References
1. R. Jin, W. Chen, and A. Sudjianto. “An efficient algorithm for constructing optimal design of computer experiments,” J. Stat. Plan. Inference, vol. 134, no. 1, pp  268–287, 2005.
2. X. Kong, M. Ai, and K.L. Tsui, “Design for Sequential Follow-Up Experiments in Computer Emulations,” Technometrics, vol. 60, no. 1, pp. 61–69, 2018.
3. F., Campolongo, J. Cariboni, and A. Saltelli, “An effective screening design for sensitivity analysis of large models,” Environ. Model. Softw., vol. 22, no. 10, pp. 1509–1518, 2007.
4. T. Zou, S. Mahadevan, Z. Mourelatos, and P. Meernik, “Reliability analysis of automotive body-door subsystem,” Reliab. Eng. Syst., vol. 78, no. 3, pp. 315–324, 2002.
5. D. Xiu and G.E. Karniadakis, “The Wiener–Askey polynomial chaos for stochastic differential equations,” SIAM J. Sci. Comput., vol. 24, no. 2, pp. 619–644, 2002.
6. G. Blatman, and B. Sudret, “Adaptive sparse polynomial chaos expansion based on least angle regression,” J. Comput. Phys., vol. 230, no. 6, pp. 2345–2367, 2011.
7. C.K. Williams and C.E. Rasmussen, Gaussian processes for machine learning, MIT Press, Cambridge, MA, vol. 2, no. 3, p. 4, 2006.
8. B. MacDonald, P. Ranjan, and H. Chipman, “GPfit: An R package for fitting a Gaussian process model to deterministic simulator outputs,” J. Stat. Softw., vol. 64, pp .1–23, 2015.
9. M.D. McKay, R.J. Beckman, and W.J. Conover, “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code,” Technometrics, vol. 42, no. 1, pp. 55–61, 2000.
10. D.E. Finkel and C.T. Kelley, “Additive scaling and the DIRECT algorithm,” J. Glob. Optim., vol. 36, no. 4, pp. 597–608, 2006.
11. A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola, “Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index,” Comput. Phys. Commun., vol. 181, no. 2, pp. 259–270, 2010.
12. S.J. Sheather, “Density estimation,” Stat. Sci., vol. 19, no. 4, pp. 588–597, 2004.
13. B.J. Bichon, M.S. Eldred, L.P. Swiler, S. Mahadevan, and J.M. McFarland, “Efficient global reliability analysis for nonlinear implicit performance functions,” AIAA J., vol. 46, no. 10, pp. 2459–2468, 2008.
14. A. Gelman, J.B. Carlin, H.S. Stern and D.B. Rubin, Bayesian data analysis. Chapman and Hall/CRC. 1995.