparison between these two
versions.

2 Expand the tree and select the Attributes differ child node. In the Comparing values

table below the tree you will find the description you added in the third model
version.

3 Close the Comparison Result window.

Excluding Built, Computed, and Plotted Data

Right-click Study 1 () and select Compute () to solve the model. When the
computation finishes (it may take a few minutes depending on the performance of your
computer), the von Mises stress is displayed in a default Volume plot in the Graphics

window.

Storing simulation data generated by a model can require a large amount of disk space
usage. For such data that is reproducible — such as built, computed, and plotted data
— it may be undesirable, or even impossible due to sheer size, to save it in the database.

1 Select the root node in the Model Builder window.

Comparing Models Saved in Databases
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

2 In the Settings window, under Built, computed, and plotted data in the Save section,
select Exclude in the In database list. You can leave the On file list as is.

3 From the File menu, select Save as Version ().

The Save window opens for your database with the message Built, computed,

and plotted data is excluded from the save shown in the Information

section.

4 Write Saved without generated simulation data in the Comments field.

5 Click Save ().

The model remains in its solved state in the COMSOL Desktop after the save. Go to
the File menu, select Revert to Saved (), and click Yes in the dialog that appears. The
latest saved version is opened. You may reproduce the, by now, lost solution by right-
clicking Study 1 () and selecting Compute ().

Importing Auxiliary Data to the Database

You may have noticed that, while the model is version controlled in the database, the
same is not true for the CAD input file. You can import the file to the database as
follows:

Built, Computed, and Plotted Data
E X A M P L E : M O D E L I N G U S I N G V E R S I O N C O N T R O L | 227

228 | C H A P T E R
1 From the Windows menu () in the Layout section in the Home toolbar, select
Auxiliary Data to open the Auxiliary Data window.

The Auxiliary Data window shows a table with input and output data referenced by
nodes in the model tree. In this case, a single row for the CAD file used by the
Import () node is shown.

2 Select the table row, right-click, and select Import to Database ().

3 The Import dialog shows the file wrench.mphbin in a table.

4 Click OK to import the file into the database.

Select the Import () node in the Model Builder window. The Filename field in the
Import section in the Settings window now shows a reference to the file imported into
the database.
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

Finish by saving the model to the database:

1 From the File menu, select Save as Version ().

2 Write Referenced CAD file from database in the Comments field. Click Save

().

The Model Manager Workspace

Click the Model Manager () button in the Workspace section of the Home toolbar in
Model Builder to open The Model Manager Workspace — a workspace in the
COMSOL Desktop dedicated to database-specific tasks. The COMSOL Desktop
switches to display the toolbar for the Model Manager, as well as opens windows
belonging to the workspace. You will find the latest versions of your model and CAD
file in The Model Manager Window.

The Auxiliary Data Window for Database Input and Output
E X A M P L E : M O D E L I N G U S I N G V E R S I O N C O N T R O L | 229

230 | C H A P T E R
To learn more on what you can do in the workspace, you can, for example:

• Select the model and expand the model tree in The Contents Section of The
Settings Window. You will find that you can browse the content of a model without
opening it.

• Search for your model by applying various Item and Content Filters, for example, a
Physics filter on a Solid Mechanics interface () or a Parameter filter for the
applied force of 150[N].

• Right-click the model and select References () to see the database relationship
between the model and the CAD file in The References Window.

• Right-click the CAD file and select Versions () to see all versions of the file —
currently only one — in The Versions Window.

• Right-click the model and select Commits () to open The Commits Window.
Select the third table row from the top. In the Settings window, you will see details
on the commit in which a new version of the original model was saved from your
draft, and the draft itself was deleted.

This concludes this introductory tutorial. You are encouraged to further explore the
Model Manager workspace by working through the remaining example tutorials in this
chapter.
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

Examp l e : B r ow s i n g , O r g an i z i n g , a nd
S e a r c h i n g Mode l s a nd Da t a F i l e s

In this tutorial section, you will learn how you can browse and search for models and
data files stored in a database using the Model Manager search functionality. You will
also learn how you can assign tags to your models and data files to achieve better
organization in the database, thereby making it easier to retrieve these items in the
future. The tutorial uses a demo database containing models and data files imported
from the COMSOL Application Libraries. You can download and open this local
database from within the COMSOL Desktop environment.

• Downloading the Demo Database for Model Manager

• Searching and Browsing the Demo Database

• Using a Tag Tree for Organization and Retrieval in a Database

• Creating and Assigning Tags

• Searching on Model Contents

• Using the Model Manager Search Syntax

Downloading the Demo Database for Model Manager

To add the demo database for Model Manager to the COMSOL Desktop, select
Download Demo Database for Model Manager () in the File > Help menu. The database
is downloaded as a compressed archive from the COMSOL web site and unpacked to
the default Directory for local databases as set in the Preferences window — see also New
Local Database. Once finished, The Model Manager Workspace is automatically
opened with the demo database preselected in the Database section in the Home

toolbar.

You can also manually download the demo database directly from the
COMSOL web site — see the instructions on https://www.comsol.com/
model/demo-database-for-model-manager-104691. This is useful if you,
for example, want to keep a pristine backup of the database for future
reference once you have finished the tutorials in this chapter.
E X A M P L E : B R O W S I N G , O R G A N I Z I N G , A N D S E A R C H I N G M O D E L S A N D D A T A F I L E S | 231

232 | C H A P T E R
Searching and Browsing the Demo Database

The demo database contains a few thousand items that have been imported to the
database from files found in the COMSOL Application Libraries. These are files you
can use, for example, to learn how to build models in the COMSOL Desktop
modeling environment or use as templates for your own simulation models and
applications. This tutorial shows how to use these models and data files as an example
of a larger database in which the Model Manager tools for browsing, searching, and
organizing items become useful.

The Model Manager window lists these models and data files in a table. If you scroll
down the table, you will notice that the table only contains the first 100 items in the
database sorted alphabetically on their titles. This cutoff is an optimization to not cause
unnecessary data traffic between the COMSOL Desktop and the database —
something that may be especially important when connected to a Model Manager
server over the network.

The Application Libraries Window in the COMSOL Multiphysics
Reference Manual
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

Click the Show More button () in the toolbar to append the next 100 items to the
bottom of the table. You can repeat this as many times as you like until all items found
in the database have been appended to the table.

You use the Model Manager window to find models and data files in the database by
writing search terms in the text field above the table.

1 Write busbar and click Search. You can also press Enter.

The table is updated to only show the items whose title, description, assigned tags,
or filename fields match the word busbar. In this case, the number of search results
is less than 100 so the Show More button () is disabled.

2 Write bus and click Search.

The search terms you write in the text field will only match complete words by
default. In this case, you get zero results as there are no items with the word bus in
the searched item fields. You can append a wildcard asterisk character to match
words that start with a search term. Write for example bus* to get search results.

3 Write electrical heating and click Search.

When you write multiple search terms separated by spaces, the search will match on
all terms using Boolean AND-logic. In this case, you find all items for which both the
word electrical and the word heating is found in the searched item fields.

Select the Thermal Analysis of a Bipolar Transistor model () in the table. The Settings

window updates to show various metadata fields for this model. You will find that the
Description field for the model contains the two search words electrical and heating,
although not next to each other.

You can require that all search terms must match as a sentence by enclosing the search
terms with quotations. Write "electrical heating" in the text field and click Search.
The Thermal Analysis of a Bipolar Transistor model () is now no longer present in
the search result.

Click the Reset button () to clear the text field and restore the search to match all
models and data files in the database.

The default behavior in the Model Manager window is to search the latest versions of
items. This is also the version shown in the Settings window when you select a model

The Model Manager Window
E X A M P L E : B R O W S I N G , O R G A N I Z I N G , A N D S E A R C H I N G M O D E L S A N D D A T A F I L E S | 233

234 | C H A P T E R
or data file in the search result table. From the Settings window, you can, for example,
see the point in time when the version was saved in the Saved field, the name of the
user that saved the version in the Saved by field, and the title of the version in the Title

field.

1 Write busbar in the text field again and click Search.

2 Select the Atmospheric Corrosion of a Busbar model () in the search result table.

In the Contents section in the Settings window, you can explore the model tree of
the model as it looked when the version was saved to the database. Expand some of
the nodes in the tree to discover that this is a model with a 3D component node
containing three material nodes and two physics interface nodes.

From the Contents tree, you can insert components, geometry parts, materials,
parameters, and many other nodes into the model currently opened in the
COMSOL Desktop using the Insert into Model button (). You can also select a
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

node and click Open Node () to open the model with the node selected in the
Model Builder window.

3 Select the atmospheric_corrosion_busbar_parameters.txt file () in the search
result table.

This is a file containing parameters that can be used in a Parameters node in the
Model Builder window. You can double-click the table row in the Model Manager

window to preview the data file with the default application used for a text file on
your computer. The Settings window shows, for example, the file size when the file
is stored on a file system.

4 In the Description field in the Settings window, write Parameters for modeling
atmospheric corrosion of a busbar. Click the Save button ().

The Save File dialog is opened with a suggested save comment.

5 Change the suggested save comment to Updated the file description.

6 Click OK to save the changed description in a new version of the data file.

The Saved and Saved by fields are updated in the Settings window to reflect the new
latest version. The Model Manager window is, however, not automatically updated.
E X A M P L E : B R O W S I N G , O R G A N I Z I N G , A N D S E A R C H I N G M O D E L S A N D D A T A F I L E S | 235

236 | C H A P T E R
Click the link text informing you that the current search result is out of date at the
bottom of the window to refresh the search result.

7 Select busbar_assembly.iam () in the search result table.

This is a fileset, an item containing multiple data files that are version controlled as
a collective whole. In this case, the data is a CAD assembly containing a main
assembly file and several component files. You can see the file contents of the fileset
in the Contents section in the Settings window.

8 Click the Reset button () to reset the search result.

The Settings window is where you primarily view and update items in a Model Manager
database. When you click the Save button () in the top toolbar, a new version is
saved using the current values found in the various fields in the window. You can, for
example, change the title or description of an item, update a model from an MPH-file
on your computer, or update the contents of a file or fileset using data files on your
computer. The Settings window is also where you update other types of objects found
in a database.

A P P L Y I N G B A S I C F I L T E R S

Writing search terms in the text field in the Model Manager window is often the quickest
way of finding a particular model or data file given that you know, for example, its title.
As a complement to this, you can apply separate search filters.

1 Click the Add Filter button () in the toolbar of the Model Manager window and
select Filename ().

The Filter dialog is opened enabling you to apply a filter on the filename used by a
model or data file when exported to the file system.

2 In the Keyword field, write busbar.mph. Click OK.

The search result contains a single model. Select the model and verify that the
Filename field in the Settings window indeed has the expected value.

The Settings Window
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

A filter on a filename must include the file extension to return any matches in the
search result. Alternatively, you can use a wildcard in the filter:

1 Click on the busbar.mph filter pill () and select Edit ().

2 In the Keyword field, change to busbar.

3 Select Prefix Match under Options to automatically append a wildcard asterisk
character to the searched value. Click OK.

The search result contains multiple models and data files, all with a filename starting
with busbar.

4 Click on the busbar* filter pill () and select Remove () to remove the filter.

As you may have previously noticed, writing busbar in the text field and clicking
Search () led to a search result containing items that did not have that particular
word in their titles. Instead the word busbar was found in the description or assigned
tags of the items. You can address this by applying an explicit filter on the title field.
Click the Add Filter button () and select Title (). In the Filter dialog, write
busbar in the Text field. Click OK. The search result now only contains models and
data files with the word busbar in their titles.

You can add as many filters as you like. Click the Add Filter button () in the toolbar
again and select Item Version Type (). Select the File and Fileset checkboxes. Click
OK. The search result is further reduced to only contain data files.

Click the Reset button () to reset the search result.
E X A M P L E : B R O W S I N G , O R G A N I Z I N G , A N D S E A R C H I N G M O D E L S A N D D A T A F I L E S | 237

238 | C H A P T E R
Using a Tag Tree for Organization and Retrieval in a Database

There are various ways a user of the COMSOL Multiphysics software may organize
their simulation work when relying solely on the file system for storage. Perhaps they
have set up a folder structure containing their MPH-files and associated data files. The
files are maybe placed in various subfolders corresponding to different projects (in a
generic sense). Perhaps there is a shared folder with data files used as input in several
models and in different projects. There could also be a template folder with a few
models containing some common setups and to be used as starting points for new
projects. Version control of files could be achieved via a strict naming convention: say
model_v1.mph, model_v2.mph, model_v3.mph, and so on and data_file_v1.txt,
data_file_v2.txt, data_file_v3.txt, and so on. To keep track of the ongoing
work, each series of version-controlled MPH-files could perhaps have an associated
work log file that describes what was changed between each version. Each data file
might have an associated used-by text file, containing a list of MPH-files known to use
this particular data file as input (or there could a be single spreadsheet document
containing a table with all such relations).

The Model Manager tools in the COMSOL Desktop modeling environment helps you
with these organizational and version-control aspects of your simulation work by, for
example, keeping a version history of items, automatically keeping track of references
between items, and enabling you to save comments, descriptions, and other metadata
with your items. One such organizational metadata is the concept of assigning tags to
items, which is the Model Manager analogue to placing such items in folders on your
computer. Much like folders on the file system, tags can be assigned to other tags,
resulting in a tag tree structure of tags, models, and data files.

The demo database for Model Manager already contains such a tag tree. These tags
were automatically created from the corresponding folders that contained the models
and data files in the COMSOL Application Libraries when these files were imported
into the database.

The folder structure in the COMSOL Application Libraries, and thus the
resulting tag tree in the demo database for Model Manager, is heavily
influenced by the COMSOL product suite itself — with emphasis on the
available add-ons and interfacing products, and their associated model
tutorials. The tag structure you create in your own Model Manager
databases are likely to show little resemblance to this tree.
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

You can view the tag tree from the Model Manager window by switching from the Table
View to the Tree View. While the former view is useful when you quickly want to find
models and data files given a specific set of search and filter criteria, the latter is more
suited to browsing the items in the database without having a particular model or data
file in mind.

1 In the Model Manager window, click the Tree button () in the toolbar.

The Model Manager window switches to show a tree of tags (). There are about
50 tags at the top level, with several hundred more tags found under these top tags.

2 Expand the tags ACDC Module > Tutorials, Cables. You will find about 40 items under
the last tag tree node. In the Model Manager database, these items are all assigned
a tag with title Tutorials, Cables. The Tutorials, Cables tag is itself assigned the ACDC

Module tag. The number of items found under each tag tree node in the search result
is written within parentheses next to the tag’s title.

3 Write tutorials, cables in the text field and click Search. The tree only shows
the items assigned the tag, the Tutorials, Cables tag itself, and the ACDC Module tag.

Punctuation characters, such as commas, are ignored when searching in a Model
Manager database. Write tutorials cables to get the same search result.
E X A M P L E : B R O W S I N G , O R G A N I Z I N G , A N D S E A R C H I N G M O D E L S A N D D A T A F I L E S | 239

240 | C H A P T E R
4 Write acdc module and click Search. The search result contains all items found
under the ACDC Module tag. You may be surprised, however, to discover a few other
tags on the top level in the tag tree.

5 Expand ACDC Module > Electromagnetics and Optimization. One of the tagged items
is the Topology Optimization of a Magnetic Circuit model (). Also expand Acoustics

Module > Optimization and notice that the same model is in fact also found under
these latter tags.

You can assign multiple tags to the same item in a Model Manager database. In this
case, Model Manager discovered during the import that the model Topology

Optimization of a Magnetic Circuit was stored as identical MPH-files in multiple
folders in the COMSOL Application Libraries. Rather than importing duplicate
models, a single model was imported and assigned multiple tags.

6 Write topology optimization magnetic circuit and click Search. You will
discover that the model, together with a few other items, was assigned three
different tags during the import.

7 Click the Reset button () to clear the current search terms and restore the tag
tree. Click the Table button () to switch back to the Table View.

B R O W S I N G T H E T A G T R E E S O F M U L T I P L E D A T A B A S E S

The Model Manager window enables you to search and browse a specific branch in a
specific repository in a Model Manager database. If you would prefer to browse
multiple branches in different repositories, and perhaps in different databases, at once,
you can use the Databases window.

1 In the Database toolbar, in the Database section, click the Databases button ().

The Databases window opens next to the Model Manager window. The window
shows all databases that you have added to the COMSOL Desktop as a tree.
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

2 Expand the Main () branch node for the demo database.

The same tag tree available in the Model Manager window is shown as a subtree to
the branch node. Unlike the Model Manager window, however, there is no search
functionality available in the window.

3 If you have added any other databases than the demo database, you are encouraged
to explore their database subtrees as well. This includes, for example, the database
created in the tutorial Example: Modeling Using Version Control.

4 Click the Databases button () again to close the Databases window.

The Databases window is also where you perform more advanced database operations
including, for example, creating and merging branches or managing users and groups
in a Model Manager server database.

Creating and Assigning Tags

The tags in the demo database were all created from folders on the file system. You can
also create new tags directly in the database and assign them to your models and data
files.

The Databases Window
E X A M P L E : B R O W S I N G , O R G A N I Z I N G , A N D S E A R C H I N G M O D E L S A N D D A T A F I L E S | 241

242 | C H A P T E R
1 Write tutorials in the text field in the Model Manager window and click Search.

The search result contains about 500 items, all somehow related to various
modeling tutorials for the COMSOL Desktop modeling environment

2 Click the Tree button () in the toolbar to show the tag tree.

3 Browse the tree by expanding some of the tag tree nodes. You will quickly discover
that the various tutorial models are spread out over a multitude of tags with various
tutorial-related titles.

You are going to create a new tag in the database that you will assign to all models used
in tutorials. Having such a tag will make it easier to quickly find all tutorials in the
future.

1 Click the Table button () to switch back to the Table View.

2 Click the Add Filter button () in the toolbar and select Item Version Type ().

The Filter dialog is opened enabling you to apply a separate filter on the types of item
versions to include in the search result.

3 In the Filter dialog, select the Model checkbox. Click OK.

The search result is reduced to about 200 models.

1 Repeatedly click the Show More button () in the toolbar until all models have
been appended to the table.

2 Select one of the table rows and press Ctrl+A to subsequently select all table rows.

3 In the Home toolbar, in the Database section, click the New Tag button ().

The New Tag dialog is opened with the checkbox Add to selected models and files

already selected. The dialog enables you to create a new tag and simultaneously
assign the tag to the current selection of models and data files in the Model Manager

window.
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

4 Write Modeling Tutorials in the Title field. Click OK.

The save takes as few seconds as Model Manager makes the new tag assignment
available for searching and filtering.

5 At the bottom of the Model Manager window, click the link text informing you that
the current search result is out of date.

The current search is reloaded. Notice that the Tags column contains your new tag
assigned to all items in the search result.

6 Click the Reset button () to clear the current search term and filter. Click the Tree

button () in the toolbar to switch to the Tree View. Expand the Modeling

Tutorials tag tree node to find all tutorial models.

The Model Manager window shows the first 100 items under a tag tree node. Expand
the Show More tree node () to reveal the next 100 items.

7 Click the Table button () to return to the Table View.

With the new tag for modeling tutorials in the database, it is a simple matter of quickly
finding such models by applying a tag filter.

Assigning Tags to Items
E X A M P L E : B R O W S I N G , O R G A N I Z I N G , A N D S E A R C H I N G M O D E L S A N D D A T A F I L E S | 243

244 | C H A P T E R
1 Click the Add Filter button () in the toolbar and select Tag ().

The Filter dialog is opened enabling you to apply a separate filter on the assigned
tags of items to include in the search result.

2 Write modeling in the text field above the tag tree to filter the available tags on their
titles.

3 Select the Modeling Tutorials checkbox and click OK.

The search result only includes the models that are assigned the Modeling Tutorial

tag (). From here one can continue to drill down in the search result by writing
search terms or applying additional filters.

4 Click on the Modeling Tutorials filter pill () and select Remove () to remove
the filter.

In this case, you could have also found all tutorial models by simply writing modeling

tutorials in the text field and clicking Search. But for tags whose titles are likely to
also appear in the titles or descriptions of model and data files, using an explicit Tag

filter () is a better strategy.
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

A S S I G N I N G E X I S T I N G T A G S T O I T E M S

The tags in the demo database are all of a purely descriptive nature related to what the
models and data files contain. You can also use tags for simple project and workflow
management.

1 Click the New Tag button () in the Database section in the Home toolbar.

2 In the Title field, write Projects.

3 Make sure that the checkbox Add to selected models and files is cleared. Click OK.

A new tag that can be used to group models and data files involved in various
simulation projects is created in the database.

1 Click the New Tag button () again.

2 In the Title field, write In Progress.

3 Click the Parent tags tab.

A tag tree is shown enabling you place the new tag under an existing tag.

4 Find and select the Projects tag () — for example by typing projects in the text
field above the tree.

5 Click OK to create the tag.

For the purpose of this part of the tutorial, assign the In Progress tag to a few select
models:

1 Write electrical heating in the Model Manager window and click Search.

2 Select one of the table rows and press Ctrl+A to subsequently select all table rows.

3 In the Home toolbar, in the Database section, click the Set Tags button ().

The Set Tags dialog is opened enabling you to set the assigned tags of one or more
items. You will notice that some of the checkboxes in the tag tree have an
indeterminate selection. These are tags that are assigned to some, but not all, of the
items. Leaving these indeterminate checkboxes as-is means that these assignments
will not be modified when you click OK.

4 Find and select the In Progress tag — for example by typing progress in the text
field above the tree.

5 Click OK to assign the In Progress tag to the items.

Much like the modeling tutorials, you can now find these models and data files by
searching on the tag title or by applying the tag as a filter. Perhaps you use the In

Progress tag (), for example, as a way of signaling to your coworkers that you are
E X A M P L E : B R O W S I N G , O R G A N I Z I N G , A N D S E A R C H I N G M O D E L S A N D D A T A F I L E S | 245

246 | C H A P T E R
currently working on updates to these models, which could be a more lightweight
alternative to setting restrictive permissions for the models.

A S S I G N I N G T A G S W H E N S A V I N G M O D E L S

So far you have worked exclusively with tags from the Model Manager workspace. You
can also assign tags directly when saving a model version from the Save window. To this
end, create a new blank model in the COMSOL Desktop to act as a placeholder for a
model tutorial.

1 From the File menu, select New. Click Blank Model ().

2 From the File menu, select Save To ().

3 In the Save window, choose the demo database in the list of options.

4 In the Title field, write My Tutorial.

5 In the Comments field, write A new model tutorial.

The Tags section in the Save window shows the tags assigned to the model, which in
the present case are none.

1 Click the Add Tag button ().

2 Write Modeling Tutorials and press Enter.

The Modeling Tutorials tag is added as a tag pill in the Tags section.

3 Repeat this also for the In Progress tag.

You can also create a new tag in the database from the Save window.

1 Click the New Tag button () to open the New Tag dialog.

2 Write Tutorial Project in the Title field.

3 On the Parent tags tab, select the Projects tag in the tag tree.

4 Click OK.

Adding and Removing Tag Assignments
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

With the three tags added to the Tags section, you are ready to save the new model in
the database. Click Save ().

Return to the Model Manager workspace. Find and select the new model in the Model

Manager window — for example by first searching on my tutorial. The assigned tags
are all shown as tag pills in the Tags section in the Settings window. You can also verify
that you can find the model under these three tags in the Tree View of the Model

Manager window.

Searching on Model Contents

Applying a Tag filter () in the Model Manager window is a quick and easy way of
finding models and data files in the database. This requires, however, that you have
already assigned tags to your items based on some preplanned organizational structure.
As you have already seen, you can also apply other types of search filters — including,
for example, when an item version was last saved or the user that saved that version.
You can even search on the node properties, parameters, settings, and other contents
found “deep” inside models.

1 Click the Reset button () in the Model Manager window to reset the search result.
Click the Table button () to see the Table View if not already shown.

2 Click the Add Filter button () in the toolbar and select Space Dimension ().

The Filter dialog is opened enabling you to apply a filter on the space dimension of
components found inside models.

3 Select the 3D checkbox in the list of space dimensions.

4 Click OK to apply the filter.
E X A M P L E : B R O W S I N G , O R G A N I Z I N G , A N D S E A R C H I N G M O D E L S A N D D A T A F I L E S | 247

248 | C H A P T E R
The search result includes about 900 models. Select any one of them and verify that
the model indeed has a 3D component in the Contents section in the Settings window.

You can extend your filter to also match models with 2D components.

1 Click the 3D filter pill in the Model Manager window and select Edit ().

2 In the Filter dialog, select the 2D checkbox.

3 Click OK to apply the updated filter.

The search result count increases with a few hundred models having a 2D component.

The default behavior in the Filter dialog is to combine filter options with Boolean OR-
logic. You can update our filter to use Boolean AND-logic instead.

1 Click the space dimension filter and select Edit () again.

2 In the Options list in the Filter dialog, select the Match all terms checkbox.

3 Click OK.

Select any model in the search result and verify that the model indeed has both a 2D
component and a 3D component in the Contents section in the Settings window.

You can combine the space dimension filter with a separate filter on a physics interface.

1 Click the Add Filter button () and select Physics ().
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

2 In the text field above the tree, write solid mechanics. Click Search.

3 Select the Structural Mechanics > Solid Mechanics (solid) checkbox.

4 Click OK.

The search result only contains three models. All of them use the Solid Mechanics
interface in at least one component.

S E A R C H I N G N O D E P R O P E R T I E S

You can find models based on the properties of specific nodes in the model tree.

1 Click the Reset button () to remove all filters.

2 Write wrench and click Search.

3 Double-click the Stresses and Strains in a Wrench model () in the search result.

The model version is loaded from the database and opened in the COMSOL
Desktop. This is the same model you built in the tutorial Example: Modeling Using
Version Control.

Item and Content Filters
E X A M P L E : B R O W S I N G , O R G A N I Z I N G , A N D S E A R C H I N G M O D E L S A N D D A T A F I L E S | 249

250 | C H A P T E R
4 Right-click Component 1 () and select Properties and Comments () to open the
Properties window for the node.

5 In the Comments field in the Properties window, write A 3D component for the
structural integrity of a wrench.

6 From the File menu, select Save To ().

7 In the Comments field in the Save window, write Added a node comment for the
component for easier future retrieval.

8 Click Save () to save a new version of the model.

Return to the Model Manager workspace. You can now find this model by searching
on the node comment you wrote in the Properties window.

1 Click the Reset button () to remove the search term.

2 Click the Add Filter button () and select Node Properties > Comment ().

3 In the Filter dialog, write component structural integrity wrench in the Text

field.

4 Select the Match all terms checkbox under Options. This step is done to require that
all four words appear in the matched node comment.

5 Click OK.

The wrench model is indeed the sole search result.

Double-click the component node in the Contents section of the Settings window for
the Stresses and Strains in a Wrench model (). A Details dialog is shown containing
node properties and settings for the component. You can find your comment in the
Comment row of the Node table. Click OK to close the dialog.

Click the Reset button () to remove the comment filter.

S E A R C H I N G P A R A M E T E R S E T T I N G S

The model for the structural integrity of a wrench uses an Applied force parameter for
the total load on the wrench, in this case set to 150N. You can search for other models
using the same parameter and force range.

1 Click the Add Filter button () and select Parameter ().

All node and setting values shown in the Details dialog for a node in the
Contents section can be applied as a filter in the Model Manager search
functionality. See Content Filters for further details.
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

2 In the Description field, write applied force.

3 Select the Match all terms checkbox under Options.

4 Write 100 in the From field and 200 in the To field.

5 Click OK.

There are two models in the search result. Select the Shape Optimization of a Wrench

model () and double-click a parameters node under Global Definitions () in the
Contents section. You will find that there is indeed a row for the Applied force with a
force value within the searched range in the Settings table.

Using the Model Manager Search Syntax

All filters that you can apply via the Filter dialog have an equivalent search syntax that
you can write directly in the text field in the Model Manager window. This syntax is
displayed under Filter query preview in the Filter dialog.

1 Click the Reset button () to reset the search result.

2 Click the Add Filter button () and select Item Version Type ().
E X A M P L E : B R O W S I N G , O R G A N I Z I N G , A N D S E A R C H I N G M O D E L S A N D D A T A F I L E S | 251

252 | C H A P T E R
3 In the Filter dialog, select the Model checkbox.

The expression under Filter query preview reads @itemVersionType:model. The
part before the colon identifies the item field to filter on; the part after the colon is
the value to filter on.

4 Select the Application checkbox.

The expression now reads @itemVersionType:(application OR model). The
expression will match any version that is either a model or an application.

5 Select the Negate match checkbox under Options.

The expression reads NOT @itemVersionType:(application OR model). The
expression will match any version that is neither a model nor an application.

6 Click Cancel to close the dialog without applying the filter.

You can try out the Model Manager search syntax in the text field.

1 Write @itemVersionType:fileset and click Search.

The search result only contains filesets. The part before the colon is case insensitive
— writing @itemversiontype:fileset yields the same result.

2 Write @itemversiontype:fileset AND @filetype:asm and click Search.

The search result contains all filesets containing a data file with a CAD assembly file
extension. Spaces are automatically interpreted as Boolean AND so you can leave out
the AND symbol in this case.

3 Write @itemversiontype:fileset @filetype:asm @title:busbar and click
Search.

The search result only contains CAD assemblies with busbar in their title.

The Model Manager search tools can also assist you with search syntax suggestions:

1 Write @item and press Ctrl+Space.

2 In the opened dialog, under Field expressions, select the @itemVersionType: - Item

version type option.

The begun field identifier is replaced with the complete @itemVersionType:

syntax.

3 Continue the syntax expression by writing file after the colon. Press Ctrl+Space
again.
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

4 In the opened dialog, under Field values, select the fileset - Fileset option.

The text completes to the proper filter syntax @itemVersionType:fileset used
to find all filesets.

The search syntax can also be used for searching model contents. You can, for example,
find the wrench model with the node comment. Write

@node{@comment:(component structural integrity wrench)}

and click Search. The Stresses and Strains in a Wrench model () is again the sole
match in the search result.

You may have noticed that these steps did not specify that the comment should appear
in a 3D component node. Write

@component{@spacedimension:3 @comment:(component structural
integrity wrench)}

and click Search. The result is the same. Change the space dimension value to 2 and
verify that you no longer get any matches.

A full treatise of the capabilities of the Model Manager search syntax is well beyond the
scope of this tutorial. You can, for example, write nested search expressions that specify
that only models with a specific component space dimension, such that the component
itself contains a particular material and physics interface, should match.

The Model Manager Search Syntax
E X A M P L E : B R O W S I N G , O R G A N I Z I N G , A N D S E A R C H I N G M O D E L S A N D D A T A F I L E S | 253

254 | C H A P T E R
Examp l e : U s i n g Ad v an c e d V e r s i o n
Con t r o l T o o l s i n t h e Mode l Manag e r

The Model Manager introduces many concepts and terms related to version control
that are new to the COMSOL Desktop modeling environment. This includes, for
example, versions, drafts, commits, branches, and snapshots. In this section, you will
become more acquainted with these concepts and terms by working through an
example tutorial. You are strongly recommended to first go through the tutorial
Example: Modeling Using Version Control if you have not already done so.

The tutorial makes use of the demo database for Model Manager provided via the
COMSOL web site. If you have not already added this database to the COMSOL
Desktop, follow the instructions in Downloading the Demo Database for Model
Manager.

• Using a Draft to Update a Single Model

• Working with Commits

• Using a Branch to Update Many Models

Using a Draft to Update a Single Model

In the tutorial Example: Modeling Using Version Control, you built a model for the
structural integrity of a wrench. That model can also be found in the demo database
for Model Manager.

1 Click the Model Manager () button in the Workspace section of the Home toolbar
in Model Builder to open the Model Manager workspace.

2 In the Database section of the Home toolbar, select the demo database for Model
Manager via the database selector expand button.

The Model Manager window is updated with a search result for the demo database.

3 Write wrench in the text field and click Search.
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

4 Select the Stresses and Strains in a Wrench model () in the table.

The Settings window is updated to show the latest version of the model. If you have
already worked through the tutorial Example: Browsing, Organizing, and Searching
Models and Data Files, this is the version in which you added a node comment to
the component node. Otherwise, it is the first version that was imported from the
COMSOL Application Libraries.

5 Expand Component 1 > Materials () in the Contents section of the Settings window
to find that the latest version of the model uses a Structural steel material.

You will make a small update to this model by changing to the low alloy steel material
Steel AISI 4340. In the process, you will encounter some new version control tools
that go beyond what you learned in the tutorial Example: Browsing, Organizing, and
Searching Models and Data Files.

1 Select Structural steel () in the Contents section and click the Open Node button
() in the toolbar below the tree.

The model version is loaded from the database and opened in the Model Builder
workspace with the Component 1 > Materials > Structural steel node () selected.

2 Right-click Component 1 > Materials > Structural steel () and select Delete ().
Click Yes in the Confirm Delete dialog.

The material node is removed from the model tree.

3 Right-click Component 1 > Materials () and select Add Material from Library ().

4 In the Add Material window, click to expand the Built-In tree node. Scroll down to
find Steel AISI 4340, right-click, and select Add to Component 1.
E X A M P L E : U S I N G A D V A N C E D V E R S I O N C O N T R O L T O O L S I N T H E M O D E L M A N A G E R | 255

256 | C H A P T E R
5 From the File menu, select Save To ().

6 In the Comments field, write Changed the material to a low alloy steel.

7 Click Save ().

A new version of the model has been saved to the database. In the tutorial Example:
Modeling Using Version Control, you saw that you could view the current version
history of the model opened in the COMSOL Desktop from the Versions window in
the Model Builder workspace. You can also view this version history from the Model
Manager workspace.

1 Open the Model Manager workspace.

2 Right-click Stresses and Strains in a Wrench in the Model Manager window and select
Versions ().

The Versions window is opened with the first table row highlighted in bold
indicating that the version is currently opened in the COMSOL Desktop. There are
three versions in total (or two if you have not gone through the tutorial Example:
Browsing, Organizing, and Searching Models and Data Files).

Imagine now that you regret saving a new version of the model with the changed
material — you would rather have kept the structural steel material. One solution is
that you open the previous version in the COMSOL Desktop and immediately save

The Versions Window
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

that as a new latest version. Yet a simpler solution is to restore the previous version
directly in the database.

1 Right-click the second table row from the top in the Versions window and select
Restore Version ().

2 In the Restore Version dialog, click OK.

The selected version is automatically restored as a new latest version in the database.

3 Click Yes when asked if you also want to open the restored version.

The selected version is opened in the Model Builder workspace.

You can verify that the opened model indeed uses the old structural steel material by
expanding Component 1 > Materials ().

You already learned in the tutorial Example: Modeling Using Version Control that a
better strategy to making changes to a model is by first creating a draft of the model.
A draft is tailor-made for the use case of performing updates to a model without
deciding upfront whether the changes are worth keeping.

1 Select Component 1 > Materials > Structural steel () and press Del. Click Yes to
delete the Structural steel material.

2 In the Add Material window, right-click Steel AISI 4340 and select Add to Component

1 to add the low alloy steel material once more.

3 Press Ctrl+S to save a draft of the model.

Open the Model Manager workspace. Click the Refresh button () in the Model

Manager window to refresh the table. You will find both the Stresses and Strains in a

Wrench regular model () and a new Stresses and Strains in a Wrench draft model
() in the search result.

An added benefit to using the Restore Version () functionality as
opposed to manually opening and saving the model in the COMSOL
Desktop is that you avoid any model migrations in case the model was
originally saved in an older version of the COMSOL Multiphysics
software.

Restore Version
E X A M P L E : U S I N G A D V A N C E D V E R S I O N C O N T R O L T O O L S I N T H E M O D E L M A N A G E R | 257

258 | C H A P T E R
1 Select the Stresses and Strains in a Wrench draft model () in the Model Manager

window.

The Versions window shows the single version of the draft model in the top table
row. For convenience, the table also contains the four versions of the regular model
that the draft originated from.

2 Select the Stresses and Strains in a Wrench regular model () in the Model Manager

window.

The Versions window shows the four versions of the regular model.

You can finish the draft work by saving the draft back as a new version of the regular
model.

1 From the File menu, select Save To ().

2 In the Comments field, write Changed the material to a low alloy steel

via a draft.

3 Click Save ().

The Stresses and Strains in a Wrench draft model () is automatically deleted and
no longer visible in the Model Manager window. Select the Stresses and Strains in a

Wrench regular model (). The Versions window shows five versions for the
model.
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

Working with Commits

At this point, you may be satisfied with the new low alloy steel material for the wrench.
But what if you realize that you wanted to perform further changes to your draft before
those changes were saved back to the regular model? You could create a new draft and
continue your work, but in the meantime the regular model would contain changes
that you are perhaps not yet prepared to share with your coworkers. You could restore
the previous version of the regular model using Restore Version () from the Versions

window, but then you would have to redo the work you did in the first draft.

Model Manager solves this issue via the concept of commits. Every time you perform
changes that involve items in a Model Manager database, all those changes are saved
as a collective whole in a commit. Each commit identifies what was changed, when
those changes were performed, and the user that performed the changes. Saving a new
version of an item is a special case of such a change. Other examples include deleting
items and assigning tags to items.

A useful property of commits is that they can be reverted. Reverting a commit means
to save a new commit in which the opposite changes to those in the reverted commit
are performed.

1 Right-click the Stresses and Strains in a Wrench regular model () in the Model

Manager window and select Commits ().

The Commits window is opened in the Model Manager workspace. The window
shows all commits in which the selected model was changed. The commits are
sorted in chronological order with the latest commit at the top.

2 Select the top table row.

The Settings window shows details for the commit in which the draft model was
saved back to the regular model. As seen in the Changes section, two item changes
were performed in this commit: a new version of the regular model () was saved
and the draft model () was deleted.
E X A M P L E : U S I N G A D V A N C E D V E R S I O N C O N T R O L T O O L S I N T H E M O D E L M A N A G E R | 259

260 | C H A P T E R
You will revert the changes made in the latest commit. This will restore the regular
model to its previous version and recover the deleted draft.

1 Select the top table row and click the Revert button () in the toolbar.

The Revert window is opened in the Model Manager workspace. The table contains
the changes that reverts the selected commit.

2 Click the Apply Revert button () in the toolbar.

The Apply Revert dialog is opened with a suggested commit comment.

3 Change to Reverted updates to model made from draft in the Comments field.
Click OK.

The reverting commit is saved to the database and the Revert window is
automatically closed.

4 Click the Refresh button () in the Model Manager window. Both the Stresses and

Strains in a Wrench regular model () and the Stresses and Strains in a Wrench draft
model () are shown in the search result.

5 Right-click the regular model and select Versions (). You can see that the Versions

window now contains a later version of the regular model than the bold-highlighted
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

one opened in the COMSOL Desktop. Select the draft model and verify that there
are two versions of the draft — these two versions are identical in content.

At this point, you could open the Stresses and Strains in a Wrench draft model ()
and continue your draft work. For the conclusion of this part of the tutorial, instead
delete the draft again.

1 Right-click the Stresses and Strains in a Wrench draft model () in the Model

Manager window and select Delete ().

The Delete Draft dialog is opened. The Item table contains the draft model, the sole
item that will be deleted.

2 Click OK to delete the draft.

You should view the list of commits in the Commits window as a history of changes
made in the database. To see the complete list of all changes going back to when the
database was created:

1 Click the Tree button () in the Model Manager window to switch to the Tree
View.

2 Right-click the Main root node () in the tree and select Commits ().

The Commits window shows the 100 most recent commits saved in the demo
database. You can select some of the table rows to see which items were involved in
each commit in the Changes section of the Settings window.

3 Click the Show More button () a few times to append older commits to the
bottom of the table — there are about 4 000 commits in total.

4 Click the Table button () in the Model Manager window to switch back to the
Table View.

Reverting

The Commits Window
E X A M P L E : U S I N G A D V A N C E D V E R S I O N C O N T R O L T O O L S I N T H E M O D E L M A N A G E R | 261

262 | C H A P T E R
B R O W S I N G A N D S E A R C H I N G W I T H R E S P E C T T O C O M M I T S

Commits serve a secondary purpose in a Model Manager database beyond grouping a
collection of changes: a commit can be used to browse and search the particular state
of your database at the time when the commit was saved.

1 Right-click the Stresses and Strains in a Wrench regular model () and select
Commits ().

2 In the Commits window, right-click the last table row at the bottom and select Search

in Commit ().

The Model Manager window is updated to show the latest item versions at the time
the wrench model was first imported in the database. Click the Reset button ().
You will notice that the database had a few thousand less items at that time than
when the original import completed.

3 Right-click the table row with the comment Changed the material to a low alloy steel

in the Commits window and select Search in Commit ().

The Model Manager window is updated to show the latest item versions at the time
when you replaced the material in the wrench model for the first time in this tutorial.

The most useful commit to search in the Model Manager window is the latest one, which
is also the default behavior. To switch back to searching with respect to this commit:
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

1 Click the link button in the upper-right corner in the Model Manager window — you
will find it above the Search button ().

The Select Location dialog is opened enabling you to select the commit location to
search with respect to.

2 Select the Main branch node () in the tree. The branch serves as an implicit stand-
in for the latest commit saved in the database.

You will return to the concept of branches later in this tutorial.

3 Click OK.

You can record a snapshot that references a particular commit in case the state of the
database holds a special meaning at the point in time when the commit was saved. One
such commit for the demo database is the last one in which a file was imported from
the COMSOL Application Libraries.

1 Click the link button in the upper-right corner in the Model Manager window.

2 Under Snapshots (), select the single leaf snapshot node () named after the
version number of the COMSOL Multiphysics software used to import the
COMSOL Application Libraries.

3 Click OK.

The Model Manager window shows the model and data file versions that were the
latest versions in the database when the demo database was initially prepared.

Restore the search in the Model Manager window by clicking the link button in the
upper-right corner in the Model Manager window and selecting the Main branch node
() in the Select Location dialog. You can also restore the search by selecting the
demo database via the database selector expand button in the Database section of the
Home toolbar.

Locations

Recording Snapshots
E X A M P L E : U S I N G A D V A N C E D V E R S I O N C O N T R O L T O O L S I N T H E M O D E L M A N A G E R | 263

264 | C H A P T E R
Using a Branch to Update Many Models

In the previous example, you used a draft to replace a material in a model. This enabled
you to do the change in isolation and at your own pace — all while leaving the main
model untouched in the interim. This strategy is the recommended approach when
working on changes to a single model, but how should you proceed if there is more
than one model you need to update? You could create drafts of all the models, do your
updates to each draft, and then save each draft back to its original model. This strategy
works in principle but is rather tedious and risks leaving the models in a half-finished
state while your work is progressing. If you later want to undo your changes, there
would potentially be a lot of cleaning up to do in the form of reverting commits.

As a concrete example, say you have a few models that all share the same CAD
geometry. Imagine that your CAD engineer colleague has sent you a new geometry
that you would like to update your models with. If the models are stored on a file
system shared with other simulation engineers, you perhaps begin by copying all the
MPH-files to a new folder on the file system. You replace the geometry in the models
using the new CAD data file, test out your changes, and then overwrite the original
MPH-files when you are satisfied with the update.

Model Manager enables you to solve such a multi-update problem for models and data
files using the concept of branches. A branch is another name for the sequence, or
history, of commits shown in the Commits window. You can create a new branch from
the initial Main branch, thereby creating an alternative history of commits. You can
think of the commits on the Main branch as the trunk of a growing tree, with the oldest
commit found at the base of the tree. The alternative commit sequences are tree
branches growing out from this tree trunk. When you save commits on such a new
branch, any changes made to models and data files are invisible to users working on
the Main branch — thereby enabling you to do your changes in isolation until you are
ready to share your work by merging the changes to the Main branch.

C R E A T I N G T H E N E W B R A N C H

As an example of working simultaneously with many model changes, you will replace
a CAD geometry used as an input file by a few models in the demo database for Model
Manager.

1 Write thermal actuator in the text field in the Model Manager window and click
Search.
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

2 Right-click the thermal_actuator.mphbin data file () and select References ().

The References window is opened in the Model Manager workspace showing three
models using the selected data file as an input file. The selected file is a CAD
geometry stored in the COMSOL native CAD format mphbin, which the models
all reference via a geometry Import node ().

You will assign a tag to the three models and the data file to collect them together in
the database.

1 Press Ctrl and select the thermal_actuator.mphbin data file () and the Thermal

actuator model () in the Model Manager window.

2 In the Home toolbar, in the Database section, click the New Tag button ().

3 In the Title field, write CAD Update Project. Leave the Add to selected models and

files checkbox selected.

4 Click OK.

A new tag is created in the database. The tag is also assigned to the CAD data file and
one of the models referencing the file.

1 Write joule heating and click Search.

2 Press Ctrl and select the Joule Heating of a Microactuator model () and the Joule

Heating of a Microactuator — Distributed Parameter Version model ().

3 In the Home toolbar, in the Database section, click the Set Tags button ().
E X A M P L E : U S I N G A D V A N C E D V E R S I O N C O N T R O L T O O L S I N T H E M O D E L M A N A G E R | 265

266 | C H A P T E R
4 In the Set Tags dialog, select the CAD Update Project tag tree node ().

5 Click OK.

You are now ready to create a new branch in your database that contains the three
models and the data file.

1 Write cad update project and click Search.

2 Press Ctrl and select the three models and the thermal_actuator.mphbin data file
() in the Model Manager window.

3 Right-click any one of the selected items and select Branch ().

The Create Branch dialog is opened with the three models and the single data file
listed in a table at the bottom of the dialog.

4 In the Name field, write CAD update to thermal actuator.

5 In the Search list, select Only item fields. This reduces the disk space used by
indexed search data at the expense of less filter capabilities on the new branch. This
is a reasonable tradeoff as the new branch will only contain four, easy-to-find, items.

6 Click OK.

You could have also right-clicked the CAD Update Project tag tree node
() in the Tree View of the Model Manager window and selected Branch

().
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

A branch containing the three models and the CAD geometry data file has been
created in the database. Click the Reset button () in the Model Manager window
— you will indeed only see four items in the search result.

An initial commit was saved to the database when the CAD update to thermal actuator

branch was created. You can see this commit as the top table row in the Commits

window. The table also includes the commits on the Main branch up to the point where
the new branch was created.

1 Click the link button in the upper-right corner in the Model Manager window — you
will find it above the Search button ().

2 In the Select Location dialog, select the Main branch node () in the tree.

3 Click OK.

The Model Manager window is updated to show the latest versions of items on the Main

branch. Also, the Commits window only shows the commits on the Main branch, not
on the CAD update to thermal actuator branch. To return to your new branch, click the
link button in the Model Manager window, select the CAD update to thermal actuator

branch node () in the tree, and click OK.

Select the top table row in the Commits window. The Settings window shows the initial
commit on the CAD update to thermal actuator branch. You will find that the Changes

section is empty as no items were changed when the new branch was created — the
latest item versions and the tag assignments on the new branch are, at least initially,
identical to those on the Main branch. You can compare this with the file system
analogy of copying MPH-files to a new location on the file system.

U P D A T I N G T H E C A D I N P U T F I L E

You will update the CAD data file in the database with a file found in the COMSOL
installation folder.

Branching

While the CAD update to thermal actuator branch contains copies of the
four versions selected in the Main branch, the new branch uses little
additional disk space for these copies thanks to data deduplication in
Model Manager.
E X A M P L E : U S I N G A D V A N C E D V E R S I O N C O N T R O L T O O L S I N T H E M O D E L M A N A G E R | 267

268 | C H A P T E R
1 Select the thermal_actuator.mphbin data file () in the Model Manager window.

2 In the Description field in the Settings window, write CAD geometry for a thermal
actuator.

3 In the Contents section in the Settings window, select thermal_actuator.mphbin.

4 Click the Replace button () and locate the file thermal_actuator.mphbin in
the application library folder of the COMSOL installation folder. Its default location
in Windows is

C:\Program Files\COMSOL\COMSOL63\Multiphysics\applications\
COMSOL_Multiphysics\Multiphysics\thermal_actuator.mphbin

Double-click to replace, or click Open.

5 Click Save () in the Settings window.

6 Click OK in the Save File dialog.

The CAD data file is now updated with a new version on the CAD update to thermal

actuator branch. Right-click the thermal_actuator.mphbin data file () and select
Versions () to open the Versions window for the file. The window shows all versions
of the file with respect to the CAD update to thermal actuator branch. The top table row
is the latest version on the branch, the middle row is an identical copy of the version
found on the Main branch. For convenience, the original version on the Main branch is
also appended at the bottom of the table. This last version is also the only version that
users currently browsing the Main branch sees.

U P D A T I N G T H E M O D E L S

You will continue your work on the branch by using the new CAD geometry in your
models.

1 Double-click the Thermal actuator model () in the Model Manager window.

The model is opened in the Model Builder workspace.

2 In the Model Builder window, select Geometry 1 > Import ().

3 In the Settings window, click the expand button next to Browse () and select
Browse From ().
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

4 In the Select File window, select the demo database in the list of options.

5 Click the Main link button — you will find it above the Search button ().

6 In the Select Location dialog, select the CAD update to thermal actuator branch node
(). Click OK.

7 Double-click the thermal_actuator.mphbin data file () to select it as a new input
file.

The model now references the updated CAD geometry in the new branch. Click the
Import button () to import the geometry into the model. Finish by saving a new
version of the model.

1 From the File menu, select Save To ().

The Save window is opened for the demo database with the new branch
automatically selected in the Location field.

2 In the Comments field, write Updated geometry using new CAD data.

3 Click Save ().

A new version of the model is saved to the CAD update to thermal actuator branch.
Much like the updated data file, this model version is not visible on the Main branch.

Open the Model Manager workspace and repeat the update for the remaining two
models, Joule Heating of a Microactuator and Joule Heating of a Microactuator —

Distributed Parameter Version. In the Select File window, you may use the Recent ()
list option to quickly select the thermal_actuator.mphbin data file ().

M E R G I N G T H E C H A N G E S

With the model updates completed, the final step is to merge the changes from the CAD

update to thermal actuator branch to the Main branch. This will save the latest versions
of items on the source branch as new latest versions on the target branch.

1 Open the Model Manager workspace.

2 In the Database toolbar, in the Database section, click the Databases button () to
open the Databases window.
E X A M P L E : U S I N G A D V A N C E D V E R S I O N C O N T R O L T O O L S I N T H E M O D E L M A N A G E R | 269

270 | C H A P T E R
3 Right-click the CAD update to thermal actuator branch node () and select Merge

().

The Merge window is opened in the Model Manager workspace. The window lists
all changes that will be merged from the source branch to the target branch — in
this case there are four changes corresponding to the updated items.

4 Click the Merge Changes button () in the toolbar.

5 In the Merge dialog, click OK.

The Merge window is closed and the four changes are saved as a single commit to
the Main branch.

6 Select the Main branch node () in the Databases window.

The Model Manager window is automatically updated to show the search result for
Main branch node.

The three models and the data file are now updated on the Main branch. At this point,
you could continue your work on the CAD update to thermal actuator branch, save
versions of your models, and merge any new changes to the Main branch.

Opting instead to delete the branch.

1 Right-click the CAD update to thermal actuator branch node () and select Delete

().

2 Click Yes in the Delete Branch dialog.

This concludes this tutorial on the version control tools available in the Model
Manager. While creating branches is useful when you want to make sweeping changes

Merging
5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

involving many models and data files, it comes at the cost of added complexity. You
should always consider if a draft can solve your particular version control problem
before you create a new branch.
E X A M P L E : U S I N G A D V A N C E D V E R S I O N C O N T R O L T O O L S I N T H E M O D E L M A N A G E R | 271

272 | C H A P T E R
 5 : W O R K I N G W I T H M O D E L S I N D A T A B A S E S

 6
M o d e l M a n a g e r A P I
This chapter shows how you can access Model Manager databases via the Model
Manager application programming interface (API) for use with the Java®

programming language. The Model Manager API can be used in the Application
Builder’s Method Editor, in the Java Shell window, in model files for Java®, and
from the LiveLink™ for MATLAB® interface. If you are using the Model Manager
API from the Application Builder, see also the Application Programming Guide
for useful information when creating methods for applications. See the
Programming Reference Manual to learn how to use the COMSOL API to access
models through the model object.

This chapter is organized into sections that cover various parts of the Model
Manager API. Each part typically consists of a short introduction together with one
or more examples formulated as a programming task and a code sample that solves
that specific task.

In this chapter:

• Getting Started with the API

• Version Control Management of Models and Files
273

274 | C H A P T E R
Ge t t i n g S t a r t e d w i t h t h e AP I
The Model Manager API for use with the Java® programming language enables you
to perform various tasks in a Model Manager database by writing and running custom
code. Many of the Model Manager Tools available from the COMSOL Desktop have
direct counterparts in the form of methods in the API. There is even functionality in
the API that enables you to perform tasks that are not possible in the COMSOL
Desktop. You can use the Model Manager API in the Application Builder’s Method
Editor, in the Java Shell window, in model files for Java®, and from the LiveLink™ for
MATLAB® interface.

In this section:

• Accessing the Model Manager API

• Connecting to Model Manager Databases

• Navigating a Model Manager Database

• Reading Settings

The Model Manager API is not available when running an application via
COMSOL Server™ or in a standalone application compiled using
COMSOL Compiler™.

If the Enforce security restrictions checkbox is selected on the
Security>Methods and Java Libraries page in the Preferences window, you
must select Allow access to Model Manager databases to allow the use of the
Model Manager API.

The Java documentation for all types and methods in the Model Manager
API is available at https://doc.comsol.com — see COMSOL API for use with

Java®>Java Documentation at the bottom of the page.

All code samples in this and other sections are written in a method editor
window in the Application Builder workspace. You may need to adapt the
code if used in another context.
6 : M O D E L M A N A G E R A P I

https://doc.comsol.com

• Creating and Updating Database Objects

• Advanced Database Operations Using Parameter Objects

• Querying Database Objects

Accessing the Model Manager API

You access the Model Manager API using the utility class DatabaseApiUtil and its
static method api. This method returns a DatabaseApi instance that is used, for
example, to list all databases configured in the COMSOL Desktop, connect to a
configured database, or to directly obtain the model version corresponding to the
model opened in the COMSOL Desktop.

E X A M P L E S

Get the model version that the model opened in the COMSOL Desktop was loaded
from. The opened model is identified by its model tag string, which should not be
confused with a tag item in a Model Manager database.

String tag = model.tag();
DatabaseApi api = DatabaseApiUtil.api();
ModelItemVersion version = api.modelVersionByModelTag(tag);

A model version contains, for example, methods for reading basic Model Settings.

Get the model version corresponding to a model location URI string. Such a string
can be obtained, for example, by selecting Copy Location () in the context menu for
a model version in the Model Manager workspace.

DatabaseApi api = DatabaseApiUtil.api();

// The dots represent further characters specific to the selected
// model version.

The Model Manager API is defined in the com.comsol.api.database

package and its subpackages. You will find the complete Javadoc for all
types and methods in these packages on the COMSOL API for use with

Java®>Java Documentation pages at the COMSOL documentation
website https://doc.comsol.com.

Items and Versions
G E T T I N G S T A R T E D W I T H T H E A P I | 275

https://doc.comsol.com

276 | C H A P T E R
String location = "dbmodel:///?..."
ModelItemVersion v = api.modelVersionByLocationUri(location);

Get the file version corresponding to a file location URI string. Such a string can be
obtained, for example, by selecting Copy Location () in the context menu for a file
version in the Model Manager workspace. You can also obtain it by selecting Copy

Location () in the Location menu() for a model tree node with a Filename field
in the Model Builder or Application Builder workspaces.

DatabaseApi api = DatabaseApiUtil.api();

// The dots represent further characters specific to the selected
// file version.
String location = "dbfile:///my_interpolation_function.txt?...";
FileItemVersion version = api.fileVersionByLocationUri(location);

A file version contains, for example, methods for reading basic File Settings, including
listing all its file resources.

Write the label of all configured databases to the Debug Log window in the Application
Builder workspace using the debugLog method from the Method Editor’s built-in
method library.

DatabaseApi api = DatabaseApiUtil.api();

QueryDatabaseConfigurationResultStream configurations = api
 .queryDatabaseConfigurations();

for (QueryDatabaseConfigurationResult config : configurations) {
 debugLog(config.label());
}

Configurations for both local databases and server databases accessed via a Model
Manager server are included in the for-loop.

Save a new version of the model opened in the COMSOL Desktop using its model tag
identifier and without providing a commit comment.

Copying Model and File Locations

Creating and Running Methods in Models in the COMSOL Multiphysics
Reference Manual
6 : M O D E L M A N A G E R A P I

String tag = model.tag();
DatabaseApi api = DatabaseApiUtil.api();
ModelItemVersion version = api.saveRegularModel(tag, null);

Connecting to Model Manager Databases

You can connect to a Model Manager database, for example, by first saving an alias for
the database via the Alias field in the Settings window and then using this alias as an
identifier in the API.

Only databases that have already been added to the COMSOL Desktop are available
from the API. For a Model Manager server database, you must also have selected the
Remember Password checkbox — either when connecting to the server database via the
Add Database window or from the Settings window for the corresponding database
configuration.

E X A M P L E S

Connect to the database with alias my-database.

DatabaseApi api = DatabaseApiUtil.api();
Database database = api.databaseByAlias("my-database");

Connect to databases by looping over all database configurations.

DatabaseApi api = DatabaseApiUtil.api();

QueryDatabaseConfigurationResultStream configurations = api
 .queryDatabaseConfigurations();

for (QueryDatabaseConfigurationResult config: configurations) {

Basic Loading and Saving of Models

Database Settings

Adding Databases
G E T T I N G S T A R T E D W I T H T H E A P I | 277

278 | C H A P T E R
 DatabaseConfigurationKey configurationKey = config
 .databaseConfigurationKey();
 Database database = api
 .databaseByConfigurationKey(configurationKey)
}

An exception is thrown if Model Manager is unable to connect to the database. This
includes, for example, if the password used to login to a Model Manager server is not
available for Model Manager.

Navigating a Model Manager Database

Starting from a connected database, you can navigate to repositories, branches, items,
and other objects stored in the database using the objects’ identifying keys. Some
common objects are also available via shortcut methods. The keys themselves are
typically obtained from individual elements in query and search results — see Querying
Database Objects — or from other database objects.

In the remainder of this section, it is assumed that all code example snippets are
preceded by the statements:

DatabaseApi api = DatabaseApiUtil.api();
Database database = api.databaseByAlias(<alias>);

with <alias> some alias for a Model Manager database.

E X A M P L E S

Get the latest versions of 100 models and files in the default repository and in the
default branch. This is the same search result you would obtain in the Model Manager

window when not writing a search term in the search field or applying any search
filters.

Repository repository = database.defaultRepository();
Branch branch = repository.defaultBranch();
SearchBranchItemResult[] result = branch
 .searchItems("")
 .toArray(100);

If you want to access the default branch in some other repository, for example, you will
first need its repository key. One way, which is rather cumbersome, is to pairwise write

Connecting to Model Manager Databases
6 : M O D E L M A N A G E R A P I

the repository keys and repository names of all available repositories in the database to
the Debug Log window in the Application Builder workspace.

for (QueryRepositoryResult r : database.queryRepositories()) {
 debugLog(r.name());
 debugLog(r.repositoryKey().value());
}

Select the key string of the desired repository in the window and press CTRL+C, or
right-click and select Copy. Paste the key string into your code by pressing CTRL+V,
or right-click and select Paste.

RepositoryKey key = RepositoryKey.of(<keyString>);

Repository repository = database.repositoryByKey(key);
Branch branch = repository.defaultBranch();

SearchBranchItemResult[] result = branch
 .searchItems("")
 .toArray(100);

If you already have a reference to some other database object in the repository, for
example a model version, you can often navigate to the repository from that object
directly.

// The modelLocationUri string could have been obtained, for
// example, using Copy Location in the Model Manager workspace.
ModelItemVersion version =
 api.modelVersionByLocationUri(modelLocationUri);

Repository repository = version.repository();

The same is true for other objects related to the model version.

// The model item that the version belongs to.
ModelItem item = version.item();

// The branch that the version was saved in.
Branch branch = version.branch();

// The latest version of the item on the branch.
BranchModelItem latest = version.branchItem();

// The commit that the version was saved in.
Commit commit = version.commit();

// The database that the version was saved in.
Database database = version.database();
G E T T I N G S T A R T E D W I T H T H E A P I | 279

280 | C H A P T E R
You may think of the model version as providing a stable “anchor” in your code from
which you can quickly navigate to other objects. This will hold true as long as the
model version is not permanently deleted in the Model Manager database.

Search for the latest version of a model item in the default repository and in the default
branch. Query for the most recently saved version in the database — in any repository
and in any branch — of the corresponding model item. Write the names of the
corresponding repository and branch the version belongs to in the Debug Log window.

Branch branch = database.defaultRepository().defaultBranch();

SearchBranchItemResult searchResult = branch
 .searchItems("My Model")
 .single();
ItemKey itemKey = searchResult.itemKey();
ModelItem modelItem = database.modelByKey(itemKey);

QueryItemVersionResult queryResult = modelItem
 .queryVersions()
 .firstOrNull();
ItemVersionKey versionKey = queryResult.itemVersionKey();
ModelItemVersion version = database.modelVersionByKey(versionKey);

debugLog(version.repository().name());
debugLog(version.branch().name());

Reading Settings

You can read individual settings values for database objects corresponding to the fields
shown in the Settings window in the Model Manager workspace. You can also retrieve
all settings values via an optimized get method on a database object — thereby
reducing network latency overhead when, for example, reading settings values from a
Model Manager server database.

E X A M P L E S

Get settings values for the model version currently opened in the COMSOL Desktop
and write them to the Debug Log window.

String tag = model.tag();
ModelItemVersion version = api.modelVersionByModelTag(tag);

Querying Database Objects
6 : M O D E L M A N A G E R A P I

debugLog(version.title());
debugLog(version.filename());
debugLog(version.description());
debugLog(formattedDateTime(version.saved()));
debugLog(version.savedBy());
debugLog(version.savedIn());
debugLog(version.owner());

// The settings values can also be retrieved collectively from
// the database via the optimized get method.
GetModelItemVersionResult result = version.get();

debugLog(result.title());
debugLog(result.filename());
// ...

The formattedDateTime method from the Method Editor’s built-in method library
converts the UNIX epoch milliseconds returned by saved to a read-friendly date and
time string.

Get settings values for a file version referenced as an output file by a table feature in
the model object.

ExportFeature f = model.result().export("table1");
String fileLocationUri = f.getString("filename");

FileItemVersion version = api
 .fileVersionByLocationUri(fileLocationUri);

debugLog(version.title());
debugLog(version.description());
debugLog(formattedDateTime(version.saved()));
debugLog(version.savedBy());
debugLog(version.savedIn());
debugLog(version.owner());

FileResourceResult fileResource = version
 .firstFileResourceOrNull();

debugLog(fileResource.path().filename());
debugLog(fileResource.size());
debugLog(fileResource.lastModified());

The previous code snippet assumed that the file version had a single file resource, that
is, it is not a fileset.
G E T T I N G S T A R T E D W I T H T H E A P I | 281

282 | C H A P T E R
Creating and Updating Database Objects

You can create new, or update existing, database objects via methods in the Model
Manager API. Such methods typically come in pairs: one simple variant that takes a few
mandatory arguments and that relies on defaults for other settings, and one advanced
variant that enables you to fully specify all settings — see Advanced Database
Operations Using Parameter Objects for further details.

E X A M P L E S

Create a new repository in the database with name My Repository. The second
argument is the comment for the first commit automatically saved to the new
repository’s default branch.

Repository repository = database
 .createRepository("My Repository", "Created a new repository.");

The comment can always be skipped when saving a commit — in the previous example
done by passing null for the second argument.

Create a new branch with name My Branch from the default branch. The third
argument is the comment for the first commit automatically saved to the new branch.

BranchKey branchKey = repository.defaultBranch().branchKey();
Branch branch = repository
 .createBranch("My Branch", branchKey, "Created a new branch.");

Create a tag in the new branch with title My Tag. Assign the new tag to a model on
the branch.

TagItemVersion version = branch
 .saveNewTag("My Tag", "Created a new tag.");

// The modelItemKey variable identifying the model item is
// assumed to be initialized elsewhere.
branch
 .modelByKey(modelItemKey)
 .assignTag(version.itemKey(), "Assigned a tag to the model.");

Update the title of the tag.

BranchTagItem branchTagItem = version.branchItem();
6 : M O D E L M A N A G E R A P I

TagItemVersion secondVersion = branchTagItem
 .updateTitle("My Renamed Tag", "Renamed the newly created tag.");

Advanced Database Operations Using Parameter Objects

The Model Manager API enables you to take further control over database operations
using so-called parameter objects. These are objects that specify all available input
options governing the corresponding database operation. This is useful, for example,
when you want to stray from default settings when creating or updating database
objects, or when you need to perform other advanced operations that would be
unwieldy to code by providing a long list of disparate arguments to an API method.

The parameter objects are created using a utility returned from the method param on
DatabaseApiUtil. For each advanced database operation in the Model Manager API,
there is a corresponding method on this utility that returns a so-called parameter
generator for the parameter object. This generator has a dual purpose: it is used for
specifying all input options and for being passed as argument to the corresponding API
method as the parameter object itself.

S Y N T A X

DatabaseApiParamGenerators param = DatabaseApiUtil.param();

<method>ParamGenerator generator = param.for<method>();

<method>ParamGenerator parameterObject = generator
 .with<parameter-option1>(<parameter-value1>)
 .with<parameter-option2>(<parameter-value2>)
 .with<parameter-option3>(<parameter-value3>);

with <method> corresponding to a method in the Model Manager API, <parameter-
optionX> the name of a parameter option, and <parameter-valueX> the value for
the parameter option. The parameter generator interface extends the parameter object

Tags are version controlled in exactly the same way as models and files.
Updating the tag is done on a specific branch and results in a new version
of the tag.

Accessing the Model Manager API
G E T T I N G S T A R T E D W I T H T H E A P I | 283

284 | C H A P T E R
interface, which means that parameterObject can be passed directly to a method in
the API expecting the latter interface.

E X A M P L E S

Create a new repository with a custom name for the repository’s initial, default,
branch.

CreateRepositoryParamGenerator p = DatabaseApiUtil.param()
 .forCreateRepository()
 .withName("My Repository")
 .withDefaultBranchName("My Main Branch")
 .withCommitComment("Created a new repository.");

Repository repository = database.createRepository(p);

Create a new branch from the specific commit that a model version was saved in.

// The modelLocationUri string could have been obtained, for
// example, using Copy Location in the Model Manager workspace.
ModelItemVersion version = api
 .modelVersionByLocationUri(modelLocationUri);

CreateBranchParamGenerator p = DatabaseApiUtil.param()
 .forCreateBranch()
 .withName("My Branch")
 .withSourceCommitKey(version.commitKey());

Branch branch = version.repository().createBranch(p);

The model version itself is used as an anchor to access the repository in which to create
the new branch — see also Navigating a Model Manager Database.

Update settings for the latest version of a model on a branch.

BranchModelItem branchModelItem = version.branchItem();
UpdateModelItemParamGenerator p = DatabaseApiUtil.param()
 .forUpdateModel()
 .withDescription("My model description.")
 .withFilename("my_model.mph");

// Passing null for the optional commit comment is allowed.
ModelItemVersion newVersion = branchModelItem.update(p, null);

Querying Database Objects

You can read data values for multiple database objects using query methods in the
Model Manager API. You have already seen examples of this for database
configurations and repositories earlier in the section. As the number of objects in a
6 : M O D E L M A N A G E R A P I

database can potentially be large, these query methods return so-called result streams
from which individual elements can be retrieved on demand. You may, for example,
build an application in the Application Builder that shows the latest couple of versions
of a model in a suitable form object. In that case, it would typically be wasteful to first
fetch data for all versions from the database in the app and then immediately discard
all but a few to show in the form object.

All result streams in the Model Manager API extend DatabaseApiResultStream.
You can read the first element from the result stream, read a fixed number of elements
from the result stream as a list or an array, or you can traverse the elements in the result
stream using loop constructs.

The elements in the result stream only contain data values — they are not a
representation of the database objects themselves. You may, for example, obtain a
result stream whose elements correspond to a mix of model versions and file versions
when querying items in the database. You can always obtain the corresponding
database object from an element using its identifying key — see also Navigating a
Model Manager Database.

E X A M P L E S

Get the first branch created in a repository by querying all branches sorted on created
date and then using the firstOrNull method on the result stream.

QueryBranchesParamGenerator p = DatabaseApiUtil.param()
 .forQueryBranches()
 .withSortByCreated();
QueryBranchResultStream resultStream = repository
 .queryBranches(p);
QueryBranchResult result = resultStream.firstOrNull();
Branch branch = repository.branchByKey(result.branchKey());

When you expect that a query should only return a single element — anything else to
be considered an error — you can use the single method on the result stream. Find
the latest version of a model with a specific filename, with the filename expected to be
unique for models on the branch.

Branch branch = database.defaultRepository().defaultBranch();

// Filters can be specified using the Model Manager search syntax.
SearchBranchItemResultStream resultStream = branch
 .searchItems("@filename:my_model.mph");

// The single-method throws if the result stream does not contain
// exactly one element.
SearchBranchItemResult r = resultStream.single();
G E T T I N G S T A R T E D W I T H T H E A P I | 285

286 | C H A P T E R
BranchModelItem branchModelItem = branch.modelByKey(r.itemKey());

You can read any number of elements from the stream into a list or an array. Read data
values for the ten most recently saved versions of a file item in a branch.

// The itemKey variable is assumed to be initialized elsewhere.
BranchFileItem branchFileItem = branch.fileByKey(itemKey);
QueryItemVersionHistoryResultStream resultStream = branchFileItem
 .queryVersionHistory();

// You can use either a list or an array depending on preference.
java.util.List<QueryItemVersionHistoryResult> list = resultStream
 .toList(10);
QueryItemVersionHistoryResult[] array = resultStream
 .toArray(10);

When you need to traverse a large number of database objects from a result stream, it
is better to use a for-each loop statement. Save the latest versions of all models from
one source database to another target database.

SearchBranchItemResultStream resultStream = sourceDatabase
 .defaultRepository()
 .defaultBranch()
 .searchItems("@itemType:model");

for (SearchBranchItemResult r : resultStream) {
 SaveModelItemParamGenerator p = DatabaseApiUtil.param()
 .forSaveModel()
 .withSourceDatabaseKey(database1.databaseKey())
 .withSourceItemVersionKey(r.itemVersionKey());

 ModelItemVersion version = targetDatabase
 .defaultRepository()
 .defaultBranch()
 .saveModel(p, null);
}

You can also use the iterator method on DatabaseApiResultStream to take
explicit control of the element traversal. With an iterator, you can, for example, fetch
the next 100 versions when building an application user interface that shows a version
history with show more functionality.

// The branch and itemKey variables are initialized elsewhere.

Searching
6 : M O D E L M A N A G E R A P I

QueryItemVersionHistoryResultStream resultStream = branch
 .modelByKey(itemKey)
 .queryVersionHistory();

// An iterator obtained when initializing some form object that
// will show the version history.
java.util.Iterator<QueryItemVersionHistoryResult> iterator =
 resultStream.iterator();

The iterator may be used in method code that runs when, for example, clicking a Show

More button in the application user interface.

int i = 0;
while (iterator.hasNext() && i < 100) {
 QueryItemVersionHistoryResult result = iterator.next();
 i++;
 // Add data to the form object...
}

You can also use the stream method on DatabaseApiResultStream if you prefer to
work directly with the Java® Stream API.
G E T T I N G S T A R T E D W I T H T H E A P I | 287

288 | C H A P T E R
V e r s i o n Con t r o l Manag emen t o f
Mode l s a nd F i l e s

The Model Manager API supports the same version control functionality for items that
is available using the Model Manager tools in the COMSOL Desktop. By combining
options on parameter objects, it is even possible to perform advanced operations that
are not easily done via the COMSOL Desktop — see Advanced Database Operations
Using Parameter Objects. This includes, for example, importing files on the file system
as new versions of existing items, importing item versions from another database, or
updating an item from a version of another, possibly unrelated, item.

In this section:

• Items and Versions

• Searching

• Basic Loading and Saving of Models

• Importing Items

• Exporting Items

• Querying Versions

• Working with Input and Output

• Advanced Save Operations for Items

Items and Versions

When working with the Model Manager API, it is beneficial to internalize the
distinction between items and the items’ versions. An item — that is, a tag, model, or
file — can have one or more item versions saved in different branches, repositories, or
even databases. The item is uniquely identified by its ItemKey. This key is preserved
by default when saving an item from one database to another database. A version of an
item belongs to a specific branch, repository, and database. Each item version is
uniquely identified by its ItemVersionKey.
6 : M O D E L M A N A G E R A P I

The items and their versions are represented by different interfaces in the Model
Manager API. For a model (with analogous interfaces for tags and files):

• ModelItem — the model item itself. May be used, for example, to query for all
versions of the model in the database, irrespective of repository and branch.

• ModelItemVersion — a specific version of the model item. Can be used to read
data values and other information related to the version, but cannot be used to save
a new version of the model item.

• BranchModelItem — a dynamic representation of the latest version of the model
item on a branch. May be used, for example, to update the model item on the
branch by saving a new latest version.

• CommitModelItem — a representation of the latest version of the model item at the
time when a specific commit was saved in a branch. The version itself may have been
saved in that same commit or in a previous commit on the branch. Can be used to
read data values and other information related to the version, but cannot be used to
save a new version of the model item.

Searching

You can search for item versions using either the Latest Versions for Location search
mode or the All Versions in Database search mode — see Searching Versions. The search
term can contain both plain search words and any number of filter expressions written
using The Model Manager Search Syntax.

E X A M P L E S

Search for the latest versions of all drafts on a branch that are assigned the tag My

Project.

SearchBranchItemResultStream resultStream = branch
 .searchItems("@itemSaveType:draft @tag:\"my project\"");

Navigating a Model Manager Database

To quickly see how to express a particular filter using the Model Manager
search syntax, specify values in the Filter dialog for that filter and inspect
the corresponding text shown under Filter query preview. See also The
Filter Dialog.
V E R S I O N C O N T R O L M A N A G E M E N T O F M O D E L S A N D F I L E S | 289

290 | C H A P T E R
Field expressions in the Model Manager search syntax are automatically combined with
AND-logic unless an explicit boolean operator is provided — see Table 3-5.

You can also write the previous code using a parameter object for which the two filters
are provided as separate string arguments to the withSearchFilters method.

SearchItemsForBranchParamGenerator p = DatabaseApiUtil.param()
 .forSearchItemsForBranch()
 .withSearchFilters("@itemSaveType:draft",
 "@tag:\"my project\"");
SearchBranchItemResultStream resultStream = branch.searchItems(p);

Search for all versions in the database that were saved with a commit comment
containing the word solved. Sort the search result on the size of Built, Computed,
and Plotted Data.

SearchItemVersionsParamGenerator p = DatabaseApiUtil.param()
 .forSearchItemVersions()
 .withSearchFilters("@commitComment:solved")
 .withSortByComputedData()
 .withSortDescending();
SearchItemVersionResultStream resultStream = database
 .searchItemVersions(p);

Basic Loading and Saving of Models

You can load a model version from a Model Manager database using its model location
URI. A loaded model can then, for example, be updated using the COMSOL API for
the model object and subsequently be saved as a new version in the database.

E X A M P L E S

Load the latest version of a model on the same branch as a fixed version using the
loadModel method from the Method Editor’s built-in method library.

// The modelLocationUri variable could have been obtained via
// Copy Location in the Model Manager workspace.
ModelItemVersion version = api
 .modelVersionByLocationUri(modelLocationUri);

BranchModelItem branchModelItem = version.branchItem();
Model m = loadModel(branchModelItem.modelLocationUri());

Advanced Database Operations Using Parameter Objects
6 : M O D E L M A N A G E R A P I

Save a regular version of a model originally loaded from the database.

ModelItemVersion version = api
 .saveRegularModel(model.tag(), "Saved a regular version.");

Save a draft version of a model originally loaded from the database.

ModelItemVersion version = api
 .saveDraftModel(model.tag(), "Saved a draft version.");

// Calling save directly yields the same result, except that
// you cannot specify a commit comment.
model.save();

Save a previously unsaved model as a new model in the database. The first version of
the model is saved to the default branch in the default repository.

ModelItemVersion version = database
 .defaultRepository()
 .defaultBranch()
 .saveRegularModel(model.tag(), "Saved a new model.");

Force the creation of a new model in the database even if the model already exists in
the database.

SaveModelItemParamGenerator p = DatabaseApiUtil.param()
 .forSaveModel()
 .withSourceModel(model.tag())
 .withTargetAsNew();

ModelItemVersion version = database
 .defaultRepository()
 .defaultBranch()
 .saveModel(p, null);

Importing Items

You can import models and files into a Model Manager database from either the file
system or another database. When importing a file from the file system, the source
location can be specified using either a regular file system path or a file scheme path.
You can also choose to either create a new item or update an existing item in the target
database.

File Schemes and File Handling in the Application Builder Reference
Manual
V E R S I O N C O N T R O L M A N A G E M E N T O F M O D E L S A N D F I L E S | 291

292 | C H A P T E R
E X A M P L E S

Import an MPH file as a new model in the database.

String filePath = "C:\\My Models\\my_model.mph";
String title = "My Model";
ModelItemVersion version = database
 .defaultRepository()
 .defaultBranch()
 .saveNewModel(filePath, title, "Imported a new model");

Update an existing model on some branch from an MPH file.

String filePath = "C:\\My Models\\my_model.mph";
UpdateModelItemParamGenerator p = DatabaseApiUtil.param()
 .forUpdateModel()
 .withSourceLocation(filePath);

// The itemKey variable is initialized elsewhere.
ModelItemVersion version = branch
 .modelByKey(itemKey)
 .update(p, "Updated model from MPH file.");

Import a whole sequence of MPH files as versions of the same model.

String[] paths = {"C:\\my-model\\v1.mph", "C:\\my-model\\v2.mph",
 "C:\\my-model\\v3.mph", "C:\\my-model\\v4.mph"};

ModelItemVersion firstVersion = branch
 .saveNewModel(paths[0], "My Model", null);
ItemKey itemKey = firstVersion.itemKey();

// Update the model item from the remaining MPH files.
for (int i = 1; i < paths.length; i++) {
 UpdateModelItemParamGenerator p = DatabaseApiUtil.param()
 .forUpdateModel()
 .withSourceLocation(paths[i])
 .withIgnoreConflicts();
 branch.modelByKey(itemKey).update(p, null);
}

If the source MPH files were exported from model versions in some other database,
you can use the withIgnoreConflicts method on the parameter generator interface
to ignore the inevitable save conflict with the latest version in the database.

Import a geometry stored in the COMSOL native CAD format mphbin.

String filePath = "C:\\my_geometry.mphbin";

// Pass null for the title argument to automatically infer the title
// from the filename.
6 : M O D E L M A N A G E R A P I

FileItemVersion version = branch
 .saveNewFile(filePath, null, "Imported CAD data.");

Import a CAD assembly with external component files as a fileset by specifying a
directory as the source.

String filepath = "C:\\My CAD files";

// The title is required since we are importing multiple file
// resources, in which case the choice of filename is ambiguous.
FileItemVersion version = branch
 .saveNewFile(filePath, "My CAD Assembly", null);

Import a file version from a source database to a target database.

// The sourceDatabaseKey and sourceItemVersionKey variables are
// initialized elsewhere.
SaveFileItemParamGenerator p = DatabaseApiUtil.param()
 .forSaveFile()
 .withSourceDatabaseKey(sourceDatabaseKey)
 .withSourceItemVersionKey(sourceItemVersionKey);
FileItemVersion version = branch.saveFile(p, null);

Save a file version using the temp file scheme.

DatabaseApiParamGenerators param = DatabaseApiUtil.param();
SourceFileParamGenerator p1 = param
 .forSourceFile()
 .withLocationModel(model.tag())
 .withLocation("temp:///my_table_data.txt");
SaveFileItemParamGenerator p2 = param
 .forSaveFile()
 .withSourceFiles(p1);
FileItemVersion version = branch.saveFile(p2, null);

The temp file scheme requires that the model tag identifier of a model is provided.
That model implicitly specifies the root directory path for the temporary files on the
file system.

Exporting Items

You can export model and file versions from the database to the file system. When
exporting a file to the file system, the target location can be specified using either a
regular file system path or a file scheme path.

Advanced Save Operations for Items
V E R S I O N C O N T R O L M A N A G E M E N T O F M O D E L S A N D F I L E S | 293

294 | C H A P T E R
E X A M P L E S

Export a model version as an MPH file to the directory C:\\My Models.

// The itemVersionKey variable is initialized elsewhere. The
// filename saved with the model version is automatically used.
ExportModelItemVersionResult result = database
 .modelVersionByKey(itemVersionKey)
 .exportToDirectory("C:\\My Models");

// The file system path to the exported MPH file.
String filePath = result.exportedLocation();

Export a model version using a custom filename and without its Built, Computed, and
Plotted Data.

// The modelLocationUri variable is initialized elsewhere.
ModelItemVersion version = DatabaseApiUtil
 .api()
 .modelVersionByLocationUri(modelLocationUri);

ExportModelItemVersionParamGenerator p = DatabaseApiUtil.param()
 .forExportModelVersion()
 .withTargetFilename("my_model_no_computed_data.mph")
 .withTargetDirectoryLocation("C:\\My Models")
 .withSourceComputedDataExcluded();
ExportModelItemVersionResult result = version.export(p);
String filePath = result.exportedLocation();

Export a file version to the root directory identified by the common file scheme.

SearchItemVersionResult result = database
 .searchItemVersions("my_geometry.mphbin")
 .firstOrNull();
database
 .fileVersionByKey(result.itemVersionKey())
 .exportToDirectory("common:///");

Unlike for example the temp file scheme, the common file scheme does not require an
associated model.

Querying Versions

Given an item in a Model Manager database, you can query different subsets of
versions associated with the item. You can, for example, query its version history with
respect to the latest version on a branch, query all versions of the item ever saved in the
database, or query versions of other items that are referenced by one of the item’s
versions.
6 : M O D E L M A N A G E R A P I

E X A M P L E S

Query the version history of a file item on the same branch as one of its file versions.

// The fileLocationUri variable is initialized elsewhere.
FileItemVersion version = DatabaseApiUtil
 .api()
 .fileVersionByLocationUri(fileLocationUri);
QueryItemVersionHistoryResultStream resultStream = version
 .branchItem()
 .queryVersionHistory();

Query versions associated with a model by including all versions of the model itself as
well as all versions of drafts created from the model.

QueryItemVersionParamGenerator p = DatabaseApiUtil
 .param()
 .forQueryItemVersions()
 .withItemVersionInclusionOptions(
 QueryItemVersionInclusionOption.INCLUDE_ANCILLARY);

// The itemKey variable is initialized elsewhere.
QueryItemVersionResultStream resultStream = database
 .modelByKey(itemKey)
 .queryVersions(p);

Search for the versions of all drafts created from a model.

// The itemKey variable for the model is initialized elsewhere.
SearchItemVersionsParamGenerator p = DatabaseApiUtil.param()
 .forSearchItemVersions()
 .withSearchFilters("@itemSaveType:draft")
 .withSearchFilters("@originItemKey:" + itemKey.value());
SearchItemVersionResultStream resultStream = database
 .searchItemVersions(p);

Query all geometry parts referenced by a model version.

QueryItemVersionReferencesParamGenerator p = DatabaseApiUtil
 .param()
 .forQueryItemVersionReferences()
 .withItemVersionReferenceTypes(
 ItemVersionReferenceType.GEOMETRYPART);

// The itemVersionKey variable is initialized elsewhere.
QueryItemVersionReferenceResultStream resultStream = database
 .modelVersionByKey(itemVersionKey)
 .queryVersionReferences(p);

Search for the latest versions of models containing reusable geometry parts.
V E R S I O N C O N T R O L M A N A G E M E N T O F M O D E L S A N D F I L E S | 295

296 | C H A P T E R
SearchBranchItemResultStream resultStream = branch
 .searchItems("@part:geometry");

Working with Input and Output

You can reference a version in the database as an input source or an output target from
a model. The referenced version itself is identified by an item version location URI.

A referenced file version is loaded on demand from the database to a temporary
working copy directory located on the computer running COMSOL Multiphysics (the
server computer when running COMSOL Multiphysics in client–server mode). Any
input read by the model, and any output written by the model, goes via files in this
directory. You save the contents of the working copy directory as a new file version in
the database by specifying the model tag identifier of the model and the location URI
of the file version.

E X A M P L E S

Set a file version containing a single file resource as an input source for an interpolation
function feature.

SearchBranchItemResult result = branch
 .searchItems("my_interpolation.txt")
 .single();
FileItemVersion version = database
 .fileVersionByKey(result.itemVersionKey());
String fileLocationUri = version
 .firstFileResourceOrNull()
 .fileLocationUri();

FunctionFeature f = model.func("int1");
f.set("source", "file").set("filename", fileLocationUri);
f.importData();

Set a fileset version containing a CAD assembly as an input source for a geometry
feature.

A location URI for a file version is written using the so-called dbfile file
scheme. A location URI for a model version does not use a file scheme.

• Copying Model and File Locations

• Loading and Saving Auxiliary Data Files Stored in Databases
6 : M O D E L M A N A G E R A P I

SearchBranchItemResult result = branch
 .searchItems("My Cad Assembly")
 .single();
FileItemVersion version = database
 .fileVersionByKey(result.itemVersionKey());

// Find the file resource corresponding to the main assembly file
// in the fileset.
String fileLocationUri = "";
for (FileResourceResult resource : version.fileResources()) {
 if (resource.path().filename().endsWith(".asm")) {
 fileLocationUri = resource.fileLocationUri();
 break;
 }
}

GeomSequence gs = model.component("comp1").geom("geom1");
GeomFeature f = gs.create("imp1", "Import");
f.set("filename", fileLocationUri);
f.importData();

Set a model version as an input source for a geometry part.

SearchBranchItemResult result = branch
 .searchItems("My Geometry Part @part:geometry").single();
ModelItemVersion version = database
 .modelVersionByKey(result.itemVersionKey());
String modelLocationUri = version.modelLocationUri();

// We assume that the geometry part has the tag identifier "part1".
String[] partTags = new String[]{"part1"};
model.geom().load(partTags, modelLocationUri, partTags);

Set a new file as the output target for a mesh export.

// Declare a file location URI for a new, but not yet created, file.
String locationUri = branch.newFileLocationUri("my_mesh.mphbin");

// Export the mesh as a working copy.
MeshSequence m = model.component("comp1").mesh("mesh1");
m.export().set("filename", locationUri);
m.export(location);

// Save the working copy to the branch as a new file version.
SaveFileItemParamGenerator p = DatabaseApiUtil.param()
 .forSaveFile()
 .withSourceItemVersionWorkingCopy(model.tag(), locationUri);
FileItemVersion version = branch
 .saveFile(p, "Saved an exported mesh.");

Set an existing file as the output target for an HTML report.
V E R S I O N C O N T R O L M A N A G E M E N T O F M O D E L S A N D F I L E S | 297

298 | C H A P T E R
SearchBranchItemResult result = branch
 .searchItems("my_report.html")
 .single();
FileItemVersion version1 = database
 .fileVersionByKey(result.itemVersionKey());
String location = version1
 .firstFileResourceOrNull()
 .fileLocationUri();

ReportFeature r = model.result().report("rpt1");
r.set("filename", location);
r.run();

SaveFileItemParamGenerator p = DatabaseApiUtil.param()
 .forSaveFile()
 .withSourceItemVersionWorkingCopy(model.tag(), location);
FileItemVersion version2 = branch
 .saveFile(p, "Updated a report.");

Advanced Save Operations for Items

The options available for the parameter objects used when saving items enables you to
perform a variety of advanced operations that go beyond what you have seen so far. A
few examples:

• You can save a new version of an item using the version of some other item as a
source. This is useful, for example, if you have previously created a new regular
model via Save as New () in the Save window but now would like to save the new
model back to its origin model.

• You can combine file resources belonging to different file versions into a new file
version. You may, for example, want to combine external components files from
different CAD assemblies into a new fileset version.

• You can save a model and multiple data files as new versions in a single commit. The
data files could, for example, be working copies containing output files exported by
the model. Saving the items collectively in a single commit enables you to easily trace
the source model version of the output files via the References window.

E X A M P L E S

Save a model loaded into COMSOL Multiphysics as a version of another model in the
database.

// The targetItemKey variable is initialized elsewhere as the
// identifying key of an existing model in the database.
6 : M O D E L M A N A G E R A P I

SaveModelItemParamGenerator p = DatabaseApiUtil.param()
 .forSaveModel()
 .withSourceModel(model.getTag())
 .withTargetItemKey(targetItemKey);
ModelItemVersion version = branch
 .saveModel(p, "Saved a model as a version of another model.");

Combine three file resources from two separate file versions into a new file.

DatabaseApiParamGenerators param = DatabaseApiUtil.param();

// The itemVersionKey1 and itemVersionKey2 variables are obtained
// elsewhere as the identifying keys of two existing file versions.
SourceFileParamGenerator p1 = param
 .forSourceFile()
 .withItemVersionKey(itemVersionKey1)
 .withFileResourcePath("casing.prt");
SourceFileParamGenerator p2 = param
 .forSourceFile()
 .withItemVersionKey(itemVersionKey1)
 .withFileResourcePath("cover.prt");
SourceFileParamGenerator p3 = param
 .forSourceFile()
 .withItemVersionKey(itemVersionKey2)
 .withFileResourcePath("stator_coil.prt");

SaveFileItemParamGenerator p = param
 .forSaveFile()
 .withSourceFiles(p1, p2, p3)
 .withTitle("My Induction Motor Assembly")
 .withTargetAsNew();
FileItemVersion version = branch.saveFile(p, "Saved a new file.");

Export a file version containing table data to a temporary file using the temp file
scheme. Append a table row to the temporary file using the writeFile method from
the Method Editor’s built-in method library. Save the updated table data as a new file
version.

String tempFilePath = "temp:///table.tmp";

// The location variable identifying the file version is
// initialized elsewhere.
FileItemVersion fileVersion = api
 .fileVersionByLocationUri(location);

FileResourcePath fileResourcePath = fileVersion
 .firstFileResourceOrNull()
 .path();

DatabaseApiParamGenerators param = DatabaseApiUtil.param();
V E R S I O N C O N T R O L M A N A G E M E N T O F M O D E L S A N D F I L E S | 299

300 | C H A P T E R
ExportFileItemVersionParamGenerator p1 = param
 .forExportFileVersion()
 .withSourceFileResourcePath(fileResourcePath)
 .withTargetLocationModel(model.tag())
 .withTargetLocation(tempFilePath)
 .withTargetWriteOptions(
 ExportFileItemVersionTargetWriteOption.REPLACE_EXISTING);
fileVersion.export(p1);

// Append a table row to the exported file.
writeFile(tempFilePath, new String[][]{{"1", "2", "3"}}, true);

// Save the updated table data as a new file version.
SourceFileParamGenerator p2 = param
 .forSourceFile()
 .withLocationModel(model.tag())
 .withLocation(tempFilePath);
UpdateFileItemParamGenerator p3 = param
 .forUpdateFile()
 .withSourceFiles(p2);

fileVersion
 .branchItem()
 .update(p3, "Appended a table row.");

Export table data from a model and then save both the model and the table data as
new versions in a single commit.

String location = branch.newFileLocationUri("my_table.txt");

ExportFeature e = model.result().export("table1");
e.set("filename", location);
e.run();

DatabaseApiParamGenerators param = DatabaseApiUtil.param();

SaveModelItemParamGenerator p1 = param
 .forSaveModel()
 .withSourceModel(model.tag());
SaveFileItemParamGenerator p2 = param
 .forSaveFile()
 .withSourceItemVersionWorkingCopy(model.tag(), location);
SaveCommitParamGenerator p = param
 .forSaveCommit()
 .withModelsToSave(p1)
 .withFilesToSave(p2);

Commit commit = branch.saveCommit(p);
6 : M O D E L M A N A G E R A P I

 7
G l o s s a r y
This Glossary of Terms contains terms related to databases and version control as
they relate to the Model Manager tools in the COMSOL Multiphysics® software
and documentation. For references to further information about a term, see the
index.
301

302 | C H A P T E R
G l o s s a r y o f T e rm s
access-control list A list of granted permissions and their grantees — that is, users and
groups — assigned to a database object.

administrator A privileged account with a Model Manager server that always passes
permission requirement checks.

auxiliary data Data that is referenced as input or output by a model in the COMSOL
Desktop environment. The data may, for example, be a version-controlled model or
data file in a Model Manager database or a file on the file system.

boolean field The type for a field whose value is either true or false.

branch A sequence of commits in a database, ordered chronologically by their commit
date to form a commit history. A special commit is the most recent one on the branch,
and the branch itself often acts as a representative of this commit. The most recent
commit, and thus the branch itself, also identifies the latest versions of items.

New branches can be created by branching off from any commit on a parent branch,
thereby starting an alternative commit history. Changes made on a new branch can be
merged back to its parent branch.

built, computed, and plotted data Generated simulation data that can be recreated
from a model as needed. Includes built geometries and meshes, computed solutions,
and plotted results.

commit A set of related item changes that have been saved to a database. The changes
may involve adding and updating items, assigning tags to items, and deleting items.
The changes are saved to the database as a “unit” and, as such, can also be reverted as
a unit.

Each commit is associated with a date and time when the changes were saved, that is
the commit date, the user that saved the changes, and an optional save comment. Each
commit also identifies the set of item versions that were the latest versions at the time
of the commit, as well as all tag assignments present at that time. Given a particular
commit, such item versions and tag assignments can be browsed and searched in the
database.
7 : G L O S S A R Y

content filter A search filter on model content — that is, node properties, parameters,
features, and other settings in the model tree of a model.

data file A version-controlled file stored in a database that is neither a model or
application file (mph) nor a physics file (mphphb). Typically abbreviated as just file in
Model Manager. Examples include CAD data, interpolation functions, plots, and
reports.

database configuration The configuration values used to connect to a local database or
a server database accessed via a Model Manager server.

date field The type for a field whose value is a date and time.

draft model An ancillary model meant for intermediate modeling work, and whose
versions are saved as a separate version history split off from that of its origin model.
Once a draft has been completed, it can be saved back as a new version of the main
model it originated from.

everyone A special group of users that all users automatically are members of. Can be
used when assigning permissions to database objects.

file A shorthand for a data file.

fileset A file version consisting of multiple file resources that are version controlled as
a collective whole in a database. This includes, for example, a CAD assembly with
multiple external component files or an HTML report with image files.

file resource Binary or text content belonging to a file version. A file version can
contain any number of file resources.

item A model, data file, or tag stored in a database.

item filter A search filter on general item settings and metadata. This includes, for
example, the time when the item version was saved, the user that saved the item
version, and the item’s assigned tags.

item save type Type distinguishing a regular model from a draft model.

item version type Type distinguishing a model, application, physics, file, and fileset in
a database.
G L O S S A R Y O F T E R M S | 303

304 | C H A P T E R
group A collection of users and other groups.

keyword field The type for a field whose value is a string. Typically found for short,
name-like search data such as filenames or node names.

local database A database stored on the same computer as the COMSOL Multiphysics
process runs on. Meant for single-user use.

(commit) location A branch, commit, or snapshot in the database. Each location is
either a commit in its own right or acts as a natural representation of a commit — the
most recent commit for a branch and the referenced commit for a snapshot.

Browsing or searching items in a database is always done with respect to a fixed
location. The encountered item versions are the ones that were the latest at the time
of the commit. For a branch, which is the default location, these item versions are the
latest at the present time.

(item version) location An identifier that uniquely locates a model version or data file
version stored in a Model Manager database.

merge The operation of applying item changes made in one branch to another
branch.

model A COMSOL Multiphysics simulation model, application, or physics stored in
a database.

negated match Reverse the matching criterion of a filter.

numeric field The type for a field whose value is a real or complex scalar.

origin model A model that another model “originates” from — a concept arising, for
example, when creating a new model from an existing model or when saving a new
draft.

owner The user that owns a database object. Such a user can set permission
requirements for accessing the object.

permission template A reusable template of permissions granted to users and groups.

phrase match Require that search words match a sequence of words in a text.
7 : G L O S S A R Y

regular model The standard type for models saved to a database.

repository A container for a collection of items and their versions in the database.

revert The operation of undoing a set of changes made in a commit.

selection field The type for a field whose value belongs to a predetermined set of
values.

server database A database accessed via a Model Manager server. Meant for multiple-
user use.

snapshot A reference to a commit in a database. The item versions and tag assignments
that were the latest at the time of the commit are recorded in the snapshot.

tag Version-controlled metadata that can be assigned to models, data files, and even
other tags. Useful for finding and organizing items in a database.

text field The type for a field whose value is a text.

user A user that has connected to a Model Manager database.

version The result when creating, updating, or restoring an item in a database.

wildcard match Use a placeholder in a search word that matches zero or more
arbitrary characters.
G L O S S A R Y O F T E R M S | 305

306 | C H A P T E R
 7 : G L O S S A R Y

I n d e x

A access-control lists 135

accounts 25

change 157

add database (window) 22

adding

branches 201

databases 21

groups 131

permission requirements 134

permission templates 141

repositories 117

snapshots 123

tag assignments 115

tags 114

users 130

aliases 154

ancillary item save types 65

assigning tags 115

auxiliary data (window) 52

B backup, manual 159

backward compatibility 29

batch command 45

boolean fields 173

branches 77

creating 201

default 78

deleting 91

full text search in 168

merging 205

partial 203

restoring 91

searching in 163

settings 78

built, computed, and plotted data 145

clearing 151

byte unit expressions 172

C cloud drives 22

cluster 105

commits 74

comments 75

full text search in 169

history 94

locations 80

merging from 205

reverting 209

saving 118

searching in 164

sequence 200

settings 75

commits (window) 94

toolbar 94

comparing

different models 44

versions 44

with latest version 45

with opened model 45

with saved version 45

comparison result (window) 44

computed data 145

clearing 151

COMSOL batch 45

content filters 178

author (node) 181

comment (node) 181

created (node) 181

label (node) 180

last modified (node) 181

last modified by (node) 181

name (node) 181

parameter 178

part 179

physics 180
I N D E X | 307

308 | I N D E X
setting 179

space dimension 179

study step 180

tag (node) 181

type (node) 180

version (node) 181

copy locations 110

copying model contents 68, 106

creating

branches 201

groups 131

local databases 22

permission templates 141

repositories 117

snapshots 123

tags 114

users 130

D data files 68

deleting 121

exporting 128

importing 125

permanently deleting 152

previewing 109

renaming 119

restoring 120

settings 70

database aliases 154

database configurations 154

aliases 154

deleting 154

settings 154

database permissions 136

database toolbar 57

databases

adding 21

auxiliary data 52

backup 159

backward compatibility 29

cleanup 158

comparing models from 44

configuring 154

full text search in 169

local 21

opening models from 30

saving models to 33

server 21

databases (window) 89

toolbar 90

tree 90

date fields 171

date shorthands 171

default

branch 78

repository 81

deleting

branches 91

database configurations 154

groups 91

items 121

permission templates 91

repositories 91

snapshots 91

users 91

draft models 65

saving 38

E editing

branches 78

commit comments 75

data files 70

database configurations 154

groups 83

models 67

permission templates 84

repositories 81

snapshots 79

tags 72

users 82

emailing COMSOL 12

escaping reserved characters 188

export (window) 52

exporting

items 128

to new local database 99

F field expressions 184

field types 170

boolean 173

date 171

file size 172

keyword 171

numeric 172

selection 173

text 170

file location URI 111

file resources 70

directories 71

root directory 71

file size fields 172

files 68

auxiliary data 53

copy location 111

deleting 121

exporting 128

importing 125

permanently deleting 152

renaming 119

restoring 120

filesets 69

filter pills 182

filtering 170

content 178

items 175

full text search 167

G geometry parts 39

auxiliary data 53

loading 40, 107, 110

version references 100

granting permissions 134

groups 82

adding 131

deleting 91

group members 132

restoring 91

settings 83

H home toolbar 55

I importing items 125

index maintenance 157

indexes directory 23

inserting model contents 68, 106

internet resources 12

item filters 175

commit comment 176

computed data 177

description 175

file type 177

filename 177

item save type 176

item version type 176

owner 177

saved 176

saved by 176

size 177

tag 175

title 175

item save types 64

ancillary 65

item version types 64, 69

items 73

deleting 121

renaming 119

saving versions 118

settings 150

version locations 110
I N D E X | 309

310 | I N D E X
K keyboard shortcuts

deleting 122

opening workspaces 55

renaming 119

keyword fields 171

knowledge base, COMSOL 13

L local databases 21, 158

backup 159

compacting 158

creating 22

multiple COMSOL Multiphysics pro-

cesses 24

opening 23

permanently deleting 159

locations

commits 80

item versions 110

searching in 162

selecting 80

M maintenance (window) 149

toolbar 150

maintenance toolbar 59

merge (window) 206

toolbar 206

merge conflicts 207

manually resolving 207

merging 205

model contents 67

copying 68, 106

inserting 39, 68, 106

searching 178

model location URI 110

Model Manager

database 63

database toolbar 57

home toolbar 55

maintenance toolbar 59

opening workspace 55

workspace windows 60

model manager (window) 85

table view 87

toolbar 86

tree view 88

Model Manager API

database aliases 154

Model Manager server 21

change account 157

model parts 39

loading 40, 107

models 63

auxiliary data 52

built, computed, and plotted data 145

comparing 44

copy location 110

deleting 121

drafts 65

exporting 128

importing 125

locking 104

origin 42

permanently deleting 152

renaming 119

restoring 120

saving 33

saving drafts 38

settings 67

moving 158

N named nodes 190

negated matching 187

network drives 22

node field expressions 189

numeric fields 172

O open (window) 30

toolbar 32

opening

local databases 23

models 30

on cluster 105

origin models 42

owners 133

transferring ownership 133

P partial branches 203

parts 39

loading 40, 107

permanently deleting

local databases 159

permission templates 91

versions 152

permission templates 83

adding 141

deleting 91

permanently deleting 91

restoring 91

settings 84

permissions

catalog 136

custom 135

everyone 136

granting 134

levels 139

owner 136

templates 83

phrase matching 186

preferences

allow Model Manager API 274

cluster 105

databases directory 23

enable Model Manager 20

result page size 31

unsaved settings 92

R range matching 187

recording snapshots 123

references (window) 99

toolbar 101

regular models 65

removing

permission requirements 134

tag assignments 115

renaming items 119

repositories 81

adding 117

default 81

deleting 91

multiple 117

restoring 91

settings 81

resources directory 23

restoring

branches 91

groups 91

permission templates 91

repositories 91

snapshots 91

users 91

versions 120

revert (window) 209

toolbar 210

revert conflicts 210

manually resolving 211

reverting 209

root tag 115

S save (window) 33

saving

drafts 38

models 33

search modes 162

search syntax 183

completion 192

searching

escaping reserved characters 188

filters 170

full text search 167
I N D E X | 311

312 | I N D E X
index maintenance 157

negation 187

operator precedence 185

phrases 186

ranges 187

search history 166

sort fields 165

syntax 183

syntax catalog 193

wildcards 186

select file (window)

input 47

output 49

toolbar 49

select model (window) 39

selection fields 173

server databases 21

alias 26

connecting to 25

default 26

multiple 26

setting field expressions 191

settings (window) 92

branches 78

commits 75

data files 70

database configurations 154

groups 83

items 150

models 67

permission templates 84

repositories 81

snapshots 79

tags 72

toolbar 93

users 82

snapshots 79

deleting 91

full text search in 169

merging from 205

recording 123

restoring 91

searching in 164

settings 79

sorting 165

SQLite 23

T tags 72

assigning 115

creating 114

deleting 122

exporting 129

guidelines 116

importing 126

pills 36

renaming 119

restoring 120

root 115

settings 72

technical support, COMSOL 13

text fields 170

toolbar

commits (window) 94

database 57

databases (window) 90

home 55

maintenance 59

maintenance (window) 150

merge (window) 206

model manager (window) 86

open (window) 32

references (window) 101

revert (window) 210

select file (window) 49

settings (window) 93

versions (window) 97

versions (window) (Model Builder) 41

U user accounts 25

change 157

users 82

adding 130

deleting 91

group memberships 131

restoring 91

settings 82

V versions

comments 99

details 98

history 95

locations 110

maintenance 149

permanently deleting 152

references 99

restoring 120

saving 118

searching 162

versions (window) 95

Model Builder 40

toolbar 97

W websites, COMSOL 13

wildcard matching 186

windows

add database 22

auxiliary data 52

commits 94

comparison result 44

databases 89

export 52

maintenance 149

merge 206

model manager 85

open 30

references 99

revert 209

save 33

select file 47, 49

select model 39

settings 92

versions 95

versions (Model Builder) 40

working copies 51
I N D E X | 313

314 | I N D E X

	Contents
	Introduction
	About the Model Manager
	What Can You Do with the Model Manager?
	Where Do I Access the Documentation?

	Overview of the Manual

	Model Manager Tools
	Introduction
	Adding Databases
	The Add Database Window
	New Local Database
	Opening a Local Database
	Connecting to a Server Database
	Backward Compatibility for Model Manager

	Databases in the COMSOL Modeling Environment
	Opening Models from Databases
	Saving Models to Databases
	Saving Drafts of Models
	Geometry Parts Saved in Databases
	Inserting Parts and Other Model Contents from Databases
	The Versions Window for the COMSOL Desktop Model
	Comparing Models Saved in Databases
	Running COMSOL Batch with Models in Databases
	Selecting Files in Databases as Input Sources
	Selecting Files in Databases as Output Targets
	Loading and Saving Auxiliary Data Files Stored in Databases
	The Auxiliary Data Window for Database Input and Output

	The Model Manager Workspace
	Opening the Model Manager Workspace
	The Home Toolbar
	The Database Toolbar
	The Maintenance Toolbar
	The Model Manager Workspace Windows

	Overview of a Model Manager Database
	Models
	Files
	Tags
	Items
	Commits
	Branches
	Snapshots
	Locations
	Repositories
	Users
	Groups
	Permission Templates

	Browsing Databases
	The Model Manager Window
	The Databases Window
	The Settings Window
	The Commits Window
	Activating a Database
	The Versions Window
	The References Window
	Opening Models
	Running Applications
	Inserting Contents from Models
	Previewing Files
	Comparing Models
	Copying Model and File Locations

	Organization of Models and Files
	Assigning Tags to Items
	Organizing Items in Repositories

	Basic Version Control
	Saving Versions
	Adding and Removing Tag Assignments
	Deleting Items
	Recording Snapshots

	Bulk Operations
	Importing Files
	Exporting Items

	User Management
	Managing Users
	Managing Groups

	Access Control
	Owners
	Granting Permissions
	Permission Catalog
	Permission Levels
	Reusing Permission Assignments Using Permission Templates

	Maintenance
	Estimating Disk Space Usage
	Built, Computed, and Plotted Data
	Permanently Deleting Models and Data Files
	Collecting Models and Files for Maintenance
	The Maintenance Window

	Database Administration
	Database Configurations
	Updating Search Index
	Database Cleanup
	Compacting Local Databases
	Moving and Deleting Local Databases
	Backup for Local Databases

	Searching and Filtering
	Searching Versions
	Searching Latest Versions for Locations
	Searching All Versions in the Database
	Sorting Search Results
	Search History

	Full Text Search
	Combining Full Text Search Words
	Matched Fields

	Item and Content Filters
	Field Types
	The Filter Dialog
	Item Filters
	Content Filters
	Applied Filter Pills

	The Model Manager Search Syntax
	Basic Field Expressions
	Combining Expressions
	Searching Nodes and Settings in the Model Tree
	Search Syntax Completion
	Search Syntax Catalog

	Advanced Version Control
	Branching
	The Branch as a Sequence of Commits
	Creating a New Branch

	Merging
	Merging Changes to a Target Branch
	The Merge Window

	Reverting
	Reverting Changes on a Branch
	The Revert Window

	Working with Models in Databases
	Example: Modeling Using Version Control
	Creating the Database
	Model Wizard Setup
	Saving a First Version
	Saving More Versions
	Working With a Draft of the Model
	Comparing Versions
	Excluding Built, Computed, and Plotted Data
	Importing Auxiliary Data to the Database
	The Model Manager Workspace

	Example: Browsing, Organizing, and Searching Models and Data Files
	Downloading the Demo Database for Model Manager
	Searching and Browsing the Demo Database
	Using a Tag Tree for Organization and Retrieval in a Database
	Creating and Assigning Tags
	Searching on Model Contents
	Using the Model Manager Search Syntax

	Example: Using Advanced Version Control Tools in the Model Manager
	Using a Draft to Update a Single Model
	Working with Commits
	Using a Branch to Update Many Models

	Model Manager API
	Getting Started with the API
	Accessing the Model Manager API
	Connecting to Model Manager Databases
	Navigating a Model Manager Database
	Reading Settings
	Creating and Updating Database Objects
	Advanced Database Operations Using Parameter Objects
	Querying Database Objects

	Version Control Management of Models and Files
	Items and Versions
	Searching
	Basic Loading and Saving of Models
	Importing Items
	Exporting Items
	Querying Versions
	Working with Input and Output
	Advanced Save Operations for Items

	Glossary
	Glossary of Terms

	Index

