

LiveLink[™] for Revit[®]

User's Guide

LiveLink TM for Revit® User's Guide

© 2014-2023 COMSOL

Protected by patents listed on www.comsol.com/patents, or see Help>About COMSOL Multiphysics on the File menu in the COMSOL Desktop for less detailed lists of U.S. Patents that may apply. Patents pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the license agreement. LiveLink™ for Revit® is not affiliated with, endorsed by, sponsored by, or supported by Autodesk, Inc., and/or its affiliates and/or subsidiaries. Portions of this software are owned by Siemens Product Lifecycle Management Software Inc. © 1986–2022. All Rights Reserved. Portions of this software are owned by Spatial Corp. © 1989–2022. All Rights Reserved.

COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Compiler, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. ACIS and SAT are registered trademarks of Spatial Corporation. Autodesk and Revit are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. CATIA is a registered trademark of Dassault Systèmes or its subsidiaries in the US and/or other countries. Parasolid is a trademark or registered trademark of Siemens Product Lifecycle Management Software Inc. or its subsidiaries in the United States and in other countries. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those or the above non-COMSOL trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks.

Version: COMSOL 6.2

Contact Information

Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries or search for an address and phone number. You can also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for address and contact information.

If you need to contact Support, an online request form is located on the COMSOL Access page at www.comsol.com/support/case. Other useful links include:

• Support Center: www.comsol.com/support

• Product Download: www.comsol.com/product-download

• Product Updates: www.comsol.com/product-update

COMSOL Blog: www.comsol.com/blogs

• Discussion Forum: www.comsol.com/forum

• Events: www.comsol.com/events

COMSOL Video Gallery: www.comsol.com/videos

• Support Knowledge Base: www.comsol.com/support/knowledgebase

Part number: CM024501

Contents

Chapter	I: Introduction	
	About the Product Overview of the Included Geometry Tools and Features	9
Chapter	2: The LiveLink™ Interface	
	The LiveLink Add-In and the COMSOL Multiphysics Tab The Synchronization Settings Window	18 20
	Synchronizing the Geometry The LiveLink Node	23
	Connecting to COMSOL Server TM and Running Applications Overview	29 30
Chapter	3: Geometry Tools and Features	
	Geometry Representation Working with the CAD Kernel	

	Importing and Exporting CAD Files 38
	Importing 3D CAD Files
	Exporting Objects to 3D CAD Formats
	Repairing and Defeaturing 46
	Check
	Delete Fillets
	Delete Holes
	Delete Short Edges
	Delete Sliver Faces
	Delete Small Faces
	Delete Spikes
	Detach Faces
	Detect Interferences
	Repair
	Replace Faces
	Creating and Modifying Geometries 67
	Cap Faces
	Knit to Solid
	Projection
Chapter	4: Programming and Command Reference
•	
	Defeaturing Tools 74
	Defeaturing Tools — Finding and Deleting Small Details
	Defeaturing Tools — Detach Faces
	Defeaturing Tools — Detect Interferences
	Defeaturing Tools — Replace Faces
	Summary of Commands 80
	Commands Grouped by Function 81
	Commands for Creating and Modifying Geometry in 2D 81
	Commands for Defeaturing
	Commands for File Import, Export, Conversion, and Repair 81

Commands for Creating and Modifying Geometry in 3	3D				82
Commands for Interfacing CAD Software		•		•	82
Commands in Alphabetical Order					83
CapFaces					83
Check					84
ConvertToCOMSOL					85
DeleteFillets					86
DeleteHoles					88
DeleteShortEdges					91
DeleteSliverFaces					94
DeleteSmallFaces					
DeleteSpikes					99
DetachFaces					102
DetectInterferences					105
Export, ExportFinal					105
Import 3D CAD					108
Knit					115
LiveLinkRevit					117
Projection					121
Repair					123
ReplaceFaces					125
Index					29

Introduction

Welcome to the LiveLink™ for Revit® User's Guide! This guide details the functionality of this optional package that extends the COMSOL Multiphysics® modeling environment with additional tools and features to use geometry from the Revit® building information management software for simulation, to import and export geometry using the most common 3D CAD file formats, and to repair, defeature, and modify geometry.

This introductory chapter contains an overview of the capabilities of the module, including a summary of the included geometry features, an overview of this guide, and a description of where to find documentation and model examples.

About the Product

Overview of the Included Geometry Tools and Features

LiveLink[™] for Revit[®] enables modeling using 3D designs synchronized from the Revit[®] building design software. The included user interface builds on an associative transfer of the geometry from the CAD program to the COMSOL model.

If you rather use file import to get your designs into COMSOL Multiphysics, the product also supports import of the most common 3D CAD file formats: ACIS[®], $AutoCAD^{\mathbb{R}}$, IGES, $Inventor^{\mathbb{R}}$, $NX^{\mathbb{R}}$, $Parasolid^{\mathbb{R}}$, PTC Creo $Parametric^{TM}$, PTC*Pro/ENGINEER®*, *SOLIDWORKS®*, and *STEP*. In addition, support for *CATIA®* V5 is available as a separate add-on. To exchange data with CAD packages, you can export your geometry to the ACIS[®], IGES, Parasolid[®], and STEP file formats.

Finally, the product provides a dedicated geometric kernel, the CAD kernel, and a wide range of tools for you to prepare an imported 3D design for meshing and analysis. You can interactively search for and remove geometric features, for example, fillets, holes, slivers, small faces, and short edges. You can also modify objects by detaching a portion to form an additional computational domain, or by creating a fluid domain for computation, in case the CAD design only includes the solid parts.

GEOMETRY FEATURE	ICON	DESCRIPTION		
Projection		Project 3D objects and entities to a work plane		
3D Geometry Features				
Cap Faces		Generate faces from edges to fill gaps and create solid objects, or to partition solids		
Check		Check CAD objects for faults, for example tolerance issues and invalid entities		
Convert to COMSOL		Convert to the COMSOL kernel representation		
Replace Faces		Delete and replace faces		
Delete Fillets		Search for and delete fillets		

GEOMETRY FEATURE	ICON	DESCRIPTION
Delete Holes	Ø	Search for and delete holes
Delete Short Edges		Search for and delete short edges
Delete Sliver Faces		Search for and delete sliver faces
Delete Small Faces		Search for and collapse small faces
Delete Spikes		Search for and delete spikes from faces
Detach Faces		Detach faces to form a new object from them
Detect Interferences		Search for interferences, such as intersections, gaps, touches, and containments, between objects
Export	\Rightarrow	Export geometry objects to 3D CAD file formats
Import	-	Import geometry objects from 3D CAD file formats
Knit to Solid	P	Knit surface objects to form solid or surface object
LiveLink for Revit	cţo	Synchronize geometry between Revit and COMSOL
Repair		Repair defects and remove small details from 3D objects
Replace Faces		Replace faces by growing surrounding faces or creating new faces

Overview of the User's Guide

This documentation covers and the add-on for file import of CATIA® V5 files. Instructions on how to use the geometry modeling tools in COMSOL Multiphysics® in general are included with the COMSOL Multiphysics Reference Manual. To help you get started with modeling this module is also accompanied by the quick-start guide Introduction to .

Where Do I Access the Documentation and Application Libraries?

A number of internet resources have more information about COMSOL, including licensing and technical information. The electronic documentation, topic-based (or context-based) help, and the application libraries are all accessed through the COMSOL Desktop.

If you are reading the documentation as a PDF file on your computer, the blue links do not work to open an application or content referenced in a different guide. However, if you are using the Help system in COMSOL Multiphysics, these links work to other modules (as long as you have a license), application examples, and documentation sets.

THE DOCUMENTATION AND ONLINE HELP

The COMSOL Multiphysics Reference Manual describes all core physics interfaces and functionality included with the COMSOL Multiphysics license. This book also has instructions about how to use COMSOL Multiphysics and how to access the electronic Documentation and Help content.

Opening Topic-Based Help

The Help window is useful as it is connected to many of the features on the GUI. To learn more about a node in the Model Builder, or a window on the Desktop, click to highlight a node or window, then press F1 to open the Help window, which then displays information about that feature (or click a node in the Model Builder followed by the **Help** button (?). This is called *topic-based* (or *context*) *help*.

To open the **Help** window:

• In the Model Builder, Application Builder, or Physics Builder click a node or window and then press F1.

Win

- On any toolbar (for example, Home, Definitions, or Geometry), hover the mouse over a button (for example, Add Physics or Build All) and then press F1.
- From the File menu, click Help (??).
- In the upper-right corner of the COMSOL Desktop, click the **Help** (2) button.

To open the **Help** window:

- In the Model Builder or Physics Builder click a node or window and then press F1.
- Linux
- In the main toolbar, click the **Help** (?) button.
- From the main menu, select Help>Help.

Opening the Documentation Window

To open the **Documentation** window:

Win

- Press Ctrl+F1.
- From the File menu select Help>Documentation (

Mac

Linux

To open the **Documentation** window:

- Press Ctrl+F1.
- In the main toolbar, click the **Documentation** () button.
- From the main menu, select Help>Documentation.

THE APPLICATION LIBRARIES WINDOW

Each application includes documentation with the theoretical background and step-by-step instructions to create a model application. The applications are available in COMSOL as MPH-files that you can open for further investigation. You can use the step-by-step instructions and the actual applications as a template for your own modeling and applications. In most models, SI units are used to describe the relevant properties, parameters, and dimensions in most examples, but other unit systems are available.

Once the Application Libraries window is opened, you can search by name or browse under a module folder name. Click to view a summary of the application and its properties, including options to open it or a PDF document.

2

The Application Libraries Window in the COMSOL Multiphysics Reference Manual.

Opening the Application Libraries Window

To open the Application Libraries window ():

• In the Home toolbar, click Windows and select Application Libraries. When the toolbar is compressed, you sometimes find it under Layout>Windows.

Win

• From the File menu select Application Libraries.

To include the latest versions of model examples, from the File>Help menu select (👹) Update COMSOL Application Libraries.

From the File or Windows menu select Application Libraries.

To include the latest versions of model examples, from the **Help** menu select () Update COMSOL Application Libraries.

CONTACTING COMSOL BY EMAIL

For general product information, contact COMSOL at info@comsol.com.

To receive technical support from COMSOL for the COMSOL products, please contact your local COMSOL representative or send your questions to support@comsol.com. An automatic notification and case number is sent to you by email.

COMSOL WEBSITES

COMSOL website	www.comsol.com
Contact COMSOL	www.comsol.com/contact
COMSOL Access	www.comsol.com/access
Support Center	www.comsol.com/support
Product Download	www.comsol.com/product-download
Product Updates	www.comsol.com/product-update
COMSOL Blog	www.comsol.com/blogs
Discussion Forum	www.comsol.com/forum
Events	www.comsol.com/events
COMSOL Video Gallery	www.comsol.com/videos
Support Knowledge Base	www.comsol.com/support/knowledgebase

The LiveLink TM Interface

When running the COMSOL Multiphysics[®] software and the Revit[®] building information management software side-by-side you can transfer the geometry of room volumes, architectural elements, and conceptual masses from Revit[®] to COMSOL Multiphysics using the LiveLink[™] interface. In the other direction, from COMSOL Multiphysics to Revit[®], the interface enables you to update the dimensions of conceptual masses in the Revit[®] project. If running the software side-by-side is not available, for example when you want to run your COMSOL Multiphysics simulation on a different platform from where your CAD software is installed, the LiveLink interface also provides a file based offline synchronization mode.

You can also analyze designs using simulation apps that connect to Revit[®] by utilizing the LiveLink interface. With the provided tools you can easily connect to COMSOL ServerTM from within Revit[®] to browse and run simulation apps, including those that use geometry synchronized with the CAD software.

This section includes the following topics:

- The LiveLink Add-In and the COMSOL Multiphysics Tab
- Synchronizing the Geometry
- Connecting to COMSOL Server[™] and Running Applications

The LiveLink Add-In and the COMSOL Multiphysics Tab

When you install LiveLink™ for Revit® an add-in is registered with Revit® during the install process.

You can also install and register the LiveLink add-in by installing the COMSOL Client, available for download from https://www.comsol.com. Such an installation enables the functionality for preparing designs for synchronization, saving files for offline synchronization, and running simulation apps that synchronize geometry.

In the user interface of the CAD software, the add-in enables the COMSOL Multiphysics tab, which contains the functionality to configure the Revit project for synchronization:

- The COMSOL Parameter Selection Window, where you can select mass parameters in Revit® to control from the simulation
- The Synchronization Settings Window is where you can manage the configurations for synchronizing geometry from projects inside Revit[®]
- The Settings Window for Configurations in Revit[®] is where you can select the elements to be synchronized in a configuration
- The COMSOL Synchronize Offline Window, where you can save synchronization files from Revit®.

The Synchronization Settings Window

To configure the synchronization of a project between Revit[®] and COMSOL click the Synchronization Settings button on the COMSOL Multiphysics tab in Revit[®]. The Synchronization Settings window that opens contains the tools for creating and managing multiple collections of synchronization settings, referred to as configurations. A configuration contains information about which view or rooms that should be synchronized, how the room volume should be determined, and how to synchronize room bounding and other elements in the room.

The Configurations table holds all configurations in the project. To edit the name of a configuration double click it in the Name column. The radio button in the Active column controls which configuration is used when the project is synchronized between Revit[®] and COMSOL. To set up a synchronization configuration click the **Edit** button to open a dialog box that contains the settings for the configuration, see The Settings Window for Configurations.

To add a new configuration to the table click New.

Click **New from View** to create a configuration based on an existing *View* from the Revit® Project Browser. See New from View.

To create a copy of a configuration, select it from the table, then click **Duplicate**.

Select a configuration from the table, then click **Preview** to open a separate window with a graphical representation of the configuration. This is useful to check the elements included in the synchronization.

Click Delete to discard a configuration from the table. Clear All deletes all configurations from the table.

Select the **Save settings in project** check box to store the synchronization configurations in the Revit[®] project. Next time the project is saved the configurations will be saved in the file. Clear the Save settings in project check box to remove stored configurations from the Revit[®] project file next time you save the project.

Click **OK** to confirm changes and close the window, or click **Cancel** to discard changes and close the window. Note that synchronization is not possible if the Synchronization **Settings** window is open in Revit[®].

NEW FROM VIEW

To set up a synchronization configuration based on elements visible in an existing view in the Revit[®] project click **New from View** in the **Synchronization Settings** window.

The **Select View** dialog box opens where you can select the view to use for the configuration. Supported views include Floor Plans and 3D Views. Select a view and click **OK** to confirm and close the dialog box, or click **Cancel** to cancel the operation.

The configuration created from a view includes the room volumes (for floor plan views) and elements visible in the selected view. For example a floor plan view of a level in the building includes all the rooms on the level together with all visible elements.

In the Synchronization Settings window, click the Edit button for a configuration. The window that opens contains the settings for the configuration.

Select the Synchronize view check box to synchronize elements contained in the 3D view selected from the **Select view** list. The **Create selection** check box is selected by default to generate selections for the synchronized elements. This mode of synchronization is useful for projects without any room definitions and when the elements are not contained in rooms. The type of elements that can be synchronized include for example wall layers, structural framing and foundation elements, mechanical and electrical equipment.

Clear the **Synchronize view** check box to enable the synchronization of room volumes, elements contained in rooms, and conceptual masses. To synchronize both room volumes and the type of elements that are only available when synchronizing 3D views you can create two configurations, one for the room volumes and another for the 3D view. Then in the geometry sequence of your COMSOL® model you can add two LiveLink[™] nodes for separate synchronization of each configuration.

ROOM SETTINGS

The **Rooms** table displays a list of rooms that are defined in the Revit[®] project. To turn on the synchronization of a room select its check box from the list.

Room synchronization may fail or produce unexpected results if the room is not defined by room bounding elements. In the Revit[®] project check that walls, floors, ceilings and roofs are set to be Room Bounding, and that *Room Separators* are defined where necessary.

Room Extension

Select **Extend to walls** to generate a room volume that extends to the room bounding elements, such as walls, interior walls, floors, windows, and ceilings or roofs. The room volume is transferred to the COMSOL model as a solid object.

Using the extend to wall option for rooms results in the geometry objects for adjacent rooms to be disconnected unless solids for room bounding elements are also synchronized. Select the Solids for room bounding elements check box under the Synchronize room bounding elements section.

With the **Extend to wall centerline** option the surface objects for the room bounding elements are generated at the centerline of walls, and at the top plane of floors, ceilings and roofs. Note that with this option a solid object for the room volume is not generated during synchronization, only surface objects are transferred. In the COMSOL model, after synchronization create a solid using either the Convert to Solid or **Knit to Solid** operations with the surfaces as input.

Element Settings

The **Elements** table contains a list of elements contained in the rooms that are selected in the Rooms table. By default all available elements are shown in the table, to filter the display of elements by category use the **Show category** list box.

A selected check box for an element in the **Synchronize** column means that the geometry for the element will be transferred to COMSOL during synchronization. In the COMSOL model this can result in one or multiple solid or surface objects for the element, depending on how the element is represented in the Revit[®] project.

The setting in the **Detail level** column determines how the geometry for the element is generated before synchronization. The following options are available:

- **Bounding box** (default): An enclosing box is generated for the element.
- **Original**: The geometry of the element is transferred without alterations.

Elements may be represented only by surfaces in the Revit project and they may also have small details that may result in problems during mesh generation. Transferring elements with Detail level set to Original may therefore require the geometry to be modified and/or simplified in COMSOL after synchronization.

Select the check box in the **Create selection** column for the synchronization to create a selection in the COMSOL model for the element. After synchronization the selections appear in the LiveLink for Revit settings window, in the Selections from CAD Package table. The selections are available in all applicable selection lists but do not appear as separate selection nodes in the COMSOL model tree.

Synchronization of Room Bounding Elements

With the check boxes in the Synchronize Room Bounding Elements section you can control the type of geometry that is synchronized for room bounding elements such as walls, floors, ceilings, roofs, windows. The following options are available:

• Solids for room bounding elements: Select this check box to synchronize solid objects for room bounding walls, floors, ceilings and roofs. Solid objects are generated for all walls, including interior walls, which are adjacent to selected rooms.

- Surfaces for room bounding elements: Select this check box to synchronize surface objects for room bounding walls, floors, ceilings and roofs.
- Surfaces for room interior walls: Select this check box to synchronize the midsurfaces of interior walls to the room. This setting is enabled only when the **Extend to wall centerline** option is selected for the room extension.
- Surfaces for openings: Select this check box to synchronize surface objects for windows, skylights, curtain walls, and doors. This option also generates surfaces for openings that do not have any elements defined.
- Create selections: Select this check box to create selections in the COMSOL model for the geometry objects representing the walls, floors, windows, ceilings and roofs. After synchronization the selections appear in the **LiveLink for Revit** settings window, in the **Selections from CAD Package** table. The selections are available in all applicable selection lists but do not appear as separate selection nodes in the COMSOL model tree.

Conceptual Masses

Conceptual masses in a project are synchronized when the check box **Synchronize** masses is selected. Synchronization of masses can be enabled independently of the synchronization of rooms. To include the mass floors in the mass synchronization select the Include mass floors check box. Selections for masses in the COMSOL model are automatically generated when the **Create selection** check box is selected.

The COMSOL Parameter Selection Window

In Revit[®], open the COMSOL Parameter Selection window by clicking the Parameters button (P:) located on the **COMSOL Multiphysics** tab. The window lists all mass parameters in the active project. To link a parameter to COMSOL select the corresponding check box in the **Add to COMSOL** column. All types of dimensions can be selected, but only dimensions that are not defined by a formula are possible to control from a COMSOL model. Linking dimensions that are defined by a formula enables using their values in COMSOL model definitions.

Select the Save settings in project check box to save the list of linked parameters in the file.

In the Revit[®] user interface, click the **Synchronize Offline** button on the **COMSOL** Multiphysics tab to open the COMSOL Synchronize Offline window where you can save synchronization files that can be loaded by the LiveLink feature in a COMSOL model.

Before saving offline synchronizations files consider linking mass parameters for control from the COMSOL model, see The COMSOL Parameter Selection Window, and setting up the synchronization as described in th section The Synchronization Settings Window.

From the Synchronization list select Initial (default) or Requested. If you select Initial the synchronization file will contain the current geometry. Select **Requested** to load a request file, and save a synchronization file with geometries generated for the parameter values in the request file.

SETTINGS FOR INITIAL SYNCHRONIZATION

Select to Synchronize material data together with the geometry. With this option the material properties defined in the synchronized part or assembly components are included in the synchronization file.

Select the type of objects to include in the synchronized geometry. Only the types of objects that are selected from the Solids, and Surfaces check boxes are transferred during a synchronization. Performance can be improved for very large geometries that contain more than one type of objects, by turning off the synchronization of types of objects that are not necessary for the simulation. Note that you can also exclude selected objects from being synchronized by hiding them.

SETTINGS FOR REQUESTED SYNCHRONIZATION

Click **Browse** to load a request file that was saved from a LiveLink feature in COMSOL Multiphysics. Once the file is loaded you can see information displayed about the requested document and the requested parameter values. Click one of the rows in the Parameters table to display a larger table. The fields in the Requested Value column will contain many values if the loaded request is for a parametric sweep, or if many requests have been saved in the request file. In the Current Value column you can see the values that the parameters currently have in the CAD model. An empty field in this column means that the corresponding parameter could not be found in the CAD model.

To generate a synchronization file according to the request do not change the default settings, that is, Synchronize with should be set to Requested document and Use parameter values should be set to Requested.

To generate a synchronization file for the currently active file in Revit choose Active document from the Synchronize with list. By setting Use parameter values to Current the synchronization file will contain the geometry built using the parameter values displayed in the Current Value column.

Click Save to save the synchronization file and close the window. This may take some time for parametric sweeps for which the geometry needs to be rebuilt many times.

For Initial synchronizations you can also click Append to add a synchronization to an already saved synchronization file. You can for example save a synchronization file, then manually change parameter values, rebuild the CAD model, then open this window again to append the new geometry to the previously saved file.

To close the window without saving click **Cancel**.

Synchronizing the Geometry

To initiate the geometry synchronization between Revit[®] and COMSOL Multiphysics[®] use the **LiveLink for Revit** feature node.

Before synchronization consider to review and change the settings for The LiveLink Node, and to configure the synchronization of architectural elements present in the Revit[®] project as described in the section The LiveLink Add-In and the COMSOL Multiphysics Tab.

The LiveLink Node

The LiveLink for Revit feature, available from the LiveLink menu in the Home toolbar, synchronizes the geometry between Revit[®] and COMSOL Multiphysics[®].

For geometry synchronization to take place both COMSOL Multiphysics and Revit® need to be running, and the CAD file needs to be open in the CAD software. When this is not possible, Offline Synchronization is available so that you can, from the CAD software, save synchronization files, which you can load into the LiveLink node.

A list of compatible versions of Revit[®] can be found at: www.comsol.com/system-requirements/module.

During synchronization the LiveLink interface generates and transfers the geometry objects for the volumes of selected rooms in the Revit® project, and retrieves and transfers the geometry of architectural elements, including masses. Mass objects are rebuilt before transfer based on the parameter values set in the COMSOL Multiphysics model. To ensure that associativity is preserved use selections for the architectural elements to apply model settings, for example material and physics settings.

In the geometry sequence of the model the LiveLink node signifies a geometry synchronized from the CAD software, and in many aspects it is just like any other geometry operation. It can be combined with other operations that may appear both before and after the LiveLink node in the sequence.

Synchronized geometry objects are represented using the Parasolid[®] geometry kernel inside COMSOL Multiphysics. Thus, you can apply all the tools and features for defeaturing and geometry modification as included with this LiveLink™ product.

THE SYNCHRONIZE SECTION

To specify which project to synchronize use the **Synchronize with** list. Select **Active document** to synchronize the open and active project in Revit[®]. For the initial synchronization after adding a LiveLink[™] node, **Active document** is the only available setting. For subsequent synchronizations the **Specified document** option becomes selected instead. Using this setting the project specified after **Document** will be synchronized provided that it is open in Revit®. To synchronize a new project switch to the Active document setting. The name of the project is automatically determined during synchronization with the **Active document** setting.

When running parametric optimization studies or parametric sweeps, the project needs to remain open in Revit® until the solver completes.

The LiveLink interface also determines the selected Configuration in the synchronized Revit® project when Synchronize with is set to Active document. To make sure that the project will be synchronized in the same state during subsequent synchronizations, the **Specified document** alternative can be used. With this option the interface automatically activates the last synchronized configuration. To be able to synchronize the project in a different configuration, first make the desired configuration active in Revit[®], then from the Synchronize with list select Active document.

For information on how to set up synchronization configurations for a Revit[®] project see the section titled The Synchronization Settings Window.

You can also select to Synchronize material data together with the geometry. With this option the interface imports the material properties defined in the synchronized part or assembly components, and the software creates corresponding Material nodes in the component. The input selection in the generated Material nodes is set to the material selections that are also created during synchronization; see Selections, for more information.

To initiate a synchronization click the **Synchronize** button. This sends parameter value pairs to Revit[®], then retrieves the regenerated geometry objects. Synchronization can also be triggered by clicking a build button when there are changed settings in the LiveLink node, or there are changed parameter values. Synchronization is automatic when running an optimization study or a parametric sweep.

Select the Offline synchronization check box to enable the Offline Synchronization section where you can load synchronization files that you have prepared in advance using the LiveLink tools in Revit[®]. Such offline synchronization files can contain the geometry. selections and parameters for several synchronizations, including parameter sweeps.

OFFLINE SYNCHRONIZATION

Use offline synchronization when you do not have the possibility to run the CAD software and COMSOL Multiphysics on the same computer. For example, to run a parametric sweep when COMSOL Multiphysics is installed on a Linux or macOS computer, you can, in the CAD software, prepare and save in advance a synchronization file with the geometries needed for the sweep. In COMSOL Multiphysics, in the LiveLink node, you can load the synchronization file, and compute the parametric sweep.

To load a synchronization file, from the Offline Synchronization toolbar, click Receive **Synchronization File** (). Browse to the file and click open to load the geometry, parameters and selections from the file. Synchronization files may contain one or several synchronizations, including synchronizations generated in response to a requested parameter sweep.

To generate synchronization files use the functionality provided by the LiveLink add-in inside Revit[®], see The COMSOL Synchronize Offline Window.

If the loaded synchronization file contains a parametric sweep the number of parameter tuples in the file is displayed under **Receive**. After the file is loaded, you can go to the Study node that contains the parametric sweep for which the synchronization was requested, and click **Compute** to run the parametric sweep.

In case a loaded synchronization file contains several synchronizations you can see the number of synchronizations left in the file under Receive. To load the next synchronization from the file click Load Next Synchronization ().

To request a synchronization click **Request Synchronization** (). You can, for example, under Global Definitions>Parameters, change the value of a parameter that is synchronized (see Parameters), and then generate a synchronization request. The response you will generate in Revit® will contain the updated geometry according to the parameter value in the request. To save another request to the previously saved request file click Append to Request File (). To generate a request for a parametric sweep select one of the available sweeps from the Parametric sweep to request list, and then click **Request Synchronization** to save the request.

PARAMETERS

Parameters that take part in the synchronization are specified in the Parameters in CAD Package section. Based on the transferred parameter and value pairs in the Controllable parameters table, the CAD model is automatically rebuilt in Revit[®] and transferred back to COMSOL Multiphysics[®]. This way you can control mass parameters in the Revit mass model.

Together with the updated geometry, updated values of the parameters listed in the **Read-only parameters** table are also transferred from the CAD software. Read-only parameters are defined by a formula in Revit[®], and therefore not possible to control without breaking the CAD design. However these parameters can be used to set up the simulation.

Clicking Synchronize also retrieves parameters that not yet appear in the tables under the Parameter in CAD Package section but have been selected to be linked to COMSOL® from the Revit® project. As part of this process a corresponding global parameter is automatically generated in the model.

In both the Controllable parameters and Read-only parameters tables, the CAD name column holds the names of mass parameters in the Revit[®] project, whereas the **COMSOL** name and COMSOL value columns contain the name and value, respectively, of corresponding global parameters in the model, defined under Global **Definitions>Parameters** in the model tree. Global parameters can be controlled by the parametric solver to perform parametric sweeps. During synchronization of controllable parameters COMSOL evaluates the corresponding global parameters and sends the resulting value to Revit[®]. Click the symbol in the **Sync** column to turn on or off the synchronization of a parameter.

Unless a unit is specified the updated parameters are assumed to have units as defined in the Revit[®] project.

Synchronizing Parameters

You can type in parameters in the tables, or use the COMSOL Parameter Selection window in Revit[®] to link parameters from the Revit[®] project, for details see the section The COMSOL Parameter Selection Window. Linked parameters can then be retrieved to the table, and global parameters are automatically generated for them.

To retrieve the linked parameters from the Revit[®] project to the LiveLink node, and to generate corresponding global parameters in the model do one of the following:

- In the Settings window for LiveLink for Revit click the Synchronize button: New parameters, which have been selected in the Revit[®] project, but are not listed under Parameters in CAD Package, are transferred to the Controllable parameters table or the **Read-only parameters** table. For each new mass parameter a global parameter is generated in the model. The global parameters are assigned the values of the corresponding mass parameters. Following this, the geometry is regenerated in Revit[®], based on the parameters in the **Controllable parameters** table, and transferred to COMSOL.
- In the Settings window for LiveLink for Revit click the Update Parameters from CAD button (()

New parameters, which have been selected in the Revit® project, but are not listed under Parameters in CAD Package are transferred to the Controllable parameters table or the **Read-only parameters** table. For each new mass parameter a global parameter is generated in the model. The global parameters are assigned the values of the corresponding mass parameters. In addition, the values of global parameters, which are already linked to mass parameters in the table, are updated to the current values of the mass parameters.

IMPORT OPTIONS

In the **Length unit** list, select **From COMSOL** to scale the transferred objects to the length unit of the geometry in the current model. Select From CAD document to change the geometry's length unit to the unit in the CAD software.

Objects to Import

Select the types of objects to transfer from Revit® using the Solids, Surfaces check boxes.

Import Options

The **Absolute import tolerance** is a length measured in the geometry's unit after synchronization. The import operation merges geometric entities with a distance smaller than this tolerance.

Select the **Check imported objects for errors** check box to check the validity of the imported objects as the last stage of the import. Warning nodes appear with details about the detected problems, if any. Use the Zoom to Selection button next to the **Entities** list in a warning node to locate the problematic edges or faces. For information on geometry problems that may occur see the Check feature.

If the Repair imported objects check box is selected, the software tries to repair defects and remove details smaller than the **Absolute import tolerance** when transferring objects from Revit®.

Select the Simplify curves and surfaces check box to simplify, within the Absolute import tolerance, the underlying curve and surface manifolds of the imported geometric entities. Importing objects with this option may improve both the performance and reliability of geometric operations on some imported geometry, for example it may help in some cases when Boolean operations on the imported objects fail. Simplification means that the manifolds are converted where possible to analytical form: linear, circular, and elliptical curves; and planar, spherical, cylindrical, conical, and toroidal surfaces. Manifolds that are converted are B-spline curves and surfaces, or certain surfaces generated by operations such as sweeping, revolving, and filleting.

If the Remove redundant edges and vertices check box is selected, edges and vertices that are considered redundant, such as the edges of an imprint on a face, are removed during synchronization.

SELECTIONS

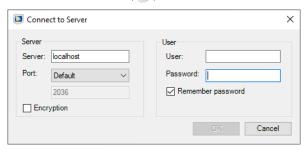
The LiveLink™ interface synchronizes selections for selected elements from the Revit® project. The selections get their names from the element name, type and category. Synchronized selections appear in the Selections from CAD Package table. Click on an entry in the table to see the included objects highlighted in the **Graphics** window. Selections are available in all applicable selection lists, for example in geometry and mesh operations, or material and physics settings, but do not appear as separate selection nodes in the COMSOL model tree. See the section The Settings Window for Configurations on how to set up the synchronization to include selections for the various elements.

ASSIGNED ATTRIBUTES

Select the **Construction geometry** check box to make the resulting objects available only in the feature's geometry sequence. For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

Connecting to COMSOL Server TM and Running Applications

Overview


A COMSOL® runnable application is a COMSOL Multiphysics® MPH-file that, in addition to the model part, includes a custom user interface that you can run as a separate application or in a web client. For simulations with geometry that comes from a Revit[®] model, applications can also use the LiveLink™ interface for Revit[®].

To create such applications, use the Application Builder, which is included in the Windows® version of COMSOL Multiphysics. For more information on how to build applications, refer to the book Introduction to Application Builder.

With a COMSOL Server[™] license together with a license for LiveLink[™] for Revit[®], a COMSOL application that uses the LiveLink interface can be run by connecting to a COMSOL Server with an easy-to-install COMSOL Client, available for download from www.comsol.com. The software components installed with the COMSOL Client allow you to connect to a COMSOL Server right from the user interface of Revit[®], and to browse and launch apps using the COMSOL Server interface. COMSOL Server or COMSOL Client does not include the Application Builder, Physics Builder, and Model Builder tools that come with the COMSOL Desktop® environment, and that are required for building applications.

For more information on the installation and administration of the COMSOL Server, and on how to run applications, refer to the book COMSOL Server Manual.

To log in to a COMSOL ServerTM interface, on the **COMSOL Multiphysics** tab in Revit[®] click the **COMSOL Server** (\bigcirc) button.

For accessing a remote server use the computer name and domain, or the IP address, instead of localhost. If the port number 2036 is taken, then COMSOL Server will use the next available port number: 2136, 2236, and so on. Log in to COMSOL Server with your username and password. After you click **OK** the COMSOL Server interface is displayed embedded in the Revit[®] user interface. Here you can view the apps available in the Application Library.

To launch an app click the **Launch** button below its icon. The app is launched in a separate COMSOL Client window. The first time you start the COMSOL Client you will need to log in to the COMSOL Server.

As an alternative to connecting to the COMSOL Server interface from Revit[®], you can also start the COMSOL Client from the Windows[®] Desktop or **Start** menu, and log in to the COMSOL Server to launch apps.

Note: Applications that use LiveLinkTM for Revit[®] require a COMSOL Client installation as they are not supported to be run from a web browser.

Running Applications with COMSOL Multiphysics®

If you have a COMSOL Multiphysics[®] installation you can launch apps from the Revit[®] user interface by clicking the **Run Application** () button on the **COMSOL Multiphysics** tab in Revit[®]. In the **Open** dialog box browse to the application, then click **Open**. This will bring up the app interface in a separate window. If the application

utilizes the LiveLink™ interface make sure that the CAD document is open in Revit® before using the app.

Note that the Run Application button is disabled if you have a COMSOL Client installation of LiveLinkTM for Revit[®]. In this case run the app with the COMSOL Client, for example by first logging in to a COMSOL Server interface as described in the section Connecting to a COMSOL Server™.

Geometry Tools and Features

T his chapter describes the tools and features available for importing and modifying geometry with LiveLinkTM for Revit[®].

Geometry Representation

Working with the CAD Kernel

The component of the COMSOL Multiphysics[®] software that is used to represent, build, and manage the interactions between geometric objects is the geometric kernel or geometric modeler. There are two kernels used by the software, the COMSOL kernel, and the CAD kernel (the Parasolid® kernel) that is included with the CAD Import Module, the Design Module, and LiveLink™ products interfacing CAD packages.

With a license for LiveLink™ *for* Revit[®] the software defaults to the CAD kernel for representing the geometry. You need to use the CAD kernel to apply the geometry features included with this module, for example the defeaturing and repair tools, as well as to import 3D geometries using various 3D CAD file formats.

The 3D operations and primitives listed in Table 3-1 do not support the CAD kernel — they always use the COMSOL kernel. However, an automatic conversion is performed for these objects before they are used as input to geometry features that require the CAD kernel, see Converting Objects to CAD Kernel Representation.

TABLE 3-1: 3D GEOMETRY FEATURES THAT DO NOT SUPPORT THE PARASOLID GEOMETRY KERNI	TABLE 3-1: 3D GE	OMETRY FEATURES TI	HAT DO NOT SUI	PPORT THE PARASOLID	GEOMETRY KERNEL.
--	------------------	--------------------	----------------	---------------------	------------------

FEATURE NAME	FEATURE NAME
Bezier Polygon	Point
Eccentric Cone	Polygon
Extrude	Pyramid
Helix	Revolve
Hexahedron	Sweep
Interpolation Curve	Tetrahedron
Parametric Curve	Torus
Parametric Surface	Work Plane

CHANGING THE GEOMETRIC KERNEL

To switch between geometric kernels, you can click the **Geometry** node, then in its Settings window, from the Geometry representation list choose either the CAD kernel or COMSOL kernel.

When you change the Geometry representation setting, all nodes that support the CAD kernel are marked as edited with an asterisk (*) in the upper-right corner of the node's icon. To rebuild the geometry using the new kernel, click the **Build All** button (no). To avoid re-solving an already solved model, you can click the **Update Solution** button () in the **Study** toolbar to map the solutions from the geometry represented by the CAD kernel to the new geometry represented by the COMSOL kernel.

If you solve a model using the CAD kernel, it is not possible to view and postprocess the solution if you open it in a COMSOL Multiphysics session where a license for the CAD Import Module, Design Module, or one of the LiveLink for CAD products is not available, unless, before saving the model, you change the geometry representation to COMSOL kernel and update the solution. This is possible to do only for 3D geometry sequences that do not contain geometry features that require the CAD kernel.

When you create a new model, its default geometry representation is controlled by the preference setting Geometry>Geometry representation>In new geometries.

When you open an existing model, you normally use the geometry representation used in the model. To always get the possibility to convert the geometry to the COMSOL kernel, change the preference setting Geometry>Geometry representation>When opening an existing model to Convert to COMSOL kernel.

Converting Objects to COMSOL Kernel Representation

To convert CAD objects (geometric objects represented by the CAD kernel) to objects represented by the COMSOL kernel, from the **Geometry** toolbar, **Conversions** menu, select Convert to COMSOL ().

The COMSOL geometry file format (.mphbin, or .mphtxt) can contain geometric objects saved in both the CAD kernel and COMSOL kernel representations. To import geometry from such a file to a geometry sequence that uses the COMSOL kernel, you need to convert geometry objects to the COMSOL representation before exporting to the file.

CONVERT TO COMSOL

Select the objects that you want to convert in the Graphics window. The selected objects are displayed in the **Input objects** list.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the **New** button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the **Resulting objects selection** check box to create predefined selections (for all levels — objects, domains, boundaries, edges, and points — that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose **Boundary selection**. These selections do not appear as separate selection nodes in the model tree. Select **Off** to not make any selection available outside of the geometry sequence.

ASSIGNED ATTRIBUTES

From the **Construction geometry** list choose **On** to make the resulting objects available only in the feature's geometry sequence. The default option **Inherit from input** means that the resulting objects become construction geometry if all input objects are construction geometry. Choose **Off** to never output construction geometry objects. For more information see Construction Geometry.

Converting Objects to CAD Kernel Representation

If the current geometry representation for the geometry sequence is **CAD kernel**, an automatic conversion of COMSOL objects to CAD objects takes place before using the objects in Boolean operations and before using the objects in the **Convert to Solid**, Convert to Surface, Convert to Curve, and Convert to Point operations. This ensures that the CAD kernel is used in the abovementioned operations. This conversion is also performed when COMSOL objects are used as input to features that require the CAD kernel, for example the Knit to Solid feature

An automatic conversion to CAD objects is also performed before exporting geometry in the ACIS[®], Parasolid[®], STEP, and IGES file formats.

If the automatic conversion cannot be performed, the geometry operation is performed by the COMSOL kernel. For example, geometry objects created from a mesh cannot be converted to CAD kernel representation. Other examples of geometry objects that cannot be converted to CAD representation include objects that have an edge adjacent to three or more isolated faces, or objects that have a face bounded by an edge loop that intersects itself.

The automatic conversion to CAD kernel representation is not performed if one of the input objects to the Boolean or conversion operation is the result of a previous Convert to COMSOL operation.

Importing and Exporting CAD Files

Importing 3D CAD Files

To import geometry objects from a 3D CAD file, from the **Home** or the **Geometry** toolbar, click **Import** (). In the **Import** section of the Settings window, select **3D CAD** file from the Geometry import list. You can also skip this step as the type of the selected file is automatically recognized by the code. Click Browse to locate the file to import, or enter the path to the file. Before clicking the **Import** button consider to review and configure the import settings. If you have changed some settings after importing a file, the file is automatically reimported when you click a build button.

The imported geometry objects are represented by the CAD kernel, see Working with the CAD Kernel, which is the geometric kernel used by the CAD Import Module, Design Module, and LiveLink™ products interfacing CAD packages.

Some 3D CAD formats use periodic parameterization for edges and faces. For example, a full-revolution cylindrical edge or face appears seamless in the CAD program. During import edges or faces that have a periodic parameterization are cut in two halves by inserting new vertices and edges. This is done because the mesh algorithms do not support periodic entities. You can ignore such inserted edges using an Ignore Edges feature from Virtual Operations.

SUPPORTED FORMATS

The CAD import supports the following 3D CAD formats:

TABLE 3-2: SUPPORTED 3D CAD FILE FORMATS.

FILE FORMAT	NOTES	FILE EXTENSIONS	SUPPORTED VERSIONS
ACIS [®]	1	.sat, .sab	Up to 2023 1.0
$AutoCAD^{ exttt{ extbf{R}}}$	1, 2	.dwg, .dxf	2.5-2024
CATIA [®] V5	2, 3	.CATPart, .CATProduct	R8 to R2023
IGES	1	.igs, .iges	Up to 5.3
Inventor [®] assembly	1, 2	.iam	11-2024
Inventor [®] part	1, 2,	.ipt	6-2024
NX™	1, 4	.prt	Up to 2306
Parasolid [®]	ı	.x_t, .x_b	Up to V36.0
PTC Creo Parametric™	ı	.prt, .asm	1.0-10.0

TABLE 3-2: SUPPORTED 3D CAD FILE FORMATS.

FILE FORMAT	NOTES	FILE EXTENSIONS	SUPPORTED VERSIONS
PTC Pro/ENGINEER®	1	.prt, .asm	16 to Wildfire 5
solidworks [®]	1, 2, 5	.sldprt, .sldasm	98-2023
STEP	I	.step, .stp	AP203E1, AP214, AP242

Note 1: This format requires a license for one of the CAD Import Module, Design Module, or LiveLink product for a CAD package.

Note 2: This format is available only on supported Windows[®] operating systems.

Note 3: This format requires, in addition to the CAD Import Module, or Design Module, or a LiveLink product for a CAD package, a license for the File Import for CATIA V5 module.

Note 4: Support for the NX^{TM} file format is available only on supported Windows[®] and Linux operating systems.

Note 5: Embedded parts in assemblies are not supported. To import such an assembly, first convert the embedded parts to external parts.

ASSOCIATIVITY

When possible the import maintains associativity for the imported geometry objects, so that when the CAD file is reimported the settings applied to the geometric entities, for example physics or material settings, are retained. To maintain associativity the import relies on information in the CAD file that uniquely identifies the geometry objects and their entities, such as faces, edges, and points. This information is usually included in the CAD file if the geometry is saved in the format of the CAD software where it was created, but not when the geometry is exported to another CAD format. When reimporting a CAD file the import automatically tries to identify and match all geometry objects and their entities to the previous version. This may fail if the topology (structure) of the geometry has changed since the last import.

Note: To ensure that associativity is maintained when reimporting a CAD file work with CAD files saved in the originating CAD software's format, and avoid changes to the topology (structure) of the geometry. When an associative import is not possible use coordinate-based selections, such as the Ball, Box, and Cylinder selections in 3D (see Creating Selections From Geometric Primitives and Operations in the *COMSOL Multiphysics Reference Manual*).

LENGTH UNIT

In the **Length unit** list, select **From CAD document** to change the geometry's length unit to the unit in the file (if the file has a length unit). Select **From COMSOL** to keep the geometry's length unit and scale the objects in the file to the geometry's unit.

OBJECTS TO IMPORT

Select the types of objects to import using the **Solids**, **Surfaces**, and **Curves and points** check boxes.

If the **Surfaces** check box is selected, you can choose how COMSOL imports the surfaces using the list under **For surface objects**:

- Choose Form solids (the default) to knit together surface objects to form solids. The input surface objects must have manifold topology, and the operation can only form solids with manifold topology. An example of a solid object with nonmanifold topology is a solid that has an interior surface that separates two domains. A surface object that contains an edge that is adjacent to more than one boundary is an example of a surface object with nonmanifold topology.
- Choose **Knit surfaces** to form surface objects by knitting.
- Choose Do not knit to not form any surface or solid objects from the imported surfaces.

For the **Form Solids** and **Knit surfaces** options select the **Fill holes** check box to generate new faces to replace missing geometry.

To import wireframe geometry you need to select the **Curves and points** check box. With this option, the **Unite curve objects** check box is selected by default to unite the imported curve objects, which speeds up the rendering of the geometry.

IMPORT OPTIONS

The **Absolute import tolerance** is a length measured in the geometry's unit after the import. When importing 3D CAD files, the program merges geometric entities with a distance smaller that this tolerance.

Select the **Check imported objects for errors** check box to check the validity of the imported objects as the last stage of the import. Warning nodes appear with details about the detected problems, if any. Use the **Zoom to Selection** button next to the Entities list in a warning node to locate the problematic edges or faces. For information on geometry problems that may occur see the Check feature.

If you select the **Repair imported objects** check box, the software tries to repair defects and remove details smaller than the Absolute repair tolerance.

The option Simplify curves and surfaces is selected by default to simplify, within the **Absolute import tolerance**, the underlying curve and surface manifolds of the imported geometric entities. Importing objects with this option may improve both the performance and reliability of geometric operations on some imported geometry, for example it may help in some cases when Boolean operations on the imported objects fail. Simplification means that the manifolds are converted where possible to analytical form: linear, circular, and elliptical curves; and planar, spherical, cylindrical, conical, and toroidal surfaces. Manifolds that are converted are B-spline curves and surfaces, or certain surfaces generated by operations such as sweeping, revolving, and filleting.

If the Remove redundant edges and vertices check box is selected, edges and vertices that are considered redundant, such as the edges of an imprint on a face, are removed during synchronization.

When importing STEP files that contain multibody parts it can be useful to generate object names that include both the body and the part names retrieved from the file. Select how to name the objects imported from STEP files from the Import body names list:

- Select **Automatic** to include the body names in the object name only for the multibody parts.
- Select **On** to include the body names in the objects names for all imported parts.
- Select **Off** to not include the body names in the object names.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the **Contribute to** list (the default, **None**, gives no

contribution), or click the **New** button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the **Resulting objects selection** check box to create predefined selections (for all levels — objects, domains, boundaries, edges, and points — that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

Select the **Individual objects selections** check box to create predefined selections (for all levels — objects, domains, boundaries, edges, and points — that are applicable) in subsequent nodes in the geometry sequence for each individual object in the geometry file and for each relevant entity level. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, if available, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select **Off** to not make any selection available outside of the geometry sequence.

SELECTIONS GENERATED BASED ON INFORMATION IN THE CAD FILE

The following types of data from the CAD file are used to generate selection on the imported geometry:

- Material assignments can generate objects selections that are named according to the material names in the CAD file.
- Layer assignments of objects and entities, when supported by the CAD format, can generate object, boundary, edge, and point selections that are named according to the layer names in the CAD file.
- Color assignments to objects, faces, or edges can generate object, boundary, and edge selections, respectively.

After the import the generated selections are displayed in the Settings window for the Import node in sections named according to the entity level of the selections:

- Object Selections
- Boundary Selections
- Edge Selections
- Point Selections

Depending on which selections are generated, a subset of the above sections is displayed. The selections are listed in tables with the following columns:

- Name: Here you can edit the selection name that is generated by the import. For colors the generated names are of the type Color 1, Color 2, and so on, for materials and layers the names from the CAD file are used.
- Name in file: This column contains the original name of the selection. To display this column select the **Show names from file** check box above the table.
- **Keep**: Select the check box in this column to make the selection available in selection lists for subsequent nodes in the geometry sequence.
- Physics: Select the check box in this column to make the selection available in all applicable selection lists (in physics and materials settings, for example).
- Contribute to: If you want to make the objects or entities in the selection contribute to a cumulative selection, select a cumulative selection from the **Contribute to** list (the default, None, gives no contribution), or click the New Cumulative Selection button under the table to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Click a row in a table to highlight the corresponding selection on the geometry in the Graphics window. To help with identifying the color selections, these are highlighted with the colors defined in the imported CAD file. To always highlight on the geometry the color selections that you keep select from the **Graphics** toolbar **Colors>Show** Selection Colors.

The selections listed in the **Object Selections** section that are made available for the geometry sequence or physics setup are always available in all input selection lists, including all applicable entity selection lists. For example, the object selection of a solid object, generated for a material from the CAD file, automatically results in domain, boundary, edge, and point selections with the same name, so that you can use it to apply a boundary material, or a boundary condition. In contrast, a color assigned to a face of a solid object in the CAD file results in a boundary selection that is displayed

in the **Boundary Selections** section, and it is available in all applicable boundary selection lists, but not, for example, in any edge selection lists.

ASSIGNED ATTRIBUTES

Select the **Construction geometry** check box to make the resulting objects available only in the feature's geometry sequence. For more information see Construction Geometry.

Exporting Objects to 3D CAD Formats

With a license for LiveLink[™] *for* Revit[®] you can export 3D geometry objects to the ACIS[®] (version 2016 1.0), IGES (version 5.3), Parasolid[®] (version 36.0), and STEP (version AP203) formats. To do this:

- right-click the **Geometry** node and select **Export** (), or
- in the **Geometry** toolbar click **Export** ().

Then, in the Export window, the File type list, select Parasolid binary file, Parasolid text file, ACIS binary file, ACIS text file, IGES file, or STEP file. Use the Browse button to choose the filename, or enter a filename including the path in the Filename field.

Next, select **Export selected objects** to export only chosen geometry objects or select **Export entire finalized geometry** to export the resulting geometry of a Form Union or Form Assembly operation.

The following limitations apply when exporting geometry objects to the 3D CAD formats mentioned in this section:

- Geometry objects that are created from mesh cannot be exported.
- Geometry objects that are the result of virtual geometry operations
 that come after a Form Union or Form Assembly node in the geometry
 sequence cannot be exported. The finalized geometry resulting from
 the Form Union or Form Assembly node is exported instead.
- Geometry objects created with a license for the ECAD Import Module from ECAD files imported with the options Ignore vertices with continuous tangent and Eliminate short edges cannot be exported. In this case the exported geometry objects contain the vertices and edges removed by the import.

COMSOL objects are automatically converted to CAD objects before saving the file.

For details on which objects can be converted to CAD objects see Converting Objects to CAD Kernel Representation.

To export the geometry to the specified file, click the **Export** () button. A confirmation message appears in the Messages window.

ADVANCED

When exporting to an ACIS file format choose the ACIS file format version. Available versions are 4.0, 7.0, 2016 1.0 (default).

For the Parasolid, IGES, and STEP file formats select a Length Unit. A unit conversion is carried out when the selected unit is different from the length unit of the geometry. A unit conversion is not done for the default **From geometry** option.

The Parasolid binary and text formats do not allow coordinate values larger than 500. Therefore you might have to change the export unit in the **Length unit** list box to be able to export the geometry.

For the Parasolid file formats the option Split in manifold objects is selected by default to make sure that the exported geometry objects are manifold objects. A nonmanifold object is, for example, a solid with an interior boundary that separates two domains. When exported using this option the solid is split along the interior boundary into two separate objects. When exporting to the ACIS, IGES, and STEP formats nonmanifold objects are always split.

Repairing and Defeaturing

When importing 3D CAD files, the default import settings ensure that the validity of the imported objects is checked, and that defects are repaired when possible. In addition to the checks and repair performed during import, LiveLinkTM *for* Revit[®] provides operations for checking, repairing, and defeaturing 3D geometry objects, and locating overlaps and gaps in imported CAD assemblies.

OPERATIONS FOR CHECKING AND REPAIRING 3D OBJECTS

Use the operations listed in the table below to check and repair geometry objects and to detect interferences between objects:

TABLE 3-3: OPERATIONS FOR DETECTING DEFECTS IN AND REPAIRING 3D OBJECTS AND DETECTING INTERFERENCES BETWEEN 3D GEOMETRY OBJECTS.

ICON	NAME	DESCRIPTION
	Check	Check CAD objects for faults, for example tolerance issues and invalid entities
	Detect Interferences	Search for interferences, such as intersections, gaps, touches, and containments, between objects
	Repair	Repair defects and remove small details from 3D objects

OPERATIONS FOR DEFEATURING

With the defeaturing tools listed in the table below you can search for and delete both small details, such as short edges, small faces, sliver faces, and spikes, and larger details, for example, fillets, chamfers, and cylindrical holes. You can also replace and detach a selection of faces to form 3D objects.

TABLE 3-4: OPERATIONS FOR DEFEATURING 3D GEOMETRY OBJECTS.

ICON	NAME	DESCRIPTION
	Delete Fillets	Search for and delete fillets
O	Delete Holes	Search for and delete holes
	Delete Short Edges	Search for and collapse short edges
	Delete Sliver Faces	Search for and delete slivers faces
	Delete Small Faces	Search for and collapse small faces

TABLE 3-4: OPERATIONS FOR DEFEATURING 3D GEOMETRY OBJECTS.

ICON	NAME	DESCRIPTION
	Delete Spikes	Search for and delete spikes from faces
	Detach Faces	Detach faces to form a new object from them
	Replace Faces	Replace faces by growing surrounding faces or creating new faces

Check

To check the validity of CAD objects, from the Geometry toolbar, Defeaturing and Repair () menu, select Check ().

Select the objects that you want to check in the **Graphics** window. These then appear in the Input objects list. If the geometry sequence includes user-defined selections above the **Check** node, choose **Manual** to select objects, or choose one of the selection nodes from the list next to **Input objects**. Click the **Active** button to toggle between turning ON and OFF the Input objects selections.

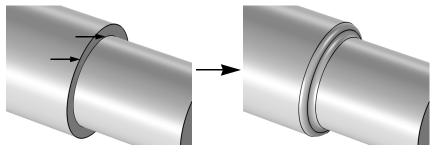
If any problems are detected in the selected objects when building this feature, warning nodes appear with details about the issues. In the warning nodes use the **Zoom** to Selection button next to the Entities list to locate the faulty edges or faces.

Warnings on geometric entities are usually associated with objects imported from CAD files, but could also be introduced by geometric operations, for example when repairing an object with a tolerance that is too large. The presence of warnings does not generally mean that the geometry is invalid and cannot be used for setting up a simulation. However, the faulty entities may in some cases cause the failure of geometric operations that involve these entities, and meshing of entities with certain types of faults may fail. In the following you can read about two commonly occurring class of faulty geometric entities, and how to repair these:

 Tolerance issues: The warning messages vertex not on edge, vertex not on face, edge not on face belong to this category. These type of faults indicate that the topology (structure) of the object is not correct locally, for example that an edge is not located on the boundary where it is expected to be. You can often repair tolerance issues in an object by applying the Repair operation with a tolerance that is larger than the tolerance used for the import. Repair adjusts the tolerance of the entities where required, and, if this fixes the issues, warning nodes will not be displayed after the Repair node. In some cases it may also help to use the option Simplify curves and

surfaces for the Repair operation. Note that increasing the repair tolerance too much may lead to removing important details from the geometry. As an alternative to the Repair operation you can also reimport the CAD file using a larger tolerance, however the option to simplify curves and surfaces is not available in this case. For more details see Repair, and Import Options.

- Invalid entities: The warning messages invalid curve or surface, self-intersecting face, face-to-face inconsistency, self-intersecting curve or surface signify invalid entities. If you encounter any of these faults after importing a geometry from a CAD file you may need to repair the geometry to avoid problems with meshing. For example:
 - For face-to-face inconsistency faults on solid objects, try to repair the object using the Repair face-to-face inconsistencies in solids option for the Repair feature.
 - Try to replace the faulty face. Use the Delete operation to delete the face, then use the Cap Faces operation to generate a new face in its place. Another solution may be to use Delete Faces to delete and patch in one operation several connected faces that have a fault.


Delete Fillets

Use the Delete Fillets tool to search for fillets of a specified radius and delete these from an object. The faces forming the fillet are removed and the adjacent faces are extended to cover the resulting wound.

Note that this defeaturing tool may not find all fillets on nonmanifold objects. An example of a nonmanifold object is an object with several domains. Such an object can for example result from a Union or a Partition operation. To remove the fillets make sure to defeature the geometry objects before applying Boolean operations that result in nonmanifold objects.

The Delete Fillets tool cannot delete fillets for which the adjacent faces cannot be extended to cover the wound. The figure below shows an example of such fillets.

Applying the fillets on the highlighted edges deletes the annular face from the geometry, which cannot be recreated if the fillets are to be deleted.

To open the Tools window for Delete Fillets, from the Geometry toolbar, Defeaturing and **Repair** (🔂) menu, select **Delete Fillets** (🦳). You can also right-click the **Geometry** node and select the same option from the context menu.

Note: When you are in the **Tools** window for **Delete Fillets**, you can at any time switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

DELETE FILLETS

Activate the **Input objects** selection by clicking the **Active** button to toggle between and . Select the objects you want to examine in the Graphics window. They appear in the Input objects list.

The Delete Fillets tool can only be applied to objects that are represented by the Parasolid[®] geometry kernel, also called CAD objects.

In the fields Minimum fillet radius and Maximum fillet radius, enter the size of the fillets you want to search for. When you click the Find Fillets button, a list of fillets with radii between the given values is shown in the Fillet selection list.

To delete the found details, either click the Delete All button, or select a subset of the found details in the list and click **Delete Selected**. Then, the selected details are deleted from their objects, and a node corresponding to this operation is added to the geometry branch of the model tree.

If you want to modify the performed deletion operation, you can select the added node in the geometry branch. Then, edit the node's form that appears in the **Settings** window. Click the **Build Selected** button () to see the result of your edits. The Settings window for Delete Fillets contains the additional settings described below.

To delete all fillets returned by the search, set the **Deletion type** to **All fillets**. You can delete a subset of the found fillets by selecting them in the Fillet selection list, and choosing Selected fillets in the Deletion type list.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the **Contribute to** list (the default, **None**, gives no contribution), or click the **New** button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels — objects, domains, boundaries, edges, and points — that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose **Boundary selection**. These selections do not appear as separate selection nodes in the model tree. Select **Off** to not make any selection available outside of the geometry sequence.

Delete Holes

Use this defeaturing tool to search for and delete cylindrical holes from an object. The tool can find and delete both through or blind holes on solid as well as surface objects. The faces forming the hole are deleted and the resulting wound is covered by extending the adjacent faces.

Note that holes found on nonmanifold objects are not possible to delete. An example of a nonmanifold object is an object with several domains. Such an object can for example result from a Union or a Partition operation. To remove the holes make sure to defeature the geometry objects before applying Boolean operations that result in nonmanifold objects.

To open the Tools window for Delete Holes, from the Geometry toolbar, Defeaturing and Repair (1 menu, select Delete Holes (1). You can also right-click the Geometry node and select the same option from the context menu.

Note: When you are in the **Tools** window for **Delete Holes**, you can at any time switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

DELETE HOLES

Activate the **Input objects** selection by clicking the **Active** button to toggle between and . Select the objects you want to examine in the Graphics window. They appear in the **Input objects** list.

The Delete Holes tool can only be applied to objects that are represented by the CAD kernel; see Converting Objects to CAD Kernel Representation.

In the fields Minimum hole radius and Maximum hole radius, enter the size of the holes you want to search for. When you click the **Find Holes** button, a list of holes with radii between the given values is shown in the **Hole selection** list.

To delete the found details, either click the **Delete All** button, or select a subset of the found details in the list and click **Delete Selected**. Then, the selected details are deleted from their objects, and a node corresponding to this operation is added to the geometry branch of the model tree.

If you want to modify the performed deletion operation, you can select the added node in the geometry branch. Then, edit the node's form that appears in the **Settings** window. Click the **Build Selected** button () to see the result of your edits. The Settings window for Delete Holes contains the additional settings described below.

To delete all holes returned by the search, set the **Deletion type** to **All holes**. You can delete a subset of the found holes by selecting them in the Hole selection list, and choosing Selected holes in the Deletion type list.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no

contribution), or click the **New** button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the **Resulting objects selection** check box to create predefined selections (for all levels — objects, domains, boundaries, edges, and points — that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose **Boundary selection**. These selections do not appear as separate selection nodes in the model tree. Select **Off** to not make any selection available outside of the geometry sequence.

Delete Short Edges

Use the Delete Short Edges tool to find edges shorter than a specified length, and then to delete these by collapsing the edges.

Note that this defeaturing tool cannot find short edges on nonmanifold objects. An example of a nonmanifold object is an object with several domains. Such an object can for example result from a Union or a Partition operation. To avoid this situation defeature the geometry objects before applying Boolean operations that result in nonmanifold objects.

To open the **Tools** window for **Delete Short Edges**, from the **Geometry** toolbar, Defeaturing and Repair () menu, select Delete Short Edges (). You can also right-click the **Geometry** node and select the same option from the context menu.

Note: When you are in the **Tools** window for **Delete Short Edges**, you can at any time switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

DELETE SHORT EDGES

Activate the **Input objects** selection by clicking the **Active** button to toggle between and . Select the objects you want to examine in the Graphics window. They appear in the Input objects list.

The Delete Short Edges tool can only be applied to objects that are represented by the Parasolid® geometry kernel, also called CAD objects.

In the field **Maximum edge length**, enter the maximum length of the edges you want to delete. When you click the Find Short Edges button, a list of edges with length smaller that the given value is shown in the **Short edge selection** list.

To delete the found details, either click the Delete All button, or select a subset of the found details in the list and click **Delete Selected**. Then, the selected details are deleted from their objects, and a node corresponding to this operation is added to the geometry branch of the model tree.

If you want to modify the performed deletion operation, you can select the added node in the geometry branch. Then, edit the node's form that appears in the Settings window. Click the **Build Selected** button () to see the result of your edits. The Settings window for Delete Short Edges contains the additional settings described below.

To delete all edges returned by the search, set the **Deletion type** to **All short edges**. You can delete a subset of the found edges by selecting them in the **Short edge selection** list, and choosing Selected short edges in the Deletion type list.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the **New** button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the **Resulting objects selection** check box to create predefined selections (for all levels — objects, domains, boundaries, edges, and points — that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain

selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose **Boundary selection**. These selections do not appear as separate selection nodes in the model tree. Select **Off** to not make any selection available outside of the geometry sequence.

Delete Sliver Faces

Use the Delete Sliver Faces tool to search for high aspect ratio faces of a specified maximum width. The tool deletes the selected sliver faces by collapsing these.

Note that this defeaturing tool cannot find sliver faces on nonmanifold objects. An example of a nonmanifold object is an object with several domains. Such an object can for example result from a Union or a Partition operation. To avoid this situation defeature the geometry objects before applying Boolean operations that result in nonmanifold objects.

To open the **Tools** window for **Delete Sliver Faces**, from the **Geometry** toolbar, Defeaturing and Repair () menu, select Delete Sliver Faces (). You can also right-click the **Geometry** node and select the same option from the context menu.

Note: When you are in the **Tools** window for **Delete Sliver Faces**, you can at any time switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

DELETE SLIVER FACES

Activate the **Input objects** selection by clicking the **Active** button to toggle between and . Select the objects you want to examine in the Graphics window. They appear in the **Input objects** list.

The Delete Sliver Faces tool can only be applied to objects that are represented by the Parasolid® geometry kernel, also called CAD objects.

In the field Maximum face width, enter the maximum width of the faces you want to delete. When you click the **Find Sliver Faces** button, a list of faces with width smaller that the given value are shown in the Sliver faces selection list.

To delete the found details, either click the Delete All button, or select a subset of the found details in the list and click **Delete Selected**. Then, the selected details are deleted from their objects, and a node corresponding to this operation is added to the geometry branch of the model tree.

If you want to modify the performed deletion operation, you can select the added node in the geometry branch. Then, edit the node's form that appears in the **Settings** window. Click the **Build Selected** button () to see the result of your edits. The Settings window for Delete Sliver Faces contains the additional settings described below.

To delete all faces returned by the search, set the **Deletion type** to **All sliver faces**. You can delete a subset of the found faces by selecting them in the Sliver face selection list, and choosing Selected sliver faces in the Deletion type list.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels — objects, domains, boundaries, edges, and points — that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select **Off** to not make any selection available outside of the geometry sequence.

Delete Small Faces

Use the Delete Small Faces tool to find and delete faces of a specified maximum size. The tool deletes the selected small faces by collapsing these.

Note that this defeaturing tool cannot find small faces on nonmanifold objects. An example of a nonmanifold object is an object with several domains. Such an object can for example result from a Union or a Partition operation. To avoid this situation

defeature the geometry objects before applying Boolean operations that result in nonmanifold objects.

To open the **Tools** window for **Delete Small Faces**, from the **Geometry** toolbar, right-click the **Geometry** node and select the same option from the context menu.

Note: When you are in the **Tools** window for **Delete Small Faces**, you can at any time switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

DELETE SMALL FACES

Activate the **Input objects** selection by clicking the **Active** button to toggle between and . Select the objects you want to examine in the Graphics window. They appear in the **Input objects** list.

The Delete Small Faces tool can only be applied to objects that are represented by the Parasolid[®] geometry kernel, also called CAD objects.

In the field Maximum face size, enter the maximum diameter of the faces you want to delete. When you click the Find Small Faces button, a list of faces with diameter smaller that the given value appears in the Small faces selection list.

To delete the found details, either click the **Delete All** button, or select a subset of the found details in the list and click **Delete Selected**. Then, the selected details are deleted from their objects, and a node corresponding to this operation is added to the geometry branch of the model tree.

If you want to modify the performed deletion operation, you can select the added node in the geometry branch. Then, edit the node's form that appears in the **Settings** window. Click the **Build Selected** button () to see the result of your edits. The Settings window for Delete Small Faces contains the additional settings described below.

To delete all faces returned by the search, set the **Deletion type** to **All small faces**. You can delete a subset of the found faces by selecting them in the **Small face selection** list, and choosing Selected small faces in the Deletion type list.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the **New** button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the **Resulting objects selection** check box to create predefined selections (for all levels — objects, domains, boundaries, edges, and points — that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select **Off** to not make any selection available outside of the geometry sequence.

Delete Spikes

A spike is a long and narrow protrusion on an edge or corner of a face defined by two or three edges. Using the Delete Spikes tool you can search for and delete spikes from an object, by collapsing the narrow face region defined by the spike.

To open the Tools window for Delete Spikes, from the Geometry toolbar, Defeaturing and Repair (1 menu, select Delete Spikes (1). You can also right-click the Geometry node and select the same option from the context menu.

Note: When you are in the **Tools** window for **Delete Spikes**, you can at any time switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

DELETE SPIKES

Activate the **Input objects** selection by clicking the **Active** button to toggle between and . Select the objects you want to examine in the Graphics window. They appear in the **Input objects** list. Note that this defeaturing tool cannot find spikes on faces that belong to nonmanifold objects. An example of a nonmanifold object is

an object with several domains. Such an object can for example result from a Union or a Partition operation. To avoid this situation defeature the geometry objects before applying Boolean operations that result in nonmanifold objects.

The Delete Spikes tool can only be applied to objects that are represented by the Parasolid[®] geometry kernel, also called CAD objects.

In the field **Maximum spike width**, enter the maximum width of the spikes you want to delete. When you click the Find Spikes button, a list of spikes with width smaller that the given value are shown in the **Spike selection** list.

To delete the found details, either click the Delete All button, or select a subset of the found details in the list and click **Delete Selected**. Then, the selected details are deleted from their objects, and a node corresponding to this operation is added to the geometry branch of the model tree.

If you want to modify the performed deletion operation, you can select the added node in the geometry branch. Then, edit the node's form that appears in the Settings window. Click the **Build Selected** button () to see the result of your edits. The Settings window for Delete Spikes contains the additional settings described below.

To delete all spikes returned by the search set the **Deletion type** to **All spikes**. You can delete a subset of the found spikes by selecting them in the **Spike selection** list, and choosing Selected spikes in the Deletion type list.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the **New** button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the **Resulting objects selection** check box to create predefined selections (for all levels — objects, domains, boundaries, edges, and points — that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose **Boundary selection**. These

selections do not appear as separate selection nodes in the model tree. Select **Off** to not make any selection available outside of the geometry sequence.

Detach Faces

By detaching, faces are removed from an object (the parent) and are used to form a new object (the child). The wound that results from detaching the faces is healed by either creating new faces based on the surrounding edges or by growing or shrinking adjacent faces.

To open the Tools window for Detach Faces, from the Geometry toolbar, Defeaturing and **Repair** (🔂) menu, select **Detach Faces** (🔲 🗋). You can also right-click the **Geometry** node and select the same option from the context menu.

Note: When you are in the **Tools** window for **Detach Faces**, you can at any time switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

Select the faces you want to detach in the Graphics window. They appear in the Faces to detach list.

The Detach Faces tool can only be applied to objects that are represented by the Parasolid[®] geometry kernel, also called CAD objects.

The Parent heal method list determines how to replace the detached faces in the parent object: Create capping faces means that a new faces are constructed based on the edges adjacent to each wound, and Extend adjacent faces (default) means that the wound is covered by growing and shrinking the adjacent faces.

The Child heal method list controls how to construct the child solid from the detached faces: Create capping faces means that a new face is formed based on the surrounding edges of each wound, Extend adjacent faces from child means that the detached faces grow or shrink to form a solid, and Extend adjacent faces from parent (default) means that the parent faces surrounding the detached faces grow or shrink to form a solid together with the detached faces.

When you click the **Detach Selected** button, the program detaches the selected faces and adds a node corresponding to this operation to the geometry branch of the model tree. The Tools window for Detach Faces remains open so that you can continue defeaturing using this or another defeaturing tool.

If you want to modify the performed detach operation, select the added node in the geometry branch. Then edit the node's form that appears in the Settings window. Click the **Build Selected** button () to see the result of your edits. The Settings window for Detach Faces contains the additional settings described below.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the **Contribute to** list (the default, **None**, gives no contribution), or click the **New** button to create a new cumulative selection (see Cumulative Selections in the *COMSOL Multiphysics Reference Manual*).

Select the **Resulting objects selection** check box to create predefined selections (for all levels — objects, domains, boundaries, edges, and points — that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the **Show in physics** list: **All levels, Domain selection, Boundary selection, Edge selection**, or **Point selection**. The default is **Domain selection**, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose **Boundary selection**. These selections do not appear as separate selection nodes in the model tree. Select **Off** to not make any selection available outside of the geometry sequence.

Detect Interferences

To analyze the interference of geometry objects, from the **Geometry** toolbar, **Defeaturing and Repair** () menu, select **Detect Interferences** (). You can also right-click the **Geometry** node and select the same option from the context menu.

Note: When you are in the **Tools** window for **Detect Interferences**, you can at any time switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

In the **Input objects** list, select the objects you want to analyze. In the **Tolerance** text field, enter the absolute tolerance, which has the default value of 0.1 mm, to be used

for the search. When you click the Find Interferences button, a list of interferences is displayed in the Interfering faces list.

The interference detection applies to the exterior faces of the selected objects, thus ignoring interior faces, isolated edges and vertices. Each detected interference involves two objects. The following types of interferences appear in the list when detected by the tool:

- Touch. Two interfering objects are classified as touching when they intersect, and the interfering faces are located within a distance less than the specified tolerance from each other. Thus, an intersection (as defined below) may become a touch after you increase the tolerance such that it becomes larger than the distance between the interfering faces.
- Intersection. An intersection between the two objects is detected, and the interfering faces are located at a distance that is larger than the tolerance from each other.
- Gap. No intersection is detected between the two objects, but they have faces with portions that are located within a distance less than the specified tolerance from each other. The detected size of the gap appears in the list.
- Containment. One object is a contained in another object, which is a solid.

By default the **Interfering faces** list displays the detected interferences in a tree with the interferences as the top level nodes sorted by the type of interference. To sort the list by the objects select the **Group by object** check box. In this case the objects involved in an interference are listed as the top level nodes in the tree. Expand a top level node to see the list of objects that the object on the top level is interfering with. Expand a subnode to see the list of detected interferences for the objects. You can expand the nodes for the detected interferences to reveal the two interfering objects, and then expand the nodes for the objects to look at the interfering faces displayed in subnodes according to the following:

- For two intersecting solid objects the nodes for the objects have two subnodes each, *Inside* and *Outside*. Click the Inside node to highlight the parts of the interfering faces that are inside the other object. Click the Outside node to highlight the parts of the interfering faces that are outside the other object.
- For two intersecting surface objects the nodes for the objects have two subnodes each, Small side and Large side. The faces resulting from the intersection are grouped according to size since surface objects do not delimit a volume in space, thus it is not possible to determine what is inside or outside the other object. Click

- the Small side and Large side nodes to highlight the parts of the interfering faces that result from the intersection with the faces of the other object.
- For an intersection of a solid and a surface object, the node for the solid object has the subnodes Small side and Large side, while the node for the surface object has subnodes Inside and Outside.
- For two touching objects, the nodes for the objects may have two subnodes, Touching and Not touching. Click these nodes to highlight the corresponding portions of the interfering faces.
- For a gap between two objects, the nodes for the objects may sometimes have two subnodes Touching and Not touching.
- For a Containment node, the first subnode is the containing object, and the second subnode is the contained object.

VISUALIZATION OF DETECTED INTERFERENCES

For a better visualization of the detected interferences, the Detect Interferences tool partitions the faces involved in the intersections and touches so that the interfering face regions can be shown and highlighted separately. In the Interfering faces list, when you select the nodes for the interferences, or the topmost or first sublevel object nodes when the **Group by object** check box is selected, the interferences are visualized only by highlighting those faces or face regions that enclose an intersection or are directly in touch. In the list, these are the faces belonging to the first subnode of each object node under the selected interference node. Thus, when you click a node for an interference in the list, the faces or face regions belonging to nodes Outside, Large side, and Not touching are not highlighted. Expand the node for the interference, and select the object subnodes, to see highlighted the involved faces in their entirety, including the face regions that are not directly interfering.

Note that the face partitioning that is the result of the intersections is visible only while working with the Detect Interferences tool, and that the geometry is not modified by this tool.

To change which objects are shown in the Graphics window while selecting nodes in the Interfering faces list choose one of the options from the Show in graphics list:

- Choose **Interfering faces only** to show only the interfering faces involved in the selected node. For example, if you select an intersection node from the list, only the face regions from the two objects that are involved in the intersection are shown.
- Choose Selected object (default) to show only the objects involved in the selected node.

- Choose **Other object** to show the object that is interfering with the currently selected object subnode to the interference node.
- Choose **Both objects** to show both objects involved in an interference when you select one of the subnodes to the interference node.
- Choose **All objects** to show all objects regardless of which nodes are selected.

The **Zoom to Selection** button next to the **Interfering faces** list may also help to find the detected interferences on the geometry. For a better view of the interferences between objects you can also click the Wireframe Rendering or Transparency buttons in the Graphics toolbar.

Repair

To repair objects, from the Geometry toolbar, Defeaturing and Repair (🔂) menu, select **Repair** (\langle_\lambda). You can also right-click the **Geometry** node and select the same option from the context menu.

REPAIR

Select the objects to repair in the **Graphics** window. They appear in the **Input objects** list.

The software tries to repair defects and remove details smaller than the **Absolute repair** tolerance. More precisely:

- · Entities with invalid sense
- · Invalid edge and vertex tolerances
- Invalid manifolds
- Self-intersecting manifolds
- · Non-G1 manifolds
- Missing edge or vertex manifolds
- Missing vertex
- · Vertices not on curve of edge
- Edges and vertices not on surface of face
- Removal of surface self-intersections that lie outside the face
- Splitting at edge intersections which have no vertex
- Removal of discontinuities by either splitting or smoothing
- Remove small features (short edges, small faces, sliver faces, and spikes)

Select the option Simplify curves and surfaces to also simplify within the Absolute repair tolerance the underlying curve and surface manifolds of the geometric entities. Repairing objects with this option may improve both the performance and reliability of geometric operations on some imported geometry, for example it may help in some cases when Boolean operations on the imported objects fail. Simplification means that the manifolds are converted where possible to analytical form: linear, circular, and elliptical curves; and planar, spherical, cylindrical, conical, and toroidal surfaces. Manifolds that are converted are B-spline curves and surfaces, or certain surfaces generated by operations such as sweeping, revolving, and filleting.

Select the Repair face-to-face inconsistencies in solids check box to try to repair solid objects with this fault reported by Import, Check, or Repair features.

When the option **Check resulting objects** is selected the repaired objects are checked for remaining problems. Warning nodes appear with details about the detected problems, if any. Use the **Zoom to Selection** button next to the **Entities** list in a warning node to locate the problematic edges or faces. For information on geometry problems see the Check feature.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the **New** button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the **Resulting objects selection** check box to create predefined selections (for all levels — objects, domains, boundaries, edges, and points — that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose **Boundary selection**. These selections do not appear as separate selection nodes in the model tree. Select **Off** to not make any selection available outside of the geometry sequence.

ASSIGNED ATTRIBUTES

From the **Construction geometry** list choose **On** to make the resulting objects available only in the feature's geometry sequence. The default option Inherit from input means that the resulting objects become construction geometry if all input objects are construction geometry. Choose **Off** to never output construction geometry objects. For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

Replace Faces

By replacing faces from an object you can delete the geometric features formed by the faces. The deleted faces are replaced either by new faces created based on the edges surrounding the wound or by growing or shrinking of adjacent faces.

To open the Tools window for Replace Faces, from the Geometry toolbar, Defeaturing and Repair (👩) menu, select Replace Faces (📄). You can also right-click the Geometry node and select the same option from the context menu.

Note: When you are in the **Tools** window for **Replace Faces**, you can at any time switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

Select the faces you want to replace in the Graphics window. They appear in the Faces to replace list.

The Replace Faces tool can only be applied to objects that are represented by the Parasolid[®] geometry kernel, also called CAD objects.

In the **Heal method** list, select the method to use for covering the wounds after deleting the faces to be replaced: **Create capping faces** means that new faces are generated based on the edges surrounding each wound, while Extend adjacent faces means that the adjacent faces are grown or shrunk to heal the wounds. Select the **Heal as through hole** check box if you have selected faces that make up a hole that you want to delete and replace.

When you click the **Replace Selected** button, the program deletes and replaces the selected faces and adds a node corresponding to this operation to the geometry branch of the model tree. The Tools window for Replace Faces remains open so that you can continue defeaturing using this or another defeaturing tool.

If you want to modify the performed replace operation, select the added node in the geometry branch. Then edit the node's form that appears in the Settings window. Click the **Build Selected** button () to see the result of your edits. The Settings window for Replace Faces contains the additional settings described below.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the **Contribute to** list (the default, **None**, gives no contribution), or click the **New** button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the **Resulting objects selection** check box to create predefined selections (for all levels — objects, domains, boundaries, edges, and points — that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose **Boundary selection**. These selections do not appear as separate selection nodes in the model tree. Select **Off** to not make any selection available outside of the geometry sequence.

Creating and Modifying Geometries

This section describes the operations for creating and modifying geometries listed in the table below.

TABLE 3-5: OPERATIONS FOR CREATING AND MODIFYING.

ICON	NAME	DESCRIPTION
	Cap Faces	Generate faces from edges to fill gaps and create solid objects, or to partition solids
	Knit to Solid	Knit surface objects to form solid or surface object
	Projection	Project 3D objects and entities to a work plane

Cap Faces

You can add cap faces to fill holes in a geometry (for example, to make a domain for the void inside a cylinder geometry for simulating fluid flow inside the cylinder) or to partition the geometry. To add cap faces to objects, from the Geometry toolbar,

Defeaturing and Repair (menu, select **Cap Faces** ().

CAP FACES

Select edges that form loops around the faces you want to create. The edges display in the Bounding edges list. To automatically extend the selection to all adjacent edges that form a loop or chain, select the Group adjacent edges check box.

A cap face is created for each loop of edges in the input selection. The cap faces are joined with the original objects. If new closed volumes are created by the cap faces, these are converted to solid domains. The selected edges can contain more than one edge loop, but no two loops can have edges or vertices in common. The selected edges can contain edges from more than one object. In this case, each object is processed individually. This means that two edges or vertices can overlap as long as they are not in the same object. It also means that if new closed volumes are created, but bounded by faces from more than one object, these volumes are not converted to solid domains. If you want to perform a Cap Faces operation involving more than one object, first unite the objects using a **Union** operation.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the **Contribute to** list (the default, **None**, gives no contribution), or click the **New** button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the **Resulting objects selection** check box to create predefined selections (for all levels — objects, domains, boundaries, edges, and points — that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the **Show in physics** list: **All levels, Domain selection, Boundary selection, Edge selection**, or **Point selection**. The default is **Domain selection**, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose **Boundary selection**. These selections do not appear as separate selection nodes in the model tree. Select **Off** to not make any selection available outside of the geometry sequence.

ASSIGNED ATTRIBUTES

From the **Construction geometry** list choose **On** to make the resulting objects available only in the feature's geometry sequence. The default option **Inherit from input** means that the resulting objects become construction geometry if all input objects are construction geometry. Choose **Off** to never output construction geometry objects. For more information see Construction Geometry in the *COMSOL Multiphysics Reference Manual*.

Knit to Solid

To knit surface objects to form solid objects, from the **Geometry** toolbar, **Defeaturing** and **Repair** () menu, select **Knit to Solid** ().

KNIT TO SOLID

Select the objects to knit together in the **Graphics** window. They appear in the **Input objects** list.

The knitting merges edges that have a distance smaller than the **Absolute repair tolerance** and deletes gaps and spikes smaller than the **Absolute repair tolerance**. If the **Fill holes** check box is selected the operation attempts to generate new faces to replace missing geometry.

The input surface objects must have manifold topology, and the operation can only form solids with manifold topology. An example of a solid object with nonmanifold topology is a solid that has an interior surface that separates two domains. A surface object that contains an edge that is adjacent to more than one boundary is an example of a surface object with nonmanifold topology.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the **Contribute to** list (the default, **None**, gives no contribution), or click the **New** button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the **Resulting objects selection** check box to create predefined selections (for all levels — objects, domains, boundaries, edges, and points — that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose **Boundary selection**. These selections do not appear as separate selection nodes in the model tree. Select **Off** to not make any selection available outside of the geometry sequence.

ASSIGNED ATTRIBUTES

From the **Construction geometry** list choose **On** to make the resulting objects available only in the feature's geometry sequence. The default option Inherit from input means that the resulting objects become construction geometry if all input objects are construction geometry. Choose **Off** to never output construction geometry objects. For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

Projection

Use the **Projection** feature to compute the projection of 3D objects and entities to a work plane. This can be useful when you need to reference existing 3D objects in the 2D drawing on the work plane. You can also add a new 2D or 2D axisymmetric component and add the **Projection** node there. In that case you can select the work plane to use for the projection from the 3D component's geometry sequence, but first make sure that in the 3D component's **Geometry** node the **Geometry representation** is set to the CAD kernel.

To add a projection to a Work Plane node's Plane Geometry sequence, from the Plane **Geometry** toolbar select **Projection** (), or right-click a **Plane Geometry** node under a Work Plane node and select Projection (). Enter the properties of the projection using the following sections:

PROJECTION

From the **Project** list, choose **All objects** (the default) to project all 3D geometry objects to the work plane, or choose Selected objects, Selected domains, Selected boundaries, Selected edges, or Selected vertices to project only the objects or entities that you add to the **Entities to project** list that appears.

Click the Active button to toggle between turning ON and OFF the Entities to project selections.

When projecting objects, domains, and boundaries you can select the Projection type to project the **Outline** (default) of the selected objects and entities, or to project the Edges and vertices only, or the Outline, edges, and vertices.

Projecting the outline for surface and solid objects results in the edges that form the boundary of the shadow of the object's faces. In this case the edges are projected only if they coincide with the outline. If you project the outline of a mixed object that contains isolated edges and vertices, only the outline of the faces is generated, the isolated edges and vertices are not projected.

For point and curve objects, projecting the outline is the same as projecting the edges and vertices.

You can change the settings for the **Repair tolerance** list if you experience problems with the projection operation. Geometric entities that have a distance less than the repair tolerance are merged.

- The default value in the Repair tolerance list is Automatic, which means a relative repair tolerance of 10⁻⁶.
- Choose Relative to enter a value for the Relative repair tolerance field (the default is determined by the main **Geometry** node's setting). This value is relative to the largest absolute value of the coordinates of all input objects.
- Choose **Absolute** to enter a value for the **Absolute repair tolerance** field (the default is determined by the main **Geometry** node's setting; SI unit: m). This value uses the same unit as the geometry sequence's length unit.

When you build this feature, the relative and absolute repair tolerances are set to the values that are used for the last projected object (with a precision of two digits). This is useful to find out the tolerance used for the last projected object. After the feature is built, you can set the Repair tolerance to either Relative or Absolute, then check the values displayed in the **Relative repair tolerance** or **Absolute repair tolerance** fields.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the **Contribute to** list (the default, **None**, gives no contribution), or click the **New** button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the **Resulting objects selection** check box to create predefined selections (for all levels — objects, boundaries, and points — that are applicable) in subsequent nodes in the plane geometry sequence. To also make all or one of the types of resulting entities (objects, boundaries, and points) available as selections in applicable selection lists in the main Geometry node's geometry sequence, choose an option from the Show in 3D list: All levels, Object selection (default), Boundary selection, or Point selection. These selections do not appear as separate selection nodes in the model tree. Select **Off** to not make any selection available outside of the plane geometry sequence.

ASSIGNED ATTRIBUTES

From the **Construction geometry** list choose **On** to make the resulting objects available only in the feature's geometry sequence. The default option Inherit from input means that the resulting objects become construction geometry if all input objects are construction geometry. Choose **Off** to never output construction geometry objects. For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

4

Programming and Command Reference

In this section you find detailed COMSOL® API reference information for the geometry features in LiveLink $^{\text{TM}}$ for Revit®.

Defeaturing Tools

To remove unnecessary details in objects imported from a 3D CAD file, and detect interferences between objects, you can use the defeaturing tools. You access these by typing:

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets");
model.component(<ctaq>).geom(<taq>).defeaturing("Holes");
model.component(<ctaq>).geom(<taq>).defeaturing("ShortEdges");
model.component(<ctag>).geom(<tag>).defeaturing("SliverFaces");
model.component(<ctaq>).geom(<taq>).defeaturing("SmallFaces");
model.component(<ctag>).geom(<tag>).defeaturing("Spikes");
model.component(<ctaq>).geom(<taq>).defeaturing("ReplaceFaces");
model.component(<ctaq>).geom(<taq>).defeaturing("DetachFaces");
model.component(<ctag>).geom(<tag>).
      defeaturing("DetectInterferences");
```

Using the defeaturing tools you can search for small details, without altering your geometry. If you find small details that you want to remove, a defeaturing tool can create a feature that removes the details from the geometry.

The features corresponding to the defeaturing tools are DeleteFillets, DeleteHoles, DeleteShortEdges, DeleteSliverFaces, DeleteSmallFaces, DeleteSpikes, ReplaceFaces, and DetachFaces. If you already know which details you need to remove, it is also possible to create these features directly using the standard create syntax.

This section includes these topics:

- Defeaturing Tools Finding and Deleting Small Details
- Defeaturing Tools Detach Faces
- Defeaturing Tools Detect Interferences
- Defeaturing Tools Replace Faces

Defeaturing Tools — Finding and Deleting Small Details

The defeaturing tools Fillets, Holes, ShortEdges, SliverFaces, SmallFaces, and Spikes search for and delete details smaller than a given size. First select the objects you want to examine by typing, for example,

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
      selection("input").set(<onames>);
```

where *<onames>* is a string array contains the object names.

Set the maximum size of the details (fillets in this case) you want to remove by typing

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
      set("entsize",size);
```

The defeaturing tools Fillets and Holes also support specifying a minimum radius, to do this type (for fillets in this case):

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
      set("minentsize",minsize);
```

To find the details in the specified size interval, type

```
model.component(<ctaq>).geom(<taq>).defeaturing("Fillets").
      find();
```

The found details appear in the selection

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
      detail();
```

To get the number of found details, type

```
int nd = model.component(<ctag>).geom(<tag>).
         defeaturing("Fillets").detail().size();
```

To get the names of the found details, type

```
String[] filletNames = model.component(<ctag>).geom(<tag>).
         defeaturing("Fillets").detail().groupNames();
```

In general, a detail (fillet in this case) consists of a number of geometric entities. For example, a fillet consists of a number of faces. To get the entity numbers in the nth detail, type

```
int[] entities = model.component(<ctag>).geom(<tag>).
              defeaturing("Fillets").detail().groupEntities(n);
```

To get the object that contains the nth detail, type

```
String oname = model.component(<ctaq>).geom(<taq>).
               defeaturing("Fillets").detail().groupObject(n);
```

To delete all details found, type

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
      deleteAll(<ftaq>);
```

This adds a feature, tagged <ftag>, that performs the deletion operation to the geometry sequence, after the current feature, and build this feature. In this case, it adds a DeleteFillets feature.

To delete a subset of the details found, type, for example

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
      detail().setGroup(2,5);
```

to delete fillets number 2 and 5. You can also use, for example,

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
      detail().addGroup(7,8);
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
      detail().removeGroup(3);
```

to add and remove details from the selection. Perform the deletion by typing

```
model.component(<ctaq>).geom(<taq>).defeaturing("Fillets").
      delete(<ftag>);
```

This adds a DeleteFillets feature tagged <ftag> after the current feature in the geometry sequence.

DEFEATURING METHODS

model.component(< ctag>).geom(< tag>).feature(< ftag>).find() searches forsmall details, for a defeaturing feature <ftag>.

```
model.component(<ctag>).geom(<tag>).defeaturing(tooltag).find()
searches for small details, for a defeaturing tool tooltag.
```

model.component(<ctag>).geom(<tag>).defeaturing(tooltag).detail(). selMethod manipulates the selection of details to remove, for a defeaturing tool tooltag.

model.component(<ctag>).geom(<tag>).feature(<ftag>).detail(). selMethod manipulates the selection of details to remove, for a defeaturing feature <ftag>.

model.component(<ctag>).geom(<tag>).defeaturing(tooltag). delete (<ftaq>) creates a defeaturing feature of type tooltag, tagged <ftaq>, with the properties currently specified in the defeaturing tool. The property delete of the created feature is set to selected. If the feature <ftag> can be built, it is inserted in the geometry sequence after the current feature, otherwise the feature is discarded.

```
model.component(<ctag>).geom(<tag>).defeaturing(tooltag).
deleteAll(<ftaq>) creates a defeaturing feature of type tooltaq, tagged <ftaq>,
with the properties currently specified in the defeaturing tool. The property delete of
the created feature is set to all. If the feature <ftaq> can be built, it is inserted in the
geometry sequence after the current feature, otherwise the feature is discarded.
```

DEFEATURING SELECTION METHODS

For a defeaturing selection sel the following methods are available, in addition to the methods available for a general geometry selection.

2

Geometry Object Selection Methods in the COMSOL Multiphysics Programming Reference Manual

The find method on the corresponding feature or defeaturing tool provides the defeaturing selection with a list of details. Each detail is a group of geometric entities. Group numbers, <qroups>, is an array of integers that index into the list of details.

You can select groups either by explicitly referring to group numbers, or by selecting geometric entities. In the latter case, any group that has nonempty intersection with the provided entity selection is selected.

int[] sel.group(<groups>) returns the group numbers for the selected groups.

sel.addGroup(<groups>) adds the specified groups to the selection.

sel.setGroup(<qroups>) sets the selection groups.

sel.removeGroup(<groups>) removes the specified groups from the selection.

String[] sel.groupNames() returns a list of names of the groups found.

String sel.groupObject(<qroup>) returns the name of the geometry object that contains the specified detail group.

int[] sel.groupEntities(<group>) returns the entity numbers of the specified detail group.

int sel.size() returns the number of detail groups found.

Defeaturing Tools — Detach Faces

Use the DetachFaces tool to detach faces from a solid object (the parent) to form a new solid object (the child). Select the faces to detach and properties for the operation like in the corresponding feature DetachFaces. The detach operation is performed when you issue the command

```
model.component(<ctaq>).geom(<taq>).defeaturing("DetachFaces").
      delete(<ftag>);
```

Access the DetectInterferences tool by the command

```
GeomDefeature tool = model.component(<ctag>).geom(<tag>).
                  defeaturing("DetectInterferences");
To access the input objects selection, use
  GeomObjectSelection input = tool.selection("input");
To set the tolerance, use
  tool.set("abstol", value);
To find interferences, type
  tool.find();
To access the resulting interferences, use
```

GeomObjectGroupSelection interf = tool.detail();

Each node listed in Interfering faces list in the user interface corresponds to a group of faces in GeomObjectGroupSelection. To access the data for a group, use its integer group index:

```
String label = interf.groupNames()[group];
String objName = interf.groupObject(group);
int[] faces = interf.groupEntities(group);
double gapSize = interf.entSize(group)[0];
```

The face numbers in the groups do not refer to the input objects. Rather, they refer to objects in a local state, where the tool has imprinted edges where objects interfere. To hide faces in the local state, first type

```
tool.localState(true);
to enter the local state. After doing the hiding, type
  tool.localState(false);
to exit the local state.
See also DetectInterferences.
```

Defeaturing Tools — Replace Faces

Use the ReplaceFaces tool to delete faces and replace them either with a new face or by growing or shrinking the adjacent faces. Select the faces to replace and properties

for the operation like in the corresponding feature ReplaceFaces. The faces are replaced when you issue the command

```
model.component(<ctag>).geom(<tag>).defeaturing("ReplaceFaces").
     delete(<ftag>);
```

This adds a ReplaceFaces feature tagged <ftag> after the current feature in the geometry sequence.

Summary of Commands

- CapFaces
- Check
- ConvertToCOMSOL
- DeleteFillets
- DeleteHoles
- DeleteShortEdges
- DeleteSliverFaces
- DeleteSmallFaces
- DeleteSpikes
- DetachFaces
- DetectInterferences
- Export, ExportFinal

- Import 3D CAD
- Knit
- LiveLinkRevit
- Projection
- Repair
- ReplaceFaces

Commands Grouped by Function

Commands for Creating and Modifying Geometry in 2D

FUNCTION	PURPOSE
Projection	Project 3D objects and entities to a 2D work plane

Commands for Defeaturing

FUNCTION	PURPOSE	
DeleteFillets	Find and delete fillets in CAD objects	
DeleteHoles	Find and delete holes in CAD objects	
DeleteShortEdges	Find and delete short edges in CAD objects	
DeleteSliverFaces	Find and delete sliver faces in CAD objects	
DeleteSmallFaces	Find and delete small faces in CAD objects	
DeleteSpikes	Find and delete spikes in CAD objects	
DetachFaces	Detach faces from CAD objects to form a new solid	
DetectInterferences	Detect intersections, touches, gaps, and containments between CAD objects	
ReplaceFaces	Delete faces from CAD objects and heal the wounds	

Commands for File Import, Export, Conversion, and Repair

FUNCTION	PURPOSE
Check	Check the validity of CAD objects
ConvertToCOMSOL	Convert CAD Import Module geometry objects to COMSOL objects
Export, ExportFinal	Export geometry objects to a 3D CAD file
Import 3D CAD	Import geometry objects from a 3D CAD file
Knit	Knit surface CAD objects to form solids or surface objects
Repair	Repair CAD objects

Commands for Creating and Modifying Geometry in 3D

FUNCTION	PURPOSE	
CapFaces	Add cap faces to fill holes in CAD geometries	

Commands for Interfacing CAD Software

FUNCTION	PURPOSE
LiveLinkRevit	Synchronize geometry objects with a Revit project

Commands in Alphabetical Order

CapFaces

PURPOSE

Add cap faces to objects.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
      create(<ftag>, "CapFaces");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      setAttribute(attribute, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getAttribute(attribute);
```

DESCRIPTION

```
model.component(<ctaq>).geom(<taq>).feature().
        create(<ftag>, "CapFaces")
```

creates a CapFaces feature. A cap face is created for each loop of edges in the input selection. The cap faces are joined with the original objects. If new domains are created by the cap faces, these domains are made solid.

The input selection can contain more than one edge loop, but no two loops can have edges or vertices in common.

The input selection can contain edges from more than one object. In this case, each object is processed individually.

TABLE 4-1: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
input	Selection		The input edges.
groupadjedg	on off	off	Extend edge selection to adjacent edge loop or chain.
selresult	on off	off	Create selections of all resulting objects.

TABLE 4-1: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
selresultshow	all obj dom bnd edg pnt off	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. Obj is not available in a component's geometry. dom, bnd, and edg are not available in all features.
contributeto	String	none	Tag of cumulative selection to contribute to.

The following attributes are available:

TABLE 4-2: VALID ATTRIBUTES

NAME	VALUE	DEFAULT	DESCRIPTION
construction	on off inherit	inherit	Designate the resulting objects as construction geometry. Use inherit to set the construction geometry attribute only if all input objects are construction geometry.

Check

Check the validity of CAD objects.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
      create(<ftag>, "Check");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      set(property, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getType(property)
```

DESCRIPTION

model.component(<ctag>).geom(<tag>).feature(). create(<ftag>, "Check") creates a check feature tagged <ftag>. The following properties are available.

TABLE 4-3: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
input	Selection		Names of input objects

SEE ALSO

Repair

Convert To COMSOL

Convert CAD objects to COMSOL objects.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
      create(<ftag>, "ConvertToCOMSOL");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      setAttribute(attribute, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getAttribute(attribute);
```

DESCRIPTION

```
model.component(<ctag>).geom(<tag>).feature().
        create(<ftag>, "ConvertToCOMSOL")
creates a ConvertToCOMSOL feature.
```

TABLE 4-4: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
input	Selection		Names of input objects.
selresult	on off	off	Create selections of all resulting objects.
selresultshow	all obj dom bnd edg pnt off	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. Obj is not available in a component's geometry. dom, bnd, and edg are not available in all features.
contributeto	String	none	Tag of cumulative selection to contribute to.

The following attributes are available:

TABLE 4-5: VALID ATTRIBUTES

NAME	VALUE	DEFAULT	DESCRIPTION
construction	on off inherit	inherit	Designate the resulting objects as construction geometry. Use inherit to set the construction geometry attribute only if all input objects are construction geometry.

SEE ALSO

Import 3D CAD

Delete Fillets

Find and delete fillets in CAD objects.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
      create(<ftaq>, "DeleteFillets");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      set(property, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).find();
model.component(<ctag>).geom(<tag>).feature(<ftag>).detail();
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
      selection(property);
model.component(<ctaq>).geom(<taq>).defeaturing("Fillets").
      set(property, <value>);
model.component(<ctaq>).geom(<taq>).defeaturing("Fillets").find();
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
      detail();
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
      delete(<ftag>);
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
      deleteAll(<ftag>);
DESCRIPTION
  model.component(< ctaq>).geom(< taq>).defeaturing("Fillets").
        delete(<ftaq>)
```

creates a DeleteFillets feature tagged <ftag> with the specified properties. The property delete is set to selected. If the feature can be built, it is inserted in the geometry sequence after the current feature; otherwise, the feature is discarded.

model.component(<ctag>).geom(<tag>).defeaturing("Fillets"). deleteAll(<ftag>) works as the delete method, but the property delete is set to all.

It is also possible to create the DeleteFillets feature using the standard create method. The following properties are available.

TABLE 4-6: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
delete	all selected	selected	Delete all fillets of given size, or a selection. Only available for the feature.
minentsize	double	0	Minimum fillet radius.
entsize	double	1e-3	Maximum fillet radius.
input	Selection		Names of input objects.
selresult	on off	off	Create selections of all resulting objects.
selresultshow	all obj dom bnd edg pnt off	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a component's geometry. dom, bnd, and edg are not available in all features.
contributeto	String	none	Tag of cumulative selection to contribute to.

model.component(<ctag>).geom(<tag>).feature(<ftag>).find() searches the input objects for fillets with radius less than entsize.

model.component(<ctaq>).geom(<taq>).feature(<ftaq>).detail() returns a selection object where you can select a subset of the fillets found.

The find and detail methods of

model.component(<ctag>).geom(<tag>).defeaturing("Fillets")

have the corresponding functionality for the defeaturing tool.

Only faces that can be deleted without invalidating the object are deleted. If a fillet was not possible to delete, a warning is given, accessible through model.geom(<tag>).feature(<ftag>).problem().

COMPATIBILITY

The following property is no longer supported:

TABLE 4-7: OBSOLETE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
Out	stx ftx ctx ptx	none	Output variables

EXAMPLE

The following example imports the CAD object in the COMSOL Multiphysics geometry file defeaturing demo 3.mphbin and finds all fillets with radius less than 4.10^{-3} . The first of these fillets is deleted.

```
Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
      create("imp1","Import");
model.component("comp1").geom("geom1").feature("imp1").
      set("filename", "defeaturing_demo_3.mphbin");
model.component("comp1").geom("geom1").run("imp1");
model.component("comp1").geom("geom1").feature().
      create("dfi1", "DeleteFillets");
model.component("comp1").geom("geom1").feature("dfi1").
      selection("input").
      set("imp1");
model.component("comp1").geom("geom1").feature("dfi1").
      set("entsize",4e-3);
model.component("comp1").geom("geom1").feature("dfi1").find();
model.component("comp1").geom("geom1").feature("dfi1").detail().
      setGroup(1);
model.component("comp1").geom("geom1").run();
```

SEE ALSO

ReplaceFaces

DeleteHoles

Find and delete holes in CAD objects.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
      create(<ftaq>, "DeleteHoles");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      set(property, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).find();
model.component(<ctag>).geom(<tag>).feature(<ftag>).detail();
model.component(<ctag>).geom(<tag>).defeaturing("Holes").
      selection(property);
model.component(<ctag>).geom(<tag>).defeaturing("Holes").
      set(property, <value>);
model.component(<ctag>).geom(<tag>).defeaturing("Holes").find();
model.component(<ctag>).geom(<tag>).defeaturing("Holes").detail();
model.component(<ctag>).geom(<tag>).defeaturing("Holes").
      delete(<ftag>);
model.component(<ctag>).geom(<tag>).defeaturing("Holes").
      deleteAll(<ftag>);
```

DESCRIPTION

model.component(<ctag>).geom(<tag>).defeaturing("Holes"). delete(<ftag>) creates a DeleteHoles feature tagged <ftag> with the specified properties. The property delete is set to selected. If the feature can be built, it is inserted in the geometry sequence after the current feature; otherwise, the feature is discarded.

model.component(<ctag>).geom(<tag>).defeaturing("Holes"). deleteAll(<ftag>) works as the delete method, but the property delete is set to all.

It is also possible to create the DeleteHoles feature using the standard create method. The following properties are available.

TABLE 4-8: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
delete	all selected	selected	Delete all holes of given size, or a selection. Only available for the feature
minentsize	double	0	Minimum hole radius
entsize	double	1e-3	Maximum hole radius
input	Selection		Names of input objects

TABLE 4-8: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
selresult	on off	off	Create selections of all resulting objects
selresultshow	all obj dom bnd edg pnt off	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a component's geometry. dom, bnd, and edg are not available in all features
contributeto	String	none	Tag of cumulative selection to contribute to

model.component(<ctag>).geom(<tag>).feature(<ftag>).find() searches the input objects for holes with radius less than entsize.

model.component(<ctag>).geom(<tag>).feature(<ftag>).detail() returns a selection object where you can select a subset of the holes found.

The find and detail methods of

model.component(<ctag>).geom(<tag>).defeaturing("Holes") have the corresponding functionality for the defeaturing tool.

Only faces that can be deleted without invalidating the object are deleted. If a hole was not possible to delete, a warning is given, accessible through model.component(<ctag>).geom(<tag>).feature(<ftag>).problem().

COMPATIBILITY

The following property is no longer supported:

TABLE 4-9: OBSOLETE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
Out	stx ftx ctx ptx	none	Output variables

EXAMPLE

The following example imports the CAD object in the COMSOL Multiphysics geometry file defeaturing_demo_3.mphbin and finds all holes with radius less than 4.10^{-2} . The first four of these holes are deleted.

```
Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
```

```
model.component("comp1").geom("geom1").feature().
      create("imp1","Import");
model.component("comp1").geom("geom1").feature("imp1").
      set("filename", "defeaturing_demo_3.mphbin");
model.component("comp1").geom("geom1").run("imp1");
model.component("comp1").geom("geom1").feature().
      create("dho1", "DeleteHoles");
model.component("comp1").geom("geom1").feature("dho1").
      selection("input").
      set("imp1");
model.component("comp1").geom("geom1").feature("dho1").
      set("entsize",4e-2);
model.component("comp1").geom("geom1").feature("dho1").find();
model.component("comp1").geom("geom1").feature("dho1").
      detail().setGroup(1, 2, 3, 4);
model.component("comp1").geom("geom1").run();
```

SEE ALSO

ReplaceFaces

DeleteShortEdges

Find and delete short edges in CAD objects.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
      create(<ftag>, "DeleteShortEdges");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      set(property, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).find();
model.component(<ctaq>).geom(<taq>).feature(<ftaq>).detail();
model.component(<ctaq>).geom(<taq>).defeaturing("ShortEdges").
      selection(property);
model.component(<ctaq>).geom(<taq>).defeaturing("ShortEdges").
       set(property, <value>);
model.component(< ctag>).geom(< tag>).defeaturing("ShortEdges").
      find();
model.component(<ctag>).geom(<tag>).defeaturing("ShortEdges").
      detail();
model.component(<ctaq>).geom(<taq>).defeaturing("ShortEdges").
      delete(<ftaq>);
model.component(<ctag>).geom(<tag>).defeaturing("ShortEdges").
      deleteAll(<ftaq>);
```

DESCRIPTION

model.component(<ctaq>).geom(<taq>).defeaturing("ShortEdges"). delete(<ftag>) creates a DeleteShortEdges feature tagged <ftag> with the specified properties. The property delete is set to selected. If the feature can be built, it is inserted in the geometry sequence after the current feature; otherwise, the feature is discarded.

model.component(<ctaq>).geom(<taq>).defeaturing("ShortEdges"). deleteAll(<ftaq>) works as the delete method, but the property delete is set to all.

It is also possible to create a DeleteShortEdges feature using the standard create method. The following properties are available.

TABLE 4-10: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
delete	all selected	selected	Delete all edges of given size, or a selection. Only available for the feature.
entsize	double	1e-3	Maximum edge length

TABLE 4-10: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
input	Selection		Names of input objects
selresult	on off	off	Create selections of all resulting objects.
selresultshow	all obj dom bnd edg pnt off	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a component's geometry. dom, bnd, and edg are not available in all features.
contributeto	String	none	Tag of cumulative selection to contribute to.

model.component(<ctag>).geom(<tag>).feature(<ftag>).find() searches the input objects for edges of length less than entsize.

model.component(<ctaq>).geom(<taq>).feature(<ftaq>).detail() returns aselection object where you can select a subset of the edge sets found.

The find and detail methods of

model.component(<ctag>).geom(<tag>).defeaturing("ShortEdges") have the corresponding functionality for the defeaturing tool.

Only edges that can be deleted without invalidating the object are deleted. If an edge was not possible to delete, a warning is given, accessible through model.component(<ctag>).geom(<tag>).feature(<ftag>).problem().

COMPATIBILITY

The lengths of the edges are no longer returned.

The following property is no longer supported:

TABLE 4-11: OBSOLETE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
Out	stx ftx ctx ptx	none	Output variables

EXAMPLE

The following example imports the file defeaturing_demo_4.x_b and finds all edges with length less than $3 \cdot 10^{-3}$. The first of these edges is deleted.

```
Model model = ModelUtil.create("Model1");
model.component.create("comp1");
```

```
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
      create("imp1","Import");
model.component("comp1").geom("geom1").feature("imp1").
      set("filename", "defeaturing demo 4.x b");
model.component("comp1").geom("geom1").runAll();
model.component("comp1").geom("geom1").feature().
      create("dse1", "DeleteShortEdges");
model.component("comp1").geom("geom1").feature("dse1").
      selection("input").
      set("imp1");
model.component("comp1").geom("geom1").feature("dse1").
      set("entsize",3e-3);
model.component("comp1").geom("geom1").feature("dse1").find();
model.component("comp1").geom("geom1").feature("dse1").
      detail().setGroup(1);
model.component("comp1").geom("geom1").runAll();
```

DeleteSliver Faces

Find and delete sliver faces in CAD objects.

SYNTAX

```
model.component(<ctaq>).geom(gname).feature().
      create(<ftaq>, "DeleteSliverFaces");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      set(property, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getTvpe(property):
model.component(<ctag>).geom(<tag>).feature(<ftag>).find();
model.component(<ctag>).geom(<tag>).feature(<ftag>).detail();
model.component(<ctag>).geom(<tag>).defeaturing("SliverFaces").
      selection(property);
model.component(<ctaq>).geom(<taq>).defeaturing("SliverFaces").
      set(property, <value>);
model.component(<ctaq>).geom(<taq>).defeaturing("SliverFaces").
      find();
model.component(<ctaq>).geom(<taq>).defeaturing("SliverFaces").
      detail();
model.component(<ctaq>).geom(<taq>).defeaturing("SliverFaces").
      delete(<ftaq>);
model.component(<ctaq>).geom(<taq>).defeaturing("SliverFaces").
      deleteAll(<ftaq>);
```

DESCRIPTION

model.component(<ctag>).geom(<tag>).defeaturing("SliverFaces"). delete(<ftag>) creates a DeleteSliverFaces feature tagged <ftag> with the specified properties. The property delete is set to selected. If the feature can be built, it is inserted in the geometry sequence after the current feature; otherwise, the feature is discarded.

model.component(<ctaq>).geom(<taq>).defeaturing("SliverFaces"). deleteAll(<ftag>) works as the delete method, but the property delete is set to all.

It is also possible to create a DeleteSliverFaces feature using the standard create method. The following properties are available.

TABLE 4-12: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
delete	all selected	selected	Delete all sliver faces of given width, or a selection. Only available for the feature.
entsize	double	1e-3	Maximum face width.
input	Selection		Names of input objects.
selresult	on off	off	Create selections of all resulting objects.
selresultshow	all obj dom bnd edg pnt off	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a component's geometry. dom, bnd, and edg are not available in all features.
contributeto	String	none	Tag of cumulative selection to contribute to.

Sliver faces are narrow but long faces with large aspect ratio, which usually give rise to extremely fine local meshes in their vicinity.

model.component(<ctag>).geom(<tag>).feature(<ftag>).find() searches the input objects for faces with width less than entsize.

model.component(<ctaq>).geom(<taq>).feature(<ftaq>).detail() returns a selection object where you can select a subset of the faces found.

The find and detail methods of model.component(< ctaq >).geom(< taq >).defeaturing("SliverFaces") havethe corresponding functionality for the defeaturing tool.

Only faces that can be deleted without invalidating the object are deleted. If a face was not possible to delete, a warning message is given.

COMPATIBILITY

The following property is no longer supported:

TABLE 4-13: OBSOLETE PROPERTIES

PROPERTY	VALUE	DEFAULT	DESCRIPTION
Out	stx ftx ctx ptx status	none	Output variables

EXAMPLE

The following example imports the geometry model from the file defeaturing_demo_5.x_b, finds sliver faces narrower than $2 \cdot 10^{-3}$, and deletes the first of these.

```
Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
      create("imp1","Import");
model.component("comp1").geom("geom1").feature("imp1").
      set("filename", "defeaturing_demo 5.x b");
model.component("comp1").geom("geom1").runAll();
model.component("comp1").geom("geom1").feature().
      create("dsl1","DeleteSliverFaces");
model.component("comp1").geom("geom1").feature("dsl1").
      selection("input").
      set("imp1");
model.component("comp1").geom("geom1").feature("dsl1").
      set("entsize",2e-3);
model.component("comp1").geom("geom1").feature("dsl1").find();
model.component("comp1").geom("geom1").feature("dsl1").detail().
      setGroup(1);
model.component("comp1").geom("geom1").runAll();
```

SEE ALSO

ReplaceFaces, DeleteSmallFaces

Find and delete small faces in CAD objects.

SYNTAX

```
model.component(<ctag>).geom(gname).feature().
      create(<ftag>, "DeleteSmallFaces");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      set(property, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).find();
model.component(<ctag>).geom(<tag>).feature(<ftag>).detail();
model.component(<ctag>).geom(<tag>).defeaturing("SmallFaces").
      selection(property);
model.component(< ctaq>).geom(< taq>).defeaturing("SmallFaces").
      set(property, <value>);
model.component(<ctag>).geom(<tag>).defeaturing("SmallFaces").
model.component(<ctag>).geom(<tag>).defeaturing("SmallFaces").
      detail():
model.component(<ctag>).geom(<tag>).defeaturing("SmallFaces").
      delete(<ftag>);
model.component(<ctag>).geom(<tag>).defeaturing("SmallFaces").
      deleteAll(<ftag>);
DESCRIPTION
model.component(<ctaq>).geom(<taq>).defeaturing("SmallFaces").
delete(<ftag>) creates a DeleteSmallFaces feature tagged <ftag> with the
specified properties. The property delete is set to selected. If the feature can be
built, it is inserted in the geometry sequence after the current feature; otherwise, the
feature is discarded.
model.component(<ctaq>).geom(<taq>).defeaturing("SmallFaces").
deleteAll(<ftaq>) works as the delete method, but the property delete is set to
all.
```

It is also possible to create a DeleteSmallFaces feature using the standard create method. The following properties are available.

TABLE 4-14: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
delete	all selected	selected	Delete all small faces of given size, or a selection. Only available for the feature.
entsize	double	1e-3	Maximum face size.
input	Selection		Names of input objects.
selresult	on off	off	Create selections of all resulting objects.
selresultshow	all obj dom bnd edg pnt off	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. Obj is not available in a component's geometry. dom, bnd, and edg are not available in all features.
contributeto	String	none	Tag of cumulative selection to contribute to.

A small face is a face that fits within a sphere of specified radius, given in the property entsize.

model.component(<ctag>).geom(<tag>).feature(<ftag>).find() searches the input objects for faces with size less than entsize.

model.component(<ctag>).geom(<tag>).feature(<ftag>).detail() returns a selection object where you can select a subset of the faces found.

The find and detail methods of

model.component(<ctag>).geom(<tag>).defeaturing("SmallFaces") have the corresponding functionality for the defeaturing tool.

Only faces that can be deleted without invalidating the object are deleted. If a face was not possible to delete, a warning message is given, accessible through model.component(<ctag>).geom(<tag>).feature(<ftag>).problem().

COMPATIBILITY

The following property is no longer supported:

TABLE 4-15: OBSOLETE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
Out	stx ftx ctx ptx status	none	Output variables.

EXAMPLE

The following example imports the geometry model from the file defeaturing_demo_6.x_b, finds sliver faces narrower than 10^{-3} , and deletes the first of these.

```
Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
      create("imp1","Import");
model.component("comp1").geom("geom1").feature("imp1").
      set("filename", "defeaturing demo 6.x b");
model.component("comp1").geom("geom1").runAll();
model.component("comp1").geom("geom1").feature().
      create("df1", "DeleteSmallFaces");
model.component("comp1").geom("geom1").feature("df1").
      selection("input").
      set("imp1");
model.component("comp1").geom("geom1").feature("df1").find();
model.component("comp1").geom("geom1").feature("df1").detail().
      setGroup(1):
model.component("comp1").geom("geom1").run();
```

SEE ALSO

ReplaceFaces, DeleteSliverFaces

DeleteSpikes

Find and delete spikes in CAD objects.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
      create(<ftag>, "DeleteSpikes");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      set(property, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).find();
model.component(<ctaq>).geom(<taq>).feature(<ftaq>).detail();
model.component(<ctag>).geom(<tag>).defeaturing("Spikes").
      selection(property);
model.component(<ctag>).geom(<tag>).defeaturing("Spikes").
      set(property, <value>);
model.component(<ctag>).geom(<tag>).defeaturing("Spikes").find();
model.component(<ctag>).geom(<tag>).defeaturing("Spikes").detail();
model.component(<ctag>).geom(<tag>).defeaturing("Spikes").
      delete(<ftaq>);
model.component(<ctag>).geom(<tag>).defeaturing("Spikes").
      deleteAll(<ftaq>);
```

DESCRIPTION

model.component(<ctaq>).geom(<taq>).defeaturing("DeleteSpikes"). delete(<ftag>) creates a DeleteSpikes feature tagged <ftag> with the specified properties. The property delete is set to selected. If the feature can be built, it is inserted in the geometry sequence after the current feature; otherwise, the feature is discarded.

model.component(<ctaq>).geom(<taq>).defeaturing("DeleteSpikes"). deleteAll(<ftag>) works as the delete method, but the property delete is set to all.

It is also possible to create a DeleteSpikes feature using the standard create method. The following properties are available.

TABLE 4-16: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
delete	all selected	selected	Delete all spikes of given width, or a selection. Only available for the feature.
entsize	double	1e-3	Maximum spike width.
input	Selection		Names of input objects.

TABLE 4-16: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
selresult	on off	off	Create selections of all resulting objects.
selresultshow	all obj dom bnd edg pnt off	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. Obj is not available in a component's geometry. dom, bnd, and edg are not available in all features.
contributeto	String	none	Tag of cumulative selection to contribute to.

A spike is a long and narrow protrusion on an edge or corner of a face defined by two or three edges.

model.component(<ctag>).geom(<tag>).feature(<ftag>).find() searches the input objects for spikes of width less than entsize.

model.component(<ctaq>).geom(<taq>).feature(<ftaq>).detail() returns a selection object where you can select a subset of the spikes found.

The find and detail methods of model.component(<ctag>).geom(<tag>).defeaturing("Spikes") have the corresponding functionality for the defeaturing tool.

Only spikes that can be deleted without invalidating the object are deleted. If a spike was not possible to delete, a warning message is given, accessible through model.component(<ctag>).geom(<tag>).feature(<ftag>).problem().

COMPATIBILITY

The width of each spike is no longer returned.

The following property is no longer supported:

TABLE 4-17: OBSOLETE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
Out	stx ftx ctx ptx status	none	Output variables.

EXAMPLE

The following example imports the geometry model from the file defeaturing_demo_7.x_b, finds all spikes narrower than 10^{-4} , and deletes the first of these.

```
Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
      create("imp1","Import");
model.component("comp1").geom("geom1").feature("imp1").
      set("filename", "defeaturing demo 7.x b");
model.component("comp1").geom("geom1").runAll();
model.component("comp1").geom("geom1").feature().
      create("dsp1", "DeleteSpikes");
model.component("comp1").geom("geom1").feature("dsp1").
      selection("input").
      set("imp1");
model.component("comp1").geom("geom1").feature("dsp1").
      set("entsize",1e-4);
model.component("comp1").geom("geom1").feature("dsp1").find();
model.component("comp1").geom("geom1").feature("dsp1").detail().
      setGroup(1);
model.component("comp1").geom("geom1").runAll();
```

SEE ALSO

DeleteShortEdges, DeleteSliverFaces

DetachFaces

Detach faces from CAD objects to form a new (child) solid.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
      create(<ftaq>, "DetachFaces");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      set(property, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getType(property);
model.component(<ctag>).geom(<tag>).defeaturing("DetachFaces").
      selection(property);
model.component(<ctaq>).geom(<taq>).defeaturing("DetachFaces").
      set(property, <value>);
model.component(<ctag>).geom(<tag>).defeaturing("DetachFaces").
      delete(<ftag>);
```

DESCRIPTION

model.component(<ctag>).geom(<tag>).defeaturing("DetachFaces"). delete(<ftag>) creates a DetachFaces feature tagged <ftag> with the specified properties. If the feature can be built, it is inserted in the geometry sequence after the current feature; otherwise, the feature is discarded.

It is also possible to create a DetachFaces feature using the standard create method.

TABLE 4-18: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
input	Selection		Faces to detach.
healchild	fill patchchild patchparent	patchparent	Healing method used on the child object.
healparent	fill patch	patch	Healing method used on the parent object.
selresult	on off	off	Create selections of all resulting objects.
selresultshow	all obj dom bnd edg pnt off	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a component's geometry. dom, bnd, and edg are not available in all features.
contributeto	String	none	Tag of cumulative selection to contribute to.

The faces in the property input are detached from their *parent* object. A new solid, the child object, are formed from the detached faces. The output objects are the healed parent and child objects.

The property healparent determines how the parent object is healed to form a new solid after detaching the faces. The value fill means that a new face is formed based on the surrounding edges of each wound. The value patch means that the surrounding faces of each wound are grown or shrunk.

The property healchild determines how the child solid is constructed from the detached faces. The value fill means that a new face is formed based on the surrounding edges of each wound. The value patchchild means that the detached faces are grown or shrunk to form a solid. The value patchparent means that the parent faces surrounding the detached faces are grown or shrunk to form a solid together with the detached faces.

EXAMPLE

The following example imports the COMSOL Multiphysics geometry file defeaturing demo 2.mphbin and detaches a hole defined by a set of faces:

```
Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
      create("imp1","Import");
model.component("comp1").geom("geom1").feature("imp1").
      set("filename", "defeaturing_demo_2.mphbin");
model.component("comp1").geom("geom1").runAll();
model.component("comp1").geom("geom1").feature().
      create("det1", "DetachFaces");
model.component("comp1").geom("geom1").feature("det1").
      selection("input").set("imp1",6,7,8,9,11,12,13);
model.component("comp1").geom("geom1").runAll();
```

COMPATIBILITY

The following property is no longer supported:

TABLE 4-19: OBSOLETE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
Out	stx ftx ctx ptx	none	Output variables

SEE ALSO

ReplaceFaces

DetectInterferences

Detect intersections, touches, gaps, and containments between CAD objects.

SYNTAX

```
model.component(<ctag>).geom(<tag>).
      defeaturing("DetectInterferences").selection(property);
model.component(<ctag>).geom(<tag>).
      defeaturing("DetectInterferences").set(property, <value>);
model.component(<ctag>).geom(<tag>).
      defeaturing("DetectInterferences").selection(property);
model.component(<ctag>).geom(<tag>).
      defeaturing("DetectInterferences").find();
model.component(<ctag>).geom(<tag>).
      defeaturing("DetectInterferences").detail();
```

DESCRIPTION

See Defeaturing Tools — Detect Interferences.

Available properties:

TABLE 4-20: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
input	Selection		Input objects
abstol	double	0.1[mm]	Absolute tolerance
showingraphics	<pre>interferingonly selected other both all</pre>	selecte d	Objects to show in graphics
groupbyobject	boolean	false	Group interferences by object in GUI

Export, ExportFinal

Using the CAD Import Module, Design Module, or a LiveLink product for CAD software, export selected geometry objects or the finalized geometry to a 3D CAD format, such as ACIS, Parasolid, STEP, and IGES.

To export selected geometry objects to a file, first select the objects to export using

```
model.component(<ctag>).geom(<tag>).export().selection().set(<obj</pre>
names>);
```

where <objnames> is a string array of object names.

Set the file format using

```
model.component(<ctag>).geom(<tag>).export().setType(<format>);
```

where <format> determines the file format. See Table 4-21 for valid type value names available with the CAD Import Module, Design Module, or a LiveLink product for CAD software.

TABLE 4-21: FILE FORMATS SUPPORTED FOR EXPORT.

FILE FORMAT	FILE EXTENSION	TYPE VALUE
Parasolid Binary (3D)	.x_b,.xmt_bin	parasolidbin
Parasolid Text (3D)	.x_t, .xmt_txt	parasolidascii
ACIS Binary (3D)	.sab	acisbin
ACIS Text (3D)	.sat	acisascii
IGES File (3D)	.igs, .iges	iges
STEP File (3D)	.step, .stp	step

Check which file format is set for the export using

```
String formatType =
model.component(<ctag>).geom(<tag>).export().getType();
```

To export the file enter

```
model.component(<ctag>).geom(<tag>).export(<filename>);
```

To export the finalized geometry to a file, enter

```
model.component(<ctag>).geom(<tag>).exportFinal(<filename>);
```

where <filename> is a string.

EXPORTING TO AN ACIS FILE

When exporting to an ACIS file you can set the ACIS file format version using

```
model.component(<ctaq>).geom(<taq>).export().setAcisVersion(<vers</pre>
ion>);
```

where <version> is a string 4.0, 7.0, or 2016 1.0. Default is 2016 1.0.

EXPORTING TO A PARASOLID FILE

The Parasolid text or binary file generated by the export is of version 36.

When exporting to a Parasolid format, a unit conversion can optionally be performed during export. Use the following method to select the export length unit:

```
model.component(<ctaq>).geom(<taq>).export().setLengthUnit(<unit>
);
```

where <unit> is either fromgeom (default) to disable unit conversion or a COMSOL Multiphysics length unit, such as m for meters or in for inches. To get the current value of the export length unit type:

```
model.component(<ctag>).geom(<tag>).export().getLengthUnit();
```

To decide how the nonmanifold objects are exported use the following method:

```
model.component(<ctag>).geom(<tag>).export().setSplitInManifold(<</pre>
value>);
```

where <value> is either true (default) to split the objects into manifold objects during the export, or false to export the unmodified objects.

EXPORTING TO AN IGES FILE

When exporting to the IGES format, a unit conversion can optionally be performed during export. Use the following method to select the export length unit:

```
model.component(< ctaq >).geom(< taq >).export().setLengthUnitIGES(< u
nit>);
```

where *<unit>* is either fromgeom (default) to disable unit conversion or a supported length unit: uin, um, mil, mm, cm, in, ft, m, km, mi. To get the current value of the export length unit type:

```
model.component(<ctaq>).geom(<taq>).export().getLengthUnitIGES();
```

EXPORTING TO A STEP FILE

When exporting to the STEP format, a unit conversion can optionally be performed during export. Use the following method to select the export length unit:

```
model.component(< ctaq >).geom(< taq >).export().setLengthUnitSTEP(< u
nit>):
```

where *<unit>* is either fromgeom (default) to disable unit conversion or a supported length unit: nm, uin, um, mil, mm, cm, in, dm, ft, m, km, mi. To get the current value of the export length unit type:

```
model.component(<ctaq>).geom(<taq>).export().getLengthUnitSTEP();
```

SEE ALSO

Import 3D CAD

Import geometry objects from a 3D CAD file using the CAD Import Module, Design Module, or a LiveLink product for CAD software.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
      create(<ftaq>, "Import");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      set(property, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      importData();
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      setAttribute(attribute, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getAttribute(attribute);
```

DESCRIPTION

```
model.component(<ctag>).geom(<tag>).feature().
```

create(<ftag>, "Import") creates an import feature. When the property filename is set to a filename recognized as a 3D CAD file, the property type is set to cad. The following properties are available.

TABLE 4-22: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
check	on off		Check imported objects for errors.
filename	String		Filename.
fillholes	on off	off	Attempt to generate new faces to replace missing geometry if the property knit is solid or surface
importbodynames	auto on off	auto	Include the body name in the object name. This property is available only when filename is set to a STEP file extension. Use auto to include the body name only for multibody parts.
importtol	double	1e-5	Absolute repair tolerance.
keepbnd	on off	on	Import surface objects.

TABLE 4-22: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
keepfree	on off	off	Import curve and point objects.
keepsolid	on off	on	Import solid objects.
knit	solid surface off	solid	Knit together surface objects to form solids or surface objects.
removeredundant	on off	off	Remove redundant edges and vertices.
repair	on off	on	Repair imported objects.
simplify	on off	on	Simplify the underlying curve and surface manifolds of geometric entities
type	cad		Type of import.
unit	source current	source	Take length unit from file or from the current geometry unit.
unitecurves	on off	on	Unite curve objects.
selresult	on off	off	Create selections of all resulting objects.
selresultshow	all obj dom bnd edg pnt off	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a component's geometry. dom, bnd, and edg are not available in all features.
contributeto	String	none	Tag of cumulative selection to contribute to.

The file to import is specified by filename, which can have of any of the following formats:

TABLE 4-23: SUPPORTED 3D CAD FILE FORMATS.

FILE FORMAT	NOTE	FILE EXTENSION
ACIS®	1	.sat, .sab
AutoCAD [®]	1, 2	.dwg, .dxf
CATIA [®] V5	2, 3	.CATPart, .CATProduct
IGES	ı	.igs, .iges

TABLE 4-23: SUPPORTED 3D CAD FILE FORMATS.

FILE FORMAT	NOTE	FILE EXTENSION
Inventor®	1, 2	.ipt, .iam
NX TM	1, 4	.prt
Parasolid [®]	I	.x_t, .x_b
PTC Creo Parametric™	1	.prt, .asm
PTC Pro/ENGINEER®	I	.prt, .asm
solidworks [®]	1, 2, 5	.sldprt, .sldasm
STEP	I	.step, .stp

Note 1: This format requires a license for the CAD Import Module, Design Module, or a LiveLink product for a CAD package.

Note 2: This format is available only on supported Windows[®] operating systems.

Note 3: This format requires, in addition to the CAD Import Module, Design Module, or a LiveLink product for a CAD package, a license for the File Import for CATIA V5 module.

Note 4: Support for the NX^{TM} file format is available only on supported Windows[®] and Linux operating systems.

Note 5: Embedded parts in assemblies are not supported. To import such an assembly, first convert the embedded parts to external parts.

The imported geometry objects are represented using the Parasolid geometry kernel, which is the geometry kernel utilized by the CAD Import Module and the LiveLink products for CAD software.

The method

model.geom(gname).feature(<ftaq>).importData()

imports the file again, even if the feature is built.

The import can generate object, boundary, edge, and point selections based on material, layer, and color assignments in the 3D CAD file. The following properties are available for working these selections:

TABLE 4-24: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
selcadshownamesfromfileobj	boolean	false	Show the object selection names from the file in the GUI.
selcadnameobj	String[]	Empty	Names of object selections in 3D CAD import.
selcadnameinfileobj	String[]	Empty	Original names of object selections in 3D CAD import. Read-only.
selcadkeepobj	on off	Empty	Keep object selections in 3D CAD import.
selcadshowobj	on off	Empty	Show object selections in 3D CAD import in physics, materials, and so on; in part instances; or in 3D from a plane geometry.
selcadcontributetoobj	String[]	Empty	Tags of cumulative selection to contribute to (or none to not contribute), for object selections in 3D CAD import.
selcadtagobj	String[]	Empty	Tags of object selections (read only, hidden in GUI) in 3D CAD import.
selcadcolorobj	String[]	Empty	Colors of object selections (read only) in 3D CAD import. The color is stored as a comma-separated triple of numbers between 0 and 1. It can also be none (in which case it will be displayed in yellow).

TABLE 4-24: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
selindividualintable	boolean	false	Show individual object selections and, for the knit case, individual original object selections in the CAD-tables.
selcadshownamesfromfilebnd	boolean	false	Show the boundary selection names from the file in the GUI.
selcadnamebnd	String[]	Empty	Names of boundary selections in 3D CAD import.
selcadnameinfilebnd	String[]	Empty	Original names of boundary selections in 3D CAD import. Read only.
selcadkeepbnd	on off	Empty	Keep boundary selections in 3D CAD import.
selcadshowbnd	on off	Empty	Show boundary selections in 3D CAD import in physics, materials, and so on; in part instances; or in 3D from a plane geometry.
selcadcontributetobnd	String[]	Empty	Tags of cumulative selection to contribute to (or none to not contribute), for boundary selections in 3D CAD import.
selcadtagbnd	String[]	Empty	Tags of boundary selections (read-only, hidden in GUI) in 3D CAD import.

TABLE 4-24: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
selcadcolorbnd	String[]	Empty	Colors of boundary selections (read only) in 3D CAD import. The color is stored as a comma-separated triple of numbers between 0 and 1. It can also be none (in which case it will be displayed in yellow).
selcadshownamesfromfileedg	boolean	false	Show the edge selection names from the file in the GUI.
selcadnameedg	String[]	Empty	Names of edge selections in 3D CAD import.
selcadnameinfileedg	String[]	Empty	Original names of edge selections in 3D CAD import. Read only.
selcadkeepedg	on off	Empty	Keep edge selections in 3D CAD import.
selcadshowedg	on off	Empty	Show edge selections in 3D CAD import in physics, materials, and so on; in part instances; or in 3D from a plane geometry.
selcadcontributetoedg	String[]	Empty	Tags of cumulative selection to contribute to (or none to not contribute), for edge selections in 3D CAD import.
selcadtagedg	String[]	Empty	Tags of edge selections (read only, hidden in GUI) in 3D CAD import.

TABLE 4-24: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
selcadcoloredg	String[]	Empty	Colors of edge selections (read only) in 3D CAD import. The color is stored as a comma-separated triple of numbers between 0 and 1. It can also be none (in which case it will be displayed in yellow).
selcadshownamesfromfilepnt	boolean	false	Show the point selection names from the file in the GUI.
selcadnamepnt	String[]	Empty	Names of point selections in 3D CAD import.
selcadnameinfilepnt	String[]	Empty	Original names of point selections in 3D CAD import. Read only.
selcadkeeppnt	on off	Empty	Keep point selections in 3D CAD import.
selcadshowpnt	on off	Empty	Show point selections in 3D CAD import in physics, materials, and so on; in part instances; or in 3D from a plane geometry.
selcadcontributetopnt	String[]	Empty	Tags of cumulative selection to contribute to (or none to not contribute), for point selections in 3D CAD import.

TABLE 4-24: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
selcadtagpnt	String[]	Empty	Tags of point selections (read only, hidden in GUI) in 3D CAD import.
selcadcolorpnt	String[]	Empty	Colors of point selections (read only) in 3D CAD import. The color is stored as a comma-separated triple of numbers between 0 and 1. It can also be none (in which case it will be displayed in yellow).

TABLE 4-25: VALID ATTRIBUTES

NAME	VALUE	DEFAULT	DESCRIPTION
construction	on off	off	Designate the resulting objects as construction geometry.

COMPATIBILITY

The following property is no longer supported:

TABLE 4-26: OBSOLETE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
coercion	solid face off	solid	Alias for knit. face is equivalent to surface.

SEE ALSO

Export, ExportFinal

Knit

Knit surface CAD objects to form solids or surface objects.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
      create(<ftag>, "Knit");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      set(property, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getType(property)
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      setAttribute(attribute, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getAttribute(attribute);
```

DESCRIPTION

model.component(<ctag>).geom(<ftag>).feature(). create(<ftag>, "Knit") creates a knit feature tagged <ftag>. The following properties are available.

TABLE 4-27: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
fillholes	on off	off	Attempt to generate new faces to replace missing geometry
input	Selection		Names of input surface objects.
repairtol	double	1e-5	Absolute repair tolerance.
selresult	on off	off	Create selections of all resulting objects.
selresultshow	all obj dom bnd edg pnt off	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a component's geometry. dom, bnd, and edg are not available in all features.
contributeto	String	none	Tag of cumulative selection to contribute to.

This function also removes gaps and spikes that are within the absolute tolerance specified in the property repairtol.

TABLE 4-28: VALID ATTRIBUTES

NAME	VALUE	DEFAULT	DESCRIPTION
construction	on off inherit	inherit	Designate the resulting objects as construction geometry. Use inherit to set the construction geometry attribute only if all input objects are construction geometry.

COMPATIBILITY

The following property is no longer supported:

TABLE 4-29: OBSOLETE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
Out	stx ftx ctx ptx	none	Output variables.

EXAMPLE

The following example imports the file repair demo 2.x b, and knits the surface objects into a solid. A gap is also removed during the operation.

```
Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
      create("imp1", "Import");
model.component("comp1").geom("geom1").feature("imp1").
      set("filename", "repair demo 2.x b");
model.component("comp1").geom("geom1").runAll();
model.component("comp1").geom("geom1").feature().
      create("knit1", "Knit");
model.component("comp1").geom("geom1").feature("knit1").
      selection("input").set("imp1");
model.component("comp1").geom("geom1").feature("knit1").
      set("repairtol",1e-3);
model.component("comp1").geom("geom1").runAll();
```

SEE ALSO

Repair

LiveLinkRevit

Synchronize geometry objects with an Revit project.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
      create(<ftag>, "LiveLinkRevit");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      set(property, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      updateCadParamTable(add,repl);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      importData();
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      setAttribute(attribute, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getAttribute(attribute);
DESCRIPTION
```

```
model.component(<ctaq>).geom(<tag>).feature().
  create(<ftag>, "LiveLinkRevit")
creates a LiveLinkRevit feature.
```

The method

```
model.component(<ctaq>).geom(<taq>).feature(<ftaq>).importData();
```

sends the parameters with names in param and the values in paramexpr to Revit, then rebuilds the geometry in Revit using the parameters, and sends back the geometry objects to COMSOL.

The imported geometry objects are represented using the Parasolid geometry kernel, which is the geometry kernel utilized by the CAD Import Module and the LiveLink products for CAD software.

The method

```
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      updateCadParamTable(add,repl);
```

updates the properties param and paramexpr with data read from Revit. If the add argument is true, all parameter names retrieved from Revit that do not already exist in param are appended to param, corresponding COMSOL Multiphysics parameter names are appended to paramexpr and the corresponding values are added to the COMSOL Multiphysics global parameters table. If the repl argument is true, all parameters already present in param that also have sync set to on have their corresponding values replaced by the values retrieved from Revit. If paramexpr has a value equal to a COMSOL Multiphysics parameter, the value of that parameter is

replaced. Otherwise, if paramexpr is a numerical value, possibly with unit, the value of paramexpr is replaced.

The following properties are available.

TABLE 4-30: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
check	on off		Check imported objects for errors.
configuration	String		The synchronized configuration of the Revit project.
document	String		The full path of the synchronized Revit project.
importtol	double	1e-5	Absolute repair tolerance.
keepbnd	on off	on	Import surface objects.
keepsolid	on off	on	Import solid objects.
param	String[]		Name of parameters to set in Revit. Only parameters with sync set to on are sent.
paramexpr	String[]		Values of parameters to send to Revit.
removeredundant	on off	on	Remove redundant edges and vertices.
repair	on off	off	Repair imported objects.
simplify	on off	off	Simplify the underlying curve and surface manifolds of geometric entities
selname	String[]		Read only property that corresponds to the names of the resulting selections.
seltag	String[]		Read only property that corresponds to the tags of the resulting selections.
sync	String[]		Enable/disable synchronization of parameters. Valid values are on or off.

TABLE 4-30: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
synchronizewith	active specified	active	Synchronize the active project in Revit or the specified project.
unit	source current	source	Take length unit from Revit, or from the current geometry unit.

The following properties are available for offline synchronization.

TABLE 4-31: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
offline	on off		Activate offline synchronization.
selectsweep	studyTag/studyStep Tag none	none	Parametric sweep to request (for example std I/param).
receivecount	integer	0	Number of synchronizations left in received synchronization file. Read only.
receivefilename	String	Empty	Received synchronization file. Read only.
requestfilename	String	Empty	Pending request file. Read only.
sweepcount	integer	0	Number of parameter tuples in received synchronization file with parametric sweep. Read only.
sweepfilename	String	Empty	Received synchronization file with parametric sweep. Read only.

The method

```
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      receiveData(filename);
```

loads the synchronization file filename.

The method

```
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      receiveDataNext();
```

loads the next synchronization from the previously received synchronization file that contains multiple synchronizations.

The method

```
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      requestData(filename);
```

saves the request file filename for offline synchronization.

The method

```
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      requestDataAppend();
```

appends a request for synchronization to the previously saved request file.

The following attributes are available:

TABLE 4-32: VALID ATTRIBUTES

NAME	VALUE	DEFAULT	DESCRIPTION
construction	on off	off	Designate the resulting objects as construction
			geometry.

Projection

PURPOSE

Project 3D objects and entities to a 2D work plane.

XATNYZ

```
model.component(<ctag>).geom(<tag>).feature(<wptag>).
      geom().create(<ftaq>, "Projection");
model.component(<ctag>).geom(<tag>).feature(<wptag>).
      geom().feature(<ftag>).selection("input");
model.component(<ctag>).geom(<tag>).feature(<wptag>).
      geom().feature(<ftag>).set(property, <value>);
model.component(<ctag>).geom(<tag>).feature(<wptag>).
      geom().feature(<ftag>).getType(property)
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      setAttribute(attribute, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getAttribute(attribute);
```

DESCRIPTION

Use

```
model.component(<ctag>).geom(<tag>).feature(<wptag>).geom().
      create(<ftag>, "Projection")
```

to create a projection feature tagged <ftag> in the 2D sequence of the work plane feature <wptag>. It can compute the projection of 3D objects and entities to the work plane.

By default, you get the projection for all 3D objects that were generated by the features preceding the work plane feature. To select a subset of these objects or to select entities, set the project property to the appropriate entity level, and use the property input to select the 3D objects or entities.

The following properties are available.

TABLE 4-33: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
absrepairtool		<pre>geom(<tag>). absRepairTol()</tag></pre>	Absolute repair tolerance.
input	Selection		Entities to project. Used when project is not all.
project	all obj dom bnd edg vtx	all	Project all objects or selected objects or entities
projectiontyp e	edgvtx outline all	outline	Projection type. Used when project is all, dom, or bnd.
repairtol	double	<pre>geom(<tag>). repairTol()</tag></pre>	Relative repair tolerance, relative to size of each input object.
repairtoltype	auto relative absolute	<pre>geom(<tag>). repairTolType()</tag></pre>	Repair tolerance type: automatic, relative, or absolute.
workplane	String		Work plane to project onto.
selresult	on off	off	Create selections of all resulting objects.
selresultshow	all obj bnd pnt off	bnd	Show selections, if selresult is on, in physics, materials, and so on; or in 3D from a plane geometry. obj is not available in a component's geometry.
contributeto	String	none	Tag of cumulative selection to contribute to.

TABLE 4-34: VALID ATTRIBUTES

NAME	VALUE	DEFAULT	DESCRIPTION
construction	on off inherit	inherit	Designate the resulting objects as construction geometry. Use inherit to set the construction geometry attribute only if all input objects are construction geometry.

SEE ALSO

CrossSection, WorkPlane

Repair

Repair CAD objects.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
      create(<ftag>, "Repair");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      set(property, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getType(property)
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      setAttribute(attribute, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getAttribute(attribute);
```

DESCRIPTION

```
model.component(<ctag>).geom(<tag>).feature().
      create(<ftag>, "Repair")
```

creates a repair feature tagged <ftag>. The following properties are available.

TABLE 4-35: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
input	Selection		Names of input objects.
check	on off	on	Check the input objects for errors.
repairtol	double	1e-5	Absolute repair tolerance
selresult	on off	off	Create selections of all resulting objects.

TABLE 4-35: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
selresultshow	all obj dom bnd edg pnt off	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a component's geometry. dom, bnd, and edg are not available in all features.
simplify	on off	off	Simplify the underlying curve and surface manifolds of geometric entities
repairfacetoface	on off	off	Repair face-to-face inconsistencies in solid objects
contributeto	String	none	Tag of cumulative selection to contribute to.

The function tries to remove or repair the following defects:

- Entities with invalid sense
- Invalid edge and vertex tolerances
- · Invalid manifolds
- Self-intersecting manifolds
- Non-G1 manifolds
- Missing edge or vertex manifolds
- Missing vertex
- Vertices not on curve of edge
- Edges and vertices not on surface of face
- Removal of surface self-intersections that lie outside the face
- Splitting at edge intersections which have no vertex
- Removal of discontinuities by either splitting or smoothing
- Remove small features (short edges, small faces, sliver faces, and spikes)

TABLE 4-36: VALID ATTRIBUTES

NAME	VALUE	DEFAULT	DESCRIPTION
construction	on off inherit	inherit	Designate the resulting objects as construction geometry. Use inherit to set the construction geometry attribute only if all input objects are construction geometry.

COMPATIBILITY

The following property is no longer supported:

TABLE 4-37: OBSOLETE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
Out	stx ftx ctx ptx	none	Output variables

EXAMPLE

The following example imports the file repair demo 2.x b, and repairs the resulting objects.

```
Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
      create("imp1", "Import");
model.component("comp1").geom("geom1").feature("imp1").
      set("filename", "repair demo 2.x b");
model.component("comp1").geom("geom1").runAll();
model.component("comp1").geom("geom1").feature().
      create("rep1", "Repair");
model.component("comp1").geom("geom1").feature("rep1").
      selection("input"). set("imp1");
model.component("comp1").geom("geom1").feature("rep1").
      set("repairtol",1e-3);
model.component("comp1").geom("geom1").runAll();
```

SEE ALSO

Check, Knit

ReplaceFaces

Delete faces from CAD objects and heal the wounds by creating new faces.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
      create(<ftag>, "ReplaceFaces");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
       set(property, <value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
      getType(property);
model.component(\langle ctaq \rangle).geom(\langle taq \rangle).defeaturing("ReplaceFaces").
      selection(property)
model.component(\langle ctaq \rangle).geom(\langle taq \rangle).defeaturing("ReplaceFaces").
       set(property, <value>);
model.component(<ctag>).geom(<tag>).defeaturing("ReplaceFaces").
      delete(<ftag>);
```

DESCRIPTION

model.component(<ctag>).geom(<tag>).defeaturing("ReplaceFaces"). delete(<ftag>) creates a ReplaceFaces feature tagged <ftag> with the specified properties. If the feature can be built, it is inserted in the geometry sequence after the current feature; otherwise, the feature is discarded.

It is also possible to create a ReplaceFaces feature using the standard create method.

TABLE 4-38: AVAILABLE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
input	Selection		Faces to replace.
heal	cap extend	extend	Healing method.
throughhole	on off	off	Heal as if the removed faces are a through hole.
selresult	on off	off	Create selections of all resulting objects.
selresultshow	all obj dom bnd edg pnt off	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a component's geometry. dom, bnd, and edg are not available in all features.
contributeto	String	none	Tag of cumulative selection to contribute to.

The faces in the property input are deleted from their objects. The resulting object is healed so that a solid object is obtained. If heal is cap, a new face is formed based on the surrounding edges of each wound. If heal is extend, the surrounding faces of each wound are grown or shrunk to heal the wound.

When you replacing faces that form through holes, set the throughhole property to on to indicate that the two wounds from where the hole entered and exited the geometry are to be healed independently instead of as a single wound. If throughhole is off, the wound would be healed with a single new face that would just recreate the hole.

EXAMPLE

The following example imports the file defeaturing demo 2.mphbin, and removes a hole from the geometry model.

```
Model model = ModelUtil.create("Model1");
model.component.create("comp1"):
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
      create("imp1", "Import");
model.component("comp1").geom("geom1").feature("imp1").
      set("filename", "defeaturing demo 2.mphbin");
model.component("comp1").geom("geom1").run("imp1");
model.component("comp1").geom("geom1").feature().
      create("rfa1", "ReplaceFaces");
model.component("comp1").geom("geom1").feature("rfa1").
      selection("input").set("imp1",6,7,8,9,11,12,13);
model.component("comp1").geom("geom1").run();
```

COMPATIBILITY

The following property is no longer supported:

TABLE 4-39: OBSOLETE PROPERTIES.

PROPERTY	VALUE	DEFAULT	DESCRIPTION
Out	stx ftx ctx ptx	none	Output variables

SEE ALSO

DeleteFillets, DeleteSliverFaces, DeleteSmallFaces, DetachFaces

Index

- A Application Libraries window II
- C cap faces 67 COMSOL Client 29 COMSOL Server 29
- D defeaturing tools 74 documentation 10
- emailing COMSOL 12export (of geometries) 44
- **F** filling holes 67
- **G** geometry exporting to file 44
- I internet resources 9
- K knowledge base, COMSOL 13
- M MPH-files II
- s system requirements 23
- T technical support, COMSOL 12
- web implementation of an application 29 websites, COMSOL 13