•
|
Young’s modulus and Poisson’s ratio to specify drained Young’s modulus (elastic modulus) Ed (SI unit: Pa) and Poisson’s ratio νd (dimensionless). For an isotropic material, Young’s modulus is the spring stiffness in Hooke’s law, which in 1D form is σ = Edε, where σ is the stress and ε is the strain. Poisson’s ratio defines the normal strain in the perpendicular direction, generated from a normal strain in the other direction and follows the equation ε⊥ = −υε||
|
•
|
Shear modulus and Poisson’s ratio (the default for the Biot–Allard model) to specify drained shear modulus Gd (SI unit: Pa) and Poisson’s ratio νd (dimensionless).
|
•
|
Young’s modulus and Shear modulus to specify drained Young’s modulus (elastic modulus) Ed (SI unit: Pa) and drained shear modulus Gd (SI unit: Pa).
|
•
|
Bulk modulus and shear modulus (the default for the Biot model) to specify the drained bulk modulus Kd (SI unit: Pa) and the drained shear modulus Gd (SI unit: Pa). The bulk drained modulus is a measure of the solid porous matrix’s resistance to volume changes. The shear modulus is a measure of the solid porous matrix’s resistance to shear deformations.
|
•
|
•
|
Pressure-wave and shear-wave speeds to specify the drained pressure-wave speed cp (SI unit: m/s) and the shear-wave speed cs (SI unit: m/s).
|
•
|
Drained density of porous material to specify the drained density of the porous material in vacuum ρd (SI unit: kg/m3). The drained density ρd is equal to (1 − εp) ρs where ρs is the density of the solid material from which the matrix is made and εp is the porosity.
|
•
|
Isotropic structural loss factor (only for the Biot-Allard model) to specify the loss factor of the porous matrix ηs (dimensionless). This value introduces the damping due to losses in the porous structure by transform the elastic moduli into complex valued quantities. This quantity can be frequency dependent if necessary.
|
Transverse Isotropic Porous Layer: Application Library path Acoustics_Module/Building_and_Room_Acoustics/transverse_isotropic_porous_layer
|