References for the Semiconductor Interface
1. N.W. Ashcroft and D.N. Mermin, Solid State Physics, Harcourt Publishing, 1976.
2. R.G. Chambers, Electrons in Metals and Semiconductors, Chapman and Hall, 1990.
3. M. Shur, Physics of Semiconductor Devices, Prentice Hall, 1990.
4. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, Wiley, 2007.
5. S.M. Sze and M.K. Lee, Semiconductor Devices Physics and Technology, John Wiley & Sons, 2012.
6. S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer Verlag, 1984.
7. A.I.M. Rae, Quantum Mechanics, Taylor & Francis, 2007.
8. L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Non-relativistic theory), Course of Theoretical Physics (vol. 3), Butterworth–Heinemann, 2003.
9. J. C. Slater, “Electrons in Perturbed Periodic Lattices,” Physical Review, vol. 76, no. 11, pp. 1592–1601, 1949.
10. L.D. Landau and E.M. Lifshitz, Statistical Physics Part 1, Course of Theoretical Physics (vol. 5), Butterworth–Heinemann, 1980.
11. R.C. Jaeger and F.H. Gaensslen, “Simulation of Impurity Freezeout Through Numerical Solution of Poisson’s Equation with Application to MOS Device Behavior,” IEEE Transactions on Electron Devices, vol. 27, no. 5, pp. 914–920, 1980.
12. U. Lindefelt, “Current-density Relations for Nonisothermal Modelling of Degenerate Heterostructure Devices,” J. Applied Physics, vol. 75, no. 2, pp. 958–966, 1994.
13. A.H. Marshak and C.M. Vliet, “Electrical Current and Carrier Density in Degenerate Material with Nonuniform Band Structure,” Proceedings of the IEEE, vol. 72, no. 2, pp. 148–164, 1964.
14. J.M. Dorkel, “On Electrical Transport in Non-Isothermal Semiconductors,” Solid-State Electronics, vol. 26, no. 8. pp. 819–821, 1983.
15. R. Kim and M. Lundstrom, “Notes on Fermi–Dirac Integrals,” arXiv:0811.0116 [cond-mat.mes-hall], 2008. https://arxiv.org/abs/0811.0116.
16. N.D. Arora, J.R. Hauser, and D.J. Roulston, “Electron and Hole Mobilities in Silicon as a Function of Concentration and Temperature,” IEEE Transactions on Electron Devices, vol. 29, no. 2, pp. 292–295, 1982.
17. D. B. M. Klaassen, “A unified mobility model for device simulation—I. Model equations and concentration dependence”, Solid-State Electronics, Volume 35, Issue 7, July 1992, Pages 953-959.
18. D. B. M. Klaassen, “A unified mobility model for device simulation—II. Temperature dependence of carrier mobility and lifetime”, Solid-State Electronics, Volume 35, Issue 7, July 1992, Pages 961-967.
19. N.H. Fletcher, “The High Current Limit for Semiconductor Junction Devices,” Proceedings of the IRE, vol. 45, no. 6, pp. 862–872, 1957.
20. J.M. Dorkel and Ph. Leturcq, “Carrier Mobilities in Silicon Semi-empirically Related to Temperature, Doping and Injection Level,” Solid-State Electronics, vol. 24, no. 9, pp. 821–825, 1981.
21. C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, “A Physically Based Mobility Model for Numerical Simulation of Nonplanar Devices,” IEEE Transactions on Computer-Aided Design, vol. 7, no. 11, 1988.
22. C. Canali, G. Majni, R. Minder, and G. Ottaviani, “Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field and Temperature,” IEEE Transactions on Electron Devices, vol. 22, no. 11, pp. 1045–1047, 1975. Note the correction in: G. Ottaviani, “Correction to ‘Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperatures’,” IEEE Transactions on Electron Devices, vol. 23, no. 9, p. 1113, 1976.
23. R.N. Hall, “Electron-Hole Recombination in Silicon,” Physical Review, vol. 87, no. 2, p. 387, 1952.
24. W. Shockley and W.T. Read, “Statistics of the Recombinations of Electrons and Holes,” Physical Review, vol. 87, no. 5, pp. 835–842, 1952.
25. Y. Okuto and C. R. Crowell, “Threshold Energy Effect on Avalanche Breakdown in Semiconductor Junctions,” Solid-State Electronics, vol. 18, pp. 161–168, 1975.
26. C.R. Crowell and S.M. Sze, “Current Transport in Metal-Semiconductor Barriers,” Solid State Electronics, vol. 9, pp. 1035–1048, 1966.
27. K. Yang, J. R. East, and G. I. Haddad, “Numerical Modeling of Abrupt Heterojunctions using a Thermionic-Field Emission Boundary Condition,” Solid State Electronics, vol. 36, no. 3, pp. 321–330, 1993.
28. U. Lindefelt, “Heat Generation in Semiconductor Devices,” J. Applied Physics, vol. 75, no. 2, pp. 942–957, 1994.
29. J. Slotboom and H. de Graaff, “Measurements of Bandgap Narrowing in Si Bipolar Transistors,” Solid State Electron. vol. 19, no. 10, pp. 857–862, 1976.
30. D. B. M. Klaassen, J. W. Slotboom, and H. C. de Graaff, “Unified apparent bandgap narrowing in n- and p-type silicon,” Solid State Electron, vol. 35, no. 2, pp. 125–129, 1992.
31. S.C. Jain and D.J. Roulston, “A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1?x strained layers,” Solid-State Electronics, vol. 34, no. 5, pp. 453–465, 1991.
32. M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, vol. 1, World Scientific, 1996.
33. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Course of Theoretical Physics (vol. 2), Butterworth–Heinemann, 1975.
34. S.L. Chuang, Physics of Photonic Devices, John Wiley and Sons Inc., 2009.
35. A. Yariv, Quantum Electronics, John Wiley and Sons, 1989.
36. A. Einstein, “Zur Quantentheorie der Strahlung,” Physikalische Zeitschrift, vol. 18, pp. 121–128, 1917 (in German).
37. A. Yariv, Optical Electronics in Modern Communication, Oxford University Press, 1997.
38. E. O. Kane, “Band structure of indium antimonide,” J. Physics and Chemistry of Solids, vol. 1, pp. 249–262, 1957.
39. R.H. Yan, S. W. Corzine, L.A. Coldren, and I. Suemune, “Corrections to the expression for gain in GaAs,” IEEE Journal of Quantum Electronics, vol. 26, no 2, pp. 213–216, 1990.
40. C.Hermann and C. Weisbuch, “kp perturbation theory in III-IV compounds and alloys: a reexamination,” Physical Review B, vol. 15 no. 2, pp. 823–833, 1977.
41. B. Y. K. Hu, “Kramers–Kronig in two lines,” American Journal of Physics, vol. 57, no. 9, p. 821, 1989.
42. C.B. Duke, “Tunneling in Solids,” Solid State Physics, supplement 10, Academic Press, 1969.
43. R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proceedings of the Royal Society of London A, vol. 119, pp. 173–181, 1928.
44. M. Lenzlinger and E. H. Snow, “Fowler-Nordheim Tunneling into Thermally Grown SiO2,” J. Applied Physics, vol. 40, no. 1, pp. 278–283,1969.
45. A. Schenk, “Advanced Physical Models for Silicon Device Simulation,” Computational Microelectronics, ed. S. Selberherr, Springer Verlag, New York, 1998.
46. M. A. Green and M. J. Keevers, “Optical Properties of Intrinsic Silicon at 300 K,” Progress in Photovoltaics: Research and Applications, vol. 3, pp. 189–192, 1995.
47. M.G. Ancona, “Density-gradient theory: a macroscopic approach to quantum confinement and tunneling in semiconductor devices,” J. Comput. Electron., vol. 10, p. 65, 2011.
48. M.G. Ancona, Z. Yu, R. W. Dutton, P.J. Vande Voorde, M. Cao, and D. Vook, “Density-Gradient Analysis of MOS Tunneling,” IEEE Transactions On Electron Devices, vol. 47, no. 12, p. 2310, 2000.
49. M.G. Ancona, D. Yergeau , Z. Yu and B.A. Biegel, “On Ohmic Boundary Conditions for Density-Gradient Theory,” J. Comput. Electron., vol. 1, pp. 103–107, 2002.
50. S. Jin, Y.J. Park, and H.S. Min, “Simulation of Quantum Effects in the Nano-scale Semiconductor Device,” J. Semicond. Tech. Sci., vol. 4, no. 1, p. 32, 2004.