
INTRODUCTION TO

LiveLink™ for MATLAB®

C o n t a c t I n f o r m a t i o n
Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries or

search for an address and phone number. You can also visit the Worldwide Sales Offices page at

www.comsol.com/contact/offices for address and contact information.

If you need to contact Support, an online request form is located on the COMSOL Access page

at www.comsol.com/support/case. Other useful links include:

• Support Center: www.comsol.com/support

• Product Download: www.comsol.com/product-download

• Product Updates: www.comsol.com/product-update

• COMSOL Blog: www.comsol.com/blogs

• Discussion Forum: www.comsol.com/forum

• Events: www.comsol.com/events

• COMSOL Video Gallery: www.comsol.com/videos

• Support Knowledge Base: www.comsol.com/support/knowledgebase

Part number: CM020010

I n t r o d u c t i o n t o L i v e L i n k™ f o r M A T L A B ®

© 2009–2023 COMSOL

Protected by patents listed on www.comsol.com/patents, or see Help>About COMSOL Multiphysics on the File
menu in the COMSOL Desktop for less detailed lists of U.S. Patents that may apply. Patents pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License
Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the
license agreement.

COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Compiler, COMSOL Server,
and LiveLink are either registered trademarks or trademarks of COMSOL AB. MATLAB and Simulink are registered
trademarks of The MathWorks, Inc.. All other trademarks are the property of their respective owners, and
COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by
those or the above non-COMSOL trademark owners. For a list of such trademark owners, see www.comsol.com/
trademarks.

Version: COMSOL 6.2

https://www.comsol.com/contact/
https://www.comsol.com/contact/offices/
https://www.comsol.com/support/case/
https://www.comsol.com/support/
https://www.comsol.com/product-download/
https://www.comsol.com/product-update
https://www.comsol.com/blogs/
https://www.comsol.com/forum/
https://www.comsol.com/events/
https://www.comsol.com/videos/
https://www.comsol.com/support/knowledgebase/
www.comsol.com/patents/
http://www.comsol.com/comsol-license-agreement/
http://www.comsol.com/trademarks/
http://www.comsol.com/trademarks/

Contents

Introduction . 5

Starting COMSOL Multiphysics® with MATLAB® 7

A Thorough Example: The Busbar . 9

Extracting Results at the MATLAB® Command Line. 29

Automating with MATLAB® Scripts . 36

Using External MATLAB® Functions . 46
 | 3

4 |

Introduction

LiveLink™ for MATLAB® connects COMSOL Multiphysics® to the MATLAB®
scripting environment. Using this functionality, you can do the following:
• Set up models from a script. LiveLink™ for MATLAB® includes the

COMSOL® application programming interface (API), which has all the
necessary functions and methods to implement models from scratch. For
each operation performed in the COMSOL Desktop® there is a
corresponding command that is entered at the MATLAB prompt. It is a
simplified syntax based on the Java® programming language and does not
require any Java knowledge.

• Use MATLAB functions in model settings. Use LiveLink™ to set model
properties with a MATLAB function. For example, define material
properties or boundary conditions as a MATLAB routine that is evaluated
while the model is solved.

• Interactive modeling between the COMSOL Desktop and MATLAB
sharing the same model. Every modification performed at the MATLAB
prompt is simultaneously updated in the COMSOL Desktop.

• Leverage MATLAB functionality for program flow. Use the COMSOL API
syntax together with MATLAB functionality to control the flow of your
programs. For example, implement nested loops using for or while
commands, implement conditional model settings with if or switch
statements, or handle exceptions using try and catch.

• Analyze results in MATLAB. The API wrapper functions included make it
easy to extract data at the command line. Functions are available to access
results at node points or arbitrary locations. You can also get low-level
information about the extended mesh, such as finite element mesh
coordinates, and connection information between the elements and nodes.
Extracted data are available as MATLAB variables ready to be used with any
MATLAB function.

• Connect to a Model Manager database and load, save and search for model.
Although most if the interactions with models stored in a Model Manager
database still should be performed with the Model Manager user interface
some tasks can be automated using the COMSOL API as well as some useful
MATLAB function.

• Create custom interfaces for models. Use the MATLAB Guide or the App
Designer functionality to create a user-defined graphical interface that is
combined with a COMSOL model. Make your models available to others by
 | 5

creating graphical user interfaces tailored to expose the settings and
parameters of your choice.

• LiveLink™ for MATLAB® can connect to COMSOL Server™ as well as
COMSOL Multiphysics server. This means that MATLAB scripts and GUIs
that utilize COMSOL functionality can be distributed to and used by any
user that has access to COMSOL Server™.

The examples in this guide take you through the process of setting up a COMSOL
model and explain how to use COMSOL Multiphysics within the MATLAB
scripting environment.
6 |

Starting COMSOL Multiphysics® with MATLAB®

Starting on Windows®

To start COMSOL Multiphysics with MATLAB, double-click the COMSOL with
MATLAB icon available on the desktop.

This opens the MATLAB desktop together with the COMSOL Multiphysics
server, which is represented by the command window appearing in the
background.

Starting on macOS

Navigate to Applications>COMSOL 6.2>COMSOL 6.2 with MATLAB.

Starting on Linux®

Start a terminal prompt and run the comsol command, which is located inside the
bin folder in the COMSOL installation directory:

comsol mphserver matlab

The COMSOL Client–Server Connection

LiveLink™ for MATLAB® provides an interface between COMSOL Multiphysics
and MATLAB based on the COMSOL client–server architecture. A COMSOL
thin client is running inside MATLAB and has access to the COMSOL API
through the MATLAB Java interface. Model information is stored in a model
object available on the COMSOL Multiphysics server. The thin client
communicates with the COMSOL Multiphysics server, enabling you to generate,
modify, and solve COMSOL model objects at the MATLAB prompt.
 | 7

When starting COMSOL with MATLAB, you open both a COMSOL
Multiphysics server and the MATLAB user interface. The first time you start a
COMSOL Multiphysics server, you are asked to supply a new username and
password that will be associated with the client–server mode of operation. These
credentials are stored in the user preferences and reused for future connections.
Once this information is entered, the client–server communication is established.
Normally, both the COMSOL Multiphysics server and the MATLAB user
interface run on the same computer. For computations requiring more memory,
you can connect to a remote COMSOL Multiphysics server, but this
configuration requires a floating network license.
Note that the COMSOL Desktop is not necessary when running COMSOL
Multiphysics with MATLAB. However, you can connect a COMSOL Desktop to
the COMSOL Multiphysics server and import the model available in the latter.
This way the model is updated simultaneously at the MATLAB prompt and in the
COMSOL Desktop.
8 |

A Thorough Example: The Busbar

This tutorial familiarizes you with the COMSOL model object and the COMSOL
API syntax. In this section, learn how to:
• Create a geometry
• Set up a mesh and apply physics properties
• Solve the problem
• Generate results for analysis
• Exchange the model between the scripting interface of MATLAB® and the

COMSOL Desktop.

The model you are building at the MATLAB command line is the same model
described in the Introduction to COMSOL Multiphysics. The difference is that,
in this guide, you will use a COMSOL model object instead of the COMSOL
Desktop.
This multiphysics example describes electrical heating in a busbar. The busbar is
used to conduct direct current from a transformer to an electrical device and is
made of copper with titanium bolts, as shown in the figure below.

Note: The step-by-step instructions below are designed to be carried out in a
sequence. Skipping any of the sections might result in data being unavailable for
the following sections. Start with About The Model Object and work through the
sections until reaching the last section, Saving the Model.

Titanium Bolt 2a

Titanium Bolt Titanium Bolt 2b
 | 9

About Compact Notation

This example uses compact notation to shorten the commands that are entered at
the MATLAB command line. The compact notation uses MATLAB variables as
links to provide direct access to COMSOL model object features.
For example, to create a block using the compact notation, enter:

blk = geom.feature.create('blk1', 'Block');
blk.setIndex('size', '2', 0);
blk.setIndex('size', '3', 1);

This creates a block, then changes its width to 2 and its depth to 3.
Compared to above, the commands using a full notation are:

geom.feature.create('blk1', 'Block');
geom.feature('blk1').setIndex('size', '2', 0);
geom.feature('blk1').setIndex('size', '3', 1);

When a model object is saved in the M-file format, the full notation is always used.
Note: 'blk1' is the block geometry tag defined inside the COMSOL model
object. The variable blk, defined only in MATLAB, is the link to the block
feature. By linking MATLAB variables to features, you can directly access and
modify features of a COMSOL model object in an efficient manner.

Wrapper Functions

LiveLink™ for MATLAB® comes with a suite of functions to help you modify the
model object. These functions are mainly for retrieving information and data from
a model, but there are also functions for updating data. The wrapper functions are
meant as an aid in working with the COMSOL API and cover the most common
scenarios where MATLAB is used to work with COMSOL models.
To get the complete list of the wrapper function, once you have started COMSOL
with MATLAB, enter:

help mli

When working with wrapper functions, you benefit from autocompletion to enter
valid arguments and properties.
For example, to load a model and show a plot in MATLAB you can do:

mphopen busbar
mphplot(model,'pg1')

In order to observe how autocompletion works, you can write
mphplot(
10 |

and press the Tab key. Then the model variable (usually model) will appear. If you
then enter a comma and press the Tab key again, the plot group tags in the model
will appear. You can use Tab completion to further enter property names and
values where applicable.

About The Model Object

The model object contains all the information about a model, from the geometry
to the results. The model object is defined on the COMSOL Multiphysics server
and can be accessed at the MATLAB command line using a link in MATLAB.
1 Start COMSOL with MATLAB
2 Start modeling by creating a model object on the COMSOL Multiphysics

server. This is done by entering the following command on the MATLAB
command line:

model = ModelUtil.create('Model');

The model object on the COMSOL Multiphysics server has the tag Model,
while the variable model is its link in MATLAB.
To access and modify the model object, use the COMSOL API syntax. You can
get the documentation of a specific API command with the function mphdoc.

3 To get the documentation of the node model from the COMSOL
Programming Reference Manual, enter:
mphdoc(model)

4 To get the documentation of the geometry feature WorkPlane, enter:
mphdoc(model.geom,'WorkPlane')

Connecting the Model in the COMSOL Desktop®

It is possible to connect the model you are working with from the MATLAB
prompt to a COMSOL Desktop. This is a convenient way to monitor the
modifications that are being made to the model object.
1 At the MATLAB prompt, enter:

mphlaunch

The model is now accessible from both the MATLAB prompt and the COMSOL
Desktop. Every command entered at the prompt updates the model on the
COMSOL Multiphysics server and in the COMSOL Desktop. At this stage there
 | 11

is nothing in the model but later as you are following the instruction you will see
how the model is populated during the modeling process.
mphlaunch works without arguments if there is only one model loaded on the
server. If there is more than one model loaded on the server, you need to specify
the tag of the model when using mphlaunch or the command will return an error
and a list of the loaded models. You can use the command mphtags -show to get
a list of loaded models before using mphlaunch.

About Global Parameters

If you plan to solve your model for several different parameter values, it is
convenient to define them in the Parameters node and make use of the parametric
sweep functionality in COMSOL Multiphysics. Global parameters can be used in
expressions during all stages of model setup, like creating geometry, applying
physics, or defining the mesh.
1 At the MATLAB prompt, define the parameters for the busbar model:

mphsetparam(model, 'L', '9[cm]', 'Length of the busbar');
mphsetparam(model, 'rad_1', '6[mm]', 'Radius of the fillet');
mphsetparam(model, 'tbb', '5[mm]', 'Thickness');
mphsetparam(model, 'wbb', '5[cm]', 'Width');
mphsetparam(model, 'mh', '6[mm]', 'Maximum element size');
mphsetparam(model, 'htc', '5[W/m^2/K]', 'Heat transfer coefficient');
mphsetparam(model, 'Vtot', '20[mV]', 'Applied electric potential');

Geometry

2 You need first to create a component for this model:
comp1 = model.component.create('comp1', true);

3 In this component, create a 3D geometry node:
geom1 = comp1.geom.create('geom1', 3);

The create method of the geometry node requires, as input, a tag for the
geometry name ('geom1') and the geometry space dimension (3 for 3D).

4 The initial geometry is obtained by extruding a 2D drawing. Create a work
plane tagged 'wp1', and set it as the xz-plane of the 3D geometry:
wp1 = geom1.feature.create('wp1', 'WorkPlane');
wp1.set('quickplane', 'xz');

5 In this work plane, create a rectangle and set the width to L+2*tbb and the
height to 0.1:
12 |

r1 = wp1.geom.feature.create('r1', 'Rectangle');
r1.set('size', {'L+2*tbb' '0.1'});

Note: When the size properties of the rectangle are set as string values (using
single quotes ''), it indicates that the variables L and tbb are defined within the
model object. In this case, they are defined in the Parameters node.

6 Create a second rectangle and set the width to L+tbb and the height to
0.1-tbb. Then change the rectangle position to (0;tbb):
r2 = wp1.geom.feature.create('r2', 'Rectangle');
r2.set('size', {'L+tbb' '0.1-tbb'});
r2.set('pos', {'0' 'tbb'});

7 Subtract rectangle r2 from rectangle r1, by creating a Difference feature with
the 'input' property set to r1 and the 'input2' property set to r2:
dif = wp1.geom.feature.create('dif', 'Difference');
dif.selection('input').set({'r1'});
dif.selection('input2').set({'r2'});

To display the current geometry in the COMSOL Desktop, you need to build
the geometry node. At the MATLAB prompt, enter:
mphrun(model,'geom');

In the COMSOL Desktop, you can visualize the current geometry built at the
MATLAB prompt.

8 Round the inner corner by creating a Fillet feature and set point 3 in the
selection property. Then set the radius to tbb:
fil1 = wp1.geom.feature.create('fil1', 'Fillet');
 | 13

fil1.selection('point').set('dif(1)', 3);
fil1.set('radius', 'tbb');

9 Round the outer corner by creating a new Fillet feature, then select point 6
and set the radius to 2*tbb:
fil2 = wp1.geom.feature.create('fil2', 'Fillet');
fil2.selection('point').set('fil1(1)', 6);
fil2.set('radius', '2*tbb');

For geometry operations, the names of the resulting geometry objects are
formed by appending a numeral within parentheses to the tag of the geometry
operation. Above, 'fil1(1)' is the result of the 'fil1' operation.

10Extrude the geometry objects in the work plane. Create an Extrude feature, set
the work plane wp1 as input and the distance to wbb:
ext1 = geom1.feature.create('ext1', 'Extrude');
ext1.selection('input').set({'wp1'});
ext1.set('distance', {'wbb'});

To plot the current geometry in a MATLAB figure, enter:
mphgeom(model)

Note that mphgeom automatically builds the geometry node and updates the
COMSOL Desktop.

The busbar shape is now generated. Next, create the cylinders that represent the
bolts connecting the busbar to the external frame (not represented in the model).
1 Create a new work plane and set the planetype property to faceparallel.

Then set the selection to boundary 8:
wp2 = geom1.feature.create('wp2', 'WorkPlane');
wp2.set('planetype', 'faceparallel');
wp2.selection('face').set('ext1(1)', 8);
14 |

2 Create a circle and set the radius to rad_1:
c1 = wp2.geom.feature.create('c1', 'Circle');
c1.set('r', 'rad_1');

3 Create an Extrude node, select the second work plane wp2 as input, and then
set the extrusion distance to -2*tbb:
ext2 = geom1.feature.create('ext2', 'Extrude');
ext2.selection('input').set({'wp2'});
ext2.set('distance', {'-2*tbb'});

4 Create a new workplane, set planetype to faceparallel, then set the
selection to boundary 4:
wp3 = geom1.feature.create('wp3', 'WorkPlane');
wp3.set('planetype', 'faceparallel');
wp3.selection('face').set('ext1(1)', 4);

5 Create a circle, then set the radius to rad_1 and set the position of the center
to (-L/2+1.5e-2;-wbb/4):
c2 = wp3.geom.feature.create('c2', 'Circle');
c2.set('r', 'rad_1');
c2.set('pos', {'-L/2+1.5e-2' '-wbb/4'});

6 Create a second circle in the work plane by copying the previous circle and
displacing it a distance wbb/2 in the y direction:
copy = wp3.geom.feature.create('copy', 'Copy');
copy.selection('input').set({'c2'});
copy.set('disply', 'wbb/2');

7 Extrude the circles c2 and copy1 from the work plane wp3 a distance -2*tbb:
ext3 = geom1.feature.create('ext3', 'Extrude');
ext3.selection('input').set({'wp3.c2' 'wp3.copy'});
ext3.set('distance', {'-2*tbb'});

8 Build the entire geometry sequence, including the finalize node using the run
method:
mphrun(model,'geom');

Note: mphrun only builds features which need rebuilding or have not yet been
built, including the finalize node.

This ends the geometry building. In the COMSOL Desktop, you can now see the
final model geometry.
 | 15

Selections

You can create selections of geometric entities such as domains, boundaries, edges,
or points. These selections can be accessed during the modeling process with the
advantage of not having to select the same entities several times.
1 To create a domain selection corresponding to the titanium bolts, named Ti
bolts, enter:
sel1 = comp1.selection.create('sel1');
sel1.set([2 3 4 5 6 7]);
sel1.label('Ti bolts');

2 To visualize the selection in a MATLAB figure, enter:
mphviewselection(model,'sel1');

Material Properties

The Material node of the model object stores the material properties. In this
example, the Joule Heating interface is used to include both an electric current
and a heat balance. Thus, the electrical conductivity, heat capacity, relative
permittivity, density, and thermal conductivity of the materials all need to be
defined.
16 |

The busbar is made of copper and the bolts are made of titanium. The properties
you need for these two materials are listed in the table below:

To define material properties using the COMSOL API, you can either create the
material from scratch or import the material data from another model MPH-file.
In this example you will first create the Copper material node from scratch and
then import the Titanium material data from an existing model from the
Application library.
1 Create the first material, copper:

mat1 = comp1.material.create('mat1');

2 Set the properties for the 'electricconductivity', 'heatcapacity',
'relpermittivity', 'density' and 'thermalconductivity' according to
the table above:
mat1.materialModel('def').set('electricconductivity', {'5.998e7[S/m]'});
mat1.materialModel('def').set('heatcapacity', '385[J/(kg*K)]');
mat1.materialModel('def').set('relpermittivity', {'1'});
mat1.materialModel('def').set('density', '8700[kg/m^3]');
mat1.materialModel('def').set('thermalconductivity', {'400[W/(m*K)]'});

3 Set the name of the material to 'Copper'. By default the first material is assigned
to all domains:
mat1.label('Copper');

Now, import Titanium material data from the busbar model MPH-file, which
is available in the COMSOL Multiphysics Application Library.

4 Get the list of the material nodes defined in the model busbar.mph:
modelRef = '<COMSOL_path>\applications\COMSOL_Multiphysics\

Multiphysics\busbar.mph';
ModelUtil.scanModel(modelRef,'Material','op')

where <COMSOL_path> is the path of your COMSOL installation root
directory. From the output, one can see that the material node contains two
materials. The second material mat2 is the one defining Titanium beta-21S data
and that is the one you will import in the model in the steps below.

PROPERTY COPPER TITANIUM

Electrical
conductivity

5.998e7[S/m] 7.407e5[S/m]

Heat capacity 385[J/(kg*K)] 710[J/(kg*K)]

Relative
permittivity

1 1

Density 8700[kg/m^3] 4940[kg/m^3]

Thermal conductivity 400[W/(m*K)] 7.5[W/(m*K)]
 | 17

5 Import material mat2 from the model busbar.mph to the material node of the
current model:
comp1.material.insert(modelRef,'mat2','');

6 Assign the newly created material to the previously created selection 'sel1'
(corresponding to the bolt domains):
comp1.material('mat2').selection.named('sel1');

Only one material per domain can be assigned. This means that the last operation
automatically removes the bolts from the selection of the copper material.

Physics Interface

The Physics node contains the settings of the physics interfaces, including the
domain and the boundary settings. Settings are grouped together according to the
physics interface they belong to. To model the electrothermal interaction of this
example, add the ConductiveMedia and HeatTransfer interfaces to the model.
Apply a fixed electric potential to the upper bolt and ground the two lower bolts.
In addition, assume that the device is cooled by convection, approximated by a
heat flux with a defined heat transfer coefficient on all outer faces, except where
the bolts are connected.
1 Create the HeatTransfer interface on the geom1 geometry:

ht = comp1.physics.create('ht', 'HeatTransfer', 'geom1');

2 Add a heat flux boundary condition to the physics interface and set the type to
InwardHeatFlux:
hf1 = ht.feature.create('hf1', 'HeatFluxBoundary', 2);
hf1.set('HeatFluxType', 'InwardHeatFlux');

Note: The third argument of the create method, the space dimension sdim,
indicates which geometry level (domain, boundary, edge, or point) the feature
should be applied to. In the above commands, the 'HeatFluxBoundary' feature
applies to boundaries, which have the space dimension 2.

3 Now apply cooling to all exterior boundaries 1–43, except the bolt connection
boundaries 8, 15, and 43. An InwardHeatFlux boundary condition requires a
heat transfer coefficient. Set its value to the previously defined parameter htc:
hf1.selection.set([1:7 9:14 16:42]);
hf1.set('h', 'htc');

4 As you may have noticed, defining selections requires you to know the entity
indices. To view the boundary indices, display the geometry with face labels:
mphgeom(model,'geom1','facemode','off','facelabels','on')
18 |

You can use the controls in the window to zoom and
pan to read off the indices.
Note: Alternative methods for obtaining entity
indices are described in the LiveLink™ for
MATLAB® User’s Guide. These include the use of
point coordinates, selection boxes, or adjacency
information.

5 Create the ConductiveMedia interface on the
geom1 geometry:
ec = comp1.physics.create('ec', 'ConductiveMedia', 'geom1');

6 Now create an electric potential boundary condition and set the selection to
boundary 43; then set the electric potential to Vtot:
pot1 = ec.feature.create('pot1', 'ElectricPotential', 2);
pot1.selection.set(43);
pot1.set('V0', 'Vtot');

7 Apply a ground boundary condition to boundaries 8 and 15:
gnd1 = ec.feature.create('gnd1', 'Ground', 2);
gnd1.selection.set([8 15]);

The model object includes default properties so you do not need to set properties
for all boundaries. For example, the Conductive Media interface uses a current
insulation as a default boundary condition for the current balance.

Multiphysics Interface

The Multiphysics Couplings node contains the possible couplings between the
physics interfaces used in the model. To model the electrothermal interaction in
this example, add the Electromagnetic Heating coupling to the model. This node
is included by default when modeling electromagnetic heating in the COMSOL
Desktop.
1 Create the ElectromagneticHeating coupling on the comp1 component and

set the selection to all domains:
comp1.multiphysics.create('emh','ElectromagneticHeating');

The Heat Transfer and the Conductive Media interfaces are automatically
included in the coupling.

2 Set the Electromagnetic Heating multiphysics interface to all domains:
comp1.multiphysics('emh').selection.all;
 | 19

Mesh

The mesh sequence is stored in the Mesh node. Several mesh sequences, also
called mesh cases, can be created in the same model object.
1 Create a new mesh case for comp1:

mesh = comp1.mesh.create('mesh');

2 By default, the mesh sequence contains at least a size feature, which applies to
all subsequent meshing operations. First create a link to the existing size
feature. Then set the maximum element size hmax to mh and the minimum
element size hmin to mh-mh/3. Set the curvature factor hcurve to 0.2:
size = mesh.feature('size');
size.set('hmax', 'mh');
size.set('hmin', 'mh-mh/3');
size.set('hcurve', '0.2');

3 Add a mesh feature that generates the tetrahedral mesh:
mesh.feature.create('ftet', 'FreeTet');

4 Build the mesh:
mphrun(model,'mesh');

Now look in the COMSOL Desktop to see the resulting mesh in the graphics
window.

5 To visualize the mesh in a MATLAB figure, use the command mphmesh:
mphmesh(model)
20 |

Study

In order to solve the model, you need to create a Study node where the analysis
type is set for the solver.
1 Create a study node and add a stationary study step:

std = model.study.create('std');
std.feature.create('stat', 'Stationary');

2 Solve the model, run the study with the command:
mphrun(model,'study');

During the computation, a window opens to display the progress information
and solver log.

Note: The progress bar is not available on macOS.

In this example, no solver related settings were necessary since the study node
automatically built the solver sequence based on the study type, physics interface,
and the space dimension of the model.
 | 21

Plotting The Results

One way to analyze the results is to plot the expression of interest. The first time
you run the study, default plots are created, which you can visualize in the
COMSOL Desktop.

The first plot group Temperature (ht) shows the temperature distribution, you
may notice that the maximum temperature region is located in the bolt. To get a
better rendering of the temperature distribution within the busbar, you need to
edit the plot group.
1 To manipulate a plot group you need to know their tag. Use mphtags to get

the list of the plot group tags available under the result node, and then the tag
of the plot feature in the first plot group:
tags = mphtags(model, 'result');
feattags = mphtags(model.result(tags{1}));

2 Activate a manual color range; set the minimum color value to 322.9 and set
the maximum color value to 323.5:
surf = model.result(tags{1}).feature(feattags{1})
surf.set('rangecoloractive', 'on');
surf.set('rangecolormin', '322.9');
surf.set('rangecolormax', '323.5');

3 Display the first plot group, including a color bar, use the mphplot command:
mphplot(model, tags{1}, 'rangenum', 1)
22 |

Note: If several plot types are available in the same plot group, you can define
which color bar to display. The value of the rangenum property corresponds to
the plot type number in the plot group sequence.

Exporting Results

With LiveLink™ for MATLAB®, you can export data either to a text file by using
the Export feature available in the model, or directly to the MATLAB workspace
by using the COMSOL function suite available in MATLAB. See Extracting Results
at the MATLAB® Command Line for more details.
Results can be exported to a text file by using the Export node.
1 Create a data export node for the temperature variable T:

data = model.result.export.create('data', 'Data');
data.setIndex('expr', 'T', 0);

2 Set the filename to <filepath>\Temperature.txt where <filepath> is
replaced with the path to the directory where the file should be saved:
data.set('filename','<filepath>\Temperature.txt');

3 Perform the export operation:
mphrun(model,'data');

The above steps extract the temperature at each computational node of the
geometry and store the data in a text file in the following format:

% Model: Untitled.mph
 | 23

% Version: COMSOL 6.2.0.250
% Date: Nov 1 2023, 15:08
% Dimension: 3
% Nodes: 1351
% Expressions: 1
% Description: Temperature
% Length unit: m
% X Y Z T (K)
0.095 -0.02200000 0.06019615 323.47243290
0.095 -0.01803113 0.06159800 323.43024700
0.0975 -0.02023335 0.06305422 323.44003680
0.09767380 -0.01977740 0.05795373 323.49327862

Saving the Model

1 To save the model MPH-file with the mphsave method, enter:
mphsave(model,'<path>/busbar');

In the above command, replace <path> with the directory where you would like
to save your model. If a path is not defined, the model is saved in the current
working directory. You can use the command pwd to get the current working
directory in MATLAB.
The default save format is the COMSOL binary format with the mph extension.
To save the model as an M-file use the command:

mphsave(model,'<path>/busbar.m');

Note: mphsave only save model to file. To save a model in Model Manager use
the command mmsave.

2 In case you have created a database using Model Manager, first get the branch
address where you would like to save your model:
branch = mmgetbranch('<branchname>','<repositoryname>','<databasename>');

where '<branchname>', '<repositoryname>', '<databasename>' are the name
of the branch, the repository, and the database where to save the model
respectively.

3 To save the model as a version at branch, enter:
mmsave(model,'version','Commit message for the busbar model',branch);

Code for Use with MATLAB®

model = ModelUtil.create('Model');
mphsetparam(model, 'L', '9[cm]', 'Length of the busbar');
mphsetparam(model, 'rad_1', '6[mm]', 'Radius of the fillet');
mphsetparam(model, 'tbb', '5[mm]', 'Thickness');
mphsetparam(model, 'wbb', '5[cm]', 'Width');
mphsetparam(model, 'mh', '6[mm]', 'Maximum element size');
24 |

mphsetparam(model, 'htc', '5[W/m^2/K]', 'Heat transfer coefficient');
mphsetparam(model, 'Vtot', '20[mV]', 'Applied electric potential');
comp1 = model.component.create('comp1', true);
geom1 = comp1.geom.create('geom1', 3);
wp1 = geom1.feature.create('wp1', 'WorkPlane');
wp1.set('quickplane', 'xz');
r1 = wp1.geom.feature.create('r1', 'Rectangle');
r1.set('size', {'L+2*tbb' '0.1'});
r2 = wp1.geom.feature.create('r2', 'Rectangle');
r2.set('size', {'L+tbb' '0.1-tbb'});
r2.set('pos', {'0' 'tbb'});
dif = wp1.geom.feature.create('dif', 'Difference');
dif.selection('input').set({'r1'});
dif.selection('input2').set({'r2'});
mphrun(model,'geom');
fil1 = wp1.geom.feature.create('fil1', 'Fillet');
fil1.selection('point').set('dif(1)', 3);
fil1.set('radius', 'tbb');
fil2 = wp1.geom.feature.create('fil2', 'Fillet');
fil2.selection('point').set('fil1(1)', 6);
fil2.set('radius', '2*tbb');
ext1 = geom1.feature.create('ext1', 'Extrude');
ext1.selection('input').set({'wp1'});
ext1.set('distance', {'wbb'});
mphgeom(model)
wp2 = geom1.feature.create('wp2', 'WorkPlane');
wp2.set('planetype', 'faceparallel');
wp2.selection('face').set('ext1(1)', 8);
c1 = wp2.geom.feature.create('c1', 'Circle');
c1.set('r', 'rad_1');
ext2 = geom1.feature.create('ext2', 'Extrude');
ext2.selection('input').set({'wp2'});
ext2.set('distance', {'-2*tbb'});
wp3 = geom1.feature.create('wp3', 'WorkPlane');
wp3.set('planetype', 'faceparallel');
wp3.selection('face').set('ext1(1)', 4);
c2 = wp3.geom.feature.create('c2', 'Circle');
c2.set('r', 'rad_1');
c2.set('pos', {'-L/2+1.5e-2' '-wbb/4'});
copy = wp3.geom.feature.create('copy', 'Copy');
copy.selection('input').set({'c2'});
copy.set('disply', 'wbb/2');
ext3 = geom1.feature.create('ext3', 'Extrude');
ext3.selection('input').set({'wp3.c2' 'wp3.copy'});
ext3.set('distance', {'-2*tbb'});
mphrun(model,'geom');
sel1 = comp1.selection.create('sel1');
sel1.set([2 3 4 5 6 7]);
sel1.label('Ti bolts');
mphviewselection(model,'sel1');
mat1 = comp1.material.create('mat1');
mat1.materialModel('def').set('electricconductivity', {'5.998e7[S/m]'});
mat1.materialModel('def').set('heatcapacity','385[J/(kg*K)]');
 | 25

mat1.materialModel('def').set('relpermittivity', {'1'});
mat1.materialModel('def').set('density','8700[kg/m^3]');
mat1.materialModel('def').set('thermalconductivity',{'400[W/(m*K)]'});
mat1.label('Copper');
ModelUtil.scanModel('<COMSOL_path>\applications\COMSOL_Multiphysics\
Multiphysics\busbar.mph', 'Material','op')
comp1.material.insert('<COMSOL_path>\applications\COMSOL_Multiphysics\
Multiphysics\busbar.mph', 'mat2', '');
comp1.material('mat2').selection.named('sel1');
ht = comp1.physics.create('ht', 'HeatTransfer', 'geom1');
hf1 = ht.feature.create('hf1', 'HeatFluxBoundary', 2);
hf1.set('HeatFluxType', 'InwardHeatFlux');
hf1.selection.set([1:7 9:14 16:42]);
hf1.set('h', 'htc');
mphgeom(model,'geom1','facemode','off','facelabels','on')
ec = comp1.physics.create('ec','ConductiveMedia', 'geom1');
pot1 = ec.feature.create('pot1','ElectricPotential', 2);
pot1.selection.set(43);
pot1.set('V0', 'Vtot');
gnd1 = ec.feature.create('gnd1', 'Ground', 2);
gnd1.selection.set([8 15]);
comp1.multiphysics.create('emh','ElectromagneticHeatSource');
comp1.multiphysics('emh').selection.all;
mesh = comp1.mesh.create('mesh');
size = mesh.feature('size');
size.set('hmax', 'mh');
size.set('hmin', 'mh-mh/3');
size.set('hcurve', '0.2');
mesh.feature.create('ftet', 'FreeTet');
mphrun(model, 'mesh');
mphmesh(model)
std = model.study.create('std');
std.feature.create('stat', 'Stationary');
mphrun(model, 'study');
tags = mphtags(model,'result');
feattags = mphtags(model.result(tags{1}));
surf = model.result(tags{1}).feature(feattags{1});
surf.set('rangecoloractive', 'on');
surf.set('rangecolormin', '322.9');
surf.set('rangecolormax', '323.5');
mphplot(model, tags{1}, 'rangenum', 1)
data = model.result.export.create('data', 'Data');
data.setIndex('expr', 'T', 0);
data.set('filename','<filepath>\Temperature.txt');
mphrun(model, 'data');
mphsave(model,'<path>\busbar.m');
26 |

Saving and Running a Model M-File

The easiest way to learn the commands of the COMSOL API is to save a model
from the COMSOL Desktop as an M-file. The M-file contains the sequence of
commands that create the model. You can open the M-file in a text editor and
make modifications to it, as shown in the following example.
Note: By default, the M-file contains the entire command history of the model
following the operation done to the model. This means that the model M-file can
include settings that are no longer part of the model. In order to include only
settings that are part of the current model, compact the model history before
saving the M-file. If you want to get the specific command for the last operation
that was performed, do not compact the model history.

1 Start COMSOL with MATLAB and a COMSOL Desktop.
2 In the COMSOL Desktop, go to the Application Libraries window.
3 In the Application Libraries window, expand the COMSOL Multiphysics folder

and then the Multiphysics folder. Select the busbar model and click Open.
4 Compact the model history in order to get only the commands corresponding

to the current state of the model. In the COMSOL Desktop, choose
File>Compact History ().

5 Go to File>Save As. In the Save window, locate the Save as type list and select
Model file for MATLAB (*.m). Name the file busbar and choose the directory
to save it to. Click OK.

6 Open the saved M-file with the MATLAB editor or any text editor and search
for the lines below:
model.result('pg4').feature('surf1').set('expr', 'ec.normJ');
 | 27

model.result('pg4').feature('surf1').set('descr', 'Current density norm');
model.result('pg4').feature('surf1').set('rangecolormax', '1e6');

These commands define the plot group pg4, which includes a surface plot of the
expression ec.normJ with the maximum color range set to 1e6.

7 To modify the plot group pg4 so that it displays the total heat jh.Qtot with the
maximum color range set to 1e4, add the following lines to the M-file, just
before the last command (output of the function):
model.result('pg4').feature('surf1').set('expr','ht.Qtot');
model.result('pg4').feature('surf1').set('descr', 'Total heat source');
model.result('pg4').feature('surf1').set('rangecolormax','1e4');

These commands modify plot group pg4 so that it displays the total heat
ht.Qtot with a new setting for the maximum value for the color range. You can
also directly modify the original lines corresponding to the plot settings to
achieve the same thing, but this way you can easily revert to the old version.

8 Save the modified M-file.
9 Run the model at the MATLAB prompt with the command:

model = busbar;

10Display the plot group pg4:
mphplot(model,'pg4')

Another way to modify a model object in MATLAB is to load the model MPH-file
in MATLAB, and then enter the commands in step 7 directly at the MATLAB
command line. The benefit of this latter approach is that it does not require
running the entire model. See An Example Using Nested Loops, where this
technique is applied.
28 |

Extracting Results at the MATLAB® Command Line

LiveLink™ for MATLAB® packages several functions to make it easy to access
results directly from the MATLAB command line. The most commonly used
functions are:
• mphinterp, to evaluate expressions at arbitrary location.
• mpheval, to evaluate expressions on all node points of a given domain

selection.
• mphglobal, to evaluate global expressions.
• mphint2, to integrate the value of expressions on selected domains.
• mphmax, mphmin, and mphmean, to evaluate the maximum, minimum, and

average, respectively, of an expression.
• mphgetexpressions, to get the model variables and model parameters

expressions.
• mphevaluate, to evaluate parameter expressions (constants) in models.

Note: For a complete list of the available functions see the section Summary of
Commands in the LiveLink for MATLAB User’s Guide.

Load the busbar model from the application library directly at the MATLAB
command line.
1 Start COMSOL with MATLAB.
2 Load the busbar example model from the application library. Enter the

command:
mphopen busbar

The mphopen command automatically searches the MATLAB path as well as the
path for the application libraries to find the requested file. You can also specify
the path in the filename. When specifying the mphopen command on the
MATLAB command line you can enter mphopen and space. Then press the
TAB-key to get a list of the MPH-files in the current directory.

Evaluating Data at Arbitrary Points

If you want to get data at a specific location not necessarily defined by node points,
use the command mphinterp to interpolate the results. The interpolation method
uses the shape function of the elements.
1 To extract the total heat source at [5e-2;-2e-2;1e-3] enter:
 | 29

Qtot = mphinterp(model,'ht.Qtot','coord',[5e-2;-2e-2;1e-3])

This returns:
Qtot =

6.9417e+003

2 You can specify the unit for evaluation, for instance extract the temperature in
Fahrenheit with the command:
[Temp, unit]= mphinterp(model,'T','coord',[5e-2;-2e-2;1e-3],'unit','degF')

This returns:
Temp =

120.6804

unit =
'degF'

3 A grid of points can also be evaluated. Enter the following lines:
x0=0:5e-2/4:5e-2;
y0=0:-2.5e-2/4:-2.5e-2;
z0=[0 5e-3];
[x,y,z]=meshgrid(x0,y0,z0);
xx=[x(:),y(:),z(:)]';
Qtot = mphinterp(model,'ht.Qtot','coord',xx);

4 Reshape the variable Qtot for a better visualization:
Qtot = reshape(Qtot,length(x0),length(y0),length(z0))

This results in:
Qtot(:,:,1) =
1.0e+05 *

0.0000 0.0278 0.0739 0.0697 0.0694
0.0007 0.3955 0.0736 0.0694 0.0694
0.0000 3.1413 0.0672 0.0692 0.0694
0.0007 0.2908 0.0736 0.0694 0.0694
0.0000 0.0278 0.0738 0.0697 0.0694

Qtot(:,:,2) =
1.0e+03 *

0.0000 2.8296 7.3588 6.9707 6.9434
0.0678 5.2452 7.0008 6.9426 6.9422
0.0000 8.7617 5.5528 6.9160 6.9407
0.0639 5.2439 7.0061 6.9413 6.9414
0.0000 2.8245 7.3524 6.9672 6.9421

Evaluating Data at Node Points

Use the mpheval function to evaluate the electric potential, which is one of the
dependent variables in the busbar model. mpheval returns the value of the
30 |

expression evaluated using the nodes of a simplex mesh. By default, the simplex
mesh corresponds to the active mesh in the model object.
1 Enter at the command line:

data = mpheval(model,'V')

A MATLAB structure is returned according to:
data =
 expr: {'V'}
 d1: [1x7334 double]
 p: [3x7334 double]
 t: [4x30916 int32]
 ve: [7334x1 int32]
 unit: {'V'}

mpheval returns a MATLAB structure defined with the following fields:
- expr contains the list of the evaluated expression,
- d1 contains the data of the evaluated expression,
- p contains the coordinates of the evaluation points,
- t contains the indices to columns in the p field. Each column in the t field

corresponds to an element of the mesh used for the evaluation,
- ve contains the indices of the mesh elements at each evaluation point,
- unit contains the unit of the evaluated expression.

2 Multiple variables can be evaluated at once, for example, both the temperature
and the electric potential. Enter:
data2 = mpheval(model,{'T' 'V'})

This command returns this structure:
data2 =
 expr: {'T' 'V'}
 d1: [1x7334 double]
 d2: [1x7334 double]
 p: [3x7334 double]
 t: [4x30916 int32]
 ve: [7334x1 int32]
 unit: {'K' 'V'}

The fields data2.d1 and data2.d2 contain the values for the temperature and
electric potential, respectively.

3 Now evaluate the temperature T, including at the element midpoints as defined
by a quadratic shape function. Use the refine property and set the property
value to 2, which corresponds to the discretization order:
data3 = mpheval(model,'T','refine',2)

This command returns this structure:
 | 31

data3 =
 expr: {'T'}
 d1: [1x49794 double]
 p: [3x49794 double]
 t: [4x247328 int32]
 ve: [49794x1 int32]
 unit: {'K'}

To visualize the evaluation location for both data2 and data3 together with
the mesh, enter the commands:
mphmesh(model)
hold on;
plot3(data3.p(1,:),data3.p(2,:),data3.p(3,:),'.');
plot3(data2.p(1,:),data2.p(2,:),data2.p(3,:),'.r');

4 This step demonstrates how to use the edim property in combination with the
selection property. edim allows you to determine the space dimension of the
evaluation and selection allows you to set the entity number indicating where
to evaluate the expression.
To evaluate data on a specific domain, such as the norm of the current density
at boundary number 43, enter:
data4 = mpheval(model,'ec.normJ',...
 'edim','boundary','selection',43)

This command returns this structure:
data4 =
 expr: {'ec.normJ'}
 d1: [1x65 double]
32 |

 p: [3x65 double]
 t: [3x108 int32]
 ve: [65x1 int32]
 unit: {'A/m^2'}

Global Evaluation and Integration

To get the value of an expression defined with a global scope, use the function
mphglobal.
1 Evaluate the total applied voltage, defined with the parameter Vtot:

Vtot = mphglobal(model,'Vtot')

Vtot =
0.0200

2 To calculate the total heat produced in the busbar, you can integrate the total
heat source using the command mphint2. Enter:
Q = mphint2(model,'ec.Qh','volume','selection',1)

The total heat is:
Q =

0.2419

3 Evaluate the total current passing through boundary 43 and retrieve the unit of
the integral:
[I,unit] = mphint2(model,'ec.normJ','surface','selection',43)

I =
161.5116

unit =
'A'

4 Evaluate the maximum of the temperature in the busbar:
maxT = mphmax(model,'T','volume','selection',1)

maxT =
323.0784

5 Evaluate the maximum of the temperature on boundary 43:
maxT = mphmax(model,'T','surface','selection',43)

maxT =
330.4062
 | 33

Evaluating Expressions

If you want to evaluate the parameters, variables, or expressions in the model, use
the function mphgetexpressions.
1 Evaluate the expressions of the parameters defined in the model:

expr = mphgetexpressions(model.param)

expr =

{'L' } {'9[cm]' } {'Length' } {[0.0900]} {'m' }
{'rad_1'} {'6[mm]' } {'Bolt radius' } {[0.0060]} {'m' }
{'tbb' } {'5[mm]' } {'Thickness' } {[0.0050]} {'m' }
{'wbb' } {'5[cm]' } {'Width' } {[0.0500]} {'m' }
{'mh' } {'6[mm]' } {'Maximum eleme…'} {[0.0060]} {'m' }
{'htc' } {'5[W/m^2/K]'} {'Heat transfer…'} {[5]} {'W/(m^2*K)'}
{'Vtot' } {'20[mV]' } {'Applied volta…'} {[0.0200]} {'V' }

2 You can evaluate a specific parameter expression by using the function
mphevaluate. To evaluate the length of the busbar, L, in inches:
L = mphevaluate(model,'L','in')

L =

3.5433

Note: The evaluation does not require an existing solution dataset in the model.

Code for Use with MATLAB®

mphopen busbar

% Evaluating Data at Arbitrary Points
Qtot = mphinterp(model,'ht.Qtot','coord',[5e-2;-2e-2;1e-3])
[Temp, unit]= mphinterp(model,'T','coord',[5e-2;-2e-2;1e-3],'unit','degF')
x0=0:5e-2/4:5e-2;
y0=0:-2.5e-2/4:-2.5e-2;
z0=[0 5e-3];
[x,y,z]=meshgrid(x0,y0,z0);
xx=[x(:),y(:),z(:)]';
Qtot = mphinterp(model,'ht.Qtot','coord',xx);
Qtot = reshape(Qtot,length(x0),length(y0),length(z0))

% Evaluating Data at Node Points
data = mpheval(model,'V')
data2 = mpheval(model,{'T' 'V'})
data3 = mpheval(model,'T','refine',2)
hold on;
plot3(data3.p(1,:),data3.p(2,:),data3.p(3,:),'.');
plot3(data2.p(1,:),data2.p(2,:),data2.p(3,:),'.r');
mphmesh(model)

data4 = mpheval(model,{'ec.normJ'},...
 'edim',2,'selection',43)

% Global Evaluation and Integration
34 |

Vtot = mphglobal(model,'Vtot')
Q = mphint2(model,'ec.Qh','volume','selection',1)
[I unit] = mphint2(model,'ec.normJ','surface','selection',43)
maxT = mphmax(model,'T','volume','selection',1)
maxT = mphmax(model,'T','surface','selection',43)
 | 35

Automating with MATLAB® Scripts

LiveLink™ for MATLAB® enables you to combine the MATLAB programming
tools with a COMSOL model object. A benefit of this integration is the ability to
access results from the MATLAB workspace. Another benefit is that you can
integrate COMSOL modeling commands into MATLAB scripts, taking full
advantage of all available tools for controlling the flow of your code. This section
explains how to do this efficiently, by introducing MATLAB variables into your
COMSOL model and updating only the affected parts of your model object.

Obtaining Model Information

Modifying an existing model object requires you to know how the model is set up.
Some functions help you to access this information so that you can add or remove
a model feature, or modify the value of an existing property. The function
mphnavigator helps you to retrieve model object information. Calling
mphnavigator at the MATLAB prompt displays a summary of the features and
their properties for the model object available in the MATLAB workspace.
1 Start COMSOL with MATLAB.
2 Load the busbar example model:

mphopen busbar

Alternatively, use this more advanced form of the command if you wish to use
another variable name than model:
model = mphopen('busbar');

3 To access the model information, enter the following command at the
MATLAB prompt:
mphnavigator

In the mphnavigator graphical user interface, the model nodes are listed under
the Model Tree section. The nodes can be expanded to access the subnodes.
When a node is selected in the Model Tree, its properties are listed in the
Properties section. The Methods section lists the methods available for the
selected node. Just above the Methods section, you can see the COMSOL API
syntax that lead to the feature. The Copy button copies the API syntax of the
command to the system clipboard.

4 In the Model Tree, expand the model nodes down to geom>geom1>wp1>r1
and select the node r1.
36 |

5 To get the command to access Rectangle 1 in MATLAB, under the Model Tree
click Copy. Then select the MATLAB prompt and press CTRL+V keys.

6 In the Model Object Navigator, Properties section, you can see the that the lx
property of the geometry feature r1 is set to L+2*tbb, which represents the
length of the rectangle. The width of the rectangle, represented with the
property ly, is set to 0.1.

7 To get the command to set the value of a property, for instance lx, click on the
property in the Model Object Navigator and then click Copy set.

8 Go back to MATLAB and press CTRL+V keys. In the newly pasted command,
you can now change the value of the property by replacing the expression
L+2*tbb by the desired value.

Updating Model Settings

The COMSOL model object allows you to modify parameters, features, or feature
properties, using the set method. Once a property value is updated, you can run
the appropriate sequence, depending on where the changes were introduced into
the model — for example, in the geometry or the mesh sequence. Running the
solver sequence automatically runs all sequences where modified settings are
detected.
 | 37

Starting with the busbar model described in A Thorough Example: The Busbar, this
section modifies a parameter value and re-solves the model. For this purpose, the
geometry of the model is prepared using parameters such as L for the length of the
busbar, and tbb for the thickness of the busbar.
1 Start COMSOL with MATLAB (if you have not done so already).
2 Load the model from the COMSOL application library:

mphopen busbar

3 Plot the current solution:
mphplot(model,'pg4');

4 Change the parameter L (length of the busbar):
mphsetparam(model,'L','18[cm]');

5 Run the solver sequence and compute the new solution:
mphrun(model,'study');

Note: The solver node automatically detects all modifications in the model, and
runs the geometry or mesh sequences when needed. The new value for the
parameter L induces a change in the geometry, requiring a new mesh. Full
associativity is also ensured, making sure that all physics settings remain applied as
in the original model.

6 Plot the new solution with the updated geometry:
mphplot(model,'pg4');
38 |

Code for Use with MATLAB®

mphopen busbar
mphplot(model,'pg4');
mphsetparam(model,'L','18[cm]');
mphrun(model,'study');
mphplot(model,'pg4');

Using MATLAB® Variables in the COMSOL Model

Use the set method described in the previous section to define the feature
properties using MATLAB variables. It is important to make sure that the value of
the MATLAB variable is consistent with the units used in the model. Before
beginning, make sure that the busbar model used in the previous section is loaded
into MATLAB.
First, change the length of the busbar, described by the parameter L.
1 Create a MATLAB variable L0 equal to 9e-2:

L0 = 9e-2;

2 Update the value of the parameter L with the variable L0:
mphsetparam(model,'L',L0);

The parameter L (in the COMSOL model) is now assigned with the value of L0.
 | 39

Note: In contrast to this command, setting a value using an expression from
within the model object requires the second argument to be a string expression,
as shown in Updating Model Settings.

3 To display the new geometry enter:
mphgeom(model)

Working with parameters is convenient, since there is only one place where you
need to go to view or modify the current configuration of the model. The next
step uses a different method, where a feature node is edited to modify its
properties. For example, to modify the busbar geometry, the rectangles r1 and
r2 generated in the work plane wp1 are edited.

4 Create links to the geometry features r1 and r2 by entering the commands:
r1 = model.geom('geom1').feature('wp1').geom.feature('r1');
r2 = model.geom('geom1').feature('wp1').geom.feature('r2');

Note: The function mphnavigator can be used to get a list of properties and
values for feature nodes of a model, as well as its API command. See Obtaining
Model Information for more details.

5 Enter the following command to define MATLAB variables:
H1 = 0.2;
H2 = 0.195;

6 Set the height of rectangles r1 and r2 using the variables H1 and H2,
respectively.
r1.set('ly', H1);
r2.set('ly', H2);

7 Enter this command to plot the geometry:
40 |

mphgeom(model);

There is a third option when defining property values for features, which is to
combine MATLAB variables with parameters or variables defined within the
COMSOL model object. To do this, the MATLAB variable needs to be converted
to a string.
These final steps demonstrate the method by changing the heights of rectangles
r1 and r2 to L0 and L0-tbb, respectively, where L0 is a MATLAB variable.
8 Define the variable L0:

L0 = 0.1;

9 Modify the ly property of rectangles r1 and r2:
r1.set('ly',L0);
r2.set('ly',[num2str(L0) '-tbb']);

10Update and plot the geometry:
mphgeom(model);
 | 41

Code for Use with MATLAB®

mphopen busbar
L0 = 9e-2;
mphsetparam(model,'L',L0);
mphgeom(model)

r1 = model.geom('geom1').feature('wp1').geom.feature('r1');
r2 = model.geom('geom1').feature('wp1').geom.feature('r2');
H1 = 0.2;
H2 = 0.195;
r1.set('ly', H1);
r2.set('ly', H2);
mphgeom(model)

L0 = 0.1;
r1.set('ly',L0);
r2.set('ly',[num2str(L0) '-tbb']);
mphgeom(model)

An Example Using Nested Loops

In this example, a MATLAB function is created that solves the busbar model for
different values of the length and thickness of the busbar in addition to the input
electric potential. The function evaluates and returns the maximum temperature
in the busbar, the generated heat, and the current through the busbar. For each
variation of the model, the function stores these results in a file and saves the
model object in an MPH-file. To make it easy to identify the name of the
42 |

MPH-file, it contains the values of the different parameters used to set up the
model.
The input argument of the M-function is the busbar model object and the path to
the directory where the data and models are saved.
1 Open a text editor, for example, the MATLAB text editor.
2 At the first line of a new M-file, enter the following function header:

function modelParam(model,filepath)

The function first creates a file and then sets the header of the output file format.
3 In the text editor, continue to enter the following lines:

filename = fullfile(filepath,'results.txt');
fid=fopen(filename,'wt');
fprintf(fid,'*** run parametric study ***\n');
fprintf(fid,'L[m] | tbb[m] | Vtot[V] | ');
fprintf(fid,'MaxT[K] | TotQ[W] | Current[A]\n');

4 When running a large number of iterations, the model history can be disabled
to prevent the memory usage from increasing with each iteration due to the
model history stored in the model. Enter the lines:
model.hist.disable;

5 Now start a for loop to parameterize the parameter L and set the corresponding
parameter in the model object. Enter the commands:
for L = [9e-2 15e-2]
model.param.set('L',L);

6 Continue by creating a second for loop, this time to parameterize the
parameter tbb and to modify its value in the model object:
for tbb = [5e-3 10e-3]
model.param.set('tbb',tbb);

7 Define the last for loop to parameterize the applied potential Vtot:
for Vtot = [20e-3 40e-3]
model.param.set('Vtot',Vtot);

8 For each version of the model, write the parameter values to the output file:
fprintf(fid,[num2str(L),' | ',num2str(tbb),...
' | ',num2str(Vtot),' | ']);

9 To solve the model, add the line below:
mphrun(model,'study');

10The following lines evaluate the results:
MaxT = mphmax(model,'T',3,'selection',1);
TotQ = mphint2(model,'ht.Qtot',3,'selection',1);
Current = mphint2(model,'ec.normJ',’surface’,'selection',43);

11Save the results to the output text file:
 | 43

fprintf(fid,[num2str(MaxT),' | ',num2str(TotQ),...
' | ',num2str(Current),' \n']);

12Name and save the model:
modelName = fullfile(filepath,['busbar_L=',num2str(L),...
'_tbb=',num2str(tbb),...
'_Vtot=',num2str(Vtot),'.mph']);
mphsave(model,modelName);

13Terminate the for loops:
end
end
end

14Close the output text file:
fclose(fid);

The script in the text editor should now look like this text:
function modelParam(model,filepath)
filename = fullfile(filepath,'results.txt');
fid=fopen(filename,'wt');
fprintf(fid,'*** run parametric study ***\n');
fprintf(fid,'L[m] | tbb[m] | Vtot[V] | ');
fprintf(fid,'MaxT[K] | TotQ[W] | Current[A]\n');
model.hist.disable;
for L = [9e-2 15e-2]

model.param.set('L',L);
for tbb = [5e-3 10e-3]
model.param.set('tbb',tbb);
for Vtot = [20e-3 40e-3]
model.param.set('Vtot',Vtot);
fprintf(fid,[num2str(L),' | ',num2str(tbb),' | ',...

num2str(Vtot),' | ']);
mphrun(model,'study');
MaxT = mphmax(model,'T',3,'selection',1);
TotQ = mphint2(model,'ht.Qtot',3,'selection',1);
Current = mphint2(model,'ec.normJ','surface','selection',43);
fprintf(fid,[num2str(MaxT),' | ',num2str(TotQ), ' | ',...

num2str(Current),' \n']);
modelName = fullfile(filepath,...

['busbar_L=',num2str(L),'_tbb=',num2str(tbb),...
'_Vtot=',num2str(Vtot),'.mph']);

mphsave(model,modelName);
end

end
end
fclose(fid);

15Save the M-file as modelParam.m in a directory known by MATLAB.
16If COMSOL with MATLAB is not already running, start it now and load the

busbar model from the application library:
model = mphopen('busbar');
44 |

17Run the function and substitute 'filepath' with the directory of your choice:
modelParam(model,'filepath')

18Open the file results.txt in a text editor to look at a summary of the results:
*** run parametric study ***
L[m] | tbb[m] | Vtot[V] | MaxT[K] | TotQ[W] | Current[A]
0.09 | 0.005 | 0.02 | 323.0784 | 0.2419 | 161.5116
0.09 | 0.005 | 0.04 | 413.0169 | 0.9676 | 323.0232
0.09 | 0.01 | 0.02 | 308.5303 | 0.0472 | 95.761
0.09 | 0.01 | 0.04 | 354.7501 | 0.1887 | 191.5219
0.15 | 0.005 | 0.02 | 315.7229 | 0.3249 | 156.3937
0.15 | 0.005 | 0.04 | 383.5576 | 1.2999 | 312.7875
0.15 | 0.01 | 0.02 | 305.1014 | 0.0643 | 94.84
0.15 | 0.01 | 0.04 | 340.9558 | 0.2571 | 189.6799

Although this example duplicates functionality that is readily accessible in the
COMSOL Desktop®, you can use a similar technique to couple a COMSOL
Multiphysics model to your customized optimization script.
 | 45

Using External MATLAB® Functions

Another advantage of using LiveLink™ for MATLAB® is the ability to call a
MATLAB® function directly from within the COMSOL Desktop®. You can use
a function to define, within a COMSOL® model object, properties such as
material definitions or physics settings. COMSOL Multiphysics automatically
detects the external function and starts the MATLAB engine to evaluate it. The
function output is then applied to the corresponding property.
To use this functionality, just start the COMSOL Desktop and MATLAB
automatically starts in the background when needed.
Note: To run MATLAB functions with the model object, the preference Allow
external MATLAB® functions needs to be set to either Yes or Ask. This preference
can be found on the Security page of the Preferences window, available from the
File (or Options) menu.

Note: On Linux® operating systems, specify the MATLAB root directory MLROOT
and load the gcc library when you start the COMSOL Desktop: comsol
-mlroot MLROOT -forcegcc.

The example in this section illustrates how to use external MATLAB functions in
a COMSOL model. The model computes the temperature distribution in a
material subjected to an external heat flux. Both the thermal conductivity of the
material and the applied heat flux are defined by MATLAB functions.

Creating the MATLAB® Functions

Assume that the material in the example is characterized by a random thermal
conductivity. To define the thermal conductivity, create a MATLAB function with
the x-axis position as an input argument and let the conductivity vary randomly
within 200 W/(m·K) around a constant value of 400 W/(m·K).
Define a MATLAB function for the external heat flux to be a function of the
following arguments:
• x and y, the location coordinates.
• x0 and y0, the origin of the heat source.
• Q0, the maximum heat source.
• scale, a parameter that scales the period of the heat flux.

x and y are dependent variables of the model. x0, y0, Q0, and scale are defined
with constant value in this exercise.
46 |

The functions must adhere to a certain structure. In order for the calls from
COMSOL to MATLAB to be as efficient as possible the arguments are transferred
to MATLAB in blocks. This means that all the input arguments for the functions
are vectors, and that the functions need to return vectors with the same length as
the input arguments. It is highly recommended to test the functions on the
MATLAB command line with some reasonable vector arguments.
1 Open a text editor, for example the MATLAB text editor.
2 In a new file enter:

function out = conductivity(x)
out = 400+5*randn(size(x));

3 Save the file in the user Documents folder under MATLAB as
conductivity.m. Saving the file in this location (/Documents/MATLAB)
ensures that MATLAB can find the function when COMSOL calls it for
evaluation.

Note: If you want to save the function in a specific directory, saving the
COMSOL model at the same location as the external MATLAB functions
ensures that the function path is known by MATLAB. Other alternatives include
setting the function path directly in MATLAB before running the model or
setting the environmental variable COMSOL_MATLAB_PATH with the
directory path of the functions.

4 Create a new file and enter:
function out = heatflux(x,y,x0,y0,Q0,scale)
radius = sqrt((x-x0).^2+(y-y0).^2);
out = Q0/5+Q0/2.*sin(scale*pi.*radius)./(scale*pi.*radius);

5 Save the file as heatflux.m, in the same location as the previous file.

Model Wizard

Note: These instructions are for the user interface on Windows®, but apply with
minor differences also to Linux® and macOS.

1 To start the software, double-click the COMSOL Multiphysics icon on the
desktop.

2 Select Create a model guided by the Model Wizard .
3 In the space dimension, click 3D .
4 In the Select Physics tree under Heat Transfer , select Heat Transfer in

Solids(ht) .
5 Click Add, then click Study .
 | 47

6 In the Select Study window under General Studies, select Stationary .
7 Click Done .

Defining External MATLAB® Functions in a Model

Start by defining a MATLAB function in a model so that COMSOL Multiphysics
can recognize it as an external function to be evaluated in the MATLAB engine.
1 In the Home ribbon, click Functions . Under the Global section, select

MATLAB . On Linux and macOS, this can be found in the Model Toolbar.
2 On the Settings page, under the Functions section, enter conductivity in the

Function name field, and enter x in the Arguments field.

By defining the function here, COMSOL knows that conductivity is a MATLAB
function. COMSOL automatically starts a MATLAB engine to evaluate the
function when necessary.
In case you did not save the function in a directory that is in the MATLAB path
you need to save first the model MPH-file.
3 In the COMSOL Desktop, from the File menu (Windows users) or from the

Options menu (Mac and Linux users), click Save As . Select COMSOL
Application (*.mph) in the Save as type list, and browse to the directory where
the files conductivity.m and heatflux.m are stored.

You can display the value of the defined function by first defining the plot limit for
the input arguments.
4 Expand the Plot parameters section. In the associated table enter 0 as the Lower

limit and 1 as the Upper limit.
5 Click the Plot button . This will start the MATLAB engine where the

function is evaluated and produce the following plot.
48 |

You can now define a second MATLAB function that returns the heat flux
condition.

6 Repeating the above procedure, enter heatflux in the Function name field and
enter x,y,x0,y0,Q0,scale in the Arguments field.

7 To display the function, enter the following in the Plot parameters table:

LOWER LIMIT UPPER LIMIT

0 1

0 1

0 0

0 0

1e4 1e4

5 5
 | 49

8 Click the Plot button .

Before you continue with the model settings, you need to manually specify the
function derivative with respect to all function arguments. If this is not done,
the solver will return a warning message. For this model, the function
arguments are not defined using the temperature (the dependent variable) and
the numerical problem can be considered linear. For this reason, you can set the
derivative to be 0 for all input arguments.

9 Expand the Derivatives section and complete the table as shown below:

Note: For nonlinear problems, it is necessary to specify the partial derivatives.
The Partial Derivative column can be set with an expression or another MATLAB
function.

FUNCTION NAME ARGUMENT PARTIAL DERIVATIVE

conductivity x 0

heatflux x 0

heatflux y 0

heatflux x0 0

heatflux y0 0

heatflux Q0 0

heatflux scale 0
50 |

Geometry and Material Definit ion

1 In the ribbon Geometry tab, click Block .
2 In the Settings window for Block, click Build All Objects .
3 In the ribbon Materials tab, click Blank Material .
4 In the Settings window for

Materials, under Material
Contents, set the value of the
Thermal conductivity to
conductivity(x), the
Density to 8e3 and the Heat Capacity at Constant Pressure to 2e3.

Note: The expression conductivity(x) displays in orange as the MATLAB
function is dimensionless.

Heat Transfer in Solids

1 In the Model Builder under Component 1,
click Heat Transfer in Solids .

2 In the ribbon Physics tab, click
Boundaries and choose Temperature .

3 In the Settings window for Temperature,
select boundaries 3, 5, and 6 (You can also use
the Paste Selection button to directly enter
the selection).

4 To add a boundary heat flux, in the ribbon Physics tab, click Boundaries and
select Heat Flux .

5 In the Settings window for Heat Flux, select boundary 4 and set the General
inward heat flux expression to heatflux(x,y,0,0,1e4,5).
 | 51

Computing and Plotting the Results

Once the model is set up, the solution can be computed. A default mesh is
automatically generated.
1 In the Study tab in the ribbon, click Compute .
2 Click the Temperature (ht) node to display the temperature field at the

geometry surface.

3 Visualize the material thermal conductivity on the geometry by adding a new
3D Plot group. In the Results tab, select 3D Plot Group . An additional tab
containing Plot Tools for the 3D Plot Group 2 appears when the 3D Plot
Group 2 is selected in the Model Builder.

4 In the 3D Plot Group 2 tab, click Isosurface .

5 In the Model Builder, under the 3D Plot group 2 node, select the Isosurface 1
node.

6 On the associated Settings page, under the Expression section, enter
conductivity(x) in the Expression field.

7 Under the Levels section, change the Total levels to 15.
52 |

8 Click the Plot button .

Note: The conductivity function has been evaluated again in MATLAB to
generate the above plot. As the function is using a random distribution, the plot
does not exactly represent the distribution of the thermal conductivity when the
solution has been computed.
 | 53

54 |

	Introduction
	Starting COMSOL Multiphysics® with MATLAB®
	Starting on Windows®
	Starting on macOS
	Starting on Linux®
	The COMSOL Client–Server Connection

	A Thorough Example: The Busbar
	About Compact Notation
	Wrapper Functions
	About The Model Object
	Connecting the Model in the COMSOL Desktop®
	About Global Parameters
	Geometry
	Selections
	Material Properties
	Physics Interface
	Multiphysics Interface
	Mesh
	Study
	Plotting The Results
	Exporting Results
	Saving the Model
	Saving and Running a Model M-File

	Extracting Results at the MATLAB® Command Line
	Evaluating Data at Arbitrary Points
	Evaluating Data at Node Points
	Global Evaluation and Integration
	Evaluating Expressions

	Automating with MATLAB® Scripts
	Obtaining Model Information
	Updating Model Settings
	Using MATLAB® Variables in the COMSOL Model
	An Example Using Nested Loops

	Using External MATLAB® Functions
	Creating the MATLAB® Functions
	Model Wizard
	Defining External MATLAB® Functions in a Model
	Geometry and Material Definition
	Heat Transfer in Solids
	Computing and Plotting the Results

