References for the Single-Phase Flow, Turbulent Flow Interfaces
1. D.C. Wilcox, Turbulence Modeling for CFD, 2nd ed., DCW Industries, 1998.
2. D.M. Driver and H.L. Seegmiller, “Features of a Reattaching Turbulent Shear Layer in Diverging Channel Flow,” AIAA J., vol. 23, pp. 163–171, 1985.
3. H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, Prentice Hall, 1995.
4. A. Durbin, “On the k-ε Stagnation Point Anomality,” Int. J. Heat Fluid Flow, vol. 17, pp. 89–90, 1986.
5. A, Svenningsson, Turbulence Transport Modeling in Gas Turbine Related Applications,” doctoral dissertation, Department of Applied Mechanics, Chalmers University of Technology, 2006.
6. C.H. Park and S.O. Park, “On the Limiters of Two-equation Turbulence Models,” Int. J. Comput. Fluid Dyn., vol. 19, no. 1, pp. 79–86, 2005.
7. J. Larsson, Numerical Simulation of Turbulent Flows for Turbine Blade Heat Transfer, doctoral dissertation, Chalmers University of Technology, Sweden, 1998.
8. L. Ignat, D. Pelletier, and F. Ilinca, “A Universal Formulation of Two-equation Models for Adaptive Computation of Turbulent Flows,” Comput. Methods Appl. Mech. Eng., vol. 189, pp. 1119–1139, 2000.
9. F. Menter, J.C. Ferreira, T. Esch, and B. Konno, “The SST Turbulence Model with Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines,” Proceedings of the International Gas Turbine Congress, IGTC2003-TS-059, Nov. 2–7, 2003.
10. D. Kuzmin, O. Mierka, and S. Turek, “On the Implementation of the k-ε Turbulence Model in Incompressible Flow Solvers Based on a Finite Element Discretization,” Int.J. Comput. Sci., vol. 1, no. 2–4, pp. 193–206, 2007.
11. H. Grotjans and F.R. Menter, “Wall Functions for General Application CFD Codes,” ECCOMAS 98, Proceedings of the Fourth European Computational Fluid Dynamics Conference, John Wiley & Sons, pp. 1112–1117, 1998.
12. K. Abe, T. Kondoh, and Y. Nagano, “A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows — I. Flow Field Calculations,” Int. J. Heat Mass Transf., vol. 37, no. 1, pp. 139–151, 1994.
13. H.C. Chen and V.C. Patel, “Near-Wall Turbulence Models for Complex Flows Including Separation,” AIAA J., vol. 26, no. 6, pp. 641–648, 1988.
14. T.H. Shih, W.W. Liou, A. Shabir, Z. Yang and J. Zhu, “A New k-e Eddy Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation,” NASA Technical Memorandum 106721, ICOMP-94-21, CMOTT-94-6, 1994.
15. “The Spalart–Allmaras Turbulence Model,” https://turbmodels.larc.nasa.gov/spalart.html.
16. J. Dacles-Mariani, G.G. Zilliac and J.S. Chow, “Numerical/Experimental Study of a Wingtip Vortex in the Near Field,” AIAA J., vol. 33, no. 9, 1995.
17. “The Menter Shear Stress Transport Turbulence Model”, https://turbmodels.larc.nasa.gov/sst.html.
18. F.R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA J., vol. 32, no. 8, 1994.
19. F.R. Menter, M. Kuntz, and R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model,” Turbulence Heat and Mass Transfer, vol. 4, 2003.
20. G. Rubino, “Laminar-to-Turbulence Transition Modeling of Incompressible Flows in a RANS Framework for 2D and 3D Configurations”, thèse de doctorat de l’école centrale de Nantes, France, 2021.
21. M. Vázquez, M. Ravachol, F. Chalot, and M. Mallet, “The Robustness Issue on Multigrid Schemes Applied to the Navier–Stokes Equations for Laminar and Turbulent, Incompressible and Compressible Flows,” Int. J. Numer. Methods Fluids, vol. 45, pp. 555–579, 2004.
22. T. Cebeci, Analysis of Turbulent Flows, 2nd ed., Elsevier, Amsterdam, 2004.
23. J. Nikuradse, “Strömungsgesetze in rauhen Rohren, Forschg. Arb. Ing.-Wes., no. 361, 1933 (in German).
24. D. Agonafer, L. Gan-Li, and D.B. Spalding, “LVEL turbulence model for conjugate heat transfer at low Reynolds numbers,” EEP 6, ASME International Mechanical Congress and Exposition, Atlanta, 1996.
25. L. Prandtl, “Über die ausgebildete Turbulenz,” ZAMM 5, 1925 (in German).
26. P.R. Spalart and S.R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” La Aerospatiale, no. 1, pp. 5–21, 1994.
27. P.A. Durbin, “Application of a near-wall turbulence model to boundary layers and heat transfer,” Int. J. Heat Fluid Flow, vol. 14, no. 4, 1993.
28. K. Hanjalic, M. Popovac, and M. Hadziabdic, “A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD,” Int. J. Heat Fluid Flow, vol. 25, no. 6, 2004.
29. S.B. Pope, Turbulent Flow, Cambridge University Press, 2000.
30. M.H.J. Pedras and M.J.S. de Lemos, “Macroscopic turbulence modeling for incompressible flow through undeformable porous media,” Int. J. Heat Mass Transf., vol. 44, pp. 1081–1093, 2001.
31. A. Nakayama and F. Kuwahara, “A general macroscopic turbulence model for flows in packed beds, channels, pipes, and rod bundles,” J. Fluids Eng., vol. 130, 101205, pp. 1–7, 2008.