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 1
I n t r o d u c t i o n
Welcome to the Uncertainty Quantification Module User’s Guide. The 
capabilities of the Uncertainty Quantification Module can be used in conjunction 
with any combination of other COMSOL® products. This guide is a supplement 
to the COMSOL Multiphysics Reference Manual, with the present chapter 
containing an overview of the Uncertainty Quantification Module.
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Un c e r t a i n t y  Quan t i f i c a t i o n  Modu l e  
Ov e r v i ew

What Can the Uncertainty Quantification Module Do?

The Uncertainty Quantification Module can be used throughout the COMSOL 
product family. It provides a general interface for characterizing uncertainties, 
propagating input uncertainties in COMSOL Multiphysics models, and statistically 
analyzing output quantities of interest.

The Uncertainty Quantification Module can use any model parameters as inputs. The 
analyses performed are global in nature. In other words, the variations in the inputs 
need not be small. This ability makes the functionality very versatile for a number of 
investigation scenarios. A COMSOL model is, for most applications, a mathematical 
model of reality. Such a model will have inputs that are related to:

• The physics — For example, boundary conditions, sources, and coupling terms, 
such as the velocity magnitude or direction, for an inflow boundary condition in a 
transport problem.

• The materials — For example, material coefficients or details in their specification, 
such as Young’s modulus for a structural mechanics problem.

• The geometry — For example, manufacturing specifications, such as a hole radius 
or plate thickness.

• The discretization — For example, mesh properties such as the maximum and 
minimum mesh element sizes. Another example is the relative tolerance used to 
solve a time-dependent problem.

For a particular model, it is often expected that the variation of a few inputs will have 
a significant influence on the results. This can be a perfectly natural effect of the design 
of the model and the physics involved. This should lead to an expected sensitivity in 
the results to the variation in these inputs. At the same time, it is also expected that 
other inputs have a small or even negligible influence; that is, there is an expected 
insensitivity to the results. The Uncertainty Quantification Module can be used to test 
the validity of such expectation and verify that some key input variations affect the key 
outputs in the model while other input variations do not. Most experienced modelers 
routinely perform these types of exercises before they can trust their model. When 
there are just a few inputs, this can be done, for example, by performing a 
1 :  I N T R O D U C T I O N



well-designed parametric sweep. In contrast, for more than a few parameters, this 
cannot be done in a simple and efficient way, and simply assuming that a model is 
correct can be dangerous. Uncertainty quantification is a convincing way to show the 
correctness of a model.

Furthermore, once you have verified the key parameters that account for most of the 
variations of the quantities of interest, you can take advantage of this knowledge to 
simplify further analysis by considering only those parameters.

The motivations for doing further, more rigorous uncertainty quantifications can be 
to answer questions like:

• Which of the key parameters are more important than others for my quantities of 
interest? Remember that a high sensitivity to a variation can be both a desirable and 
an undesirable property. For example, a sensor is often designed to be sensitive to a 
certain input signal; sensitivity is thus desirable. A hi-fi amplifier’s characteristics 
should not be sensitive to the input frequency; sensitivity is here undesirable. How 
does a modification of the input uncertainties affect this? If the input uncertainty 
cannot be reduced (or increased), perhaps the underlying design can be altered to 
modify it to improve the sensitivity.

• How does the uncertainty distribution of input parameters translate to the 
uncertainty distribution of a quantity of interest? What are the confidence intervals 
for the quantities of interest?

• Given a nominal design and some specific uncertain inputs, what is the probability 
that the design fails? The failure can be a complete breakdown of the design, but it 
can also be phrased in terms of a quality criterion.

Given the available resources, these questions can be answered by performing different 
types of uncertainty quantification studies.

Where Do I Access the Documentation and Application Libraries?

Uncertainty quantification model examples that do not require any other 
COMSOL add-on modules are located in the Uncertainty Quantification 
Module folder in the Application Libraries window. To find all related 
examples, including any models in the add-on modules, if available, type 
uncertainty quantification in the search field at the top of the 
Application Libraries window.
U N C E R T A I N T Y  Q U A N T I F I C A T I O N  M O D U L E  O V E R V I E W  |  7



8 |  C H A P T E R  
A number of online resources have more information about COMSOL, including 
licensing and technical information. The electronic documentation, topic-based (or 
context-based) help, and the Application Libraries are all accessed through the 
COMSOL Desktop.

T H E  D O C U M E N T A T I O N  A N D  O N L I N E  H E L P

The COMSOL Multiphysics Reference Manual describes the core physics interfaces 
and functionality included with the COMSOL Multiphysics license. This book also has 
instructions on how to use COMSOL Multiphysics and how to access the electronic 
Documentation and Help content.

Opening Topic-Based Help
The Help window is useful as it is connected to the features in the COMSOL Desktop. 
To learn more about a node in the Model Builder, or a window on the Desktop, click 
to highlight a node or window, then press F1 to open the Help window, which then 
displays information about that feature (or click a node in the Model Builder followed 
by the Help button ( ). This is called topic-based (or context) help.

If you are reading the documentation as a PDF file on your computer, 
the blue links do not work to open an application or content 
referenced in a different guide. However, if you are using the Help 
system in COMSOL Multiphysics, these links work to open other 
modules, application examples, and documentation sets.

To open the Help window:

• In the Model Builder, Application Builder, or Physics Builder, click a node 
or window and then press F1.

• On any toolbar (for example, Home, Definitions, or Geometry), hover the 
mouse over a button (for example, Add Physics or Build All) and then 
press F1.

• From the File menu, click Help ( ).

• In the upper-right corner of the COMSOL Desktop, click the Help ( ) 
button.
1 :  I N T R O D U C T I O N



Opening the Documentation Window

T H E  A P P L I C A T I O N  L I B R A R I E S  W I N D O W

Each model or application includes documentation with the theoretical background 
and step-by-step instructions to create a model or application. The models and 
applications are available in COMSOL Multiphysics as MPH-files that you can open 
for further investigation. You can use the step-by-step instructions and the actual 
models as templates for your own modeling. In most models, SI units are used to 
describe the relevant properties, parameters, and dimensions, but other unit systems 
are available.

Once the Application Libraries window is opened, you can search by name or browse 
under a module folder name. Click to view a summary of the model or application and 
its properties, including options to open it or its associated PDF document.

To open the Help window:

• In the Model Builder or Physics Builder, click a node or window and then 
press F1.

• On the main toolbar, click the Help ( ) button.

• From the main menu, select Help>Help.

To open the Documentation window:

• Press Ctrl+F1.

• From the File menu, select Help>Documentation ( ).

To open the Documentation window:

• Press Ctrl+F1.

• On the main toolbar, click the Documentation ( ) button.

• From the main menu, select Help>Documentation.

The Application Libraries Window in the COMSOL Multiphysics 
Reference Manual.
U N C E R T A I N T Y  Q U A N T I F I C A T I O N  M O D U L E  O V E R V I E W  |  9
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Opening the Application Libraries Window
To open the Application Libraries window ( ):

C O N T A C T I N G  C O M S O L  B Y  E M A I L

For general product information, contact COMSOL at info@comsol.com.

C O M S O L  A C C E S S  A N D  T E C H N I C A L  S U P P O R T

To receive technical support from COMSOL for the COMSOL products, please 
contact your local COMSOL representative or send your questions to 
support@comsol.com. An automatic notification and a case number will be sent to you 
by email. You can also access technical support, software updates, license information, 
and other resources by registering for a COMSOL Access account.

From the File menu, select Application Libraries.

To include the latest versions of model examples, from the File>Help 
menu, select ( ) Update COMSOL Application Library.

Select Application Libraries from the main File or Windows menus.

To include the latest versions of model examples, from the Help menu, 
select ( ) Update COMSOL Application Library.
 1 :  I N T R O D U C T I O N



C O M S O L  O N L I N E  R E S O U R C E S

COMSOL website www.comsol.com

Contact COMSOL www.comsol.com/contact

COMSOL Access www.comsol.com/access

Support Center www.comsol.com/support

Product Download www.comsol.com/product-download

Product Updates www.comsol.com/support/updates

COMSOL Blog www.comsol.com/blogs

Discussion Forum www.comsol.com/forum

Events www.comsol.com/events

COMSOL Application Gallery www.comsol.com/models

COMSOL Video Gallery www.comsol.com/video

Support Knowledge Base www.comsol.com/support/knowledgebase
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U n c e r t a i n t y  Q u a n t i f i c a t i o n  T h e o r y
This chapter discusses the theory for uncertainty quantification.
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Un c e r t a i n t y  Quan t i f i c a t i o n  Th eo r y

This section contains theory useful for understanding and applying uncertainty 
quantification studies. Topics explained in this section:

• Data sampling methods

- The Latin hypercube sampling (LHS) method is used to generate sample data 
with good space filling in the input parameter space. In addition, sequential LHS 
is used to generate additional sample points based on existing samples in an 
uncertainty quantification (UQ) study that requires more quantities of interest 
(QoIs).

- The Morris sampling method is used to generate sample points for the Morris 
one-at-a-time (MOAT) method, where the next sample point only varies in one 
dimension from the current point of the input parameter space within each 
trajectory.

- The importance sampling method is used to do Monte Carlo analysis with a 
multimodal sampling density created near the region where the criteria for 
reliability analysis are satisfied in the input parameter space.

- Input distributions are used to set up the input parameters in a UQ study. This 
module supports a wide range of continuous independent distributions.

• Surrogate models

- A key feature of the Uncertainty Quantification Module is its ability to train and 
use a so-called surrogate model, also known as a metamodel, for a particular UQ 
analysis to save computation resources. A surrogate model is a compact 
mathematical model constructed to represent and evaluate the QoIs in the 
domain of interest defined by the input parameters. This model is completely 
independent of the underlying COMSOL model and can, when trained properly, 
be used instead of the COMSOL model to predict values for the QoIs for other 
values of the input parameters than those solved for. The surrogate model 
evaluation (or prediction) has a very low cost. This is of paramount importance 
for UQ analysis when a Monte Carlo-type analysis is being used because a large 
number of evaluations are often required to achieve high accuracy. This is 
particularly true for more realistic problems where a COMSOL model evaluation 
 2 :  U N C E R T A I N T Y  Q U A N T I F I C A T I O N  T H E O R Y



might require significant resources and where the UQ analysis involves several 
parameters.

- The sparse polynomial chaos expansion (SPCE) and adaptive sparse polynomial 
chaos expansion (ASPCE) models are used to model QoIs where each QoI is 
expanded with multivariate orthonormal polynomials that are specified for a 
particular type of probability distribution of input parameters. SPCE and ASPCE 
models are most commonly used for sensitivity analysis where the Sobol indices 
can be directly computed from the coefficients in the surrogate model.

- The Gaussian process (GP) and adaptive Gaussian process (AGP) are popular 
surrogate models widely used for sensitivity analysis, uncertainty propagation, 
and reliability analysis. GP and AGP are probabilistic in that they provide the 
variance of the prediction at each point sampled from the input parameter space.

• Screening

- The Morris one-at-a-time (MOAT) method is a lightweight global screening 
method that gives a qualitative measure of the importance of each input 
parameter. The method is purely sample based and does not require a surrogate 
model. This is an ideal method when the number of input parameters is too large 
to allow the application of more computationally expensive UQ studies.

• Sensitivity analysis

- The Correlation method is a widely used method for determining the linear 
relationship between each input parameter and the QoI. The method is purely 
sample based and does not require a surrogate model. There are four types of 
correlations available: bivariate correlation (also known as Pearson’s correlation), 
rank bivariate correlation (also known as Spearman’s rank correlation), partial 
correlation, and rank partial correlation.

- The Sobol method (or variance decomposition method, analysis of variance 
(ANOVA)) looks at the entire input parameter distribution and decomposes the 
variance of each QoI into a sum of contributions from the input parameters and 
their interactions. In general, the Sobol method is a sample-based method and 
requires a large number of samples to achieve good accuracy. Here, the first-order 
Sobol index and the total Sobol index based on surrogate models are computed.

• Uncertainty propagation

- Uncertainty propagation, also known as forward propagation of uncertainty, 
maps uncertainty of the input parameters to uncertainty of the QoIs. A Monte 
Carlo analysis is conducted based on a surrogate model to generate the 
approximated probability density function (PDF) of each QoI.
U N C E R T A I N T Y  Q U A N T I F I C A T I O N  T H E O R Y  |  15
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• Reliability analysis

- Reliability analysis computes the probability that the QoIs satisfy the reliability 
criteria defined with thresholds corresponding to the QoIs. The efficient global 
reliability analysis (EGRA) method is a global reliability analysis method that 
uses an AGP model to reduce the number of COMSOL model evaluations by 
only constructing a model that accurately separates the region where the 
reliability criteria is satisfied from the region where such criteria is not satisfied.

• Inverse uncertainty quantification

- Inverse uncertainty quantification computes the posterior distribution of input 
parameters — the calibration parameters that best reflects their distribution based 
on the experimental data and the prior knowledge on the calibration parameters. 
The Markov chain Monte Carlo (MCMC) method infers the posterior 
distribution of the calibration parameters by constructing Markov chains whose 
stationary distribution is the posterior distribution. This analysis is called inverse 
because it propagates information of experimental data backwards to gain 
information on the calibration parameters.

Data Sampling — Latin Hypercube Sampling

The accuracy of the UQ analysis and the surrogate model approximation is directly 
related to the data sampling for model evaluations. A Latin hypercube sampling (LHS) 
is a design given by an n × m matrix in which each column is a random permutation 
of {1, 2,  …, n}. Here, n is the number of model evaluations, and m is the number of 
input parameters. A LHS has good projection properties on any single dimension, 
which means that, in any one-dimensional input parameter space, the sampled data 
always has a good space-filling property. For UQ studies using LHS for input 
parameter sampling, an optimal LHS is generated for n number of model evaluations 
in the [0, 1]m hypercube and then mapped to the input parameters’ probability 
distribution. An optimal LHS is space filling, which means that the sample points 
should spread over the entire input parameter space as evenly as possible. Meanwhile, 
it has no replications and sample points clustering in the projection onto any subspaces 
of the input parameter space. This is important because many problems could have 
only a subset of significant input parameters. The process of constructing an optimal 
LHS is formulated as a global optimization problem. The Uncertainty Quantification 
Module provides an optimal LHS algorithm that is efficient both in finding the global 
optimum and in computing the optimality criteria in every iteration. It uses the global 
optimization method and centered L2 discrepancy criterion described in Ref. 1. Note 
that depending on the starting design, the optimal LHS obtained from the 
 2 :  U N C E R T A I N T Y  Q U A N T I F I C A T I O N  T H E O R Y



optimization could be of lower quality. Therefore, the global optimization is repeated 
from different starting LHS designs.

In addition to constructing optimal LHS for a one-stage study, it is important to 
generate sequential (also known as follow-up) optimal LHS based on the current 
sampling for both ASPCE surrogate models and appending more model evaluation to 
improve a UQ analysis. The optimization of the sequential sampling uses the same 
criterion as for optimizing the initial optimal LHS. During the optimization, the 
sequential sampling does not modify the initial samples and tries to spread the 
sequential samples away from them. Because it is computationally expensive to run 
many model evaluations, it is possible to use any number of model evaluations for 
sequential sampling following the sequential optimization method described in Ref. 2.

For both initial and sequential sampling, you can choose the number of restart points 
and maximum number of iterations for optimizing LHS where more computational 
resources are required if a larger number is used. Note that an optimal LHS is more 
crucial when the number of model evaluations is small.

Data Sampling — Morris Sampling

The Morris sampling method is a special sampling method used for the Screening, 
MOAT UQ analysis. The Morris sampling is generated on a [0, 1]m hypercube and 
then mapped into the input parameter distribution. The MOAT method varies one 
input parameter at a time, where each input parameter is constructed to have a discrete 
number of values, called levels. The value at each level is in the set [1/(n − 1), 2/
(n − 1), …, 1 − 1/(n − 1)], where n is the number of levels. The entire m-dimensional 
input parameter space is discretized into an n-level grid in each dimension. The data 
sampling starts by randomly selecting a base value, and each component in x is sampled 
from the set [1/(n − 1), 2/(n − 1), …, 1 − 1/(n − 1)]. Note that the base value vector is 
only used to generate other sampling points. The next sampling point is obtained by 
increasing or decreasing one component of x by Δ, defined as

The choice between increasing or decreasing Δ is conditioned by x still being in the 
[0, 1]m hypercube. Starting from a base value, m sampling points are added by 
moving in one dimension at a time; the path following all the sampling points is called 

Δ n
2 n 1–( )
--------------------- 1

2
--- 1

2 n 1–( )
---------------------+= =
U N C E R T A I N T Y  Q U A N T I F I C A T I O N  T H E O R Y  |  17



18 |  C H A P T E R
a trajectory. A schematic plot of two Morris trajectories of a 3D input space consisting 
of p1, p2, and p3 is shown in Figure 2-1.

Figure 2-1: Morris trajectories of a 3D input space.

The Uncertainty Quantification Module uses the sampling method designed in Ref. 3, 
which gives better coverage of the entire input parameter space. The method selects r 
trajectories together in a way that is designed to maximize their dispersion in the input 
space. It starts with a large number of different trajectories and chooses the trajectories 
with the highest “spread”, which is defined based on the distances between the sample 
points in the trajectories.

The MOAT method is based on the construction of r trajectories in the 
input parameter space. The design is based on generating a random 
starting point for each trajectory and then completing it by moving one 
factor at a time in random order.

When the dimension m of the input parameter space is low, there could 
be repeated sample points in different trajectories. The repeated samples 
are only evaluated once during the COMSOL model evaluation.
 2 :  U N C E R T A I N T Y  Q U A N T I F I C A T I O N  T H E O R Y



Data Sampling — Importance Sampling

Importance sampling is used in reliability analyses that contain an importance region 
(the region defined by the relationship between the QoIs and the thresholds for a 
reliability analysis) in the input parameter space. Although Monte Carlo analysis can be 
applied to reliability analysis with desired accuracy, the response of the limit state is 
analyzed with a large number of samples, which can be time consuming and expensive, 
especially for problems with low probability of importance. In reliability analysis, by 
default, a multimodal adaptive importance sampling method is used in combination 
with the AGP surrogate model. The AGP model provides information about the initial 
location of the importance region in the input parameter space, which ensures 
efficiency in constructing the multimodal sampling density. The importance sampling 
method starts with using the representative points (the points located near the limit 
state where the QoIs are equal to the thresholds) from adaptive GP with the highest 
probability density to iteratively construct a multimodal sampling density with the 
representative points. After the multimodal sample density converged, the importance 
sampling method iteratively samples on the multimodal sampling density function and 
computes the probability of the reliability analysis until convergence. The probability 
computed with importance sampling is defined as

where xi are the points sampled with the multimodal sampling density, N is the 
number of samples,  is the multimodal sampling density, f is the original input 
distributions density, and I is an operator that evaluates to 1 if the reliability criteria is 
satisfied and 0 otherwise. You can specify the initial number of samples, maximum 
number of samples, and relative tolerance for the importance sampling method.

If the relative tolerance is not satisfied for the importance sampling, you can try to 
increase the initial number of samples and the maximum number of samples. Given 
that an accurate AGP model has been built for the problem, the importance sampling 
method can be used without recomputation of COMSOL model evaluations. More 
details about the importance sampling method are described in Ref. 4.

Data Sampling — Input Distributions

Probability distributions are used for specifying input parameters used for sampling 
input data points used in model evaluations and Monte Carlo-type analyses as well as 
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in response surfaces. For all UQ analysis types and methods, you can use uniform, 
normal (Gaussian), log-normal, gamma, beta, Gumbel, and Weibull distributions for 
the inputs. For these distributions, except the uniform and beta distributions, lower 
and upper bounds are automatically computed based on cumulative distribution 
function levels. There is also a possibility to manually specify the bounds.

• The uniform distribution is defined by the upper and lower bounds, and the 
probability density function (PDF) of the uniform distribution

.

• The normal distribution is defined by the mean μ and the standard deviation σ, and 
the PDF of the normal distribution is

.

• The log-normal distribution is defined by the mean μ and the standard deviation σ, 
and the PDF of the log-normal distribution is

.

• The gamma distribution is defined by the shape parameter k and the scale θ, and the 
PDF of the gamma distribution is

.

• The beta distribution is defined by the shape parameter α, the shape parameter 
deviation β, the upper and lower bounds a and b, respectively, and the PDF of the 
beta distribution is

.

• The Weibull distribution is defined by the shape parameter k and the scale λ, and 
the PDF of the Weibull distribution is

.
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• The Gumbel distribution is defined by the location μ and the scale β, and the PDF 
of the Gumbel distribution is

.

These input distributions assume that the input parameters are independent. During 
the Latin hypercube sampling, Morris sampling, Monte Carlo sampling, as well as the 
importance sampling, the algorithms always first sample data in a unit interval for each 
parameter, , where i = 1, …, m, and m is the number of input parameters. 
The sampling can therefore be seen as selecting points in a unit hypercube of 
dimension m, [0, 1]m. The boundaries of the hypercube correspond to the bound 
values for each physical parameter value pi. The cumulative distribution function 
(CDF) Fi and its inverse Fi

−1 are used to map the values between the unit interval to 
the input parameter values such that

where pi.l and pi,u are the lower and upper bounds, respectively. For the uniform 
distribution, this takes the simple form . The lower and 
upper bounds can be given manually in the user interface. However, for all 
distributions, except uniform and beta, where manual bounds are needed, they are by 
default computed automatically from a CDF level. For example, if a lower bound CDF 
level of 0.1% is used, the lower bound is computed by the corresponding inverse CDF 
function .

If there are existing QoIs or important input parameter points that need to be 
evaluated, specified values can be used as the input parameter points when a GP-type 
surrogate model is selected. For UQ analysis computed with the specified values, the 
input parameter space is a space defined by the maximum and minimum values of the 
specified values in each dimension, which is used for the Monte Carlo-type analysis 
associated with the study. Note that specified values can also be used for the correlation 
method in sensitivity analysis.

Surrogate Models — Polynomial Chaos Expansion

Polynomial chaos expansion (PCE) is an efficient surrogate model that provides 
approximations to the QoIs using a spectral representation on a basis of polynomial 
functions with respect to the input parameter distributions. Consider a model 
represented by y = M(x). Here, x is the vector of input parameters, and y is the vector 
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of QoIs. For a vector-valued y, one PCE is computed for each QoI. For clarity, a scalar 
y is considered from now on. The input parameters x are independent variables with a 
prescribed PDF f(x). The QoI, y, can be expanded into an orthonormal polynomial 
basis,

.

Here, aα are unknown coefficients, and ψα are multivariate polynomials. For input 
parameters of each distribution type, there is a family of orthonormal polynomials, 

, in terms of which the multivariate polynomial ψα is defined as

,

where α is a multidimensional index, and m is the dimension of input parameters.

The classical family of univariate orthonormal polynomials and the distributions to 
which they are orthonormal are given in Table 2-1.

In case the input parameters do not have a distribution given in the table, the algorithm 
defines an isoprobabilistic transformation to a uniform distribution and builds the PCE 
with the transformed input parameter. Further details about the orthonormal 
polynomial bases can be found in Ref. 5. Given the definition of the PCE, a truncation 
is defined such that the total degree of all polynomials is less than or equal to p. In 
addition, a hyperbolic truncation scheme that uses a parametric q-norm, q ∈ [0, 1], is 
used to further truncate the polynomial expansions. For q = 1, the truncation method 
truncates all polynomials with total degrees smaller than p. For q < 1, hyperbolic 
truncation includes all the high-degree terms in each input parameter, but it removes 
equivalently high-order interaction terms. For q = 0, the truncation method truncates 
all interaction terms between input parameters. A sparse representation of PCE refers 
to a sparsely selected polynomial basis from all the truncated polynomial expansions. 
An adaptive algorithm based on a least-angle regression method is used to select the 

TABLE 2-1:  LIST OF CLASSICAL POLYNOMIAL FAMILIES FOR POLYNOMIAL CHAOS EXPANSION.

INPUT PARAMETER 
DISTRIBUTION

EXPRESSION POLYNOMIAL 
FAMILY

Uniform x/2, x ∈ [−1, 1] Legendre

Normal exp(−x2/2)/(2π), x ∈ [−∞, ∞] Hermite

Gamma exp(−x)xα/Γ(α + 1), x ∈ [0, ∞] Laguerre

Beta (1 − x)α(1 + x)β/B(α + 1, β + 1), x ∈ [−1, 1] Jacobi

y aαψα x( )=

ϕj
i( ) j N∈,{ }

ψα ϕα
i( ) xi( )

i 1=

m

∏=
 2 :  U N C E R T A I N T Y  Q U A N T I F I C A T I O N  T H E O R Y



significant sparse coefficients from all the truncated polynomial expansions. During the 
iterative process, the algorithm only adds new polynomial bases that are most 
correlated with the residual built with the existing polynomial basis. The sparse 
representation is both used for reducing the computational cost and, more 
importantly, for avoiding overfitting. Here, the leave-one-out cross-validation error 
estimation is defined with a correction factor that is used to consider overfitting and 
ensure that the generalization error estimate is not underestimated. The generalization 
error refers to the error for the sample points with unknown model evaluations. 
Additional details on the sparse PCE representation and the error estimation can be 
found in Ref. 6.

In COMSOL Multiphysics, both SPCE and ASPCE are trained adaptively based on 
the maximum total degree p. For ASPCE, the q-norm is also learned adaptively. 
Meanwhile, depending on whether the a posteriori cross-validation error estimation 
satisfies the tolerance, the ASPCE adds more input points selected by sequential 
optimal LHS to compute more model evaluations and train a new PCE in every 
adaptive step. For both SPCE and ASPCE, the truncated sparse coefficients are 
computed with an ordinary-least-square method in each adaptive step. You can use a 
specified q-norm for sparse PCE. If you have a priori information that the input 
parameter interaction is limited, a lower q-norm can be used to reduce the risk of 
overfitting.

Surrogate Models — Gaussian Process

The Gaussian process (GP) model, also known as the Kriging model, is a popular 
surrogate model that gives an approximate prediction of the QoIs, is probabilistic, and 
computes the variance of the prediction at every sample point in the input parameter 
space. A GP is specified by its mean, also known as the trend, and a covariance 
function, also called a kernel or correlation function. The hyperparameters of the mean 
and covariance functions are optimized while training the GP model. Consider input 
parameters x and a scalar QoI y. The GP model can then be expressed as

where m(x) is the mean function and f(x) is a GP with zero mean and covariance 
kθ(x, x'). Here, θ represents the hyperparameters of the covariance function.

It is then possible to write the joint distribution of the evaluated data and the predicted 
data as

y m x( ) f x( )+=
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where f = y − m(x), y is the evaluated QoI, and f' and x' are the predicted QoI and its 
corresponding input parameters.

The posterior distribution of the GP is written as

where μ(x) and cov(x, x') are the mean and covariance of the model, respectively:

Covariance functions are a crucial ingredient of GPs that determine the shape of the 
prior and posterior of the model. They encode the assumption that the function is 
being learned by defining the similarity of two input parameter points (stationary 
kernel) or specific values of the input parameter points (nonstationary kernel). The 
module provides three common stationary kernels and one nonstationary kernel. The 
stationary kernels are the spectral exponential kernel

and the Matérn class kernel with ν = 3/2 and ν = 5/2

where r is a function of x and x' defined as

The nonstationary kernel is the single-layer neural network kernel

f
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Here,  is defined as and  = diag(σ0
2, σ2), where σ0 and σ =  

(σ1, …, σm) are the hyperparameters. Further details about the covariance function 
and the Gaussian process can be found in Ref. 7.

The covariance functions are assumed to be anisotropic. The automatic relevance 
determination (ARD) method is used to define different length scales for each input 
parameter. The ARD method is given its name because estimating the length scale 
parameters implicitly determines the “relevance” of each dimension. Input dimensions 
with relatively large length scales imply relatively little variation along those dimensions 
in the QoI function being modeled.

The spectral exponential kernel has strong smoothness where the Matérn kernel with 
ν = 5/2 is less smooth, and the Matérn kernel with ν = 3/2 is more rough. The GP 
model with a spectral exponential kernel is infinitely differentiable, whereas the GP 
model with a Matérn kernel is differentiable a finite number of times. Comparing the 
Matérn kernel and a spectral exponential kernel with the same length scale, the Matérn 
kernel has weaker correlation and is more oscillatory. Samples from a GP with the 
one-layer neural network kernel can be viewed as superpositions of functions with a 
single-layer neural network with erf(xTx') as the activation function. The GP model 
created with a single-layer neural network is smooth. In the region with a large 
absolute value of x, they approximate to a constant value.

Regardless of which covariance matrix is used, it is often the case that it needs to be 
inverted while training the GP model. The inversion is known to suffer from numerical 
instabilities. To circumvent such limitations, a nugget factor defined as σ2I is added to 
the covariance matrix. Here, σ is learned as an additional hyperparameter during the 
training of the GP.

There are three types of mean functions for GPs:

• Constant:

• Linear:

kNN x x',( ) 2
π
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• Quadratic:

GP models with constant and linear mean functions are also known as ordinary Kriging 
and universal Kriging, respectively. The coefficients for the mean functions are also 
learned during the training of the GP.

If there is a priori information of the mean function, it can be used to increase the 
modeling accuracy. One example of using a mean function is that when a GP is used 
for sensitivity analysis and uncertainty propagation, the extrapolation of the GP far 
from the sample points might be computed. If there is a priori information of the 
mean, using a linear or quadratic mean function can be beneficial for the extrapolation.

While training the GP, the hyperparameters of covariance functions, mean functions, 
as well as the nugget factor are learned by maximizing the log-likelihood of the 
posterior of the GP:

Since the log-likelihood may have multiple local optima, the local optimizer for 
training the hyperparameters needs to be started repeatedly by specifying different 
starting points in the hyperparameter space. This surrogate model provides an 
automatic number of restart points for training the hyperparameters. These points are 
chosen such that they are in the regions where the hyperparameters render relatively 
small negative log-likelihood. Also, the restarting points are space filling in the 
hyperparameter space. These points are obtained by first generating a large amount of 
possible choices and then using a K-cluster mean method to select different starting 
points following the method described in Ref. 8 from the Journal of Statistical 
Software.

For adaptive GPs, the GP is constructed adaptively by adding a new input parameter 
point at the location of the maximum entropy, when it is used for sensitivity analysis or 
uncertainty propagation, or at the location of the maximum expected feasibility 
function, when it is used for reliability analysis. For sensitivity analysis or uncertainty 
propagation, the GP is trained to approximate the underlying model accurately in the 
entire input parameter space. It follows the heuristics in Ref. 9, which adds a new point 
at the location with the highest entropy. Here, the entropy is defined as the standard 
deviation of the GP model. For reliability analysis, the GP is trained to accurately 
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approximate the underlying model only near the regions that satisfy the reliability 
conditions, where the maximum expected feasibility function is used to find the 
adaptation points. More details about the expected feasibility function can be found in 
Reliability Analysis — Efficient Global Reliability Analysis.

To explore the region in the input parameter space and exploit the most-recently-built 
GP, a global optimization problem is solved in every adaptation step in finding the 
location corresponding to the maximum entropy or maximum expected feasibility 
function. There are two types of global optimization methods, the dividing rectangles 
(DIRECT) method (see Ref. 10) and the Monte Carlo method. The default choice is 
the DIRECT method. For nonadaptive GPs, this global optimization procedure is 
used to determine the maximum entropy as the error estimation of the model. Note 
that nonadaptive GP models are not used for reliability analysis.

Note that adaptive GP models require enough initial model evaluations for the 
adaptation method to locate “good” adaptation points that can improve the accuracy 
of the GP model. Given an initial dataset with too few sample points, exploration of 
the unsearched region may not be properly done. One way to fix this problem is using 
the improve and analyze functionality to append more samples using sequential 
optimal LHS, where the optimal LHS samples randomly fill the entire input parameter 
space.

Also note that for the adaptive GP built on input parameters with long tails (near-zero 
lower CDF and near-one upper CDF), most initial sample points will be located at the 
region where input parameters have high probability. The accuracy of the GP model 
in the region where input parameters have low probability will be low due to the lack 
of sample points, thus most adaptation points will probably be placed in the low 
probability region. A better way to create a GP model with high accuracy in the entire 
input-parameter space in this circumstance would be using a uniform distribution from 
the minimum and maximum value corresponding to the lower and upper CDF.

Screening — Morris One-at-a-Time Method

The Screening, MOAT study uses the Morris one-step-at-a-time (MOAT) method, 
which means that in each run, only one input parameter is given a new value. This 
method is purely sample based and does not rely on a surrogate model. The Screening, 
MOAT study method first samples r trajectories with the Morris sampling method, 
where r is the repetition number. In the Morris sampling method, the input parameter 
space is partitioned into n levels for each parameter . Then, it picks r trajectories, 
where all the points on a trajectory are located from the nm positions, where the 

φi
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sampled data points are , j = 1, …, r, and m is the dimension of input parameters. 
More details about the Morris sampling method are described in Data Sampling — 
Morris Sampling. The input parameter values are mapped so as to lie in the range 
[0, 1]. Each value corresponds to an actual input parameter value . 
From the evaluated QoI data, the elementary effect for the ith input can be computed 
as

,

where

.

The sign in the above formula is chosen such that the perturbed point is inside the 
hypercube. From the elementary effect for all the r replication points, the MOAT 
mean for the ith input becomes

and the MOAT standard deviation for the ith input

,

where

.

The MOAT mean estimates the overall effect of an input parameter on the QoI, and 
the MOAT standard deviation measures the nonlinear effects of the input parameter 
and the interaction effect of this input parameter and others.

Note that the choice of n is strictly linked to the choice of r. If you consider a high 
value of n, the possible levels to be explored in the input parameter space are increased. 
If r is not also changed to a higher value, the effort of increasing the resolution in the 
input parameter space is wasted.

The MOAT method is economic in the sense that it requires a relatively small number 
of model evaluations. As a drawback, the method relies on the elementary effect, which 
uses finite differences. However, the final measures are obtained by averaging several 
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elementary effects computed at different points of the input space, which lose the 
dependence on the specific points at which the elementary effects are computed. 
Therefore, this method is considered a global screening method. Note that MOAT 
provides the qualitative measure because the method provides the ranking in the order 
of importance of input parameters.

Sensitivity Analysis — Correlations

The correlation method is a widely used method to determine the linear relationship 
between each input parameter and QoI. The method is purely sample based and does 
not require a surrogate model. There are four type of correlations: bivariate correlation 
(also known as Pearson’s correlation), rank bivariate correlation (also known as 
Spearman’s rank correlation), partial correlation, and rank partial correlation.

The bivariate correlation is defined as

Here, cov(xi, y) is the covariance between the scalar QoI and the ith input parameter, 
and V(xi) and V(y) are the variances of xi and y, respectively. Note that for a UQ study 
with more than one QoI, the correlations between QoIs and input parameters are 
computed for each QoI. The correlation result, ranging from −1 to 1, measures the 
linear relationship between xi and y, where a correlation equals 1 when y linearly grows 
with xi. Correlation is equal to −1 when y linearly decreases with xi.

The rank correlation is defined as the bivariate correlation between the rank values of 
xi and y. The rank correlation computes the monotonic relationship between xi and y. 
A rank correlation equals 1 when the QoI monotonically grows with xi and it equals 
−1 when the QoI monotonically decreases with xi.

Note that the bivariate correlation does not take into account the possible effect that 
other input parameters might have on the QoI. For instance, healthcare funding and 
disease rate could be positively correlated according to their bivariate correlation. Such 
an observation is contradictory because healthcare visits increasing with healthcare 
funding is ignored. On the other hand, partial correlation can be calculated to 
determine the linear relationship between xi and y where all the linear effects from the 
other input parameters are removed:

ri
cov xi y,( )

V xi( )V y( )
-------------------------------=
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Here, x\i denotes all parameters but xi. The rank partial correlation is defined as the 
bivariate correlation between the rank values of xi and y. In terms of linear regression, 
the partial correlation can be interpreted as the correlation between the residuals 
resulting from the linear regression of xi with x\i and y with x\i.

Note that, compared to the screening method, sensitivity analysis provides a 
quantitative measure of the relationship between the input parameters and the QoI.

Sensitivity Analysis — Sobol Index

Sensitivity analysis is the study of how uncertainty in the QoI can be apportioned to 
different sources of uncertainty in the input parameters. Unlike correlations where the 
effects of parameters are estimated based on the model evaluation data, the Sobol 
method looks at the entire input parameter distribution and decomposes the variance 
of the QoI into a sum of contributions from the input parameters and their 
interactions. The number of terms in the Sobol indices of the variance of the QoI with 
m input parameters grows as 2m. It is customary to compute only the m first-order 
effects (first-order Sobol indices) and the m total effects (total Sobol indices).

Given a scalar QoI defined as y = M(x1, x2, …, xm), the variance-based first-order 
Sobol index is defined as

where xi is the ith input parameter and x\i denotes all the other parameters but xi. The 
meaning of the inner expectation value is that the mean of y is taken over all possible 
values of x\i while fixing xi. The outer variance is then computed over all possible 
values of xi.

The total Sobol index is defined as

which measures the summation of the first-order effect and interactions with other 
parameters of the ith input parameter. The second term in the equation can be seen as 
the first-order effect of all parameters but the ith parameter. So, one minus the second 
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term must give the contribution of all terms related to xi. Note that for a UQ study 
with multiple QoIs, the Sobol indices are computed for each QoI.

There are two types of methods to compute the Sobol indices. One is through 
postprocessing of a polynomial chaos expansion (PCE) model. Given the definition of 
the PCE, the contributions from each input parameter and their interactions are readily 
separable. Thus the Sobol indices can be computed solely based on the coefficients 
trained from the PCE. More details on the computation of Sobol indices based on the 
PCE model can be found in Ref. 6.

The other method of computing the Sobol indices is through Monte Carlo analysis. 
As it is computationally expensive to perform Monte Carlo simulation directly with 
model evaluation, it provides a Gaussian process as the surrogate model for this type 
of analysis. The algorithm follows the best practice of simultaneous computation of the 
first and total Sobol index described in Ref. 11.

Uncertainty Propagation — Monte Carlo Analysis

Studying the uncertainty propagation of a model is equivalent to approximating the 
PDF of the QoI. To construct the PDF of the QoI accurately, a large number of 
samples is required. Such an operation is very expensive and the analysis therefore uses 
the surrogate model. Both PCE and the GP model are used for uncertainty 
propagation. To approximate the PDF, the KDE method is used, in which density is 
formulated in terms of known kernel functions, which have the form

where Kh is a specified symmetric PDF. Here, the standard normal distribution is used, 
and h is a smoothing parameter termed the bandwidth.

By default, the Uncertainty Quantification Module uses Silverman’s rule for the 
smoothing parameter h. More details related to the KDE can be found in Ref. 12. In 
addition to the approximation of the probabilistic distribution, the confidence interval 
table of each QoI is computed. In this table, it gives the mean, maximum, minimum, 
and standard deviation of each QoI. It also computes the value of the QoI 
corresponding to different CDF levels. Such information can also serve as a lookup 
table to a rough estimate of finding the probability that a QoI is larger than a certain 
threshold.
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=
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Reliability Analysis — Efficient Global Reliability Analysis

The goal of reliability analysis is to determine the probability that a model will satisfy 
certain criteria given by the user-defined threshold. Thus, the probability, pf, is defined 
by

where f(x) is the probability density function for the input parameters x, and the 
integration is performed over the region where the condition COND(y, z) is satisfied. 
Here, y is the vector of the QoIs, and z is the value of the threshold corresponding to 
each QoI.

For the jth QoI, the probability condition cond(yj, zj) is true if yj > zj or yj < zj.

For reliability analyses with multiple QoIs, the probability condition can be formed as 
“all true”, where the condition is defined as

or “any true” where the condition is defined as

where n is the number of QoIs. In general, this integration is impossible to obtain with 
analytical methods.

Therefore, the integration is approximated, for example, with Monte Carlo analysis. 
Note that when comparing existing local reliability analysis methods, numerical 
integration is generally more accurate but it requires a large number of function 
evaluations. Similar to surrogate-based sensitivity analysis and uncertainty 
propagation, the reliability analysis is built with the use of a surrogate model. It uses 
the efficient global reliability analysis (EGRA), which is built on an adaptive Gaussian 
process (GP). The method balances the exploration of the region where the GP 
provides a good prediction and exploitation of the region where the GP has large 
variance and more model evaluations are required. Furthermore, it does not require 
the GP model to have high accuracy in the region far from the limit state where the 
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QoIs are equal to the thresholds. This is achieved by focusing on adding adaptive 
model evaluations around the limit state that reduces the number of model 
evaluations.

The expected feasibility function (EFF), which is used as the adaptive error estimation 
in EGRA, is used to select the location of the next input parameter point. The EFF 
defines the expectation of the sample lying within the vicinity, defined by ±ε(x), around 
the limit state. The feasibility function at x is defined as being positive within the 
vicinity around the limit state and 0 otherwise. For problems with a scalar value QoI 
y, the EFF is defined as the expectation of being within the vicinity around the limit 
state given by

where  is the probability of the AGP and y is realizations of . Note that ε defines 
the vicinity around z and is set to 2σy, where σy is the standard deviation of the AGP 
model.

Note that EFF provides a balance between exploration and exploitation: Points where 
the expected value is close to the threshold and points with a large uncertainty in the 
prediction will have a larger expected feasibility value. The adaptation point is defined 
as

The most efficient way of finding the solution to system-level EGRA problems is to 
construct a GP for each individual quantity of interest and then construct a composite 
EFF. Additional details about the EFF can be found in Ref. 13.

There are two sampling methods: One is to use importance sampling and the other is 
simply using Latin hypercube sampling. For the Lain hypercube sampling method, 
some number of samples of the input parameters are first randomly generated based 
on their distributions. Then, the surrogate models are evaluated at their input points. 
The values of the surrogate model at these points are compared with the threshold to 
determine if the predicted QoIs satisfy the probability conditions. The probability pf 
is then calculated as the ratio of the number of predicted QoIs that satisfy the criteria 
for the total number of samples:
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Here, Nf is the number of predicted QoIs that satisfy the criteria, and N is the number 
of all samples. One drawback of this method is that the majority of the samples lie in 
the high-probability region of the input parameter space. If the region defined by the 
threshold is a low-probability region, a very large number of samples is required to 
ensure enough samples to be located in such a region. Another method is the 
multimodal adaptive importance sampling method, which combines the surrogate 
model and Latin hypercube sampling. Compared to the Latin hypercube method, the 
importance sampling method uses fewer samples and provides an error estimation.

The procedure of performing EGRA with importance sampling is as follows. First, an 
initial set of model evaluations is computed and the initial GP is constructed based on 
these data. Then the point with maximum expected feasibility is searched as a global 
optimization problem using the GP model. Next, the adaptation model evaluation is 
evaluated at the point, and the enhanced dataset is used to construct an updated GP. 
The adaptation procedure is repeated until the maximum expected feasibility is smaller 
than the relative tolerance or the maximum number of model evaluations is reached. 
The final GP provides information on the data points located near the limit state, 
which serves as a good initial state for the importance sampling method.

To ensure that the initial GP covers a sufficiently large region in the input parameter 
space, instead of sampling according to the input parameter distribution, the reliability 
analysis uniformly samples in the region between the minimum and maximum values 
of each input dimension where the minimum and maximum is user specified or given 
by the input parameter distribution and the lower and upper cumulative distribution 
function. Note that when the initial GP has too little information (too few model 
evaluations) or the global optimization does not cover a sufficiently large space, the 
EFF may not locate the limit state. Increasing the initial number of model evaluations 
and the maximum surrogate evaluations for optimizations for the global optimization 
procedure of finding maximum EFF could improve the accuracy of the analysis.

Inverse Uncertainty Quantification— Markov Chain Monte Carlo

The goal of inverse uncertainty quantification analysis is to determine the probability 
distribution of unknown model parameters. These parameters can be unknown for 
example because they cannot directly be measured. These parameters are known as the 
calibration parameters and they are estimated based on experimental data that relates 
to the parameters through a computational model. Inverse uncertainty quantification 
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Nf
N
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propagates the experimental data information backwards to gain knowledge of the 
calibration parameters. Compare this to Uncertainty Propagation that propagates a 
known parameters distribution forward to gain knowledge of the QoIs. 

Consider a computational model represented by y = M(x, θ). Here, x is the vector of 
experimental parameters, θ is the vector of calibration parameters, and y is the vector 
of QoIs. The experimental parameters x are independent variables with a known 
prescribed PDF p(x). The calibration parameters θ are parameters to be calibrated 
from the inverse uncertainty quantification study, the existing knowledge on the 
calibration parameters are used to prescribe their prior distribution p(θ). Note that the 
calibration parameters are considered as inputs to the computer model but are 
unknown when conducting the experiments. Experiment parameters are known for 
both the computational model and physical experiment, and they are used to describe 
the conditions under which the experiments have been conducted. 

To connect the computational model and the experimental observation yE, a 
discrepancy model is introduced as,

where δ ∼ Ν(0, ε) represents an additive error and is assumed to be normally distributed 
with mean equals to 0 and an unknown diagonal covariance matrix ε = σ2I, where σ is 
inferred with the calibration parameters. The definition assumes that the 
instrumentation, or the computer model, has no systematic bias. 

Bayesian inference theory is used to determined the posterior distribution of the 
calibration parameters which is defined as p(θ| y, yE), where y and yE represents the 
computational model and experimental data respectively. According to the Bayesian 
theory, we have 

where p(θ) is the prior distribution of the calibration parameter, and p(y, yE|θ) is the 
likelihood function. Here the prior and posterior distribution reflects the degree of 
belief on possible values of θ before and after considering the experimental data. The 
likelihood function based on all the experimental data is defined as

yE M x θ,( ) δ+=

p θ y yE,( ) p y yE θ,( )p θ( )∼
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where N is the number of experimental data, m is the number of QoIs. Here, the 
experimental data is considered as independent samples conditioned on θ. 

The computational model is a surrogate model constructed with the known 
distribution of the experimental parameters and the prior distribution of the calibration 
parameters. In practice, the posterior distribution defined by Bayesian theory do not 
have a closed-form solution. We rely on MCMC method to solve the inverse problem. 
The basic idea of MCMC is to build a Markov chain with an invariant distribution that 
equals to the posterior distribution. MCMC method produces chains of sample points 
that follows the posterior distribution. In practice, users need to make decision about 
the termination of the Markov chain based on the number of samples and the step size 
between two consecutive samples. To diminish the influence of the starting values, we 
discard the first half of each chain and only keep the second half of the chain. The 
discarded samples are considered as burn-in samples or warm-up samples. More details 
related to MCMC can be found in Ref. 14.

You can perform a uncertainty propagation study after the inverse uncertainty 
quantification by using the calibrated parameters to do the forward Monte Carlo 
analysis and study the calibrated QoIs. Note that inverse uncertainty quantification can 
also be used to calibrate the predicted QoIs to real world observations. By changing 
the status from input parameter with a known distribution, to a calibration parameters, 
we can use experimental observations to fine-tune these inputs and reduce the 
difference between the computational model and observations.
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 3
U n c e r t a i n t y  Q u a n t i f i c a t i o n  M o d e l i n g
The Uncertainty Quantification Module is designed to facilitate setting up and 
solving uncertainty quantification (UQ) problems. You can specify a number of 
UQ study types for computations of uncertainties and sensitivities and specify input 
parameters and their statistical distributions as well as lower and upper bounds. This 
chapter describes the UQ study types and their applications. It also contains a 
description of the settings for the Uncertainty Quantification study.

In this chapter:

• Overview

• Using the Screening, MOAT Study Type

• Using the Sensitivity Analysis Study Type

• Using the Uncertainty Propagation Study Type

• Using the Reliability Analysis Study Type

• Using the Inverse Uncertainty Quantification Study Type

• The Uncertainty Quantification Study

• Uncertainty Quantification Job Configurations
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Ove r v i ew

The Uncertainty Quantification study provides the tools and functionality for UQ 
studies of varying types. See the following sections for more information about each 
UQ study type.

About Input Parameters and Data Sampling

For most input parameters in an uncertainty quantification study, the parameter name, 
distribution type, specifications that define the distribution, lower and upper CDF or 
bounds of the distribution, as well as parameter units are needed to specify how the 
inputs are sampled. For screening, the Morris sampling method is used, and for other 
UQ study types, Latin hypercube sampling is used. Additional details about the input 
distribution and data sampling are provided in the theory section (see Data sampling 
methods).

In addition to generating input parameter data from analytic probability distributions, 
specified values and data column from result table can be used for sensitivity analysis, 
uncertainty propagation, and reliability analysis.

For verification and surrogate-based Monte Carlo analysis, the input parameters are 
usually the same as the input parameters used to generate quantities of interest through 
COMSOL model evaluations.

About Surrogate Model Settings

The sensitivity analysis, uncertainty propagation, reliability analysis and inverse 
uncertainty quantification rely on accurate surrogate models to deliver accurate UQ 
analysis. The relative tolerance is provided for all kinds of surrogate models. For a 
SPCE model, the relative tolerance is used to terminate the model training process. For 
an ASPCE model, the relative tolerance is used to terminate the model training process 
for each adaptive step combined with the maximum number of model evaluations, 
which is used to terminate the adaptive procedure. For a GP model, the relative 
tolerance is used to check against the error estimates. For an AGP model, the relative 
tolerance combined with the maximum number of model evaluations is used to 
terminate the adaptive process. For the SPCE model, you can also set the q-norm, 
which determines the truncation level of the polynomial basis. For the GP and AGP 
methods, different kinds of covariance and mean functions and different types of 
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optimization methods for finding the maximum error estimates are provided. The 
covariance and mean functions are used to determine the shape of the GP and AGP 
models. Further details about the surrogate model are given in the theory section (see 
Surrogate models).

To use a Surrogate model for a UQ study, choose a method from the Surrogate model 
list. The available methods are: Adaptive sparse polynomial chaos expansion, Sparse 

polynomial chaos expansion, Adaptive Gaussian process, and Gaussian process. Note that 
reliability analysis only works with Adaptive Gaussian process. A detailed explanation is 
given in the theory section (see Reliability Analysis — Efficient Global Reliability 
Analysis). For models of the polynomial chaos expansion type, both Adaptive sparse 

polynomial chaos expansion and Sparse polynomial chaos expansion models have a 
Relative tolerance, which is the leave-one-out cross-validation error that is used to find 
the best multivariate polynomial basis. If this error is not smaller than the Relative 

tolerance, a warning is given in the Log window. For Adaptive sparse polynomial chaos 

expansion, if the leave-one-out cross-validation error for the current adaptive iteration 
step is larger than the Relative tolerance and the total number of model evaluations is 
smaller than the Maximum of input points, then more input parameter points will be 
sampled with the LHS method, and more model evaluations will be computed at these 
points to create a new polynomial chaos expansion model. The adaptive version only 
has a setting for the Relative tolerance. Here, the polynomial degree and the q-norm 
are computed iteratively in each adaptation process. For GP-type models, both 
Adaptive Gaussian process and Gaussian process models have a Relative tolerance. For 
Gaussian process, the Relative tolerance is used to check if the error estimation is small 
enough. For Adaptive Gaussian process, the adaptation process finds the next sample 
point corresponding to the location of the largest error estimation. The searching 
procedure is a global optimization where DIRECT and Monte Carlo methods can be used. 
For the DIRECT method, the optimization is stopped when the Maximum surrogate 

evaluations for optimization and the Maximum number of optimization iteration are 
reached. For the Monte Carlo method, the optimization computes surrogate model 
evaluations on all the Surrogate evaluations for optimization sample points. For both 
Adaptive Gaussian process and Gaussian process, if this error is not smaller than the 
Relative tolerance, a warning is given in the Log window.

Adding an Uncertainty Quantification Study

To add an Uncertainty Quantification study node ( ) to the current study, right-click 
the main Study node and choose Uncertainty Quantification from the Uncertainty 

Quantification submenu.
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You can also add an Uncertainty Quantification study node to a new study with a study 
reference to the current study. To do so, right-click the main Study node and choose 
Add Uncertainty Quantification Study Using Study Reference from the Uncertainty 

Quantification submenu. The Uncertainty Quantification study node is then added under 
a new Study node together with a Study Reference node that refers back to the original 
study. This way, you can set up separate UQ studies with different study types and run 
them independently and, at the same time, use the original study.

If you have a Study node with a Uncertainty Quantification study node and you want to 
place the Uncertainty Quantification study node under a new Study node, together with 
a Study Reference node that refers back to the original study, you can right-click the 
Uncertainty Quantification study node and choose Move Uncertainty Quantification to 

New Study.

To add a new type of UQ study and keep most settings in the current Uncertainty 

Quantification study node, add a new study with a UQ and a study reference to the 
current study. To do so, right-click the Uncertainty Quantification study node and 
choose one of the UQ study types from the Add New Uncertainty Quantification Study 

For submenu. The Uncertainty Quantification study node with the selected UQ study 
type is then added under a new Study node together with a copy of all the other nodes 
under the original study. If the original UQ study is Screening, MOAT, you can choose 
sensitivity analysis, uncertainty propagation, or reliability analysis. If the original study 
has a Quantities of interest table or Verification quantities of interest table, the newly 
created UQ study will copy the data in these tables to new tables. When the new UQ 
study is computed, new quantities of interest data will be written to the new tables. If 
Output table group usage is Automatic, the new UQ analysis results will be saved in a 
newly created Output table group. The newly created UQ study uses Improve and 

analyze as the Compute action if the original study has a Quantities of interest table, such 
that the new UQ study could reuse the quantities of interest data from the original 
study. Note that, if you want to change the input parameter or quantities of interest 
from the original study, the quantities of interest data cannot be used for Improve and 

analyze; instead, use Compute and analyze. Similarly, the newly created UQ study uses 
Verify only as the Verify action if the original study has a Verification quantities of interest 
table, such that the new UQ study cannot reuse the verification quantities of interest 
data from the original study. Note that if you want to change the input parameter or 
quantities of interest from the original study and create a new surrogate model, the 
verification quantities of interest data cannot be used for Verify only; instead, use 
Compute and verify.
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U s i n g  t h e  S c r e e n i n g ,  MOAT S t ud y  
T yp e

Due to a potentially high number of input parameters, a pure sample-based screening 
method with low computational demand, such as the Screening, MOAT method, is 
useful to identify the most influential input parameters.

Background

The Screening, MOAT study uses the Morris one-step-at-a-time (MOAT) method, 
which means that in each run, only one input parameter is given a new value. The 
Screening, MOAT study method first samples the m parameters with the Morris 
sampling method. For each replication point, the parameter value is perturbed in every 
parameter dimension, such that r(m+1) total model evaluations are needed. From the 
evaluated data, this study type can compute the elementary effect for each input 
parameter and each quantity of interest. From the elementary effect for all the r 
replication points, you get the MOAT mean and the MOAT standard deviation. The 
higher the MOAT mean μi, the more sensitive the ith input parameter is. The higher 
the MOAT standard deviation σi, the more interaction the ith input parameter has 
with other parameters. More details about the MOAT method and Morris sampling 
method are described in the theory section under Data Sampling — Morris Sampling 
and Screening — Morris One-at-a-Time Method, respectively.

Settings

Select Screening, MOAT from the UQ study type list to perform a UQ study with a 
screening using the MOAT method. No additional specific settings are needed for this 
study type. However, the settings for the Repetition number and Partition level are used 
for Morris sampling and are discussed above in the Background section above 
Background. As a convenience, to estimate the total cost of the analysis, the Number of 

input points is computed based on the setting for the repetition number and the 
number of input parameters. For a full overview of the settings for the Uncertainty 

Quantification node, see The Uncertainty Quantification Study.
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Results

The output for the screening study includes two tables: the quantities of interest table 
and the MOAT table. The quantities of interest table contains all the sampled input 
parameters from the Morris method and quantities of interest computed with the 
COMSOL model. The MOAT table lists the MOAT mean and MOAT standard 
deviation for the input parameters, discussed in the Background section. The MOAT 
table data is also shown in 1D plot groups, where table annotation plots show the 
MOAT table data, with one plot for each quantity of interest.
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U s i n g  t h e  S e n s i t i v i t y  Ana l y s i s  S t u d y  
T yp e

The sensitivity analysis study is useful for identifying which of the input parameters has 
the largest impact on the quantities of interests. This analysis provides insight into how 
sensitive the quantities of interest are with respect to variance in the input parameters. 
It can also help identify the important input parameters, which is useful in connection 
with uncertainty propagation and reliability analysis.

Background

The Sensitivity Analysis study provides global sensitivity analysis and supports both the 
Sobol indices method and the correlation method.

For the Sobol indices method, the most efficient method is to generate a polynomial 
chaos expansion (PCE) surrogate model for each quantity of interest (QoI). The Sobol 
indices can readily be computed from the coefficients of the PCE model without 
sampling through a Monte Carlo procedure. The Sobol indices can also be computed 
through Monte Carlo analysis when a Gaussian process (GP) surrogate model is used. 
For details on the surrogate models and how the Sobol indices are computed, see the 
following sections in the Theory chapter: Surrogate Models — Polynomial Chaos 
Expansion, Surrogate Models — Gaussian Process, and Sensitivity Analysis — Sobol 
Index.

For the correlation method, the sensitivity analysis is performed through pure 
sampling-based statistical analysis with no surrogate model. There are four types of 
correlations:

• The bivariate correlation, also known as the Pearson’s correlation, which computes 
the linear relationship between each input parameter and QoI.

• The rank bivariate correlation, also known as Spearman’s correlation, which 
computes the monotonicity between the each input parameter and QoI.

• The partial correlation, which computes the linear relationship between each input 
parameter and QoI where all linear effects from other input parameters are removed.

• The rank partial correlation, which computes the monotonic relationship between 
each input parameter and QoI where all linear effects from other input parameters 
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are removed. For details on how each correlation is computed, see Sensitivity 
Analysis — Correlations in the Theory chapter.

Settings

Select Sensitivity analysis from the UQ study type list to perform a UQ study with a 
sensitivity analysis.

For the sensitivity analysis method, choose Sobol (the default) or Correlation from the 
Method list.

For the Sobol method, the most efficient surrogate model is of the polynomial chaos 
expansion (PCE) type. But you can also use the type Gaussian process (GP). See the 
Theory sections Surrogate Models — Polynomial Chaos Expansion and Surrogate 
Models — Gaussian Process. If a GP model is used, you also need to choose a Monte 
Carlo analysis.

For a full overview of the settings for the Uncertainty Quantification node, see The 
Uncertainty Quantification Study.

Results

The output for the sensitivity analysis study includes the QoI table, which contains the 
sampled input parameters with the LHS method as well as the QoI computed with the 
COMSOL model.

For the Sobol method, there is also the Sobol table as well as the Sobol training error 
table. For the adaptive training method, there are also Adaptive Sobol and Adaptive 
Sobol training error tables. The adaptive tables have results (updated while solving) for 
the Sobol indices as well as the error estimates. These tables can be useful to inspect 
how the process is going and also verify that the errors are reduced during the 
adaptation process. This method also adds Sobol index plots, one per QoI, in 1D plot 
groups. These plots use the Sobol table as their data source. Both the first and total 
index are given with different colors for the different inputs. The plot is by default 
sorted so that the most influential inputs are shown first.

For the Correlation method, there are tables for bivariate and rank bivariate 
correlation, as well as partial and rank partial correlation.
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U s i n g  t h e  Un c e r t a i n t y  P r opaga t i o n  
S t u d y  T yp e

In an uncertainty propagation study, probability distribution for the input parameters 
is propagated to probability distributions for the QoI. Another, less statistical, way of 
expressing this: In a uncertainty propagation study, the variation for the outputs is 
computed from given variations for the inputs. The distribution (or variation) for the 
inputs is well defined through the input parameter specification for the UQ study, but 
the output distribution is in general far from simple to compute or estimate, in 
particular for nonlinear QoIs. The method used for the Uncertainty Quantification 
Module is to first train a generally valid surrogate model, and then use Monte Carlo 
methods to get raw data for a KDE. The kernel density estimation itself is performed 
by a new dataset under Results and a new plot type, both automatically added by this 
analysis type.

Background

The Uncertainty Propagation study type performs a number of model evaluations 
from LHS sampling data; such data is used to generate a surrogate model. Then a 
number of predictions are made by using the surrogate model in a Monte Carlo 
analysis. A KDE is generated with this sampled data to produce the estimation of the 
probability density for each QoI. For details on the KDE and surrogate method, see 
the Theory sections Uncertainty Propagation — Monte Carlo Analysis, Surrogate 
Models — Polynomial Chaos Expansion, and Surrogate Models — Gaussian Process.

Settings

Select Uncertainty propagation from the UQ study type list to perform a UQ study with 
uncertainty propagation. Alternatively, select Add New Uncertainty Quantification Study 

For>Uncertainty Propagation from the context menu for another UQ study in the same 
model. The advantage with the latter method is that you will start from a copy of the 
QoI and input parameter settings from the UQ study. Another advantage is that the 
QoI table will also be copied so that you will by default start with the method Improve 

and analyze, which will include your previous data in the training. If you are adding (or 
removing) input parameters or QoIs, this method will not work, and you have to 
change Compute action to Compute and analyze.
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For a full overview of the settings for the Uncertainty Quantification node, see The 
Uncertainty Quantification Study.

Results

By performing an uncertainty propagation (UP) analysis using the nonadaptive 
surrogate models, four tables are added to the output table group for the UP analysis.

• A QoI Confidence interval table. It contains one row per QoI, with columns for the 
mean, standard deviation (STD), minimum, and maximum, followed by confidence 
intervals for 90%, 95%, and 99% likelihood.

• A UP predicted QoI table. It contains the surrogate-model-predicted values for the 
QoIs for the Monte Carlo sampling points. This data table is used by KDE datasets 
that are also added by the analysis, one per QoI.

• A UP predicted STD table. It contains the surrogate-model-predicted standard 
deviation for the Monte Carlo sampling points. This can be seen as the built-in 
surrogate model error estimation.

• Finally, a Maximum entropy table. It contains the maximum relative standard 
deviation, one per QoI.

When an adaptive surrogate model is used, an Adaptive maximum entropy table is also 
added to the output table group. It contains the maximum relative standard deviation, 
one per QoI for all the adaption steps.

An Uncertainty Quantification plot group is also added with KDE plots, one for each 
QoI.
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U s i n g  t h e  R e l i a b i l i t y  Ana l y s i s  S t u d y  
T yp e

Reliability analysis provides an efficient and accurate way of studying the probability 
that the QoIs satisfy reliability conditions. It answers the following question: Given a 
set of uncertain input parameters and quantities of interests, what is the probability 
that the QoIs satisfy certain conditions compared to given thresholds?

Background

The Reliability Analysis study type is used to compute the probability that all QoIs 
satisfy the reliability conditions or any QoIs satisfy the reliability conditions using the 
EGRA method. The EGRA method is constructed upon an AGP surrogate model 
where the EFF is used as an estimation of where the AGP model should append the 
next adaptation point. The EFF is constructed to balance the exploitation of the AGP 
model and the exploration of the unobserved input parameter space. More details of 
EGRA can be found in Reliability Analysis — Efficient Global Reliability Analysis.

Settings

Select Reliability analysis, EGRA from the UQ study type list to perform a UQ study with 
reliability analysis. You can also specify settings for the surrogate model. Only the 
adaptive GP is an applicable surrogate model for this type of analysis.

For a full overview of the settings for the Uncertainty Quantification node, see The 
Uncertainty Quantification Study.

Results

Six tables are generated in an efficient global reliability analysis (RA) and added to the 
result output table group for RA:

• The Probability for conditions table contains the important number that is the result 
of the EGRA problem.

• The Adaptive probability for conditions table, with the probabilities for all the 
adaptive steps.
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• The Maximum expected feasibility function table gives the value for the EFF for the 
final step of the adaptive process.

• The Adaptive maximum expected feasibility function table contains the EFF for all the 
adaptive steps.

• The RA predicted QoI table provides the predicted values for the QoIs for the sample 
points produced by the Monte Carlo process.

• The Adaptive RA predicted QoI table contains the predicted values of the QoIs for all 
the adaptive steps.

• Finally, a Maximum entropy table. It contains the maximum relative standard 
deviation, one per QoI.

When an adaptive surrogate model is used, an Adaptive maximum entropy table is also 
added to the output table group. It contains the maximum relative standard deviation, 
one per QoI for all the adaption steps.

An Uncertainty Quantification plot group is also added with KDE plots, one for each 
QoI.
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U s i n g  t h e  I n v e r s e  Un c e r t a i n t y  
Quan t i f i c a t i o n  S t u d y  T yp e

Inverse uncertainty quantification estimates the calibration parameters using the 
experimental data and prior knowledge on the calibration parameters. It can be seen 
as parameter estimation with a Bayesian perspective.

Background

The Inverse Uncertainty Quantification study type is used to compute the posterior 
distribution of all calibration parameters based on the experimental data and the prior 
distribution of the calibration parameters. The MCMC method is used to construct 
Markov chains where the sampled data from a converged Markov chain is based on the 
posterior distribution. More details of Inverse Uncertainty Quantification can be 
found in Inverse Uncertainty Quantification— Markov Chain Monte Carlo.

Settings

Select Inverse Uncertainty Quantification from the UQ study type list to perform a UQ 
study with inverse uncertainty quantification. You can also specify settings for the 
surrogate model, MCMC and experimental data. The settings for the Number of 

samples and Step size are used for sampling data from posterior distribution of 
calibration parameters, more details about MCMC are discussed in the Theory section 
in Inverse Uncertainty Quantification— Markov Chain Monte Carlo. For a full 
overview of the settings for the Uncertainty Quantification node, see The Uncertainty 
Quantification Study.

Results

Four tables are generated in an inverse uncertainty quantification study and added to 
the result output table group for inverse uncertainty quantification:

• A MCMC samples table. It contains the samples of all calibration parameters from their 
posterior distributions, the samples of the standard deviation of the added 
discrepancy between the surrogate model and experimental data, the log-likelihood 
of the posterior and the acceptance rate of the Markov chain. From a converged 
Markov chain, the log-posterior should be smoothly varying and close to its 
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maximum value. The acceptance rate measures the percentage of random samples 
accepted by the Markov chain iteration. A small acceptance rate close to 0 indicates 
that the step size might be too large where the new samples are mostly rejected by 
the Markov chain; a large acceptance rate close to 1 indicates that the step size might 
be too small where the new samples does not cover enough space from parameter 
space defined by the prior distributions.

• A Calibrated confidence interval table. It contains one row per calibrated parameter, 
with columns for the mean, standard deviation (STD), potential scale reduction 
factor (Rhat) and number of efficient samples (Neff), minimum, and maximum, 
followed by confidence intervals for 90%, 95%, and 99% likelihood. The potential 
scale reduction factor measures the ratio of the variance of samples within a Markov 
chain to the variance of the samples across chains computed with different starting 
points. The potential scale reduction factor should decline to 1 when the sample size 
approaches infinity and the chain converges. The number of efficient samples 
measures the effectiveness of a Markov chain, it estimates the number of samples as 
if they are independent random draws from the posterior distribution. The number 
of efficient samples should be at least 20 for each calibration parameter to be 
considered a converged Markov chain.

• A Posterior mean around experimental data table. It contains the experimental data, 
the mean and the standard deviation of the predicted QoIs computed with the 
calibrated parameters from the Markov chain in the MCMC samples table. The 
experimental data of the QoIs at the experimental data points should be contained 
within the bound of the predicted QoIs mean and standard deviation.

• Finally, a Maximum entropy table. It contains the maximum relative standard 
deviation from the GP surrogate model, one per QoI.

When an adaptive GP surrogate model is used, an Adaptive maximum entropy table is 
also added to the output table group. It contains the maximum relative standard 
deviation, one per QoI for all the adaption steps.
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Th e  Un c e r t a i n t y  Quan t i f i c a t i o n  S t u d y

The Uncertainty Quantification study ( ) contains tools for setting up UQ studies of 
different types for evaluating the uncertainty and sensitivity in a simulation model with 
respect to some input parameters with variations described by some statistical 
distribution. To add an Uncertainty Quantification study, right-click a Study node and 
choose Uncertainty Quantification. You can only have one Uncertainty Quantification 
node in each study.

At the top of the Settings window, you can use the Compute action button to run the 
study. The effect of this action is determined by the Compute action settings as 
described below.

The Settings window contains the following sections:

U N C E R T A I N T Y  Q U A N T I F I C A T I O N  S E T T I N G S

At the top of this section, use the Compute action list to select one of the following: 
Compute and analyze; Improve and analyze; Analyze only; or Analyze only, including 

verification data. When there is no previous data to use, the only option will be Compute 

and analyze, but when the QoI table has been populated, also Improve and analyze and 
Analyze only can be selected. Improve and analyze appends data (to the Quantities of 

Interest table) and analyzes the total amount of data. Analyze only performs the UQ 
analysis based on the data as is, and does not perform any new COMSOL model 
evaluations. When verification has been performed, Analyze only, including verification 

data is also an option. This option considers the union of data from the QoI table and 
the verification table.

From the UQ study type list, choose one of the following main study types for the UQ:

• Screening, MOAT (the default). See Using the Screening, MOAT Study Type.

• Sensitivity analysis. See Using the Sensitivity Analysis Study Type. For this study 
type, also choose a method from the Method list: Sobol (the default) or Correlation.

• Uncertainty propagation. See Using the Uncertainty Propagation Study Type.

• Reliability analysis, EGRA. See Using the Reliability Analysis Study Type.

• Inverse uncertainty quantification, MCMC. See Using the Inverse Uncertainty 
Quantification Study Type.
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From the Output table group usage list, choose Automatic (the default) or Manual. For 
Manual, you can choose any existing table group or New from the Output table group 
list to use an existing table group or create a new table group for the table data output 
from the UQ study. Automatic automatically generates an output table group for each 
UQ study type. When you switch between different UQ study types, the result table 
group automatically points to the output table group corresponding to the study type. 
The Clear previous result tables check box is selected by default. Clear it to keep existing 
result tables.

For all UQ study types except Screening, MOAT, there are also settings under Surrogate 

model settings:

From the Surrogate model list, choose one of these surrogate models:

The following surrogate models are available for the Sensitivity analysis and Uncertainty 

propagation UQ study types.

• Sparse polynomial chaos expansion. This method compares the leave-one-out 
cross-validation error for its polynomial to the Relative tolerance. The method starts 
from the lowest possible polynomial order and then increases it, while still fulfilling 
the Q norm (default: 0.5), until the error is smaller than the tolerance and the 
surrogate model construction is done. If the maximum polynomial degree is 
reached without the tolerance criteria being reached, the surrogate model 
construction terminates, but a warning is printed to the Log window. The setting for 
the maximum polynomial degree can be set on the Job Configurations level; see 
Uncertainty Quantification Job Configurations. The q-norm is real valued in the 
interval [0, 1], which determines the mixed terms included in the expansion. Mixed 
terms means terms that involve more than one parameter. A q-norm of 0 means that 
no mixed terms are used for the polynomial, while 1 allows mixed terms of the same 
combined order as the nonmixed terms. See the Theory section Surrogate Models 
— Polynomial Chaos Expansion for more information.

• Adaptive sparse polynomial chaos expansion (the default for Sensitivity analysis). This 
method finds the q-norm automatically during the surrogate model construction. 
This mechanism favors a small q-norm. The leave-one-out cross-validation error 
cannot be used to find new sampling points for the adaptation process. Instead, new 
sampling points are added with the LHS method, and a new error estimate is 
computed. The adaptation process is terminated if the error is smaller than the 
Relative tolerance. See the theory section Surrogate Models — Polynomial Chaos 
Expansion for more information.
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• Gaussian process. This surrogate model uses the standard deviation as its built-in 
error estimate. This error estimate can be computed for any GP evaluation point. 
An optimization approach is used to find the maximum error in the input parameter 
domain. Use the Optimization method for error estimation list: Direct (the default) or 
Monte Carlo. The Direct method is normally preferred because it is faster and gives a 
better estimate. In each iteration of this method, the number of GP evaluations can 
change. Initially, only a few evaluations are done, but the number can quickly grow. 
Therefore, you can set a bound, both on the number of iterations and the total 
number of GP evaluations. Enter values in the Maximum number of surrogate 

evaluations for optimization (default: 10,000) and Maximum number of optimization 

iterations fields (default: 500). The Monte Carlo method can be used for comparison 
with the Direct method. If the error obtained from the optimization approach is not 
smaller than the Relative tolerance, a warning is printed to the Log window. For this 
surrogate model, also specify a covariance and a mean. From the Covariance list, 
choose Squared exponential, Matérn 3/2 (the default), Matérn 5/2, Neural network, or 
Spectral mixture. From the Mean list, choose Constant (the default), Linear, or 
Quadratic. See the theory section Surrogate Models — Gaussian Process for more 
information.

• Adaptive Gaussian process. This is the only applicable surrogate model for Reliability 

analysis, EGRA. This method also uses the GP standard deviation for error estimation. 
Here, the same optimization methods as for the GP can be used to find the 
maximum. If the error obtained from the optimization approach is smaller than the 
Relative tolerance (default: 0.001), the adaptation iterations are terminated. The 
error estimate is used to add new sampling points, one at a time. For Reliability 

analysis, EGRA, the error estimation can be seen as a weighted error where the region 
for the QoIs away from the threshold are down-weighted to be less important. This 
means that most new points will be added close to the threshold, to enhance the 
quality of the surrogate model for this analysis. See the Theory section Reliability 
Analysis — Efficient Global Reliability Analysis for more information on this 
weighting.

When a surrogate model has been computed, you will, at the bottom of this section, 
find a Verify action list: Compute and verify, Improve and verify, and Verify only. Next to 
this list, you find an action button that executes the action selected. The Compute and 

verify action independently adds new sampling points, considering the ones you have 
already used for the surrogate model buildup. For these, new COMSOL model 
evaluations are performed. This data is then used to compute error estimates for the 
surrogate model. These error estimates are done independently of any surrogate model 
built-in error estimates and should be seen as an independent quality test of the 
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surrogate model. Notice that no new UQ analysis data is produced by this action. It 
will therefore not affect these results. The Improve and verify action can be used when 
an initial verification computation has already been done. It can be used to further add 
verification sampling points and COMSOL model evaluations to extend the 
verification. The Verify only action uses an existing verification table and only performs 
the verification error estimation, without adding any new sampling points or 
performing any new COMSOL model evaluations. This action can be useful, for 
example, if there is some COMSOL table with computational results for the same 
parameters and the same QoIs from a previous computation. See the section Surrogate 
Model Verification for more information.

Q U A N T I T I E S  O F  I N T E R E S T

From the Quantities of interest table list, choose New to create a new table, or choose 
any of the available tables. This table will be used to store not only sampling points but 
also the model evaluation of the QoIs for these points. This data serve as a building 
block for the surrogate models. This table is used when the compute action is Analyze 

only. It can also be used as a starting point for the compute action Improve and analyze. 
This table is used for all UQ analyses, and is not put in the Output table group.

The Solution to use list contains the solution in a COMSOL model to use as the QoI. 
Choose Automatic (the default), Summation, Minimum, Maximum, Use first, or Use last. 
The Automatic solution to use will be the last solution for time-dependent and 
parametric solutions, while for eigenvalue and eigenfrequency solutions, it will be the 
first solution. You can override this mechanism by selecting any of the other methods. 
For Summation, the QoI is defined as the summation of the Expression over all the 
solutions. For Maximum (or Minimum), the QoI is defined as the maximum (or 
minimum) of the expression taken over all the solutions. Notice also that evaluation 
operators like at() and with() can be used in the expression, making it possible to 
evaluate even more general quantities from dynamic solutions.

The Outer solution to use list is available when the UQ study is using a parametric 
sweep, function sweep, or material sweep in the same study. The choice refers to the 
solutions in the parametric sweep type study to use as the QoI. Choose Summation (the 
default), Minimum, or Maximum. For Summation, the QoI is defined as the summation 
of the QoIs over all the solutions computed in the parametric-sweep-type studies. For 
Maximum (or Minimum), the QoI is defined as the maximum (or minimum) of the QoIs 
taken over all the parametric sweep solutions.
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For Reliability analysis, EGRA with multiple QoIs, choose All true (the default) or Any 

true from the Probability for conditions list. With All true, the condition for each QoI 
must be fulfilled. With Any true, the condition for at least one QoI must be fulfilled.

For the Screening, MOAT; Sensitivity analysis; and Uncertainty propagation UQ studies, 
the QoI table includes the following columns:

• Expression — The expression of the QoI, a scalar expression.

• Description — An optional description of the expression.

• Individual solution to use — From the list in this column, you can use a specific 
solution for that QoI. The default, From "Solution to use", takes the solution from 
the Solution to use list above the table.

For Reliability analysis, EGRA, in addition to the Expression, Description, and Individual 

solution to use settings in the True if and Threshold columns are also required. The value 
for True if defines the relationship between the expression and the threshold. Larger 
than threshold means that the reliability probability is defined as the condition that the 
value of the expression is larger than the threshold. Smaller than threshold is the 
opposite condition.

I N P U T  P A R A M E T E R S

In this section, you define the input parameters for the UQ study and their related 
settings.

For each input parameter, from the Source type list, choose Analytic (the default) or 
Data (for the Sensitivity analysis, Correlation, Uncertainty propagation and Reliability 

analysis, EGRA study methods only).

Data Generation from Analytic source type
When you have chosen Analytic for all input parameters, the following additional 
settings are available (except for the Screening, MOAT study):

From the Number of input points type list, choose Automatic (the default) or Manual. 
The Manual type gives you the possibility to specify the Initial number of input points, 
which is the number of points generated and simulated (with the COMSOL model) 
before the adaptation starts. The Maximum number of input points is the total number 
of input points used by the adaptation. Both of these numbers are important for the 
adaptation process. The initial number needs to be large enough to cover the sampling 
space and the complexity in the QoIs. Otherwise, there is a risk that the adaptation 
algorithm is not adding new input points correctly. An appropriate number depends 
not only on the dimension of this space, which is the same as the number of input 
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parameters, but also on how large this space is in relation to the variation of the QoIs. 
The maximum number of input points puts a limit to the whole process. If the 
adaptation process has not terminated fulfilling the tolerance criteria when this limit is 
reached, a warning is printed in the Log window. When adaptation is not used, there is 
only one setting, the Number of input points, which dictates the exact size of the 
training data. Choosing this number will naturally be a tradeoff between surrogate 
model quality and training cost. Notice that the number of COMSOL model 
evaluations will be the same as the number of input points. The Automatic method 
chooses these numbers based on the number of input parameters and the compute 
action used. The number used for these properties can be inspected in the user 
interface, but they cannot be edited. Table 3-1 lists the default and automatic values 
for the different compute actions.

For the Screening, MOAT study, the following additional settings are available:

• The number of input points appears as a convenience below the Input parameter 

data generation method list. This number is equal to the number of COMSOL 
model evaluations. The formula is (m + 1)r, where r is the repetition number and 
m the number of input parameters.

• In the Repetition number field, enter the desired number of repetitions. Each 
repetition uses different start points for the Morris sampling technique from which 
one-at-a-time is changed to produce new sampling points (default: 4). See the 
Theory section Data Sampling — Morris Sampling.

• Choose a value for the Partition level, which specifies how many grid lines are used 
in each parameter dimension: 4 (the default), 6, 8, 10, or 12. See Data Sampling — 
Morris Sampling in the Theory chapter.

TABLE 3-1:  DEFAULT AND AUTOMATIC VALUES FOR THE INPUT POINTS PROPERTIES.

COMPUTE 
ACTION

NUMBER OF 
INPUT POINTS 
TYPE

MAXIMUM 
NUMBER OF 
INPUT POINTS 
(ADAPTATION)

INITIAL NUMBER 
OF INPUT 
POINTS 
(ADAPTATION)

NUMBER OF INPUT 
POINTS 
(NONADAPTATION)

Compute 
and analyze

Automatic 20m 10m 20m

Compute 
and analyze

Manual 20 10 20

Improve 
and analyze

Automatic 10m 5m 10m

Improve 
and analyze

Manual 10 5 10
 3 :  U N C E R T A I N T Y  Q U A N T I F I C A T I O N  M O D E L I N G



For all UQ study types where at least one input parameter has chosen Analytic from the 
Source type, specify the following additional settings:

From the Random seed type list, choose Automatic (the default) to generate a random 
seed automatically (which is then displayed below), Manual to enter a seed in the Initial 

random seed field, or Current computer time to use that time as the random seed. A 
random seed is used not only the first time sampling data is generated but also for 
subsequent generation, for example, for the Improve and analyze compute action. To 
avoid the same sampling data being generated over and over again, another random 
seed is used for subsequent runs. The Automatic method adds 1 to the seed each time 
you run the study, so that subsequent runs never use the same seed.

Data Generation Using Data source type
When you have chosen Data, you can choose the data source.

From the Data source list, choose Specified values (the default) or Result table.

When you have chosen Result table, you can chose the input parameter data source 
table and select the data Column from the table where the Column list is automatically 
populated with the table’s column headers.

When you have chosen Specified values for all the input parameters, you can choose the 
sweep type.

From the Sweep type list, choose Specified combinations (the default) or All 

combinations. These sweep types work exactly as if a parametric sweep study type was 
used for the input parameters. 

The Number of input points is computed based on the number of data points from 
Specified values or number of data points in the selected table Column, where the 
number of Specified values and number of data points in table Column should be the 
same. When All combinations is chosen from the Sweep type list, the Number of input 

points are the multiplication of the number of data points of each Specified values.

The Input Parameters Table
Under Input parameters, specify the input parameters for the UQ study in the table 
below, which contains the following columns:

• In the Parameter column, choose any existing global parameter as an input 
parameter.

• In the Source type column, choose Analytic or Data.

• In the Parameter description column, the distribution type and bound are 
automatically populated when Analytic is chosen from the Source type list, the data 
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source type and the number of input data points are automatically populated when 
Data is chosen from the Source type list.

When Analytic is chosen for Source type, the analytic distribution settings are shown 
under the table:

• In the Distribution list, choose the distribution for the input parameter: Uniform (the 
default), Normal(μ,σ), LogNormal(μ,σ), Gamma(k,θ), Beta(α,β), Weibull(λ,k), or 
Gumbel(μ,β). All distributions except the uniform distribution have two distribution 
parameters shown under the Distribution list, such as the Mean and Standard deviation 
for a normal distribution, Shape and Scale for a gamma distribution etc. You specify 
the distribution parameters in the corresponding edit field. All distributions except 
the uniform distribution and beta distribution have CDF-Lower, CDF-Upper shown 
under the Distribution list.

• In the CDF-Lower list, choose the cumulative distribution function level for your 
lower bound: 30%, 10%, 1%, 0.1% (the default), 1E-4, 1E-5, 1E-6, 1E-7, or Manual. 
These bounds automatically compute a lower bound by using the inverse 
cumulative distribution function.

• In the CDF-Upper list, choose the cumulative distribution function level for your 
upper bound: 70%, 90%, 99%, 99.9% (the default), 1-1E-4, 1-1E-5, 1E-6, 1-1E-7, or 
Manual. These bounds automatically compute an upper bound by using the inverse 
cumulative distribution function.

• For Manual bounds, you can enter bounds and units for the input parameter in the 
Lower bound, Upper bound, and Unit columns. For the bounds, you can use unit 
syntax such as 0.45[mm], and for the unit, add its abbreviation, such as Pa for pascal.

You can edit the table using the buttons under the table:

• In general, use the Move Up ( ), Move Down ( ), and Delete ( ) buttons and 
the fields under tables to edit the table contents. Or right-click a table cell and select 
Move Up, Move Down, or Delete.

• The Add button ( ) adds a new input parameter to the list.

• Use the Clear Table button ( ) to clear the entire table.

S U R R O G A T E - B A S E D  M O N T E  C A R L O  A N A L Y S I S

The Surrogate-Based Monte Carlo Analysis section is available for surrogate models used 
in Sensitivity analysis, Uncertainty propagation, and Reliability analysis, EGRA. For 
Sensitivity analysis, it is available for the Adaptive Gaussian process and Gaussian process 
surrogate models. Sensitivity analysis, Uncertainty propagation, and Reliability analysis, 

EGRA are all sample-based analysis, which means a large number of samples are often 
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required to achieve high accuracy of the analysis results. Given the computational cost, 
it is always forbidden to run a large number of COMSOL model evaluations to a 
large-scale simulation problem. Here, Monte Carlo analysis performs repeated 
evaluations using the surrogate model with random input parameter values, according 
to their distribution settings. A COMSOL model evaluation is only needed to build 
the surrogate model and is not needed in this analysis.

By default, the Monte Carlo parameters source is set to From surrogate model quantities 

of interest table. Change it to Manual enable a separate Monte Carlo parameters table 
below, where you can specify parameters for the Monte Carlo analysis. 

When From surrogate model quantities of interest table is chosen for the Monte Carlo 

parameters source or Source type for all parameters are Analytic when Manual is chosen 
for the Monte Carlo parameters source, you can enter a suitable number of samples for 
the Monte Carlo analysis (default: 10,000 samples) in the Number of samples field. 
Otherwise, the Number of samples field is automatically populated based on the 
number of samples from Specified value or data Column selected from the 
surrogate-based Monte Carlo analysis data source table.

When you have selected a Reliability analysis, EGRA study type and From surrogate model 

quantities of interest table is chosen for the Monte Carlo parameters source or Source 

type for all parameters are Analytic when Manual is chosen for the Monte Carlo 

parameters source, you can choose Importance sampling (the default) or Latin hypercube 

sampling. With the latter, the same Number of samples field appears. With Importance 

sampling selected, you can enter an Initial number of samples (default: 1000), a 
Maximum number of samples (default: 10,000), and a Relative tolerance (default: 0.05).

If desired, select the Monte Carlo random seed check box to enter a random seed in the 
Monte Carlo random seed field. Another seed can be used to generate another set of 
random samples, to check how sensitive the UQ analysis result is to the particular set 
used. Ideally, the results should not change much. If they do, you should consider 
increasing the number of samples.

When Manual is chosen for the Monte Carlo parameters source, the Monte Carlo 
parameters setting table is shown under Monte Carlo parameters source list. 

From the Source type list, choose Analytic (the default) or Data. All settings related to 
the Manual settings for the Monte Carlo parameters source are the same as those in the 
Input Parameters section with one difference, where the difference is that Nominal value 

can be selected from the Data source list. When Nominal value is selected, you can 
specify a nominal value of the corresponding parameter to be used for the Monte Carlo 
analysis.
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Using Manual settings for the Monte Carlo analysis other than what has been specified 
under input parameters is an advanced feature, and needs to be used with some care. 
The specification given here will be used for the UQ analysis. It is therefore possible 
to modify the specification for the input parameters and get new UQ analysis results 
through the compute action Analyze only, without making any new COMSOL model 
evaluation. Notice, however, that this will only be accurate if the surrogate model is 
also an accurate model for the new input parameter specification. One simple case 
where this approach can fail is if the surrogate model is constructed or trained for a 
smaller domain with stricter bounds, and here is used for a significantly larger domain 
that involves extrapolation.

S U R R O G A T E  M O D E L  V E R I F I C A T I O N

The error estimation for the surrogate models are estimations based on the known QoI 
data used to train the model. The verification error here defined the error, which 
directly measures how well the surrogate model predicts the QoIs unknown to the 
model. The Surrogate Model Verification section is only available for surrogate models 
used in Sensitivity analysis and Uncertainty propagation. It is not available for Reliability 

analysis, EGRA because the surrogate model for reliability analysis is not optimized for 
the global accuracy.

From the Verification quantities of interest table list, choose New for a new table, or 
choose an existing table. This table will contain the verification sample points, as well 
as COMSOL model evaluation of the QoIs, followed by the surrogate model 
predictions. The verification analysis will also produce the root mean square (RMS) of 
the difference between the model evaluations and the predictions as well as the relative 
RMS difference. These numbers can be found in the UP verification error table under 
the UQ analysis table group, one row per QoI. The RMS difference can be found in 
the Verification error column and the relative RMS difference in the Relative verification 

error column.

By default, the Verification parameters source is set to From surrogate model quantities 

of interest table. Change it to Manual enable a separate verification parameters table 
below, where you can specify parameters for the surrogate model verification. This can 
be useful, for example, if you want to verify the surrogate model in a certain part of the 
input parameter domain by using other bounds. Notice, however, that the surrogate 
model is trained under certain conditions and assumptions regarding the input 
parameters, so it is natural that the predictability (and error) for other input parameter 
settings is not as good.
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When From surrogate model quantities of interest table is chosen for the Verification 

parameters source or Source type for all parameters are Analytic when Manual is chosen 
for the Verification parameters source, you can enter the desired number of verification 
points (default: 10) in the Number of verification points field. This is the number of 
independent COMSOL model evaluations performed for the verification of a 
surrogate model. The sampling of points will be different from the one used to build 
the model. For example, another random seed will be used. Otherwise, the Number of 

verification points field is automatically populated based on the number of points from 
Specified value or data Column selected from the surrogate model verification data 
source table.

From the Random seed type list, choose Automatic (the default) to generate a random 
seed automatically (that initial random seed is then display below), choose Manual to 
enter a seed in the Initial random seed field, or choose Current computer time to use that 
time as the random seed.

S U R R O G A T E - B A S E D  R E S P O N S E  S U R F A C E

In this section, you can generate response surface data for your surrogate model, which 
can be used from results for visualization. In this section, you can use the Response 

Surface button and generate a filled COMSOL table. The filled format of the data 
makes it possible to use a Table Surface plot and select two parameters at a time and one 
QoI. When the table and plot are generated, it is possible to change the two parameters 
to use and the QoI to visualize. All this is set up for you by the action.

The filled-data structure can be controlled in the four-column table found at the top 
of the section. The first column, Parameter, contains the input parameters. This 
column is dictated by the surrogate model and cannot be changed. Here, the surrogate 
model is defined as the one last constructed from the Quantities of interest table and is 
therefore related to the UQ analysis. If the table has surrogate model information 
stored for this UQ study about how it was constructed and so on, then this column 
will be populated automatically. If the table does not have such information, it will be 
empty, and no response surface data can be generated. The second column is the Point 

generation method. For each parameter in this column, you can select Distribution, 
Specified values, or Both. For Distribution, the Distribution resolution column can be 
used to prescribe how many points should be used in this parameter dimension. The 
actual distribution function will here be used to add points close to the mean value. 
For the Specified values method, the Parameter value list column can be used to specify 
freely which points to use. The Both method combines the methods and adds points 
based on the last two columns. Notice that filled data means that all combinations of 
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values for the parameters will be generated or predicted. So, for example, if 5 points 
are generated for m parameters, 5m rows are generated in the Response surface data 

table.

The target table for the data generation can be set by Response surface data table. Since 
the table data can be large, there are also settings for how to store the table. Select one 
of the methods in the Store table list: In Model, On file, or In model and on file. See 
Table 3-1 for more information. When a file is used, you also have to give a filename 
in the Filename edit field. There is also a Maximum file size (MB) setting where you can 
limit how much data is stored from the data generation.

The Table Surface plot can be selected from the Response surface plot group.

E X P E R I M E N T A L  D A T A  S E T T I N G S

In this section, you can specify the experimental data source for the inverse uncertainty 
quantification study. 

From the Experimental data table list, choose an existing table that contains the 
experimental data. This table should contains data columns of measured experimental 
parameters and the corresponding QoIs.

Under Experimental data table, specify the data Type for each data column of the table:

• In the Column column, the table’s column header is automatically populated.

• In the Type column, choose Quantity of interest, Experimental parameters or Ignored 

column.

• In the Setting column, the user selected QoI from the Expression in the quantities of 
interests settings and experimental parameter from the Parameter in the input 
parameters settings will be automatically populated.

When Quantity of interest is chosen from the Type list, the Name list is shown under the 
table, where the list is automatically populated with the Expression in the quantities of 
interests settings; when Experimental parameters is chosen from the Type list, the Name 
list and Unit field are shown under the table, where the Name list is automatically 
populated with the Parameter in the input parameters settings; when Ignored column is 
chosen from the Type list, the corresponding data column is ignored in the uncertainty 
quantification study.

No repeated QoI expressions or input parameters should be used as the Quantity of 

interest and Experimental parameters respectively. Once the experimental data settings 
are specified, the Parameter description column from the input parameters settings 
table will be populated with label of calibration parameter or experimental parameter. 
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The input parameters that are not selected as experimental parameters are labeled as 
calibration parameters. Since the goal of the inverse uncertainty quantification is to 
compute the posterior distribution of the calibration parameters, at least one input 
parameters should be considered as calibration parameter.

O U T P U T  W H I L E  S O L V I N G

In this section, you control what to output when solving the UQ study.

Select the Plot check box to choose a plot group for plotting from the Plot group list. 
This plot group will be updated while solving the underlying COMSOL model for the 
model evaluations. No plots will be updated during Monte Carlo analysis. When using 
the Default choice, the first automatically added plot group will be used.

Select the Show UQ results in table graph check box to display numerical results from 
the UQ study in a table graph group that you choose from the Table graph group list. 
Choose New to create a new table graph group, or choose any existing table graph 
group.

From the Probes list, choose which probes to output values from: All (the default), 
None, or Manual. If you choose Manual, add any available probes to the Probes table 
below.

To output to an accumulated probe table, select the Accumulated probe table check box 
and then choose a probe table for the output from the Output table list. Choose New 
to create a new output table, or choose any existing output table.

A D V A N C E D  S E T T I N G S

From the Error handling list, choose Stop immediately (the default) to stop the solution 
process directly if an error occurs, or choose Skip problematic parameters to skip 
problematic parameters where the COMSOL model evaluation fails, and continue the 
solution process for the UQ study. When Skip problematic parameters is chosen, the 
possible errors are collected and retained in the Uncertainty Quantification Job 
Configuration node. This node has a warning overlay for its icon when there are 
collected errors.

From the Keep model evaluations in memory list, choose Only last (the default) to only 
keep the last model evaluation, or choose All to keep all model evaluations.

From the Default solver sequence generation list, choose Using global parameters (the 
default) to use the values of the global parameters or choose Use each parameter tuple 
for a parametric run with parameter tuples. See Parametric Sweep in the COMSOL 
Multiphysics Reference Manual for more information.
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Select the Reuse solution from previous step check box if desired. This option can be 
useful for cases where the solutions for the input parameters are close to each other and 
it benefits the nonlinear solution process to start from the previously computed 
solution. Notice that because the UQ analysis is global, there can be large differences 
between these solutions so this option is not always beneficial.

Select the Distribute model evaluation check box if you run COMSOL on a distributed 
system and want to make use of a distributed evaluation. The benefit of distributed 
evaluation is that during the sampling with the COMSOL model evaluations, these can 
be done in parallel. However, for the AGP, this is only done for the initial sample 
points, since only one model evaluation at a time will be performed for subsequent 
adaptation steps. Without adaptation, or when using the SPCE surrogate model, there 
is no such limitation.

From the Uncertainty Quantification log list, choose Normal (the default) to only keep 
the log from the uncertainty quantification study, choose Minimal to only keep minimal 
log from the uncertainty quantification study, or choose Detailed to keep the log from 
the uncertainty quantification study and the model evaluations from the uncertainty 
quantification study. 
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Un c e r t a i n t y  Quan t i f i c a t i o n  J o b  
Con f i g u r a t i o n s

Design of Experiments

To display this option, click the Show More Options button ( ) and select Solver and 

Job Configurations in the Show More Options dialog box.

Add a Design of Experiments node to evaluate outputs with the Latin hypercube or 
Morris sampling methods. The evaluation is done by solving the COMSOL model for 
certain parameter values. The values for these parameters are generated with these 
sampling methods. The outputs are any scalar quantity that can be evaluated for the 
underlying study. Click the Run button ( ) to run the design of experiments.

G E N E R A L

When a Design of Experiment node is used by UQ, you will only see a disabled setting, 
Defined by Uncertainty Quantification job, which shows which node uses this node and 
controls all its settings. When this is the case, a Disconnect from UQ Job and Edit button 
is available. By clicking this button, you can take over the control of the node.

The main setting at the top of the section is the Sample method list. Choose between 
Latin hypercube (the default), Morris, and Specified. For the Latin hypercube method, 
you can use the Number of model evaluations to set how many model evaluations you 
want to do in total. A global optimization method is used to find a Latin hypercube of 
good quality. Use Maximum number of iterations for LHS to specify how many steps to 
allow for the global optimizer for each initial configuration. Use Number of restart 

points for LHS to prescribe how many initial configurations to optimize. The best one 
of these will be used for the sampling. See the section Data Sampling — Latin 
Hypercube Sampling for more information.

From the Random seed type list, choose Automatic (the default) to generate a random 
seed automatically (the random seed used is displayed), choose Manual to enter a seed 
in the Random seed field, or choose Current computer time to use that time as the 
random seed. The Automatic method adds 1 to the seed for each run. This method is 
useful if you want reproducible results, but not identical sampling for repeated runs. 
The Manual method gives the same sampling each time you run with the same random 
seed. The Current computer time method typically never gives the same sampling when 
you run repeatedly.
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Choose one of the Output data methods: Recompute or Compute and append. The 
Recompute method clears the Design table in the Output table group and adds the sample 
parameter values and the corresponding output variable evaluations to this table. The 
Compute and append method does not clear the table but instead appends to it.

At the bottom, you find a table with the parameter settings. These are described in the 
Input Parameters settings section for the The Uncertainty Quantification Study.

G L O B A L  O U T P U T S

These outputs work as the QoIs for the The Uncertainty Quantification Study. See the 
Quantities of Interest section.

R E S U L T S  W H I L E  S O L V I N G

See The Uncertainty Quantification Study and the Output While Solving section.

E R R O R

See the Error section for Parametric Sweep (Job Configuration).

C L U S T E R  S E T T I N G S

See the Cluster section for Parametric Sweep (Job Configuration).

L O G

See the Log section for Parametric Sweep (Job Configuration).

Uncertainty Quantification (Job Configurations)

To display this option, click the Show More Options button ( ) and select Solver and 

Job Configurations in the Show More Options dialog box.

The Uncertainty Quantification ( ) node under Job Configurations is used by the UQ 
study. Most of the settings are shared and synchronized from the study level to the Job 
Configuration. Another related node is the Design of Experiment Job Configuration, 
which also shares many of its settings with the study. The organization of the settings 
is very much the same. The differences between the nodes are mentioned below.

G E N E R A L

The synchronization from study is dictated by the Defined by study step setting at the 
top of the General section. When this setting points to a UQ study, all synchronized 
properties are grayed out and cannot be edited. By changing this setting to User 
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defined, you can change these and run the UQ analysis directly from the Job 
Configuration.

This section also has a setting for which Design of Experiments job to use. By default, 
this points to New and a node of type Design of Experiments is added. You can also use 
an existing node of this type.

U N C E R T A I N T Y  Q U A N T I F I C A T I O N  S E T T I N G S

For the SPCE and ASPCE surrogate models, you can find a Maximum polynomial 

degree setting (default value: 30), which terminates the increase of order for the SPCE 
construction.

For the GP and AGP surrogate models, you can find three settings for the training of 
the GP. These settings are related to the so-called hyperparameters, which can be seen 
as an internal tuning of the GP to a fixed dataset. These are the Method for the number 

of restart points for training list: Automatic (the default) and Manual. The Automatic 
method will use 40m restart points. For each of these points, a local optimization 
problem is solved to find the best parameters. With the Manual method, specify the 
Number of restart points for training. With the Relative tolerance for training, you can 
set the termination tolerance for the local optimizer.

All the other settings are the same as for The Uncertainty Quantification Study.

Q U A N T I T I E S  O F  I N T E R E S T

All settings are the same as for The Uncertainty Quantification Study.

I N P U T  P A R A M E T E R S

There are two Latin hypercube sampling settings that are used by the used Design of 

Experiments node: the Maximum number of iterations for LHS and Number of restart 

points for LHS. These settings are related to the problem of finding an optimal set of 
sampling points. See Design of Experiments for more information.

All the other settings are the same as for The Uncertainty Quantification Study.

S U R R O G A T E - B A S E D  M O N T E  C A R L O  A N A L Y S I S

All settings are the same as for The Uncertainty Quantification Study.

S U R R O G A T E - B A S E D  R E S P O N S E  S U R F A C E

All settings are the same as for The Uncertainty Quantification Study.
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E X P E R I M E N T A L  D A T A  S E T T I N G S

All settings are the same as for The Uncertainty Quantification Study.

R E S U L T S  W H I L E  S O L V I N G

All settings are the same as those in the Output While Solving section for The 
Uncertainty Quantification Study.

C L U S T E R  S E T T I N G S

The check box Distribute parameters is synchronized to the Distribute model evaluation 
setting in the Advanced section setting for The Uncertainty Quantification Study. 
There is also a Maximum number of groups setting, which is not used when 
synchronized to a UQ study. When in User defined mode, you can change this and 
prescribe a value. Groups can be used to split all the evaluations into groups, so that 
each cluster node evaluates a group of model evaluations together.

E R R O R

The main setting in this section is the Error handling list. It is synchronized to the 
setting in the Advanced section with the same name for The Uncertainty Quantification 
Study. All warnings and errors thrown within an uncertainty quantification study are 
collected in the table in this section. If errors occur for the Skip problematic parameters 
method, the failing parameter values and the corresponding error messages are both 
collected in the table. When there are warning or error messages collected, this node 
is also decorated with a Warning overlay on its icon.
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G l o s s a r y
This Glossary of Terms contains modeling terms in an uncertainty quantification 
context. For general mathematical and finite element terms, and geometry and 
CAD terms specific to the COMSOL Multiphysics software and documentation, 
see the glossary in the COMSOL Multiphysics Reference Manual. For references 
to more information about a term, see the index.
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G l o s s a r y  o f  T e rm s
adaptive Gaussian process (AGP) A Gaussian process method that adaptively adds 
new sample points based on the location of the maximum error estimation of the most 
recent Gaussian process model.

adaptive sparse polynomial chaos expansion (ASPCE) A sparse polynomial chaos 
expansion surrogate model that adaptively adds new sample points from a Latin 
hypercube sampling (LHS) if error estimation is larger than the relative tolerance.

bivariate correlation (Pearson’s correlation) A sample-based sensitivity analysis 
method that computes the linear relationship between a QoI (quantity of interest) 
and an input parameter.

calibration parameters Global parameters with unknown probability distributions. 
The distributions of these are determined (calibrated) in an inverse uncertainty 
quantification study.

compute action An action type that defines how to generate and use sampled input 
parameter data and model evaluations to perform UQ analysis.

covariance A covariance function encodes the assumption of the function you want to 
learn with a GP model, for instance, its smoothness and length scale.

cumulative distribution function (CDF) The probability that an uncertain variable is 
small or equal to a certain value.

efficient global reliability analysis (EGRA) A global reliability analysis method that 
balances the exploitation of the surrogate model and exploration of the unobserved 
region to maximize the accuracy of the surrogate model near the location where the 
QoIs are close to the threshold, thereby efficiently increasing the accuracy of the 
reliability analysis.

expected feasibility function (EFF) The error estimation used to find an adaptation 
point for the AGP used in reliability analysis. The EFF defines the expectation of the 
sample lying in the vicinity around the limit state where the QoIs are equal to the 
thresholds.
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experimental parameters Global parameters with known probability distributions. 
These are the parameters both used to create the surrogate model and to produce 
experimental data in the inverse uncertainty quantification study.

Gaussian process (GP) A popular probabilistic surrogate model that provides both the 
prediction and the variance of the prediction at every point sampled from the input 
parameter space.

importance sampling A method that, through sampling, forms a distribution that 
overweights an importance region. The method is used for reliability analysis.

input parameters Global parameters with uncertainties. These need to be specified 
before the model can be used to conduct uncertainty analysis.

inverse uncertainty quantification A UQ analysis that computes the posterior 
distribution of the calibration parameters based on experimental data and prior 
distributions of the calibration parameters.

kernel density estimation (KDE) A numerical technique for estimating the probability 
density function based on sample data. The method is formulating the probability 
density functions by using a known kernel function.

Latin hypercube sampling (LHS) A method used to generate sample data with good 
space filling in the input-parameter space.

Markov chain Monte Carlo (MCMC) A method that forms a chain of samples from the 
posterior distribution for the calibration parameters in the inverse uncertainty 
quantification study.

model evaluation A COMSOL Multiphysics computation for the sampled input 
parameter values and the QoIs evaluated based on the corresponding solution.

Morris one-at-a-time method (MOAT) The sample-based global screening method 
used to rank the importance of the input parameters.

partial correlation A sample-based sensitivity analysis method that computes the 
monotonic relationship between a QoI and an input parameter.

probability density function (PDF) The probability weight function for an uncertain 
variable.
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quantity of interest (QoI) The output from the COMSOL Multiphysics model 
evaluation that provides data for the uncertainty analysis.

rank bivariate correlation (Spearman’s correlation) A sample-based sensitivity analysis 
method that computes the linear relationship between the ranking of a QoI and the 
ranking of an input parameter.

rank partial bivariate correlation A sample-based sensitivity analysis method that 
computes the monotonic relationship between the ranking of a QoI and the ranking 
of an input parameter.

reliability analysis A UQ analysis that computes the probability that the QoIs satisfy a 
condition defined by thresholds.

response surface A postprocessing method that displays the relationship between each 
QoI and all the input parameters. Two parameters at a time can be visualized in a Table 
Surface Plot.

screening An UQ analysis that qualitatively ranks the importance of all input 
parameters for each of the QoIs separately.

sensitivity analysis A UQ analysis that quantitatively computes the influence of all 
input parameters for each of the QoIs separately.

sparse polynomial chaos expansion (SPCE) A polynomial chaos expansion surrogate 
model that finds the sparse representation of a multivariate orthonormal polynomial 
basis.

Sobol method A sensitivity analysis method that decomposes the variance of each QoI 
into a sum of contributions from the input parameters and their interactions.

surrogate model A class of inexpensive-to-evaluate models used instead of a 
COMSOL Multiphysics model for Monte Carlo-type UQ analysis.

uncertainty propagation A UQ analysis that propagates the uncertainty in inputs to 
the uncertainty in the outputs (QoIs).

verify action An action type that defines how to generate and use sampled data and to 
verify the accuracy of a surrogate model.
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