

Action on Structures Exposed to Fire

— Thermal Elongation

Introduction

This is the 4th verification example from (Ref. 1) which is part of the European Standard EN-1991-1-2:2010-12, Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. It verifies that the calculated elongation matches the expected values.

Model Definition

The modeled geometry is a cube with side length of 100 mm. The temperature in the block is homogeneous and prescribed. The thermal strain function dL (Figure 1) is given in (Ref. 2).

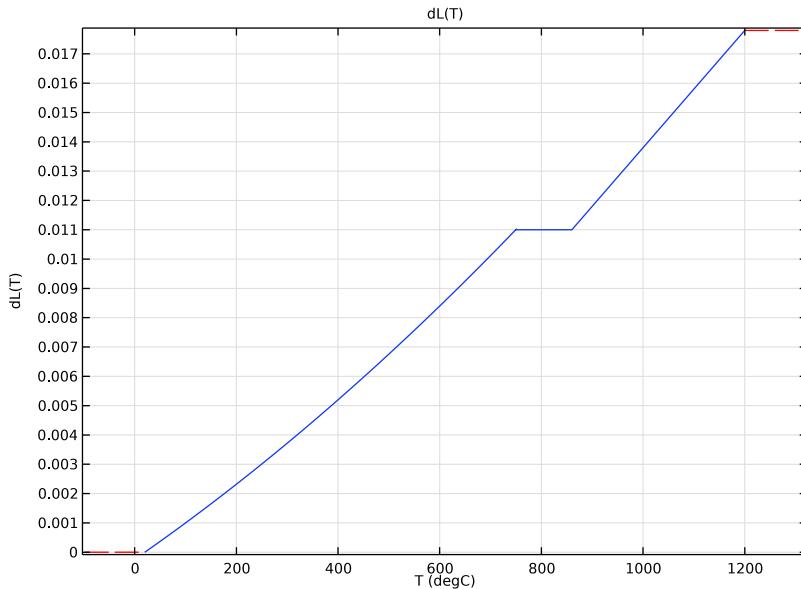


Figure 1: Temperature dependent thermal strain function.

The model is a pure structural mechanics problem. The thermal expansion is calculated according to

$$\varepsilon_{th} = dL(T, T_{ref})$$

with the given thermal strain function dL , the reference temperature $T_{ref} = 20^\circ\text{C}$ and the prescribed temperature T (Table 1).

Results and Discussion

The reference and calculated values are given in [Table 1](#) and match exactly. This is expected, because the thermal strain function prescribes the deformation and the deformation is what you compute.

TABLE I: REFERENCE AND CALCULATED ELONGATION.

TEMPERATURE (°C)	REFERENCE ELONGATION	CALCULATED ELONGATION
100	0.09984	0.09984
300	0.37184	0.37184
500	0.67584	0.67584
600	0.83984	0.83984
700	1.0118	1.0118
900	1.18000	1.18000

References

1. DIN EN 1991-1-2/NA, *National Annex - Nationally determined parameters - Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire*
2. DIN EN 1993-1-2 *Eurocode 3: Design of steel structures - Part 1-2: General rules - Structural fire design; German version EN 1993-1-2:2005 + AC:2009*

Application Library path: Heat_Transfer_Module/Verification_Examples/fire_effects_thermal_elongation

Modeling Instructions

From the **File** menu, choose **New**.

NEW

In the **New** window, click **Model Wizard**.

MODEL WIZARD

- I In the **Model Wizard** window, click **3D**.

- 2 In the **Select Physics** tree, select **Structural Mechanics>Solid Mechanics (solid)**.
- 3 Click **Add**.
- 4 Click **Study**.
- 5 In the **Select Study** tree, select **General Studies>Stationary**.
- 6 Click **Done**.

GEOMETRY 1

Define a parameter for the temperature which is the input for the thermal expansion. A parametric sweep over this temperature will be performed.

GLOBAL DEFINITIONS

Parameters 1

- 1 In the **Model Builder** window, under **Global Definitions** click **Parameters 1**.
- 2 In the **Settings** window for **Parameters**, locate the **Parameters** section.
- 3 In the table, enter the following settings:

Name	Expression	Value	Description
T_in	100[degC]	373.15 K	Temperature

GEOMETRY 1

- 1 In the **Model Builder** window, under **Component 1 (comp1)** click **Geometry 1**.
- 2 In the **Settings** window for **Geometry**, locate the **Units** section.
- 3 From the **Length unit** list, choose **mm**.

Block 1 (blk1)

- 1 In the **Geometry** toolbar, click **Block**.
- 2 In the **Settings** window for **Block**, locate the **Size and Shape** section.
- 3 In the **Width** text field, type 100.
- 4 In the **Depth** text field, type 100.
- 5 In the **Height** text field, type 100.
- 6 Click **Build All Objects**.

MATERIALS

Define the material properties for steel.

Steel

- 1 In the **Model Builder** window, under **Component 1 (comp1)** right-click **Materials** and choose **Blank Material**.
- 2 In the **Settings** window for **Material**, type **Steel** in the **Label** text field.
- 3 Locate the **Material Contents** section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	210000 [N/mm ²]	Pa	Young's modulus and Poisson's ratio
Poisson's ratio	nu	0.3	—	Young's modulus and Poisson's ratio
Density	rho	7850	kg/m ³	Basic

- 4 Click to expand the **Material Properties** section. In the **Material properties** tree, select **Solid Mechanics>Thermal Expansion>Thermal strain (dL)**.
- 5 Click **Add to Material**.

Piecewise 1 (pwl)

- 1 In the **Model Builder** window, expand the **Component 1 (comp1)>Materials>Steel (mat1)** node.
- 2 Right-click **Component 1 (comp1)>Materials>Steel (mat1)>Thermal expansion (ThermalExpansion)** and choose **Functions>Piecewise**.
- 3 In the **Settings** window for **Piecewise**, type **dL** in the **Function name** text field.
- 4 Locate the **Definition** section. In the **Argument** text field, type **T**.
- 5 Find the **Intervals** subsection. In the table, enter the following settings:

Start	End	Function
20	750	$1.2e-5*T+0.4e-8*T^2-2.416e-4$
750	860	$1.1e-2$
860	1200	$2e-5*T-6.2e-3$

- 6 Locate the **Units** section. In the **Arguments** text field, type **degC**.

- 7 Click **Plot**. Compare with [Figure 1](#).

Steel (mat1)

- 1 In the **Model Builder** window, under **Component 1 (comp1)>Materials>Steel (mat1)** click **Thermal expansion (ThermalExpansion)**.
- 2 In the **Settings** window for **Thermal Expansion**, locate the **Output Properties** section.

3 In the table, enter the following settings:

Property	Variable	Expression	Unit	Size
Thermal strain	dL_{iso} ; $dL_{ii} = dL_{iso}$, $dL_{ij} = 0$	$dL(T)$	l	3x3

The variable T is not known, yet. Add the temperature in the **Model Inputs** section to define it.

- 4 Locate the **Model Inputs** section. Click **Select Quantity**.
- 5 In the **Physical Quantity** dialog box, type **temperature** in the text field.
- 6 Click **Filter**.
- 7 In the tree, select **General>Temperature (K)**.
- 8 Click **OK**.

SOLID MECHANICS (SOLID)

Roller 1

- 1 In the **Model Builder** window, under **Component 1 (comp1)** right-click **Solid Mechanics (solid)** and choose **Roller**.
- 2 Select Boundaries 3, 5, and 6 only.

The roller condition ensures that the structure expands in all directions uniformly.

Linear Elastic Material 1

In the **Model Builder** window, click **Linear Elastic Material 1**.

Thermal Expansion 1

- 1 In the **Physics** toolbar, click **Attributes** and choose **Thermal Expansion**.
- 2 In the **Settings** window for **Thermal Expansion**, locate the **Thermal Expansion Properties** section.
- 3 From the **Input type** list, choose **Thermal strain**.
Define a parameter for the input temperature.
- 4 Locate the **Model Input** section. From the **T** list, choose **User defined**. In the associated text field, type **T_in**.

MESH 1

Swept 1

In the **Mesh** toolbar, click **Swept**.

Size

- 1 In the **Model Builder** window, click **Size**.
- 2 In the **Settings** window for **Size**, locate the **Element Size** section.
- 3 From the **Predefined** list, choose **Extremely coarse**.
- 4 Click **Build All**.

A very coarse mesh is sufficient. Even just one element would be enough, because the deformation is prescribed and you verify that the calculated deformation gives the same value. This is a basic test to validate that the tested functionality works correctly.

STUDY 1

Step 1: Stationary

Set up a parametric sweep over the input temperature.

Parametric Sweep

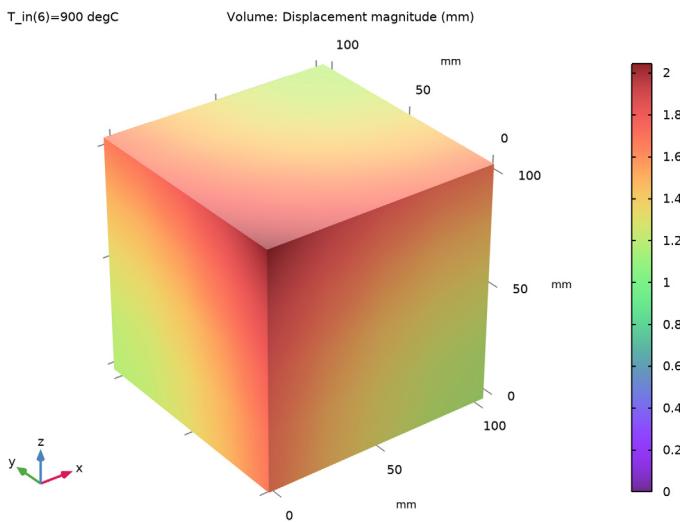
- 1 In the **Study** toolbar, click **Parametric Sweep**.
- 2 In the **Settings** window for **Parametric Sweep**, locate the **Study Settings** section.
- 3 Click **Add**.
- 4 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
T_in (Temperature)	100 300 500 600 700 900	degC

- 5 In the **Study** toolbar, click **Compute**.

A 3D stress plot is created automatically. Add a predefined plot group to visualize the displacement field.

ADD PREDEFINED PLOT


- 1 In the **Home** toolbar, click **Windows** and choose **Add Predefined Plot**.
- 2 Go to the **Add Predefined Plot** window.
- 3 In the tree, select **Study 1/Solution 1 (s01)>Solid Mechanics>Displacement (solid)**.
- 4 Click **Add Plot** in the window toolbar.

RESULTS

Displacement (solid)

- 1 In the **Displacement (solid)** toolbar, click **Plot**.

2 Click the **Zoom Extents** button in the **Graphics** toolbar.

Surface Average *I*

- In the **Results** toolbar, click **More Derived Values** and choose **Average>Surface Average**.
- Select Boundary 4 only.
- In the **Settings** window for **Surface Average**, locate the **Expressions** section.
- In the table, enter the following settings:

Expression	Unit	Description
w	mm	Displacement field, Z component

- Click **Evaluate**.

TABLE I

- Go to the **Table I** window.

To compare these results with the reference values, import the data as interpolation function.

GLOBAL DEFINITIONS

Interpolation I (intI)

- In the **Home** toolbar, click **Functions** and choose **Global>Interpolation**.

- 2 In the **Settings** window for **Interpolation**, locate the **Definition** section.
- 3 From the **Data source** list, choose **File**.
- 4 Click **Browse**.
- 5 Browse to the model's Application Libraries folder and double-click the file `fire_effects_thermal_elongation_dlref.txt`.
- 6 Find the **Functions** subsection. In the table, enter the following settings:

Function name	Position in file
dl_ref	1

- 7 Locate the **Units** section. In the **Argument** table, enter the following settings:

Argument	Unit
Column 1	degC

- 8 Locate the **Definition** section. Click **Import**.

It is not necessary to compute the whole study again. To make the data available for postprocessing, just update the solution.

STUDY 1

In the **Study** toolbar, click **Update Solution**.

RESULTS

Surface Average 1

- 1 In the **Model Builder** window, under **Results>Derived Values** click **Surface Average 1**.
- 2 In the **Settings** window for **Surface Average**, locate the **Expressions** section.
- 3 In the table, enter the following settings:

Expression	Unit	Description
w	mm	Displacement field, Z component
dl_ref(T_in)		Interpolation 1

- 4 In the **Results** toolbar, click **Evaluate** and choose **Clear and Evaluate All**.

TABLE 1

- 1 Go to the **Table 1** window.

The computed and reference values match exactly. Compare with [Table 1](#).

