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Introduction

This introduction is intended to give you a jump start in your modeling work. It 
contains examples of the typical use of the Optimization Module and two tutorial 
models that introduce the workflow. The first tutorial solves a curve fitting 
problem, and the second example contains a topology optimization of a structural 
beam.
You can use the Optimization Module in combination with essentially any of the 
other products in the COMSOL product suite. The module is a general interface 
for computing optimal solutions to engineering problems to, for example, 
improve a design so that it minimizes energy consumption or maximizes the 
output. Any model inputs such as geometric dimensions and part shapes, material 
properties, and material distribution can be treated as design variables, and any 
model output can be an objective function.
Problems that may benefit from the systematic exploratory processes provided by 
the Optimization Module can be divided broadly into two classes:
• Design problems with a single objective.

Here, the problem is to find the values of control variables or design variables 
that yield the best performance of a model, quantified by means of an objective 
function. Problems of this kind arise, for example, in structural optimization, 
antenna design, and process optimization. In many cases, improving the 
objective function in a robust way is more important than finding the absolute 
optimum.

• Inverse problems, and in particular parameter estimation in PDEs.
Here the problem is to reliably determine the values of a set of parameters that 
provide simulated data that best matches measured data. Such problems arise in 
applications such as geophysical imaging, nondestructive testing, biomedical 
imaging, and weather data assimilations. Curve fitting also belongs to this 
category.

Problems of the above types can often be formulated more generally as 
optimization problems. The Optimization interface, Optimization study step, and 
Parameter Estimation study step in COMSOL Multiphysics are useful for solving 
design problems as well as inverse problems and parameter estimation.
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Workflow and Examples
The workflow in the Optimization Module is quite straightforward and can be 
described by the following steps:
• For classical optimization, not involving any physics, add a Stationary study 

and an Optimization study step to an empty model. Define parameters and 
help variables under Global Definitions, then set up an objective function, 
control variables, bounds, and constraints in the Optimization study step. 
Constraints and objectives can be written as explicit functions of the control 
variables.

• For PDE constrained optimization, first create the forward model 
containing the geometry and the physics. Define parameters under Global 
Definitions, or by adding control variables to an Optimization interface. 
Make sure the forward model solves properly for some reasonable values of 
the control variables before proceeding with defining the objective function 
and constraints, and then finally solve the optimization problem.

Note that if your optimization problem only requires global scalar control 
variables, objective functions and constraint expressions, you can set everything up 
directly in the Optimization study step. The Optimization interface is only needed 
if constraints must be applied at each mesh node individually, or if the objective 
function is of a nonglobal least-squares type.
Examples using the Optimization Module exist in the application library for the 
Optimization Module, as well as in the Application Libraries for several other 
modules. Search for optimization in the Application Libraries window search field 
to find models that use the Optimization Module in the products that your license 
includes. The models illustrate the use of the Optimization interfaces
• The General Optimization interface
• The Topology Optimization interface
• The Shape Optimization interface
• The Parameter Estimation interface

The interfaces can be used across the different physics, so the absence of an 
example for particular combination of interface and physics does not indicate 
incompatibility, but this can be the case. In example, the shape and topology 
optimization interfaces rely heavily on gradient-based optimization and this is 
currently unsupported for explicit time stepping.

An Overview of Optimization Terminology
Assuming that you have solved a COMSOL Multiphysics model of a physical 
design, it is common to ascribe to it some figure of merit, a cost function, or — 
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using a more general term — an objective function. This objective function can 
quantify almost anything about the performance of the system.
It is natural to question how this objective function changes when you vary some 
parameters or control variables. These variables or parameters can control any 
part of the design: dimensions, loads, boundary conditions, material properties, 
material distribution, and so forth. The control variables often have a set of bounds 
and design constraints associated with them: dimensions must be within some 
limits, geometric features must not come to close to each other, only certain 
materials are possible, and so on.
When optimizing a system modeled as a Multiphysics model, there may also be 
performance constraints present, which depend on the model solution. For 
example, when minimizing the weight of a part, it is often important to keep the 
maximum stress or temperature below a predefined safety limit.
In general, an optimization problem is when you want to improve the objective 
function by varying the control variables within some set of constraints. 
Optimization problems can be further categorized as topology, size, shape, and 
parameter optimization.

Optimization Algorithms
The Optimization Module contains the framework and functionality needed to 
perform gradient-based and gradient-free optimization on an existing COMSOL 
Multiphysics model.
There are four optimization algorithms for gradient-based optimization available 
in the module. The first algorithm is based on the SNOPT code developed by 
Philip E. Gill of the University of California San Diego, and Walter Murray and 
Michael A. Saunders of Stanford University. When using SNOPT, the objective 
function can have any form and any constraints can be applied. The algorithm uses 
a gradient-based optimization technique to find optimal designs, and when the 
underlying PDE is stationary, frequency-, or time-dependent, analytic sensitivities 
of the objective function with respect to the control variables can be used.
The second algorithm is the IPOPT solver, which has similar characteristics as 
SNOPT. The main authors are Andreas Waechter and Carl Laird from IBM, but 
the code is still developed as an open-source project with many contributors.
The third algorithm is the MMA solver, which is based on the method of moving 
asymptotes by Krister Svanberg of KTH (Royal Institute of Technology, 
Stockholm). The MMA solver can handle objective functions and constraints of 
the same very general form as SNOPT. It can solve min-max optimization 
problems, and it is well suited to handle problems with a large number of control 
variables, such as topology optimization. The globally convergent version of the 
solver is often referred to as GCMMA. This is the default, but the original version 
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of the MMA algorithm is also available. Both MMA and GCMMA have support 
for limiting the step length via move limits.
The fourth algorithm is a Levenberg–Marquardt solver. When this solver is used, 
the objective function must be of least-squares type. Also, constraints are not 
supported. Since the Levenberg-Marquardt method is derived to solve problems 
of least-squares type, it typically converges faster than SNOPT, IPOPT, and MMA 
for such problems. The solver can compute confidence intervals for the control 
variables, but this assumes that the measurement errors are small and follow a 
normal distribution.
In addition, the Optimization Module provides a number of gradient-free 
(derivative-free) optimization algorithms. Currently Nelder–Mead, BOBYQA, 
COBYLA, and a coordinate search are supported. These methods can optimize a 
model with respect to design parameters (model parameters) including those that 
control the geometry sequence that defines the model geometry. Coordinate 
search, Nelder–Mead, and COBYLA support strict enforcement of constraints 
that only depend on the control variables (design constraint).
All optimization solvers are accessible from the same Optimization study step, 
which contains the ordinary solver sequence over which the optimization method 
iterates. The gradient-free methods can contain any other study sequence, 
including Study Reference links, which make it possible to evaluate different 
objective function contributions and constraints in different studies. The 
gradient-based methods are limited to optimizing over a single study step for types 
supporting the computation of analytic sensitivities: currently Stationary, Time 
Dependent, and Frequency Domain studies.

Optimization Module Applications
The Optimization Module provides versatile tools for optimization, curve fitting, 
parameter estimation, and inverse modeling. Optimization can involve solving a 
basic linear or quadratic programming problem, but you can also seamlessly 
incorporate optimization and parameter estimation as additions to, for example, 
models of structural mechanics, fluid flow, or chemical reactions. The 
optimizations can be an optimal shape or topology, or a maximization or 
minimization of some quantity, just to name a couple of examples.
The plot in Figure 1 shows the hydraulic conductivity obtained by inverse 
modeling using 24 observations in a model where the aim is to characterize an 
aquifer. The model is in the Subsurface Flow Module application library and 
combines the Optimization interface with a Darcy’s Law interface for the fluid 
flow in the aquifer. The inverse problem in this model is to estimate the 
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hydraulic-conductivity field in the aquifer using experimental data in the form of 
hydraulic-head measurements from four dipole-pump tests.

Figure 1: Hydraulic conductivity obtained by inverse modeling in the Aquifer Characterization model.

Another application of the Optimization Module is to find the optimal 
distribution of porous material in a microchannel, where the objective is to 
minimize the horizontal velocity at the center of the channel. The plot in Figure 2 
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shows the x-component of the velocity field for the optimal solution and the 
distribution of the filling material in the open channel:

Figure 2: The horizontal velocity (surface plot) and velocity field (streamlines) after optimization. In 
addition, the contour γ = 0.5 indicates the border between open channel and filling material.

This model is in the Optimization Module Application Library. It combines a 
Laminar Flow interface for the single-phase flow in the channel and an 
Optimization interface, where the objective is a scaled x direction velocity that the 
optimization solver minimizes. The design variable gamma (γ) can be interpreted as 
the local porosity, ranging between 0 (filled) and 1 (open channel), so the contour 
γ = 0.5 indicates the border between the open channel and the filling.

About Parameter Estimation
You can use the Optimization Module to perform parameter estimation: to 
determine input values so that the output matches some experimental data — that 
is, to solve an inverse problem. The first tutorial (Tutorial Model — Curve Fitting) 
describes how to use the Optimization Module for parameter estimation. When 
solving an inverse problem, there is some set of experimental data that can be 
compared to the output of the model. Parameter estimation is used to adjust 
model inputs or properties such that the results agree with the experimental data. 
Typical objectives include estimating material properties or loads.
For several reasons, inverse problems are inherently the most difficult problems to 
solve. They are often ill-posed in the sense that they have multiple locally optimal 
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solutions where the optimization algorithm may get stuck, or entire subspaces of 
equal merit may exist where the algorithm wanders around forever. In addition, 
the particular local optimum that is found depends strongly on the initial guess 
and on small perturbations in the experimental data. For these reasons, it is best 
to approach inverse problems with a good understanding of the underlying physics 
and mathematics of the problem. In particular, some problem-dependent 
regularization strategy is usually needed to make the optimization process robust.
Consider a COMSOL Multiphysics model of a physical system, such as a sample 
of a rubber-like material in simple uniaxial tension. One way to model rubber-like 
materials is using a Mooney–Rivlin model, which requires empirically determined 
material constants to describe the structural deformation. Assuming that there are 
experimental results relating load and deformation, as shown in Figure 3, it is 
possible to use parameter estimation to determine the material model constants 
that best fit this data. The curve shown in Figure 3 is computed based on the results 
of a parameter estimation; it is a least-squares fit of a COMSOL Multiphysics 
model with Mooney–Rivlin material parameters to the experimental data.

Figure 3: Experimental data and a best fit curve of the Mooney–Rivlin material model based upon a 
finite element model of a test sample.
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About Topology Optimization
The second tutorial model in this guide (Tutorial Model — Topology Optimization) 
shows how to solve a model using topology optimization.
Consider a COMSOL Multiphysics model of a physical system, such as the bracket 
shown in Figure 4. The part is constrained at the top and loaded on the side. The 
part must support a known load while staying within acceptable limits on the 
deflection. However, an experienced structural engineer can quickly recognize 
that the part is overdesigned. It is possible to remove material from the part, which 
would reduce the total mass (the cost) of the part, while still staying within the 
limits on the deflection (the constraints). A closely related problem which is often 
easier to solve can be stated as: Minimize the compliance (the deflection) of the 
structure under the condition that the total mass must be reduced by at least some 
predefined factor.

Figure 4: A simple bracket design, and the solved finite element model showing stresses and deflections. 
This design has room for improvement.

One way to address this is to use topology optimization. Topology optimization 
treats the material distribution as the design variable. Design variables of this type 
are treated in the same way as the solution variables; they are interpolated using 
shape functions on the finite element mesh. Therefore, there is one design variable 
per mesh node or per mesh element, associated with a position in the geometry. 
We call this a control variable field.
The Optimization Module computes the derivative, or the sensitivity, of the 
objective function with respect to these discrete design variables. For topology 
optimization, the adjoint method is required, because all other methods are too 
slow. The optimization solver uses the sensitivity information to manipulate the 
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design variables, within the limit of any user-defined constraints, in the direction 
of improved objective function values.
This is an iterative procedure, as illustrated in Figure 5. Starting with the initial 
design, the solver adjusts the control variables representing a fictitious material 
density in each element. This is repeated as long as some improvement in the 
objective function is possible and the constraints are not violated.

Figure 5: Topology optimization of the bracket, the material distribution, as defined by the finite element 
mesh, is modified to minimize the weight while satisfying a constraint on peak displacement. The design 
evolution is shown after 8, 12, 16, and 60 iterations.

A structural engineer will recognize that the resulting design is essentially a truss 
structure. This result also highlights an issue with topology optimization: The 
optimal design is often not a candidate for manufacture, it is only an 
approximation of a better design, as found via the current finite element mesh. 
With a modicum of engineering knowledge, it is still possible to use the results of 
a topology optimization as a design guide to build the next design iteration.
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Although topology optimization is quick to set up, it has a couple of drawbacks. 
First, the resulting design does have some dependency on the mesh used. There 
are techniques known as regularization that you can use to avoid this and the 
topology model example in this guide includes regularization. Second, it is 
difficult to incorporate geometric constraints into the optimization algorithm and 
this can lead to impractical designs, but COMSOL does support the use of milling 
constraint for topology optimization. This can be used to reduce the design 
freedom, so that more practical designs are found. In any case, topology 
optimization should be used early in the design process as a guide for the overall 
structure of the system. The method becomes more difficult to use efficiently 
when the design is already quite rigid and only minor modifications to the design 
are possible. In such situations, size optimization and shape optimization become 
more useful.
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Optimization Module Functionality

The Optimization Module is a general purpose add-on to COMSOL Multiphysics 
and its other modules. It consists of a physics interface, special study steps, solvers, 
a density topology feature, and an application library.

The Optimization Interface
The Optimization Module adds the Optimization interface ( )to the list of 
available physics interfaces. The interface can be found under the 
Mathematics>Optimization and Sensitivity branch when you are adding physics to 
your model.
The Optimization interface includes a wide range of advanced features for defining 
an optimization problem separately, or in connection to a physics model:
• Global objectives, including least-squares objectives
• Global constraints
• Global control variables
• Integral objectives on all geometry levels: domains, boundaries, edges, and 

points
• Integral constraints on all geometry levels
• Pointwise constraints on all geometry levels
• Control variable fields on all geometry levels
• Probe objectives in domains (an objective defined by a point evaluation of 

an expression)

The Optimization Study Step
The Optimization study step ( ) acts as the central control panel for any 
optimization problem. It can be added to any study, where it will appear as the 
first step. The remaining steps in the study define the simulation that is being 
optimized. Note that when a gradient-based optimizer is used, the Optimization 
study step replaces and cannot be used together with some other study steps, 
notably Parametric Sweep and its variants.
In the Optimization study step, you can set up objective function contributions, 
select control variables, and set constraints. Objectives, constraints, and control 
variables defined in an Optimization interface are displayed in the study step, 
where they can be disabled or enabled. Note that most optimization tasks can be 
specified using the Optimization study step alone, needing no Optimization 
Interface.
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The Optimization study step also contains an optimization solver choice, 
including the most important solver settings, as well as extensive settings for 
controlling graphics and table output during the solution process.

The Parameter Estimation Study Step
The Parameter Estimation study step ( ) is a specialized version of the 
Optimization study step, intended to simplify some typical parameter estimation 
tasks. In particular, it contains a user interface for specifying a least-squares 
objective function based on time-dependent measurements entered or imported 
into an interpolation function.

The Shape and Topology Optimization Study Steps
Both the Shape Optimization study step ( ) and the Topology Optimization 
study step ( ) are stripped-down versions of the Optimization Study step. They 
only allow gradient-based optimization, and they are incompatible with objectives 
and constraints in the Optimization interface. They both default to the MMA 
optimization solver, and they allow limiting the absolute change of individual 
control variables using a move limit (only for MMA). The move limit is enabled 
by default and set to 0.1 for the Shape Optimization study step in order to reduce 
the likelihood of problems with inverted elements.

Topology Optimization with the Density Method
The Density Method is a topology optimization feature located under component 
definitions. The method allows the user to impose a Helmholtz filter with a 
custom radius, such that a minimum length scale can be imposed.
The user has to couple the physical material properties with the output of the filter 
manually, but the feature supports projection and common interpolation 
functions, so this typically only involves a multiplication.

The Optimization Solvers
The Optimization Module contains the following optimization solvers:

SNOPT: A robust, gradient-based, general-purpose, sequential quadratic 
programming algorithm for nonlinear constrained problems.

IPOPT: A gradient-based, general-purpose interior point algorithm for 
nonlinear constrained problems.
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MMA: A general-purpose, interior point method based on successive convex 
approximations constructed from objective and constraint gradient information, 
particularly suited to topology optimization.

Levenberg–Marquardt: A special-purpose solver for least-squares fitting, using 
the special problem structure to estimate second-order derivatives from first order 
gradient data. Constraints are ignored.

Nelder–Mead: A robust derivative-free, heuristic, simplex search algorithm, 
including a penalty method for constraint handling.

BOBYQA: An algorithm sampling the objective function to construct and 
maintain a quadratic approximation of the objective inside a moving trust region. 
General constraints can be handled in an augmented Lagrangian wrapper, solving 
a sequence of unconstrained problems.

COBYLA: An algorithm sampling both objective function and constraint values 
to create and maintain a linear approximation inside a moving trust region. 
General constraints are accepted but may be violated at intermediate solution 
steps.

Coordinate search: A method which searches for the optimum by successive 
sampling along the control variable axes, typically changing one control variable 
at a time.
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Tutorial Model — Curve Fitting

This tutorial model demonstrates how to use the Optimization Module to 
estimate unknown function parameters based on measured data. The 
two-parameter Mooney–Rivlin solid material model is used as an example, but the 
procedure is generally applicable when you need to fit a parameterized analytic 
function to measured data.
The two-parameter incompressible Mooney–Rivlin material model describes the 
local behavior of rubber-like materials. The model assumes that the local strain 
energy density in an incompressible solid is a simple function of local strain 
invariants.
In a standard tensile test, a rotationally symmetric test specimen is pulled in such 
a way that it extends in one direction and contracts symmetrically in the other two. 
For this case of uniaxial extension, the relationship between an applied force, F, 
and the resulting extension, ΔL, of a true Mooney–Rivlin material is

where A0 is the original cross-sectional area of the test specimen and L0 is its 
reference length. The constants C10 and C01 are material parameters that must be 
determined by fitting the above equation to the experimental data from the tensile 
test.
In practice, tensile test data is delivered in a form which is independent of the 
geometry of the test specimen used. There are multiple possible formats. The one 
used here contains corresponding measured values of engineering stress, Pi, 
representing force per unit reference area

and stretch, λi, representing relative elongation

The expected relationship between these variables for a Mooney–Rivlin material is

F
A0
------- 2 C10 C01

L0
L0 ΔL+
---------------------+ 
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 =
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Given N pairs of measurements (λi,Pi), i = 1,…,N, the values of C10 and C01 that 
best fit the measured data are considered to be those which minimize the total 
squared error

The curve fitting problem is therefore identical to an optimization problem.

Creating a New Model

When starting COMSOL Multiphysics, you are normally greeted 
by the New window. Otherwise, from the File menu, choose New.
Note: These instructions are for the user interface on Windows, 
but apply with minor differences also to Linux and Mac. In 
particular, the Home toolbar refers to the fixed set of controls 
near the top of the Desktop

1 In the New window click the Blank Model button .

Add a Component

This pure optimization example does not refer to any geometry. Any model must, 
however, contain at least one component. Zero-dimensional components are 
useful for this type of optimization problem, as well as, for physics modeled using 
only ordinary differential equations (ODEs). The Stationary study is necessary as 
a placeholder signaling the problem type, even if there are no equations to solve 
in this case.

e P λi( ) Pi–( )2

i 1=

N

=
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1 In the Home toolbar, click the Add Component 
button  and select 0D

2 In the Study toolbar, click Add Study  and a 
Stationary study step .

Global Definit ions

When your control variables are independent of geometry, it is easiest to set them 
up initially as global parameters. Also add the stretch parameter lambda that has 
been varied in the measured data as a global parameter.

Parameters
Note that you can click the double-arrow button  in the upper-left corner of 
parameter and variable tables to expand them, making editing easier.
1 In the Home toolbar click Parameters .
2 In the Settings window locate the Parameters section.
3 In the table, enter the following settings:

Variables 1
1 In the Home toolbar click Variables  and choose Global Variables .
2 In the Settings window for Variables locate the Variables section.
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3 In the table, enter the following settings:

Optimization

You can import tensile test data from file in the form of comma-separated values 
or, as demonstrated here.

Parameter Estimation
1 In the Study toolbar, click the Optimization button  and choose Parameter 

Estimation .
2 In the Parameter Estimation study step, locate the 

Data Source section and input 
curve_fit_mooney_rivlin.csv as the filename.

3 Setup the first column to be a Parameter column 
for the lambda parameter and the second column 
to be Value column for the P variable.

4 Locate the Control Variables and Parameters 
section and click Add  twice.

5 In the table, enter the following settings:
6 Locate the Parameter 
Estimation method section and 
change the method to 
Levenberg–Marquardt.
7Change the Least-squares 
time/parameter method to 
From least-squares objective.
8Click the Compute  button.
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Results

Add a plot of the least-squares fitted stress-strain curve together with the measured 
data.

1D Plot Group 1
In the Home toolbar, click Add Plot Group  
and choose 1D Plot Group .

Global 1
1 On the 1D plot group toolbar, click 

Global .

2 In the Settings window for Global, locate the y-axis data section.
3 Click Replace Expression  in the upper-right corner of the y-axis data 

section. From the menu, choose Model>Global Definitions>Variables>
P Engineering stress.
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4 Add two more expressions to plot the true (Cauchy) stress as well as the 2nd 
Piola–Kirchhoff stress as shown below:
stress.

GLOBAL 2
1 On the 1D Plot Group 1 toolbar, click Global.
2 In the Settings window for Global, locate the y-axis data section.
3 Click Replace Expression  in the upper-right corner of the y-axis data 

section. From the menu, choose Model>Solver>Parameter Estimation>
opt.glsobj.engStress.data - Least squares experimental value.

4 Click to expand the Coloring and style 
section.

5 Find the Line style subsection. From the 
Line list, choose None.

6 Find the Line markers subsection. From 
the Marker list, choose Circle.

7 From the Positioning list, choose In 
data points.

8 On the 1D plot group toolbar, click 
Plot .
Finish the plot by adjusting the title, axis labels, and legend positioning.

9 In the Model Builder click 1D Plot Group 1 .
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10In the Settings window for 1D Plot 
Group 1 click to expand the Title 
section. From the Title type list, choose 
None.

11Locate the Plot Settings section.
- Select the x-axis label check box.
- In the x-axis label text field, type 

Stretch.
- Select the y-axis label check box.
- In the y-axis label text field, type 

Stress.
12Click to expand the Legend section. 

From the Position list, choose Upper 
left.
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Objective Probe Table 1
You can see the values of the optimized parameters in the last row of the 
automatically created Objective Probe table.
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Tutorial Model — Topology Optimization

Topology optimization in a structural mechanics context can answer the question: 
Given that you know the loads on the structure, which distribution of the available 
material maximizes stiffness? Or, conversely, how much material is necessary to 
obtain a predefined stiffness, and how should it be distributed? Such investigations 
typically occur during the concept design stages.
The conflicting goals of stiffness maximization and mass minimization lead to a 
continuum of possible optimal solutions, depending on how you balance the goals 
against each other. This topology optimization example demonstrates how to use 
a penalization method (SIMP) to obtain an optimal distribution of a fixed amount 
of material such that stiffness is maximized. Changing the amount of material 
available leads to a different solution that is also Pareto optimal, representing a 
different balance between the conflicting objectives.
The geometry and load pattern are similar to the Messerschmitt–Bölkow–Blohm 
beam (MBB) commonly used as a validation test for topology optimization.

Model Definition
The model studies optimal material distribution in the beam, which consists of a 
linear elastic material, structural steel. The dimensions of the beam region — 6 
meters by 1 meter by 0.5 meters — means an original total weight of 23,550 kg. 
The beam is symmetric about the plane x = 3. Both ends rest on rollers while an 
edge load acts on the top middle part.

Load on boundary

Roller
Symmetry plane

Roller
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The objective functional for the optimization, which defines the criterion for 
optimality, is the total strain energy. Note that the strain energy exactly balances 
the work done by the applied load, so minimizing the strain energy minimizes the 
displacement induced at the points where load is applied, effectively minimizing 
the compliance of the structure — maximizing its stiffness. The other, conflicting, 
objective is minimization of total mass, which is implemented as an upper bound 
on the mass of the optimized structure.
Another condition that is more difficult to enforce is the requirement that the 
optimized topology is truly binary — any given point is either solid or void, 
nothing in between — but still without excessively fine details or “checkerboard” 
patterns. The SIMP penalization method accomplishes the first part. In the SIMP 
model, the stress tensor is considered to be a function of the true Young’s 
modulus E0 and the artificial density, θc, which acts as control variable in the 
optimization problem:

Since the stiffness must, for numerical reasons, not vanish completely anywhere in 
the model, the density parameter is constrained such that θmin ≤ ρ ≤ 1. The 
exponent p ≥ 1 is a penalty factor that makes intermediate densities provide less 
stiffness compared to what they cost in weight.
When there is an overall limit on the fraction Vfrac = 0.5 of the domain area, A, 
occupied by solid material

the SIMP penalization forces θc toward either of its bounds. Increasing p therefore 
leads to a sharper solution.
At the same time, the solution must not contain too much fine detail, since that 
would compromise the reliability of the final design. Also, it is desirable to make 
the solution as independent of the mesh resolution as possible. To accomplish this, 
some kind of regularization is needed. There are many possibilities. One of the 
easiest to implement is based on a combination of successive mesh refinements and 
minimum length scale imposed via a Helmholtz filter.

θp θmin 1 θmin–( )θ x( )p
+=

E x( ) E0θp=

0 θavg≤ θ x( ) Ωd
Ω
 Vfrac≤=

θf Rmin
2 θf∇2 θc+=
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The equation essentially just smears out the design as illustrated below with and 
θc and θf to the left and right, respectively.

The material volume factor (right) has a lot of gray scale.

This filtered design variable can then be projected to reduce the extent of the gray 
scale region. COMSOL Multiphysics supports projection based on the hyperbolic 
tangent function (see Ref. 1)

This is illustrated for θβ = 0.5and β = 8 below with θf and θ to the left and right.

The (projected) material volume factor shown to the right has no visible gray scale.

High values of β are associated with strong projection and less gray scale, but also 
slows down the optimization process, so initially we will not use it and thus set 
θ = θf.

Results
The following plot shows the stiffness distribution for the optimized solution. The 
resulting design is an approximation of a truss structure, which is expected for this 
beam size. Note that the optimal design for a longer or shorter beam may be quite 
different, and also that there may exist stiffer solutions using the same amount of 

θ
β θf θβ–( )( )tanh βθβ( )tanh+( )
β 1 θβ–( )( )tanh βθβ( )tanh+( )

-----------------------------------------------------------------------------------=
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material. Such solutions typically consist of thinner members that have been 
eliminated here by the regularization and refinement procedure.

Notes About the COMSOL Implementation
A Solid Mechanics interface represents the structural properties of the beam, while 
an Optimization interface allows adding the control variable, objective, and 
constraints for the optimization problem. The total internal strain energy is a 
predefined variable, solid.Ws_tot, readily available to use as the objective 
function for the optimization problem.
Only the left half of the beam geometry must be modeled, because of the assumed 
symmetry, which is implemented as a Roller condition on the symmetry plane. 
Plots for postprocessing and inspection of the solution while solving are set up 
using a Mirror dataset, to show the complete solution. The geometry is 
parameterized, making it easy to experiment with different beam sizes.
The optimization solver is selected and controlled from a Topology Optimization 
study step. For topology optimization, either the MMA, IPOPT, or the SNOPT 
solver can be used. They have different merits and weaknesses. MMA tends to be 
braver in the beginning, proceeding quickly toward an approximate optimum. 
SNOPT and IPOPT are more cautious, but converges more efficiently close to the 
final solution due to its second-order approximation of the objective.
This example demonstrates a strategy based on using MMA with a limited number 
of iterations on successively finer meshes. It quickly and reliably produces 
trustworthy topologies showing good improvement of the objective function 
value. These solutions are not necessarily globally optimal, which may, however, 
be of less importance in practice.

Reference

1. F. Wang, B.S. Lazarov, and O. Sigmund, “On projection methods, convergence 
and robust formulations in topology optimization,” Structural and 
Multidisciplinary Optimization, vol. 43, pp. 767–784, 2011.
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Creating a New Model

When starting COMSOL Multiphysics, you are normally greeted 
by the New window. Otherwise, from the File menu, choose New.
Note: These instructions are for the user interface on Windows 
but apply with minor differences also to Linux and Mac. In 
particular, the Home toolbar refers to the fixed set of controls 
near the top of the Desktop

1 In the New window click the Model Wizard button .

Model Wizard

1 In the Model Wizard window, click 2D .
2 In the Select Physics tree under Structural Mechanics, click Solid Mechanics 

(solid) .
3 Click Add.
4 Click the Study button .
5 In the tree under Preset Studies for Selected Physics Interfaces, Expand the 

Optimization folder , and click Topology Optimization, Stationary .
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6 Click Done .

Global Definit ions

Set up named parameters for any quantity that you might perceivably want to 
change later on. The global Parameters node then gives you a direct overview of 
the values that are used in the model, making it easier to reproduce and modify.

Parameters
1 In the Home toolbar click Parameters  and select Parameters 1 .
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2 In the Settings window for Parameters locate the Parameters section and enter 
the following settings:

Geometry 1

The actual beam geometry consists of a rectangle of width 2a and height b; 
however, because of the mirror symmetry, you only need to draw the left half. Also 
insert two points to delimit boundary segments where the central load and the 
roller condition in the lower-left corner can be applied. Applying the boundary 
conditions on small boundaries of fixed size avoids the mesh dependency caused 
by point conditions.

Rectangle 1 (r1)
1 In the Geometry toolbar, click Primitives and choose Rectangle .
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2 In the Settings window for Rectangle 
locate the Size section.
- In the Width text field, type a.
- In the Height text field, type b.

3 Click the Build Selected button .

Point 1 (pt1)
4 In the Geometry toolbar, click Primitives and 

choose Point .
5 In the Settings window for Point locate the 

Point section. In the y text field, type L1.

Point 2 (pt2)
1 In the Geometry toolbar, click Primitives and 

choose Point .

2 In the Settings window for Point locate the 
Point section.
- In the x text field, type a-L1.
- In the y text field, type b.

3 Click the Build Selected button .

Add Material

Add structural steel as the domain material in the beam. Note that Young’s 
modulus and Poisson’s ratio are defined in their own property group subnode 
under the material.
1 In the Home toolbar click Add Material .
2 In the Add Material window tree under Built-In, click Structural 

steel. Click  Add to Global Materials.
3 In the Model Builder Window, under Component 1 

(comp1)>Materials click Topology Link 1
4 Select Structural steel in the Material list.
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Definit ions

Set up the Density Model feature to use Hyperbolic tangent projection with a 
projection slope equal to the beta parameter.

Density Model 1 (dtopo1)
1 In the Model Builder Window, under Component 

1 >Topology Optimization click Density Model.
2 Enable Hyperbolic tangent projection and set the 

projection slope to beta.
3 Set the initial value to volfrac in the settings 

window for the Density model.

Solid Mechanics (solid)

1 In the Model Builder under Component 1, click Solid Mechanics .
2 In the Settings window for Solid Mechanics 

locate the 2D Approximation section. From 
the 2D approximation list, choose Plane 
stress.

Roller 1
Use a Roller condition to represent the mirror symmetry boundary. If you have 
access to the Structural Mechanics Module, you can use a Symmetry condition 
instead.
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1 In the Physics toolbar click Boundaries  and choose Roller.

2 Select Boundary 6 only.

Note: There are many ways to select geometric entities. When you know the 
geometric entity to add, such as in this exercise, you can click the Paste Selection 
button  and enter the boundary number in the Selection field. For more 
information about selecting geometric entities in the Graphics window, see the 
COMSOL Multiphysics Reference Manual.

Prescribed Displacement 1
Add a prescribed displacement condition for the lower-left corner of the beam.
1 In the Physics toolbar click Boundaries  and choose Prescribed 

Displacement.
2 Select Boundary 1 only.
3 Check the box with the label Prescribed in y direction.

This will support the beam in the corner, but due the vertical alignment of the 
boundary, there will be no support for bending in the corner.

Boundary Load 1
Since this is a linear problem, the magnitude of the applied force does not affect 
the optimal topology.
1 In the Physics toolbar click Boundaries  

and choose Boundary Load.
2 Select Boundary 5 only.
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3 In the Settings window for Boundary Load locate the Force section.

- From the Load type list, choose Total force.
- Specify the Ftot vector as -100[kN] in the y direction

Mesh 1

For topology optimization, it can be necessary to take manual control over the 
mesh size, but it this case the predefined meshes work fine, but in this model we 
will show how one can save computational time by solving the topology 
optimization problem on a coarse mesh and then use the result as an initial guess 
for an optimization on a finer mesh.
1 In the Mesh toolbar click Free Triangular .

Size
Pick the predefined Extra fine option as the element size.
1 In the Model Builder under Mesh 1, click Size .
2 In the Settings window for Size locate the Predefined list and choose Extremely 

fine.

3 Click the Custom button and set the Maximum element size to meshsz.
4 Click the Build All button .

Study 1

1 Select the first study in the Model builder window.
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2 Change the label to Optimization.
3 Clear the Generate Default Plots check box.

Parametric Sweep

First initialize a the study to create a dataset that can be used for setting up suitable 
plots.
1 In the Study toolbar click Parametric Sweep
2 Click Add  twice and change the table to sweep the meshsz and beta 

parameters from 3[cm] to 6[cm] and 1 to 8, respectively.

3 Expand the Advanced Settings section and enable Reuse solution from previous 
step.

4 In the Study toolbar click Get Initial Value .
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Results

Use a Mirror dataset to plot the whole beam rather than just the left half. Also, 
customize one of the plots for plotting the topology as it evolves when solving 
using an optimization solver.

Datasets
For the Mirror dataset, specify two points on the symmetry plane.
1 In the Results toolbar click More Datasets  and choose Mirror 2D .

2 In the Settings window for Mirror 2D choose Optimization/Parametric 
Solution 1 from the Dataset list.

3 In the Settings window for Mirror 
2D locate the Axis Data section.
- In row Point 1, set X to a.
- In row Point 2, set X to a.

4 Locate the Advanced section. Select 
the Define Variables check box.
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5 Press CTRL+D to duplicate the dataset.
6 Choose Optimization/Solution from the Dataset list in the 2nd mirror dataset.

Topology
Create a custom plot to show the control material volume factor and filtered 
material volume factor in the same plot.
1 In the Results toolbar click 2D Plot Group .
2 In the Settings window for 2D Plot Group 

locate the Data section. From the Dataset list, 
choose Mirror 2D 2.

3 Click 2D Plot Group 2  and press F2.
4 Go to the Rename 2D Plot Group dialog box 

and type Topology in the New name text field. 
Click OK.

5 In the Topology toolbar click Surface .
6 Change the expression to Topology.

Surface
1 In the Model Builder expand the Results>Topology node, then click 

Surface 1 .
2 In the Settings window for Surface locate the Expression section. In the 

Expression text field, type if(mir1side,dtopo1.theta_c,dtopo1.theta_f).

3 Select the Description check box. Write theta_c (left) and theta_f (right) 
in the associated text box.

4 Select the reverse color table check box.
5 Select the Topology Plot group in the Model Builder window and press 

CTRL+SHIFT+D to duplicate it.

Topology 2
1 Rename the new plot group to Topology 2.
2 From the Dataset list, choose Mirror 2D 1.
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3 Expand the new plot group

Surface
1 In the Model Builder expand the Results>Topology 2 node, then click 

Surface 1 .
2 In the Settings window for Surface locate the Expression section. In the 

Expression text field, type if(mir1side,dtopo1.theta_f,dtopo1.theta).
3 Select the Description check box. Write theta_f (left) and theta (right) in 

the associated text box.

Study 1

The topology optimization study step was added from the model wizard, so the 
solver, objective function and constraint is already setup, so the only thing left to 
do is to reduce the number of iterations and switch on plotting while solving.

Topology Optimization
1 Select the Topology Optimization study step in the Model Builder window, .
2 Set the Maximum number of iterations to 50.
3 Locate the Output While Solving section.

- Select the Plot check box.
- From the Plot group list, choose 

Topology 2.
4 In the Home toolbar click Compute .

The default plots show the material distribution in the optimized structure, clearly 
indicating that the load paths follow the optimized topology. Switch to the other 
plot group to display the stiffness distribution of the final design.
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