References for the Poroelastic Waves Interfaces
1.
M.A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-saturated Porous Solid. I. Low-frequency Range”,
J. Acoust. Soc. Am.
, vol. 28, pp 168–178, 1956.
2.
M.A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-saturated Porous Solid. II. Higher Frequency Range”,
J. Acoust. Soc. Am.
, vol. 28, pp 179–191, 1956.
3.
M.A. Biot, “Generalized Theory of Acoustic Propagation in Porous Dissipative Media”,
J. Acoust. Soc. Am.
, vol. 34, pp 1254–1264, 1962.
4.
M.A. Biot, “Mechanics of Deformation and Acoustic Propagation in Porous Media”,
J. Appl. Phys.
, vol. 33, pp 1482–1498, 1962.
5.
G. Mavko and others,
The Rock Physics Handbook
, 2nd ed., Cambridge University Press, 2009.
6.
J.M. Carcione,
Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media
, 2nd ed. Elsevier (
Handbook of Geophysical Exploration
, vol. 38, Seismic Exploration), 2007.
7.
P. Debergue, R. Panneton, and N. Atalla, “Boundary Conditions for the Weak Formulation of the Mixed (u,p) Poroelasticity Problem”,
J. Acoust. Soc. Am.
, vol. 106, pp 2383–2390, 1999.
8.
N. Atalla, M.A. Hamdi, and R. Panneton, “Enhanced Weak Integral Formulation for the Mixed (u,p) Poroelastic Equations”,
J. Acoust. Soc. Am.
, vol. 109, pp 3065–3068, 2001.
9.
J.F. Allard and N. Atalla,
Propagation of Sound in Porous Media
, 2nd ed., John Wiley & Sons, 2009.
10.
N. Atalla, R. Panneton, and P. Debergue, “A mixed displacement-pressure formulation for poroelastic materials”,
J. Acoust. Soc. Am.
, vol. 104, pp 1444, 1998.
11.
N. Atalla, F. Sgard, and C.K. Amedin, “On the modeling of sound radiation from poroelastic materials”,
J. Acoust. Soc. Am.
, vol. 120, pp 1990, 2006.
12.
N.-E. Hörlin and P. Göransson, “Weal, anisotropic symmetric formulation of Biot’s equations for vibro-acoustic modelling of porous elastic materials”,
Int. J. Numer. Meth. Engng.
, vol. 84, pp. 1519-1540, 2010.
13.
B. P. Semeniuk and P. Göransson, “Microstructure based estimation of the dynamic drag impedance of lightweight fibrous materials”,
J. Acoust. Soc. Am.
, vol. 141, pp 1360, 2017.
14.
B. P. Semeniuk, P. Göransson, and O. Dazel, “Dynamic equations of a transversely isotropic, highly porous, fibrous material including oscillatory heat transfer effects”,
J. Acoust. Soc. Am.
, vol. 146, pp 2540-2551, 2019.
15.
B. P. Semeniuk, E. Lundberg, and P. Göransson, “Acoustics modelling of open-cell foam materials from microstructure and constitutive properties”,
J. Acoust. Soc. Am.
, vol. 149, pp 2016-2026, 2021.
16.
B. Nenning, R. Binois, N. Dauchez, E. Perrey-Debain, and F. Foucart, “A transverse isotropic equivalent fluid model combining both limp and rigid frame behaviors for fibrous materials”,
J. Acoust. Soc. Am.
, vol. 143, pp 2089-2098, 2018.