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Introduction

This guide describes the Structural Mechanics Module, an optional add-on
package that extends the COMSOL Multiphysics® modeling environment with
customized physics interfaces that solve problems in the fields of structural and
solid mechanics, including special physics interface for modeling of shells,

membranes, beams, plates, trusses, wires, and pipes.

This chapter introduces you to the capabilities of this module and includes a
summary of the physics interfaces as well as information about where you can find
additional documentation and model examples. The last section is a brief overview

with links to each chapter in this guide.

e About the Structural Mechanics Module

e Overview of the User’s Guide
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About the Structural Mechanics

Module

In this section:

¢ A Quick Overview of the Structural Mechanics Module

* What Problems Can It Solve?

e The Structural Mechanics Module Physics Interface Guide
* Common Physics Interface and Feature Settings and Nodes

* Where Do I Access the Documentation and Application Libraries?

The Physics Interfaces and Building a COMSOL Multiphysics Model in
Q the COMSOL Multiphysics Reference Manual

CHAPTER |I:

A Quick Overview of the Structural Mechanics Module

The Structural Mechanics Module solves problems in the fields of structural and solid
mechanics, adding special physics interfaces for modeling shells and beams, for
example.

The physics interfaces in this module are fully multiphysics enabled, making it possible
to couple them to any other physics interfaces in COMSOL Multiphysics or the other

modules. Available physics interfaces include:

* Solid mechanics for 1D and 2D plane stress, plane strain, and generalized plane
strain, 2D axial symmetry, and 3D solids

* Beams in 2D and 3D, Euler and Timoshenko theory

* Pipesin 2D and 3D

* Truss elements in 2D and 3D

* Wires in 2D and 3D

* Shells and plates, Mindlin theory, 3D and 2D axial symmetry

¢ Membranes, 3D and 2D axial symmetry

» With the Composite Materials Module, the Layered Shell interface is also available.
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The module’s study capabilities include static, eigenfrequency, time dependent
(transient), frequency response, buckling, response spectrum, random vibration, and

parametric studies.
There are several material models:

* Linear Elastic Materials can be isotropic, orthotropic, or fully anisotropic, and you
can use local coordinate systems to specify material properties.

e Linear Viscoelastic Materials
¢ DPiczoelectric Materials

* Magnetostrictive Materials are available when used together with the AC/DC

module.

* Material models for hyperelasticity, metal plasticity, porous plasticity, creep,
viscoplasticity, nonlinear elasticity, soil plasticity, concrete, rocks, and clay are
available with the optional Nonlinear Structural Materials Module and

Geomechanics Module.
Large deformations, as well as contact and friction, can also be modeled.

Coupling structural analysis with thermal analysis is one example of multiphysics easily
implemented with the module, which provides predefined multiphysics couplings for
thermal stress and other types of multiphysics. Piezoelectric materials, coupling the
electric field and strain in both directions are fully supported inside the module
through special multiphysics couplings solving for both the electric potential and the
displacements. Structural mechanics couplings are common in simulations done with
COMSOL Multiphysics and occur in interaction with, for example, fluid flow (fluid—
structure interaction, FST), chemical reactions, acoustics, electric fields, magnetic

fields, and optical wave propagation.

What Problems Can It Solve?

The Structural Mechanics Module contains a set of physics interfaces adapted to a
broad category of structural-mechanics analyses. The module serves as an excellent
tool for the professional engineer, researcher, and teacher. In education, the benefit of
the short learning curve is especially useful because educators need not spend excessive
time learning the software and can instead focus on the physics and the modeling

process.

A short summary is given below.

ABOUT THE STRUCTURAL MECHANICS MODULE |
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STATIC ANALYSIS

In a static analysis, the load and constraints are fixed in time.

EIGENFREQUENCY ANALYSIS
An eigenfrequency analysis finds the damped or undamped eigenfrequencies and
mode shapes of a structure, sometimes referred to as the free vibration of a structure.

Prestress effects and damping can also be taken into account.

TRANSIENT ANALYSIS
A transient analysis finds the transient response for a time-dependent model, taking
into account mass and mass moment of inertia. The transient analysis can be either

direct or using a modal solution.

FREQUENCY RESPONSE ANALYSIS
A frequency response analysis finds the steady-state response to harmonic loads. The
frequency-response analysis can be either direct or using a modal solution. Effects of

prestress can be included.

LINEAR BUCKLING STUDY
A linear buckling analysis uses the stiffness coming from stresses and material to
define an eigenvalue problem where the eigenvalue is a load factor that, when

multiplied with the actual load, gives the critical load in a linear context.

PARAMETRIC ANALYSIS
A parametric analysis finds the solution dependence due to the variation of a specific

parameter, which could be, for instance, a material property or the position of a load.

RESPONSE SPECTRUM ANALYSIS
Response spectrum analysis provides a method to estimate peak values of, for example,
displacements and stresses when a structure is subjected to a short, non-deterministic

event like an earthquake or a shock.

RANDOM VIBRATION ANALYSIS
For steady-state random dynamic loading, like wind or waves, it is possible to perform

random vibration analysis where the input is given in terms of a power spectrum
density (PSD).

INTRODUCTION



THERMAL STRESS
In a transient thermal stress study, the program neglects mass effects, assuming that
the time scale in the structural mechanics problem is much smaller than the time scale

in the thermal problem.

LARGE DEFORMATIONS

You can also enable geometric nonlinearity for all structural mechanics interfaces. The
engineering strain is then replaced with the Green—Lagrange strain and the stress with
the second Piola—Kirchhoft stress. To solve the problem, the program uses a total

Lagrangian formulation.

ELASTOPLASTIC MATERIALS
An elastoplastic analysis involves a nonlinear material with or without hardening.

Several isotropic and kinematic hardening models are available.
The material models allow large strains.

The elastoplastic material models are available in the Solid Mechanics, Shell, Layered

Shell, Membrane, and Truss interfaces.

CREEP AND VISCOPLASTIC MATERIALS
A number of different material models for creep and viscoplasticity are available. In

these materials, the rate of strain depends on the stress.

HYPERELASTIC MATERIALS
In hyperelastic materials, the stresses are computed from a strain energy density
function. They are often used to model rubber and biological tissue, but are also used

in acoustic elasticity. Many different models are available.

The hyperelastic materials are available in the Solid Mechanics, Shell, Layered Shell,

and Membrane interfaces.

NONLINEAR ELASTIC MATERIALS
The nonlinear elastic materials are intended for materials that exhibit a nonlinear
behavior already at small strains. Some brittle material as well as soils show this

behavior.

ABOUT THE STRUCTURAL MECHANICS MODULE | 33
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VISCOELASTIC MATERIALS
Viscoelastic materials have a time-dependent response, even if the loading is constant.
Viscoelasticity is available in the Solid Mechanics, Shell, Layered Shell, and Membrane

interfaces.

* Hyperelastic, elastoplastic, creep, viscoplastic, and nonlinear elastic
material models are available with the Nonlinear Structural Materials
Module.

H * Additional functionality and material models for geomechanics and soil
mechanics — nonlinear elasticity, soil plasticity, concrete, rock, and clay

material models — is available with the Geomechanics Module.

CONTACT MODELING

You can model contact between parts of a structure. The Solid Mechanics, Shell,
Layered Shell, and Membrane interfaces support contact with or without friction.
Three contact algorithms are available: penalty, augmented Lagrangian,and Nitsche

methods. The contact models can be augmented with adhesion and decohesion.

SPECIAL MODELING TECHNIQUES

In the Structural Mechanics Module, you will find support for many important special
modeling techniques. Some examples are:

* Bolt pretension

* Bolt thread modeling

e Stress linearization

* Rigid connectors

¢ Transitions between solid, shell, and beam elements

The Structural Mechanics Module Physics Interfuce Guide

The Poroelasticity interface requires and is coupled with the Structural
e Mechanics Module, and is discussed in the Subsurface Flow Module
User’s Guide.

CHAPTER |I:
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At any time, a new model can be created or physics interfaces added. Right-click the
Root (top) node and select Add Component or right-click a Component node and select
Add Physics.

Depending on the physics interface, specify parameters defining a problem on points,
edges (3D), boundaries, and domains. It is possible to specify loads and constraints on
all available geometry levels, but material properties can only be specified for the
domains, except for shells, membranes, beams, and trusses, where they are defined on
the boundary or edge level.

In the COMSOL Multiphysics Reference Manual:
* Studies and Solvers
@, * The Physics Interfaces

» For a list of all the core physics interfaces included with a COMSOL
Multiphysics license, see Physics Interface Guide.

PHYSICS INTERFACE ICON |TAG SPACE AVAILABLE STUDY TYPE
DIMENSION

1)) Acoustics

i) Elastic Waves

Elastic Waves, Time 2/ |elte 3D, 2D, 2D time dependent
Explicit axisymmetric
Piezoelectric Waves, X |— 3D, 2D, 2D time dependent
Time Explicit axisymmetric

_ Fluid Flow

= Fluid-Structure Interaction

Fluid-Solid Interaction2 — 3D, 2D, 2D stationary; time dependent

axisymmetric

Fluid-Shell Interaction2 — 3D, 2D stationary; time dependent

axisymmetric

ABOUT THE STRUCTURAL MECHANICS MODULE |
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PHYSICS INTERFACE ICON |TAG SPACE AVAILABLE STUDY TYPE
DIMENSION
Fluid-Shell Interaction, — 3D, 2D stationary; stationary, one

Fixed Geometry2

Fluid-Membrane
Interaction2

Fluid-Membrane
Interaction, Fixed
Geometry2

Fluid-Pipe Interaction,
Fixed Geometry7

Conjugate Heat Transfer,
Fluid-Solid Interaction?

Fluid-Solid Interaction,
Viscoelastic Flow2’ 10

Fluid-Solid Interaction,
Two-Phase Flow, Phase
Field? ¢

axisymmetric

3D, 2D
axisymmetric

3D, 2D
axisymmetric

3D, 2D

3D, 2D, 2D
axisymmetric

3D, 2D, 2D
axisymmetric

3D, 2D, 2D
axisymmetric

way; time dependent; time
dependent, one way

stationary; time dependent

stationary; stationary, one
way; time dependent; time
dependent, one way

stationary; time dependent

stationary; time dependent;

time dependent; time
dependent with phase
initialization
time dependent; time
dependent with phase
initialization

CHAPTER |I:
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PHYSICS INTERFACE ICON |TAG SPACE AVAILABLE STUDY TYPE
DIMENSION
&= Structural Mechanics
Solid MechanicsI = solid 3D, 2D, 2D stationary; eigenfrequency;
axisymmetric, |eigenfrequency,
ID, ID prestressed; mode analysis;
axisymmetric |time dependent; time
dependent, modal; time
dependent, modal
reduced-order model;
frequency domain;
frequency domain, modal;
frequency domain,
prestressed; frequency
domain, prestressed,
modal; frequency domain,
modal reduced-order
model; frequency domain,
AWE reduced-order
model; response spectrum;
random vibration (PSD);
linear buckling; bolt
pretension
Thermal Stress, Solid2 L] — 3D, 2D, 2D stationary; time dependent
axisymmetric
Thermal Stress, Shell> 4 g — 3D, 2D stationary; time dependent
. axisymmetric
Thermal Stress, m | 3D, 2D stationary; time dependent
Membrane® 4 axisymmetric
Joule Heating and Thermal | =a |— 3D, 2D, 2D stationary; time dependent

Expansion

axisymmetric

ABOUT THE STRUCTURAL MECHANICS MODULE |
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PHYSICS INTERFACE

TAG

SPACE
DIMENSION

AVAILABLE STUDY TYPE

Shell

Plate

shell

plate

3D

2D

stationary; eigenfrequency;
eigenfrequency,
prestressed; time
dependent; time
dependent, modal; time
dependent, modal
reduced-order model;
frequency domain;
frequency domain, modal;
frequency domain,
prestressed; frequency
domain, prestressed,
modal; frequency domain,
modal reduced-order
model; response spectrum;
random vibration (PSD);
linear buckling

stationary; eigenfrequency;
eigenfrequency,
prestressed; time
dependent; time
dependent, modal; time
dependent, modal
reduced-order model;
frequency domain;
frequency domain, modal;
frequency domain,
prestressed; frequency
domain, prestressed,
modal; frequency domain,
modal reduced-order
model; response spectrum;
random vibration (PSD);
linear buckling

CHAPTER |I:
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PHYSICS INTERFACE

TAG

SPACE
DIMENSION

AVAILABLE STUDY TYPE

Beam

Beam Cross Section

Truss

beam

truss

3D, 2D

3D, 2D

3D, 2D

stationary; eigenfrequency;
time dependent, modal;
time dependent, modal
reduced-order model;
frequency domain;
frequency domain, modal;
frequency domain, modal
reduced-order model; time
dependent; response
spectrum; random
vibration (PSD); linear
buckling

stationary

stationary; eigenfrequency;
eigenfrequency,
prestressed; time
dependent; time
dependent, modal; time
dependent, modal
reduced-order model;
frequency domain;
frequency domain, modal;
frequency domain,
prestressed; frequency
domain, prestressed,
modal; frequency domain,
modal reduced-order
model; response spectrum;
random vibration (PSD);
linear buckling

ABOUT THE STRUCTURAL MECHANICS MODULE |
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PHYSICS INTERFACE

ICON

TAG

SPACE
DIMENSION

AVAILABLE STUDY TYPE

Wire

Membrane

wire

mbrn

3D, 2D

3D, 2D
axisymmetric

stationary; eigenfrequency;
eigenfrequency,
prestressed; time
dependent; time
dependent, modal; time
dependent, modal
reduced-order model;
frequency domain;
frequency domain, modal;
frequency domain,
prestressed; frequency
domain, prestressed,
modal; frequency domain,
modal reduced-order
model; response spectrum;
random vibration (PSD);
linear buckling

stationary; eigenfrequency;
eigenfrequency,
prestressed; time
dependent; time
dependent, modal; time
dependent, modal
reduced-order model;
frequency domain;
frequency domain, modal;
frequency domain,
prestressed; frequency
domain, prestressed,
modal; frequency domain,
modal reduced-order
model; response spectrum;
random vibration (PSD)
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PHYSICS INTERFACE

ICON

TAG

SPACE
DIMENSION

AVAILABLE STUDY TYPE

Pipe Mechanics

Solid Thin-Film Damping

Shell Thin-Film Damping

L

&

&

&

pipem

3D, 2D

3D, 2D, 2D
axisymmetric

3D, 2D
axisymmetric

stationary; eigenfrequency;
time dependent, modal;
time dependent, modal
reduced-order model;
frequency domain;
frequency domain, modal;
frequency domain, modal
reduced-order model; time
dependent; response
spectrum; random
vibration (PSD)

stationary; eigenfrequency;
time dependent; time
dependent, modal; time
dependent, modal
reduced-order model;
frequency domain;
frequency domain, modal;
frequency domain, modal
reduced-order model; time
dependent; response
spectrum; random
vibration (PSD)

stationary; eigenfrequency;
time dependent; time
dependent, modal; time
dependent, modal
reduced-order model;
frequency domain;
frequency domain, modal;
frequency domain, modal
reduced-order model; time
dependent; response
spectrum; random
vibration (PSD)

ABOUT THE STRUCTURAL MECHANICS MODULE |
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PHYSICS INTERFACE

ICON

TAG

SPACE
DIMENSION

AVAILABLE STUDY TYPE

Piezoelectricity2

Piezoelectricity, Layered
Shell? >

Magnetostriction2'3

["Iagne’comechanicsz’3

Magnetomechanics, No
Currents23

Ferroelectroelasticityz’9

3D, 2D, 2D
axisymmetric

3D

3D, 2D, 2D
axisymmetric

3D, 2D, 2D
axisymmetric

3D, 2D, 2D
axisymmetric

3D, 2D, 2D
axisymmetric

stationary; eigenfrequency;
eigenfrequency,
prestressed; time
dependent; time
dependent, modal;
frequency domain;
frequency domain, modal;
frequency domain,
prestressed; frequency
domain, prestressed,
modal; small-signal analysis,
frequency domain; linear
buckling

stationary; eigenfrequency;
time dependent; frequency
domain

stationary; eigenfrequency;
time dependent; frequency
domain; small-signal
analysis, frequency domain;
eigenfrequency,
prestressed; frequency
domain, prestressed

stationary; eigenfrequency;
time dependent; frequency
domain; small-signal
analysis, frequency domain;
eigenfrequency,
prestressed; frequency
domain, prestressed

stationary; eigenfrequency;
time dependent; frequency
domain; small-signal
analysis, frequency domain;
eigenfrequency,
prestressed; frequency
domain, prestressed

stationary; time dependent;
frequency domain
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PHYSICS INTERFACE ICON |TAG SPACE AVAILABLE STUDY TYPE
DIMENSION

29

Electrostriction é — 3D, 2D, 2D stationary; time dependent;

axisymmetric |frequency domain

! This physics interface is included with the core COMSOL Multiphysics software but has
added functionality for this module.

2 This physics interface is a predefined multiphysics coupling that automatically adds all the
physics interfaces and coupling features required.

3 Requires the addition of the AC/DC Module.

4 Requires the addition of the Heat Transfer Module.

3 Requires the addition of the Composite Materials Module.

6 Requires the addition of the CFD Module, or the Polymer Flow, or the Microfluidics
Module.

7 Requires the addition of the Pipe Flow Module.

8 Requires the addition of the Porous Media Flow Module.

? Requires the addition of the AC/DC Module or the MEMS Module.

10 Requires the addition of the Polymer Flow Module.

Common Physics Interface and Feature Settings and Nodes

There are several common settings and sections available for the physics interfaces and
feature nodes. Some of these sections also have similar settings or are implemented in
the same way no matter the physics interface or feature being used. There are also some
physics feature nodes that display in COMSOL Multiphysics.

ABOUT THE STRUCTURAL MECHANICS MODULE |
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In each module’s documentation, only unique or extra information is included;
standard information and procedures are centralized in the COMSOL Multiphysics
Reference Manual.

In the COMSOL Multiphysics Reference Manual, see Table 2-4 for
links to common sections and Table 2-5 to common feature nodes.
n You can also search for information: press F1 to open the Help

window or Ctrl+F1 to open the Documentation window.

Where Do I Access the Documentation and Application Libraries?

A number of online resources have more information about COMSOL, including
licensing and technical information. The electronic documentation, topic-based (or
context-based) help, and the Application Libraries are all accessed through the
COMSOL Desktop.

If you are reading the documentation as a PDF file on your computer,
the blue links do not work to open an application or content

n referenced in a different guide. However, if you are using the Help
system in COMSOL Multiphysics, these links work to open other

modules, application examples, and documentation sets.

THE DOCUMENTATION AND ONLINE HELP

The COMSOL Multiphysics Reference Manual describes the core physics interfaces
and functionality included with the COMSOL Multiphysics license. This book also has
instructions on how to use COMSOL Multiphysics and how to access the electronic

Documentation and Help content.

Opening Topic-Based Help
The Help window is useful as it is connected to the features in the COMSOL Desktop.
To learn more about a node in the Model Builder, or a window on the Desktop, click

to highlight a node or window, then press F1 to open the Help window, which then

INTRODUCTION



displays information about that feature (or click a node in the Model Builder followed

by the Help button ( [ ). This is called topic-based (or context) help.

To open the Help window:

¢ In the Model Builder, Application Builder, or Physics Builder, click a node

or window and then press F1.

* On any toolbar (for example, Home, Definitions, or Geometry), hover the

mouse over a button (for example, Add Physics or Build All) and then

press F1.

¢ From the File menu, click Help ( | )-
¢ Inthe upper-right corner of the COMSOL Desktop, click the Help ( | )

button.

To open the Help window:

* In the Model Builder or Physics Builder, click a node or window and then
press F1.

* On the main toolbar, click the Help ( [ ) button.

¢ From the main menu, select Help>Help.

Opening the Documentation Window

Win

To open the Documentation window:

e Press Ctrl+F1.

* From the File menu, select Help>Documentation ( I! ).

To open the Documentation window:
* Press Ctrl+F1.

¢ On the main toolbar, click the Documentation ( [Jij ) button.

¢ From the main menu, select Help>Documentation.
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THE APPLICATION LIBRARIES WINDOW

Each model or application includes documentation with the theoretical background
and step-by-step instructions to create a model or application. The models and
applications are available in COMSOL Multiphysics as MPH-files that you can open
for further investigation. You can use the step-by-step instructions and the actual
models as templates for your own modeling. In most models, SI units are used to
describe the relevant properties, parameters, and dimensions, but other unit systems

are available.

Once the Application Libraries window is opened, you can search by name or browse
under a module folder name. Click to view a summary of the model or application and

its properties, including options to open it or its associated PDF document.

The Application Libraries Window in the COMSOL Multiphysics
Q Reference Manual.

Opening the Application Libraries Window
To open the Application Libraries window (][] ):

From the File menu, select Application Libraries.

Win To include the latest versions of model examples, from the File>Help
menu, select ([7f] ) Update COMSOL Application Library.

To include the latest versions of model examples, from the Help menu,
Linux select ([ ) Update COMSOL Application Library.

Select Application Libraries from the main File or Windows menus.

CHAPTER |I:

CONTACTING COMSOL BY EMAIL

For general product information, contact COMSOL at info@comsol.com.

COMSOL ACCESS AND TECHNICAL SUPPORT
To receive technical support from COMSOL for the COMSOL products, please
contact your local COMSOL representative or send your questions to

support@comsol.com. An automatic notification and a case number will be sent to you

INTRODUCTION



by email. You can also access technical support, software updates, license information,

and other resources by registering for a COMSOL Access account.

COMSOL ONLINE RESOURCES

COMSOL website
Contact COMSOL
COMSOL Access
Support Center
Product Download
Product Updates
COMSOL Blog
Discussion Forum
Events

COMSOL Application Gallery
COMSOL Video Gallery

Support Knowledge Base

www.comsol.com
www.comsol.com/contact
www.comsol.com /access
www.comsol.com/support
www.comsol.com/product-download
www.comsol.com/support/updates
www.comsol.com/blogs
www.comsol.com/forum
www.comsol.com/events
www.comsol.com/models
www.comsol.com/video

www.comsol.com/support/knowledgebase
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Overview of the User’s Guide

The Structural Mechanics Module User’s Guide gets you started with modeling using
COMSOL Multiphysics. The information in this guide is specific to this module.
Instructions how to use COMSOL in general are included with the COMSOL
Multiphysics Reference Manual.

As detailed in the section Where Do I Access the Documentation and
Application Libraries?, this information can also be searched from the Help
menu in COMSOL Multiphysics.

CHAPTER |I:

TABLE OF CONTENTS, GLOSSARY, AND INDEX
To help you navigate through this guide, see the Contents, Glossary, and Index.

MODELING WITH THE STRUCTURAL MECHANICS MODULE
The Structural Mechanics Modeling chapter gives you an insight on how to approach

the modeling of various structural mechanics problems.

STRUCTURAL MECHANICS THEORY
The Structural Mechanics Theory chapter introduces the general theory on which the

physics interfaces in the Structural Mechanics Module are based.

THE SOLID MECHANICS INTERFACE
The Solid Mechanics chapter describes The Solid Mechanics Interface, which is used
to model 3D solids, plane strain and plane stress 2D and 1D models, and 2D

axisymmetric models.

THE SHELL AND PLATE INTERFACES

The Shell and Plate chapter describes The Shell and Plate Interfaces, which are used to
model thin 3D structures (shell) and out-of-plane loaded plates (plate). The
underlying theory is described in Theory for the Shell and Plate Interfaces.

THE BEAM INTERFACE

The Beam chapter describes The Beam Interface, which contains Euler (Euler—
Bernoulli) and Timoshenko beams for modeling slender 3D and 2D structures.
Typical examples are frameworks and latticeworks. The underlying theory for the

physics interface is described in Theory for the Beam Interface.

INTRODUCTION



THE BEAM CROSS SECTION INTERFACE

The Beam Cross Section chapter describes The Beam Cross Section Interface, which
is used for computing cross section properties for beams. It can also be used for a
detailed evaluation of stresses in a beam when the section forces to which it is subjected
are known. The first section discusses Using the Beam Cross Section Interface, and the

underlying theory is described in Theory for the Beam Cross Section Interface.

THE TRUSS INTERFACE

The Truss chapter describes The Truss Interface, which models slender 3D and 2D
structures with components capable to withstand axial forces only. Typical applications
are latticeworks, but it can also be used for modeling cables. In the section Modeling
with Truss Elements, you will find a discussion about how to set up models using this
interface. The underlying theory for the physics interface is described in Theory for the
Truss Interface.

THE MEMBRANE INTERFACE
The Membrane chapter describes The Membrane Interface, which can be used for

prestressed membranes, cladding on solids, and balloons, for example. The underlying

theory for the physics interface is also included in Theory for the Membrane Interface.

THE MULTIPHYSICS INTERFACES
The Multiphysics Interfaces and Couplings chapter describes these physics interfaces

found under the Structural Mechanics branch when adding a physics interface:

e The Thermal Stress, Solid Interface combines a Solid Mechanics interface with a
Heat Transfer interface. The coupling appears on the domain level, where the
temperature from the Heat Transfer interface acts as a thermal load for the Solid

Mechanics interface, causing thermal expansion.

¢ The Thermal Stress, Shell Interface combines a Shell interface with a Heat Transfer
in Shells interface. The coupling appears on the boundary level, where the
temperature from the Heat Transfer in Shells interface acts as a thermal load for the

Shell interface, causing thermal expansion.

* The Thermal Stress, Layered Shell Interface combines a Layered Shell interface with
a Heat Transfer in Shells interface. The coupling appears on the boundary level,
where the temperature from the Heat Transfer in Shells interface acts as a thermal

load for the Layered Shell interface, causing thermal expansion.

¢ The Thermal Stress, Membrane Interface combines a Membrane interface with a

Heat Transfer in Shells interface. The coupling appears on the boundary level,

OVERVIEW OF THE USER’S GUIDE
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where the temperature from the Heat Transfer in Shells interface acts as a thermal

load for the Membrane interface, causing thermal expansion.

The Joule Heating and Thermal Expansion Interface combines solid mechanics
using a thermal linear elastic material with an electromagnetic Joule heating model.
This is a multiphysics combination of solid mechanics, electric currents, and heat
transfer for modeling of, for example, thermoelectromechanical (TEM)

applications.

The Piezoelectricity Interface, Solid combines a Solid Mechanics interface with an
Electrostatics interface. Piezoelectric materials in 3D, 2D plane strain and plane

stress, and 2D axial symmetry can be modeled.

The Piezoelectricity, Layered Shell Interface combines a Layered Shell interface with
an Electric Currents in Layered Shells interface. This makes it possible to model

piezoelectric effects in thin layered structures.

The Electrostriction Interface combines a Solid Mechanics with an Electrostatics
interface. Using this interface, you can solve problems where strains are caused by

electrostrictive effects.

The Ferroelectroelasticity Interface combines a Solid Mechanics with an
Electrostatics interface. Using this interface, you can solve problems involving

ferroelectric materials, for example within nonlinear piezoelectricity.

Hygroscopic Swelling Coupling combines a Solid Mechanics with a Magnetic Fields
interface. Using this interface, you can solve problems in the magnetostrictive field

with linear as well as nonlinear material models.

The Fluid-Solid Interaction Interface combines fluid flow with the Solid Mechanics
interface to capture the interaction between the fluid and the solid in a situation
where the fluid domain has significant deformation. The solid material exists on

domains which are adjacent to the fluid.

The Fluid-Shell Interaction Interface combines fluid flow with the Shell interface to
capture the interaction between the fluid and the solid in a situation where the fluid
domain has significant deformation. The shell is modeled on the boundary of the
fluid.

The Fluid-Membrane Interaction Interface combines fluid flow with the Membrane
interface to capture the interaction between the fluid and the membrane in a
situation where the fluid domain has significant deformation. The membrane is
modeled on the boundary of the fluid.

The Fluid-Solid Interaction, Fixed Geometry Interface combines fluid flow with the

Solid Mechanics interface to capture the interaction between the fluid and the solid
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in a situation where the fluid domain can be considered to be nondeforming. The

solid material exists on domains which are adjacent to the fluid.

The Fluid-Shell Interaction, Fixed Geometry Interface combines fluid flow with the
Shell interface to capture the interaction between the fluid and the solid in a
situation where the fluid domain can be considered to be nondeforming. The shell

is modeled on the boundary of the fluid

The Fluid-Membrane Interaction, Fixed Geometry Interface combines fluid flow
with the Membrane interface to capture the interaction between the fluid and the
membrane in a situation where the fluid domain can be considered to be

nondeforming. The membrane is modeled on the boundary of the fluid.

The Fluid-Pipe Interaction, Fixed Geometry Interface combines flow computed
using the Pipe Flow interface with structural analysis in the Pipe Mechanics

interface. Different types of fluid loads are transferred to the structural analysis.

The Fluid-Solid Interaction, Conjugate Heat Transfer Interface combines fluid flow
with the Solid Mechanics interface and the Heat Transfer in Solids and Fluids
interface. It combines fluid-structure interaction modeling with a nonisothermal
flow. Heat transfer is considered both in the fluid and in the solid in order to capture

thermal expansion effects.

The Fluid-Solid Interaction, Two-Phase Flow, Phase Field Interface combines
two-phase fluid flow with the Solid Mechanics interface to capture the interaction
between the fluid and the solid in a situation where the fluid domain has significant

deformation. The solid material exists on domains which are adjacent to the fluid.

The Fluid-Solid Interaction, Two-Phase Flow, Phase Field, Fixed Geometry
Interface combines two-phase fluid flow with the Solid Mechanics interface to
capture the interaction between the fluid and the solid in a situation where the fluid
domain can be considered to be nondeforming. The solid material exists on

domains which are adjacent to the fluid.
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Structural Mechanics Modeling

The goal of this chapter is to give you an insight on how to approach the modeling

of various structural mechanics problems.

Some physics interfaces and features discussed in this chapter are only available with
certain products. For a detailed overview of the functionality available in each

product, visit https: //www.comsol.com/products/specifications/
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In this chapter:

Study Types

Selecting the Physics Interface
Selecting Discretization

Coupling Different Element Types
Applying Loads

Defining Constraints

Calculating Reaction Forces
Introduction to Material Models
Modeling Piezoelectric Problems

Modeling Electrostrictive and

Ferroelectroelastic Materials

Modeling Magnetostrictive
Materials

Mechanical Damping and Losses
Modeling Geometric Nonlinearity
Contact Modeling

Activating and Deactivating
Material

Springs and Dampers
Defining Multiphysics Models
Thermally Coupled Problems

Fluid-Structure Interaction

STRUCTURAL MECHANICS MODELING

Component Mode Synthesis
Computing Mass Properties

Effective Properties of Periodic

Structures
Modeling Pretensioned Bolts

Simplified Modeling of Bolt
Threads

Modeling Embedded Structures

and Reinforcements

Modeling Thin Layers

Modeling Cracks

Buckling Analysis

Performing a Random Vibration
Analysis

Performing a Response Spectrum
Analysis

Stress Linearization

Solver Settings for Structural

Mechanics
Using Reduced Integration
Result Presentation

Part Libraries



Study Types

Introduction

In this section, you will find information about when and how to apply the study types
which are available for structural mechanics problems:
* Stationary Analysis

* Eigenfrequency Analysis

* Mode Analysis

* Time-Domain Analysis

* Frequency-Domain Analysis

* Mode Superposition

* Harmonic Perturbation

* Modal Reduced-Order Models

* Linearized Buckling Analysis

* Bolt Pretension Study

* Random Vibration (PSD) Study

* Response Spectrum Analysis Study

For general information about study types and solvers, see Studies and
@ Solvers in the COMSOL Multiphysics Reference Manual

Stationary Analysis

You can consider a structural mechanics problem as stationary if the following two
criteria are fulfilled:

* The loads vary so slowly that inertial forces are negligible. Problems of this type are

referred to as quasi static.

* There are no explicit time dependencies in the material model. Viscoelasticity and
creep have such time dependencies.

To perform this type of analysis, you use a Stationary study step.
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In many cases, there is a variation in the load, even though the solution for each value
of the load can be considered as stationary. There are three conceptually different

cascs:

* The load values are independent; it is just a number of different load cases you want

to compute. The load case handling functionality described in Load Cases is well
suited for this purpose.

You want to study a nonlinear problem where the solution is path dependent, or
where the load must be increased in small increments in order to obtain a converged
solution. In this case you should use the parametric continuation solver. Create a
parameter under Global Definitions>Parameters, which you use to control the
variation of the load. Then select Auxiliary sweep under Study Extensions in the
settings for the Stationary solver. In the table for the auxiliary sweep parameters, add

the load controlling parameter, and define its range of variation.

In a multiphysics problem, another physical quantity might be truly time dependent
but on a time scale that is “slow” from the structural mechanics point of view. This
is usually the case with, for example, problems coupled to heat transfer or diffusion.
If the problem also is such that the structural deformations do not affect the other
physics, it will be unnecessarily expensive to solve also the structural problem in the
time domain, irrespective of whether it is linear or nonlinear. In this situation, you
should first solve the other physics in a time-dependent study and then the structural
mechanics problem in a subsequent stationary study step using the time t as the

parameter in the auxiliary sweep.

For an example of how to set up such a study sequence, see
Fluid-Structure Intevaction in a Network of Blood Vessels: Application
[m] Library path Structural_Mechanics_Module/Fluid-Structure_Interaction/

blood_vessel.

CONSTRAINTS
A stationary problem is solvable only if the structure is sufficiently constrained. There
must not be any possible rigid body modes. Thus, no stress-free deformation states are

allowed.

For a more detailed discussion about sufficient constraints, see Rigid
lﬂ Body Motion.

CHAPTER 2:
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Eigenfrequency Analysis

An Eigenfrequency study solves for the eigenfrequencies (natural frequencies) and the

shapes of the corresponding eigenmodes.

When performing an eigenfrequency analysis, you can specify whether to look at the
mathematically more fundamental eigenvalue, A, or the eigenfrequency, f, which is
more commonly used in a structural mechanics context. The relation between the two
is

where i is the imaginary unit.

The undamped eigenvalue problem is commonly written as

[K-o’MJu = 0

where K is the stiffness matrix, M is the mass matrix, u is the eigenmode displacement
vector, and ® = 27if is the angular frequency. If damping is present, the eigenvalue

equation is expanded to

[K+ioC-0’M]u = 0 @-1)
where C is the viscous damping matrix, and K can be complex-valued.

Because only the shape and not the size of the modes (eigenvectors) have physical
significance, the computed modes can be scaled arbitrarily. You can select the method
for scaling in the Eigenvalue Solver node of the solver sequence. If Scaling of eigenvectors
is set to Mass matrix, the eigenmodes u are orthogonalized with respect to the mass
matrix M so that

u/Mu, = 1 (2-2)

This is a common choice for the scaling of eigenvectors within the structural mechanics
field. The choice of eigenvector scaling does not affect for example the results of a
subsequent mode superposition analysis, but it will affect the interpretation of an

exported modal representation of the system.
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MODAL PARTICIPATION FACTORS

Modal (or mass) participation factors are useful tools when working with the modal

representation of a structure. Through them, you can get the following information:

* The fraction of the total mass of a structure that a certain number of modes
represent is a result. This can be important when judging if a set of modes forms a
good enough base for a mode superposition.

¢ The main direction of vibration for a certain mode can be seen from the relation
between the participation factors.

* When you have a large set of modes, an examination of the participation factors can
give information about the dominant modes.

To compute modal participation factors, a Participation Factors node must be present
under Definitions in the current component. When you add an Eigenfrequency study
from the Add Study window, such a node is automatically created.

You can also add it manually under Definitions>Physics Utilities. If you do that after an
eigenfrequency study has been run, you need to do an Update Solution in order to get

access to the variables containing the participation factors.

The modal participation factors are available as global variables, and these can for
example be displayed in a table using a Global Evaluation node under Derived Values in
the Results branch. The participation factor results are available as predefined variables
in the Definitions submenu for the component. In Table 2-1, the variables created from
a Participation Factors node is listed (assuming the default tag mpf1).

TABLE 2-1: PARTICIPATION FACTOR VARIABLES

VARIABLE DESCRIPTION
mpf1.mass Total mass
mpf1.CMJ Center of mass, ] coordinate

mpf1.mEffLJ  Effective mass, translation along | axis

mpf1.mEffRJ Effective mass, rotation around ] axis

mpf.pfLJ Participation factor, translation along ] axis

mpf.pfRJ Participation factor, rotation around ] axis
mpf.pfLnormJ Normalized participation factor, translation along ] axis

mpf.pfRnormJ Normalized participation factor, rotation around | axis

The normalized participation factors are those that would be obtained if mass matrix
scaled eigenmodes would have been used.
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If a Participation Factors node is present in the model when an eigenfrequency study is
run, an evaluation group named Participation Factors is automatically generated. It
contains a table with the translational and rotational modal participation factors for all

computed eigenfrequencies.

If you would compute all eigenmodes of a structure, and sum all modal
masses, they will usually not exactly match the total mass of the structure.

The reason is that any mass which is associated with constrained degrees

!

of freedom is lost. This effect is discretization dependent. The mass lost

is a fraction of the mass of the elements having constrained nodes.

For an example showing how to compute modal participation factors and

modal mass, see In-Plane Framework with Discrete Mass and Mass
[ Moment of Inertin: Application Library path

Structural_Mechanics_Module/Verification_Examples/

inplane_framework_freq.

In the COMSOL Multiphysics Reference Manual:

* Eigenvalue Solver
e Studies and Solvers
a * Postprocessing of Eigenmodes
* Derived Values, Evaluation Groups, and Tables

In the theory chapter of the Structural Mechanics User’s Guide:

* Modal Participation Factors

It is possible to compute eigenfrequencies for structures which are not fully
constrained; this is sometimes referred to as free-free modes. For each possible rigid
body mode, there is one eigenvalue which in theory is zero. The number of possible

rigid body modes for different geometrical dimensions is shown in the table below.

TABLE 2-2: NUMBER OF POSSIBLE RIGID BODY MODES

DIMENSION NUMBER OF RIGID BODY MODES
3D 6 (3 translations + 3 rotations)
2D axisymmetric | (Z-direction translation)
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TABLE 2-2: NUMBER OF POSSIBLE RIGID BODY MODES

DIMENSION NUMBER OF RIGID BODY MODES

2D (solid, beam, truss) 3 (2 translations + | rotation)

2D (plate) 3 (I translation + 2 rotations)

The computed rigid body modes will in general not be recognizable as having pure
translation or rotation. Rather, they will contain linear combinations of all the

fundamental rigid body motions.

In a piezoelectric model, one more zero eigenfrequency could appear if you have not

set a reference value for the electric potential.

In practice, the natural frequencies of the rigid body modes are not computed as
exactly zero, but can appear as small numbers which may even be negative or complex.
If rigid body modes are present in the model, then it is important to use a nonzero
value in the Search for eigenfrequencies around text field in the settings for the
Eigenfrequency study step. The value should reflect the order of magnitude of the first

important nonzero eigenfrequency.

For an example showing an eigenfrequency computation in a model
having a rigid body mode, see Eigenfrequency Analysis of n Free
[ Cylinder: Application Library path Structural_Mechanics_Module/

Verification_Examples/free_cylinder.

CHAPTER 2:

DAMPING

If any type of damping is included in the model, an eigenfrequency solution
automatically returns the damped eigenvalues. The eigenfrequencies and, in general,
also the mode shapes are complex in this case. A complex-valued eigenfrequency can
be interpreted so that the real part represents the actual frequency, and the imaginary
part represents the damping. The damping ratio of the corresponding eigenmode can
be defined as

imag(w;) imag(w,)

P e real(w;)

where the approximate expression is valid with high accuracy (within 2%) as long as the

damping is less than 0.2.

STRUCTURAL MECHANICS MODELING



In a complex mode shape, there are phase shifts between different parts of the
structure, so that not all points reach the maximum at the same time under free

vibration.

Some damping types will still give real-valued eigenmodes, this is the case for Rayleigh

damping and loss factor damping.

If an eigenfrequency study is performed as a first step of a mode
superposition analysis, then all features that supply damping should be
disabled in this step. This can be done in the Physics and Variables Selection
section in the settings for the Eigenfrequency study step.

[

The damping is taken into account in the mode superposition studies.

See also the discussion under Mode Superposition.

PRESTRESSED ANALYSIS

In a loaded structure, the natural frequencies may be shifted due to stress stiffening.

To do a prestressed analysis, Include geometric nonlinearity must be selected in the
Eigenfrequency study step. This is automatic when you add the Eigenfrequency,
Prestressed study type.

The prestress loading can include a contact analysis, in which case the subsequent

cigenfrequency analysis provide as linearization around the current contact state.

& Prestressed Structures

FREQUENCY DEPENDENT MATERIAL PROPERTIES
If the material data (stiffness or damping) is frequency dependent, the eigenvalue
problem will become nonlinear. This can, for example, occur for some viscoelastic

materials. In this case, the eigenvalue equation Equation 2-1 becomes

[K(0)+ioC(0)-o’Mlu = 0 (2-3)

The eigenvalue solver as such assumes that the matrices involved are constant, so they
must be evaluated at a certain frequency, the Lnearization point.

[K(op) +ioC(oy) - o Mlu = 0 (2-4)

STUDY TYPES |

6l



62 |

In order to get a correct solution to Equation 2-3, the linearization point oy, must be
close to the actual eigenvalue ®. This is in general possible only for one single
eigenfrequency at a time. You must solve this problem either by manual iteration, or

by using some type of scripting, for example through a model method.

Eigenmodes of o Viscoelastic Structural Damper: Application Library
[|I[| path Structural_Mechanics_Module/Dynamics_and_Vibration/

viscoelastic_damper_eigenmodes.

The built-in viscoelastic materials use a special formulation that do not

generate a nonlinear eigenvalue problem, as long fractional derivatives are

not used.

CHAPTER 2:

Mode Analysis

The Mode Analysis study type (@) is available with the Solid Mechanics interface in
2D plane strain.

Elastic waves can propagate over large distances in structures like rails and pipes, with
a generic name referred to as waveguides. After some distance of propagation in a
waveguide of uniform cross section, such guided waves can be described as a sum of
just a few discrete propagating modes, each with its own shape and phase speed. The
equation governing these modes can be obtained as a spatial Fourier transform of the
linearized time-harmonic equation in the waveguide axial z direction or by inserting

the assumption that the mode is harmonic in space,

and eliminating all out-of-plane z dependence.

Similar to the full time-harmonic equation, the transformed equation can be solved at
a given frequency with a nonzero excitation for most axial wave numbers %,. But at
certain discrete values the equation breaks down. These values are the propagation

constants or wave numbers of the propagating or evanescent waveguide modes. The
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eigenvalue solver can solve for these propagation constants together with the

corresponding mode shapes.

. The propagating wave number is a function of the frequency. The relation

= between the two is commonly referred to as a dispersion curve.

The most common use for mode analysis is to define sources for a subsequent
time-harmonic simulation. If there is a component with one or more waveguide
connections, its behavior can be described by simulating its response to the discrete set

of propagating modes on the waveguide opening cross sections.

e Out-of-Plane Waves in the Structural Mechanics Theory Chapter

@, * Studies and Solvers and Mode Analysis in the COMSOL Multiphysics
Reference Manual

Time-Domain Analysis

There are two classes of problems where a stationary solution cannot be used:

e When the inertial forces no longer are negligible, the full problem as given by
Newton’s first law must be solved.

* When there are time dependencies in the material model, as for creep or

viscoelasticity.

The most general way of handling time-dependent problems is to use a Time Dependent
study. In this type of analysis, you can incorporate any type of nonlinearity, and there

are no limitations on the time dependence of the loads.

A time-domain solution can be preceded by a stationary study, if, for example, prestress

effects are needed.

For a linear problem including inertia, using the mode superposition method is often

much more efficient than using the standard direct method.

SOLVER SELECTION
The two classes of dynamic problems presented above have quite different properties.
The inertial forces in the full structural dynamics problem contain second-order time

derivatives of the displacements, whereas creep and viscoelasticity only have first-order

STUDY TYPES
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derivatives. The physical and numerical properties of these equations differ

significantly.

There are two general solvers for time-dependent problems in COMSOL
Multiphysics.

¢ The Generalized alpha method, which is recommended for structural dynamics
problems. This is the default solver if Structural Transient Behavior is sct to Include
inertial terms in the physics interface settings.

¢ The BDF method, which is recommended for first-order problems. This is the
default solver if Structural Transient Behavior is sct to Quasistatic in the physics

interface settings.

In the COMSOL Multiphysics Reference Manual:

IE}‘ ¢ Time-Dependent Solver

¢ Studies and Solvers

Frequency-Domain Analysis

In a frequency-domain analysis, you study the response to a harmonic steady state
excitation for certain frequencies. Such a steady state can prevail once all transient

effects have been damped out.

The response must be linear, so that the single frequency harmonic excitation gives a
pure harmonic response with the same frequency. The model may, however, contain
nonlinearities. The harmonic response is computed around a certain linearization

point. In such a case, the frequency-domain analysis can be considered as a very small

perturbation around that linearization point.

{'i}‘ Harmonic Perturbation

CHAPTER 2:
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All loads and responses in a frequency-domain analysis are in general complex-valued
quantities. If all loads do not have the same phase, you can describe the phase of a

certain load in two ways:

* Add a Phase subnode to the load, in which you directly give the phase angle.

* Enter the load as a complex value, for example as
100[N]*(1+0.3*i) /sqrt(1+0.3°2).

Most results from a frequency domain analysis are complex-valued. In many results
evaluation nodes, the real value of any result quantity will be shown. Assuming that
you want to display for example the displacement in the x direction, u, you have the

following options:

* DPlotuorreal(u). This gives the displacement at current (default zero) phase angle.

* Plot imag(u). This gives the displacement at a phase angle shifted 90 degrees from

the current value.
e Plot abs(u). This gives the amplitude of the displacement.
* Plot arg(u). This gives the phase angle of the displacement.

The reference phase, with respect to which the results above are reported can be

entered in the settings for the dataset.
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Result quantities that are nonlinear in terms of the displacements, such as principal

stresses, should be interpreted with great care in frequency domain. They will in

general not be harmonic, so the information about amplitude and phase is not reliable.

Some extra variables for postprocessing are created in a frequency-domain

analysis. As an example, in a Solid Mechanics interface with the name

solid, the following variables are defined:

e solid.

e solid.

e solid

e solid.
e solid.

¢ solid.

e solid

[

e solid.
* solid.
e solid.
e solid.
* solid.

e solid.

cycle.

solid.

disp — norm of displacement (at current phase angle)

vel — norm of velocity (at current phase angle)

.acc — norm of acceleration (at current phase angle)

disp_rms — RMS displacement over a cycle
vel_rms — RMS velocity over a cycle

acc_rms — RMS acceleration over a cycle

.UAmpX — amplitude of displacement in the X direction

uAmp_tX — amplitude of velocity in the X direction
uAmp_ttX — amplitude of acceleration in the X direction
uPhaseX — phase of X displacement, in radians

uPhase_tX — phase of X velocity, in radians

uPhase_ttX — phase of X displacement, in radians

mises — von Mises equivalent stress at current phase angle.

mises_peak — maximum von Mises equivalent stress over a

The components in other coordinate directions are obtained by replacing

X by another coordinate name.

CHAPTER 2:

PRESTRESSED ANALYSIS

The shift in the natural frequencies in a prestressed structure may have a significant

effect on the frequency response. This is particularly important when the frequencies

of the load are close to any of the natural frequencies of the structure.

To do a prestressed analysis, Include geometric nonlinearity must be selected in the

Frequency Domain study step. This is automatic when you add the Frequency Domain,

Prestressed study type.
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The prestress loading can include a contact analysis, in which case the subsequent

frequency domain analysis provides a linearization around the current contact state.

e DPrestressed Structures

a .

Harmonic Perturbation

OBTAINING A TIME HISTORY

Sometimes you want to study the time history over a period for the results of a
frequency domain analysis. You can do that by adding a Frequency to Time FFT study
step. The frequency response results are then viewed as terms in a Fourier series, which
can be transformed to time domain. It is possible combine the results for several
frequencies into a single time history, under the assumption that they are all multiples

of the same fundamental frequency.

For examples showing how to obtain a time history from frequency

domain results, see

* Viscoelastic Structural Damper: Application Library path
Structural_Mechanics_Module/Dynamics_and_Vibration/

viscoelastic_damper_frequency.
o Vibration Analysis of  Deep Beam: Application Library path

Structural_Mechanics_Module/Verification_Examples/

vibrating_deep_beam.

Mode Superposition

Analyzing forced dynamic response for large models can be very time-consuming. You
can often improve the performance dramatically by using the mode superposition
technique. The following requirements must be met for a modal solution to be
possible:

* The analysis is linear. It is possible, however, that the structure has been subjected
to a preceding nonlinear history. The modal response can then be a linear

perturbation around that state.
* There are no nonzero prescribed displacements.

* The important frequency content of the load is limited to a range that is small when

compared to all the eigenfrequencies of the model, so that its response can be
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approximated with a small number of eigenmodes. In practice, this excludes wave

and shock type problems.

¢ Ifthe modal solution is performed in the time domain, all loads must have the same
dependency on the time. This requirement can be relaxed if you use a reduced-order
model to represent the system, rather than using one of the mode superposition

studies.

When using the Structural Mechanics Module, there are three predefined study types
for mode superposition:

e Time Dependent, Modal
* Frequency Domain, Modal

* Frequency Domain, Prestressed, Modal

The two first of these study types consist of two study steps: One step for computing
the eigenfrequencies and one step for the modal response. The last one has three study
steps. Before the eigenfrequency step, you solve a static load case in order to get a

prestress state used in the eigenfrequency computation.

In practice, you have often computed the eigenfrequencies already, and then want to
use them in a mode superposition. In this case, start by adding an empty study, and
then add a Time Dependent, Modal or Frequency Domain, Modal study step to it. After
having added the study step this way, you must point the modal solver to the solution
containing the eigenfrequencies and eigenmodes. You do this by first selecting Show
default solver at the study level, and then selecting the eigenfrequency solution to be

used in the Eigenpairs section of the generated modal solver.

In a mode superposition, the deformation of the structure is represented by a linear
combination of its eigenmodes. The amplitudes of these modes are the degrees of
freedom of the reduced problem. You must select which eigenmodes to include in the
analysis. This choice is usually based on a comparison between the eigenfrequencies of
the structure and the frequency content of the load. As a rule of thumb, select

eigenmodes up to approximately twice the highest frequency of the excitation.

In the mode superposition formulation in COMSOL Multiphysics, the full model is
projected onto the subspace spanned by the eigenmodes. A problem having the
number of degrees equal to the number of included modes is then solved. Note that
this differs from many implementations of mode superposition, where it often is

assumed that the modal equations are totally decoupled.
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An implication of this, is that it is not necessary to assume a certain structure of the

damping matrix. Any type of damping which is allowable in the corresponding analysis

of the full system can also be used in the modal based analysis.

For many common cases, the mode superposition analysis is not sensitive to whether

the eigenmodes were computed using damping or not. The reason is that the

eigenmodes of problems with Rayleigh damping and loss factor damping can be shown

to be identical to those of the undamped problem, so that the projection to the

subspace spanned by the eigenmodes is the same in both cases. For more general

damping, it is however recommended that you suppress all contributions to the

damping during the eigenfrequency step, and thus base the mode superposition on the

solution to the undamped eigenfrequency problem.

FREQUENCY DOMAIN ANALYSIS

All loads are assumed to have a harmonic variation. This is a perturbation type analysis,

so only loads having the Harmonic perturbation property selected are then included in

the analysis.

TIME-DEPENDENT ANALYSIS
Only the factor of the load which is independent of time should be specified in the load

features. The dependency on time is specified as Load factor under the Advanced section

of the modal solver. This factor is then applied to all loads.

6]

* Modal Solver and Studies and Solvers in the COMSOL Multiphysics
Reference Manual

* Mechanical Damping and Losses

For an example showing how to perform mode superposition in time and
frequency domain, see Various Analyses of an Elbow Bracket:
Application Library path Structural_Mechanics_Module/Tutorials/
elbow_bracket.

Harmonic Perturbation

Analyses in the frequency domain assume that the problem your study is linear, at least

with respect to the response to the harmonic excitation. There may be other

nonlinearities, such that the structure has responded nonlinearly to a previous loading.
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This loading could, for example, have caused a large rotations or prestress of a rubber
membrane.

The concept of harmonic perturbation is in COMSOL Multiphysics used for
distinguishing the linear harmonic analysis from a possible prestress analysis. The most
important implication is that if a load has the Harmonic Perturbation sclection, it is
applied only in a study that is of the perturbation type. A load without this selection is,
on the other hand, ignored in such a study. In this way two sets of loads can be
distinguished from each other. Technically speaking, the effect of marking a load as
Harmonic Perturbation is that the 1inper () operator is applied to the value of the load.

The default settings for the different structural mechanics study types in the frequency
domain are summarized in Table 2-3.

TABLE 2-3: DEFAULT PERTURBATION SETTINGS FOR STRUCTURAL MECHANICS STUDY TYPES

STUDY TYPE STUDY STEP PERTURBATION

Frequency Domain Frequency Domain No

Frequency Domain, Prestressed  Stationary No
Frequency Domain, Perturbation  Yes

Frequency Domain, Modal Eigenfrequency N/A
Frequency Domain, Modal Yes

Frequency Domain, Prestressed,  Stationary N/A

Modal Eigenfrequency N/A
Frequency Domain, Modal Yes

Note the following;:

¢ With the default settings you cannot use the same set of loads for a Frequency Domain
and a Frequency Domain, Modal study because only the latter responds to
perturbation loads.

* You can change the behavior of a Frequency Domain study to be of the perturbation
type by modifying the solver sequence. In the General section of the settings for the
Stationary Solver, change Linearity to Linear perturbation.

* A solver that does not have Linearity set to cither Linear perturbation or Linear may
respond to nonlinear effects. There are multiphysics problems where this is wanted
because there may be a nonlinearity in another physics, even though the harmonic

solution within structural mechanics is linear. But if there are nonlinearities within
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the structural mechanics parts of the model, you must be careful with the solver

settings.

In a Frequency-Domain, Perturbation study step, that is when Linearity is set
to Linear perturbation, geometric nonlinearity will be incorporated in the
sense that there is a split between the material and spatial frames. This
makes it possible to take for example stiftness from follower loads into

account, and to use a contact solution as linearization point.

This frame split was introduced in version 5.3. As an effect, models
n created in an earlier version, in which some expressions have a frame
dependency, may produce results that differ from before. Examples of

such cases are:

e DPressure loads

* Loads defined in coordinate systems with deformation dependent axis

orientation

* User-defined expressions containing spatial (“lowercase”) coordinates

In the COMSOL Multiphysics Reference Manual:

e Frequency Domain Perturbation Study Step

6]

e Harmonic Perturbation — Exclusive and Contributing Nodes

* Built-In Operators (1inper() operator)

For most load types, the use of Harmonic Perturbation is straightforward, but some

cases need a more detailed discussion:

* ARigid Connector can be assigned a Harmonic Perturbation subnode in which you can
prescribe harmonic perturbation values to constrained degrees of freedom. If you
have added Applied Force or Applied Moment nodes under a Rigid Connector, you can
independently assign Harmonic Perturbation to these nodes, so that the loads are

considered as being of the perturbation type.
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* Even though initial stresses and strains are not usually considered as loads, you can

assign Harmonic Perturbation also to the Initial Stress and Strain nodes.

¢ Rather assigning Harmonic Perturbation to a load, you can write the load value
enclosed in the linper () operator. This is particularly useful when the feature that

provide the loading does not have the Harmonic Perturbation option.

For an example showing how to use harmonic perturbation, see Bracket
M — Frequency-Response Analysis: Application Library path

Structural_Mechanics_Module/Tutorials/bracket_frequency.

CHAPTER 2:

Modal Reduced-Order Models

Reduced-order modeling seeks to reduce the number of degrees of freedom in a
physical model whilst still retaining the essential physics. For a lightly damped resonant
system driven at one of its resonant frequencies, it is reasonable to consider only the
contributions to the system of a small number (m) of modes within the signal
bandwidth. In some cases, a single mode is sufficient. A system with n degrees of
freedom has mass, stiffness, and damping matrices of size n-by-n. A reduced-order
representation of the system considering m modes has size m-by-m. The reduction in
complexity of the system, and the computational speed up is therefore significant when
m « n. This section describes the theory of the reduced-order system and gives

guidelines on how to obtain reduced-order models from a COMSOL model.

This can be employed in two different ways: Either you can use the built-in modal
solvers for the time or frequency domain, or you can export the small equivalent system
and analyze it outside COMSOL Multiphysics, for example, as a component in a larger

system simulation.

THE MODAL COORDINATE SYSTEM
Consider a mechanical system, with n degrees of freedom, described by an equation of

the form

Mia+Du+Ku =F (2-5)

where u is the displacement vector (size: n-by-1), K is the stiffness matrix (size:
n-by-n), D is the damping matrix (size: n-by-n), and M is the mass matrix (size:

n-by-n). In the frequency domain the problem takes the form
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2 .
-o"Muy+ioDuy+Ku, = F

where u = uge!®.

Initially consider the system in the absence of damping and forces. The undamped

system has n eigenvalues o;, which satisty the equation

Ku; = 0,"M1, (2-6)

13

These eigenvectors can be shown to be orthogonal with respect to both M and K:

AT A ..

u; Mu; =0 L#], 0 #0; (2-7)
0V Ka =0 i) 2-8
u; Ku,; = L#], ;% 0; (2-8)

Next the following n-by-n matrix is constructed, with columns taken from the n

eigenvectors:
U= [ul Uy ... un]

Then consider the following matrix:

AT A
u;Mu; uyMu,

uy,Mu, ﬁgMﬁZ
uTMuU = .

~ AT ~
un—lMun—l un—lMun

AT A AT A
uw,Mu, ; u,Mu, |

From Equation 2-7 it is clear that this is a diagonal matrix. Similarly, from

Equation 2-8 it is clear that UTKU is also diagonal.

From the properties of the eigenvectors it is possible to expand any function in terms

of the eigenvectors. Thus, the displacement u can be written as:

n
u = Zaiui

i=1

This equation can also be expressed in the form:
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u="Ua (2-9)

where a is a column vector containing the coefficients @; as rows. In general a is
time dependent.

Now consider the original equation: Equation 2-5. First substitute for u using
Equation 2-9. Then transform the equation to the modal coordinate system by

premultiplying by U T This gives:

UTMU& + UTDUa + UTKUa = UTF (2-10)

It has already been established that the matrices UTMU and UTKU are diagonal and
frequently a damping model is chosen that results in a diagonal damping matrix. For
example, in Rayleigh damping D = oM + BK, where o and P are constants. For a
general damping, the transformed damping matrix is however not diagonal. As an

alternative, a damping ratio, {;, can be assigned to each mode.

EIGENVALUE SCALING

The precise form of Equation 2-10 is determined by the normalization adopted for the
eigenfunctions. In structural applications the eigenfunctions are often normalized such
that UTMU =I. This is referred to as mass matrix scaling in the eigenvalue solver. In

this case Equation 2-6 gives

so that
UTKU = diag((oi2)

where diag(o)l-2) is the diagonal matrix with diagonal elements (Di2- Similarly, if
damping ratios for each mode are defined, the damping matrix can be expressed in the

form
T .
U DU = diag(2(;0,)
Thus, if mass matrix scaling is used Equation 2-10 takes the form
4 + diag(2¢,0,)a + diag(w;")a = U'F (2-11)

It is also possible to scale the eigenvectors so that the point of maximum displacement

has given displacement. This is referred to as max scaling in the eigenvalue solver. For
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an individual mode this scaling has a simple physical interpretation — the
corresponding component of a, a;, is the amplitude of the i:th mode, measured at the
point of maximum displacement, when the mode is driven by the force F. In this case
Equation 2-10 takes the form

diag(megy ;) + diag(cogy )8 + diag(kogy )a = U'F (2-12)

Here megy; is the effective mass of the i:th mode, cefp; = 2megr ;€;0; is the effective
damping parameter for the mode, and ke ; is the effective spring constant. Each
element of the vector UTF gives the force component that acts on each of the

respective modes.

When using max scaling, it is the largest value of a degree of freedom
which is scaled to 1. The total displacement in that node will thus be

between 1 and /3 times the given scaling factor.

If degrees of freedom other than displacements are active in the

[

eigenfrequency problem, the maximum value may occur in another type
of degree of freedom such as electric potential or pressure. Consequently,
the peak displacement in that mode can then be less than the scaling

factor.

REDUCED-ORDER MODELS

The preceding discussion did not consider how to reduce the number of degrees of
freedom in the system. For systems in which the vector U TF has only a few significant
components (for example, components i = 1, ..., m where m « n) the following

approximation can be made:

The expression for u in matrix becomes:
u="Ua

where U' is now an m-by-n and a' is a vector with m components. The equation

system in modal coordinates now takes the form

vTmua + vTpua + vTkUa = UTE (2-13)
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The matrices U'TM U, U'TDU', and UTKU" now have dimensions m-by-m.
Similarly, the vector U'TF hasm components. This results in a significant reduction in

the system complexity.

REDUCED-ORDER MODELS WITH PHYSICAL DAMPING

If physically relevant damping is present in the system, the above theory must be
modified as the damping matrix is no longer diagonal in the modal coordinate system.
COMSOL can still handle this case as the modal solver does not assume that any of the
matrices are diagonal. In this case the eigenvalues become complex and the
eigenvectors split into right and left eigenvectors. The right eigenvectors U” are

solutions of the equation:
—0,’M1, ;+ioDu, ;+Ka,; = F
i ri i ri ri —
As in the previous section, for a reduced set of modes, it is assumed that:
_ 1
u="Ua

where U",. is the n-by-m matrix containing the right eigenvectors chosen for the modal
analysis. Once again a' is a vector with m components. The system in modal

coordinates takes the form
U, MU &+ U, DU A+ U, KU a = U, F

where U'; is the n-by-m matrix containing the left eigenvectors chosen for the modal

analysis.

The matrices U'lTMU'r, U'ZTDU',,, and U'ZTKU'r are no longer necessarily diagonal.
The modal solver accepts any linearly independent set of vectors to project the solution

vector and equations onto and constructs the reduced-order system accordingly.

ACCESSING THE REDUCED-ORDER MODEL MATRICES
The Model Reduction and Modal Reduced-Order Model study steps have the property that
they can assemble the modal matrices and make them available for output. In the Model

Reduction node, the Store reduced matrices check box must be selected.

After the model has solved, right-click the Results>Derived Values node and select
System Matrices. In the output section choose the Matrix to display in the list. The mass
matrix corresponds to the matrix U'ZTM U', the stiffness matrix corresponds to

U 'ZTKU'r, and the damping matrix corresponds to U 'ZTDU ".. The vector U 'ZTF is

available as the load vector. These matrices are given in a format that respects the
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normalization of the preceding Eigenvalue Solver. To change this, select the Eigenvalue
Solver node, and change the Scaling of Eigenvectors sctting under the Output section.
Use the Max setting if an equivalent Mass-Spring-Damper system is required, in which

case the modal amplitude corresponds to the maximum displacement of the mode.

Linearized Buckling Analysis

A linearized buckling analysis can be used to estimate the critical load at which a
structure becomes unstable. This is a predefined study type that consists of two study
steps: An initial step in which a unit load is applied to the structure, and a second step

in which an eigenvalue problem is solved for the critical buckling load.

COMSOL reports a critical load factor, A,which is the multiplier to the initial load at
which the structure becomes unstable. The corresponding eigenmode is the shape of

the structure in its buckled state.

The level of the initial load used is immaterial since a linear problem is solved. If the
initial load actually was larger than the buckling load, then the critical value of A is
smaller than 1. Itis also possible that the computed value of A is negative. This signifies

that a reversed load will give the critical case.

When performing a linearized buckling studys, it is possible to discriminate between live
and dead loads, where the former are the ones with respect to which the critical load
factor is computed, and the latter are assumed to be constant. In this case, two

different basic load cases need to be solved before the eigenvalue solution.

The buckling computed buckling modes can be used to provide an initial imperfection

for a subsequent nonlinear buckling analysis,

* For more details about how to model buckling, see Buckling Analysis.

e The numerical formulation is described in the section Linear Buckling

in the theory chapter.

6]

* Settings for the solvers are described in Studies and Solvers, Linear
Buckling, and Buckling Imperfection in the COMSOL Multiphysics
Reference Manual.
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* Bracket — Linear Buckling Analysis: Application Library path

Structural_Mechanics_Module/Tutorials/bracket_linear_buckling
| * Buckling Analysis of & Truss Tower: Application Library path

Structural_Mechanics_Module/Buckling_and_Wrinkling/
truss_tower_buckling

Bolt Pretension Study

The Bolt Pretension study step is a special case of a Stationary study step, where the
special degrees of freedoms used for modeling prestressed bolts are solved for. In all
other study types, these degrees of freedom are inactive. Typically, you include a Bolt
Pretension study step as the first step in a study in order to simulate the state after the
assembly of a bolted joint. You can then add any other types of study steps for
computing the effects of the service loads.

In a Bolt Pretension study step, it is possible to tension the bolts sequentially, or to
change the bolt prestress more than once, if an auxiliary sweep over some history
parameter is used.

@l Modeling Pretensioned Bolts

e Modeling of Pretensioned Bolts: Application Library path

Structural_Mechanics_Module/Tutorials/bolt_pretension_tutorial

[

o Prestressed Bolts in a Tube Connection: Application Library path

Structural_Mechanics_Module/Contact_and_Friction/tube_connection

CHAPTER 2:

Random Vibration (PSD) Study

A random vibration study is used to analyze the response of a structure subjected to
loads that randomly vary in time, but their statistical properties do not change with
time.

The input to a random vibration analysis is given in terms of power spectral densities
(PSD) and, in the case of several loading sources, the load cross-correlations.
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The results of this type of analysis can only be interpreted in a statistical sense. Usually,

the root mean square (RMS) of the result quantities is studied.

The analysis is based on a mode superposition and the reduced-order model (ROM)
functionality. Except from the computation of eigenfrequencies and corresponding
eigenmodes, and the creation of the reduced model, the core of the computation is

performed during result evaluation.

The Random Vibration (PSD) study is mainly an entry point when adding studies. When
you select it, you actually get two studies and a number of nodes under Global
Definitions added to the model.

* See Performing a Random Vibration Analysis for a detailed description
(&) of how to study random vibration.

e The theory is described in Random Vibration Theory.

* Bracket — Random Vibration Analysis: Application Library path
Structural_Mechanics_Module/Tutorials/bracket_random_vibration

* Random Vibration Test of » Motherboard: Application Library path
Structural_Mechanics_Module/Dynamics_and_Vibration/

[III] motherboard_random_vibration

* Random Vibration Analysis of a Deep Beam: Application Library
path Structural_Mechanics_Module/Verification_Examples/

random_vibration_deep_beam

Response Spectrum Analysis Study

Response spectrum analysis is used for computing an approximation of the structural

response to transient, nondeterministic events, such as earthquakes or shocks.

The Response Spectrum Analysis study is mainly an entry point when adding studies.
What you actually get when you add such study is an Eigenfrequency study step together

with a Response Spectrum node under Definitions.

The actual response is computed on demand during result evaluation, using the
computed eigenfrequencies and modes. The settings for the evaluation are done in the

Response Spectrum 2D and Response Spectrum 3D datasets.
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If your response spectrum evaluation requires inclusion of missing mass correction,
you need also to compute a set of stationary load cases. To set up that analysis, use the
Create missing mass correction study button ( b _) on the header of the Response

Spectrum scction the in the Response Spectrum node settings.

e See Performing a Response Spectrum Analysis for a detailed

description of how to work with response spectrum evaluations.
e The theory is described in Response Spectrum Analysis Theory.

'ﬂ * The settings for the special datasets are described in Response
Spectrum 2D and Response Spectrum 3D in the COMSOL
Multiphysics Reference Manual.

¢ The Response Spectrum node is described in the COMSOL
Multiphysics Reference Manual.

o Earthquake Analysis of & Building: Application Library path
Structural_Mechanics_Module/Dynamics_and_Vibration/

building_response_spectrum

Shock Response of a Motherboard: Application Library path
Structural_Mechanics_Module/Dynamics_and_Vibration/

motherboard_shock_response

CHAPTER 2:
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Selecting the Physics Interface

The structural mechanics products contain a number of physics interfaces for a wide
range of applications. This section contains some guidelines for how to select an

appropriate physics interface for your analysis.

The basic physics interfaces for structural mechanics are:

* Solid Mechanics — General modeling of solid objects with extension in all
directions.

* Elastic Waves, Time Explicit — For efficient analysis of linear elastic wave

propagation in solid domain.

* Shell and Plate — For objects which are thin in one direction, but have significant
bending stiffness

* Membrane — For objects which are thin in one direction, and have negligible

bending stiffness

* Beam — For objects where two directions have significantly smaller dimensions

than the third; significant bending stiffness

* DPipe Mechanics — For analysis of pipes with internal pressure. This interface is

similar to the Beam interface, but specialized for analysis of pipes.

* Truss — For objects where two directions have significantly smaller dimensions than

the third; only axial forces can be transmitted

* Wire — Similar to Truss, but only tensile forces can be transmitted

For a detailed overview of the functionality available in each product, visit

'El https:/ /www.comsol.com/products/specifications,/

Solid Mechanics

The Solid Mechanics interface offers the most general modeling of structural
mechanics problems and is based on general principles of continuum mechanics. It is
the interface which contains the largest number of material models, and the most

advanced boundary conditions.

SELECTING THE PHYSICS INTERFACE | 8l
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The drawback with using solid elements is that the models can become
computationally expensive, especially in 3D. For structures which are thin or slender,

you should consider using one of the specialized physics interfaces.

3D SOLID GEOMETRY
The degrees of freedom (dependent variables) in 3D are the global displacements u, v,

and w in the global x, y, and z directions, respectively.

Figure 2-1: Loads and constraints applied to o 3D solid using the Solid Mechanics
interfoce.

2D GEOMETRY

Plane Stress
The plane stress variant of the 2D physics interface is useful for analyzing thin in-plane
loaded plates. For a state of plane stress, the out-of-plane components of the stress

tensor are zero.

Figure 2-2: Plane stress is used to model plates where the loads ave only in the plane; it does
not include any out-of-plane stress components.

The 2D physics interface for plane stress allows loads in the x and y directions, and
assumes that these are constant throughout the material’s thickness, which can vary

with x and y. The plane stress condition prevails in a thin (compared to the in-plane
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dimensions) flat plate in the xy-plane loaded only in its own plane and without any

z direction restraint.

Plane Strain
The plane strain variant of the 2D physics interface that assumes that all out-of-plane

strain components of the total strain tensor &,, €,,, and &,, are zero.

- g
&

Figure 2-3: A geometry suitable for plane strain analysis.

Loads in the x and y directions are allowed. The loads are assumed to be constant
throughout the thickness of the material, but the thickness can vary with x and y.
Formally, the plane strain condition requires that the ends of the object are constrained
in the 2z direction, but it is often also used for central parts of an object that is long in
the z direction (compared to the in-plane dimensions). One example is a long tunnel

along the z-axis where it is sufficient to study a unit-depth slice in the xy-plane.

Generalized Plane Strain

Generalized plane strain is similar to plane strain in the sense that transverse stresses
can develop in the 2D cross section of a long object. The requirement that the
out-of-plane strain is zero, is however relaxed. Instead, an assumption about zero
resulting force in the transverse direction is used. Optionally, assumptions about zero
bending moments over the cross section can be added. Generalized plane strain
conditions prevail in the in the inner parts of a long object with free ends. For many
cases, generalized plane strain conditions is the 2D approximation that is closest to a
full 3D solution.

For an in-depth discussion of different aspects of 2D solid mechanics, see
@}‘ https:/ /www.comsol.com/blogs/

what-is-the-difference-between-plane-stress-and-plane-strain

SELECTING THE PHYSICS INTERFACE

83


https://www.comsol.com/blogs/what-is-the-difference-between-plane-stress-and-plane-strain
https://www.comsol.com/blogs/what-is-the-difference-between-plane-stress-and-plane-strain

84 |

AXISYMMETRIC GEOMETRY
The axisymmetric variant of the Solid Mechanics interface uses cylindrical coordinates

r, ¢ (phi), and z. All properties are independent of the azimuthal angle ¢ .

In the default version of the interface, displacements occur only in the r-z plane, and
there are two degrees of freedom, # and w. By selecting the Include circumferential
displacement option, you can model also torsion around the axis of rotational
symmetry. The azimuthal rotation degree of freedom » is then included. In addition,

many features, such as load features, allow values to be entered in the ¢ direction.

The 2D axisymmetric geometry is viewed as the intersection between the original
axially symmetric 3D solid and the half plane ¢ =0, 7 > 0. Therefore, the geometry is
drawn only in the half plane r > 0, and it recovers the original 3D solid by rotating the
2D geometry about the z-axis.

Figure 2-4: Rotating a 2D geometry to recover a 3D solid.

o Axisymmetric Twist and Bending: Application Library path
[lI[l Structural_Mechanics_Module/Verification_Examples/

axisymmetric_twist_and_bending

CHAPTER 2:

Elastic Waves, Time Explicit

The Elastic Waves, Time Explicit is used to compute the velocity and strain field in
solids with propagating linear elastic waves. In the Add Physics dialog, it is found in

the Acoustics branch, under Elastic Waves.

In general, the interface is suited for modeling the propagation of waves over large
distances relative to the wavelength, for example, ultrasound propagation for
nondestructive testing (NDT), or seismic waves. The interface exists in 2D
(generalized plane strain) and 3D.
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The interface is based on the discontinuous Galerkin (dG or dG-FEM) method and
uses a time explicit solver. The method is very memory efficient and can solve problems
with many million degrees of freedom (DOFs). The method is also well suited for

distributed computing on clusters.

In the Acoustics Module User’s Guide:
ﬁ ¢ The Elastic Waves, Time Explicit Interface

e Theory for the Elastic Waves, Time Explicit Interface

Shell and Plate

The Shell interface is useful when the object is thin in one direction. Structures built
from welded or bolted flat plates are archetypal shell structures and so are pressure
vessels. The Shell interface is available in 3D and 2D axisymmetry.

The Plate interface is a specialization of the Shell interface, used for 2D modeling in
the XY-plane. A plate model has its main action in bending out of the plane, but can
optionally also treat in-plane forces. If the loads act only in the plane, using Solid

Mechanics with the Plane Stress option is a better choice.

Shells are modeled on boundaries, and the transverse direction is represented only by
the mathematical model. The degrees of freedom consist of displacements and
rotations at the modeled boundary. This results in an assumption where the in-plane
strains vary linearly through the thickness, and the stress in the thickness direction is
zero. The thickness of a shell does not have to be constant, although this is by far the

most common case.

When the Composite Materials Module is available, it is possible to model also

multilayered shells.

For nonlinear material models, a layered approach with a single layer is used. There is
a virtual mesh in the thickness direction, in order to accommodate the potential

variation of the material properties in the thickness direction.

Rather than computing the shell stiffness from material properties and thickness, you

can also directly enter that stiftness properties in tension, bending, and shear.

The Shell and Plate interfaces can be used both for “thin” and “thick” shells. Shear
deformations are taken into account; this is usually called Mindlin theory. The material
model is linear elastic.
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CHAPTER 2:

When modeling with shells, it is important to keep track of “top” and “bottom” side

when applying loads and interpreting the results.

The in-plane stiffness of an elastic shell is proportional to the thickness £, while the
bending stiftness is proportional to 3. The difference in stiffness along different
directions can thus become very large. When an object is very thin, a shell model may
be numerically ill-posed due to the negligible bending stiffness. It is then better to use
the Membrane interface.

Membrane

The Membrane interface can be used for very thin objects, like cloth, where only
in-plane forces are important. Membranes can be considered as plane stress elements
but with an arbitrary, possibly curved configuration in space. The Membrane interface
is available in 3D and 2D axisymmetry.

In most applications, a membrane must be pretensioned in order to have a stable
configuration, so it will almost invariably be used in a geometrically nonlinear analysis.
The main exception is when it is used as a “cladding” on top of a solid, since it will
then be stabilized by the solid.

You can study configurations when there is local wrinkling in a membrane by adding

a special nonlinear material model.

In the Membrane interface a large number of different material models can be used.
When the Composite Materials Module is available, it is possible to model also

multilayered membranes.

Beam

A beam is an abstract model where only the extension in the axial direction is modeled
explicitly on an edge. The cross section is usually specified in terms of geometrical
properties such as area and moments of inertia. Several predefined cross-section types

are also available. The Beam interface is available in 3D and 2D.

The exact stress distribution in the beam is not explicitly modeled. It is actually not
even fully determined by the cross-sectional properties. Instead, six (in 3D) resultant
section forces are used: axial force, shear forces in two perpendicular directions, two

bending moments, and one twisting moment.

The Beam interface assumes linear elasticity.
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Two formulations are available in the Beam interface:

* The classical Euler-Bernoulli beam theory, which is applicable for slender beams.

* Timoshenko theory, where also shear deformations are considered. This theory

makes it possible to use the Beam interface to model rather thick beams.

Pipe Mechanics

Pipes are similar to beams, and many properties of the Pipe Mechanics interface are
shared with the Beam interface. The most distinguishing feature is that the internal
pressure usually causes a significant part of the stresses in a pipe. Also, temperature

gradients usually occur through the pipe wall, rather than across the entire section.

The loads from internal pressure and drag forces can be taken directly from results in
the Pipe Flow interface. Similarly, the temperature in the pipe walls can be taken from

the Heat Transfer in Pipes interface.

In the Pipe Flow Module User’s Guide:

ﬁ e The Pipe Flow Interface

e The Heat Transfer in Pipes Interface

Truss

The Truss interface has two main purposes:

* Modeling of trusses, consisting of straight bars carrying only axial forces

* As reinforcements, used in conjunction with other physics interfaces
The Truss interface is available in 3D and 2D.

For a truss model, only one geometrical property is needed, the cross-section area. The
material model can be linear elastic, elastoplastic, or a shape memory alloy. There is also

a special material model for creating spring,/damper data.

The truss element has no stiffness in the directions perpendicular to its extension. For
trusses, this is usually not a problem since they are designed such that each member is

stabilized by its neighbors.
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Wire
The Wire interface intended for modeling of cables and wires. The structures are often

prestressed, but also cables sagging under, for example, self-weight can be modeled.

The main difference between the Truss interface and the Wire interface is that the
wires cannot sustain any compressive forces. In reality the wire will wrinkle.

Numerically, this is handled by using a very low stiffness in compression.
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Selecting Discretization

Shape Function Order

In structural mechanics analysis, the focus is often on the stresses and strains rather
than on the displacements. Since the strains are derivatives of the displacement field,
the accuracy of the strains will be one order less than the accuracy of the displacements.
For this reason, second-order shape functions are used as default in most of the
structural mechanics interfaces. Often this gives the best tradeoff between model size

and accuracy.

It is well known that using first-order shape functions in solid mechanics will give an
overly stift solution, unless a very fine mesh is used. This is especially noticeable for
triangular and tetrahedral elements. This can, to some extent, be counteracted by using

reduced integration, see Using Reduced Integration.

If the purpose of the analysis is only to compute stiftness, rather than stresses, the use
of linear shape functions can still be justified. This is the default choice in the

Multibody Dynamics interface, available with the Multibody Dynamics Module.

If the solution contains discontinuities, for example when some type of front is moving
through the material, first-order elements and a fine mesh is often a good choice, since
the advantage of the higher-order elements lies in their ability to represent smooth
gradients.

TRUSS ELEMENTS
In the Truss interface the default is to use first-order shape functions, since the

elements are mainly used in a context where the axial force in each element is constant.

When truss elements share an edge with other structural elements, you should choose

the same discretization in both interfaces, usually quadratic.

BEAM ELEMENTS

The beam elements have only one set of shape functions, which cannot be changed.
The axial displacement and the twist are represented by first-order shape functions,
while the bending is represented by cubic Hermitian shape functions. This element can
then represent a constant axial force, a constant twisting torque, a linear bending
moment, and a constant shear force. This is the exact solution for a beam having no
distributed loads.
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A consequence of this formulation is that it may not possible to obtain a perfectly
conforming approximation if a beam shares an edge with elements from another

physics interface.

Lagrange and Sevendipity Shape Functions

In the Solid Mechanics and Membrane interfaces, you can choose between two
families of shape functions: Lagrange and sevendipity. The default is to use serendipity

shape functions.

The serendipity elements have the advantage of generating significantly fewer degrees
of freedom for structured meshes. The accuracy is in most cases almost as good as for
the Lagrange elements. The Lagrange elements are however less sensitive to strong
mesh distortions.

The serendipity shape functions differ from the Lagrange shape functions only for the

following element shapes:

* 2D: Quadrilateral elements of discretization order higher than 1

* 3D: Hexahedral, prism, and pyramid elements of discretization order higher than 1

In the COMSOL Multiphysics Reference Manual:

IE}‘ ¢ The Lagrange Element (shlag)
¢ The Nodal Serendipity Element (shnserp)

CHAPTER 2:

When coupling two structural mechanics physics interfaces, the same type of shape
functions should be used in both interfaces to ensure conformity in displacement shape
functions. Since there is no difference between the two families of shape functions in

1D, this is not an issue when connecting edges.

Choosing Shape Functions in Multiphysics Models

In problems where several physics fields participate, the accuracy can sometimes be
improved by considering how the different fields interact. In structural mechanics, it
is common that other physics fields directly affect the inelastic strains. This is the case

in, for example, thermal expansion and hygroscopic swelling.
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In thermal expansion, the elastic strain used in most constitutive relations is the
difference between the total strain, which is computed from derivatives of the

displacement field, and the thermal strain:
€el = Etot ~Cth = ot~ T~ Tref)

Since the thermal strain is directly proportional to the temperature, a consistent
approximation would be to use one step lower discretization order for the temperature
than for the displacements. When using built-in couplings, such as Thermal Expansion,
such a modification is not necessary. Any mismatch is automatically taken care of by
re-interpolating the thermal strains to an order that matches the general strain field.

Another type of coupling appears on the boundary between two domains having
different physics, as in fluid-structure interaction and acoustic-structure interaction.
When, for example, Thermoviscous Acoustics is coupled to Solid Mechanics, then the
time derivative of the displacement in the solid is set equal to the velocity in the
acoustic medium on the shared boundary. In this case, it makes sense to have the same
shape function order for these two fields.

Implicit Shape Function Orders

Some solid mechanics formulations contain other degrees of freedom in addition to
the displacements. The shape functions are then selected internally based on your

choice of displacement discretization.

VISCOELASTIC STRESS AND STRAIN

When using a viscoelastic material model, auxiliary degrees of freedom are added either
for the viscoelastic strains or the viscoelastic stresses, depending on whether a linear or
anonlinear formulation is used. These degrees of freedom are local to the element, and

you can select either the discontinuous Lagrange or Gauss point data type.

The discontinuous Lagrange shape functions will have an order that is one below what

is used for the displacement shape functions.

If Gauss point data is used, the same integration points as used for the numerical
integration of the stiffness matrix are used. This order depends on the selected
displacement discretization order and whether reduced integration is used or not.

INELASTIC STRAINS
For material models like plasticity and creep, the inelastic strains are formally degrees
of freedom. They will be allocated at the same integration points as used for the
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numerical integration of the stiffness matrix. This order depends on the selected

displacement discretization order and whether reduced integration is used or not.
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Coupling Different Element Types

In this section:

* Introduction to the Element Types

* Coupling Techniques

Introduction to the Element Types

In some engineering structures, the optimal idealization is a mixture of different
element types. Some examples are:

* Structures that are thin in large regions, but more three-dimensional at certain

locations. A mixture of solids and shells can then significantly reduce the model size.
* Dlates or shells having beams as stiffeners.
* Truss elements acting as reinforcement bars in a concrete structure.

* A thin layer of one material on top of another material. In this case, an idealization

with shells or membranes covering the boundary of a solid can be useful.

When several physics interfaces are added in COMSOL Multiphysics, the default is
always that each physics interface has individual and unique degrees of freedom. In
structural mechanics, the first physics interface has the displacement variables (u, v, w),
then the second physics interface has (u2, v2, w2), and so on. This means that the
physics interfaces initially are independent, even when defined on the same geometrical
part. To get the intended interaction requires that a coupling is established between

the physics interfaces.

Various methods to couple different element types are discussed in this section.

Coupling Techniques

The following basic techniques to connect physics interfaces with displacement

degrees of freedom are discussed in this section:
* Renaming Degrees of Freedom
* Using Customized Coupling Features

* Using General Coupling Operators
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RENAMING DEGREES OF FREEDOM

The easiest coupling method is to rename the displacement degrees of freedom so that
these are the same for all physics interfaces. This is sufficient, for example, when using
membranes as cladding on a solid boundary or truss elements as reinforcement bars in

a solid.

In the Beam, Pipe Mechanics, Shell, and Plate interfaces, the deformation is described
also by rotational degrees of freedom. In the general case, these degrees of freedom

interact with the translational degrees of freedom in a connection.

In some special cases — for example, when a thin shell acts as cladding on a solid — it
is sufficient to make the degree of freedom names for the displacements common; the
rotational degrees of freedom are not important. If, however, a shell edge is connected
to a solid, it acts as a “hinge”, which in most cases is not the intended behavior. You

then need to use the more sophisticated techniques described next.

The default shape functions in the Solid Mechanics interface are of the
serendipity type, whereas Lagrange shape functions are used in the Shell
interface. If you are placing a shell element on the boundary of a solid
n element, you must select Lagrange shape functions also in the Solid
Mechanics interface so that the two physics interfaces share the same node

points.

The shape functions used in the Beam and Pipe Mechanics interfaces have
special properties, and a beam cannot have the same degrees of freedom

as another physics interface if the same edge is shared.

n Also, the representation of rotations differs between the Shell and Plate
interfaces (displacement of normal) and the Beam and Pipe Mechanics
interfaces (rotation angle). It is therefore not possible to use common

degree of freedom names for the rotational degrees of freedom.

CHAPTER 2:

USING CUSTOMIZED COUPLING FEATURES
There are a number of built-in couplings, by which you can add connections that are

nontrivial to set up manually:

* Shell Edge to Solid Boundary (3D)
* Shell Boundary to Solid Boundary (3D)

e Membrane Boundary to Solid Boundary (3D)
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* Beam Point to Solid Boundary (2D)
* Beam Point to Solid (3D)

* Beam Edge to Solid Boundary (2D)
* Beam Edge to Solid Boundary (3D)
* Beam Edge to Shell Edge (3D)

* Beam Point to Shell Boundary (3D)
* Beam Point to Shell Edge (3D)

e Pipe Point to Solid Boundary (3D)
* Dipe Point to Shell Edge (3D)

¢ Embedded Reinforcement

Shell Edge to Solid Boundary (3D)

A shell can be coupled to a solid by adding a Solid-Thin Structure Connection
multiphysics coupling. In the settings, set Connection type to Solid boundaries to shell
edges. This situation typically occurs when you want to make a transition from a thin
region to one that is thicker. Usually, shell assumptions should be valid on both sides
of the transition. The solid geometry is expected to have the same thickness as the

thickness given in the Shell interface.

You can choose between two different formulations, by setting Method to cither Rigid
or Flexible. The flexible version is significantly more accurate locally at the connected
solid boundary, but it comes with a cost in terms of some extra degrees of freedom.
Also, this method requires a large enough number of degrees of freedom in the
thickness direction of the solid. For second-order elements, typically three elements are

required.

Shell Boundary to Solid Boundary (3D)

A shell can also be coupled to a solid by adding a Solid-Thin Structure Connection
multiphysics coupling with Connection type sct to Shared boundaries or Parallel
boundaries. This connection is used to add a shell on top of'a solid as a ‘cladding’. It is

possible to include an offset distance. The boundaries may be coincident or parallel.

Membrane Boundary to Solid Boundary (3D)

A membrane can be coupled to a solid by adding a Solid-Thin Structure Connection
multiphysics coupling with Connection type sct to Shared boundaries. When the thin
structure is a membrane, this is the only available connection type. It is used to add a

membrane on top of a solid as a ‘cladding’.
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Beam Point to Solid Boundary (2D)

A beam in 2D can be coupled to a solid by adding a Solid-Beam Connection
multiphysics coupling. In the settings, set Connection type to Solid boundaries to beam
points. This connection is intended for modeling a transition from a beam to a solid,

where beam assumptions are valid on both sides of the connection.

You can choose between two different formulations, by setting Method to either Rigid
or Flexible. The flexible version is significantly more accurate locally at the connected
solid boundary, but it comes with a cost in terms of some extra degrees of freedom.
Also, this method requires a large enough number of degrees of freedom in the
thickness direction of the solid. For second-order elements, typically three elements are

required.

Beam Point to Solid (3D)

A beam in 3D can be coupled to a solid by adding a Solid-Beam Connection
multiphysics coupling. In the settings, set Connection type to cither Solid boundaries to
beam points, general. or Solid boundaries to beam points, transition. These two

couplings are fundamentally different.

The Solid boundaries to beam points, general connection is used for modeling a beam
with one end “welded” to the face of the solid. You can specify the size of the area on
the solid boundary that is connected to the endpoint of the beam in several different

ways.

The Solid boundaries to beam points, transition coupling is intended for modeling a
transition from a beam to a solid where beam assumptions are valid on both sides of
the connection. Thus, the geometry of the solid at the transition should match the

cross-section data given to the beam.

This connection type can include warping of the solid cross section. In order to
compute the warping properties, an extra PDE is solved over the cross-section
boundaries. To improve the performance, you should preferably solve for these
variables once in a separate stationary study or study step. In that study step, clear all
physics interfaces except the Solid-Beam Connection multiphysics coupling in the Physics

and Variables Selection section.

You can manually control whether to include warping or not. If not included, the setup
of the solver sequence is simplified, but there will be significant stress disturbances

close to the connection boundaries if the cross section is susceptible to warping.

There are four warping variables: one named Warping function and three named
Warping constant. In the successive study steps, you need to manually suppress
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them. You can do so under the Dependent Variables node, where you first set Defined
by study step to User Defined. Then, for cach of these four variables, clear the Solve for
this field check box.

Beam Edge to Solid Boundary (2D)

A beam in 2D can also be coupled to a solid by adding a Solid-Beam Connection
multiphysics coupling with Connection type sct to Shared boundaries or Parallel
boundaries. This connection is used for adding a beam on top of'a solid as a “cladding”.
It is possible to include an offset distance. The boundaries may be coincident or
parallel.

Beam Edge to Solid Boundary (3D)
A beam in 3D can also be coupled to a solid by adding a Solid-Beam Connection
multiphysics coupling with Connection type sct to Solid boundaries to beam edges. This

connection is used for adding a beam that is “welded” along the surface of the solid.

Beam Edge to Shell Edge (3D)

A beam can be coupled to a shell by adding a Shell-Beam Connection multiphysics
coupling with Connection type set to cither Shared boundaries or Parallel boundaries.
This connection is used for adding beams as stiffeners to shells. The edges may be
coincident or parallel. It is possible to prescribe that the beam has an offset from the

shell when a coincident edge is used.

Beam Point to Shell Boundary (3D)

A beam can be coupled to a shell by adding a Shell-Beam Connection multiphysics
coupling with Connection type sct to Shell boundaries to beam points. This connection
is used for modeling a beam with one end “welded” to the face of the shell. You can
specify the size of the area on the shell boundary that is connected to the end point of
the beam in several different ways.

Beam Point to Shell Edge (3D)

A beam can be coupled to a shell by adding a Shell-Beam Connection multiphysics
coupling with Connection type sct to Shell edges to beam points. This connection is
used for modeling a beam with one end “welded” to the edge of the shell. You can
specify the part of the shell edge that is connected to the end point of the beam in

several different ways.

Pipe Point to Solid Boundary (3D)

A pipe in 3D can be coupled to a solid by adding a Structure-Pipe Connection
multiphysics coupling. The coupling is intended for modeling a transition from a pipe
to a solid where beam assumptions are valid on both sides of the connection. Thus, the
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geometry of the solid at the transition should match the cross-section data given to the
pipe. The connection assumes that the pipe cross section is circular; if another cross
section is used, it is converted to an equivalent circular cross section. This means that

warping is not considered.

The connection can be considered an extension of the Solid boundaries to beam points,
transition coupling in Solid-Beam Connection to also account for radial deformation
of the pipe caused by the fluid pressure and the temperature difference over the cross

section.

Pipe Point to Shell Edge (3D)

A pipe in 3D can be coupled to a shell by adding a Structure-Pipe Connection
multiphysics coupling. The coupling is intended for modeling a transition from a pipe
to a shell where beam assumptions are valid on both sides of the connection. Thus, the
geometry of the shell at the transition should match the cross-section data given to the
pipe. The connection assumes that the pipe cross section is circular; if another cross
section is used, it is converted to an equivalent circular cross section. This means that

warping is not considered.

The connection can be considered an extension of the Shell edges to beam points
coupling in Shell-Beam Connection to also account for radial deformation of the pipe

caused by the fluid pressure and the temperature difference over the cross section.

Embedded Reinforcement

Lower dimension structural elements can be connected to a solid domain by adding
an Embedded Reinforcement multiphysics coupling. This connection supports
coupling truss, beam, and membrane elements to a Solid Mechanics interface. The
connection can either be rigid, or made by attaching springs between points on the
embedded structure and points in the solid. A more detailed discussion about this type

of modeling is given in Modeling Embedded Structures and Reinforcements.

The underlying theory and more details about the built-in couplings can

be found in

E}‘ ¢ Connection Between Shells and Solids
¢ Connection Between Shells and Beams

¢ Embedded Elements

CHAPTER 2:
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» Examples of all types of couplings between shells and beams are shown
in Connecting Shells and Beams: Application Library path

Structural_Mechanics_Module/Beams_and_Shells/shell_beam_connection

* An example of couplings between shells and solids is shown in
Connecting Shells and Solids: Application Library path
I 74 pp 1y p

Structural_Mechanics_Module/Beams_and_Shells/shell_solid_connection

* An example of couplings between beams and solids is shown in
Connecting Beams and Solids: Application Library path

Structural_Mechanics_Module/Beams_and_Shells/beam_solid_connection

USING GENERAL COUPLING OPERATORS
The most general method of connecting parts modeled with different physics
interfaces is by using a General Extrusion operator. In this case the parts need not even

be in contact, so the connection is an abstraction.

An example could be a shell stiffened by beams. In practice, you would probably use
the built-in coupling described in Beam Edge to Shell Edge (3D) for this case, but the
example shows the principles.

In structure like this, the beam is usually placed at one side of the shell, so that the

centerline of the beam and the midsurface of the shell do not coincide. This difference
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must be taken into account, so the edges representing the beam are geometrically

disconnected from the midsurface of the shell.

Beam centerline

Mathematically, the connection between the beam and the shell can be expressed as

Upeam = Ygpen + 4) X (Xbeam - Xshcll)

¢beam = ¢shcll

or equivalently as

Upeam = Wepen + ((Xbeam - Xshcll) ‘n)a

¢beam = ¢shell

Here, ¢ is the rotation vector, which contains the rotational degrees of freedom in the
Beam interface. The rotation vector is also available as a variable in the Shell interface,
where it is derived from the rotational degrees of freedom a. The shell normal is

denoted by n. Small rotations are assumed.
To create the coupling:

I Add a General Extrusion node under Definitions>Nonlocal Couplings. Select the line on
the shell midsurface as source. Enter data in the Destination Map.
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2 Adda Prescribed Displacement,/Rotation node in the Beam interface and select the
corresponding edge.

3 Enter data for the prescribed displacements and rotations, for example
genext1(u)+genext1(shell.thy)*zdist, where zdist is some expression
defining the distance from the beam axis to the shell midsurface.

Because a shell does not have a valid rotation degree of freedom around
its normal, the rotation of the beam should not be connected in that
direction.

!

In the COMSOL Multiphysics Reference Manual:

l@}‘ ¢ Nonlocal Couplings and Coupling Operators and General Extrusion

* About Nonlocal Couplings
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Applying Loads

CHAPTER 2:

An important aspect of structural analysis is the formulation of the forces applied to
the modeled structure. You can use custom expressions, predefined or user-defined

coordinate systems, and even variables from other modeling physics interfaces.

Loads can be applied in the structural mechanics interfaces on the body, face, edge, or
point levels. You can also apply loads to special features like Rigid Material or Rigid
Connector. There is also an option to apply point loads to given coordinates, which do

not have to coincide with a geometrical point or a mesh node.

In this section:

e Units, Orientation, and ¢ Acceleration Loads
Visualization e Temperature Loads — Thermal
* Load Cases Expansion
¢ Singular Loads * Hygroscopic Swelling
* Moments in the Solid Mechanics e Total Loads
Interface ¢ Loads with a Spatial Variation
* Pressure * Variables for Loads

Units, Orientation, and Visualization

USING UNITS

Enter loads in any unit, independently of the base SI unit system in the model, because
COMSOL automatically converts any unit to the base SI unit system. To use the
feature for automatic unit conversion, enter the unit in square brackets, for example,
100[1bf/in~2].

The exception is random vibration analysis. In that case, no automatic unit conversions

are available, so you must enter loads in the base units of the model.

PREDEFINED AND CUSTOM COORDINATE SYSTEMS
In this module, different predefined coordinate systems are available when materials or
boundary conditions are specified. There is always the global coordinate system.

Depending on the dimensionality of the part being worked with, there can also be
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predefined coordinate systems such as the local tangent and normal coordinate system

for boundaries.

Custom coordinate systems are also available and are useful, for example, to specify a
load in any direction without splitting it into components. From the Definitions

toolbar, select a Coordinate System ({7} ) from the menu.

Some coordinate systems can have solution dependent axis directions. If
you use such a system for defining a load, the directions of the load follow

the moving coordinate axis directions if the Include geometric nonlinearity

!

check box is selected under the Study settings section of the current study

step.

VISUALIZATION

If you have switched on the physics symbols (see Displaying Physics Symbols in the
Graphics Window — An Example in the COMSOL Multiphysics Reference Manual),
then an applied load is indicated by a symbol together with a coordinate system
indicator displaying the definition directions for the load. The actual direction or
magnitude of the load you enter is not, however, reflected by the symbol. As a load in
COMSOL Multiphysics can be a function of parameters, variables, the solution, or
results from other physics interfaces, it is not possible to display it with only the

information available in the individual load feature.

Once you have turned on the physics symbols for a certain physics interface, you can
fine-tune the display. Every feature which has associated physics symbols will now have
a check box Shew physics symbols, by which you can control the display of the symbols

for that specific feature.

Loads are among the results for which predefined plots are generated, so you will

always have access to a visual feedback of the loads after the solution. How to work

with the default load plots is described in detail in the Plotting Applied Loads section.

Sometimes, especially if you have entered complicated load expressions in a large
model, it is important to inspect the load distribution before you run the analysis. You

will then need to generate a dataset and the predefined plots. The fastest way to do that
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is to click Get Initial Value on the Study toolbar. Note that if you change the loads, you

will have to delete the dataset and generate it again.

In the COMSOL Multiphysics Reference Manual:
¢ Physics Symbols

'& ¢ Using Units
¢ Coordinate Systems

* Plotting Applied Loads

For an example showing how to examine the load distribution, see
Bracket — Static Analysis: Application Library path

[lI[l Structural_Mechanics_Module/Tutorials/bracket_static. This is also the first
example used in the Introduction to the Structural Mechanics Module.

Load Cases

For a Stationary or Frequency Domain study, you can define load cases and constraint
cases. Any load or constraint can be assigned to a load or constraint group, and then

be used conditionally.

For most load types, the load case acts as a simple multiplier, but some cases need a

more detailed discussion:

* A Prescribed Displacement or Prescribed Displacement/Rotation node can be assigned
both a constraint group and a load group. You can use the constraint group to
switch on and off the whole constraint. The load group acts as a multiplier to any
nonzero prescribed values of displacement and rotations, and will not have any

effect unless the constraint is active.

* When a load case multiplier is used for Thermal Expansion, the multiplier is applied
not to the actual temperature, but to the difference between the temperature and
the strain free reference temperature. The temperature difference, and thus the

thermal strain, is proportional to the load case multiplier.

* Since Thermal Expansion nodes are exclusive (only the last one given gives a
contribution for a certain domain), you cannot switch between different Thermal

Expansion nodes only by assigning them to different load cases.

* Hygroscopic Swelling behaves analogously to Thermal Expansion.
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For External Stress, the given stress values are multiplied by the load case multiplier.

A Spring Foundation or Thin Elastic Layer node can be assigned a constraint group,
which you can use to switch the whole boundary condition on and off. If there is
also a Predeformation subnode, then you can assign a load group to that subnode.
The prescribed predeformation is then multiplied by the load case multiplier.

Predeformation nodes are exclusive, you cannot switch between them by assigning

them to different load cases.

A Rigid Connector can be assigned both a constraint group and a load group. You can
use the constraint group to switch off the prescribed displacements and rotations.
The load group acts as a multiplier to nonzero prescribed values of displacement and

rotations.

If you have added Applied Force or Applied Moment nodes under a Rigid Connector,

you can assign individual load groups to these nodes.

If you have added Applied Force or Applied Moment nodes under a Rigid Material, you

can assign individual load groups to these nodes.

Any expression that acts purely as a load, that is, contributes only to the
right-hand side of the system of equations, can be part of the load case

handling. This is true even if, for example, the corresponding feature does
not have a setting for load cases, or if it is a contribution you have created

using equation based modeling.

To do this, you can modify any such expression expr to
if (group.<lgName>,group.<lgName>*expr). Here, <lgName> is the
parameter name you have chosen in the settings for the load group.

In most cases, the expression group.<lgName>*expr is sufficient. The
only reason to use the longer version with the if{) statement if you want

to avoid that expr is evaluated for load cases in which it is not used.

For example, if you have a boundary load which partially is always active,
and partially is conditional, you can write 20[MPa]+group.lg1*10[MPa]
in the input field for the pressure.

In particular, this approach is useful for features that override each other,
like Thermal Expansion, since you can then accommodate several load

cases in a single node in the Model Builder.
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In the COMSOL Multiphysics Reference Manual:
* About Load Cases

Gl ¢ Defining Load Groups and Constraint Groups
* Load Group

¢ Constraint Group

For an example about how to set up expressions for controlling position
and distribution of loads using load cases, see Tapered Cantilever with
il Two Load Cases: Application Library path COMSOL_Multiphysics/

Structural_Mechanics/tapered_cantilever.

CHAPTER 2:

Singular Loads

In reality, loads always act on a finite area or over a volume. However, in a model loads
are sometimes defined on points or edges, which leads to a singularity. The reason for
this is that points and lines have no area, so the stress becomes infinite. Because of the
stress singularity, there are high stress values in the area surrounding the applied load.
The size of this area and the magnitude of the stress depend on both the mesh and the
material properties. The stress distribution at locations far from these singularities is
unaffected according a to a well-known principle in solid mechanics, the St. Venant’s
principle. It states that for an elastic body, statically equivalent systems of forces
produce the same stresses in the body, except in the immediate region where the loads

are applied.

Figure 2-5 shows a plate with a hole in plane stress loaded with a distributed load and
a point load of the same magnitude. The mesh consists of triangular elements with
quadratic shape functions. The high stress around the point load is dissipated within
the length ofa few elements for both mesh cases. The stresses in the middle of the plate
and around the hole agree for the distributed load and the point load. The problem is
that due to the high stress around the singular load it is easy to overlook the high stress
region around the hole. When the point load is applied, the range must be manually
set for the stress plot to get the same visual feedback of the high stress region around
the hole in the two cases. This is because the default plot settings automatically set the

range based on the extreme values of the expression that is plotted.

Despite these findings it is good modeling practice to avoid singular loads because it is

difficult to estimate the size of the singular region. In the Structural Mechanics
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Module, it is possible to define loads on all boundary types. However, avoid singular
loads altogether with elastoplastic or creep materials.

The Plasticity and Creep nodes are available as a subnode to Linear Elastic
Iéll Material nodes with the Nonlinear Structural Materials Module or the

Geomechanics Module.

d = 9

9 z — e O
—

(e 2 ®

normal mesh size

finer mesh size

Figure 2-5: A plate with a bole subject to a distvibuted load (left) and a point load (right).

For more details about singularities, see also

https: //www.comsol.com/blogs/

@, singularities-in-finite-element-models-dealing-with-red-spots /

https://www.comsol.com/blogs/

applying-and-interpreting-saint-venants-principle /
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Moments in the Solid Mechanics Interface

The Solid Mechanics interface, as opposed to the Beam, Pipe Mechanics, Plate, and
Shell interfaces, does not have rotational degrees of freedom. This makes the direct
specification of moment loads somewhat more complicated. To specify moments, you
can attach a Rigid Connector to the loaded area. The rigid connector has rotational
degrees of freedom, and it is possible to apply moments directly. For load application,
the flexible formulation of the rigid connector is particularly useful, since it avoids
artificial stiffening of the boundary where the load is applied.

Pressure

A pressure is a load acting toward the normal of a face of the structure. If there are
large deformations in the model and the Include geometric nonlinearity check box is
selected under the Study settings section of the current study step, the pressure acts as
a follower load. The pressure is then defined with respect to the geometry and, as the
geometry deforms locally, the orientation of the load changes. The size of the loaded

area can also change as an effect of straining.

Acceleration Loads

Within the structural mechanics interfaces, you will find four different types of loads
to describe acceleration loads:

* Gravity

* Base Excitation

* Rotating Frame

¢ Linearly Accelerated Frame

The two first nodes have are of a global type. They will be applied to all features in the

physics interface, and cannot have a spatial variation.

The Rotating Frame and Linearly Accelerated Frame nodes have a domain selection. They
can be applied selectively, and also depend on the coordinates. When applied to a set
of selected domains, such loads are applied also to lower dimensional objects, for

example, a point mass or an added mass on an edge.

All acceleration loads share the property that they are not applied to mass contributions
that belong to global features such as rigid connectors. There, you must add loads
explicitly.
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When a structure is subjected to an acceleration which is applied to all its support
points, then it often more convenient to replace the support acceleration by a an
acceleration force, using a Base Excitation node. In particular, this is necessary when
using modal based dynamic analyses, in which nonzero prescribed displacements
cannot be used. Changing to a frame acceleration load does not affect the distribution
of forces and stresses. It will however imply that displacements, velocities, and
accelerations are measured relative to the supports, and not relative to a room fixed
coordinate system. The Base Excitation node does however also define absolute

acceleration variables, which are what would be measured by an accelerometer.

Temperature Loads — Thermal Expansion

When performing thermal expansion analysis, temperature loads are specified by
entering a temperature and a reference temperature in a thermal expansion subnode
which is available from the context menu (right-click the parent node, a Linear Elastic
Material node, for example) or from the Physics toolbar, Attributes menu. Enter a
constant temperature or an analytic expression that can depend on the coordinates or
dependent variables. For beams, plates, and shells it is also possible to specify bending
temperature loads. More details are available in the descriptions for each physics

interface.

When a separate physics interface is used to model heat transfer in the material, the
entry for the temperature is the dependent variable for the temperature from that
physics interface, typically T'. In most cases, possible temperature variables from other

physics interfaces can be directly selected from a list.

* For more information about how to couple heat transfer analysis with
structural mechanics analysis, see Thermal-Structure Interaction. This
,@l module also includes The Thermal Stress, Solid Interface.

¢ For a detailed discussion about thermal effects in structural mechanics

models, see Thermally Coupled Problems.

Hygroscopic Swelling

Some materials have the capability to absorb significant amounts of moisture through

diffusion processes. Changes in the moisture content may then cause volume changes.

To include the effects of hygroscopic swelling, the Hygroscopic Swelling subnode is
available from the context menu (right-click the parent node, Linear Elastic Material
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node, for example) or from the Physics toolbar, Attributes menu. Enter a constant
concentration or an analytic expression that can depend on the coordinates or
dependent variables. For beams, plates, and shells it is also possible to specify bending
swelling loads caused by concentration gradient in the transverse direction. More

details are available in the descriptions for each physics interface.

When a separate physics interface is used to model the moisture diffusion in the
material, the entry for the concentration is the dependent variable for the
concentration from that physics interface, typically c. In most cases, possible
concentration variables from other physics interfaces can be directly selected from a
list.

The diffusion of the moisture into the material also adds to the mass density. You can
choose to automatically include this effect in a dynamic analysis, and also in mass

proportional loads, such as gravity and rotating frame loads.

Total Loads

You can specify a load either as a distributed load per unit length, area, or volume, or
as a total force to be distributed on a boundary. In the case of a total load, the applied
distributed load is the given load divided by the area (or length, or volume) on which
its acts. Thus, entering a total load is usually only meaningful when its orientation is

given by a Cartesian coordinate system.

Loads with a Spatial Variation

Since you can write any type of expression in an input text field, it is easy to describe
loads having a spatial variation.

HYDROSTATIC LOAD

Hydrostatic loading is a common special case of spatial variation. In this case, there is
often a fluid surface, above which there is no load. Such a load you can describe with
an expression like if (Z<ZSurf,rhoFluid*g_const*(ZSurf-Z),0). Here, ZSurf
and rhoFluid are assumed to be parameters containing the Z-coordinate of the fluid

surface and the mass density of the fluid respectively.

LOADS WITH A FAST SPATIAL VARIATION
If a load has a spatial variation which is fast relative to the element size, you may need
to increase the accuracy of the numerical integration used to compute the load

contribution. As a default, a load which varies no faster than the polynomial order of
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the displacement shape functions can be integrated exactly. To change the integration
order, enable Equation View. In the Equation View node under the current load node

in the Model Builder tree, you can then increase the integration order.

The local stress state within the loaded element is still limited by what can be described
by the shape functions, but the total load applied on the structure will be more

accurate it you increase the integration order.

TRAVELING LOADS

Loads that are moving along the structure with time can be modeled using an
expression X-v*t, where v is the velocity of the load. The mesh independent point
load of the type Point Load, Free is particularly well suited for this type of modeling. If
a distributed load is modeled using this approach, it is often necessary to increase the
integration order as discussed in the previous section, since the load patch will typically

cover partial element faces.

Variables for Loads

Each node in which a load is given, such as Boundary Load or Point Load, creates a
number of variables which you have access to, for example during postprocessing.
These variables have standardized names. The names are constructed using the
following pattern: <phys>.<loadTag>_<loadType>_<geom><dir>, for example
solid.bndl1.F_Ax.

TABLE 2-4: THE LOAD VARIABLE NAMING SCHEME

DESCRIPTION EXAMPLES
<phys> Physics interface tag solid, truss2
<loadTag> Tag of the load feature bndli, el2
<loadType> Force or moment F (force)

M (moment)
<geom> The type of object to which P (point)

the load is applied L (line)

A (area)
V (volume)
<dir> Orientation X, Y, z, I (vector

components)

_Mag (magnitude of
the vector)
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For loads which are do not have a geometrical selection, such as loads on Rigid
Connector and Rigid Material, the _<geom> part of the name is omitted. As an example,
a load created through an Applied Force node under a Rigid Connector, is contained in
a variable such as solid.rig2.rf4.Fy.
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Defining Constraints

Defining the proper constraints for structural mechanics models is just as important as
defining the loads as together they make up the model boundary conditions. There are
many useful predefined physics features to define the constraints or to create
user-defined expressions that define constraints.

In this section:

* Rigid Body Motion

e Orientation

* Prescribed Displacements, Velocities, and Accelerations
e Symmetry Constraints

¢ Elemental and Nodal Constraints

e Suppressing Constraints on Lower Dimensions

* Kinematic Constraints

e Rotational Joints

¢ Attachments

Rigid Body Motion

In most cases, a structure must have a set of constraints which is sufficient to suppress
any rigid body motions. A stationary problem is solvable only if the structure is
sufficiently constrained. There must not be any possible rigid body modes. Thus, no
stress-free deformation states are allowed. In a dynamic analysis, rigid body motions
are admissible. The inertial forces will then balance the external forces.

The number of possible rigid body modes for different geometrical dimensions is
shown in the table below.

TABLE 2-5: NUMBER OF POSSIBLE RIGID BODY MODES

DIMENSION NUMBER OF RIGID BODY MODES
3D 6 (3 translations + 3 rotations)
2D axisymmetric | (Z-direction translation)

2D (solid, beam, truss) 3 (2 translations + | rotation)
2D (plate) 3 (I translation + 2 rotations)
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If the model is under constrained, you may encounter the following problems:

* The solver reports that the stiffness matrix is singular.

* The solver reports that the stiffness matrix is ill-conditioned. Theoretically, the
matrix is singular for a structure with rigid body modes, but because of the roundoff

errors during the solution this is not exactly determined.
* A nonlinear analysis fails to converge.
* An iterative linear equation solver fails to converge.

* You get a solution with an extremely large displacement, orders of magnitude larger

than what is expected.

For a single body, it is seldom difficult to see whether it is fully constrained or not, but
for a more complex assembly, including several physics interfaces, or advanced

couplings and boundary conditions, it may not be trivial. If you suspect that rigid body
modes are a problem in your model, you can run an eigenfrequency analysis, and check

for modes with zero eigenfrequency as described in Eigenfrequency Analysis.

If there are no constraints which are dictated by the physical boundary conditions of
the structure, you can use the Rigid Motion Suppression feature to automatically

remove the rigid body motions. When you do this, the assumption is that the external
loads are in equilibrium. If not, reaction forces and stress concentrations will appear at

seemingly arbitrary points where the automatic constraints were placed.

As an alternative to applying constraints, you can also add elastic supports through a

Spring Foundation node to suppress rigid body motion.

{'i}‘ Rigid Motion Suppression in the Structural Mechanics Theory chapter.

Orientation

You can specify constraints in global as well as in any previously defined local

coordinate system.

E}‘ Coordinate Systems in the COMSOL Multiphysics Reference Manual
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Prescribed Displacements, Velocities, and Accelerations

The most fundamental constraint is the prescribed displacement, where the individual
components of displacement or rotation can be prescribed to zero or nonzero values

for points, edges, boundaries, or domains.

For dynamic analysis, you can also directly prescribe the velocity or acceleration. The
conditions for prescribing displacements, velocities, or accelerations are mutually
exclusive for the same geometrical object since they prescribe the same degree of
freedom.

FREQUENCY DOMAIN

In frequency domain, a prescribed velocity vy, or prescribed acceleration aj, can be

p
directly interpreted as a prescribed displacement u

p:
u. = v_p
p - .
io
u = 2
P 2
o

where o is the angular frequency.

A prescribed velocity with zero phase is assumed to have its peak at the
reference phase. As an effect, the corresponding peak displacement is
shifted by 90°. Similarly, a positive prescribed acceleration with zero phase

n corresponds to a negative value of the displacement.

These definitions are particularly important if you mix prescribed velocity

or acceleration conditions with other boundary conditions.

TIME DOMAIN

In the case of a time-dependent analysis, the prescribed displacement is obtained as

t
u,(t) = uO(t0)+va(r)dr

to

or
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t T
uy(t) = uo(t0)+j vo(to) + [ay(0)dc|dr

to to

where u and v are is given by the initial conditions. It is not possible to set explicit
initial conditions, but if initial values are taken from a previous study, they will be

respected. In order to compute the integrals, u, is introduced as a separate degree of

p
freedom which is solved for by adding an extra ODE.

As prescribing the velocity or acceleration in time domain comes with an extra cost,
you should always consider using a prescribed displacement instead. As long as the
time history of the velocity or acceleration is a known a priori and does not depend on

the solution itself, this is possible.

* When the velocity or acceleration has a simple time dependence, you can integrate
it analytically one or two times to obtain the displacement, and directly prescribe the

displacement instead.

* When you have complicated known velocity or acceleration histories, for example
from measurements, you can use the integrate () operator. In this case, you enter
the prescribed displacement as integrate (my_data(tau),tau,0,t). Here
my_data is the measured data as function of time, and tau is a dummy integration
variable

When a local coordinate system is used for prescribing a prescribed velocity or
acceleration, the axis directions must be fixed in space. As an example, you cannot use

a Boundary System rotating with the deformation.

STATIONARY ANALYSIS

In a stationary analysis, the prescribed velocity and acceleration nodes can have two
different behaviors. As a default, they are ignored, but you can also select that the
degrees of freedom having a prescribed velocity or acceleration in a dynamic analysis
should be constrained to zero in a static analysis.

Symmetry Constraints

In many cases symmetry of the geometry and loads can be used to your advantage in
modeling. Symmetries can often greatly reduce the size of a model and hence reduce
the memory requirements and solution time. When a structure exhibits axial

symmetry, use the axisymmetric physics interfaces. A solid that is generated by rotating

a planar shape about an axis is said to have axial symmetry. In order to make use of
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the axisymmetric physics interfaces, all loads and constraints must also be the same
around the circumference.

For other types of symmetry, use the predefined symmetry and antisymmetry
constraints. This means that no expressions need to be entered — instead just add the
type of constraint to apply to the model.

Physics Interface Axial Symmetry Node in the COMSOL Multiphysics
m Reference Manunl

If the geometry exhibits two symmetry planes (Figure 2-6), model a quarter of the
geometry by using the Symmetry node for the two selected surfaces.

Symmetry planes Apply symmetry constraints

Figure 2-6: If the geometry exhibits two symmetry planes, model a quarter of the geometry
by using the Symmetry feature for the two selected surfaces.

Both geometric symmetry and loads are important when selecting the
n correct constraints for a model.

In an eigenfrequency or buckling analysis, the eigenmodes might be
n nonsymmetric even if the structure is symmetric.

Figure 2-7 shows symmetric and antisymmetric loading of a symmetric geometry.
When modeling half of the geometry, the correct constraint for the face at the middle
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of the object would be Antisymmetry in the case of antisymmetric loading and

Symmetry in the case of symmetric loading of the object.

b !
N

Symmetry plane Antisymmetry plane

Figure 2-7: Symmetry plane (left) and antisymmetry plane (vight).

SYMMETRY IN 2D AXISYMMETRY

In an axisymmetric model, the only possible symmetry is when the symmetry plane is
normal to the Z-axis. For models in 2d axisymmetry, the Symmetry Plane node is used

for prescribing this type of symmetry.

Antisymmetry cannot exist in this case.

TRANSLATION OF THE SYMMETRY PLANE

In some situations, you may want to use a symmetry condition, in which the symmetry
boundary actually can move along its normal. This may for example the case when you
use symmetry conditions to terminate your modeled region even though the situation
is not truly symmetric. The best approximation may then be that the boundary remains

planar, but that there is no resultant reaction force from the boundary condition.

You can modify the symmetry condition, so that it can translate in various ways by
using the controls in the Normal Direction Condition section of the settings for the
Symmetry constraint. You can model the following cases:

* Reaction force free translation.

* Prescribed total force acting on the constrained part.

* The displacement in the normal direction is prescribed.
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Note that allowing translation in the symmetry constraint is only meaningful if the

geometry selection corresponds to a single symmetry plane.

For an example showing how to force a boundary to remain plane, but

still allow it to translate in its normal direction using this special version
M of Symmetry, sce Thermo-Mechanical Analysis of a Surface-Mounted

Resistor: Application Library path Structural_Mechanics_Module/

Thermal-Structure_Interaction/surface_resistor.

Symmetry Condition with Translation in the Structural Mechanics
a Theory chapter.

Elemental and Nodal Constraints

For most constraints, you can select between using elemental and nodal constraints.
To do this, select Advanced Physics Options, so that the Constraint Settings section is
displayed.

When using nodal constraints, one constraint is generated for each node within the
selection a certain constraint feature. With elemental constraints, the number of
constraints added at a node equals the number of elements connected to that node.
This means that if some values used in the constraints differ between the elements,
then different constraints will be generated by the elemental method, whereas with the

nodal method an average is computed at the node before adding the constraint.

When several constraints are present at a node, the internal constraint elimination
algorithm is responsible for reducing them to a minimum unique set. Using elemental
constraints will clearly put an extra burden on this algorithm, so whenever possible you
should use nodal constraints.

The two different options exist, since under some circumstances the actual constraints
can differ between the two methods. Consider for example a symmetry constraint,
where the displacement in the direction normal to the boundary is constrained by the
equation

where n is the unit normal vector.
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If there are several intersecting symmetry planes, like in Figure 2-6, using nodal

constraints could cause a problem:

* If both boundaries are selected in the same Symmetry node, then only a single
constraint is applied for each node along the common edge, while you actually want
constraints along the normals of both planes. The normal used would be pointing
somewhere between the two planes, since a nodal constraint uses averaging of the

values from the adjacent elements.

e If two Symmetry nodes are used, so that the selection in any one of them only
contains boundaries without a normal direction discontinuity, the intended
constraints are added. On the common edge, there will be two contributions, one
from each Symmetry node, and each using the normal direction of its boundary. If
you want to use nodal constraints, you must set up your model in this way if the

constraints are orientation dependent.

Elemental constraints, on the other hand, can cause problems if the constraints added
by adjacent elements are not exactly the same. This could for example happen if the
normal orientation differs between neighboring elements. In such a case, a boundary
could behave as if it were fixed when a Symmetry, Antisymmetry, or Roller constraint is
applied. Such a situation could occur when the component consists of an imported

mesh, so that no underlying geometry exists.

The default type of the constraint, nodal or elemental, differs between different
constraint features. A nodal formulation is the default whenever it is considered safe,
like for a Fixed Constraint. Whenever the constraint can have a dependency on the

surface orientation, the default value is elemental.

See also Constraint Settings in the COMSOL Multiphysics Reference
{E}' Mannal.

CHAPTER 2:

Suppressing Constraints on Lower Dimensions

Sometimes, boundary conditions on two adjacent objects can come into conflict on a

shared object.

For most constraints in the structural mechanics interfaces, you have the possibility to
select that certain objects of lower dimensions should be excluded from the main
selection. To do this, you must first select Advanced Physics Options. In the settings for

a constraint, like for example Prescribed Displacement, new sections named Excluded

STRUCTURAL MECHANICS MODELING



Surfaces, Excluded Edges, and Excluded Points will then appear. In these sections, you
can select geometrical objects which should be excluded from the main selection when

the constraint is applied.

In the structural mechanics interfaces, there are many types of complex constraints,
and sometimes you may get conflicts or duplicates which makes the model either
overconstrained, or problematic for the automatic constraint elimination algorithm. If
you are aware of such situations, it is good practice to remove one of the potentially
conflicting constraints. One example of such a situation is when you have a Solid-Shell

Connection meeting a symmetry plane, as shown in Figure 2-8.

Symmetry plane

Figure 2-8: Example of potentinlly conflicting constraints

Here you would add a Symmetry condition on a boundary in the Solid Mechanics
interface, as well as a Symmetry condition on an edge in the Shell interface. But at the
same time, the displacements on whole boundary where the solid meets the shell are
controlled by shell degrees of freedom as an effect of the Solid-Shell Connection. As a
result, on the edge marked with Conflict in the sketch, the displacements will be
controlled both by the symmetry condition is Solid Mechanics, and implicitly through
the coupling, by the symmetry condition in the Shell interface. Particularly if the
geometry is curved, there is a risk that these constraints are not identical from a
numerical point of view. In this case, excluding the conflicting edge from the selected
boundary in the Solid Mechanics interface will make the behavior unique and fully

predictable.

Another example where constraints will come in conflict is if you want to constrain the
displacement on parts of the geometry using weak constraints, while keeping the

default pointwise constraints on other parts. If the same mesh node has both types of
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constraints, the solution will fail, so you must exclude any common geometrical objects

from the selection in one of the constraints.

See also Excluded Surfaces, Excluded Edges, and Excluded Points in the
E}‘ COMSOL Multiphysics Reference Manual.

Kinematic Constraints

Kinematic constraints are equations that control the motion of solids, faces, edges, or
points. Add a Prescribed Displacement constraint to enter expressions for constraints.
You can define the equations using predefined coordinate systems as well as custom

coordinate systems. Special constraints, for instance to keep an edge of body straight

or to make a boundary rotate, require such constraint equations.

In the 3D and 2D Solid Mechanics interfaces and in the Shell and Beam
interface there is a special constraint called a Rigid Connector. A rigid
[ | connector is applied to one or more boundaries, edges, or points and force
them to behave as connected to a common rigid body. The rigid
® connector can be given prescribed displacements and rotations and thus

simplifies the realization of some constraints.

CHAPTER 2:

Rotational Joints

Joints between elements in The Truss Interface are automatically rotational joints
because the truss elements have no rotational degrees of freedom. For beams, however,
the rotational degrees of freedom are by default coupled between elements. To create
a rotational joint between two beam elements, add one additional Beam interface to a
geometry. Make sure that it is only active for the edge that includes the point where
the joint is positioned and that no other physics interface is active here. Couple the
translational degrees of freedom and leave the rotational degrees of freedom

uncoupled at the joint.

Attachments

An Attachment is a set of boundaries, edges, or points on a flexible or rigid component

used to connect it to another flexible or rigid component through a joint or spring. An
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attachment can be defined on the boundaries of a solid element, on the edges of a shell

clement, and on the points of a beam element.

When an attachment is connected to a flexible body, you can use two different

formulations: rigid or flexible.

In the rigid attachment formulation, all selected boundaries or edges behave as if they
were connected to a common rigid body. This may cause an unrealistic stiffening and

local stress concentrations.

In the flexible version, the boundaries are allowed to deform, and the rigid body

constraints are enforced only in an average sense.

The attachment formulation is similar to that of a rigid connector. In the rigid case,
the only degrees of freedom needed to represent this assembly are the ones needed to
describe the movement of'a rigid body. In 2D this is just two in-plane translations, and

the rotation around the out-of-plane axis.

In 3D the situation is more complex. Six degrees of freedom are necessary, usually
selected as three translations and three parameters for the rotation. For finite rotations
any choice of three rotation parameters is singular at some specific set of angles. For

this reason, a four-parameter quaternion representation is used.

Some extra degrees of freedom are added for each attachment where the flexible

formulation is used.

When an attachment is defined on a rigid component, it does not create any degrees
of freedom of its own and directly picks the degrees of freedom of the rigid

component.

The formulation of the attachment feature is same as the rigid connector
'ﬂ formulation, which is discussed in Rigid Connector in the Structural
Mechanics Module User’s Guide.

Some useful information about the attachment feature:

* The attachment can be defined either on a flexible or on a rigid component. It is not
possible to select the boundaries from both types of components in a single
attachment. The reason is the different formulation of attachment for flexible or

rigid components.
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The attachment’s center of rotation is the centroid of its selected boundaries, edges,
or points. In a joint, it is possible to select the attachment center of rotation as the

center of the joint.

If the attachment is connected to a flexible domain, the forces and moments on an
attachment with a boundary selection are computed by summing the reaction forces
on the selected boundaries. There is an option to use these forces and moments to

evaluate the joint forces.

For an attachment in the Shell interface, the selection consists of edges. The forces
and moments on an attachment are then computed by summing the reaction forces
and reaction moments on the selected edges. There is an option to use these forces

and moments to evaluate the joint forces.

For an attachment in the Beam interface, the selection consists of points. The forces
and moments on an attachment are then computed by summing the reaction forces
and reaction moments on the selected points. There is an option to use these forces

and moments to evaluate the joint forces.

When an attachment is defined in the Shell or Beam interface, the normal force
cannot be defined through Attachment reaction forces in the Friction subnode of a
joint.

In a joint you select attachments to establish its connection with flexible, or
optionally, rigid bodies. This is accomplished by setting up a relation between the
source attachment and destination attachment degrees of freedom. Thus, the

motion of an attachment is governed by the joints where this attachment is used.

An attachment which is not referenced by any joint acts as an unconstrained rigid

connector.

¢ The Multibody Dynamics Interface

Gl e The Solid Mechanics Interface, The Shell and Plate Interfaces, and The
Beam Interface in the Structural Mechanics Module User’s Guide.
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Calculating Reaction Forces

There are different ways to evaluate reaction forces and these are discussed in this
section.

* Using Predefined Variables to Evaluate Reaction Forces

e Using Weak Constraints to Evaluate Reaction Forces
Using Weak Constraints to Evaluate Reaction F

* Using Surface Traction to Evaluate Reaction Forces

* Evaluating Surface Traction Forces on Interior Boundaries

The following sections describe the merits and costs of these methods.

Using Predefined Variables to Evaluate Reaction Forces

The results analysis capabilities include easy access to the reaction forces and moments.
They are available as predefined variables. The reaction force variables are available
only at the nodes, and not as a continuous field, so they are not suitable for graphic
presentation.

To compute the sum of the reaction forces over a region, use

Volume Integration, Surface Integration, or Line Integration under Results>
Derived Values or under an Evaluation Group node. The integration
method discovers that the reaction forces are discrete values and applies a

g summation instead of an integration.

If you create an integration operator under Component>Definitions>
Nonlocal Couplings>Integration to sum reaction forces, you must explicitly

sct Method to Summation over nodes.

Reaction forces are computed as the sum of the nodal values over the selected volume,
face, or edge. Reaction moments are calculated as the sum of the moment from the

reaction forces with respect to a reference point, and any explicit reaction moments (if
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there are rotational degrees of freedom). During postprocessing, you can modify the

coordinates of the reference point in the Parameters section of a result feature.

* Reaction forces are not available for eigenfrequency analysis or when

weak constraints are used.

* Reaction force variables are computed where there are constraints, that
is Dirichlet conditions like Fixed Constraint, or Prescribed Displacement.
Reaction force variables are found in the Reactions folder in the result
menus, and have names like solid.RFx and solid.RMz for an
x-directed force and a moment around the z-axis, respectively.

e From the physical point of view, there can be other sources of reaction
forces, such as the elastic and viscous forces from a Spring Foundation.
Such forces are not included in the reaction force variables, but are
placed in separate variables. You will find them in the Spring and
damping forces folder in the result menus.

[

Total reaction force variables are available. In these variables, reaction
forces, spring forces, and damping forces have been integrated over the
whole physics interface. These variables are found in the Reactions
folder in the result menus, and have names like solid.RFtotalx and
solid.RMtotalz for an x-directed force and a moment around the
z-axis, respectively. These variables should thus, for a stationary
analysis, be equal to the total applied load.

e Ifreaction forces are summed independently for two adjacent
boundaries, the total sum is not the same as if the reaction forces were
summed for both boundaries in one operation. The values of the nodes
at the common edge always contain contributions from the elements
at both sides of the edge.

Derived Values, Evaluation Groups, and Tables in the COMSOL
Q Multiphysics Reference Manual

Using Weak Constraints to Evaluate Reaction Forces

Select the Use weak constraints check box to get accurate distributed reactions. Extra
variables that correspond to the reaction traction distribution are automatically added

to the solution components.
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With weak constraints activated, COMSOL Multiphysics adds the reaction forces to
the solution components. The variables are denoted x_1m, where x is the name of the
constrained degree of freedom (as, for example, u_1m and v_1m). The extension 1m
stands for Lagrange multipliers. It is only possible to evaluate reaction forces on
constrained boundaries in the directions of the constraints.

To compute the total reaction force on a boundary, integrate one of the
variables x_1m using Volume Integration, Surface Integration, or Line

Integration under Derived Values or under an Evaluation Group node.

If the constraint is defined in a local coordinate system, the degrees of
freedom for the weak constraint variables are defined along the directions
of that system.

Since the reaction force variables are added to the solution components, the number
of DOFs for the model increases slightly, depending on the mesh size for the
boundaries in question. Boundaries that are adjacent to each other must have the same
constraint settings. The reason for this is that adjacent boundaries share a common

node.

Using weak constraints affects the structure of the equation system to be solved, and

is not suitable for all types of equation solvers.

In the COMSOL Multiphysics Reference Manual:

l@}‘ * Derived Values, Evaluation Groups, and Tables

e Symmetric and Nonsymmetric Constraints

Using Surfuce Traction to Evaluate Reaction Forces

As an alternative method, you can obtain values of the reaction forces on constrained
boundaries by using boundary integration of the relevant components of the surface
traction vector.

For 2D and 1D axisymmetric components, multiply the surface traction
by the cross-section thickness, and for 1D components multiply the

9 surface traction by the cross-section area before integrating to calculate
the total reaction force.

CALCULATING REACTION FORCES

127



128 |

Two different types of surface traction results can be computed in COMSOL
Multiphysics:

The first type, contained in the variables interface.Tax, is computed from the
stresses. It is always available. Since the surface traction vector is based on computed
stress results, this method is less accurate for computing reactions than the other
methods.

The second type, contained in the variables interface.Tracx, is computed using a
method similar to the weak constraints, but without introducing the Lagrange
multipliers as extra degrees of freedom. The accuracy is high, but there is an extra
computational cost. These traction variables are computed only if the Compute
boundary fluxes check box in the Discretization section is selected for the Solid

Mechanics interface.

In case of geometric nonlinearity, the two types of traction variables are
interpreted differently. The interface.Tax variables are based on

Cauchy stress, and contains a force per current area. If you integrate them

i

you must use the spatial frame. The interface.Tracx variables are based
on First Piola—Kirchhoff stresses and contains a force per undeformed

area. An integration must then be done on the material frame.

Evaluating Surface Traction Forces on Intevior Boundaries

As opposed to the other methods for reaction force computation, the boundary flux
based tractions are computed not only on external boundaries, but also on interior
boundaries. On interior boundaries, there are then two traction fields: One acting
from each of the domains sharing the boundary. These internal traction fields are
contained in the variables interface.iTracuxand interface.iTracdx. The letters
u and d in the variable names indicate the upside and downside of the boundary,
respectively. If you need the value of the total force acting on an internal section
through your model, these variables can be integrated. The interface.iTracux and
interface.iTracdx variables are only available if the Compute boundary fluxes check
box is selected in the Discretization section of the physics interface, and there are

interior boundaries in your model.

Computing Accurate Fluxes in the COMSOL Multiphysics Reference
Q Manual
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Introduction to Material Models

In this section:

¢ Material Models for Structural Mechanics

* Entering Material Data

¢ Introduction to Linear Elastic Materials

¢ Introduction to Viscoelastic Materials

¢ Mixed Formulation

* Modeling Damage

¢ About the Material Databases for the Structural Mechanics Module

* Using External Materials

Material Models for Structural Mechanics

The Structural Mechanics Module without any add-on modules provides the Linear
Elastic material with Viscoelasticity and Thermal Expansion modeling capabilities. It

also provides access to piezoelectric and magnetostrictive materials.

If you have the optional products Nonlinear Structural Materials Module or
Geomechanics Module, many other classes of nonlinear materials are also available.
These models can be modified and extended, and custom material models can be

defined.

You can also add a material model which you have coded yourself and made available

as a binary library file using an External Stress-Strain Relation.

* Modeling Piezoelectric Problems
* Modeling Magnetostrictive Materials
(&) In the COMSOL Multiphysics Reference Manual:

* Working with External Materials

e External Material
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In Table 2-6 and Table 2-7 you can find an overview of the families of materials, and

their applicability in the various structural mechanics interfaces.

TABLE 2-6: MATERIAL MODELS IN THE PHYSICS INTERFACES ON DOMAINS AND BOUNDARIES

MATERIAL SOLID ELASTIC SHELL/ LAYERED MEMBRANE
MODEL MECHANICS WAVES, PLATE SHELL

TIME

EXPLICIT

Linear Elastic Material X — X X X

Layered Linear Elastic — — X — X
Material

Section Stiffness — — X — _
Elastic Waves, Time — X — — —
Explicit Model

Nonlinear Elastic X — — — X
Material

Hyperelastic Material X — — X X

Layered Hyperelastic — — X — —
Material

Shape Memory Alloy X — — — —

X
|
|
X
|

Piezoelectric Material

X
|
|
|
|

Piezomagnetic
Material

Viscoelasticity
Plasticity
Soil Plasticity

Creep

X X X X X
I
|
|
|

Elastoplastic Soil
Material

Viscoplasticity
Porous Plasticity
Concrete

Rocks

Damage

X X X X X X
I
|
|
|

External Stress-Strain
Relation

Rigid Material

X
|
X
X
|

130 | CHAPTER 2: STRUCTURAL MECHANICS MODELING



TABLE 2-7: MATERIAL MODELS IN THE PHYSICS INTERFACES ON EDGES

MATERIAL BEAM PIPE TRUSS
MODEL MECHANICS

Linear Elastic Material X — X

Fluid and Pipe — X —
Materials

Section Stiffness X — —
Plasticity — — X
Rigid Material X X —

Spring-Damper — — X
Material

Many of the material models can be augmented by effects like thermal expansion,

hygroscopic swelling, initial stresses and strains, external stress, and activation.

Combination of Material Models

It is possible to combine many of the effects in an additive manner. The models based

on elasticity all have the same structure where

I An elastic strain is computed by removing all inelastic strains (for example, plastic or
thermal strains) from the total strain.

2 An “elastic stress” is computed from the elastic strains.

3 Any additional stresses (for example viscous stresses, or initial stresses) are added to

form the total stress.

This concept will give you a great freedom in combining effects. Some such useful
combinations are

* Plasticity and thermal expansion

* Dlasticity and creep

* Thermal expansion and hygroscopic swelling

* Viscoelasticity and creep

Entering Material Data

For most material data, you have the option to choose between From material and
User defined. The preferred way of supplying the material data, is through the Materials

INTRODUCTION TO MATERIAL MODELS

131



132 |

node. If you are using data from the Material Library, this is the only option, but also

when supplying your own data this will improve clarity of model.

Constitutive matrices, such as the elasticity matrix for an anisotropic material, are in
many cases per definition symmetric. Only the upper diagonal of the matrix given as
input is used for forming the matrix used, so you need not enter the lower diagonal
part.

Introduction to Linear Elastic Materials

Linear elasticity forms the basis for the majority of structural mechanics simulations.

For isotropic linear elasticity, two parameters are enough to describe the material
behavior. The number of parameters increases to (at most) 21 for the fully anisotropic
case in 3D. When setting up a model, make sure that the material parameters are
defined in agreement with the type of relationship used. If necessary, transform the
material data before entering it in the physics interface. For example, for orthotropic

materials calculate the Poisson’s ratio vy, by

Vay = Yy
xy — Vyx
E,
@ In the theory section Linear Elastic Material

Introduction to Viscoelastic Materials

The generalized Maxwell, standard linear solid (SLS) and Kelvin-Voigt viscoelastic

materials are available. All the models are linear, and the corresponding materials can
be described as consisting of one or more branches with a spring and a dashpot acting
in parallel to a linear elastic material. For each viscoelastic branch, the shear modulus

and the relaxation time (or viscosity) are entered.

e Linear Viscoelasticity

6]

* Viscoelasticity

CHAPTER 2:

STRUCTURAL MECHANICS MODELING



Mixed Formulation

Nearly and fully incompressible materials can cause numerical problems if only
displacements are used in the interpolating functions. Small errors in the evaluation of
volumetric strain, due to the finite resolution of the discrete model, are exaggerated by
the high bulk modulus. This leads to an unstable representation of stresses, and in
general to underestimation of the deformation, because spurious volumetric stresses

might balance also applied shear and bending loads.

In several material models you will find settings named Use mixed formulation or

Compressibility, by which you can introduce a mixed formulation.

Use a mixed formulation when the material data is such that the deformation is close
to being incompressible. For an isotropic elastic material, this happens when Poisson’s

ratio approaches 0.5.

There are different approaches to assess which combinations of displacement shape
function types and auxiliary variable shape function types yield numerically sound and
effective elements. In general, the shape function order of the auxiliary variable should
be lower than for the displacement field, to avoid locking. However, this is not a
sufficient requirement. The inf-sup condition (Ref. 1) can be used to analytically or
numerically identify sound mixed element formulations. In general, the outcome of
such a test will depend not only on the shape function type combination, but also on
the element type. For instance, a sound and effective combination of shape function
types for a tetrahedral element is not necessarily suitable for a hexahedral element.
COMSOL Multiphysics provides four types of shape functions for the auxiliary
pressure or auxiliary volumetric strain variable. The different shape function types for
the auxiliary variable are described below. Depending on the particular context, one of

these types is implicitly selected using Automatic.

Note that in the case of a mixed mesh, you may have to sub-divide the
n domain by element type, to be able to control the shape functions for the

auxiliary variable.

DISCONTINUOUS LAGRANGE
If this shape function type is selected, the auxiliary variable shape function is
discontinuous across element boundaries, and it is one order lower than the shape

function order of the displacements.
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CONTINUOUS

If this shape function type is selected, the auxiliary variable shape function is
continuous across element boundaries. It will be of the same type (Lagrange or
Serendipity) as that of the displacements, but one order lower. A special case is for a

linear displacement field, for which a discontinuous, constant, shape function is used.

LINEAR

If this shape function type is selected, the auxiliary variable is regarded as a linearly
interpolated field in the element. In the case of an auxiliary pressure, the interpolation
in a 3D isoparametric element is

D =po+&i(P1—Dpg) +E(Pa—pg) +E3(P3—Py)

where pg, p1, P2, and pg are auxiliary pressure coefficients, and &7, &g, and &g are
isoparametric coordinates. Note that the field is linear in the local element coordinates,

and that it is not continuous across element boundaries.

The linear shape function type is not available for layered material

n features.

CONSTANT

This shape function type represents a constant auxiliary variable in the element, p = py.

The mixed formulation is useful not only for linear elastic materials but
'g' also for nonlinear elastic materials, elastoplastic materials, hyperelastic
materials, and viscoelastic materials.

Note that some iterative solvers do not work well together with mixed

n formulation because the stiffness matrix becomes indefinite.

@l For more details, see Mixed Formulation in the theory chapter.
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Modeling Damage

Modeling problems with strain localization might turn into unstable behavior and
convergence difficulties. The following techniques can be used to help in such

situations:

* Use a displacement-controlled loading scheme, since damage is often associated
with a reduction in load carrying capacity, see the Cracking of a Notched Beam
example in the Geomechanics Module or in the Nonlinear Structural Mechanics
Module Application Libraries.

* Better convergence is often obtained when the Nonlinear method is sct to Constant

(Newton) with a Damping factor cqual to 1, and a Jacobian update on every iteration.

* Reduce the smallest and/or largest allowable step size in an Auxiliary sweep, or

restrict the time steps in a time-dependent study.

* Introducing a soft spot where a crack is expected can make the localization of strains
more stable, see the Brittle Damage in Uniaxial Tension example in the
Geomechanics Module or in the Nonlinear Structural Mechanics Module
Application Libraries. Alternatively, a random spatial distribution of the material
parameters could be employed to obtain a more stable solution.

When using the crack band method or no regularization at all, the following steps are

recommended:

* The size of the biggest mesh element & should not exceed 2EGy/ Gtsz, where E is
the Young’s modulus, Gy is the fracture energy per unit area, and oy is the tensile
strength. Larger values of & will cause a snap-back of the stress-strain curve at the

material point level.

* Use linear shape functions for the displacement field. When using higher-order
shape functions, strains may localize in either rows of Gauss points, or entire

elements, depending on the stress state and numerical rounding errors.

 Ifcracks are located on a symmetry plane, the model parameters should be modified
so that the amount of dissipated energy is reduced by one half in the elements
adjacent to the symmetry plane. This can be achieved, for example, by reducing the
fracture energy in that row of elements.

When using the implicit gradient method, the element size should be sufficiently small

to resolve damaged zones. The same applies to the Phase field damage model, where it

is reccommended that size of the mesh elements in the expected crack path follows

h < lini/2 for a linear displacement field, otherwise h < [;.

INTRODUCTION TO MATERIAL MODELS

135



136 |

While it is possible to solve brittle fracture problems with the Phase field damage model
by applying a fully coupled strategy, this can often exhibit poor or slow convergence.
An alternative and often more stable approach is to use a segregated solution strategy,
by splitting the evolution of the crack phase field and the displacement field in two
groups. This type of algorithmic operator split can conceptually be summarized as
follows for step n+1:

| Initialization. The crack phase field, displacement field and state variables are
known at step 7.

2 Update state variables. Update internal state variables used by the phase field
model with values from step 7.

3 Solve for the Crack Phase Field. Compute the crack phase field variable in a Newton

step, with the displacement field frozen at step 7.

4 Solve for the Displacement field. Compute displacement field variables in a Newton
step with the updated crack phase field.

This leads to a single-pass algorithm that is accurate only for sufficiently small
parameter or time steps.

The default solver will suggest the above single-pass algorithm for the
Phase field damage model when it is feasible to perform the operator split.
Cases where this is not possible include when some multiphysics
couplings are present in the model and when a segregated contact
algorithm has to be used.

CHAPTER 2:

An improvement to the method is to add a multi-pass correction by iterating over steps
3 and 4 in each increment; either until convergence is achieved or for a predefined
number of iterations. This type of strategy is demonstrated in the Brittle Fracture of
a Holed Plate example in the Geomechanics Module or in the Nonlinear Structural
Mechanics Module Application Libraries, where a multi-pass algorithm with a
maximum of 3 outer iterations is used. Note that although the solution is accepted
without requiring convergence of the outer problem, each sub group locally fulfills the
defined convergence criterion. Hence the displacement field can be considered as a

converged solution given the current crack phase field.

About the Material Databases for the Structural Mechanics Module

The Structural Mechanics Module includes these material databases: Liquids and

Gases, with temperature-dependent fluid dynamic and thermal properties, MEMS, an
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extended solid materials library with metals, semiconductors, insulators, and polymers
common in MEMS devices, and a Piezoelectric database with over 20 common
piezoelectric materials. The materials include temperature-dependent fluid dynamic

and thermal properties.

In the COMSOL Multiphysics Reference Manunl:
* MEMS Material Library

l@}‘ * Diezoelectric Materials Library
* Liquids and Gases Materials Library

e Materials

For an example of the MEMS materials database and Piezoelectric
materials database, see Piezoelectric Shear-Actuated Beam: Application
[m] Library path Structural_Mechanics_Module/Piezoelectric_Effects/

shear_bender.

Using External Materials

If you need to use a constitutive model which is not available among the built-in
material models, it is possible to program it yourself. Such a material function, termed
an external material, is coded in C. If you already have an existing code in another

language like Fortran or C++, it is however possible to write a wrapper function to it.

Before moving to implementing your own material model, there are however two

other options to consider:

* Many material models like hyperelasticity, creep and plasticity have User defined as
one of the options in addition to the standard models. Any material model which

you can describe using built-in variables is most conveniently described here.

* A material model which can partially described in terms of a PDE can often be
implemented using one of the mathematical interfaces. Stresses or strains computed
in that interface are then injected in an existing material model using the External

Stress and External Strain subnodes.

There are two basic types of external material functions: those which completely
replace other material definitions in a domain, and those that just compute an inelastic

strain contribution to be used as part of an existing material model. The former is
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referenced from an External Stress-Strain Relation node, whereas the latter is

referenced from an External Strain subnode.

During the solution, an external material routine is always called for each Gauss point
during evaluation of stiffness matrices and computation of residuals. During result
presentation, the external material can be called from any location in the geometry, as
requested by for example graphs and point evaluations.

Almost invariably, you need to store state variables in the external material, such as for
example plastic strains. The state variables are stored at the Gauss points. If an external
material is called at another location, the state variables will be interpolated to that
location. This means that the state of the material may not be exactly consistent there,
which can lead to some artifacts during result presentation. You can avoid this problem
by using the gpeval operator.

In the COMSOL Multiphysics Reference Manual:

@ * Working with External Materials

¢ External Material

LIBRARY OF UTILITY FUNCTIONS

In order to simplify the task of writing the code for an external material, a library of
utility routines is provided. It provides a toolkit for operations common in solid
mechanics such as various tensor operations or computing principal stresses and

equivalent stresses.

LIST OF UTILITY FUNCTIONS

csext_add: Function that adds two matrices
/*

*

Function: csext_add

Description:
Adds two (3 x 3) matrices 'A' and 'B' and stores the
result 'A + B' in 'C'.

Arguments:
double A[3][3]
double B[3][3]
double C[3][3] (output)

*O0F X X X X X X X X X

Return value:
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* void
*/
void csext_add(double A[3][3],double B[3][3], double C[3][3]);

csext_det: Function that computes the matrix determinant
/*

*

Function: csext_det

Description:
Computes the determinant of a (3 x 3) matrix 'A' and
returns the value.

Arguments:
double A[3][3]

Return value:
double

L I T S T R R I I I

/
double csext_det(double A[]3[3]);

csext_dev: Function that computes the deviator of a matrix
/*

*

Function: csext_dev

Description:
Computes the deviator of a (3 x 3) matrix 'A’
and stores the value in 'dev'.

Arguments:
double A[3][3]
double dev[3][3] (output)

Return value:
void

L N I S T I T T T

/
void csext_dev(double A[3][3], double dev[3][3]);

csext_dot: Function that computes the inner product of two matrices
/*
* Function: csext_dot

*

* Description:
* Computes the inner product of (3 x 3) matrices 'A' and 'B',
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* and returns 'A : B'.
*

* Arguments:

* double A[3][3]

* double B[3][3]

*

* Return value:

* double

*

*/

double csext_dot(double A[3][3],double B[3][3]);

csext_eig: Function that computes the spectral decomposition of a symmetric matrix
/*
* Function: csext_eig

* Description:

* Computes the eigenvalues and eigenvectors of a

* symmetric (3 x 3) matrix 'A'.

* The eigenvalues are stored in 'vals', sorted with the
* largest value in vals[O0].

* The eigenvectors are stored column-wise in 'vecs' with
* the same ordering as the eigenvalues.

* Normal execution returns 0. nonzero means that the

* computation failed.

*

* Arguments:

* double A[3][3]

* double vals[3] (output)

* double vecs[3][3] (output)

*

* Return value:

* int

*

*/

int csext_eig(double A[3][3], double vals[3], double vecs[3][3]);

csext_gl: Function that computes the Green-Lagrange strain tensor

* Function: csext_gl

* Description:

* Computes the Green-Lagrange strain tensor 'egl' based on
* the Right Cauchy-Green deformation tensor 'rcg'.

*

* Arguments:

*

double rcg[3]1[3]
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double egl[3][3] (output)

*
*
* Return value:

* void

*

*/

void csext_gl(double rcg[3][3],double egl[3][3]);

csext_inv: Function that computes the matrix inverse
/*
* Function: csext_inv

*

* Description:

* Computes the inverse of a (3 x 3) matrix 'A'.

* The inverse, if it exists, is stored in 'inv'.

* 0 is returned if successful, -1 if 'A' is numerically
* singular. The matrix 'A' is considered singular if
* abs(det(A))<tol.

*

* Arguments:

* double A[3][3]

* double tol

* double inv[3][3] (output)

*

* Return value:

* int

*

*/

int csext_inv(double A[3][3], double tol, double inv[3][3]);

csext_lcg: Function that computes the Left Cauchy—Green deformation tensor
/*
* Function: csext_lcg
*

Description:
Computes the Left Cauchy-Green deformation 'lcg' tensor
based on the deformation gradient 'defgrad'.

*

*

*

*

*

* Arguments:

* double defgrad[3][3]
* double 1lcg[3][3] (output)
*

*

*

*

*

Return value:
void
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void csext_lcg(double defgrad[3][3], double 1lcg[3][3]);

csext_linsolv: Function to solve a linear system of equations
/*
* Function: csext_linsolv

*

* Description:

* Solves a linear system of equations, 'Ax = b', for 'x',
* where 'A' is (n x n), and 'b' is (n x 1).

* The maximum allowed size of the system is n = 6.

*

* The solution vector 'x' is stored in 'b' as output.

* The elements of matrix 'A' are not preserved.

*

* If successful, 0 is returned.

* If the solution cannot be determined, -1 is returned.
* If n<1orn>6, -2 is returned.

*

* Arguments:

* double *A

* double *b (input/output)

*

* Return value:

* int

*

*/

CSEXTUTILS_SYMBOLS int csext_linsolv(int n, double *A, double *b);

csext_lpolar: Function that computes the Left polar decomposition of a matrix
/*
* Function: csext_lpolar

*

Description:
Computes the Left polar decomposition F = VR,
such that the deformation gradient 'defgrad' is
multiplicatively decomposed into a rotation, 'R',
and a stretch tensor, 'V'.
If the polar decomposition fails, -1 is returned.
If successful, 0 is returned.

Arguments:
double defgrad[3][3]
double V[3][3] (output)
double R[3][3] (output)

Return value:
int

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
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*/
int csext_lpolar(double defgrad[3][3], double V[3][3],
double R[3][3]);

csext_mises: Function that computes the von Mises equivalent stress
/*
* Function: csext_mises

*

Description:
Computes and returns the von Mises equivalent stress based
on a stress tensor 'sig

*

*

*

*

* Arguments:
* double sig[3][3]
*

*

*

*

*

Return value:
double

/
double csext_mises(double sig[3][3]);

csext_mul: Function that multiplies two matrices
/*
* Function: csext_mul

*

* Description:

* Multiplies two (3 x 3) matrices 'A' and 'B'.
* The result 'AB' is stored in 'C'.
*

* Arguments:

* double A[3]1[3]

* double B[3][3]

* double C[3][3] (output)

*

* Return value:

* void

*

*

/
void csext_mul(double A[3][3], double B[3][3], double C[3][3]);

csext_rcg: Function that computes the Right Cauchy—Green deformation tensor
/*
* Function: csext_rcg
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Description:
Computes the Right Cauchy-Green deformation tensor 'rcg'
based on the deformation gradient 'defgrad'.

Arguments:
double defgrad[3][3]
double rcg[3]1[3] (output)

*
*
*
*
*
*
*
*
* Return value:

* void

*

*/

void csext_rcg(double defgrad[3][3], double rcg[3]1[3]);

csext_rpolar: Function that computes the Right polar decomposition of a matrix
/*
* Function: csext_rpolar

*

Description:
Computes the Right polar decomposition F = RU,
such that the deformation gradient 'defgrad' is
multiplicatively decomposed into a rotation, 'R',
and a stretch tensor, 'U'.
If the polar decomposition fails, -1 is returned.
If successful, 0 is returned.

double defgrad[3][3]
double R[3][3] (output)
double U[3][3] (output)

Return value:

*

*

*

*

*

*

*

*

* Arguments:
*

*

*

*

*

* int
*

*

/
int csext_rpolar(double defgrad[3][3], double R[3][3],
double U[3][3]);

csext_spect: Function that computes a matrix based on its spectral decomposition

* Function: csext_spect

* Description:

* Computes a symmetric (3 x 3) matrix 'A' based on
* its spectral decomposition A=Q*diag*Q~"T.

* The matrix 'diag' is diagonal and stores the

*

eigenvalues of 'A'. The matrix 'Q' stores the
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eigenvectors (column-wise) of 'A', with the ordering
corresponding to the eigenvalues in 'diag'.
The vector 'd' stores the diagonal elements of 'diag'.

Arguments:
double Q[3][3]
double d[3]
double A[3][3] (output)

Return value:
void

* X X X X X X X X X X X *

/
void csext_spect(double Q[3][3], double d[3], double A[3][3]);

csext_trace: Function that computes the matrix trace
/*
* Function: csext_trace
*

Description:
Computes and returns the trace of a (3 x 3) matrix 'A'.

Arguments:
double A[3][3]

*
*
*
*
*
*
* Return value:

* double

*

*/

double csext_trace(double A[3][3]);

csext_transp: Function that computes the matrix transpose
/*
* Function: csext_transp
*

Description:
Computes the transpose of a (3 x 3) matrix 'A'.
The result is stored in 'transp'.

Arguments:
double A[3][3]
double transp[3][3] (output)

Return value:

*
*
*
*
*
*
*
*
*
*  void
*

*
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void csext_transp(double A[3][3], double transp[3][3]);

csext_add_voigt: Function that adds two matrices
/*
* Function: csext_add_voigt

*

Description:
Adds two matrices 'A' and 'B' stored on Voigt form.
The result is stored in 'C'.

Arguments:
double A[6]
double B[6]
double C[6] (output)

Return value:
void

*
*
*
*
*
*
*
*
*
*
*
*

/
void csext_add_voigt(double A[6], double B[6], double C[6]);

csext_dev_voigt: Function that computes the deviator of a symmetric matrix
/*
* Function: csext_dev_voigt

* Description:

* Computes the deviator of a (symmetric) matrix 'A' stored on
Voigt form.
* The result is stored in ‘'dev'.

*

* Arguments:
double A[6]
double dev[6] (output)

Return value:
void

EE I B I I

/
void csext_dev_voigt(double A[6], double dev[6]);

csext_dot_voigt: Function that computes the inner product of symmetric matrices
/*
* Function: csext_dot_voigt

* Description:
* Computes and returns the dot product (inner product) of two
* symmetric (3 x 3) matrices 'A' and 'B' stored on Voigt form.
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Arguments:
double A[6]
double B[6]

Return value:
double

* 0% X X X X X X

/
double csext_dot_voigt(double A[6], double B[6]);

csext_mises_voigt: Function that computes the von Mises equivalent stress
/*

*

Function: csext_mises_voigt

Description:
Computes and returns the von Mises equivalent stress based
on a stress tensor 'sig' on Voigt form.

Arguments:
double sig[6]

Return value:
double

E I I S T T I I

/
double csext_mises_voigt(double sig[6]);

csext_utils_trace_voigt: Function that computes the matrix trace
/*

*

Function: csext_trace_voigt

Description:
Computes and returns the trace of a symmetric (3 x 3) matrix
'"A' stored on Voigt form.

Arguments:
double A[6]

Return value:
double

b I S T I

/
double csext_trace_voigt(double A[6]);

csext_from_voigt: Function to change from Voigt notation
/*
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* Function: csext_from_voigt
*

double B[3][3] (output)

Return value:
int

* Description:

* Converts a symmetric (3 x 3) matrix 'A' stored

* on Voigt form to matrix form. The result is stored in 'B'.
* If 'def' = 1, the values of last three elements of 'A' are
* un-altered when passed into 'B'.

* If 'def' = 2, the values of last three elements of 'A' are
* halved when passed into 'B'.

* Returns -1 if the value of 'def' is invalid, 0 otherwise.
*

* Arguments:

* double A[6]

* int def

*

*

*

*

*

*

/
int csext_from_voigt(double A[6], int def, double B[3][3]);

csext_to_voigt: Function to change to Voigt notation

/*

* Function: csext_to _voigt

K e e e e e e e e e — - -

* Description:

* Converts a symmetric (3 x 3) matrix 'A' to Voigt form.
* The result is stored in 'B'.

* If 'def' = 1, the values of the off-diagonal components
* of '"A' are un-altered when passed into 'B'.

* If 'def' = 2, the values of the off-diagonal components
* of 'A' are doubled when passed into 'B'.

* Returns -1 if the value of 'def' is invalid, 0 otherwise.
*

* Arguments:

* double A[3][3]

* int def

* double B[6] (output)

*

* Return value:

* int

*

*/

int csext_to_voigt(double A[3][3], int def, double B[6]);

148 | CHAPTER 2: STRUCTURAL MECHANICS MODELING



csext_jac_conv: Function to convert the Jacobian
/*
* Function: csext_jac_conv
* Description:
Converts a Jacobian from 'dSde' to 'dSdF' using the deformation
gradient 'defgrad', where:
- 'S' is the 2:nd Piola-Kirchhoff stress tensor,
- 'e' is the Green-Lagrange strain tensor,
- 'F' is the deformation gradient.
If 'def' = 1, dSde is defined using tensor shears.
If 'def' = 2, dSde is defined using engineering shears.
Returns -1 if the value of 'def' is invalid.

Arguments:
double dSde[6][6]
int def
double defgrad[3][3]
double dSdAF[6][9] (output)

* ok ok F Ok ok ok F * * F * ¥ * *

* Return value:

* int

*

*/

int csext_jac_conv(double dSde[6][6], int def,
double defgrad[3][3], double dSdF[6][9]);

csext_unit: Function to define a unit matrix
/*

*

Function: csext_unit

Description:
Initializes an (n x n) matrix 'A' to the identity matrix.
Returns -1 if n < 1,
0 otherwise.

Arguments:
int n
double *A (output)

Return value:
int

* X X X X X X X X X X X X X

/
int csext_unit(int n, double *A);
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csext_zero: Function to initialize a matrix
/*
* Function: csext_zero
*

Description:
Initializes an (m x n) matrix 'A' to zero.
Returns -1 if m <1 or n < 1,
0 otherwise.

*

*

*

*

*

* Arguments:

* int m

* int n

* double *A (output)
*
*
*
*
*

Return value:
void

/
int csext_zero(int m, int n, double *A);

References

1. D. Chapelle and K.J. Bathe, The Inf-Sup test, Comp. Struct., Vol. 47, No. 4/5, pp.
537-545, 1993.
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Modeling Piezoelectric Problems

In this section:

* About Piezoelectric Materials

* Diezoclectric Coupling

* Create the Piezoelectric Effect Interface and Define Domains
* Complete Settings of Piezoelectric Materials

* Add Damping and Loss

* Define Material Properties

¢ Multiphysics Modeling Workflow in the COMSOL Multiphysics
Reference Manual.

@ * Diezoelectric Coupling

e DPiezoelectricity in the theory section

About Piezoelectric Materials

Piezoelectric materials become electrically polarized when strained. From a
microscopic perspective, the displacement of atoms within the unit cell (when the solid
is deformed) results into electric dipoles within the medium. In certain crystal
structures, this combines to give an average macroscopic dipole moment or electric
polarization. This effect, known as the direct piezoelectric effect, is always
accompanied by the converse piezoelectric effect, in which the solid becomes strained

when placed in an electric field.

Within a piezoelectric, there is a coupling between the strain and the electric field,

which is determined by the constitutive relation:

S =s;T+d E
D = dT+¢;E

(2-14)

Here, the naming convention used in piezoelectricity theory is assumed: S is the strain,
T is the stress, E is the electric field, and D is the electric displacement field. The
material parameters sg, d, and e, correspond to the material compliance, the coupling
properties and the permittivity. These quantities are tensors of rank 4, 3, and 2,
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respectively. The tensors, however, are highly symmetric for physical reasons, and they
can be represented as matrices within an abbreviated subscript notation, which is
usually more convenient. In the Piezoelectricity interface, the Voigt notation is used,
which is a standard in the literature for piezoelectricity but which differs from the

defaults in the Solid Mechanics interface.

The Piezoelectric Material uses the structural mechanics nomenclature.
The strain is named ¢ (instead of S) and the stresses are denoted by either
n o or S (instead of T). This makes the names consistent with those used in

the other structural mechanics interfaces.

Equation 2-14 will, using the notation from structural mechanics, then read

T
e =spo+d E

D= dG+808rTE

(2-15)

Equation 2-14 (or Equation 2-15) is known as the strain-charge form of the
constitutive relations. The equation can be re-arranged into the stress-charge form,

which relates the material stresses to the electric field:

T
c =cpe—e E (2-16)
D= ec+gpe, E

S
The material properties, cg, e, and gg are related to sg, d, and ep. It is possible to use
either form of the constitutive relations. In addition to Equation 2-14 or
Equation 2-16, the equations of solid mechanics and electrostatics must also be solved
within the material.

¢ DPiezoelectric Coupling
@l * Modeling Piezoelectric Problems

¢ DPiezoeclectricity in the theory section

CHAPTER 2:

Piezoelectric Matevial Orientation

The orientation of a piezoelectric crystal cut is frequently defined by the system
introduced by the IRE standard of 1949 (Ref. 8). This standard has undergone a
number of subsequent revisions, with the final revision being the IEEE standard of
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1987 (Ref. 9). Unfortunately, the 1987 standard contained a number of serious errors
and the IEEE subsequently withdrew it. COMSOL therefore adopts the preceding
1978 standard (Ref. 10), which is similar to the 1987 standard, for material property
definitions. Most of the material properties in the material library are based on the
values given in the book by Auld (Ref. 11), which uses the 1978 IEEE conventions.
This is consistent with general practice except in the specific case of quartz, where it is
more common to use the 1949 IRE standard to define the material properties.
COMSOL therefore provides additional sets of material properties consistent with this
standard for the case of quartz. Note that the material properties for quartz are based
on Ref. 12, which uses the 1949 IRE standard (the properties are appropriately
modified according to the different standards).

The stiffness, compliance, coupling, and dielectric material property matrices are
defined with the crystal axes aligned with the local coordinate axes. Note that the signs
of several matrix components differ between the 1949 and the 1978 standards (see
Table 2-8). In the absence of a user-defined coordinate system, the local system
corresponds to the global X, Y, and Z coordinate axes. When an alternative coordinate
system is selected this system defines the orientation of the crystal axes. This is the
mechanism used in COMSOL to define a particular crystal cut, and typically it is
necessary to calculate the appropriate Euler angles for the cut (given the thickness
orientation for the wafer). All piezoelectric material properties are defined using the
Voigt form of the abbreviated subscript notation, which is universally employed in the
literature (this differs from the standard notation used for the Solid Mechanics
interface material properties). The material properties are defined in the material
frame, so that if the solid rotates during deformation the material properties rotate

with the solid. See Modeling Geometric Nonlinearity.

Crystal cuts are usually defined by a mechanism introduced by the IEEE /IRE
standards. Both standards use a notation that defines the orientation of a virtual slice
(the plate) through the crystal. The crystal axes are denoted X, Y, and Z and the plate,
which is usually rectangular, is defined as having sides /, w, and ¢ (length, width, and
thickness). Initially the plate is aligned with respect to the crystal axes and then up to
three rotations are defined, using a right-handed convention about axes embedded
along the [, w, and ¢ sides of the plate. Taking AT cut quartz as an example, the IEEE
1978 standard defines the cut as: (YXI) —35.25°. The first two letters in the bracketed
expression always refer to the initial orientation of the thickness and the length of the
plate. Subsequent bracketed letters then define up to three rotational axes, which move
with the plate as it is rotated. Angles of rotation about these axes are specified after the

bracketed expression in the order of the letters, using a right-handed convention. For
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AT cut quartz only one rotation, about the / axis, is required. This is illustrated in
Figure 2-10. Note that within the 1949 IRE Standard AT cut quartz is denoted as:
(YX1) +35.25°, since the X-axis is rotated by 180° in this convention and positive

angles therefore correspond to the opposite direction of rotation (see Figure 2-9).
g p pPp g

Table 2-9 summarizes the differences between the standards for different crystal cuts.

When defining the material properties of Quartz, the orientation of the
X, Y, and Z axes with respect to the crystal differs between the 1987 IEEE
standard and the 1949 IRE standard. Figure 2-9 shows the alignment of

the axis for the case of right-handed quartz. A consequence of this is that

both the material property matrices and the crystal cuts differ between the

two standards. Table 2-8 summarizes the signs for the important matrix

elements under the two conventions. Table 2-9 shows the different

definitions of the crystal cuts under the two conventions.

CHAPTER 2:

TABLE 2-8: SIGNS FOR THE MATERIAL PROPERTIES OF QUARTZ, WITHIN THE TWO STANDARDS COMMONLY

EMPLOYED.
IRE 1949 STANDARD IEEE 1978 STANDARD
MATERIAL RIGHT HANDED LEFT HANDED RIGHT HANDED LEFT HANDED
PROPERTY QUARTZ QUARTZ QUARTZ QUARTZ
S14 + + - -
C14 - - + +
di1 - + + -
dia - + - +
el - + + -
€14 + - + -

TABLE 2-9: CRYSTAL CUT DEFINITIONS FOR QUARTZ CUTS WITHIN THE TWO STANDARDS COMMONLY
EMPLOYED AND THE CORRESPONDING EULER ANGLES FOR DIFFERENT ORIENTATIONS OF THE CRYSTAL

THICKNESS.

STANDARD REPRESENTATION AT CUT BT CUT

IRE 1949 Standard (YXI) +35.25° (YXT) -49°
Y-thickness Euler  (ZXZ: 0°,-35.25°,0°)  (ZXZ: 0°,49°,0°)
angles
Z-thickness Euler  (ZXZ: 0°,-125.25°,0°) (ZXZ: 0°, -41°,0°)
angles

IEEE 1978 Standard (YXI) -35.25° (YXI) +49°
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TABLE 2-9: CRYSTAL CUT DEFINITIONS FOR QUARTZ CUTS WITHIN THE TWO STANDARDS COMMONLY
EMPLOYED AND THE CORRESPONDING EULER ANGLES FOR DIFFERENT ORIENTATIONS OF THE CRYSTAL
THICKNESS.

STANDARD REPRESENTATION AT CUT BT CUT
Y-thickness Euler  (ZXZ: 0°, 35.25°,0°) (ZXZ: 0°,-49°,0°)
angles
Z-thickness Euler  (ZXZ: 0°,-54.75°,0°) (ZXZ: 0°,-139°,0°)
angles

When defining the material orientation, it is necessary to consider the orientation of
the plate with respect to the global coordinate system in addition to the orientation of
the plate with respect to the crystallographic axes. Consider the example of AT cut
quartz in Figure 2-10. The definition of the appropriate local coordinate system
depends on the desired final orientation of the plate in the global coordinate system.
One way to set up the plate is to orientate its normal parallel to the Y axis in the global
coordinate system. Figure 2-11 shows how to define the local coordinate system in this
case. Figure 2-12 shows how to define the local system such that the plate has its
normal parallel to the global Z axis. In both cases it is critical to keep track of the
orientation of the local system with respect to the global system, which is defined

depending on the desired orientation of the plate in the model.

There are also a number of methods to define the local coordinate system with respect
to the global system. Usually, it is most convenient to define the local coordinates with
a Rotated System node, which defines three Euler angles according to the ZXZ
convention (rotation about Z, then X, then Z again). Note that these Euler angles
define the local (crystal) axes with respect to the global axes — this is distinct from the
approach of defining the cut (global) axes with respect to the crystal (local) axes.
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Figure 2-9: Crystallographic axes defined for vight-handed quartz in COMSOL and the
1978 IEEE standard (color). The 1949 standard axes ave shown for comparison (gray).

Figure 2-9 is reproduced with permission from: IEEE Std 176-1987 -
IEEE Standard on Piezoelectricity, reprinted with permission from
IEEE, 3 Park Avenue, New York, NY 10016-5997 USA, copyright 1987,
by IEEE. This figure must not be reprinted or further distributed without

i

prior written permission from the IEEE.
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Figure 2-10: Definition of the AT cut of quartz within the IEEE 1978 standard. The AT
cut is defined as: (YX1) —35.25°. The first two bracketed letters specify the initial
orientation of the plate, with the thickness divection, t, along the crystal Y axis and the
length divection, [, along the X axis. Then up to three rotations about axes that move with
the plate are specified by the corvesponding bracketed letters and the subsequent angles. In

this case only one rotation is requived about the l axis, of —35.25° (in a right-handed
sense).
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Figure 2-11: Defining an AT cut crystal plate within COMSOL, with normal in the
JlobalY divection. Within the 1978 IEEE standavd the AT cut is defined as (YXI)
-35.25°. Start with the plate normal or thickness in the Y, divection (a) and rotate the
plate —35.25° about the l axis (b). The global coordinate system rotates with the plate.
Finally rotate the entive system so that the global coovdinate system is ovientated as it
appears in COMSOL (c). The local coordinate system should be defined with the Euler
angles (ZXZ - 0, 35.25° 0). (d) shows a coordinate system for this system in COMSOL.
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Figure 2-12: Defining an AT cut crystal plate within COMSOL, with normal in the
Jlobal Z divection. Within the 1978 IEEE standard the AT cut is defined as (YXI)
—35.25°. Begin with the plate normal in the Z,,. direction, so the crystal and global systems
ave coincident. Rotate the plate so that its thickness pointsin theY .. divection (the starting
point for the IEEE definition), the global system votates with the plate (b). Rotate the plate
—35.25° about the l axis (). Finally votate the entive system so that the global coordinate
system is orientated as it appears in COMSOL (d). The local coordinate system should be
defined with the Euler angles (ZXZ: 0, -54.75°, 0). (e) shows a coordinate system for this
system in COMSOL.
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Piezoelectric Losses

Losses in piezoelectric materials can be generated both mechanically and electrically.

In the frequency domain, these can be represented by introducing complex material
properties in the elasticity and permittivity matrices. Taking the mechanical case as an
example, this introduces a phase lag between the stress and the strain, which
corresponds to a Hysteretic Loss. These losses can be added to the Piezoelectric
Material by three subnodes: Mechanical Damping, Coupling Loss, and Dielectric Loss.
The losses typically defined as loss factors (see below).

The hysteretic electrical losses are usually used to represent high frequency electrical
losses that occur as a result of friction impeding the rotation of the microscopic dipoles

that produce the material permittivity.

Low frequency losses, corresponding to a finite material conductivity, can be added to
the model through an Electrical Conductivity (Time Harmonic) subnode. This feature
operates only in the frequency domain.

In the time domain, the losses can be added by:

* Using the Rayleigh Damping option in the Mechanical Damping and Coupling Loss

subnodes to the Piezoelectric Material,.

{'i}‘ Rayleigh Damping

* Using either the Dispersion, or Complex permittivity, or Maximum Loss Tangent option

in the Dielectric Loss subnode to the Piezoelectric Material.

These types of damping are also available in the frequency domain.

{'i}‘ Rayleigh Damping

CHAPTER 2:

HYSTERETIC LOSS

In the frequency domain, the dissipative behavior of the material can be modeled using
complex-valued material properties, irrespective of the loss mechanism. Such hysteretic
losses can be applied to model both electrical and mechanical losses. For more

information about hysteretic losses, see Ref. 1 to Ref. 4.
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For the case of piezoelectric materials, this means that the constitutive equations are
written as follows.

For the stress-charge formulation

~ ~T
T=cgS-¢ E
D = eT +¢ye,gE
where T is the stress tensor, and S is the strain tensor.

For the strain-charge formulation,

~ ~T
S=sgT+d E
D = dS+¢gpe7E
All constitutive matrices in the above equation can be complex-valued matrices, where
the imaginary parts define the dissipative function of the material.

Both the real and complex parts of the material data must be defined so as to respect
the symmetry properties of the material being modeled and with restrictions imposed
by the laws of physics.

A key requirement is that the dissipation density is positive; that is, there
is no power gain from the passive material. This requirement sets rules for
n the relative magnitudes for all material parameters. This is important

when defining the coupling losses.

In COMSOL, you can enter the complex-valued data directly or by means of loss
factors. When loss factors are used, the complex data X is represented as pairs of a
real-valued parameter

X = rcal(i()

and a loss factor

Nx = imag(f()/rcal(jf)
the ratio of the imaginary and real part, and the complex data is then:

X = X(1+jny)
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where the sign depends on the material property used. The loss factors are specific to
the material property, and thus they are named according to the property they refer to,
for example, 1. For a structural material without coupling, simply use g, the

structural loss factor.

The loss factors are defined so that a positive loss factor value usually corresponds to a
positive loss. The complex-valued data is then based on sign rules.

By default, there is no damping until at least one of the damping and losses related
subnodes is added.

For the Piezoelectric Material node, the following equations apply via the

corresponding three subnodes:
Mechanical Damping
cg " =cg " (1+jneg")

~m,n m,n . m,n

sg. =sg (1-Jnsg )
where m and n refer to components of each matrix.
Coupling Loss

~m,n
e

e (L +gmy ™)

~m,n

=d™"(L+jng"")

Dielectric Loss
~m,n m,n ..m,n
&rS = &.g (1 —JNes )
~m,n m,n ..m,n
ErT = &pp (1 =JNeT )

Note that the multiplication is applied component-wise.

The loss factors can also be entered as scalar isotropic factors independently of the

material and the other coefficients.

A good check on the chosen values is to compute a number of eigenfrequencies,
possibly using some different sets of boundary conditions. All computed
eigenfrequencies must have a positive imaginary part in order to represent a damped

motion.
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In practice, it is often difficult to find complex-valued data for each of the matrix

elements in the literature. Measuring the losses independently is a challenging task.

Two important particular cases are available in COMSOL, for which the

dielectric loss data can be entered based on experimentally measurable
'E}.. quantities:
* Complex permittivity

e Maximum Loss Tangent

DIELECTRIC DISPERSION
The Dielectric Loss subnode can be set to use the Dispersion option. In such case, the

following equations need to be solved in the time domain:

oD _ ]
V'(ﬁ +Jp)_0 (2-17)
od OE
P _
Jp + Taz; = SOAersﬁ (2-18)

where you can specify two material parameters: the relaxation time t4 and the relative
permittivity increment Ag,g. The latter can be either a matrix or a scalar quantity. This

model is a one-term version of the more general Debye dispersion model, Ref. 13.

The constitutive relation is assumed as
D =eS+¢gye E (2-19)
o0

where S is the strain tensor, and &, is the relative permittivity in the high frequency
limit (that is, for excitations with a characteristic time much shorter than the relaxation
time tg).

The parent Piezoelectric Material node has an input for the relative
permittivity, €.g, which is used in stationary study. You can chose how this

input will be interpreted in the dispersion computations. The options are:

!

* High frequency limit. In such case, &, = g.g will be used.

* Low frequency limit. In such case, £, = &,g— Ag,.g will be used. Note

that for consistency, €, must be always positive valued.

0
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With the absence of free electric charges, Equation 2-17 and Equation 2-18 can be

combined and integrated in time to yield the following equation:
oD
V(D22 +eghe E) = 0

This is the equation form used in COMSOL Multiphysics for time-dependent analysis.

For the eigenfrequency and frequency domain analyses, the corresponding equation is:
V- [(1+jrg0)joD + soAars]'coE] =0
In most cases, i® can be factored out, so that the following equation is solved:
V- (D+jrq0D +e5Ae (E) = 0

This equation, together with the constitutive relation Equation 2-19 gives

V.-[eS+gy(e'—jeE] = 0 (2-20)
where
A
g = g, + %
1+ (7q0)
and
o = tdmaerrg
1 + (Td(D)

Equation 2-20 shows how the dispersion parameters contribute to the polarization
and losses. Thus, the effective relative permittivity decreases with the excitation
frequency from the low frequency limit & + Ag,.g down to the high frequency limit
€., . The damping effect vanishes for both large and small frequencies, and it reaches

the maximum for © = 1/14.

If your license includes either the AC/DC Module or MEMS Module,
E}‘ more options for modeling dielectric dispersion can be found in
Dispersion section in the AC/DC Module User’s Guide.

The following two sections present two cases, for which the dielectric dispersion data

can be related to other experimentally measurable quantities. Both cases, can be used

164 | CHAPTER 2: STRUCTURAL MECHANICS MODELING



in Eigenfrequency, Frequency Domain, and Time Dependent study. The software will
apply the dispersion model equations, for which the effective relaxation time and
relative permittivity increment are computed automatically based on the node input

parameters.

Complex permittivity
In this case, the complex relative permittivity is known at a certain reference frequency

Sl(fref) _jg"(fref)

The relaxation time and relative permittivity contribution cane be computed as
-1 -1
Tg = O.E"(e'—¢€,)

Ag,.g = €' —g, + (a")z(a' - 830)_1

where ©,o¢ = 27f,.q -
If the relative permittivity €,g (input on the Piezoelectric Material parent node) is

selected to represent the low frequency limit, one has

g, = ¢ - (g")2(grs - s')_l

o0

If g,g is selected to represent the high frequency limit, one can simply use €, = £,.g

instead.

Maximum Loss Tangent
The loss tangent is defined as a function of the frequency

n({) = tand = ¢"/¢
so that the complex relative permittivity can be written as
e (f) = e(I-jn)

For many materials, the loss tangent reaches a maximum at certain frequency fef

within the frequency range of interested
Nmax = MaxN(@) = N(fep)

The relaxation time cane be computed as

1 9 1/2
Tq = (Dref(nmax + (nmax + I) )
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where @, ¢ = 27f, ¢

If the relative permittivity €,g (input on the Piezoelectric Material parent node) is
selected to represent the low frequency limit, the relative permittivity contribution is

computes as
A'grS = &858
-2
where g, = (Tq0,0¢) &g -
If the relative permittivity €.g is selected to represent the high frequency limit, it is
computed as
2
ASrS = ((tdmref) - I)Soo
where g, = ¢,g.
ELECTRICAL CONDUCTIVITY (TIME HARMONIC)
For frequency domain and eigenfrequency analyses, the effect of electrical conductivity

of the piezoelectric material (see Ref. 2, Ref. 5, and Ref. 6) can be included. Thus, in
addition to the displacement current, the conduction electric current term is used

V-(oD+d,) = 0

J.=oc.E
where o, is the material electrical conductivity, and E is the electric field. The above
form of the equation is used for the eigenfrequency analysis in COMSOL
Multiphysics.

When the conduction loss is applied, the default eigenvalue analysis will

in most cases return a number of pure imaginary eigenfrequencies. To

avoid this, you can configure the solver to search for eigenvalues with real
n part larger than zero.

Do not use any dielectric loss factor damping together with the

conduction loss in an eigenfrequency analysis.
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In the COMSOL Multiphysics Reference Manual:

@, * Seclecting a Stationary, Time-Dependent, or Eigenvalue Solver

* Eigenvalue Solver

For the frequency domain analysis, the angular frequency is just a parameter, and the

equation can be transformed into
V. (D—-jo 'c.E) =0

which allows you to use both a dielectric loss factor and electrical conductivity in a
frequency response study. In such case, ensure that the loss factor refers to the
alternating current loss tangent, which dominates at high frequencies, where the effect

of ohmic conductivity vanishes (Ref. 7).

Conduction loss can be combined with Dielectric Dispersion for both eigenfrequency
and frequency domain analyses. The following equation forms are used, respectively,

in the frequency domain:
V- [D +jtgoD +gohe B+ (tg—jo ), ] = 0
and in eigenfrequency analyses:

V- [(1+jry0)joD + SOAarSjo)E +(1+jrgo)d ] =0
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Piezoelectric Coupling

The piezoelectric effect is an interaction between the mechanical and electrical physics,
where a stress applied on a piezoelectric material generates a voltage (direct effect) or
a voltage applied on it generates the deformation of the material (inverse eftect). In
COMSOL Multiphysics, the Piezoelectricity interface is constituted of one Solid
Mechanics and one Electrostatics interface, which are coupled together by a Piezoelectric
Effect multiphysics feature. Hence a piezoelectric problem contains solid and
clectrostatic domains, with at least one domain shared by the two physics interfaces

and with the piezoelectric coupling defined on it.
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Create the Piezoelectric Effect Interfuce and Define Domains

A piezoelectric problem can be set up in different ways:

* By selecting Piezoelectricity from the Model Wizard,

* By choosing Piezoelectricity from the Add Physics menu when working in an existing
model, or

* By adding the corresponding features to create the coupling manually.

In the first two cases, by default all the domains in the model are assumed to be

piezoelectric materials.

When setting up the problem manually (that is, by adding single physics interfaces one
at a time) both Solid Mechanics and Electrostatics interfaces should be added. Then, you
have to specify which domains are in each physics, and which domains are to be

modeled as piezoelectric materials.

I On the Solid Mechanics interface Settings window, locate the Domain Selection
section. Select the domains which undergo structural deformation, including the
piezoelectric material domains.

2 Go to the Solid Mechanics>Piezoelectric Material node (if it is not yet available, add
it). Select the domains where the piezoelectric effect applies. Domains which are not

piezoelectric can be modeled using other available material models.

3 Go to the Electrostatics node and under Domain Selection select the domains the
electrostatics equations must be solved. These domains include all the piezoelectric

domains, and any other insulating domains.

Since metals usually have a conductivity several orders of magnitude
higher than other materials, it is normal not to solve the electrostatics

equations in their corresponding domains, but instead the surfaces of the

!

material are represented as isopotentials with an appropriate boundary

condition (usually a terminal or floating potential).

4 Go to the Electrostatics>Charge Conservation, Piezoelectric node (if it is not yet
available, add it). Select the domains where the piezoelectric effect has to be
modeled.

5 A Multiphysics>Piezoelectric Effect node is already present if the coupling was added
using either the Model Wizard or Add Physics window. If the model is set up manually
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(that is, single physics interfaces are added), right-click the Multiphysics Couplings
node to add a Piezoelectric Effect coupling.

6 Confirm that all the domains where the piezoelectric material is present are selected.

Only domains that have both Charge Conservation, Piezoelectric selected in
the Electrostatics interface and Piezoelectric Material sclected in the Solid

Mechanics interface are selected. The selection of this feature cannot be

[

edited. If several Solid Mechanics or Electrostatics interfaces are present,

select the correct ones.

7 Confirm that remaining domains are well assigned:

- Solid and electrostatic domains: In these domains, the electrostatics and
structural problems are solved independently without any piezoelectric coupling.

This is the case for insulators.

- Solid-only domains: In these domains, only mechanical phenomena are modeled,
and the electrostatics phenomena are neglected. Metals are typically modeled in
this way, because their conductivity is so high that their surfaces can be treated as
isopotential surfaces within the electrostatics problem. In some cases, insulators
are modeled using these settings, for example, when there is no potential applied
across the domain, and correspondingly solving the electrostatics equations

would produce a constant potential and waste computing resources.

- Electrostatics-only domains: Those domains are nonsolid. This is typically the

case of air, in which the electrostatics is solved but not mechanics.

- Nonsolid and nonelectrostatic domains: In those domains, another physics is
solved. A typical example is an acoustic domain in the case of piezoacoustic

modeling.

Complete Settings of Piezoelectric Materials

Go to the Solid Mechanics>Piezoelectric Material node. On the Settings window

complete these settings:

* Coordinate System Selection scction: The material is poled in the x3 direction of the
coordinate system (xI, x2, x3) specified in this section. By default, it is set to the
global coordinate system. If the piezoelectric material is poled along another

direction, you need to define a coordinate system so that its third direction is aligned
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with the poling direction. Then, assign it as the coordinate system which orients the

material in the Coordinate System Selection section.

If a given piezoelectric material is present with several orientations (such
as stacked piezoelectric disks) you need to define several Piezoelectric

=] Material nodes and to assign a different coordinate system for each of
them.

* Piezoelectric Material Properties: Sclect whether the constitutive relation of
piezoelectric material is in Stress-charge or in Strain-charge form. This choice

defines the type of material properties that will be used.
e Geometric Nonlinearity: sclect the check box to force strains to be linear.

* Energy Dissipation: Sclect the check box to enable the calculation of the dissipated

energy.

Add Damping and Loss

In the physics toolbar you can add attributes to the Piezoelectric Material node,

especially the following damping and loss contributions:

* Mechanical Damping: Specify the domains of application, then choose if you want to
define a loss factor for cg, a loss factor for sg (in Strain-charge form), an isotropic
loss factor, or a Rayleigh damping.

* Dielectric Loss: Specify the domains of application, then choose if you want to define
a loss factor for €,g, a loss factor for g, (in Strain-charge form), or dispersion.

* Coupling Loss: Specify the domains of application, then choose if you want to define

a loss factor for e, a loss factor for d (in Strain-charge form), or Rayleigh damping.

* Conduction Loss (Time-Harmonic): Specify the domains of application, then choose

how you want to define the Electrical conductivity.

Define Material Properties

Define material properties for the piezoelectric materials. The material library contains
several common piezoelectric materials under the piezoelectric section. If you want to
define your own piezoelectric material, you need to specify its properties by hand. The
required properties depend on whether the constitutive relations are in Stress-charge

or Strain-charge form, and which damping and loss attributes are created. Defining all
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piezoelectric settings before materials preselects the required properties and makes the

completion easier:

MECHANICAL PROPERTIES
* Density rho (SI unit: kg/ms)
¢ Elasticity matrix cg (SI unit: Pa) in Stress-charge form.

* Compliance Matrix sg (SI unit: 1/Pa) in Strain-charge form.

ELECTROSTATIC PROPERTIES

* Relative Permittivity €,g (dimensionless) in Stress-charge form.

* Relative Permittivity e, (dimensionless) in Strain-charge form.

COUPLING PROPERTIES
* Coupling matrix egg (SI unit: C/! m? ) in Stress-Charge form.

* Coupling matrix dgp (SI unit: C/N) in Strain-charge form.

DAMPING AND LOSS PROPERTIES
* Either loss factor ng for elasticity matrix cg, or the loss factor ngg for compliance
matrix sg: required when Mechanical Damping is present. Both are dimensionless,

the latter is valid only in Strain-Charge form.

* Either loss factor g for electrical permittivity matrix &g, or loss factor n . for
electrical permittivity matrix &, required when Dielectric Loss is present. TBoth

are dimensionless, the latter is valid only in Strain-Charge form.

* Either loss factor n, for coupling matrix e, or loss factor ng for coupling matrix d:
required when Coupling Loss is present. Both are dimensionless, the latter is valid

only in Strain-Charge form.

* Electrical conductivity o, (SI unit: S/m): required when Conduction Loss is

present.

Working with Materials and Piezoelectric Materials Library in the
lﬂ COMSOL Multiphysics Reference Manual.
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Coupling Piezoelectricity with Acoustics

Using piezoelectric materials for an acoustic application is common, such as in sonars,
microphones, sensors, and so forth. This is why coupling piezoelectric devices with

acoustic domains is of particular interest for these applications.

Compared to a single piezoelectric model, you need to add a pressure acoustics
interface, for example, Pressure Acoustics, Frequency Domain or Pressure Acoustics,
Transient (depending on which study type you want to use) plus an Acoustic-Structure
Boundary coupling under the Multiphysics Couplings node. You can also directly create
the nodes that are needed for coupling by adding an Acoustic-Piezoelectric Interaction
interface from the Model Wizard or Add Physics windows. If solid and acoustic domains
are correctly defined, then the right coupling boundaries are automatically selected.

Then specify domains of application for each physics.

¢ Select solid domains and Piezoelectric Material domains in Solid Mechanics.

* Select electrostatic domains and Charge Conservation, Piezoelectric domains in
Electrostatics.

¢ Select acoustic domains in a Pressure Acoustics node.

e Under the Multiphysics branch, confirm that selections for Piezoelectric Effect and
Acoustic-Structure Boundary are the right ones. If several Pressure Acoustics, Solid
Mechanics, or Electrostatics interfaces are present, select the right ones that need to

be coupled in the multiphysics interfaces.

* Continue the modeling process by entering the settings for each physics interface
and feature and define materials.
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Modeling Electrostrictive and
Ferroelectroelastic Materials

CHAPTER 2:

Electrostriction Coupling

Electrostriction is an interaction between the mechanical and electric physics, where an
electric field applied on electrostrictive material generates the deformation of the
material (direct effect), and a stress applied on it changes the material polarization
(inverse effect). In contrast to linear piezoelectricity, the electrostrictive strain induced
in the polarized material is proportional to the square of the polarization. Thus, the
strain will remain the same if the direction of the applied electric field is changed to the
opposite.

Ferroelectricity

The ferroelectroelasticity and ferroelectricity phenomena are related to phase
transitions in materials. In its ferroelectric phase, the material exhibits spontaneous
polarization, so that it is constituted of domains with nonzero polarization even at zero
applied field. This is similar to permanent magnetism in ferromagnetics, which explains
the name used for such materials. Electrostriction in ferroelectroelastic materials can
be related to the domain rotation. Thus, the applied electric field can both rearrange
the domains resulting into the net polarization and rotate the domains mechanically.
Thus, the material extends in the direction of the electric field and contracts in the
direction perpendicular to the field. The domain rotation can be affected by an applied
mechanical stress, which also results into the effective polarization. At very large
electric fields, the electrostrictive effect saturates, as all ferroelectric domains in the
material are aligned along the direction of the applied field. Domain wall interactions

can also lead to a significant hysteresis in the polarization and strain.

Many piezoelectric materials exhibit such nonlinear ferroelectroelastic behavior at large

applied electric fields.

Multiphysics Interfaces

In COMSOL Multiphysics, the electrostrictive effect can be modeled using two
multiphysics interfaces: Electrostriction and Ferroelectroelasticity. Both interfaces are

constituted of one Solid Mechanics and one Electrostatics interface, which are coupled
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together via an Electrostriction multiphysics feature. However, in case of
Ferroelectroelasticity, the corresponding Electrostatics interface will contain a dedicated
feature Charge Conservation, Ferroelectric.

The Electrostriction interface electrostatically can be used for modeling electrostatically
actuated structures in regimes when the electric polarization can be assumed to vary
linear with the applied electric field.

The Ferroelectroelasticity can be used for modeling nonlinear electromechanical
interaction in ferroelectric and piezoelectric materials at high applied electric fields.
Electric polarization in such materials depends nonlinearly on the applied electric field

including possible hysteresis and saturation effects.

Ferroelectricity in the AC/DC Module User’s Guide.

'El Electrostriction and Ferroelectroelasticity in the Structural Mechanics
Module User’s Guide.
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Modeling Magnetostrictive Materials

CHAPTER 2:

Magnetostriction Coupling

Magnetostriction is an interaction between the mechanical and magnetic physics,
where a magnetic field applied on magnetostrictive material generates the deformation
of the material (direct effect or Joule effect), while a mechanical stress applied on it

changes the material magnetization (inverse effect or Villari effect).

The magnetostrictive strain has a nonlinear dependence on the magnetic field and the
mechanical stress in the material. However, the effect can be modeled using linear
coupled constitutive equations if the response of the material consists of small
deviations around an operating point (bias point). This type of coupling is reffed to as

Piezomagnetic Effect.

In COMSOL Multiphysics, there are two multiphysics interfaces for modeling either

linear or nonlinear magnetostriction, respectively:

* The Piezomagnetism Interface

e The Nonlinear Magnetostriction Interface

Both multiphysics interfaces, the Magnetostriction interfaces are constituted of one
Solid Mechanics and one Magnetic Fields interface, which are coupled together via either
Piezomagnetic Effect or Nonlinear Magnetostriction multiphysics coupling feature.
Hence a magnetostriction problem contains solid and magnetic domains, with at least
one domain shared by the two physics interfaces and with the magnetostriction

coupling defined on it.

Linear vs. Nonlinear Magnetostriction

For piezomagnetic model, it is possible to express the relation between the stress S,
strain €, magnetic field H, and magnetic flux density B in cither a stress-magnetization
Sform or strain-magnetization form. In COMSOL Multiphysics, both constitutive
forms can be used; simply select one, and the software will make all necessary
transformations if needed. You find all the necessary material data inputs within the

Piezomagnetic Material sclected in the Solid Mechanics interface.

The nonlinear model of magnetostrictive strain can be used for the whole range from
full demagnetization to saturation magnetization. In case of nonlinear

magnetostriction, the magnetization model can be selected. The following options are
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available: Langevin function, Hyperbolic tangent, User defined, and Linear. The last
option will make it possible to find an explicit expression for the magnetization. Note
however that such model does not have a proper saturation behavior, and thus it

should be used only in the operating range far from saturation. For all other choices,

the magnetization vector components will be treated as extra dependent variables.

For more details, see the corresponding theory section in Magnetostriction and

Piezomagnetism.

Create the Magnetostriction Interface and Define Domains

A magnetostriction problem can be set up in different ways:

* By selecting either Piezomagnetism or Nonlinear Magnetostriction from the Model
Wizard,

* By choosing cither Piezomagnetism or Nonlinear Magnetostriction from the Add

Physics menu when working in an existing model, or

* By adding the corresponding coupling features to create the coupling manually.

In the first two cases, by default all the domains in the model are assumed to be

magnetostrictive materials.

PIEZOMAGNETISM

When setting up the problem manually (that is, by adding single physics interfaces one
at a time) both Solid Mechanics and Magnetic Fields interfaces should be added. Then,
you have to specity which domains are in each physics, and which domains are to be

modeled as piezomagnetic materials.

I On the Solid Mechanics interface Settings window, locate the Domain Selection
section. Select the domains which undergo structural deformation, including the

piezomagnetic material domains.

2 Go to the Solid Mechanics>Piezomagnetic Material node. If it is not yet available, add
such node. Select the domains where the piezomagnetic effect applies. You find all
the necessary material data inputs within the Piezomagnetic Material. This includes
the elasticity, magnetic permeability and coupling matrices. Non piezomagnetic
domains can be modeled using any other available structural material model.

3 Go to the Magnetic Fields node and under Domain Selection sclect the domains the
magnetics equations must be solved. These domains include all the piezomagnetic

domains, and any other magnetic domains.

MODELING MAGNETOSTRICTIVE MATERIALS
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4 Go to the Magnetic Fields>Ampere’s Law, Piezomagnetic node. Ifit is not yet available,

add such node. Select the domains where the piezomagnetic effect needs to be

modeled.

5 A Multiphysics>Piezomagnetic Effect node is already present if the coupling was

added using either the Model Wizard or Add Physics window. If the model is set up

manually (that is, single physics interfaces are added), right-click the Multiphysics

Couplings node to add a Piezomagnetic Effect coupling. If several Solid Mechanics or

Magnetic Fields interfaces are present, select the correct ones. By default, the model

will be solved as fully coupled. Alternatively, on the Piezomagnetic Effect coupling

node, you can select to include only either Joule effect or Villari effect. Confirm that

all the domains where the piezomagnetic material is present are selected.

i

Only domains that have both Ampere’s Law, Piezomagnetic sclected in the
Magnetic Fields interface and Piezomagnetic Material sclected in the Solid
Mechanics interface are applicable in the selection for Piezomagnetic Effect
coupling. The selection of this multiphysics coupling node cannot be
edited directly.

CHAPTER 2:

6 Confirm that remaining domains are well assigned:

Solid and magnetic domains: In these domains, the magnetics and structural
problems are solved independently without any piezomagnetic coupling. This
represents deformable magnetic materials for which such coupling is negligible.
Exclude such domains from the selections for all Ampere’s Law, Piezomagnetic and

Piezomagnetic Material nodes under the corresponding interfaces.

Solid-only domains: In these domains, only mechanical phenomena are modeled,
and the magnetics phenomena are neglected. This represents deformable solid
nonmagnetic materials. Exclude such domains from the selection in the Magnetic
Fields interface.

Magnetics-only domains: Those domains are nonsolid. This is typically the case
of air, in which the magnetics is solved but not mechanics. Exclude such domains
from the selection in the Solid Mechanics interface.

Nonsolid and nonmagnetic domains: In those domains another physics is solved.

Typical examples are acoustic domains and fluid flow domains, which might be
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present in certain multiphysics application. Exclude such domains from the

selections on both Magnetic Fields and Solid Mechanics interface nodes.

* DPiezomagnetic Material

6]

* Ampere’s Law, Piezomagnetic

NONLINEAR MAGNETOSTRICTION

When setting up the problem manually (that is, by adding single physics interfaces one
at a time) both Solid Mechanics and Magnetic Fields interfaces should be added. Then,
you have to specify which domains are in each physics, and which domains are to be

modeled as magnetostrictive materials.

Instead of Magnetic Fields interface, you can also use Rotating Machinery,
I_El Magnetic interface.

I On the Solid Mechanics interface Settings window, locate the Domain Selection
section. Select the domains which undergo structural deformation, including the
magnetostrictive material domains. The following structural material nodes are
supported to represent the magnetostrictive domains: Linear Elastic Material and
Hyperelastic Material (available with the Nonlinear Structural Materials Module).

2 Go to the Magnetic Fields node and under Domain Selection sclect the domains the
magnetics equations must be solved. These domains include all the magnetostrictive

domains, and any other magnetic domains.

3 Go to the Magnetic Fields>Ampere’s Law, Nonlinear Magnetostrictive node. If'it is not
yet available, add such node. Select the domains where the magnetostriction effect
needs to be modeled. You can specify the magnetization model and enter the related
material data on the node.

4 A Multiphysics>Nonlinear Magnetostriction node is already present if the coupling was
added using either the Model Wizard or Add Physics window. If the model is set up
manually (that is, single physics interfaces are added), right-click the Multiphysics
Couplings node to add a Nenlinear Magnetostriction coupling. If several Solid
Mechanics or Magnetic Fields interfaces are present, select the correct ones. On the
coupling node, you can also select the magnetostriction model depending on the
material symmetry and enter the corresponding coupling data. By default, the

model will be solved as fully coupled. Alternatively, on the Nonlinear Magnetostriction
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coupling node, you can select to include only either Joule effect or Villari effect.

Select only the domains where the magnetostrictive effect needs to be modeled.

Ef

On the Nonlinear Magnetostriction coupling node, the applicable domains
in the selection are only domains that have both Ampere’s Law, Nonlinear
Magnetostrictive selected in the Magnetic Fields interface and Linear Elastic
Model (or Hyperelastic Model) sclected in the Solid Mechanics interface.

5 Confirm that remaining domains are well assigned:

Solid and magnetic domains: In these domains, the magnetics and structural
problems are solved independently without any magnetostriction coupling. This
represents deformable magnetic materials for which such coupling is negligible.
Exclude such domains from the selection in the Nonlinear Magnetostriction

coupling node.

Solid-only domains: In these domains, only mechanical phenomena are modeled,
and the magnetics phenomena are neglected. This represents deformable solid
nonmagnetic materials. Exclude such domains from the selection in the Magnetic

Fields interface.

Magnetics-only domains: Those domains are nonsolid. This is typically the case
of air, in which the magnetics is solved but not mechanics. Exclude such domains

from the selection in the Solid Mechanics interface.

Nonsolid and nonmagnetic domains: In those domains another physics is solved.
Typical examples are acoustic domains and fluid flow domains, which might be
present in certain multiphysics applications. Exclude such domains from the

selections in both Magnetic Fields and Solid Mechanics interfaces.

@,

e Ampere’s Law, Nonlinear Magnetostrictive

CHAPTER 2:

STRUCTURAL MECHANICS MODELING



Mechanical Damping and Losses

Damping and losses are important factors for determining the response in
time-dependent and frequency domain studies, and sometimes also when computing
eigenfrequencies. This section describes how to model damping and loss using
different damping models. In this section:

In this section:

* About Damping

* Rayleigh Damping

e Loss Factor Damping

* Viscoelastic Damping

* Explicit Complex-Valued Damping

* Equivalence Between Loss Factor, Rayleigh, and Viscous Damping
* Diezoclectric Damping

* Adding Damping in the Modal Solver

Damping Sources

There are many sources of damping in a system. Some of them are:

* Dissipation in the material. This dissipation can be for example be proportional to
the amplitude of the strain rate (viscous damping) or to the amplitude of the strain
itself (hysteretic damping).

* Thermoelastic damping, which is a thermodynamic effect which is related not only
to the state in a point, but also to the gradients of the temperature field.

* Damping caused by the surrounding medium, often air or water.
* Friction between joined parts.
* Components intended to supply damping like a dashpot in a car suspension.

It is often difficult to separate and quantify these effects, so damping modeling is one

of the biggest challenges in structural dynamics.
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About Damping

Phenomenological damping models are typically invoked to model the intrinsic
frictional damping present in most materials (material damping). These models are
casiest to understand in the context of a system with a single degree of freedom. The
following equation of motion describes the dynamics of such a system with viscous
damping:

u

mdt2 + c%—% +ku = f(t) (2-21)

In this equation u is the displacement of the degree of freedom, m is its mass, ¢ is the
damping parameter, and £ is the stiffness of the system. The time (¢) dependent forcing

term is f{¢). This equation is often written in the form:

2
du + 2@@0@ + cogu - (2-22)
di? dt m

t
where § = c/(2mwg) and 0002 =k/m. In this case C is the damping ratio (=1 for
critical damping) and o is the undamped resonant frequency of the system. In the
literature it is more common to give values of § than c¢. The damping ratio £ can also
be readily related to many of the various measures of damping employed in different
disciplines. These are summarized in Table 2-10.

TABLE 2-10: RELATIONSHIPS BETWEEN MEASURES OF DAMPING

DAMPING DEFINITION RELATION TO
PARAMETER DAMPING RATIO

Damping ratio ¢ = ¢/ Cositical -

I‘;ogarlthmlc 5 - ( u(ty) ) 8y=2nC
ecrement d u—(to )
(L«1)
where ¢ is a reference time and t is the period
of vibration for a decaying, unforced degree of
freedom.
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TABLE 2-10: RELATIONSHIPS BETWEEN MEASURES OF DAMPING

DAMPING DEFINITION RELATION TO

PARAMETER DAMPING RATIO

Quality factor @ = w/Ao Q@~1/(20)
where Ao is the bandwidth of the amplitude (E«1)
resonance measured at 1/A/§ of its peak.

Loss factor 1 Qh At the resonant

= o Wh frequency:
n~2¢

where @, is the energy lost per cycle and W, is

the maximum potential energy stored in the (C«1)
cycle. The variables @j, and W), are available as

solid.Qh and solid.Wh.

In the frequency domain, the time dependence of the force and the displacement can
be represented by introducing a complex force term and assuming a similar time

dependence for the displacement. The equations

f(t) = Re{F&""} andu(t) = Re{U""}

are written where  is the angular frequency and the amplitude terms U and F can in
general be complex (the arguments provide information on the relative phase of
signals). Usually the real part is taken as implicit and is subsequently dropped.

Equation 2-21 takes the following form in the frequency domain:

—o’mU+jocU+kU = F (2-23)

where the time dependence has canceled out on both sides. Alternatively, this equation

can be written as:

—0’U + 2joo U+l = £ (2-24)

3

There are three basic damping models available in the structural mechanics interfaces
for explicit modeling of material damping — Rayleigh damping, viscous damping,
and loss factor models based on introducing complex quantities into the equation
system. There are also other phenomena which contribute to the damping. Some
material models, such as viscoelasticity and plasticity are inherently dissipative. It is also

possible to model damping in spring conditions.

MECHANICAL DAMPING AND LOSSES |

183



184 |

CHAPTER 2:

Rayleigh Damping

A common method of modeling damping is Rayleigh damping, where two damping
coefticients are specified. This type of damping is not directly related to any physical
process, but must be seen as a way to take the total damping of a structure into

account.

Rayleigh damping introduces damping in a form based on Equation 2-21. This means
that the method can be applied generally in either the time or frequency domain. The
parameter ¢ in Equation 2-21 is defined as a fraction of the mass and the stiffness using
two parameters, oz and Bgg, such that

c = ogym+PBygk (2-25)

Substituting this relationship into Equation 2-21 and rearranging into the form of
Equation 2-22 gives:

2
d’u 2.du 2 t
—5 +(0gy + Bagwo) gy + @ot = ]%)

When there are many degrees of freedom m, k, and ¢ become matrices and the

technique can be generalized.

Rayleigh damping can therefore be identified as equivalent to the damping ratio at

resonance of:

(a2 Do)

==+ ® 2-26
G 2 o BdK 0 ( )
Note that Equation 2-26 holds separately for each vibrational mode in the system at
its resonant frequency. In the frequency domain it is possible to use frequency
dependent values of a7 and Bgg. For example, setting agp7 = 0 and Byx = 2w

produces an equivalent viscous damping model at the resonant frequency .

While Rayleigh damping is numerically convenient, the model does not agree with
experimental results for the frequency dependence of material damping over an
extended range of frequencies. This is because the material damping forces behave
more like frictional forces (which are frequency independent) than viscous damping
forces (which increase linearly with frequency as implied by Equation 2-23). In the
frequency domain it is possible to introduce loss factor damping, which has the desired

property of frequency independence.
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A complication with the Rayleigh damping model is to obtain good values for the
damping parameters a7 and Bgg. A more physical damping measure is the damping
ratio, the ratio between actual and critical damping, often expressed as a percentage of
the critical damping. Commonly used values of the damping ratio can be found in the
literature.

Using Equation 2-206, this relationship at two frequencies, f and f5, with different
damping ratio, {; and Cg, results in an equation system that can be solved for a5 and

Bak:
1
B
ﬁ fy Bax| G2

The damping ratios are then

C1f2_c2f1
ogy = 4nfifo—5—%—
12 fg—f{i

Using the same damping ratio, {1 = g = g, does not result in a constant damping
factor inside the interval f] < f < f5. It can be shown that the damping factor is lower

inside the interval, as Figure 2-13 shows.

o

&

~

&

a Rayleigh damping

g

£ «p

G | — — — — Specified damping
I I

Figure 2-13: An example of Rayleigh damping.
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Since the coefficients oz37 and Byg should not be negative, the damping ratios are

constrained by the respective frequencies as

f1 Cz 2
BEGCR

For many applications it is sufficient to leave oz37 as zero and to define damping only
using the B g coefficient. Then, according to Equation 2-26, a damping which
increases linearly with frequency is obtained. If the damping ratio (f{)) or loss factor

N(fp) is known at a given frequency f, the appropriate value for By is:

ﬁd}{ = C/(Wf()) = n/(znf())

In order to visualize the damping ratio as a function of frequency, click
=] Damping Ratio Preview (I'l)

CHAPTER 2:

Loss Factor Damping

Loss factor damping (sometimes referred to as material damping, structural damping,

or hysteretic damping) can be applied in the frequency domain.

The loss factor is a measure of the inherent damping in a material when it is
dynamically loaded. It is typically defined as the ratio of energy dissipated in unit

volume per radian of oscillation to the maximum strain energy per unit volume.
In COMSOL Multiphysics the loss information appears as a multiplier to the elastic

constitutive matrix D¢

= (1+jng)D
For a nonlinear elastic material, this applies to the tangential stitfness.

The use of loss factor damping traditionally refers to a scalar-valued loss factor 7. But
there is no reason that 75 must be scalar. Because the loss factor is a value deduced from
true complex-valued material data, it can be represented by a matrix of the same
dimensions as the anisotropic stiffness matrix. Especially for orthotropic materials,
there should be a set of loss factors of all normal and shear elasticity modulus
components, and COMSOL allows all these options, so a more general expression is.

Dfnn = (1 +jns,mn)Dmn
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For hyperelastic materials the loss information appears as a stress contribution to the

second Piola—Kirchhoff stress, S:

ow

= jin —
Sq =57

Loss factor damping is available for frequency response analysis and damped

eigenfrequency analysis in all interfaces.

Viscous Damping

You can add an explicit viscous damping to several material models. Viscous damping
can be used both in time domain and frequency domain. In the viscous damping
model, and extra contribution, proportional to the strain rate, is added to the stress

tensor, as described in Viscous Damping.

You can specify the viscous damping for volumetric strains and shear strains

independently.

Equivalence Between Loss Factor, Rayleigh, and Viscous Damping

In frequency domain, it is possible to use Rayleigh damping in order to specify an
equivalent viscous damping. Set the stiffness damping parameter By, to the loss

factor, n, divided by the excitation frequency:

=1 -1
Pax 2nf o

The mass damping factor, a4y, should be set to zero.

If, on the other hand, you would want to use a viscous damping, corresponding to a
certain Rayleigh stiffness damping, the conversion to bulk and shear viscosity can be

made using the expressions

Ny = KBgx
ny = GBak

where K and G are the bulk and shear moduli, respectively. Equivalently, you can

transform between loss factor damping and viscous damping,
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NMp =
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nv=

Explicit Complex-Valued Damping

In frequency domain, it is possible to define damping by modeling the dissipative
behavior of the material using complex-valued material properties. In COMSOL
Multiphysics, you can enter the complex-valued data directly, using i or sqrt(-1) for
the imaginary unit.

However, entering complex-valued data directly into the material parameters is

incompatible with the built-in damping and viscoelasticity features.

Viscoelastic Damping

In some cases, damping is included implicitly in the material model. This is the case for
a viscoelastic material, where damping operates on the shear components of stress and

strain.

When viscoelasticity is modeled in the frequency domain, it will act as a loss factor
damping. The complex modulus G*(®) is the frequency-domain representation of the

stress relaxation function of viscoelastic material. It is defined as
G* = G'+jG" = (1+jny G’

where G' is the storage modulus, G" is the loss modulus, and their ratio ng = G"/G" is
the loss factor. The term G' defines the amount of stored energy for the applied strain,
whereas G" defines the amount of energy dissipated as heat; G', G", and ng can all be
frequency dependent.

Piezoelectric Damping

Piezoelectric losses are more complex and include coupling and electrical losses in
addition to the material terms. For damping in piezoelectric materials, see Piezoelectric

Losses.

For piezoelectric materials, By is only used as a multiplier of the structural

contribution to the stiffness matrix when building-up the damping matrix as given by
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Equation 2-25. In the frequency domain studies, you can use the coupling and
dielectric loss factors equal to Bygo to effectively achieve the Rayleigh damping

involving the whole stiffness matrix.

Adding Damping in the Modal Solver

In COMSOL it is possible to solve a problem for a set of modes in the absence of
damping, and then to use those solutions as a modal basis to solve a problem in the
time (using a time domain modal study) or frequency domain (using a Frequency
Domain, Modal study). In both of these cases it is possible to manually assign a
damping ratio to the computed modes in the time or frequency domain study. To do
that, right click on the study and choose Show Default Solver, then expand the solver
sequence until the Modal Solver node is visible. In the Settings window for that node,

add damping ratios for each of the modes.

For more details, see the section Modal Solver in the COMSOL
@ Multiphysics Reference Manual.
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Modeling Geometric Nonlinearity

This section discusses how to model problems where displacements or strains are of a
size where the deformation of the structure has to be taken into account when
formulating the equations. Examples of the type of problems where this feature is
useful include:

* Thin structures, where the deflection is of the same order of magnitude as the
thickness.

e Where the structure exhibits large rotations. A rigid body rotation of only a few
degrees causes significant strains and stresses in a material where a linear strain

representation is used.
* Where the strains are larger than a few percent.
* Contact problems.

* Where a prestress must be taken into account for computing the dynamic response

of a structure.
* Buckling problems.
¢ Where a deformed mesh is used.

¢ Fluid-structure interaction problems.

¢ Contact Modeling
{'i}‘ ¢ Fluid-Structure Interaction

¢ The more formal theory is described in Analysis of Deformation

CHAPTER 2:

Geometric Nonlinearity, Frames, and the ALE Method

Consider the bending of a beam in the general case of a large deformation (see
Figure 2-14). In this case the deformation of the beam introduces an effect known as

geometric nonlinearity into the equations of solid mechanics.

Figure 2-14 shows that as the beam deforms, the shape, orientation, and position of
the element at its tip changes significantly. Each edge of the infinitesimal cube
undergoes both a change in length and a rotation that depends on position.
Additionally, the three edges of the cube are no longer orthogonal in the deformed
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configuration (although typically for practical strains the effect of the

nonorthogonality can be neglected in comparison to the rotation).

From a simulation perspective it is possible to solve the equations of solid mechanics
on ecither a fixed domain (this is often called a Total Lagrangian formulation), or on
a domain that changes continuously with the deformation. The latter approach is often
called an Updated Lagrangian formulation. These two approaches also stand in
contrast to the Eulerian formulation which is often used for fluid mechanics. In an
Eulerian formulation the flow through a domain fixed in space is considered, while in

the Lagrangian formulation a fixed volume of material is considered.

In COMSOL Multiphysics, the concepts of a material frame and a
spatial frame are used. Equations formulated in the material frame will
give a Total Lagrangian formulation, while equations formulated in the

spatial frame will give an Eulerian formulation.

!

See Frames and Coordinate Systems in the theory chapter for more
details.

Solid mechanics in COMSOL Multiphysics is formulated on the material frame. This
is achieved by defining a displacement field for every point in the solid, usually with
components u, v, and w. At a given coordinate (X, Y, Z) in the reference configuration
(on the left of Figure 2-14) the value of u describes the displacement of the point
relative to its original position. The displacement is considered as a function of the
material coordinates (X, Y, Z), but it is not explicitly a function of the spatial
coordinates (X, y, z). The spatial coordinates give the current location in space of a
point in the deformed solid. As a consequence, it is only possible to compute

derivatives with respect to the material coordinates.

Taking derivatives of the displacement with respect to X, Y, and Z enables the
definition of a strain tensor. There are possible representations of the deformation. Any
reasonable representation must however be able to represent a rigid rotation of an
unstrained body without producing any strain. The engineering strain fails here, thus
it cannot be used for general geometrically nonlinear cases. One common choice for
representing large strains is the Green—Lagrange strain. It contains derivatives of the
displacements with respect to the original configuration. The values therefore
represent strains in material directions. This allows a physical interpretation, but it
must be realized that even for a uniaxial case, the Green—Lagrange strain is strongly

nonlinear with respect to the displacement. If an object is stretched to twice its original
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length, the Green—Lagrange strain is 1.5 in the stretching direction. If the object is
compressed to half its length, the strain would read -0.375.

An even more fundamental quantity is the deformation gradient, which contains the

derivatives of the deformed coordinates with respect to the original coordinates:

F=2%%-vu+r
X
The deformation gradient contains all information about the local deformation in the
solid, and can be used to form many other strain quantities. As an example, the Green—
Lagrange strain is

¢ = %(FTF—I)

An element at a point (X, Y, Z) specified in the material frame moves with a single
piece of material throughout a solid mechanics simulation. It is often convenient to
define material properties in the material frame as these properties move and rotate
naturally together with the volume element at the point at which they are defined as
the simulation progresses. In Figure 2-14 this point is illustrated by the small cube
highlighted at the end of the beam, which is stretched, translated, and rotated as the

beam deforms. The three mutually perpendicular faces of the cube in the Lagrange
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frame are no longer perpendicular in the deformed (spatial) frame. The deformed

frame coordinates in this frame are denoted (x, y, z) in COMSOL.

| 4
_— '
\ ¥,
dA, at
X

Figure 2-14: An example of the deformation of a beam showing the undeformed state
(left) and the deformed state (vight) of the beam itself with an element near its tip
highlighted (top), of the element (center), and of lines pavallel to the x-axis in the
undeformed state (bottom).

It is important to note that, as the solid deforms, the Lagrangian frame
becomes a nonorthogonal curvilinear coordinate system (see the lower
n part of Figure 2-14 to see the deformation of the X-axis). Particular care

is therefore required when defining physics in this coordinate system.

FRAME CONTROL CONFLICTS

Under geometric nonlinearity, a Solid Mechanics interface (or a similar structural
mechanics interface such as Multibody Dynamics) will assume control over the spatial
frame in the domains where it is active. However, the definition of the spatial frame

must be unique, and there may be conflicts. Some examples are:

* A Solid Mechanics interface and a moving mesh feature (for example, Deforming

Domain or Rotating Domain) have a common selection. In this case, the selection in
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the Solid Mechanics interface will be marked as “not applicable”. Thus, it is not

possible to solve a structural mechanics problem on such a domain.
¢ There are more than one frame-controlling physics interfaces active on the same

domain.

When two physics interfaces are competing for frame control, you will get the error
message “Multiple moving frame specifications on the same selection” when trying to
run the study. To identify the problem, go to the settings for the study step, and select
Modify model configuration for study step. There, you will get an overview of the frame
control in the model. Note that it is quite possible that several features control the

spatial frame, as long as it is on different geometric selections.

Settings v

= -Cdomp‘L.lte & Update Selution

Label: Stationary ,%
¥ Study Settings

Include geometric nonlinearity

Results While Solving

¥ Physics and Variables Selection

Meodify model configuration for study step

Global Definitions
Component 1 (compl)
= Definitions
4 lf" Solid Mechanics (solid), Controls spatial frame
s Linear Elastic Material 1
T Freel
= Initial Values 1
4 = Solid Mechanics 2 (solid2), Controls spatial frame
i Linear Elastic Material 1
T Freel
= Initial Values 1

e@Meo@n =

When you select a physics interface in the tree view, you can click the Control Frame
") to toggle whether that interface should control the spatial

Deformation button (

frame or not.
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STRESS MEASURES

For example, in the spatial frame it is easy to define forces per unit area (known as
tractions) that act within the solid and to define a stress tensor that represents all of
these forces that act on a volume element. Such forces could be physically measured,
for example, using an implanted piezoresistor. The stress tensor in the spatial frame is
called the Cauchy or true stress tensor (in COMSOL Multiphysics this is referred to as
the spatial stress tensor). To construct the stress tensor in the Lagrangian frame a
tensor transformation must be performed on the Canchy stress. This produces the
second Piola—Kirchhoff (or material) stress, which can be used with the material strain
to solve the solid mechanics problem in the (fixed) material frame. This is how the

Solid Mechanics interface works when geometric nonlinearities are enabled.

For the Cauchy stress tensor, both the force components and the normal to the area
on which the force is acting have fixed directions in space. This means that if a stressed
body is subjected to a pure rotation, the actual values of the stress components will
change. What was originally a uniaxial stress state might be transformed into a full
tensor with both normal and shear stress components. In many cases, this is neither

what you want to use nor what you would expect.

Consider for example an orthotropic material with fibers having a certain orientation.
It is much more plausible that you want to see the stress in the fiber direction, even if
the component is rotated. The Second Piola-Kirchhoff stress has this property as it is
defined along the material directions. In the figure below, an originally straight
cantilever beam has been subjected to bending by a pure moment at the tip. The
xx-component of the Cauchy stress and Second Piola—Kirchhoff stress are shown.
Since the stress is physically directed along the beam, the xx-component of the Cauchy
stress (which is related to the global x direction) decreases with the deflection. The
Second Piola—Kirchhoft stress, however, has the same through-thickness distribution

all along the beam, even in the deformed configuration.
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Figure 2-15: xx-components of the Canchy stress tensor (top) and Second-Piola—Kirchhoff
stress tensor (below) for an initially straight beam

Another stress measure available in COMSOL Multiphysics is the First Piola-Kirchhoft
stress. It is a multiaxial generalization of the nominal (or engineering) stress. The stress
is defined as the force in the current configuration acting on the original area. The First
Piola—Kirchhoft stress is an unsymmetric tensor, and is for that reason less attractive to
work with. Sometimes you may also encounter the Kirchhoff stress, although it is not
used in COMSOL Multiphysics. The Kirchhoff stress is just the Cauchy stress scaled

by the volume change. It has little physical significance, but can be convenient in some

mathematical and numerical operations.

Unfortunately, even without a rotation, the actual values of all these stress
representations are not the same. All of them scale differently with respect to local
volume changes and stretches. This is illustrated in the graph below. The
xx-component of four different stress measures are plotted at the fixed end of the beam
from the example above. At this point, the beam axis coincides with the x-axis, so the
directions of all stress tensor components coincide. In the center of the beam, where
strains, and thereby volume changes are small, all values approach each other. For a
case with large rotation but small strains, the different stress representations can be

seen as purc rotations of the same stress tensor.

CHAPTER 2: STRUCTURAL MECHANICS MODELING



90000 [ T T T T T T T T T T
80000 |- g
70000 - y g
60000 - 8
50000 - 8
40000 |- i
30000 - :

s
20000 / A

10000 4

L

-10000
-20000
-30000

-40000 —8- Cauchy stress

—#— 2nd Fiola-Kirchhoff stress
—#— 1st Piola-Kirchhoff stress |
Kirchhoff stress e

-50000
-60000
-70000

0 001 002 003 004 005 006 007 0.08 009 0.1
Arc length

Figure 2-16: Stress distribution across the beam at the constrained end.

If you want to compute the resulting force or moment on a certain boundary based on
the stresses, there are in practice only two possible choices: Either integrate the Cauchy
stress over the deformed boundary, or integrate the First Piola—Kirchhoff stress over
the same boundary in the undeformed configuration. In COMSOL Multiphysics this
corresponds to selecting either Spatial frame or Material frame in the settings for the

integration operator.

ALE METHOD

In the case of solid mechanics, the material and spatial frames are associated directly
with the Lagrangian and Eulerian frames, respectively. In a more general case (for
example, when tracking the deformation of a fluid, such as a volume of air surrounding
a moving structure) tying the Lagrangian frame to the material frame becomes less
desirable. Fluid must be able to flow both into and out of the computational domain,
without taking the mesh with it. The arbitrary Lagrangian-Eulerian (ALE) method
allows the material frame to be defined with a more general mapping to the spatial or
Eulerian frame. In COMSOL Multiphysics, a separate equation is solved to produce
this mapping — defined by the mesh smoothing method (Laplacian, Winslow,

hyperelastic, or Yeoh) with boundary conditions that determine the limits of
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deformation (these are usually determined by the physics of the system, whilst the
domain level equations are typically being defined for numerical convenience). The
ALE method offers significant advantages since the physical equations describing the

system can be solved in a moving domain.

Deformed Geometry and Moving Mesh in the COMSOL Multiphysics
Q@ Reference Manual

CHAPTER 2:

Geometric Nonlinearity for the Solid Mechanics Interface

For the Solid Mechanics interface, you enable a geometrically nonlinear analysis for a
certain study step by selecting the Include geometric nonlinearity check box in the Study

Settings section of a study step.

If any active feature in the model requires the analysis to be geometrically nonlinear,
the Include geometric nonlinearity check box is selected automatically, and it cannot be

cleared. The following physics features force this behavior:

* Contact, because the deformation between the contacting boundaries must be part
of the solution.

* Moving mesh (when at least one deforming domain is active).

* Large strain plasticity.

» Hyperelastic materials, which are always formulated for large strains.

Usually you would also want to use geometric nonlinearity when a Moving Mesh

interface is present, but this setting is not forced by the program.

When you select a geometrically nonlinear study step, the behavior of several features

differs from that in a geometrically linear case:

e There is an important difference between using uppercase (X, Y, Z, R) and
lowercase (x, y, 2, r) coordinates in expressions. The lowercase coordinates

represent the deformed position, and this introduces a dependency on the solution.

* Many features, such as coupling operators, can be specified as operating either in the
material (X, Y, Z) or the spatial (x, y, z) frame. This setting does not make a
difference unless a geometrically nonlinear analysis is performed. In most cases you

would want to do the operation in the material frame.
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* The strain representation is changed from using engineering strains to Green—
Lagrange strains, unless the Geometrically linear formulation check box is selected in

the Geometric Nonlinearity section of a certain material.

* Where Green-Lagrange strains are used, Second Piola—Kirchhoft stresses are also
used. This means that material data must be given in terms of these quantities. This

distinction is important only when the strains actually are large.

* Pressure loads are interpreted as follower loads, so that the direction of the load as

well as the loaded area are deformation dependent.

* Rigid connectors take finite rotations into account.

@ Studies and Solvers in the COMSOL Multiphysics Reference Manual

Geometric Nonlinearity for the Shell, Plate, Membrane, Beam and
Truss Interfaces

For the Shell, Plate, Membrane, Beam, and Truss interfaces, a geometrically nonlinear
analysis is enabled in the same way described above. For the Membrane interface,
geometric nonlinearity must almost always be used, since it is nonlinear effects which

supply the stiffness in the transverse direction.

The geometric nonlinearity in the Beam interface is limited to large rotations and
displacements, but small strains.

The effect of using geometric nonlinearity in these interfaces is limited to the stress and
strain representation as the other effects described in Geometric Nonlinearity for the

Solid Mechanics Interface are not relevant.

Solving Geometrically Nonlinear Problems

Depending on the geometrically nonlinear effects that appear in your model, you may

have to use different solution strategies. Some problems in this class are strongly

nonlinear, while others show only a weak deviation from linearity. Some guidelines are:

* If the problem has a path dependent solution, then it must be solved in an
incremental way in order to give a correct solution. Problems including for example
plasticity or friction belong to this class. If you do the analysis in time domain, then
the solution is inherently incremental. If the analysis is stationary, invoke the

MODELING GEOMETRIC NONLINEARITY

199



parametric continuation solver by adding an Auxiliary Sweep, and ramp up some

loading parameter. In either case, make sure that the step size is not too large.

e Problem that have a unique solution, like an elastic model subjected to large
rotations or strains can be solved in a single static load step without loss of accuracy.
It is however possible that such an approach will not converge, in which case a
parametric continuation solver must be used.

* In problems involving large rotations, the default settings of the nonlinear solver
will sometimes give a too conservative solution strategy. You can often decrease the
solution time significantly by modifying the settings under Method and Termination
in the settings for the Fully Coupled or Segregated Step node in the solver sequence.
Set Nonlinear method to Constant (Newton) and use a rather high Damping factor. In
most cases the value 1 will work.

* Ifyou model a situation which to a large extent is a rigid rotation, it is often
necessary to use tighter tolerances than usual in order to avoid spurious stresses.
Since the strains are computed from the differences of the displacements in an
element, even a small relative error in the displacements (which are large) can cause

significant strains. This will be visible in a case where the actual stresses are small.

Prestressed Structures

You can analyze eigenfrequency, frequency domain, or time-dependent problems
where the dynamic properties of the structure are affected by a preload, such as a
tensioned string.

Usually, a study of a prestressed problem includes using two study steps. The first step
is a Stationary step in which the static preload is applied. The preload step can be
computed with or without taking geometric nonlinearity into account. In the second
study step, where you compute the eigenfrequency or the frequency response, it is
necessary to take geometric nonlinearity into account. Even if the displacements and

strains are small, this is what gives the prestress contribution to the equations.
There are three predefined study sequences for prestressed dynamic analysis:

* Eigenfrequency, Prestressed
* Frequency Domain, Prestressed

* Frequency Domain, Prestressed, Modal

The prestressed study types assume that the loading causes small perturbations around
the prestressed state.
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In a general nonlinear analysis, like a Stationary or Time Dependent study step, the full

combined effect of the prestress and other loads will automatically be included.

The same principles apply also to a linear buckling analysis, except that both study steps
should be geometrically linear. The nonlinear contribution is included in the

formulation of the buckling eigenvalue itself.

FOLLOWER LOADS

Loads that change orientation with deformation, such as a pressure, actually contribute
not only to the load but also to the stiffness. This is a physical effect and not just a
numerical artifact. Whether such loads are included or not in an Eigenfrequency study
step will affect the computed eigenfrequencies. If you for some reason do not want this
effect, you must suppress the load in the Physics and Variables section of the

Eigenfrequency node.

If you use a local coordinate system for describing a load, you must, in

case of geometric nonlinearity, pay attention to whether that coordinate

system has constant axis orientations or not. As an example, the default

boundary system has Frame set to Deformed Configuration, so that a load
n represented in that system will behave as a follower load. Change to

Reference Configuration if the load should act in fixed directions.

In more general terms, any feature in which there is a dependency on the
choice of frame (material or spatial) can potentially affect the outcome of
a prestressed analysis.

CONTACT AND PRESTRESSED ANALYSIS

If a contact is included in the prestress load case, you can perform a subsequent
eigenfrequency or frequency-domain analysis in which the linearization will be made
around the computed contact state. The connection between the two boundaries is
elastic, using the penalty factor as stiffness, both for the penalty method and the
augmented Lagrangian method. If the augmented Lagrangian method is used for the
contact modeling, then the penalty factor must be constant and not dependent on the

iteration number.
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The contact state is considered as fixed, so there is no harmonic perturbation in contact

quantities, such as the contact pressure.

The gap distance in a contact analysis is computed from the coordinates
. of the contacting boundaries in the spatial frame. The spatial frame is
El defined by the displacements in the preload step and is not affected by the
displacements in a subsequent perturbation step.

INELASTIC STRESSES AND STRAINS

When inelastic stresses and strains are part of the problem description, you need to
make some extra considerations. Such contributions are formally part of the
constitutive model but generate load vector contributions.

There are three Preset study types which can be used to set up these two
study steps: Eigenfrequency, Prestressed; Frequency Domain, Prestressed;

and Linear Buckling.

If you want to explicitly prescribe the stress field for a prestressed analysis
rather than solving for it, you should not use the two study step
procedure. In such a case, prescribe the stress field using an Initial Stress
n and Strain, External Stress, or External Strain node. Then add a separate
Eigenfrequency or Frequency Domain study and select Include Geometric

Nonlinearity in the settings for the study step.

Eigenfrequency, Prestressed, Frequency Domain, Prestressed, and Linear
@l Buckling in the COMSOL Multiphysics Reference Manual

* For an example of a general prestressed eigenfrequency analysis see
Bracket — Eigenfrequency Analysis: Application Library path
Structural_Mechanics_Module/Tutorials/bracket_eigenfrequency.
| * For an example of an analysis where the stress state is explicitly
prescribed, see Vibrating Membrane: Application Library path
Structural_Mechanics_Module/Verification_Examples/

vibrating_membrane.
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Geometric Nonlinearity for the Piezoelectric Material

PIEZOELECTRIC MATERIALS WITH LARGE DEFORMATIONS

The linear piezoelectric equations as presented in About Piezoelectric Materials with
engineering strains are valid if the model undergoes only relatively small deformations.
As soon as the model contains larger displacements or rotations, these equations
produce spurious strains that result in an incorrect solution. To overcome this

problem, so-called large deformation piezoelectric equations are required.

The Piezoelectric Material implements the large deformation piezoelectric equations
according to Yang (Ref. 1). Key items of this formulation are:

* The strains are calculated as the Green—Lagrange strains, €;;:

lj.
ou. ou; ou,ou
g = 2 A TR (2-27)

vooo200X. oX. oX.o0X;

J i i

Green—Lagrange strains are defined with reference to an undeformed geometry.
Hence, they represent a Lagrangian description. In a small-strain, large rotational
analysis, the Green—Lagrange strain corresponds to the engineering strain in
directions that follow the deformed body.

¢ Electrical field variables are calculated in the material directions, and the electric
displacement relation is replaced by an expression that produce electric polarization

in the material orientation of the solid.

* In the variational formulation, the electrical energy is split into two parts: The
polarization energy within the solid and the electric energy of free space occupied
by the deformed solid.

The first two items above result in another set of constitutive equations for large
deformation piezoelectricity:
T
S =cpe-e E

P =ee+gy(e,g-DE,

m

where S is the second Piola—Kirchhoff stress; € is the Green—Lagrange strain, E, and
P, are the electric field and electric polarization in the material orientation; I is the
identity matrix; and cg, e, and &g are the piezoelectric material constants. The

expression within parentheses equals the dielectric susceptibility of the solid:

X = er_I
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The electric displacement field in the material orientation results from the following
relation

-1
D, =P +¢,JC "E
where C is the right Cauchy—Green tensor
c=F'F

Fields in the global orientation result from the following transformation rules:

T
E=F'E,_
P=JFP,
) (2-28)
D=J'FD,_
1
py = pvd

where F'is the deformation gradient; o/ is the determinant of F; and p,, and py are the
volume charge density in spatial and material coordinates, respectively. The
deformation gradient is defined as the gradient of the present position of a material
point x =X + w:

F= 0%
X
Finally, one can rewrite the constitutive equations as

T
S =cpe-e E

D, =ec+gpe,gE + &:O(JC_:l -DE
DECOUPLED MATERIALS WITH LARGE DEFORMATIONS

The large deformation formulation described in the previous section applies directly to
materials not being piezoelectric if the coupling term is set to zero: e = 0. In that case,
the structural part corresponds to the large deformation formulation described for the
solid mechanics interfaces.

The electrical part separates into two different cases: For solid domains, the electric
energy consists of polarization energy within the solid and the electric energy of free
space occupied by the deformed solid — the same as for the piezoelectric materials.

For nonsolid domains this separation does not occur, and the electric displacement in
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these domains directly results from the electric field — the electric displacement

relation:

D =gy E

The Electrostatics Interface én the COMSOL Multiphysics Reference
ﬁ Mannal

LARGE DEFORMATION AND DEFORMED MESH

The Piezoelectricity Interface, Solid can be coupled with the Moving Mesh (ALE)
interface in a way so that the electrical degrees of freedom are solved in an ALE frame.
This feature is intended to be used in applications where a model contains nonsolid
domains, such as modeling of electrostatically actuated structures. This functionality is

not required for modeling of piezoelectric or other solid materials.

The use of ALE has impacts on the formulation of the electrical large deformation

equations:

* The first impact is that with ALE, the gradient of the electric potential directly
results in the electric field in the global orientation, and the material electric field

results after transformation.

* The most visible impact is on the boundary conditions. With ALE, any surface
charge density or electric displacement is defined per the present deformed
boundary area, whereas for the case without ALE, they are defined per the

undeformed reference area.

Deformed Geometry and Moving Mesh n the COMSOL Multiphysics
@ Reference Manual
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Contact Modeling

CHAPTER 2:

Overview

Situations where objects come into contact with each other occur frequently in
mechanical simulations. Setting up and solving such contact problems can be a
challenging task, and this section contains information about important aspects of

creating models involving contact.

In a contact analysis, you solve for the contact state and the contact forces. The most
fundamental quantity in a contact analysis is the distance between the objects which
may come into contact, the gap. If the gap is positive then there is no interaction. The
task of the contact algorithm is to ensure that the gap never becomes negative; that is,
to avoid overclosure. In order to accomplish this task, contact forces must be

introduced.

For normal contact, the state only consists of being in contact or not, and the force
variable is the contact pressure in the normal direction. With friction included, there
are two possible states for the relative tangential displacement when in contact:

sticking or sliding. The tangential force vector is added as force variable.

The contact analysis functionality in COMSOL Multiphysics also includes the
possibility to prescribe adhesion and decohesion between the contacting objects, and
to model removal of material by wear when the objects are sliding relative to each

other.

In this section:

e Setting Up a Contact Problem * Special Types of Contact Problems

e Contact Pairs ¢ Fallback Conditions to Contact

* Meshing for Contact Analysis Regions

e Settings for Contact Nodes * Solver Settings for Contact Analysis

¢ Quasistatic Contact Analysis * Monitoring the Solution

 Dynamic Contact Analysis * Dependent Variables in Contact

Analysi
e Multiphysics Contact Analysis s

* Important Contact Variables
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Setting Up o Contact Problem

Mechanical contact can be modeled between boundaries in the Solid Mechanics,
Multibody Dynamics, Shell, Layered Shell, and Membrane interfaces. You can model
contact not only within a single physics interface, but also between two physics

interfaces, or even between a physics interface and any boundary having a mesh.

To model a mechanical contact problem, you must do the following fundamental

steps:

* In the finalization step of the geometry sequence, you should normally have Action
set to Form an assembly. If Form a union is used, then the contacting boundaries must

be geometrically separated in the initial configuration.

* Add Contact Pair nodes under Definitions. A contact pair consists of two sets of
boundaries, which are called the source and destination boundaries. Contact pairs
can also be added automatically, based on boundary adjacency when the Form an
assembly action is used. The geometric gap distance is a variable set up by the
contact pair, which also define operators for mapping variables or expressions

between the selected boundaries.

* Use the default Contact node or add new Contact nodes in the physics interface. In
the Contact node, you select the contact pairs to be used, and provide the settings

for the physical and numerical properties of the contact model.

e Ifrelevant, add Friction, Slip Velocity, Adhesion, Decohesion, or Wear subnodes to

Contact.
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* Select a suitable study type. You can analyze contact using the following types of

study steps:

- Stationary; commonly using an auxiliary sweep.
- Bolt Pretension

- Time Dependent

- Any type of prestressed analysis. In this case, the full contact problem is solved in
the preload step, and in the subsequent perturbation step the contact state is

considered as fixed.

* Documentation of the Contact, Friction, Slip Velocity, Adhesion,

Decohesion, and Wear nodes.
{'i}‘ * Contact Analysis Theory.

¢ Identity and Contact Pairs in the COMSOL Multiphysics Reference
Manual.

In a multiphysics analysis, a contact problem can also incorporate for example changes
in the heat flux or electric current through the contacting boundaries. You will then
also need to add corresponding features in the other participating interfaces, like a
Thermal Contact node in the Heat Transfer in Solids interface. The contact state and
contact pressure used by other physics interfaces are always supplied by the structural

mechanics interface.

Because of the multiphysics capabilities, the setup of a contact problem is
split into two parts. The definition of the contact pair is made under
Definitions, and can be shared between several physics interfaces. This part

of the contact problem defines the geometric properties of the contact,

i

such as search and mapping operations between the selected boundaries.
The physics related definitions of the contact properties are then made in

the respective physics interfaces.

The fact that you add a Contact node to your model will automatically make all study
steps geometrically nonlinear. For the default Contact node, this requirement can be

removed by selecting Disconnect pair.
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INCLUDING FRICTION
In real life, there is always some friction between contacting objects, but this is
sometimes ignored when setting up the mechanical contact problem. There are several

reasons to do this simplification:

* In many cases, only the normal forces are significant for the general force
distribution in the structure, while the frictional forces only cause minor local
effects.

¢ The values of the friction coefficients are difficult to obtain, and unless the structure
is assembled under well controlled conditions, the magnitude of the friction can
vary a lot. If there is a large degree in uncertainty in the input data, it can be argued

that the inclusion of friction does not add much to the quality of the results.

* Adding friction to a contact problem will often increase the computation time

significantly, or even cause convergence problems.

There are a number of situations when friction modeling cannot be avoided. Some of

them are:

* When a significant portion of the load is carried by shear tractions acting on the

contact boundaries.

e When a tangential force is necessary to maintain stability and to avoid rigid body
motions. In many cases, it is however possible to replace the friction by a suitable
boundary condition instead, as long as there are no resultant forces being resisted

by such a constraint.
* When modeling wear.

* When the frictional dissipation is an important component of a dynamics problem,

or when it is needed as a heat source in a thermal analysis.

In some cases, such as when a brake pad slides along a brake disc, the size and
orientation of the slip velocity is known. You can then employ a simplified form of
friction modeling by assuming the tangential contact to always be in a slip state, which
simplifies the computation of the friction forces. This is done using the Slip Velocity

node. This is particularly useful for wear modeling.

INCLUDING ADHESION AND DECOHESION
You can also specify that the contacting boundaries stick to each other, so that they will
not separate or slide. The onset of adhesion, when the boundaries become

permanently attached to each other, can be based on several criteria:

* When a certain contact pressure is exceeded.
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* When the gap distance between the contact boundaries is smaller than a certain

value.

e When a user specified logical expression is fulfilled. This can for example be used if

an adhesive cures when a certain temperature is exceeded.

¢ From the start of the analysis. This case is particularly useful if you are interested in
modeling the subsequent tearing of a thin glue layer by decohesion.

If adhesion is active between the contact boundaries, it is possible to break the bond
by adding a decohesion model. You can choose between several different decohesion

models.

Adhesion and friction can be combined, but during the time that two boundaries are

bonded to each other through adhesion, any settings for friction are ignored.

INCLUDING WEAR

It is possible to model adhesive or abrasive wear of the material when the contacting
boundaries are sliding along each other. The removal of material from the domain
adjacent to the contact boundary can be modeled using three, fundamentally different,

approaches.

For the Solid Mechanics and the Multibody Dynamics interfaces, the most general
approach relies on the deformed geometry concept, where material is actually removed
by using an adaptive mesh technique. In the second, simplified, approach wear is
incorporated as an offset in the contact condition. This approach is computationally
less expensive, and is suitable as long as only small amounts of material are removed,
and wear does not change the orientation of the normal to the boundary significantly.
In the Shell and Membrane interfaces the structural domain is represented by only a
meshed surface. Therefore, a different, more suitable approach is used, in which the

thickness variable and the midsurface offset to the meshed boundary are modified.

Computing the amount of wear involves solving a rate equation, hence, it is only
possible to compute wear in time-dependent studies. The wear rate is typically a
function of the contact pressure and the relative slip velocity between the contacting

boundaries.

The Wear subnode is not available in the Layered Shell interface.
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SELECTING THE CONTACT METHOD

In COMSOL Multiphysics, there are three classes of methods available for solving
contact problems: the penalty method, the augmented Lagrangian method, and the
Nitsche method. For all methods, the contact pair is asymmetric, that is, the
destination contact boundary is constrained not to penetrate the source boundary, but
not vice versa. However, it is possible to set up a symmetric formulation for the contact

problem by selecting the same boundaries as source and destination.

Penalty Method

The default penalty method is rather simple and robust method to introduce the
contact conditions. Roughly speaking, it is based on inserting a stift distributed spring,
active only in compression, between the contacting boundaries. In addition to the
robustness, it has the advantage that no special solver is required, which makes it easier
to set up multiphysics problems and time-dependent studies. However, the penalty
method only enforces the contact conditions approximately. The contact forces
computed are thus less accurate than when using, for example, the augmented
Lagrangian method, and there is always some overclosure between the contacting
surfaces. For stick friction, there is also an “elastic’ deformation due to the penalization

of the constraint.

When using the penalty method, there is always a tradeoft between accuracy and
stability. While a large penalty factor will reduce nonphysical overclosures, the problem
may become ill-conditioned and unstable if it is too large. It might therefore be
beneficial to accept some penetration between the contacting objects. Note, however,

that if the penalty factor is too small, the contact condition may be violated.

Augmented Lagrangian Method

The augmented Lagrangian method provides better accuracy, but at a higher
computational cost, and is often less stable from a convergence point of view. All
contact conditions are enforced in a weak or integral sense, and thus evaluated in the
integration points on the destination boundary. For normal contact, it is thus possible
for a node to have a small penetration into the source boundary, even for a well
converged solution. Both, the contact pressure and the friction forces are added as

extra degrees of freedom to enforce the contact constraints.

When using the augmented Lagrangian method, it is possible to choose between a
segregated and a coupled solution method. The segregated solution method sets up
special type of segregated solver sequence, where the extra degrees of freedom related
to contact are updated in a separate segregated solver step. As its name implies, there

is no such need when using the coupled solution method, and you can more freely set
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up the solver sequence. This less restrictive solver requirement can be particularly
useful for multiphysics problems where the penalty method does not provide sufficient

accuracy.

Nitsche Method

The Nitsche method for contact is an extension of the general method suggested by
J. Nitsche in 1971 to weakly impose Dirichlet conditions. Conceptually, it can be
viewed as an enhancement of the penalty method where the surface traction of the
adjacent domains is used to improve the accuracy of the contact condition. Also, as for
the penalty method, it has the advantage that no special solver is required, which makes

it easier to set up multiphysics problems and time-dependent studies.

The Nitsche method is intended as an alternative to the augmented Lagrangian
method for problems where the penalty method lacks sufficient accuracy. Relevant
examples where this might be the case includes:

* Large deformation problems with hyperelasticity

* Self-contact

¢ Problems where the structural stiffness of the global system is of importance
For the first two problems in particular, the accuracy and stability can be further
improved by increasing the quadrature order for the contact equations, see also

Quadrature Settings. Hence, the Nitsche method uses a higher quadrature order by
default than the other contact methods.

COMSOL Multiphysics supports three different formulations of the Nitsche method:
* Symmetric

* Skew-symmetric

* Nonsymmetric

The default nonsymmetric formulation is recommended for the majority of cases and
provides a good tradeoff between performance and stability. In cases where the default

formulation fails, the skew-symmetric formulation can be an alternative, but it includes

additional equations that are expensive to evaluate that can increase the solution time.

= The Nitsche method is available in the Solid Mechanics and Multibody
m‘ Dynamics interfaces.
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Dynamic Methods

Both the penalty and the augmented Lagrangian methods are additionally available in
a specialized formulation intended for dynamic contact problems. Both of these are
based on a viscous formulation that for the normal contact constrains the rate of the
gap to be zero, rather than the gap. Since the formulations are viscous, the duration of
the contact should be small, otherwise the overclosure will eventually grow and violate
the nonpenetration condition. This is especially the case for the dynamic penalty

method, where the gap rate is only approximately zero.

CONTACT DETECTION

The contact search is made only towards one side of the source and destination
boundaries, determined by the positive direction of the contact normal of the selected
boundary. For contact to be detected, this means that the source and destination
contact normals must point towards each other. Generally, the contact normal
coincides with the geometry normal that is determined by the direction of the
boundary. However, there are situations where this is not the case, or where the
Contact node can control the sign of the contact normal. Some common situations are

summarized in the following:

 If the contact boundary is on the exterior of a domain, then the geometry normal
always point outwards from the domain. This is the most common case, and then

no other considerations are needed.

* Insome cases, like fluid-structure interaction, there may be a domain with a moving
mesh between the two contacting objects. The source and destination boundaries
will then, in the geometrical sense, be interior boundaries. In this case, the physics
interface (Solid Mechanics or Multibody Dynamics) defines a normal vector which
is pointing outward from the boundaries that are external to the physics interface.

Thus, this case is also handled automatically.

* When a boundary without an adjacent domain is selected, you need to be careful so

that the normal is pointing in the intended direction.

* When using the Shell, Layered Shell or Membrane interfaces, contact can potentially
occur on both sides of the boundary. In a single Contact node, you can only model
contact on one side. In the Contact Surface section, you can select whether the
contact should occur on the top side or bottom side. The ‘top” and ‘bottom’ sides
are defined by the orientation of the physics interface normal, which may differ from
the geometry normal. In these interfaces, the orientation of the physics normal is

controlled by the Boundary System that is attached to each boundary through the
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material models. The normal direction can be reversed using the settings in the

Boundary System node.

The actual normal vector used in the contact search algorithm can be
visualized by plotting <pair_tag>.n<coord_label>. For example, the
variable p1.nx gives the x-component of the spatial normal used by
contact pair p1. Plotting the contact normal vector can be useful to verify

that the source and destination normals point towards each other.

CHAPTER 2:

Visualizing the Orientation of Boundaries
In 2D, a boundary is represented by a line. If you follow the line from its start point

to its endpoint, the positive normal points to the left. The line orientations can be

visualized by selecting the Show edge direction arrows check box in the appropriate View

node under Definitions.

In 3D, the rules for the orientation of a boundary are more complicated. In general,

you have to visualize the normals, in order to check its orientation. This can be done

in different ways:

* For a mesh without physics, you will need to use the general result presentation

tools. Follow these steps:

Run Get Initial Values for an arbitrary study in order to create data for result

presentation.
Add a 3D Plot Group under Results.
Add an Arrow Surface plot to the new plot group.

In the Replace Expression ( % ) dialog, select the geometry normal.
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Type filter text

4 Model
Geometry
4  Component 1{compl}
Definitions
4 Geometry
X, Z - Coordinate (matenal and geometry frames)
nX,...nZ - Normal (material and geometry frames)
t1X,...t1Z - Tangent 1 (material and geemetry frames)
t2¥,...,t2Z - Tangent 2 (material and geemetry frames)
nx,ny,nz - Normal (spatial frarme)
tltly tlz - Tangent 1 (spatial frame)
t2x t2y,t2z - Tangent 2 (spatial frame)
xy.Z - Coordinate (spatial frame)
Membrane
Shell

Double-click or press Enter to add selected expression.

* When working with the Shell or Membrane interfaces, select Enable physics symbols
in the settings for the interface. You will then see the physics normals plotted if you

select a material model like Linear Elastic Material in the Model Builder.

CONTACT BETWEEN PHYSICS INTERFACES

Contact can seamlessly be modeled between Solid Mechanics, Shell and Membrane
interfaces. Equation are only added to Contact nodes that have an applicable
destination boundary, that is, a destination boundary that intersects with the selection
of the physics interface. Properties such as contact surface offset can, however, be
considered as long as either a source or a destination boundary is applicable in the
Contact node. Shell and Membrane offsets are automatically considered on both source

and destination boundaries.

SOURCE SELECTION OUTSIDE PHYSICS INTERFACES

In most cases, the source and destination boundaries belong to the same physics
interface. The only strict rule, however, is that the destination side belongs to the
physics interface in which the Contact node resides. The source side only needs to have

a mesh and can optionally have one or more physics interfaces attached to it.

If the source boundary is not part of the a physics interface with a Contact node, the
gap is computed using only the current location of its mesh, ignoring any physical
properties that may exist there. In this case, the Contact node has no control of the

contact normal used by the source boundary. Care must therefore be taken to ensure
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that the contact normal of the source and destination points toward each other for the

contact detection to work.

There are two main scenarios where you may want to use a source selection that is not

in the current physics interface:

Fixed Rigid Wall
If one side of a contact pair can be considered as rigid and fixed in space, then it is

sufficient to add a meshed boundary at that location without any physics.

Moving Rigid Wall
This case is similar to the previous. In order to prescribe the path of the rigid wall, add

Moving Mesh with a Prescribed Deformation node under Definitions.

Contact Pairs

SELECTING SOURCE AND DESTINATION
To decide which boundaries to assign as source and destination in a contact pair,

consider the following guidelines:

 Ifthere is a significant difference in the stiffness in the normal direction between the
source and destination boundaries, select the stiffer side as source. This is especially
important if the difference in stiffness is quite large (for example, more than a factor
of ten).

* When the contacting parts have approximately the same stiffness, consider the
geometry of the boundaries instead. Make a concave boundary the source and a

convex boundary the destination rather than the opposite.

* If one of the boundaries belongs to a part that is rigid it should be selected as the

source boundary. Rigid boundaries can be created in several ways, for example
- The underlying domain has the Rigid Material material model.

- The boundary or its underlying domain is constrained by, for example, Fixed

Constraint or Prescribed Displacement.
- The source boundary is meshed, but has no physics attached.

- The source boundary position is controlled by Prescribed Deformation under

Moving Mesh.

* If only one side of the contact pair is within a physics interface that has a Contact

node, that side must be the destination side.
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For efficiency, include only those boundaries that can potentially come in contact in
the destination selection. All equations are formed on the destination boundary, and

includes performing the contact search which can be expensive.

If it is difficult to follow the above guidelines, the same boundaries can be selected as
both source and destination. Doing so results in an unbiased (or symmetric)
formulation that is less sensitive to, for example, difference in stiffness or mesh density
between the contacting boundaries. However, such a formulation involves evaluating
equation and contact mapping at additional points and can thus be more expensive to
use.

STRATEGIES FOR SELECTING CONTACT PAIRS

A Contact node can reference any number of contact pairs.

A contact pair is just a definition, and does not have to be referenced by any Contact
node.

Neither the source, nor the destination, in a contact pair has to be geometrically
contiguous. In practice, this means that you often only need a few contact pairs in a
model. The number of pairs actually needed will be determined by how many different

settings that are required in the Contact Pair and Contact nodes.

If you have many contact pairs in your model, it is a good idea to manually set the Label
of each pair in order to simplify the identification during subsequent selections in the
Contact nodes.

AUTOMATIC GENERATION OF CONTACT PAIRS

Contact pairs can be automatically generated during the finalization of the geometry
sequence. When Action is sct to Form an assembly, you can select Create pairs, and use
Contact pair as Pair type. Boundaries which are in geometrical contact with each other
will then be placed in contact pairs. All contact pairs created are automatically added
to the default Contact node. If you do not want to use all pairs, either delete the pairs
from the model or disconnect the default Contact node in the relevant physics interface

by selecting Disconnect pair. For the latter alternative, add new Contact nodes in the
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physics interface, and select which of available pairs to actually use for the contact

analysis.
The automatic pair generation will not know which side to use as source
or destination. Based on the suggestions in Selecting Source and
EI Destination above, you may need to switch selections using the Swap

Source and Destination ( I ) button in the Source Boundaries section of the

contact pair settings.

SMALL SLIDING CONTACT

In some situations, the relative sliding between the contacting boundaries is small. This
is, for example, often the case for shrink fit simulations, when mounting a component
using prestressed bolts, or for partial decohesion of two components. The sliding
distance can be considered as small if it is significantly less than the length of a mesh

clement edge.

In such cases, it is possible to simplify the problem by selecting the Mapping Method to
be Initial Configuration in the Contact Pair node. With this setting, a material point on
the destination boundary will see the same material point on the source boundary
throughout the entire simulation; that is, the mapping is constant. This setting will

make the contact analysis run faster and convergence to be more stable.

The analysis is geometrically nonlinear also when using this option, and the contact

region can still have arbitrarily large displacements and rotations.

Friction can be modeled. Even though there is no sliding in a geometrical sense, the
difference in tangential displacement is computed.

You cannot mix contact pairs with the two different types of Mapping
n Method within the same Contact node.

Meshing for Contact Analysis

Once the source and destination boundaries are chosen, you should mesh the

destination finer than the source. Do not make the destination mesh just barely finer
than the source because this can cause nonphysical oscillations in the contact pressure.
Make the element size on the destination at least two times finer than on the source.

The reason is that the algorithm is asymmetric; the points on the destination side
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connects to the source side, and not vice versa. With a coarse mesh on the destination
side, a large portion of an element (or even a whole element) on the source side could

be without connection to the destination.

It is always important that the geometry is well resolved, so that a curved contact
boundary actually is seen as curved rather than “faceted”. The density of the mesh
often needs to be finer than what would be needed to resolve stresses on a similar
boundary without the contact conditions. If the normal to the contact boundary
changes much from one element to the next, there is a risk that the contact analysis

does not converge.

If the source boundary is rigid, there are no requirements on the mesh size of the
destination boundary. In this case, you may use a significantly finer mesh on the source
boundary than on the destination boundary. This is sometimes necessary in order to
resolve the geometry well. On the other hand, if you have a flat rigid boundary, you

only need to mesh it with a single element.

Settings for Contact Nodes

THE CONTACT NODE

Penalty Factor

An important parameter in the settings for the Contact node is the penalty factor.
When running into convergence problems, check the penalty factor settings and
consider changing the current value. It is used by all contact methods, but its

interpretation differs:

* In the penalty method, the penalty factor has a straightforward interpretation as the
stiffness of a distributed spring connecting the two contacting boundaries. A higher
value will decrease the unphysical penetration, but can be detrimental to the
numerical conditioning of the stiffness matrix. A too small value can, however, result

in violation of the contact condition.

* In the augmented Lagrangian method, the penalty factor is a numerical parameter,
which affects the convergence properties of the algorithm. Its interpretation is
different depending on the chosen solution method. For a segregated method, the
penalty factor mainly affects the rate of convergence of the outer iteration loop; a
higher value typically leads to faster convergence, but can decrease the stability of
the algorithm for certain problems. For the coupled method, the penalty factor

mainly affects the structure of the underlying equations, and the solution is typically
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less sensitive to the value of the penalty factor. However, the convergence properties

can be improved by tuning the penalty factor.

¢ In the Nitsche method, the penalty factor is a stabilization parameter which can
affect the robustness of the solution, but to a lesser extent the accuracy. The suitable
value of the penalty factor depends on the chose formulation, where the
skew-symmetric and nonsymmetric formulation are typically less sensitive than the

symmetric formulation.

In the augmented Lagrangian method and the Nitsche method, the value
2 of the penalty factor does not affect the accuracy of the final solution, like
it does in the penalty method.

High values of the penalty factor can lead to an ill-conditioned stiffness matrix and
convergence problems in the Newton iterations. This is often identified by that the
damping factor reported by the solver becomes less than 1 for many Newton iterations,
or by that the structure “jumps” into an unphysical state. Large errors returned from
the linear solver are also an indication that the stiffness matrix is ill-conditioned. If this

occurs, decrease the penalty factor.

The default value for the penalty factor is based on a characteristic stiffness. The
default is an “equivalent” Young’s modulus (Eequ) of the material on the destination
side. For linear elastic isotropic materials, Eequ is the actual Young’s modulus. For
other types of materials, Eequ is defined by an estimate of a similar stiffness at zero
strain. For materials that are user defined or in other ways nonstandard (for example,
anisotropic with large differences in stiffness in different directions), Eequ might need

to be replaced with another estimate.

For nonlinear materials in general, and for elastoplastic materials in

particular, there can be a significant change in stifthess during the solution
process. Choose the source and destination boundaries accordingly. You
may even have to adjust the penalty factor as the solution progresses when

such materials form a contact boundary.

CHAPTER 2:

When using the augmented Lagrangian formulation with a segregated solution
method, having a well-tuned penalty factor is important for the performance of the
outer contact iterations. The default value is selected as a compromise between speed
and stability, but with more weight on stability. The strategy is for each new step

(parametric step or time step) to start with a softened penalty factor, which is then
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increased over the first four iterations. The purpose is to stabilize the problem in case

there are large overclosures during the first iterations. This is called relaxation.

In a situation where the contact is well established, using relaxation will however cost

extra iterations, and it may even lead to a loss of convergence.

For this method, the penalty factor can be tuned in several ways. You have three basic
choices, ranging from simple to advanced:

» With a Preset penalty factor, you can choose having it tuned for Stability, Speed, or
Bending. With Stability, relaxation is used in every step. With Speed, a constant
penalty factor is used, and the value that is used is equal to the final value obtained
when using Stability. For Bending, a constant and low penalty factor is used in all
iterations. The value corresponds to the initial value when using Stability. As the
name implies, this option is intended for bending dominated problems where the

structural stiffness is much lower than the bulk stiffhess of the material.

* With Manual tuning, you can adjust the magnitude of the penalty factor, and also the
relaxation strategy.

* With User defined, you can enter any expression for the penalty factor.

For details about these settings, see the documentation of the settings for
@}‘ the Contact node.

Some hints for selecting the penalty factor for the segregated augmented Lagrangian
method:

* Use relaxation only when large changes in the contact state is expected.

* If an analysis takes a long time, check the convergence graphs. If the contact
variables show a steady, but slow, convergence it may help to increase the penalty
factor. Increase by a factor of 2 — 5.

» Ifamodel fails to converge, and the contacting parts appear to have moved far from
each other, it is probable that the penalty factor is too high. You can then either

decrease the total stiffness or add more relaxation.

Trigger Cutback

If, during the iterations, a contact problem comes into a state where it is far from the
converged solution, it is unlikely that the solution will ever converge. In such a case,
much computing time can be spent before the maximum number of iterations is

reached, and the solver makes an attempt with a smaller time or parameter step. To
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speed up this process, you can select the Trigger cutback check box when using the
augmented Lagrangian method. You can then enter a logical expression that will force
the solver to immediately abandon the iterations and try a smaller step when fulfilled.
Such an expression can, for example, be a maximum displacement (like solid.disp >
5[mm]), based on what is physically realizable for the structure. The expression is
evaluated in all points on the boundary, but you can also use a global value, like an

average or a maximum.

Contact Surface Offset and Adjustment

It is possible to assign an offset to both the source and destination boundaries. When
an offset is given, the boundary used in the computations is not the geometrical
boundary, but a virtual boundary displaced by the offset value. You can use this option

for several purposes:

* When analyzing problems with for example shrink fit, nominal dimensions can be
used for the geometry, and the overclosure included in the gap by using a positive
offset.

* When there is a small clearance between two boundaries, a negative offset can be

used instead of changing the geometry.

* If geometries are such that a large overclosure exists in the initial configuration, the
contact algorithms may not converge. You can then add a negative offset, which is
slowly removed by letting it depend on time or on the parameter in the parametric

continuation solver.

* A positive offset can be used to avoid a complete collapse of a mesh that exists
between the source and destination boundaries. This is discussed in more detail in
Multiphysics Contact Analysis.

When the source and destination boundaries are curved, the discretization introduced
by the meshing may lead to small variations in the computed distance between the
source and destination boundaries, even though the geometrical shapes of the two
objects are ideal. When modeling for example a shrinkage fit, this effect can cause
significant fluctuations in the contact pressure. If you select Force zero initial gap, the
computed distance from destination to source will be adjusted by the initial gap
distance detected by the contact search. Positive gap distances smaller than the
tolerance Agy,p, are adjusted to be zero. By default, Ag,p, is set to Inf, which means that
all gaps and overclosures detected are adjusted to be zero. This adjustment can be

combined with an offset. The offset is applied to the adjusted gap value.
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It is only the gap computation that is affected by this setting, the mesh as such is not
adjusted. This type of adjustment is most useful when the sliding is small, so that the

gap distance is always computed between the same points on source and destination.

You can only apply an offset to the source boundaries if they belong to the same physics

interface as the destination boundaries.

Initial Value

In the augmented Lagrangian method, where the contact pressure is a dependent
variable, it can be given an initial value. In force-controlled contact problems where no
other stiffness than the contact prohibits the deformation, the initial contact pressure
is crucial for convergence. If it is too low, the parts might pass through each other in
the first iteration. If it is too high, they will never come into contact.

Discretization

When using the augmented Lagrangian method it is possible to change the type and
order of the shape functions used for the contact pressure and friction force degrees of
freedom. The default is linear shape functions, which ensures that there are no
over-constraints in the contact interface. It is allowed to use a shape function order that
is equal to or lower than the order of the displacement field. Increasing the order of
the contact variables from the default can increase the accuracy of how well the contact
conditions are enforced, but can impair convergence and increase the computational

cost.

For a discretization other than Linear, the lumped solver is no longer optimal for the
contact pressure update when using a segregated solution method. In such cases, a
standard segregated step should be used. The default solver generation takes this into
account, but if you later modify the discretization, you should update the solver

sequence.

Quadrature Settings

The weak equations set up by the Contact node and its subnodes typically involve
discontinuous functions. These originate from the contact mapping, where the source
and destination meshes, in most cases, are nonconforming. The default quadrature
used in the numerical integration of these integrals is equal to the order used by the
displacement field. For a quadratic displacement field, this means integration order

equal to four.

In most situations, the default quadrature provides sufficient accuracy of the numerical
integration. However, it is sometimes necessary to increase the integration order for

the contact weak equations. This can improve the stability of the contact model since
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it reduces numerical errors that might occur during assembly of the system matrices.
Note that using a too high integration order can significantly increase the cost of

assembling the matrices.

Jacobian Contribution

In the Advanced section of the Contact node, there is an option to specify the type of
Jacobian contribution from the contact equations. The default Automatic option will
choose a suitable setting depending on the mapping method used by the contact pair.
However, if controlled manually the Nonsymmetric option is the preferable choice
especially when the source boundaries undergoes large deformations, since it is more
robust. The Symmetric option can be attractive for large models since it preserves the
symmetry of the global stiffness matrix, as long as no other features cause it to be
nonsymmetric. This can decrease the solution time and memory requirements when

solving the model.

THE FRICTION NODE
When adding a Friction node, you can specify a constitutive model (friction model) for
the behavior of the tangential contact. This model includes conditions for switching

between sticking and sliding, as well as computation of the current friction forces.

Friction Parameters

The friction model specifies the threshold for the friction force in the contact pair. If
the computed (trial) friction force is above this threshold value, the contact is in a stick
state; if the (trial) friction force is above the threshold, the contact is in a slip (or

sliding) state.

Two predefined friction models are available based on the classical Coulomb law,
where the friction force is proportional to the contact pressure through the friction
coefticient. Both Coulomb laws are additionally generalized by allowing specification
of minimum (cohesion) sliding resistance and a cap that sets the maximum tangential

traction.

It is also possible to define the threshold for the friction force as an arbitrary expression
that may depend on any quantity in the model, for example temperature or position.
The only limitation is that the expression may not implicitly depend on the current

value of the friction force.

Friction Force Penalty Factor Control
This section provides similar settings as described in Penalty Factor of the Contact

node, but the penalty factor is here used to regularize the stick constraint. However,
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the same considerations for how to set an appropriate value apply. For convenience, it

is also possible to utilize the penalty factor set in the parent contact node.

This section is not available when the Nitsche method is used. The same penalty factor

as set in the parent Contact node will be used for friction as well.

THE SLIP VELOCITY NODE

The Slip Velocity node facilitates a simplified form of slip friction modeling, which can
be used in the case that the direction and speed of the sliding is known. The same
friction models as for the Friction node are available. However, it is here assumed that
the tangential contact is in a sliding state, and that the slip velocity is known
beforehand. The latter is supplied to the feature as a user input in the local coordinate

system.

Knowing the slip velocity greatly simplifies the computation of friction forces. There is
no need to determine the transition between stick and slip contact, which can be
difficult.

THE ADHESION NODE
When using the penalty method, you can specify that the boundaries in the contact pair

should stick to each other after coming into contact by adding an Adhesion node.

The adhesive layer is conceptually without thickness, but by specifying an offset in the

Contact node, you can to some extent include the dimensions of the adhesive layer.

The adhesive layer always has a finite stiffness. For a glue layer, this represents the true
stiffness. For a more conceptual joining of two boundaries, this stiffness should be
considered in the same way as the penalty stiffness in the contact formulation. The
stiffness can differ between tension and compression: In compression the stiffness is
always taken as the penalty stiffness, whereas you can change the tensile stiffness.

THE DECOHESION NODE

When adhesion is active, it is possible to break the bond between the source and
destination boundaries by adding a Decohesion subnode to Contact. To model
decohesion, it is required that an Adhesion node is present and active in the same parent
Contact node.

Decohesion defines a cohesive zone model (CZM) based on interface damage
mechanics on the adhesive layer. Damage is assumed to be a scalar variable that initiates
as 0 and grows to 1 during decohesion, and in principle degrades the stiffness of the
adhesive layer. Since damage is a scalar, both the normal and tangential stiffness
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components degrade simultaneously, irrespective of whether the actual loading
direction. However, the penalty stiffness of the contact condition is not affected by

damage.

Two alternative CZM are available. The Displacement-based damage models defines
damage growth as a function of a mixed mode displacement quantity. It comes with
several traction separation laws that associate the onset of damage with the peak
strength of the interface. For some of them, it is possible to choose between different
mixed mode failure criteria. The Energy-based damage models define damage growth
as a function of the stored undamaged elastic energy density of the interface. It also
comes with several different traction separation laws. However, these are more general
and define the onset of damage at an arbitrary elastic energy density. In principle, you
can define the model so that damage initiates immediately during loading of the
adhesive layer, that is for zero energy density. The strength of the interface is then
determined by the critical energy release rate and the shape of the damage evolution
function. In this way, the energy-based damage models can be viewed as a

regularization of linear elastic fracture mechanics.

Decohesion is an inherently unstable process. The elastic energy in the strained
adhesive layer is released during decohesion. Numerically, the decreasing branch of the
traction-separation curve manifests itself as a local negative stiffness. Such problems are
only possible to solve as long as the surrounding material can absorb the released
energy. The numerical stability is, furthermore, closely coupled to the physical stability
of the structure. The following points can help to set up a model with decohesion and

to overcome problems with convergence.

 If the structure is in a load-controlled situation, there is no possibility to continue
the analysis when the peak external load has been exceeded. Physically, this
corresponds to a sudden collapse of the component, or in the case of decohesion, a

rapid breakage of the adhesive layer.

 If the structure is loaded by prescribed displacements, it is usually possible to
continue the analysis further. It may, however, happen that the stored elastic energy
in the structure is large enough to force a complete breakdown of the adhesive layer
once a certain external displacement is reached. If possible, use prescribed
displacements in a decohesion analysis, and evaluate the applied load from the

reaction forces.

* Sometimes it is not possible to use prescribed displacements, for example if the load

is distributed. You can then add a Glebal Equation to control the loading rate by
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some other quantity that increases monotonically. This is the same technique as the

one used for post-buckling problems.

* To improve the robustness of the solver, it is sometimes beneficial to modify the
settings in the Method and Termination section of the Fully Coupled or Segregated
nodes in the solver sequence. For example, allow a larger number of iterations or try
a different nonlinear method. Often, the Constant (Newton) method can improve the

convergence of models with decohesion.

* The robustness of the solver can also be improved by modifying the parameter or
time stepping algorithm. For a stationary study, you can tune the step size in the
Parametric node, and for a time-dependent study, you can modify the time stepping
of the Time-Dependent Solver. A good idea is often to reduce the maximum allowed
step size of the solver and to allow for smaller step size than the default. Note that
if the maximum step size allowed is too large, the solver might bypass the
decohesion process altogether; in other words, even though a converged solution is

obtained, it might be invalid.

* The solution of the unstable failure due to decohesion is, to some degree, always
mesh dependent; see, for example, Ref. 1. It is therefore good practice to make sure
that the mesh of the interface and in its vicinity is fine enough to allow the energy
released during decohesion to properly redistribute in the structure. This can help
avoid solution jumps where several mesh elements are completely damaged in a
single step. Such solution jumps can be difficult for the solver to get pass, and even

if it does, the solution after the jump might be invalid.

e The true unstable failure of decohesion is a dynamic event. This can be analyzed
using a time-dependent solver, but the computational cost can be high. The inertial

forces will then balance the released energy, which is transformed to kinetic energy.

For time-dependent studies, it is possible regularize the CZM with a viscous delay by
selecting Delayed damage in the Regularization list. This option adds a delay to the
release of energy, which is controlled by the Characteristic time t. Using this option can
help to suppress the instability of the solution when the step size or mesh size is too

large. If the viscous damage is used to stabilize a rate-independent decohesion
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problem, the value of T must be chosen with care. As a rule of thumb, t should at least

be one or two orders of magnitude smaller than the expected time step.

For an example showing a decohesion analysis, including how to use a
global equation to control an unstable problem, see Mixed-Mode

M Debonding of & Laminated Composite: Application Library path
Structural_Mechanics_Module/Contact_and_Friction/

cohesive_zone_debonding.

CHAPTER 2:

THE WEAR NODE

By adding a Wear subnode to a Contact node, it is possible to model adhesive or
abrasive wear of the material when the contacting boundaries are sliding along each
other. Since wear involves solving evolution equations, the Wear node only adds a
contribution for time-dependent studies. Moreover, wear is typically a slow process
where dynamic effects are of small significance. You should, therefore, usually set
Structural transient behavior to Quasistatic in the Structural Transient Behavior section

of the physics interface settings.

The most general technique to model the removal of material during the wear process
relies on the deformed geometry concept. When selecting the Deformed geometry
formulation, the wear feature adds a (hidden) Deforming Domain feature that controls
the material frame through an adaptive mesh smoothing. The wear, as computed in the
Wear node is fed as a (hidden) Prescribed Normal Mesh Displacement boundary
condition to the deforming domain, and thus describes the actual removal of material
from the geometry. When using this formulation, you must be aware that the adaptive
mesh means that state variables stored in Gauss points, for example plastic strains or
creep strains, will not represent the same material points all the time. Whether or not
this effect is acceptable must be judged on a case-by-case basis. Unless the amount of
material that is removed is large, or gradients are strong, this is mainly an issue close

to the boundary where material is removed by the wear process.

Alternatively, wear can be incorporated as an offset in the contact condition. This
formulation is computationally less expensive, and is suitable as long as only small
amounts of material are removed, and the wear does not change the orientation of the

normal to the boundary significantly.

The slip velocity used for the wear computation can be obtained from either a Friction
node or a Slip Velocity node, so one of these two nodes should be present and active

under the same Contact parent node. For the Generalized Archard wear model, this is a
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requirement. In most cases, the orientation of the slip velocity is known a priori in a

wear analysis, in which case Slip Velocity provides the more efficient solution.

In general, modeling wear on the destination side is slightly more accurate, since it is
there that the contact pressure and slip velocity are originally computed. When
modeling wear on the source side, these quantities are mapped from the destination
boundary. Multiple Wear nodes under the same Contact node contributes with each
other, which means that it is possible to model wear on both source and destination
simultaneously. However, adding multiple wear contributions to either source or
destination may give unphysical results. On the source side it is possible to also use the
Rigid Material material model; this is not permitted on the destination due to general

restrictions of the Contact node.

* Documentation of the Contact, Friction, Slip Velocity, Adhesion,
,@l Decohesion, and Wear nodes.

* Contact Analysis Theory in the Structural Mechanics Theory chapter.

Ounasistatic Contact Analysis

When including contact in a stationary or quasistatic simulation, make sure that the
bodies are sufficiently constrained. If the bodies are not in contact in the initial
configuration, and there are no constraints on them, there will be possible rigid body

displacements. This will cause the solver to fail and must be avoided.

For a more detailed discussion about sufficient constraints, see

@}‘ Constraints under Stationary Analysis.

Sometimes, as when simulating mounting processes, the structure is not fully
constrained until the contact is fully established. There are some strategies for how you

can deal with this problem.
* Create the geometry or set initial values for the displacement variables so that there
is a small penetration in the initial configuration.

* Use boundary conditions giving a prescribed displacement rather than a prescribed
force. When possible, this is usually the best way to stabilize problem. Note that you
can always obtain the force actually applied from the reaction forces.
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* Add a temporary weak spring during the beginning of the simulation. Assuming
that a parameter p, ranging from 0 to 1, is used for applying the external load, you

can introduce a stabilizing spring with stiffness &, in the x direction as
k, = k(1-p)2 @1

and similarly in any other direction that needs to be restrained. It is not important
whether the spring is applied to domains, boundaries, or edges, but it should not
create significant local forces. The value for the stiffness £ should be chosen so that
the force generated by the spring balances the external load at a sufficiently small
displacement. A too weak spring will give a too large initial overclosure of the

contact boundaries. A too stiff spring might influence the solution too much.

Dynamic Contact Analysis

The contact formulations in COMSOL Multiphysics can be used in transient as well as
quasistatic analyses. In truly dynamic problems, where inertial effects are significant, a
contact formulation must conserve fundamental quantities, such as linear and angular
momentum and energy, across the contact pair. An important class of dynamic
problems, where these quantities must be conserved, is impact analysis.

To model dynamic contact events, two specialized contact methods are provided, the
Penalty, dynamic and the Augmented Lagrangian, dynamic methods. Both are based on
a viscous formulation that constrains the gap rate to be zero, ensuring that the normal
contact is dissipative and does not introduce any spurious energy contribution to the
system. Since the methods are dissipative, they are mainly intended for short duration
events, such as soft impact between two bodies. For prolonged interaction between
two bodies, energy dissipation can become significant, and overclosures can become
large, since the gap rate is only approximately zero. Both the dissipation and the
accuracy are controlled by a penalty factor that for these two methods conceptually
represents a dashpot, rather than a spring. It therefore has a characteristic time user
input that sets its magnitude. As a rule-of-thumb, it should be of the order of the

contact event duration, but the best choice must be decided on a case-by-case basis.

The Penalty, dynamic method also provides the possibility to combine the stiffness and
viscous based penalization of the normal contact. For impact analysis, it is often best
to use only the viscous formulation by setting the stiffness Penalty factor control to

Viscous only.

When modeling dynamic contact, the main interest is often the kinematics between the
contacting bodies. If you rely on the (default) adaptive time-stepping algorithm, the
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solver typically also tries to resolve the wave propagation in the domains adjacent to
the contact pairs. This can cause unnecessarily small time steps and increase the
computation time. To avoid this, you can modify the solver to use a manual
time-stepping algorithm in the settings for the Time-Dependent Solver in the solver
sequence. Make sure to use time steps that are small enough to capture the contact
event, otherwise spurious energy contributions can result, and cause the problem to
“blow up”.

The time-dependent solvers in COMSOL Multiphysics introduce numerical damping
to stabilize the time stepping. This kind of stabilization is often necessary. However,
excessive numerical damping runs the risk of removing vital information from the
simulation. For this reason, the BDF solvers should be avoided for dynamic contact
analyses. The default solver suggests the generalized-a solver when inertial terms are

included in the structural mechanics problem.

Regardless of the method that is used, and how the solver is set up, it is good practice
to do an a posteriori check of conservation of momentum and energy, to ensure that

the solution is acceptable.

For examples of dynamic contact problems, see

o Transient Rolling Contact: Application Library path
Structural_Mechanics_Module/Contact_and_Friction/

transient_rolling_contact.

[

e Impact Between Two Soft Rings: Application Library path

Structural_Mechanics_Module/Verification_Examples/ring_impact.

In both examples, an energy balance check is included. The latter model

also verifies the conservation of momentum.

Multiphysics Contact Analysis

Two different classes of multiphysics contact problems will be described in this section.

FLUXES THROUGH CONTACT SURFACES

In some contact problems, there is some kind of flux from one domain to another
through the contact zone. This can for example be a heat flux, an electric current, or
moisture transport. The common property here is that the other physics fields than the

displacements are present in domains where the solid mechanics problem is solved.
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Typically, there will be a more or less perfect insulation as long as there is no contact,

but as soon as contact is established there will be a flux through the contact area.

This class of problems often exhibit a high degree of nonlinearity, which may lead to
convergence problems in the nonlinear solver. As an example, consider heat transfer
through the contact area, where initially only a small spot is in contact. The solution
for the temperature field is then extremely sensitive to the size of the contact area. If,
at the same time, the solid deforms due to thermal expansion, there may be large

changes in the contact area between iterations,

It is important to resolve the size of the contact area accurately, that is, to
n use a very fine mesh in the contact area when modeling fully coupled

multiphysics problems.

CHAPTER 2:

If the contact area is larger, a fine mesh is not required because then the temperature
solution is not that sensitive to the size. If possible, start with an initial configuration

where the contact area is not very small.

You can use the contact variables (gap and contact pressure) in expressions for
quantities in other physics interfaces. As an example, a thermal resistance in the contact

region can depend on the contact pressure.

In many cases, the penalty method is preferred in multiphysics contact problems
because of its better stability and less restrictive requirements on solver selections. If
the contact conditions depend strongly on the contact pressure, use the augmented

Lagrangian method because if its higher accuracy.

FIELDS EXIST IN THE GAP

In this class of problems, a field exists between the domains controlled by solid

mechanics.

This is the case in, for example, fluid-structure interaction (FSI) problems. Here, the
equations in the fluid are solved on a domain with a moving mesh, so that the shape
of the fluid domain is controlled by the displacements of the solid. Another case of the

same type is when there is an electric field in an air gap.

If contact is established, the mesh in the original gap between the source and
destination boundaries will collapse. This must be avoided. The remedy is to add an
offset in the contact settings to either the source boundary, the destination boundary,
or both. If you do this, contact forces will be transmitted without the geometrical gap
being fully closed.
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If, for example, this technique is used when modeling a valve, there will still be some
small flux even though the valve is closed, since there is a geometrical gap with the
width of the artificial offset. By choosing a suitably small offset, you can however make

that flux negligible.

Special Types of Contact Problems

INTERFERENCE FIT
Interference fits can be analyzed using contact modeling. This is necessary if you are
interested in checking the connection with respect to, for example, slipping or local

stresses.
There are two possible approaches for modeling interference fits, both equally valid:

e The actual geometry of the two parts before assembly is modeled. In this case, there

will be some overlap between the two domains.

* A nominal geometry in which the contacting boundaries have the same location is
created. In this case, the overlap is described as part of the contact modeling.

An imported CAD geometry can use either of these approaches, depending of the
strategy used during the geometry creation. Often, the geometrical parts are modeled
as nominal, and instead equipped by tolerance information that describe the amount

of interference.

True Geometry

With a true geometry, you can often immediately solve the contact problem.
Sometimes convergence problems may, however, appear, in particular if the material
model is nonlinear. The cause is often that the initial overlap is too far from the final

solution.

To deal with such a problem, add an offset in the in the settings for the Contact node.
The offset should be defined by a parameter, so that the boundaries of the two domains
are barely in contact in the initial state. Now, the offset can be reduced to zero

step-by-step, using an auxiliary sweep in the solver.
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Nominal Geometry
When working with a nominal geometry, you always need to add an offset in the
Contact node. The offset equals the size of the interference. If needed for convergence

reasons, ramp up the offset using an auxiliary sweep in the solver.

Interfervence Fit Connection in o Mountain Bike Fork: Application
[lI[l Library path Structural_Mechanics_Module/Contact_and_Friction/

mountain_bike_fork

SELF-CONTACT

To model self-contact, include the same boundaries in both the source and destination
selections of the Contact Pair definition. This will cause the boundaries to act as both
source and destination in the contact search and mapping. For mechanical contact, this
results in a unbiased (or symmetric) contact formulation, as the contact conditions are
formulated on both sides of the contact pair. Note that a source is not allowed to

partially intersect the destination when used for mechanical contact.

This technique to model self-contact means that some of the considerations discussed
in this chapter regarding contact modeling do not apply. For example, instead of the
recommendations in Meshing for Contact Analysis, it is reccommended to use a
uniform mesh element size along the contacting boundaries. Self-contact is a case
where it might be necessary to increase the quadrature order used in the weak

equations, see Quadrature Settings.

For examples of self-contact problems, see

o Self-Contact of @ Loaded Spring: Application Library path
Structural_Mechanics_Module/Contact_and_Friction/

]

loaded_spring_contact.

e Contact Analysis of @ Rubber Boot Seal: Application Library path
Nonlinear_Structural_Materials_Module/Hyperelasticity/rubber_boot_seal.
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Fallback Conditions to Contact Regions

In the Solid Mechanics, Shell, and Membrane interfaces, certain boundary conditions
may act as fallback conditions to a contact region, or any pair region, if their selection

overlaps with the source and destination boundaries. The Layered Shell interface does
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not support any fallback conditions. When a boundary condition is considered as a

fallback, the condition is only active for regions that are not in contact.

In the Solid Mechanics interface, the following boundary conditions are by default
recognized as fallback conditions if their selection intersects any source and destination
boundary:

* Boundary Load

* Spring Foundation

* Added Mass

* Free

In the Shell and Membrane interfaces, the following boundary conditions can be
recognized as fallback conditions:

» Face Load

* Spring Foundation

* Added Mass

To enable the fallback condition in these nodes, change the Allowed region to Fallback
and nonpair regions in the Applicable Pair Regions section of settings window of the
node. To display the Applicable Pair Regions section, click the Show More Options

button ("= ) and select Advanced Physics Options in the Show More Options dialog box.

The most common case when a fallback condition is used is when there is a pressure
load acting on the part of the boundary that is currently not in contact. In this case
you would add a Boundary Load or Face Load with a selection that intersects with the

source and destination boundaries.

Solver Settings for Contact Analysis

This section provides useful tips for tuning solver settings for contact analysis in

general, and tips specific to different methods.

GENERAL SETTINGS
The following solver settings can help to successfully perform contact simulations in

general:

* In a contact analysis, you almost invariably use an incremental approach. It is
possible to solve a problem without friction in a single stationary load step, but such

an approach will often fail to converge. In a stationary analysis, you should instead
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use the parametric continuation solver, and gradually increase the load or
displacement. Enable it by selecting Auxiliary sweep under Study Extensions in the

settings for the Stationary solver.

* Use a direct solver, rather than an iterative solver, as linear equation solver if the
problem size allows it. Direct solvers are less sensitive and can provide better

convergence.

e As a default, the donble dogleg nonlinear solver is selected when a stationary study
is generated and Contact nodes are present in the model. For the majority of contact
problems this solver has more stable convergence properties than the Newton
solver, which is the default solver for most other problems. Using otherwise similar
settings, the double dogleg solver tends to be somewhat slower than the Newton
solver on problems where both solvers converge. It is, however, often possible to
take larger parameter steps when using the double dogleg solver. For some
problems, the Newton solver can still be the better choice, so if you experience

problems using the default settings, try to switch solvers.

* For contact problems, it is often necessary to let the parametric solver use a defensive
strategy when going from one parameter step to the next. This can be controlled by
setting the value of Predictor in the Parametric. By default, the parametric solver will
do so by setting the predictor to Constant when contact is present. However, it can

sometimes be more efficient to use a more aggressive strategy by setting it to Linear.

» Always solve contact problems that involve friction or decohesion incrementally,
using a parametric or time-dependent solver. The evolution of the friction forces is
history dependent. For contact problems without friction, an incremental strategy

is not necessary but often a good choice.

* If the model includes friction, try solving the problem without friction first if

possible. When the study runs absent friction, enable friction again.

* The convergence of many contact problems can be improved by modifying the
parameter or time step algorithm. For a stationary study, you can tune the step size
in the Parametric node, and for a time-dependent study, you can modify the time
stepping in the Time-Dependent Solver.

* For models that include decohesion, see the suggestions under The Decohesion
Node.

THE PENALTY METHOD
Since the penalty method only adds a weak contribution to the physics, there are no
special solver requirements, apart from the suggestions that apply to contact analysis

in general. If the simulation shows poor convergence, or even diverges, it is for the
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penalty method often related to the choice of the penalty factor. A too high penalty
factor may cause the ill-conditioning, which can manifest itself either in poor
convergence of the Newton solver or large errors in the linear solver. If this is
encountered, consider using a smaller penalty factor. However, a too small penalty
factor will deteriorate the accuracy of the simulation, and contact might even be lost if
the overclosure becomes too large.

THE SEGREGATED AUGMENTED LAGRANGIAN METHOD

The segregated solution method for the augmented Lagrangian formulation
introduces extra contact degrees of freedom for the contact pressure and the friction
forces. It also relies on a special solver sequence to obtain the correct solution. Some

general considerations when using this method are:

* The convergence check relies on the scaling of the degrees of freedom, but since
contact pressures and friction forces often are zero over parts of the simulation, you
should not rely on automatic scaling. When the solver sequence is first created, both
contact pressure and friction forces are given a manual scaling which is relevant for
typical metal-to-metal contact. You should in most cases change this to values
appropriate for your application. The variable scaling is accessed under Dependent
Variables in the solver sequence. Set the scale for each variable to a value that is
representative for the expected result. Too large values may give a too early

convergence, while too small values may lead to an excessive number of iterations.

* The default solver sequence generates one lumped step in the segregated solver for
each Contact node. This split of variables into different lumped steps does not
influence the solution as such; you can equally well group the contact variables in a
single lumped step. Each lumped step will however generate an individual curve in
the convergence plot, making it easier to pinpoint the source of possible
convergence problems. You can also increase the granularity even more by changing
Solver log to Detailed in the Advanced node in the solver sequence. This will give a

separate convergence curve for each dependent variable.

The default solver generates a solver sequence that is stable and gives and accurate
solution for the majority of contact problems. However, if convergence is difficult
other settings can be tested:

* The Segregated solver is generated with a termination technique set to Tolerance.
This setting ensures the convergence of the contact degrees of freedom, that is, that
their value only changes within the specified tolerance during the latest segregated
iteration. If, however, convergence of the contact DOFs is of less importance, you

can accept the solution after n segregated iterations instead. To do this, set the
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termination technique to Iterations or tolerance and specify the maximum number
of segregated iterations. The solver will then continue to the next step if the
tolerance criteria is fulfilled, or if the maximum number of iterations is reached.
Note that the solution of the segregated groups is still converged in each segregated

iteration.

* For efficiency purposes, the nonlinear solver in the Segregated Step that includes the
displacement field is by default set to accept the solution after seven iterations,
regardless of convergence or not. If you notice in the solver log that the solution is
far from convergence after these seven iterations it can be necessary to change this
setting. Updating the contact DOFs with a nonconverged solution can cause the
overall problem to diverge. By changing the termination technique to Tolerance, the

segregated solver will instead do a cutback if such a situation is encountered.

THE COUPLED AUGMENTED LAGRANGIAN METHOD

The coupled solution method for the augmented Lagrangian formulation introduces
special contact degrees of freedom for the contact pressure and the friction forces.
Otherwise it places no special restriction on the solver sequence. Some general

considerations when using this method are:

¢ The convergence check relies on the scaling of the degrees of freedom, but since
contact pressures and friction forces often are zero over parts of the simulation, you
should not rely on automatic scaling. When the solver sequence is first created, both
contact pressure and friction forces are given a manual scaling typical for
metal-to-metal contact. You should in most cases change this to values appropriate
for your application. The variable scaling is accessed under Dependent Variables in the

solver sequence.

* Since the solution to the augmented Lagrangian can be non smooth, the default
double dogleg nonlinear solver in stationary studies is sometimes too conservative.
The convergence can in such cases often be improved by using a Newton solver, for
example, the Constant (Newton) with a full Jacobian update.

 Although the penalty factor does not affect the accuracy of the solution, it can have

significant influence on the convergence properties of the model.

THE NITSCHE METHOD

Since the Nitsche method only adds a weak contribution to the physics, there are no
special solver requirements, apart from the suggestions that apply to contact analysis
in general. If the simulation shows poor convergence, or even diverges, it is often

related to the choice of the penalty factor. A too low value may cause the solution to
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be unstable, while as for the penalty method, a too high value may cause

ill-conditioning.

DYNAMIC CONTACT

The dynamic contact methods in general inherit the properties and suggested solver
settings from the corresponding standard method. With regards to solver settings, the
main difference for the dynamic methods is how to set up the time-dependent solver,

where it is recommended to use manual time stepping, see Dynamic Contact Analysis.

Monitoring the Solution

It is often useful to monitor the solution during a contact analysis. This can be done

in different ways.

Using the Results while solving functionality in the study step is a good practice. You
can either use a stress plot, or a plot of the contact pressure. In most cases, the scale of
a deformed plot should be set to 1 when monitoring contact problems. If you select
Results while solving in the Segregated node, the plot is updated after each iteration,

thus allowing you to monitor the convergence in detail.

For each contact pair, two global variables that can be used in probe plots are available.
These are the maximum contact pressure (<phys>.Tnmax_<pair>) and the minimum
gap distance (<phys>.gapmin_<pair>).

Looking at the convergence plot will give valuable information about the convergence
properties. There will, as a default, be one graph per Contact node in the Model Tree,
which will help you pinpoint the source of a convergence problem. You can also
increase the granularity even more by changing Solver log to Detailed in the Advanced
node in the solver sequence. This will give a separate convergence curve for each

dependent variable.

You can also select to include information about the contact state in the solver log. To
do that, select the Add contact status to solver log check box in the Advanced section of

the settings for the Contact node. For each contact pair, messages like

69 points of 120 are now in contact.
33 points started to stick. 72 points are now sticking.
12 points started to slide. 47 points are now sliding.

will be generated for each time or parameter step. Only changes are reported.
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Dependent Variables in Contact Analysis

The Contact and its subnodes will generate a number of degrees of freedom depending

on the settings and study type. You will see these degrees of freedom appear under

Dependent Variables in the solver sequence. There are two types of extra variables

created:

 Variables changed until convergence is reached during the iterations. These variables

appear in the Lumped Step nodes in the Segregated solver or in the Fully Coupled

node.

* Variables used to store the state, once the iterations have converged for a certain

time or parameter step, so called internal degrees of freedom. Such state variables

are not immediately visible in the solver sequence, but it you select the Displacement

Field node under Dependent Variables in the solver sequence, you will see them listed

as ‘Internal variables’.

If you change settings in the Contact or Friction nodes after the solver

sequence has been generated, dependent variables may be added or

removed. The second case is never a problem, but when new dependent

variables are created, they are not automatically added to the groups in the

n segregated solver. You may then encounter the error message

“Segregated solver steps do not involve all components.” You

can then either regenerate the solver sequence, or manually insert the

missing variables into the Lumped Step node.

In Table 2-11 the dependent variables that can be created by the Contact and its

subnodes are summarized. To shorten the variable names, the full scope has been

removed. As an example, the contact pressure variable for pair p1 in component comp1,

generated in the Solid Mechanics interface solid, will have the full name similar to

comp1.solid.Tn_p1. In the table, it is shown as Tn.

TABLE 2-11: DEPENDENT VARIABLES OCCURRING IN CONTACT ANALYSIS

VARIABLE NAME  DESCRIPTION EXPLANATION CREATED SOLVER NODE

Tn Contact pressure  The contact Contact: Lumped
pressure in the Augmented Step
normal direction Lagrangian used

Tt Friction force The friction force  Friction: Lumped
vector Augmented Step

Lagrangian used

CHAPTER 2:
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TABLE 2-11: DEPENDENT VARIABLES OCCURRING IN CONTACT ANALYSIS

VARIABLE NAME ~ DESCRIPTION EXPLANATION CREATED SOLVER NODE
gap_old Previous gap Physical gap Contact: Penalty, Internal
distance variable from the  dynamic or state
last converged Augmented variable
solution, Lagrangian,
dynamic used
cm_old Previous mapped  The location on Friction node Internal
source the source where  present state
coordinates this point was variable
located at last
converged
solution
sliptot_old Previous Total slip in this Friction or Slip Internal
accumulated slip point at last velocity: Store state
converged accumulated slip  variable
solution selected
contact_old Contact variable Nonzero if the Friction node Internal
in previous step point was in present state
contact at last variable
converged
solution within
the friction
detection
tolerance
isContact_old Contact status Nonzero if the Contact: Add Internal
variable in point was in contact status to  state
previous step contact at last solver log variable
converged selected
solution
isSliding_old Sliding friction Nonzero if the Contact: Add Internal
status variable point was in a contact status to  state
previous step sliding state at last  solver log variable
converged selected. Friction
solution node present.
isSticking_old Sticking friction Nonzero if the Contact: Add Internal
status variable point was in a contact status to  state
previous step sticking state at solver log variable

last converged
solution

selected. Friction
node present.
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TABLE 2-11: DEPENDENT VARIABLES OCCURRING IN CONTACT ANALYSIS

VARIABLE NAME  DESCRIPTION EXPLANATION CREATED SOLVER NODE
Wrfric Frictional Energy dissipated  Friction present Segregated
dissipation density by friction and Compute step
frictional
dissipation
selected.
Wfric_old Previous frictional  Energy dissipated  Slip velocity Internal
dissipation density by friction at the  present and state
last converged Compute variable
solution frictional
dissipation
selected.
activation_old ~ Adhesion Nonzero if the Adhesion node Internal
condition at adhesion present state
previous step condition was variable
fulfilled at the last
converged
solution
cma_old Previous adhesive  Position on the Adhesion node Internal
mapped source source where this  present state
coordinates point was located variable
when adhesion
was detected.
um_max_old Maximum Maximum norm Decohesion node  Internal
displacement of displacement present and state
jump at previous  jump vector Displacement- variable
step reached until based damage
previous step. selected
Ydm_max_old  Maximum damage Maximumvalue of Decohesion node Internal
energy at the stored present and state
previous step undamaged elastic  Energy-based variable
energy at damage selected

previous step
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TABLE 2-11:

DEPENDENT VARIABLES OCCURRING IN CONTACT ANALYSIS

VARIABLE NAME  DESCRIPTION EXPLANATION CREATED SOLVER NODE
vdmg_old Viscous damageat  Value of the Decohesion node  Internal
previous step viscous damage present and state
variable at the Delayed damage variable
previous step selected
Wdmg_old These variables Decohesion node  Internal
Wsd old are related to the  present and state
computation of Compute damage  variables
dmg_old A
the energy dissipation energy
dissipated by selected.
damage

Important Contact Variables

In this section you will find a summary of variables created in the contact node that

can be useful in postprocessing. In Table 2-12 important field variables are listed. For

the Shell, Layered Shell and Membrane interfaces, these are appended with the suffix

‘_top’ or ‘_bot’, depending on which side of the boundary that is in contact. All

variables are also defined per contact node, for example <phys>.<contact_tag>.Tn

is the contact pressure from the contact node with the tag <contact_tag>. These

variables can be useful if the model includes multiple contact nodes. Table 2-13

presents global variables related to contact that can be useful for postprocessing.

TABLE 2-12: IMPORTANT CONTACT VARIABLES

VARIABLE DESCRIPTION DEFINED IN COMMENTS
<phys>.Tn Contact pressure Contact Vector in global
coordinates also
available
<phys>.gap Gap distance including  Contact
offsets
<phys>.Ttnorm Friction force norm Friction or Slip
Velocity
<phys>.Tt Friction force Friction or Slip Vector
Velocity
<phys>.qgfric Friction dissipation Friction or Slip
rate Velocity
<phys>.fs Adhesive stress Adhesion Vector
<phys>.us Displacement jump Adhesion Vector
<phys>.adhesion Adhesion condition Adhesion
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TABLE 2-12: IMPORTANT CONTACT VARIABLES

VARIABLE DESCRIPTION DEFINED IN COMMENTS
<phys>.bdmg Damage Decohesion
<phys>.um_max Maximum Decohesion If displacement-
displacement jump based damage
<phys>.Ydm_max Maximum damage Decohesion If energy-based
energy damage
<phys>.Wcnt Contact energy Contact
density
<phys>.Wfric Frictional dissipation Friction or Slip
density Velocity
<phys>.Wadhe Adhesive elastic Adhesion
energy
<phys>.Wdbmg Damage dissipation Decohesion
energy density
TABLE 2-13: GLOBAL CONTACT VARIABLES
VARIABLE DESCRIPTION DEFINED IN COMMENTS
<phys>.gapmin_ Minimum gap Contact
<pair_tag> distance, contact pair
<pair_tag>
<phys>.Tnmax_ Maximum contact Contact
<pair_tag> pressure, contact pair
<pair_tag>
<phys>.T_tot Total contact force Contact Vector
<phys>.Tn_tot Total contact force, Contact Vector
pressure contribution
<phys>.Tt_tot Total contact force, Friction or Slip Vector

<phys>.Wcnt_tot

<phys>
Wfric_tot

friction contribution

Total contact energy

Total frictional
dissipation

Velocity

Contact

Friction or Slip
Velocity

Integration over
all contact
boundaries

Integration over
all contact
boundaries
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TABLE 2-13: GLOBAL CONTACT VARIABLES

VARIABLE DESCRIPTION DEFINED IN COMMENTS
<phys> Total adhesive elastic ~ Adhesion Integration over
.Wadhe_tot energy all contact
boundaries
<phys>.Wdmg_tot Total damage Decohesion Integration over
dissipation energy all contact
boundaries

References for Contact Modeling

1. J.L. Chaboche, F. Feyel, and Y. Monerie, “Interface debonding models: a viscous
regularization with limited rate dependency,” International Journal of Solids and
Structures, vol. 38, pp. 3127-3160, 2001.
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Activating and Deactivating Material

In some applications, you may want to activate or deactivate material during an
analysis. An example is when you want to model the addition of material during

processes such as additive manufacturing or welding.

The information in this section is applicable if your license includes the
Structural Mechanics Module or the MEMS Module.

CHAPTER 2:

The Activation subnode can be used for this purpose. You enter an activation
expression to determine whether material is active or not. When this Boolean
expression is satisfied, the material is activated. Rather than truly adding or removing
material, the Activation subnode alters the stiffness and density of the material to

emulate this.

It is typically required that material is activated in a state of zero stress. Therefore,
Activation activates material in a stress-free state by removing all elastic strains present

at the point of activation.

ACTIVATION

Add an Activation subnode when you want to activate or deactivate one or several
domains selected in a Linear Elastic Material node. The Activation expression ficld is used
to define when material should be activated, and the Activation scale factor is used to
reduce the elastic stiffness and density of the material which is not active.

In Figure 2-17 a case is shown where the material in domains 1, 2, and 3 is to be
activated when an auxiliary sweep parameter para exceeds the value 1.5. The

activation scale factor has a default value of 1072,

The activation condition can be any type of expression or function. A common case is
that it is a function of the temperature. The activation expression is evaluated in each
Gauss point. This means that an element can be partially activated. If you want to force
whole elements to be activated, you can for example put the activation expression
inside the centroid() operator.
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Settings

Activation

Label: Activation 1 E
¥ Domain Selection

Selection: | All domains -

Cverricde and Contribution
¥ Activation

Activation expression:
para=> 15
Activation scale factor:

Te-5 1

Figure 2-17: Settings for the Activation subnode.

VARIABLES

Two useful variables are created when you add the Activation subnode. The variable
isactive is set to ‘1’ when the activation condition is satisfied, and it is ‘0’ otherwise.
The variable wasactive is used to record if the material has been active at any previous
step in the analysis. This variable can be used to “lock” the state of activation, once it
has been reached. Suppose that you want the material in the previous example to
remain active even if para later becomes less than 1.5. The activation expression for an

interface with the name solid could then be expressed as:

(para > 1.5) || solid.wasactive

Similarly, the variable wasinactive is used to record if the material has been inactive

at any previous step in the analysis.
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Domains that are not selected in any Activation subnode always have the isactive
variable set to ‘1.

TABLE 2-14: VARIABLES DEFINED BY THE ACTIVATION SUBNODE

VARIABLE DESCRIPTION
<physics>.isactive Current state of the material (1 or 0)
<physics>.wasactive Variable set to | if isactive has been | previously

<physics>.wasinactive Variable set to | if isactive has been 0 previously

RESULTS

If you have performed an analysis in which only part of the material is active, it is useful
to apply a Filter and only display the regions that actually are active; see Figure 2-18.
When an Activation subnode is added in a Solid Mechanics or Membrane interface,

such a Filter node is automatically added to the default stress plots.

Settings

Filter

[ Plot

Label: Filter 1 E
~ Element Selection Ehe %

Logical expression for inclusion:
solid.isactive
Elernent nodes to fulfill expression:
Smooth x

[] Use derivatives

Figure 2-18: Filter settings to only display active material.
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Springs and Dampers

The Spring Foundation and Thin Elastic Layer physics nodes supply elastic and

damping boundary conditions for domains, boundaries, edges, and points.

The features are completely analogous, with the difference that a Spring Foundation
connects the structural part on which it is acting to a fixed “ground,” while the Thin

Elastic Layer acts between two parts, either on an interior boundary or on a pair.

A Spring Foundation is most commonly used for simulating boundary conditions with
a certain flexibility, such as the soil surrounding a construction. Another important use
is for stabilizing parts that would otherwise have a rigid-body singularity. This is a
common problem in contact modeling before an assembly has actually settled. In this
case a Spring Foundation acting on the entire domain is useful because it avoids the

introduction of local forces.

A Thin Elastic Layer used as a pair condition can simulate thin layers with material
properties that differ significantly from the surrounding domains. Common

applications are gaskets and adhesives.

When a Thin Elastic Layer is applied on an interior boundary, it usually models a local

flexibility, such as a fracture zone in a geological model.
The following types of data are defined by these nodes:
e Spring Data

* Loss Factor Damping

e Viscous Damping

SPRING DATA

The elastic properties can be defined either by a spring stiftness or by a force as function
of displacement. The force as a function of displacement can be more convenient for
nonlinear springs. Each spring node has three displacement variables defined, which
can be used to describe the deformation dependency. These variables are named
<interface name>.uspringil_<tag>, <interface name>.uspring2_<tag>, and
<interface name>.uspring3_<tag> for the three directions given by the local
coordinate system. In the variable names, <tag> represents the tag of the feature
defining the variable. The tag could, for example, be spf1 or tel1 for a Spring
Foundation or a Thin Elastic Layer, respectively. These variables measure the relative

extension of the spring after subtraction of any predeformation.
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In addition to explicitly supplying a spring stiffness, you can choose to enter elastic
material data and the layer thickness. The spring stiffness is then computed internally,

based on an assumption of plane strain conditions.

LOSS FACTOR DAMPING
The loss factor damping adds a loss factor to the spring data above, so that the total

force exerted by the spring with loss is
fy = (L+inf,

where £ is the elastic spring force, and n is the loss factor.

Loss factor damping is only applicable for eigenfrequency and frequency-domain

analysis. In time-dependent analysis the loss factor is ignored.

VISCOUS DAMPING

It is also possible to add viscous damping to the Spring Foundation and Thin Elastic
Layer features. The viscous damping adds a force proportional to the velocity (or in
the case of Thin Elastic Layer: the relative velocity between the two boundaries). The
viscosity constant of the feature can be made dependent on the velocity by using the
variables named <interface name>.vdamperi_<tag>, <interface name>
.vdamper2_<tag>, and <interface name>.vdamper3_<tag>, which contain the

velocities in the three local directions.

Bracket — Spring Foundation Analysis: Application Library path
[m] Structural_Mechanics_Module/Tutorials/bracket_spring

{'i}‘ Spring Foundation and Thin Elastic Layer
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Defining Multiphysics Models

The following modeling tips are about how to define multiphysics models. A good
place to start reading is in Building a COMSOL Multiphysics Model in the COMSOL
Multiphysics Reference Manual.

In this section:

e Thermal-Structure Interaction
¢ Acoustic-Structure Interaction

e Thermal-Electric-Structural Interaction

Thermal-Structure Intevaction

The Thermal Stress, Solid Interface included with this module has a predefined
one-way approach for thermal-structure interaction (thermal stress), which combines
a Solid Mechanics interface with a Heat Transfer interface from the Heat Transfer
Module or COMSOL Multiphysics.

There are also similar multiphysics interfaces available for thin structures, as described
in The Thermal Stress, Shell Interface, The Thermal Stress, Membrane Interface, and
The Thermal Stress, Layered Shell Interface. The latter requires the Composite
Materials Module.

By default, COMSOL Multiphysics takes advantage of the one-way dependence and
solves the problem sequentially using the segregated solver. The solution for the
temperature is separated from the stress-strain analysis, which then uses the computed

temperature field from the heat transfer equation.

Using a single iteration in the segregated solver does not produce a

correct result if there are thermal properties that depend on the

!

displacements. Examples are when a heat source causes mechanical losses

(damping) in the material or when thermal contact is present.
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Acoustic-Structure Interaction

When the Structural Mechanics Module is used together with an acoustics physics
interface from the Acoustics Module, it is possible to model a wide range of

acoustic-structure interaction problems.

There are several physics interfaces available that are documented and
described in the Acoustic-Structure Interaction Interfaces chapter in the
Acoustic Module User’s Guide

e The Acoustic-Solid Interaction, Frequency Domain Interface

e The Acoustic-Solid Interaction, Transient Interface

e The Acoustic-Piezoelectric Interaction, Frequency Domain Interface
¢ The Acoustic-Piezoelectric Interaction, Transient Interface

e The Solid Mechanics (Elastic Waves) Interface

* The Elastic Waves, Time Explicit Interface

¢ The Poroelastic Waves Interface

e The Acoustic-Solid-Poroelastic Waves Interaction Interface

¢ The Acoustic-Poroelastic Waves Interaction Interface

e The Acoustic-Shell Interaction, Frequency Domain Interface

¢ The Acoustic-Shell Interaction, Transient Interface

* The Thermoviscous Acoustic-Solid Interaction, Frequency Domain

Interface

* The Thermoviscous Acoustic-Shell Interaction, Frequency Domain

Interface

Thermal-Electric-Structural Intevaction

The Joule Heating and Thermal Expansion Interface enables
thermal-electric-structural interaction. This is a combination of three physics

interfaces: Solid Mechanics, Heat Transfer in Solids, and Electric Currents.

The thermal-electric coupling is bidirectional, with Joule heating and
temperature-dependent electrical properties, while the temperature coupling to the

Solid Mechanics interface is unidirectional.
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By default, COMSOL Multiphysics takes advantage of the one-way dependence and
solves the problem sequentially using the segregated solver. Temperature and electric
potential are solved using a coupled approach and then the stress-strain analysis uses

the computed temperature field from the heat transfer equation.

Using a single iteration does not produce a correct result if there are
2 thermal properties or electrical that depend on the displacements, making

the thermal-structure part into a bidirectional coupling.
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Thermally Coupled Problems

A wide class of structural mechanics problems are related to effects of variations in

temperature. In this section various such effects are discussed.

Temperatures can either be computed using another physics interface, usually Heat
Transfer in Solids, or directly be prescribed in the input for the various physics nodes.

For information about the predefined coupling between the Solid
Mechanics and Heat Transfer in Solids interfaces, see The Thermal Stress,

Solid Interface.

In this section:

* Temperature-Dependent Material Data
e Thermal Expansion

* Constraints and Thermal Expansion

* Thermoelastic Damping

Temperature-Dependent Material Data

Many material properties, such as Young’s modulus, coefficient of thermal expansion,
and yield stress, can have a significant dependence on temperature. In many cases,
materials supplied in the material libraries and databases have such dependencies

incorporated.

@l Materials in the COMSOL Multiphysics Refevence Manual

If a material property under the Materials branch has a temperature dependence, you
have to input the temperature to be used in the Model Input section in the settings

window for the node in the physics interface that references the property. It is possible
that not all aspects of a material are defined in the same node in the Model Builder tree.

For example, if a problem is run with thermal expansion and plasticity, then:

* Young’s modulus, Poisson’s ratio, and mass density are given in the Linear Elastic

Material node.
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* Yield stress and hardening function are given in the Plasticity node.

* Coefhicient of thermal expansion is given in the Thermal Expansion (for Materials)
subnode.

The Plasticity node is available as a subnode to the Linear Elastic Material
node when you have either the Nonlinear Structural Materials Module or

the Geomechanics Module.

For each of these nodes, there is a Model Input section in the Settings window. Some
of these sections may be empty if none of the properties given in that node have a
temperature dependence. In general, you have to supply the temperature in all the

Model Inputs sections.

As a default, the value of the temperature T is obtained from a Common model input.
You can also select User defined to enter a value or expression for the reference
temperature locally. This can be done either by explicitly giving a temperature or by

selecting a temperature variable from another physics interface.

USING COMMON MODEL INPUT

When the option Common model input is selected in a physics node, you can see or
modify the value actually used by clicking the Go To Source button ( 34 ). Doing that
will move you the node in the Model Builder that is defining the value of the property.

That location can be:

e The Default Model Inputs node under Global Definitions

* A Model Input node under Definitions->Shared Properties in the current component

If you want to create a model input value which is local to your current selection, click
the Create Model Input button _: . This will create a new Model Input node under
Definitions->Shared Properties in the current component, having the same selection as

in the current node.

See also Default Model Inputs and Model Input in the COMSOL
@}‘ Multiphysics Reference Manual.

MASS DENSITY AND VOLUME REFERENCE TEMPERATURE
All structural mechanics interfaces are formulated on the material frame. This means

that the equations of motion are written for a certain volume in its initial configuration.
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The preservation of mass requires that the mass density is constant. In a structural
mechanics problem this means that the mass density must not change. If you are using
a material in which the density has a temperature dependence, you must specify a
specific temperature at which the value is evaluated. This is the volume reference
temperature. Conceptually, you can consider this as the temperature at which the
domain has the size in which it is drawn. In practice, the choice of reference
temperature is seldom an issue, unless your application requires extreme precision. The
density of a solid material has a rather slow variation with temperature, so in most cases

it is sufficient to use room temperature as reference.

If any material in the model has a temperature-dependent mass density, the Volume
reference temperature list will appear in the Model Input section of the material settings.
As a default, the value of T'o¢is obtained from a Common model input. You can also

select User defined to enter a value or expression for the reference temperature locally.

All effects of volume change with temperature are incorporated through the thermal

expansion effects.

See also

¢ Using Common Model Input.

e Default Model Inputs and Model Input in the COMSOL Multiphysics
Reference Manual.

@,
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Thermal Expansion

As the temperature changes, most materials react by a change of volume. For a
constrained structure, the stresses that evolve even with moderate temperature changes
can be considerable. The volume change can be represented a thermal strain gy,
which produces stress-free deformations. For a linear elastic material, the constitutive

law is

6 =C:(e—-¢gy)
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In the computations, the thermal expansion appears as a load, even though it formally

is a part of the constitutive relations.

You can include thermal expansion in a model either by adding a Thermal
Expansion (for Materials) subnode to the chosen material, or by using the

Thermal Expansion.

TEMPERATURE DEPENDENCE OF THE THERMAL EXPANSION
COEFFICIENT

When performing an analysis over a larger range of temperatures, you often need to
consider the temperature dependence in the values of the thermal expansion
coefficient itself.

As long as you are using materials from the COMSOL Material Library, everything is
handled internally. When you want to enter data from your own measurements or from
the literature, you do, however, need to be aware of some details in the definitions

used.

Tangent or Secant Data
Thermal expansion coefficients can appear in two forms: tangent and secant.

The tangent form states that the increment in length is

dL _ a(T)dT (2-29)
where oy is the tangential thermal expansion coefticient. This form, which is the
thermodynamic definition, is conceptually simple, because oy is uniquely defined at
cach temperature. It is, however, less convenient to use in practice because an
integration is required for determining the actual change in length for a finite

temperature difference.

The secant formulation, which is the default in COMSOL Multiphysics, is often used

in engineering:

AL
— = a(T)AT
7, =D

In the secant formulation, the actual values of a will however depend on the choice of

reference temperature, Tpep, at which the material has the reference length Ly:
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L_ = a(T’Tref)(T_Tref)

Converting from Tangent Form to Secant Form
Equation 2-29 can be integrated, giving

T
1n(f—0) = [ ads (2-30)
Tref
Define
T
I(T,T,,) = j a,(v)dt
Tref
Thus,
AL _ L 4 _ eI(T’Tref)_l
LO LO

giving the secant thermal expansion coefficient as

KT.T,..p

(T, T.0) =4 —=
ref (T _ Tref)
For most materials and temperature ranges I(7T,T..¢) « 1, which makes it possible to

approximate with the simpler expression

I(T’Tref)

—_— (2-31)
(T - Tref)

(T, T, ) =
If you have access to tangent data, you can choose between two different methods for

using them in COMSOL Multiphysics:

¢ In most of the physics interfaces, you can enter tangent data directly by selecting
Tangent coefficient of thermal expansion in the settings for Thermal Expansion. When

using this option, a numerical integration of Equation 2-30 will be performed each
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time the thermal strain is used. This will have a negative impact on the performance,

when compared to using a secant coefficient of thermal expansion.

* Precompute the expression in Equation 2-29 externally for the intended range of
temperatures. This can for example be done in a spreadsheet program. Enter the
computed result as a function, which is then used as any other secant temperature

dependent thermal expansion coefficient.

When using Tangent coefficient of thermal expansion, the integrate
operator is used. It is called with the two integration limits being the
reference temperature <phys>.Tref and the current temperature <phys>
.T, where <phys> is the tag of the physics interface. If you define the

a expression for the coefficient of thermal expansion yourself, you must
ensure that it depends on a ‘free’ variable, and not use the same
temperature variable as you use to prescribe the current temperature
<phys>.T.

Thermal Expansion Coefficient Dependence on Reference Temperature

Let o, (T') be the temperature-dependent function that represents the measured values
of the secant thermal expansion coefficient. The change in length of a sample at a given
temperature T with respect to the sample’s original length at a temperature T, is called

dilation.

Note that by definition, the dilation at T' = T, is zero, so Ty, denotes the strain-free
state of the material as far as the measured values of o, (T') is concerned. Denote the
length of the sample at a temperature 7' as L(T) and the strain-free length as

Lo = L(T,,). The dilation can be then expressed as L(T) — L(T},). Using the definition

of the secant coefficient of thermal expansion, L(7T') can be written as:
L(T) = [1+a,(T(T-T)IL(T,) (2-32)

When using the measured data, it is possible that the strain-free state occurs at a
temperature Toe Which differs from T',. The dilation at any temperature T would then
be defined as L(T) — L(T\ef), where L(T o) can be written as.

L(Tref) = [1+am(Tref)(T

ref

T )IL(T,,) (2-33)

As a result of this shift in the strain-free temperature, it is necessary to redefine the
thermal expansion coefficient so that L(T') and L(T'¢f) can be related using
Equation 2-32 but with T, replaced by Tier.
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L(T) = [1+ 0 (T)T = (Tpe)IL((T ) (2-34)

Here a,(T) is the redefined thermal expansion coefficient, based on Tyef. It can be
derived from the relations above. Using Equation 2-32 and Equation 2-34 there are
two ways of writing the current length L(T'), so that

[1+ 0 (TUT = (T DIL((Trep)) = [1+ 0y (TUT =T )IL(T,)  (2-35)

Equation 2-33 makes it is possible to eliminate L(Tyf) and L(T',) from

Equation 2-35, and after some algebra a,(7T") can then be written as

OLm(T) B OLm(Tref)

T Trer (2-36)
1+ am(Tref)(Tref_ Tm)

Oy (1) + (Tyos—T)

a‘r(T) =

Representation in COMSOL Multiphysics

Most materials listed in the material libraries and databases available with COMSOL
Multiphysics and its add-on products contain a function for the measured
temperature-dependent thermal expansion coefficient curve. You can find this from
the Materials branch, as shown in Figure 2-19. The Piecewise function named

alpha_solid_1 is the measured thermal expansion coefficient oy, (7).

Using Functions in Materials in the COMSOL Multiphysics Reference
Q Manual

The Material Contents section in Figure 2-19 shows the material property alpha,
which is the redefined thermal expansion coefficient a.(T"). The complete expression
for alpha is as follows:
(alpha_solid_1(T[1/K])[1/K]+(Tempref-293[K])*
if (abs(T-Tempref)>1e-3, (alpha_solid_1(T[1/K])[1/K]
-alpha_solid_1(Tempref[1/K])[1/K])/(T-Tempref),
d(alpha_solid_1(T[1/K]),T)[1/K]))/
(1+alpha_solid_1(Tempref[1/K])[1/K]*(Tempref-293[K]))
This is essentially Equation 2-36, but with a small modification to avoid problems if
T=Tef.

260 | CHAPTER 2: STRUCTURAL MECHANICS MODELING



4 558 Materials
4 1015 (UNS G10150) [solid] (mat2)
4 Basic (def)
. Piecewise (dl)
. Piecewise 2 (CTE)
M Piecewise 3 (k)
n(T) [ Peceniseds (7
4w Piecewise 5 (C)
o Piecewise 6 (mu)
M Piecewise 1 (Syfunc_
M Piecewise 7 (rho) "

¥ Material Contents

. o8 [k Property MName  Value Unit
< Piecewise 8 (kappa) dL dL (dL(T[L/K])-dL(Te..
CTE CTE  |CTE(TA/KDI/K] 17K

*

(Xr(T) alpha (alpha(T[1/K][1/K...[1/K
Cp CTTLTRII TR RI] [1Tkg-K)

mu mu mu(T[1/K])[Pa] Pa

Syfunc Syfunc | Syfunc_solid_1(ep... Pa
Density rho rtho(T[L/KI)[kg/ ... kg,"m’

kappa kappa  |kappa(T[1/K])[Pa] Pa

Young's modulus E E(T[1/K])[Pa] Pa

Figure 2-19: An example in COMSOL Multiphysics showing the Materials branch and
where to find the temperarure-dependent thermal expansion coefficient.

In the definition of alpha (to be more specific: <material_tag>.def.alpha)in
COMSOL Multiphysics, T, is set as 293 K and Tyer is obtained from the variable
Tempref, which typically fetches its value from the physics interface.

Using Your Own Material Data

If you use our own material data in COMSOL Multiphysics (via an interpolation or
any other function), you can still copy-paste the built-in expression for alpha into your
New Material. You just need to:

* Replace the function name alpha_solid_1(T[1/K])[1/K], with the function
name that you have assigned to the temperature-dependent measured thermal

expansion coefficient and use the correct temperature units.

Take care when describing the units. Temperature unit conversions can be
the cause of subtle errors because of the shift in zero-point value. Use
kelvin (K) as the temperature unit to the largest possible extent. As an

-ﬂ alternative, you can use the other absolute temperature scale, Rankine
(R). Avoid using Fahrenheit and Celsius unless you are completely

familiar with how the temperature unit conversion works.
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e Ensure that the value of T, is changed from 293 K to the actual value of
temperature that was used as the strain-free temperature to compute ay,(7") in the

function that you created.

User-Defined Materials and Libraries in the COMSOL Multiphysics
E}‘ Reference Manual

CHAPTER 2:

Constraints and Thermal Expansion

When a structure is undergoes thermal expansion, the fact that the motion is restricted

by constraints will in general cause stresses. There are three types of such effects:

* The global expansion is restricted by constraints at different locations, so that

internal forces are introduced throughout the structure.

* At a boundary that is constrained, local stresses can appear if the boundary is not

free to expand in the tangential direction.

* Internally, the same type of local constraint effects will be caused by rigid objects,

such as Rigid Material.

In many cases, not only the structure which actually is modeled deforms due to the
changes in temperature, but also the surroundings (which are approximated by
constraints) will deform. You can take this effect into account by adding a Thermal
Expansion subnode to the constraints. The constraints will then provide an extra
displacement based on a given temperature field. For thermal strains, which have a
simple variation in space (for example, linear temperature variations), it is possible to
completely offset the constraint stresses using this method. For more general cases, the

stresses caused by the constraint can be significantly reduced.

The thermal expansions of the constraints are independent of that of the material in
the adjacent domain, so that the surrounding structure can be made from another

material, or have a different temperature distribution.
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You can, however, also inherit temperature and thermal expansion coefficient from the
domain being constrained. This is useful for the common case that the temperature

and materials are the same over the modeled structure body and its surroundings.

The spatial variation of the temperature and coefficient of thermal
expansion must be explicit functions of the material frame coordinates. It
n is not possible to use a computed temperature distribution for the thermal

expansion of the constraints.

e Thermal Expansion (for Constraints)

e Thermal Expansion of Constraints in the theory section.

For an example showing how to relive the stress at constraints in a heated
structure, see Thermal Expansion in @ MEMS Device: Application
[m] Library path Structural_Mechanics_Module/Thermal-Structure_Interaction/

thermal_expansion.

Thermoelastic Damping

In most engineering problems, the coupling between temperatures and structural
problems can be considered as unidirectional. Only the thermal expansion is

considered.

The opposite effect, where changes in stress cause heat generation, may be important
in small structures vibrating at high frequencies. The Thermoelasticity interface,
available with the MEMS Module, is designed for analyzing such problems.

Itis also possible to take this effect into account by adding the Thermoelastic Damping
node to the Heat Transfer in Solids interface. When you add a Thermal Expansion node
to a material in the Solid Mechanics interface, the heat source term is computed and

made available to the Heat Transfer in Solids interface.

When you add a Thermal Expansion node under the Multiphysics Couplings branch, it is
possible to select whether the thermoelastic damping effect should be taken into
account or not. The heat source contribution is then included automatically without

adding any data in the heat transfer interface.
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In either case, the heat source term is only present when Structural Transient Behavior

is set to Include inertial terms.

See also

* Entropy and Thermoelasticity

@,

¢ Thermal Expansion (for Materials)

¢ The Fluid-Solid Interaction Interface
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Fluid-Structure Interaction

Fluid-structure interaction (FSI) involves several phenomena where a solid structure
and a fluid interact with each other. The interaction has three possible components,

which can be more or less important:

e The pressure and viscous forces in the fluid provides a load on the boundary of the
solid. Usually, the pressure is dominant.

e The deformation of the structure changes the geometry of the fluid domain.

* The fluid sees the structure as a moving wall, which imposes a velocity at the

interface.

You can model FSI with four different structural mechanics interfaces: Solid
Mechanics, Multibody Dynamics, Shell, and Membrane. The fluid-flow can be
modeled with any domain-level physics interface from the Single-Phase Flow group and

the Two-Phase Flow groups under Multiphase Flow.

Deforming Fluid Domains

When a fluid-structure interaction multiphysics interface is added using the Model
Wizard, a Deforming Domain node can be added automatically in the Model Builder under
the Definitions node. This is the case for the following interfaces:

* Fluid-Solid Interaction

* Fluid-Shell Interaction

* Fluid-Membrane Interaction

* Fluid-Multibody Interaction

* Fluid-Multibody Interaction, Assembly

The Deforming Domain node is, however, not added for multiphysics interfaces denoted

‘Fixed Geometry’, which are intended for cases where the deformation of the fluid

domains is small everywhere.

A deforming domain represents domains and boundaries where the mesh can deform.
By default, the Deforming Domain node has an empty selection. You can then select any
fluid domain. However, this is only needed if the geometry of such a domain

experience significant changes due to the deformation or rotation of the adjacent solid

domains. Otherwise, the moving mesh computations could introduce unnecessary
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overhead and nonlinearity in the model (see Deformed Mesh Fundamentals).
Domains selected in the Solid Mechanics interface are not applicable. The
deformations of the solid parts are handled in the formulation of the Solid Mechanics

interface.

If no domains are selected in the Deforming Domain node, a fixed
I_i| geometry case is solved.

CHAPTER 2:

Under the Deforming Domain, you can also choose the Mesh smoothing type, by default
set to Hyperelastic. More information of the smoothing type can be found in
Deforming Domain chapter in the COMSOL Multiphysics Reference Manual

By default, the mesh is free at all external boundaries of the geometry, and it follows
the solid boundaries at the solid-fluid interfaces. You can also add other types of
boundary conditions for the mesh motion; for details, see Deformed Geometry and
Moving Mesh in the COMSOL Multiphysics Reference Manual.

Union or Assembly

In most cases you model FSI problems so that the geometry sequence is set up to form
a union, and the same multiphysics coupling, Fluid-Structure Interaction, is used
irrespective of the type of structural mechanics interface. This coupling will

automatically find all boundaries that are shared between the structure and the fluid.

There are, however, cases where the assembly mode must be chosen, particularly when
having mechanisms, as is common in the Multibody Dynamics interface. In that case,
the interface between the solid and the fluid is no longer formed by a common
boundary. Rather, it consists of two boundaries, located at the same place in space.
These boundaries will in general slide with respect to each other. To model this, you
use the Fluid-Structure Interaction, Pair multiphysics coupling. You must create
appropriate pairs containing the boundaries from both types of physics under

Definitions, and manually select them in the Fluid-Structure Interaction, Pair node.

UNION — FLUID-STRUCTURE INTERACTION

When using Fluid-Structure Interaction, the spatial frame also deforms with a mesh
deformation that is equal to the displacements u_solid of the solid within the solid
domains. The mesh is free to move inside the fluid domains, and it adjusts to the
motion of the solid walls. This geometric change of the fluid domain is automatically
accounted for in COMSOL Multiphysics by the ALE method.
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ASSEMBLY — FLUID-STRUCTURE INTERACTION, PAIR
The Fluid-Structure Interaction, Pair coupling does not automatically transfer the mesh

deformation at the interface from structural displacements.

For the moving mesh, you must specity the deformation of the mesh manually. Add a
Prescribed Mesh Displacement node under the Moving Mesh node, in which you give the
structural displacement as the mesh displacement expression. The variables for the

displacement in the structure is provided by the multiphysics coupling.

The variable names to use have the form <tag>.u_solid, <tag>
.v_solid, and <tag>.w_solid, where <tag> is the tag of the

!

multiphysics coupling, for example fsip1.

Contact and FSI

Sometimes the structural deformations are so large that objects may come into contact
with each other with the fluid being squeezed in between. Modeling contact together
with FSI requires some special considerations. The mesh in the fluid domain may

deform, but the topology remains the same — a fluid domain cannot be split into two.
If you are to model a valve or a similar structure, then the two solid parts cannot come

exactly into contact.

By adding an offset in the settings for the Contact node, you can force the two sides of
the solid to experience contact at some distance before they meet in the geometrical
sense. This approach only will, however, leave a thin channel through which the fluid
can pass. The reduction in flow may be sufficient, but you can block it even further by
increasing the viscosity in the channel when the gap is closed. To do that, you can, for
example, compute the minimum gap anywhere in the contact pair, and then make the
viscosity a function of it. Another option is to compute the wall distance in the fluid
from both sides of the contact pair and use that information to modify the viscosity.
Do not increase the viscosity more than a couple of orders of magnitude, to avoid

numerical problems.

In configurations where you more or less completely cut off the whole flow, you must
pay particular attention to your boundary conditions. A prescribed flux will cause an
extreme pressure build-up upstream of the valve and thus unrealistically large forces on
the structure.
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One-Way FSI

For some fixed geometry FSI problems, you can consider the coupling as being
unidirectional. One physics interface affects the other, but it is not reciprocal. Typical
examples are when the fluid slightly deforms the structure, or when small structural
vibrations modify the fluid flow. In this case, it is not necessary to compute the solution
with both physics interface solved together. It is more efficient to first solve for the
governing physics interface only, and then the other one with results from the first as
input. To solve such a problem sequentially, you need to create a study configuration
manually, with one study step for each physics interface. The governing physics
depends on the coupling type. For the case of fluid loading on a structure, the
governing physics is the fluid one. For the case of velocity transmission to a fluid, the

governing physics is the solid one.

Deformed geometry FSI, or fixed geometry fully coupled FSI, should not
n be solved using a one-way approach.

CHAPTER 2:

Below are the steps to follow to compute a one-way FSI problem sequentially:

I In the study step settings windows, under the Physics and Variables Selection scction,
clear the physics that is solved in the second step, so that only the governing physics
is selected.

2 Add a second study step to the study and in the settings windows make sure you

have the governing physics cleared.

If the selected study steps are of stationary type, you can generate the default solver
configuration, edit it if necessary, and compute the solution. The mapping of the

solution from the first to the second study step is done automatically.
In case of a transient problem, continue with the steps below:

3 In the second study step settings window, expand the section Physics and Variables
Selection. Under Initial values of variables solved for make sure the settings are
defined as in the table below:

Settings User controlled
Method Solution

Study <previous study step>
Selection First
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4 Under Values of variables not solved for define the settings as in the table below:

Settings User controlled
Method Solution

Study <previous study step>
Selection All

In the case of a fluid loading to structure coupling type, the structural mechanics
problem can be treated as quasistatic. This can be handled by running the structural
analysis as a parametric sweep over a number of static load cases, where time is used as
the parameter.

For an example of one-way FSI using a quasistatic structural analysis, see
Fluid-Structure Interaction in a Network of Blood Vessels: Application
[m] Library path Structural_Mechanics_Module/Fluid-Structure_Interaction/

blood_vessel.
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Component Mode Synthesis

Introduction

Component mode synthesis (CMS) is a family of procedures in which one or more
parts of a finite element model are represented by a small reduced-order model
(ROM). There are several possible algorithms through which such a reduction can be
made. In COMSOL Multiphysics, the popular Craig—Bampton method is used for
model reduction with a dual assembly technique to ensure compatibility between

components.

The reduced component is sometimes called a dynamic substructure. Essentially, it
contains small mass, damping, and stiffness matrices, tuned so that it can represent the
static stifthess, as well as a set of important eigenmodes and the inertia of the original

component. An important assumption is that the reduced structure is linear.

The reduced component accounts for the constraints applied on the component. It can
also contain, for example, information about loads applied to the component prior to

model reduction.

Since the reduced components only have a small number of degrees of freedom (often
of the order of 10-100), they are computationally more efficient than the original full
FEM components. To create a reduced component, it is necessary to both perform an
eigenfrequency analysis and to solve for a number of static load cases. These studies

are, however, computed at the component level, and are thus usually computationally

much cheaper than analyzing the full model.

For general information on reduced-order modeling and model

reduction, see also
E}, ¢ Reduced-Order Modeling
¢ Model Reduction

in the COMSOL Multiphysics Reference Manual.

COMSOL Implementation

The Component Mode Synthesis (CMS) technique is currently implemented in the
Solid Mechanics, Shell and Multibody Dynamics interfaces. You use the Reduced
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Flexible Components node in either of these interfaces to control the generation and use

of such reduced components.

Reduced components are connected to each other and to nonreduced parts of the
model through Attachment features. It means that all physics features that can access
an attachment can be used to connect the reduced components. The most common
option is to use joints, but there are other alternatives, such as Spring-Damper, or

bearing foundations in the rotordynamics interfaces.

The global model can consist of either a set of reduced components, or a mix of
ordinary FE discretized domains and reduced components. The reduced components

can be used as linear parts in an otherwise nonlinear model.

A requirement to be able to create a valid reduced component is that its underlying
physics is linear with regards to material models, the strain formulation, and other

possible contributions such as springs and loads

COMSOL Multiphysics always forces a geometrically linear formulation

g on selections that intersect that of a Reduced Flexible Components node.

When using a reduced component in the global model, the connection to
n nonreduced parts must be such that the deformation of the reduced

component is limited to small rotations and small strains.

You can compute all type of results and visualize reduced components just as if they
are ordinary domains in your model. One important property of the reduced
component is that only the results for the reduced set of degrees of freedom are stored.
It means that for time-dependent studies with many time steps, the file sizes can be

reduced by orders of magnitude.

Applications

Some examples of applications of the CMS reduction technique include:

* In multibody dynamics models, you usually have a number of physical components,
coupled by joints. The ultimate reduction is then to use rigid domains. When it is
necessary to take the flexibility of a component into account, using a reduced

flexible component is attractive.
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* In rotordynamics, it is common that the foundation supporting the rotor must be
part of the analysis. Such a foundation will almost invariably have linear properties.
It is then well suited to be considered as a reduced flexible component. This can
greatly reduce the number of the degrees of freedom in the rotordynamic analysis,
which is often computationally heavy.

* In many situations, only a smaller part of a model is nonlinear. It is then possible to
reduce the linear parts once and for all, and then iterate on a much smaller nonlinear
system of equations. For this to be feasible, it must however be possible to dissect
the structure in a way that can be represented by attachments.

Working With CMS Models

CREATING REDUCED COMPONENTS

A reduced component can be created in an applicable physics interface by adding a
Reduced Flexible Components node, in which you select all domains that are to be
reduced, as shown in Figure 2-20. Subsequently, one Component Definition subnode
should be added for each set of domains for which a reduced-order model (ROM) is
to be generated. By default, this step is automated and the selected domains are
grouped into disconnected components as detected from the geometry. With this
setting, a number of Component Definition subnodes are created and their selections are
set automatically. However, by setting Component definition to User defined in the
Reduced Flexible Components node, you can take manual control of the geometric
definition of the components by adding, removing, or modifying Component Definition
nodes. In each such node, select a number of domains that defines a component. This
may be necessary if domains are not physically adjacent, but connected by other means,

for example, by springs.

By default, disconnected geometries connect by the Continuity and Thin Elastic Layer
pair features are merged when automatically generating Component Definition
subnodes. This also applies to Boundary to Boundary, Edge to Boundary, and Edge to
Edge connection features in the Shell interface. The automatic handling of such
connections can be disabled by clearing Include connections and pairs in component

definition in the Reduced Flexible Components node.
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Figure 2-20: A Reduced Flexible Components node with two automatically generated
Component Definition subnodes.

* If the components are geometrically disjoint, then Form Union should
be used in the geometry sequence. If not, Form Assembly is probably a
better choice, but then you may have to either create unions between
domains that are part of the same components, or edit the settings in
the Component Definition nodes manually.

* In the majority of cases, it is sufficient with one Reduced Flexible
Components node per physics interface. If you, however, do not want to
train all ROMs in one sweep, having a single Reduced Flexible
Components node per actual component can be useful. Another case is
if you decide to reduce one additional component after already having
reduced one or several other components. Then, adding an additional

Reduced Flexible Components node can be an alternative.
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The Reduced Flexible Components node is only applicable on domains
where the material behavior is determined by a Linear Elastic Material node

n or a Section Stiffness node in the Shell interface. You can, however, have
several such nodes with different properties and settings within one
reduced component.

A disconnected reduced component, as defined by a Component Definition subnode,
can only be connected to other parts of the geometry by attachment features. In fact,
to be able to create the ROM, each component must be connected to at least one
Attachment node. By using attachments, a reduced component can be connected to

any number of other parts, reduced or full, of the model assembly.

E}‘ See also Attachments.

CHAPTER 2:

When working with CMS, the full static and dynamic behavior of a component is
represented by a number constraint modes and constrained eigenmodes that are
computed in the training phase. These are independent of each other and are used to
construct one ROM for each component. Each Attachment node connected to a
component will add a number of static load cases that describe the constraint modes:
six in 3D, and three in 2D. The number of eigenmodes to be used is controlled
manually. You can either define it for all components in the Reduced Flexible
Components node, or individually in each Component Definition subnode. To get an
accurate representation of the reduced component, always make sure to use a sufficient
number of eigenmodes to describe the dynamics of each component. During the
eigenfrequency training step, all attachments are treated as fixed constraints, hence, the

eigenmodes are always constrained.

Note that, from a computational point of view, each eigenmode is represented as a
degree of freedom when using the reduced component in a global analysis. For

computational efficiency, you should avoid using unnecessarily many eigenmodes.

To create the ROMs, a special study sequence needs to be set up for each Reduced

Flexible Components node. It should sweep over all Component Definition subnodes, and
for each component, compute the static load cases and the requested eigenmodes in
training study steps as outlined above. The results from these study steps are then used
in a Model reduction step to generate a ROM. By using the Configure CMS Study ()

button in the Reduced Flexible Components node, the set-up of this special study
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sequence is automated. In the model tree, a generated ROM is represented as a node

with the label Reduced Component under Global Definitions as scen in Figure 2-21.

4 () Global Definitions
Fi Parameters 1
P CMS Parameters
i Materials
Reduced-Order Modeling
Global Reduced Model Inputs 1
E Reduced Component 1
@ Reduced Component 2
4 |§ Component1
4 = Definitions
_[” Step1
4 g Selections
& CMS Compenent (rfc_solid)

Figure 2-21: Nodes in the model tree that ave added automatically when working with
CMS.

* When a Reduced Flexible Components node is added, a set of parameters
are also automatically added under the Global Definitions branch. These
are placed in the CMS Parameters node seen in Figure 2-21, which is
created by the first Reduced Flexible Components node in the model.
Additionally, each Reduced Flexible Components node creates an explicit
selection node with the label CMS Component (<tag>) in its model
component. The parameters and selection are used in the
corresponding CMS study and should therefore not be deleted or
modified. As a safeguard, they are regenerated if missing when the

n Configure CMS Study (-~ ) action is executed.

* Ifyou change the number of Component Definition nodes or add new
features to the physics interface after setting up the CMS study and
want to run it again, the safest option is to reconfigure the study by
using the Configure CMS Study (~c) action. Note that this will delete
any ROMs that have previously been generated. To save these in the
model, you can temporarily change the name of the existing Reduced
Component nodes under Global Definitions before reconfiguring the
CMS study.
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APPLYING LOADS TO REDUCED COMPONENTS

Loads can be applied to a reduced component in two fundamentally different ways:

I External to the ROM: In this case, the weak contribution of the load on the reduced
component is part of the assembly procedure for the global FE model. This is the
default choice and can handle any type of loads. It is, however, the computationally
more expensive of the two methods.

2 Internal to the ROM: The load can cither be constant or a function of a global
reduced model input. In this case, the load is stored as part of the ROM.

Be careful not to mix up the two alternatives; doing so can lead to double load
contributions. For this reason, option 1 is usually reccommended. When the Configure
CMS study (~d4 ) button is used, all load type features are disabled in the study steps of
the CMS study.

¥ Physics and Variables Selection ]

Medify model configuration for study step

I fam Linear Elastic Material 1

5= Freel

EB Initial Values 1

mw Fixed Constraint 1
s Attachment 1

mw Attachment 2

Os Fixed Joint 1

mw Attachment 3

m Attachment 4

Os Fixed Joint 2

mw Attachment 5

» Boundary Load 1

Boundary Load 2

4 &5 Reduced Flexible Components 1
|&= Component Definition 1
|&= Compenent Definition 2

Figure 2-22: Loads are, by default, disabled in the model reduction study.

The advantage of option 2 is that it can be computationally cheaper in the global
analysis, since any evaluation of weak equations in domains of the reduced component
is avoided. To use this approach, enable the relevant load features in the reference
study step to the Model Reduction study step in the CMS study. The same load features
should then be disabled in all other studies. By selecting Include load contributions in

Reduced Components in the Reduced Flexible Components node, you can change the
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default behavior of loads when the Configure CMS study (~& ) button is used. When
selected, all loads are enabled in the study steps of the generated CMS study.

You can find an example of both approaches for load application in this
tutorial model:

o Component Mode Synthesis Tutorial: Application Library path

Structural_Mechanics_Module/Tutorials/cms_tutorial

Il

o Component Mode Synthesis Tutorial: Application Library path

Multibody_Dynamics_Module/Tutorials/cms_tutorial

o Component Mode Synthesis Tutorial: Application Library path
MEMS_Module/Dynamics_and_Vibration/cms_tutorial

While conceptually similar to other load features, Linearly Accelerated Frame, Rotating
Frame, Gravity, and Base Excitation are always considered as internal to the ROM and
part of the reduced component. They are, by default, enabled in the CMS Study when
using the Configure CMS study (~c ) button. The reason is that they are considered to
contribute to the acceleration of the frame. If necessary, use control inputs to

parameterize, for example, the gravity vector or rotation speed.

THE CMS STUDY

The CMS study is a parametric sweep over a set of components as defined by the
Component Definition subnodes of a Reduced Flexible Components node with the aim to
create one ROM for each component. The study is automatically generated by using
the Configure CMS Study () button in a Reduced Flexible Components node. The
auto-generated study and solver sequences have a number of built-in features and
settings that greatly simplifies the process of creating a reduced component; especially
when there are multiple components to be reduced. The study sequence is shown in

Figure 2-23 and consists of:

* A Parametric sweep over the components to be reduced

* A Stationary training study step to compute the constraint modes from the static
load cases

* An Eigenfrequency training study step to compute the constrained eigenmodes

* A Model Reduction study step to generate the ROM. This step can either use a Time

Dependent or Frequency Domain study step as a reference.
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4 oo CMS Study {std_rfc_solid}

Parametric Sweep {param_rfcl_solid}
Step 1: Stationary {stat_rfc_solid}
Step 2: Eigenfrequency {eig_rfcl_solid}

= Step 3: Model Reduction {mr_rfcl_solid}

Frequency Domain {freq_rfc id}
|L—' Time Dependent {time_rfc_solid}

Figure 2-23: The automatically generated CMS study.

If the global model is to be used in a frequency domain analysis, use a
Frequency Domain study step as a reference during model reduction. If not,

n use a Time Dependent study step. Both steps are added by the Configure CMS
study (o) action, and can be enabled or disabled depending on the use
case. By default, the Time Dependent study step is enabled.

Key to the CMS study is that all study steps are solved on a subset of the total model;
the selection of the component. This is controlled in the Compile Equations nodes of
the solver sequence. When using an auto-generated CMS study, the selections used are

automatically updated during the sweep over components.

Running a CMS study creates a number of datasets in the Results branch as well as

subnodes to the Reduced-Order Modeling node under Global Definitions.

¢ The Reduced Model Data datascts contains the solution that is used to create a ROM,
including the constraint modes and eigenmodes. It also contains the matrices of the

ROM, which can be inspected by using the System Matrix derived values node.

* Depending on the chosen reference study step during model reduction, Frequency
Domain, Modal Reduced-Order Model or Time Dependent, Modal Reduced-Order Model
nodes are created under Global Definitions. When created from a CMS Study, these
are always created with a default label Reduced Component and names that are related
to the generating study and physics. Moreover, the CMS study generates ROMs
with a stateful interface, which is a requirement for it to connect to other parts of
the model. You can use Model Control Inputs and other settings in the generated

ROMs to modify their behavior when used in a global analysis.

Once the ROMs have been created, you can in principle delete the CMS
study to clean up the model tree. In fact, you only need to keep the
g Reduced Flexible Components node and the generated ROMs under Global

Definitions.
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Neither the names, nor the order of the list of ROMs in the Reduced-Order
Modeling node under Global Definitions should be changed, as this will
break the connection between the ROMs, the physics, and the reduced
component. The automatic naming convention has the structure <rom>

n _n_<feat>_<phys>_<i> where <rom> is a generic tag for the generating
ROM, <feat> is the tag of the Reduced Flexible Components node that
generated the CMS study, <phys> is the physics tag, and <i>is a number.
For example, the ROM of the first component in a Solid Mechanics
interface is typically named rom1_n_rfc1_solid_1.

SETTING UP THE GLOBAL MODEL

Using ROMs created from a Reduced Flexible Components node and a CMS Study in a
global model, in general, requires no further steps to be taken. The only requirement
is that the states of the ROMs are solved together with the other dependent variables
of the model. By default, the Solve for status of these ROMs are synchronized with the
Solve for status of the generating physics in non-CMS studies, which takes care of this

requirement.

If all the domains of the physics interface are reduced, it is possible to turn
off the synchronization of the Selve for status, since in such cases it is only
necessary to solve for the states of the ROMs. By not solving for the
dependent variables of the physics, it is made sure that no double
contributions are added by, for example, load features. Clear the
Synchronize ‘Solve for’ study setting for Reduced Components check box in

the Reduced Flexible Components node to make this possible.

One way to add more control over the behavior of a ROM is to add control inputs in
Global Reduced Model Inputs under Global Definitions. These should be added to the
model before solving the CMS study, and can be used in expressions in relevant physics

nodes. After running the CMS study, you can modify the input expression for each
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added control input, either globally or individually in each of the generated Reduced

Component nodes.

If you include a load in a reduced component, and enter a value or a

parameter for its amplitude, then that load will have a constant value when
the component is reused. If you want to be able to, for example, make that
load time dependent, or to switch it off, then you define it using a control

input.

For a more detailed discussion on how to work with ROM control inputs
& and their limitations, see Reduced-Order Model Inputs in the COMSOL
Multiphysics Reference Manual.

CHAPTER 2:

IMPORTANT CONSIDERATIONS
A number of important considerations to be aware of when working with CMS and

reduced components are listed below:

* Do not modify the content of automatically generated nodes in the model tree, such

as the CMS Parameters node, and the CMS Component sclection.

* Only zero-valued constraints can be applied to a reduced component. While it is
fundamentally possible to apply constraints on a reduced component in a global
analysis, the correct way is to apply them when generating the ROMs in a CMS
study so that such constraints can be accounted for while computing constraint
modes and eigenmodes. Later, constraints can be removed in all other studies. This
is handled automatically for most such features including for example:

- Fixed Constraint

- Prescribed Displacement

- Roller

- Symmetry

No constraint equations are added for these features on selections that intersect that
of a Reduced Flexible Components node. For the Prescribed Displacement node and

similar features, any non-zero values set for the constraint are, moreover, ignored in
the CMS study.

* Attachment nodes can be used without a connection to other parts of the model to
define additional static modes of the reduced component. Note that attachments by

default induce a rigid boundary on its selection.
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* Added Mass, Spring Foundation, and Thin Elastic Layer are special features that add
either mass or stiffness to the reduced component, and can therefore be considered
as part of its basic properties. By default, these are enabled in the CMS Study when
using the Configure CMS study (- ) button. No mass nor stiffness is added in a
global study on selections intersecting with that of a Reduced Flexible Components
node.

* When working with CMS, the following subnodes to Linear Elastic Material and

Section Stiffness arc supported when creating reduced components:

- Thermal Expansion

- Hygroscopic Swelling

- Initial Stress and Strain

- External Stress

- External Strain

- Damping

- Fiber

All other subnodes are, by default, disabled in the CMS Study when using the
Configure CMS study () button. Some options in the supported features may,

however, not be supported. For example, the External material option in External
Strain is not supported with CMS.

* In the Damping subnode to Linear Elastic Material or Section Stiffness, the following
Damping types are supported:

- Isotropic loss factor

- Anisotropic loss factor

- Loss factor

- Rayleigh damping

- Viscous damping

- Wave attenuation

When using the Configure CMS study (~c% ) button, the Damping subnode is disabled
in the training steps to avoid complex eigenpairs, but active in the reference step to

the model reduction. Any contributions are removed on selections that intersects

with that of a Reduced Flexible Components node in a global study.

* Damping can also be added to reduced components by Spring Foundation, Thin
Elastic Layer, and Low-Reflecting Boundary nodes. For these features, damping

contributions are only added on selections intersecting with that of a Reduced
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Flexible Components node in the reference step to the model reduction. No
contributions are added in the training steps for such selections to avoid complex
eigenpairs.

Reduced components are by definition linear. Do not use any features that are
nonlinear such as Creep, Damage, or Plasticity on the same selection as a Reduced
Flexible Components node. Also, make sure not to induce nonlinearity by user
defined expressions in features that are to be reduced. This also applies to boundary,
edge, and point features adjacent to the domains selected in a Reduced Flexible

Components node.

It is not possible to compute dissipated energy due to for example damping on
selections that intersect that of a a Reduced Flexible Components node. The Calculate
dissipated energy sctting is ignored for such selections.

Certain features that add weak contributions on domain, boundary, edge, or point
level should be used with care if their selections intersect that of a Reduced Flexible
Components node. To get consistent results and avoid double contributions, it may
be necessary to manually disable some features in the model tree of the training
study step of a generated CMS study, or in the global study that uses a ROM.
Examples of such features, other than loads, include Weak Contribution. By default,
these are disabled in the CMS Study when using the Configure CMS study (- ) button.

Most features that add global dependent variables are not applicable together with
reduced components. The reason is that it is difficult to automatically determine to
which part of the model such variables belong. Hence, do not use features such as
Average Rotation, Rigid Body Contact, Rigid Connector, Prescribed Velocity, or Point

Load, Free when setting up reduced components. By default, all such features are

disabled in the CMS Study when using the Configure CMS study (- ) button. The only
exception is the Attachment feature which is specially designed to work with reduced

components.

Features and functionality that add dependent variables which are expected to have
a significantly different order of magnitude compared to the displacements should
be used with caution when creating reduced components. The reason is that such

DOFs can corrupt the scaling of the eigenvectors used to train the ROM during
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model reduction, which in the end will result in a inaccurate ROM. Examples of

functionality that may cause this are:

- The Pressure mixed formulation in Linear Elastic Material
- The Flexible connection type in Attachment nodes

- The Lagrange multipliers added by weak constraints

If such functionality must be used, you can try to manually adjust the scaling of the
eigenvectors by changing the Maximum absolute value in the Eigenvalue Solver of the

CMS Study. Another alternative is the try setting Scaling of eigenvectors to Mass Matrix.

e Translating or rotating a ROM is not supported. Hence you cannot use a single

ROM to represent multiple reduced components.

e Import of ROMs created in another COMSOL Multiphysics model or any external

software is not supported for reduced components.
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Computing Mass Properties

In structural mechanics analysis, especially when modeling dynamic problems, the
mass properties of a structure or its part can be an important aspect of the design. To
compute such mass properties, you can use Mass Properties node, which can be added
under Component>Definitions>Physics Utilities. There, you can select the geometry
domains to be included into the computations and select physics interfaces that will
define the mass properties. You can add and configure several mass property

contributions if needed.

~ ¥ Settings M
Bl &~ Mass Properties
Label:  Mass Properties 1 =
4 @ Component 1 {comp1) Name:  mass]
4 = Definitions
#h Mass Properties 1 (mass1) Source Selection
‘ii Participation Factors 1 {mpf1) _ _ -
[% Boundary Systern 1 (sys1) Geometric entity level: Domain =
; View 1 Selection: All domains -
Geormetry 1 —
T) Block 1 (bik1) ‘ 1 &
Block 2 (bk2) 2 B —
Block 3 (bik3) 3 o B
Form Union (fin) &
2 Materials
[ @ Solid Mechanics (solid)
A Mesh 1
[~ Study 1 ¥ Density
b I8 Results
Density source: User defined =
Density expression: 1 kg/m®

Density input frame: Material (X, Y, Z) -
¥ Variables

Frame: Material (X, Y, Z) b
Create volume variable

Create mass variable

Create center of mass variables

Create moment of inertia variables

Create principal moment of inertia variables

Integration Settings
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Volume, mass, center of mass, and moments of inertia will be computed. They will

become available as predefined variables, which you find in the Equation View node’s

settings window under the corresponding Mass Properties node.

¥ Variables

" MName
mass].volume
mass1.mass
mass1.CMX
mass1.CMY
mass1.CMZ
mass1.IXX
mass1.IXY
mass1.IYX
mass1.IXZ
mass1.IZX
mass1.IYY
mass1.IYZ
mass1.IZY
mass1.IZZ

Expression

mass1.intDim3(root....
mass1intDim0{mas...
if{mass1.mass=>0,(m...
if{mass1.mass=>0,(m...
if{mass1.mass=>0,(m...
mass1intDim0{mas...
mass1LintDim0{-ma...

mass1.IXY

mass1LintDim0{-ma...

mass1.IXZ

mass1intDim0{mas...
mass1LintDim0{-ma...

mass1.IYZ

mass1intDim0{mas...

Unit

kgom®
kgom®
kgom®
kgom®
kgom®
kgom®
kgom®
kgom®
kgom®

Description

Volume

Mass

Center of mass, X component
Center of mass, ¥ component
Center of mass, Z component
Moment of inertia XX component
Moment of inertia XY component
Moment of inertia YX component
Moment of inertia XZ component
Moment of inertia ZX component
Moment of inertia YY component
Moment of inertia YZ component
Moment of inertia ZY component
Moment of inertia ZZ component

Besides for postprocessing purposes, you can also use these variables in any

user-defined expressions, user inputs, and in optimization criteria.

Structural mechanics interfaces contribute to the mass properties in several ways:

* All material models, including Rigid Material, define mass density contributions.

* Added Mass nodes for all geometric entity levels can also contribute with added mass

density. It is possible to suppress the contribution from an Added Mass node by using

the Exclude contribution check box in the Frame Acceleration Forces section.

* Point Mass nodes contribute both with mass and with the specified mass moment of

inertia. It is possible to suppress the contribution from a Peint Mass node by using

the Exclude contribution check box in the Frame Acceleration Forces section.

* The Hygroscopic Swelling nodes, which can be added to most material models for all

structural ClcantS, can use the moisture content as an extra mass dCIlSity

contribution.
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* Rigid Material and Rigid Connector can contribute directly to the total mass properties

via their Mass and Moment of Inertia subnodes.

Model Builder ~* | Settings _—
- =&~ i Mass and Moment of Inertia
4 & Untitled.mph (root) .
b % Global Definitions Label: Mass and Moment of Inertia 1 =
4 Compenent 1 {comp 1 .
= d (compl) Equation

4 = Definitions
4 fh Mass Properties 1 (mass1) ¥ Coordinate System Selection
i+ Mass Contributions 1

‘ii Participation Factors 1 {mpf1) Eoordinatelystent

[ Boundary System 1 {sys1) Global coordinate system =
b [ View 1
Geometry 1 ¥ Center of Mass
e Materials
4 £ Sglid Mechanics (solid) Center of rotation v
= Linear Elastic Material 1 [] Offset
5= Freel
L= |nitial Values 1 * Mass and Moment of Inertia
4 | Rigid FJ.omain‘I Mass:
Z55 Initial Values 1
£ Mass and Moment of Inertia 1 124 kg
A5 Mesh 1 Moment of inertia:
bnd Study 1 1 0028 kg-m®

b I8 Results
Isotropic =
* Structural elements like beams and shells take their true geometrical dimensions into
account when contributing to the mass properties. As an example, a beam
contributes to the rotational inertia around its axis, even though the geometrical
model is only an edge. The beam cross-section properties are used to compute the
data.

The mass properties can be computed on both initial geometry (material frame) and
deformed geometry (spatial frame). The results may differ considerably in case of large
deformations. To compute the results in the undeformed geometry, you do not have
to perform the whole analysis; it is sufficient to choose Get Initial Values under the Study
node. To obtain the mass properties in the deformed configuration, you need to the

full analysis, so that the displacement results are available.

In the COMSOL Multiphysics Reference Manual:

e Mass Properties

@

¢ Studies and Solvers

¢ Derived Values, Evaluation Groups, and Tables
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Effective Properties of Periodic
Structures

Sometimes you need to model on different scales. The heterogeneous properties of a
material in the microscopic scale are often unfeasible to use directly on a macroscopic
scale, in which a structure is typically analyzed. In such a case, you typically want to use

a homogeneous material model with appropriately averaged properties.

The Cell Periodicity feature facilitates the evaluation of such average properties. It is
based on the idea of a representative volume element (RVE). The RVE is a domain

that is representative for the material on a microscopic scale.

If the material is truly periodic, an RVE is typically identified as the smallest possible
unit cell. If the material has a random distribution of, for example, porosities, the RVE
should be large enough to be representative for the average properties of the material

on a macroscopic scale.

The only requirement on the shape of the RVE is that it should be possible to fill space
with a repetitive pattern of RVEs. This means that there are a set of matching boundary

pairs, each pair having the same geometry, but offset by a given distance.

RVE Modeling Using the Cell Periodicity Node

To model an RVE, you add the domain feature Cell Periodicity, and select the domains
representing the RVE. For each pair of matching boundaries, add a Boundary Pair

subnode, and select the boundaries.

In principle, there is no limitation on the physics features you can use for modeling the
RVE, as long as the basic assumptions about periodicity are not violated. You should,
however, not add any displacement constraints because the possible rigid-body

motions are automatically constrained by the Cell Periodicity node.

MESHING

The accuracy of the analysis is significantly better if each pair of matching boundaries
has the same mesh. Mesh the boundaries before the domains, and use Copy Face to
ensure that the boundary meshes match.

If you decide to use a nonmatching mesh, then the stress disturbances can be reduced

by using a weak form of the periodicity constraints.
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HOMOGENIZED MATERIAL PROPERTIES

Two different types of material properties can be automatically evaluated using the Cell
Periodicity node. With the Free Expansion periodic condition, you can calculate the
homogenized material properties related to the free expansion of the RVE when
exposed to a variation in temperature or moisture concentration — that is, the
averaged coeflicient of thermal expansion and the averaged coefficient of hygroscopic
swelling. To set up an analysis for the evaluation of thermal properties, add a Thermal
Expansion subnode to each material model used in the RVE, and apply a unit rise in
temperature. Similarly, for hygroscopic properties, add Hygroscopic Swelling subnodes
and apply a unit rise in concentration. Without adding these subnodes to the material
models of the RVE, no expansion is applied to the unit cell, and consequently the
results will be zero. Results will also be zero if no variation in temperature or
concentration is applied. If requested, the computed material properties are by default

presented in a separate evaluation group under Results.

With the Average strain and Average stress periodic conditions, you can calculate the
homogenized elastic properties of the RVE. Use the average strain condition to
compute the elasticity matrix, or the average stress to compute the compliance matrix.
In order to compute these properties, the deformation of the RVE needs to be
evaluated for a number of fundamental load cases. These correspond to the
perturbations of the unit cell with each component of the average strain or stress
tensor, while keeping the other components equal to zero. Setting up this analysis can
be automated with the Create Load Groups and Study option under the Study and
Material Generation button. It creates a load group for each tensor component,
populates the average strain or stress tensor, and creates a study with a load case for
each created load group. If the calculation of an average material property is requested,
the computed values are by default presented in a separate evaluation group under
Results. If no material property evaluation is requested, or if it is not available, the
results can be used to study the response of the RVE to the applied load cases.

You can also create a global material using the Create Material option under the Study
and Material Generation button for the Average strain or Average stress periodic
conditions. This option creates a material that contains the homogenized elasticity or
compliance matrix, which can be accessed by other components in the model. Note
that if you want to use the computed material properties in another model or store
them to a user-defined material library, you should use the Create Material by Value
option. For the Create Material by Reference option, the automatically generated global

material contains variables linked to the Cell Periodicity node in the current model.
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Micromechanical Model of o Fiber Composite: Application Library path
Structural_Mechanics_Module/Material_Models/

micromechanical_model_of_a_fiber_composite
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Modeling Pretensioned Bolts

The information about pretensioned bolts is applicable if your license

includes the Structural Mechanics Module.

CHAPTER 2:

Bolted joints are common in mechanical and civil engineering structures. If you are
interested in analyzing the details of a bolted joint, the prestress in the bolt must be
taken into account in order to correctly capture the behavior under service loads. The
Bolt Pretension functionality in COMSOL Multiphysics is designed to simplify such
analyses. You can model the bolts either using solid or beam elements.

During mounting, a bolt is tightened to a certain prestress. The mounting of the bolt
is, in general, accompanied by deformations of the surrounding structure. In the

subsequent service, the force in the bolt can then change due to external loads.

Sometimes the sequence in which the bolts are tightened is important. This will be the
case if significant nonlinearities are induced by the tightening process. Modeling such
a process is also fairly straightforward. This is, however, a less common case which adds

some extra complexity to the modeling, so it will be discussed separately below.

MODELING THE BOLTS

You must use a specific modeling technique in order to use a bolt in a prestress analysis.

Using Solid Elements

I You can model bolts using solid elements in 3D or 2D axial symmetry. In 3D, it is
usually most efficient to add the predefined bolt geometries from the Part Libraries.
In 2D axial symmetry, the bolt is always assumed to be axially symmetric, and thus
having the Z-axis as its center of rotation.

2 Make sure that there is at least one interior boundary perpendicular to the bolt axis
somewhere in the shank. In the following, this boundary is referred to as the s/it
boundary (Figure 2-24). The slit boundary can be composed of several adjacent
boundaries in the geometry.

3 Ifyou are using bolts from the Part Libraries, a slit boundary is predefined, and has
the selection name Pretension cut. In order to make this boundary selection
visible from the physics interface, select its Keep check box in the Boundary Selections

section of the settings for the part instance (Figure 2-25).

4 If needed, add contact conditions between the bolt head and the component and

between different components clamped by the bolt. In many cases, it is sufficient
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and more efficient to use a continuity condition between the bolt head and the
component.

5 Add a Bolt Pretension node, in which the pretension force or stress is prescribed for
a set of bolts sharing the same data.

6 For cach bolt having the same essential data, add a Bolt Selection subnode where its
slit boundary is selected.

7 The label of the bolt, which is an input in the Bolt Label section, is used to identify
the bolts during result evaluation. A suggestion for the name is automatically
generated, based on the base name given in the parent node.

When a bolt is located in a symmetry plane (so that only half the bolt is
modeled), and Automatic symmetry detection is sclected in the Bolt
Selection node, the given pretension force is interpreted as the force in the
whole bolt, and not as the force in the half-present bolt. This makes it
possible to use the same Bolt Pretension node for a set of similar bolts

[,

where some of them are located in symmetry planes.

Bolt head

Figure 2-24: Example of a bolted joint with the bolt modeled as a solid.
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Figure 2-25: Getting access to the siit boundary selection for a bolt from the Part Libraries.
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I When modeling with beam elements, you will typically use a Polygon with three
points to model each bolt (Figure 2-26).

2 There must be at least one interior point somewhere in the shank. In the following,
this point will, in analogy with the solid, be referred to as the slit boundary.
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3 Since there is no explicit bolt head when you model a bolt using beams, you need
to connect it to the solid component using some type of abstract coupling. There
are several options:

- You can connect the end of the beam to the edge of the bolt hole (the lower end
in Figure 2-26). Then, use the Solid-Beam Connection multiphysics coupling,
with Connection type sct to Solid Edges to Beam Points. In this case, you select the
edge of the bolt hole.

- You can create a circular boundary having the diameter of the bolt head on the
surface of the component (the upper end in Figure 2-26). Then, use the
Solid-Beam Connection multiphysics coupling, with Connection type sct to Solid

Boundaries to Beam Points. In this case, you select the annular solid boundary.

- Even without creating an extra boundary, you can use the Solid-Beam
Connection multiphysics coupling, with Connection type sct to Solid Boundaries to
Beam Points, general. Then set Connected region to Distance (manual) and enter half
the head diameter as Connection radius. In this case, you select the entire
boundary on which the bolt head is residing. This method is convenient, but will
often give more spurious stresses around the bolt hole, since partial element faces
will be connected.

- You can use the two first approaches, but rather than using a multiphysics
coupling for the connection, you can add rigid connectors in both physics
interfaces, and then connect them. This approach is more expensive, since it adds
degrees of freedom in both the rigid connectors, plus the constraints to couple
them. It is however an approach that may be suitable for imported meshes, where

connection data in this form is available.
All these techniques are shown in the Application Libraries example Modeling of
Pretensioned Bolts.

4 Add a Bolt Pretension node, in which the pretension force or stress is prescribed for
a set of bolts with the same data.

5 For each bolt having the same essential data, add a Bolt Selection subnode where its
slit boundary is selected.
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6 The label of the bolt, which is an input in the Bolt Label section, is used to identify
the bolts during result evaluation. A suggestion for the name is automatically

generated, based on the base name given in the parent node.

Settings v
Polygen
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Label: Polygon: Bolt 2 Beam =]
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L
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=

Figure 2-26: A bolt modeled using the Beam interface.

THE PREDEFORMATION DEGREE OF FREEDOM

Each bolt defined in the Bolt Selection node has a single global degree of freedom called
predeformation, d. At the slit boundary, the two sides of the bolt are disconnected so
that the displacements over it can be discontinuous. The discontinuity is represented
by:

u, = ug-(d-rn

Here the subscript u denotes the upside of the slit boundary, and d denotes the
downside. n is the normal pointing out from the downside. The sign has been selected
so that d gets a positive value when the bolt force is tensile. An optional relaxation r

can also be included.

The axial force in the bolt is thus caused by a small overlap between the two sides of
the slit boundary. It is computed as the reaction force belonging to the degree of

freedom d.

STRUCTURAL MECHANICS MODELING



It is only meaningful to introduce the relaxation in a later study step. If it is present all
the time, then its only effect would be to increase the predeformation during the
pretension analysis by r. Thus, the value of r is usually a function of the load history,

which is initially zero.

SETTING UP THE STUDY STEPS

In an analysis of prestressed bolts, you have to use two or more separate study steps.
They can be part of a single study or be placed in different studies. The first study step,
in which the bolt prestress is prescribed, simulates the mounting process. If you would
only use a force to load the bolt (for example, as an initial stress), the resulting stress
in the bolt would be less than the intended, due to the compression of the material
around the bolt. The prestress step ensures that the bolts have the intended prestress,

irrespective of the flexibility of the surrounding structure and their interaction.

In the subsequent studies, the bolt force is allowed to change, while keeping the
extension of the bolt, as caused by the first study, fixed. The procedure to do this is as
follows:

I Run the study step for the mounting simulation. The predefined study type Bolt
Pretension is designed for this. You may need to apply the pretension load in smaller
steps, if there are nonlinearities in the system. Then, you select Auxiliary sweep in the
Study Extensions scction in the settings for the Bolt Pretension study step. Introduce

a load ramping parameter, which is used to multiply the pretension forces.
2 Add one or more studies or study steps to analyze the effects of the service loads.

3 Since the pretension degrees of freedom are not solved for in the service load study
steps, they must obtain their values from the pretension study step. If the study steps
are sequential within the same study, no special action is needed, since the default
then is to inherit values from the previous study step. For other cases, go to the
Values of Dependent Variables scction of the study step, set Values of variables not

solved for to User controlled, and then select the pretension study step.

SEQUENTIAL TIGHTENING
If you need to take the order of the bolt tightening into account, then you must use
an auxiliary sweep where the sweep parameter is used to control the tightening history.

You need to perform the following steps:

I In each Bolt Selection node representing a bolt that is not fully pretensioned from

the beginning of the study step, select the Sequential tightening check box.
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2 A new text field, Pretensioning expression, is now shown. In this text field, you enter
a Boolean expression, which evaluates to a nonzero value at the parameter values
when the prestress is applied. It may happen more than once, if the bolt is not given
its full pretension force at once. An example of such an expression is
round(par)==3 || round(par)==11.

3 If you want the bolt prestress (when applied) to have a value that differs from the
value given in the parent Bolt Pretension node, change the setting of Pretension type
from From parent to another option. Extending the example above, the expression
for the pretension force could be 50[kN]*if (par>3.5, 1, 0.6). The only thing
that matters here is the value of the force at the parameter values when the

pretension force is set, in this example 3 and 11.

A sequential tightening precess may have a quite slow convergence rate until a certain
number of bolts have been loaded. The reason is that it is common that two mating

boundaries barely touch, so that many contact iterations are needed. It is advisable to
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start by giving all bolts a small prestress, maybe 1% of the final value, in order to
stabilize the model.

It is important to make sure that you only solve for the bolt
predeformation degrees of freedom in the pretension study step, and not

when analyzing the service loads.

If you use the Bolt Pretension study type for the pretension study step, and
any other study type to analyze the service loads, the solvers are
automatically set up to handle this. The Bolt Pretension study type is
actually a special case of a Stationary study step, with the sole purpose of
activating the predeformation degrees of freedom. These degrees of

freedom are by default not solved for in any other study type.

If you, however, set up your studies manually, the information below is
useful. Also, in versions prior to 5.3, this automatic mechanism was not

n available, so in older models the studies were always set up manually.

You enable or disable the solution of individual degrees of freedom under
the Dependent Variables node for a certain study step in the solver
sequence. If required, begin by clicking Show Default Solver in the study
node or in the Solver Configurations node of the study. Then move to the
Dependent Variables node, and in the General section, sct Defined by study

step to User defined.

You can now go to the node for each predeformation degree of freedom
below Dependent Variables and adjust the state of the Solve for this state
check box.

For more information, see also Dependent Variables and Studies and
Solvers in the COMSOL Multiphysics Reference Manual.

RESULTS

The results in a bolt do not belong to any part of the geometry, but are global
variables. To access the result from a certain bolt, a full scope of the type <interface>
.<Bolt Pretension tag>.<Bolt Selection tag>.<variable> must be used. An
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example could be solid.pblt1.sblt1.F_bolt. The bolt results are summarized in
the table below.

TABLE 2-15: BOLT VARIABLES

VARIABLE DESCRIPTION

d pre Predeformation

F_bolt Axial force in the bolt

F_shear Shear force in the bolt (3D only)

If you place a bolt in a symmetry plane, that only half of the bolt is modeled, this will
automatically be detected. The results are reported for the whole bolt, not for the
symmetric half.

When there are pretensioned bolts in a study, evaluation groups containing the bolt
forces will automatically be generated.

@1 Studies and Solvers in the COMSOL Multiphysics Reference Manual

* Modeling of Pretensioned Bolts: Application Library path

Structural_Mechanics_Module/Tutorials/bolt_pretension_tutorial

[

e Prestressed Bolts in o Tube Connection: Application Library path

Structural_Mechanics_Module/Contact_and_Friction/tube_connection
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Simplified Modeling of Bolt Threads

When an internal and an external thread are engaging, there will be a complex local
stress state. When analyzing such geometries, you can approach the problem at three

levels:

e Make a full 3D model of the actual thread geometry and solve the contact problem.
This approach is only used in some rare cases, since such a model by necessity
becomes very large. Also, the actual stress state in the thread itself is seldom the

target of an analysis.

* Ignore the thread completely and just connect the two parts by a union operation
or through a Continuity pair. This approach will provide an accurate solution outside

a region with a size of a couple of bolt diameters from the bolt hole.

* Use the simplified Bolt Thread Contact condition. With this approach, the stresses
will be correct, except at distances where stress concentrations caused by the actual
thread geometry are significant. The important part of the solution that can be
captured by this simplified contact condition is that the contact pressure between
the threads will push the walls of the bolt hole outward. This will cause significant

tensile hoop stresses around the bolt hole.

When you use Bolt Thread Contact, you model the face of both the bolt and the bolt
hole as cylinders. The actual geometry of the thread is taken care of by the
mathematical formulation of the contact condition. The most important parameter is

the thread angle, since it determines the direction of the contact forces.

For each individual bolt, you need to add one Bolt Thread Contact node.

PENALTY FACTOR

The contact condition is enforced using a penalty formulation. In practice, this means
that a stiff spring is inserted between the two boundaries. In most contact problems,
you want to use a high penalty factor, in order to avoid excessive overclosure of the
contacting boundaries. In this case, however, there is a certain flexibility which has its
source in a slight bending of the threads in real life. This effect can to some extent be
accounted for by allowing a certain flexibility in the contact condition. For this reason,
the default penalty factor is rather low. You may need to adjust it to suit your

conditions.

A higher penalty factor also means that the force is transferred from the external thread

to the internal thread over a shorter distance along the bolt axis.
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CONTACT ORIENTATION

In most cases, you know a priori which side of the thread that will be in contact. You
can reduce the size of the contact problem by a factor of two by selecting an
appropriate value for the Contact orientation. The default is to search in both
directions.

Ifa bolt is pretensioned, the contact orientation will be Up if the bolt orientation is such
that the Orientation vector points toward the bolt head. If the bolt geometry, including
orientation, is computed using the Automatic option, you will often have to use the

Direction adjustment option to have full control over the up and down directions.

MODELING HINTS
* You must create one Contact Pair for cach bolt and mating bolt hole. The bolt

should be the destination side of the contact pair.

* In the Part Libraries, you will find predefined parameterized bolt geometries that

also contain a domain intended to be used as drill for the bolt hole.

* The cylindrical surfaces of the bolt and bolt hole should have the same diameter. If
you want to decrease the stiffness of the bolt because it is not solid all the way out
to the nominal diameter, a good suggestion is to decrease Young’s modulus by a

factor based on the stress area of the bolt.

* Since the contacting boundaries are cylindrical, there is a risk that the bolt, instead
of computing the gap to the nearest point on the bolt hole, will instead see a point
on the opposite side. A good practice is to select Manual from the Search distance list
in the settings for the Contact Pair. Half the diameter of the bolt is an appropriate
search distance.

* Since the relative displacements between the bolt and the hole are small, setting
Mapping method to Initial Configuration in the scttings for the Contact Pair can

improve efficiency.

¢ In the initial state, the two objects being joined may possess rigid body modes, just
like in any other contact problem. If so, you can for example add weak springs to

maintain stability.
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Modeling Embedded Structures and
Reinforcements

Lower dimension structural elements such as trusses, beams, and membranes can be

embedded into a solid domain by adding an Embedded Reinforcement multiphysics

coupling. This modeling technique is intended for efficient modeling of thin structures
in solids, where it is unfeasible or not necessary to resolve the geometry of the thin

structure. Some typical use cases include:

¢ Reinforcement bars in concrete structures
¢ Diles or sheets in soil
* Fibers in composite materials

* Embedded sensors in a structure. Embedding sensors can either be used to model
a real sensor, or as a modeling technique to extract, for example strain in some

predefined location and direction in a solid domain.

The connection between the embedded structure and the solid can be set up using
different techniques; either a rigid connection by adding constraints between the
points in the respective interface, or by adding springs. When a spring type connection
is used, the connection can be linear or nonlinear. Using a nonlinear connection can
be important when modeling reinforcement in structures, especially when predicting

failure and postfailure behavior.

The multiphysics coupling is intended for situations where the volume of the
embedded structure is small compared to the solid domain. Hence, no compensation
is made for the mass of the small structure. If a detailed model of the connection and
composite structure is required, the geometry should include the interface between

the embedded structure and the solid. The connection should then be modeled using
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some other coupling technique as discussed in Coupling Different Element Types, or

using Contact Modeling.

When the Embedded structure is a Beam interface and a Rigid connection
type is used, the displacements are only constrained to the solid domain
at the mesh nodes of the beam elements. This means that higher-order
:E variations of the displacement field between mesh nodes is allowed. The
Spring connection will, however, constrain also the higher-order variations

of the displacement field.

The functionality provided by the Embedded Reinforcement multiphysics
coupling to some extent overlaps with other couplings available to
different structural mechanics interfaces. For example, both the Embedded
Reinforcement and the Solid-Thin Structure Connection can be used to
attach a membrane as a cladding on a solid domain. An important
n difference is, however, that the Solid-Thin Structure Connection will add

constraints on the solid domain, while the Embedded Reinforcement will
add constraints on the membrane. Depending on the mesh, the results

may differ significantly.

The same difference applies when comparing the Embedded Reinforcement

to a Solid-Beam Connection on shared edges.

CHAPTER 2:

GEOMETRY AND MESHING

When modeling embedded structures, it is sometimes easier to form the geometries of
the coupled interfaces from an assembly. In the finalization step of the geometry
sequence, you should select Form an assembly in the Action list. This will also put less
restrictions on the mesh of the respective geometry. If Form Union is selected in the
Action list, the same mesh will be shared by both interfaces; which has to respect and

resolve the geometry of the embedded structure.

While there is no strict restriction on the mesh size when modeling embedded
structures in an assembly; a good practice is that the mesh used for the two coupled
interfaces is of approximately the same size, or that the mesh of the embedded
structure is slightly finer. Use the same shape order in both interfaces when modeling
embedded structures that share the geometry and mesh with the solid domain, that is,

when Form Union is selected in the Action list.
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In some situations, the connection can be sensitive to mesh elements of the embedded
structure that are partially within the solid domain. This is especially sensitive for the
penalty connection, where the weak equations are evaluated at the integration points
of the embedded mesh element. A slight shift in the mesh can cause an integration

point to either be inside or outside the solid domain.

PENALTY FACTORS

When using the spring type connection, the accuracy of the connection is controlled
by the spring stiffness matrix. The components of this matrix are most naturally
represented in the local coordinate system of the embedded structure, for which only
the diagonal components are of interest. Mathematically, the spring stiffness can be
viewed as penalty factors that must be sufficiently high to accurately enforce the
regularized constraint, but if they are too high the overall stiffness matrix will be
ill-conditioned. This means that in most cases, the spring stiffness in only a numerical
parameter. However, there can be situations where the interface between the
embedded structure and the solid domain has a measurable stiffness, for example, if
the connection is used to idealize an interface with a finite, but small, thickness such

as a glue layer. In such cases the spring stiffness will have a real physical interpretation.

The default expression for the spring stiffness of the connection is derived from the
stiffness and cross-sectional properties of the mesh element of the embedded structure.
The available spring connection types and the corresponding default expressions for
the spring stiffness are summarized in Table 2-16. All spring stiffness components have

the same default expressions.

TABLE 2-16: DEFAULT EXPRESSION FOR SPRING STIFFNESS.

CONNECTION SPRING CONSTANT PER UNIT LENGTH SPRING CONSTANT PER UNIT
TYPE SURFACE AREA
Truss 1e3*truss.Eequ* 1e3*truss.Eequ*
truss.area/h"2 truss.perimeter/h~2
Beam 1e3*beam.Eequ*beam.area/h"2 N/A
Membrane N/A 1e5*mbrn.Eequ*
mbrn.d/h"2

LOCAL ORIENTATIONS

Many quantities used by the connection, such as the spring stiftness and constitutive
models, are most naturally represented in the local coordinate system of the embedded
structure. For beam and membranes, the multiphysics coupling picks up the local
coordinate system defined by the physics interface. However, in the Truss interface
only the direction of the local edge tangent t;, is defined. For the multiphysics
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coupling, two transverse direction are also needed when using a spring connection.
Thus, the multiphysics coupling defines a local coordinate system by assuming that t;,
is the normal to a plane. The actual directions of the two in-plane tangents are not
important, and it is assumed that the first tangent points in the global z direction.

Hence, the first transverse direction is

e, (tle : eZ)tle

t, = 2 e Tzile
! ”ez - (tle : ez)tle”

and the second transverse direction is

tle x €,

ty =t xty = Hez —(t, - ez)tle”

where e, is the base vector that points in the global z direction. Since no distinction is
made between tq and ty, only a single transverse spring constant, &y, has to be entered

when defining the spring stiffness matrix.

BOND SLIP MODELS

It is possible to include a bond slip model of the interface when modeling the
embedded structure connection with a nonlinear spring. This nonlinear behavior
follows a plasticity model, where the relative displacement between the two coupled
interfaces is additively decomposed into an elastic displacement and a plastic
displacement, or slip. Modeling bond slip is limited to small sliding only, since the
mapping between the embedded structure and the solid domain is made in the

reference configuration.

The slip is defined using a local constitutive model. This local model adds a set of
internal degrees-of-freedom that are solved for and stored in the model at each Gauss
point of the embedded structure. Typically, these internal variables include the relevant

components of the slip vector uy 5, the accumulated slip u e, and the friction

pe>
dissipation density Wp,. The last variable is only added if the Calculate dissipated energy
check box is selected in the Energy Dissipation section. The internal variables used by
the Embedded Reinforcement multiphysics coupling are shown as separate fields under

Dependent Variables node in the solver sequence.

The resistance to slide in the bond slip model is determined by the cohesion ¢, which
can be a function of any variable or field present in the model; by adding a generic

expression to the initial cohesion cp. A built-in hardening model with respect to up,e
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can be also be added, in which case ¢ = cy+c,, Where ¢, describes some hardening

function.

In many applications the bond slip behavior of the interface is described by a Coulomb
type friction. However, the bond slip model by default has no dependence on the
normal force acting on the interface since the connection has no formal direction of
the normal of the interface. A Coulomb type friction model can still be considered if a
good estimate of the normal force can be found by adding such a dependence to c.
If, for example, the pressure in the solid domain can be considered as the normal
pressure acting on the interface, use an expression like 0.1*<tag>
.ExtCplOp(solid.p) to define ¢y with a friction coefficient equal to 0.1. Here <tag>
is the tag of the multiphysics coupling and <tag>.ExtCplOp (expr) is the operator
that maps the expression from the solid domain to the embedded structure.

SOLVER SETTINGS

When adjusting the settings of the solver sequence for a model that includes an
Embedded Reinforcement multiphysics coupling, make sure that the dependent variables
of the coupled interfaces are solved in the same group. Also, note that the fields related
to the bond slip model should be included in the same solver group as well. This is only
a potential issue if a segregated solver is used, and it is handled automatically by the

default solver suggestion.
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Modeling Thin Layers

CHAPTER 2:

Sometimes, there are thin layers between larger components that cannot be ignored in
a structural analysis. The reasons are either because they have significant flexibility or
damping properties, or that they may fail. Examples of such layers are glue layers,
O-rings, and gaskets. Other cases can involve transition zones between particles or

fibers and the binder in a composite material.

When the layer is thin compared to other dimensions of the structure, it is difficult to
produce a mesh with acceptable quality without compromising the numerical
conditioning of the stiffness matrix. The Thin Layer boundary feature allows to
overcome this problem by making simplifications, so that there is no need for a mesh

in the through-thickness direction.
There are three different approximations available for modeling thin layers:

e Solid
e Membrane
e Spring

These approximations differ in the simplifications made for obtaining the deformation

gradient in the thin layer. For more details see Theory for Thin Layers.

The Thin Layer Node

The Thin Layer node is used to identify boundaries that have a thin layer attached to
them. These boundaries may either be exterior or interior boundaries to the domain
where the physics interface is active. The Thin Layer node also determines the thickness
of the thin layer, and how to approximate the deformation gradient on it. The first

choice is whether to use a Layered or a Nonlayered thin structure.

In the majority of cases, the Nonlayered approximation is sufficient to capture the
behavior of the thin layer. For this type of layer, two sets of degrees of freedom (DOFs)
are introduced at the boundary; one set corresponds to the upside, and one set to the
downside as illustrated in Figure 2-27. In COMSOL Multiphysics, this is referred as a
slit of the displacement field on the thin layer boundary.

Note that in Figure 2-27 no extra integration points are introduced in the
through-thickness direction, and that numerical integration is made on the

midsurface. Hence, dependent variables always have a linear variation in the thickness
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direction; that is, their gradients are constant in the through-thickness direction. This

also applies to inelastic quantities such as plastic strains.

— = ®»— »— Midsurface

Figure 2-27: Illustration of a nonlayered thin stratum between two mesh elements using
quadratic sevendipivy shape functions. Civcles indicate nodal points and squares
inteqration points.

The Layered type can be used when a more detailed description of the
through-thickness behavior is needed. For this type of thin layer, a slit of the
displacement field is made on the boundary, and additional DOFs are introduced
between the upside and downside as illustrated in Figure 2-28. These extra DOFs
facilitate a more detailed through-thickness representation of stresses and strains, and
they make it possible to, for example, model composites and laminate strata.
Continuity is enforced by constraints between the DOFs on the up- and downside, and
the extra DOFs. The through-thickness discretization is controlled by the attached
material. For more details about modeling layered structures, see Composite Materials
Modeling

Midsurface

Figure 2-28: Illustration of a discretized layered thin layer using a single mesh element in
the through-thickness divection. The thin layer is injected between two mesh elements using
quadratic serendipity shape functions. Civcles indicate nodal points and squares
inteqration points.
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When the Nonlayered type is used, it is possible to chose different approximations of

the deformation measure in the thin layer:

e Solid
e Membrane
* Spring

The description in Figure 2-27 is representative of the solid and spring
approximations. The solid approximation is the most general and accounts for the full
normal and tangential deformations in the thin layer. The spring approximation is
similar but neglects the membrane deformation. This is useful for cases where the
behavior of the thin layer is given by force versus extension data, as is often the case

when modeling gaskets.

For the membrane approximation, no slit is introduced and the thin layer only
accounts for the membrane deformation. It thus only contributes with tangential
stress, while plane stress conditions apply in the through-thickness direction. This is
typically the case when the thin layer describes a cladding on an exterior boundary or

a reinforcement layer on an interior boundary.

The different thin layer approximations are compared in Thin Layer
M Interfaces: Application Library path

Nonlinear_Structural_Materials_Module/Hyperelasticity/thin_layer_interfaces

CHAPTER 2:

Intevior and Exterior Boundaries

A Thin Layer can be applied to either exterior or interior boundaries of the physics
interface. However, there are some noticeable differences between adding a thin layer

on an exterior or on an interior boundary.

On an interior boundary, the selected boundary is always considered to be the
midsurface of the thin layer. It is not possible to apply any loads or boundary

conditions on interior boundaries.

On an exterior boundary, the bottom of the thin layer is attached to the adjacent
domain. This means that the thickness of the thin layer extends outwards from the
domain in the direction of the normal. For a nonlayered thin structure, an exterior
displacement field is introduced to create the slit, so it is possible to apply loads and
boundary conditions to this exterior field. For example, applying a fixed constraint on

an exterior thin layer makes it equivalent to a Spring Foundation. For a layered thin
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structure, the zop side of the layered material is always the exterior. Loads and

boundary conditions can be applied to the top side only.

When the thin layer boundary is part of a contact pair, the thickness of the exterior thin

layer is considered when modeling contact.

Material Models

A Thin Layer can be assigned different material models:

* Linear Elastic Material

* Nonlinear Elastic Material

* Hyperelastic Material

* Spring Material

The first three material models are equivalent to the corresponding domain material,

hence the discussion in Introduction to Material Models is valid also for thin layers.

The Spring Material is a special material model only available with the spring

approximation. As the name implies, data for this material model is given in terms of
spring constants, or as force as a function of extension. It can be useful for certain types
of modeling where data is given in this format, for instance, when normal force versus

closure curves are available.

It is also possible incorporate inelastic effects by adding one or several subnodes to

these material models.

Loads and Boundary Conditions

Several loads and boundary conditions can be applied to a thin layer. Exactly what
boundary conditions are available and how they are treated depends on the thin layer
approximation. Whether the thin layer is an exterior or interior boundary of the physics

interface also affects the available boundary conditions.

On exterior boundaries, loads and boundary conditions can be applied to the exterior
displacement field of the nonlayered stratum, or on the top side of a layered material
for a layered stratum. For example, applying a fixed constraint to a thin layer on an
exterior boundary makes is equivalent to a Spring Foundation. It is also possible to
apply loads and boundary conditions to edges and points of the thin layer. For a
nonlayered stratum, loads and other boundary conditions apply to the exterior
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displacement field. However, for a layered stratum, all extra DOFs attached to the edge

or point are constrained.

When a Roller is applied on a boundary perpendicular to a thin layer, a
Roller should in most cases also be added to the edge of the thin layer. This
is especially important if the roller represents a symmetry condition.

CHAPTER 2:

On interior boundaries, only loads and boundary conditions on edges and points are
available. Moreover, these are only relevant for a layered stratum. For a nonlayered

stratum, there are no free DOFs on which to apply the boundary conditions.

Results Evaluation and Visualization

For a nonlayered thin structure, many variables defined by the material models have
the same name for both the thin layer and the adjacent domain. For example, the von
Mises stress is always called solid.mises. Hence, the context in which the variable is

evaluated is important.

If solid.mises is evaluated using a surface plot in a 3D model, it will have the

following interpretation:

* On boundaries with no thin layer, it will show the von Mises stress of the adjacent

domain.

* On boundaries that intersect a nonlayered thin layer, it will show the von Mises

stress on the thin layer.

Use the mean() and side () operators to force the evaluation of variables in adjacent
domains. For example, using mean (solid.mises) for a surface plot will average the
stresses from the two adjacent domains, and it will not consider the stress in the thin

layer between these two.

Extra care must be taken when evaluating results on entities of lower dimensions, such
as points, to make sure that the expression is evaluated in the correct context. The
mean () or side () operators can then be applied multiple times. For example, using
mean (mean(mean(solid.mises)))ina point plot for a 3D model will ensure that the
von Mises stress in the domain material is evaluated. Similarly, a point plot with the
expression mean (side(1,solid.mises)) will evaluate the von Mises stress in the

thin layer on boundary 1.
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When one or more thin layers are present in a model, a default plot is
added to show the stress in the thin layer.

See Results Evaluation in Composite Materials Modeling for a discussion

on how to evaluate and visualize results for layered thin layer.
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Modeling Cracks

CHAPTER 2:

A crack in a solid model can be represented in two fundamentally different ways:

As an ideal crack — that is, by a single boundary. Across this boundary, the
displacement field is discontinuous. Using COMSOL Multiphysics nomenclature,
this is called a s/it condition.

By the crack geometry, in which case the two sides of the crack are two different
boundaries. In the true geometry, the two crack surfaces may coincide, or there may
be a distance between them.

Both cases have an analogous representation in a symmetry plane. The ideal crack is

just a boundary located in the symmetry plane, but without the symmetry conditions,

so that it can open. This can, however, just as well be considered as special case of a

geometrical crack, so in symmetry planes the distinction more or less disappears.

Fundamental for cracks is that the stress and strain states at the crack tip are singular,

so any mesh refinement will only produce even higher stresses. For a linear elastic

material, the stresses and strains in the vicinity of the crack vary as 1/./r, where r is

the distance from the crack tip.

The Crack Node

The Crack node serves several purposes:

In the case of an ideal crack on an internal boundary, the degrees of freedom are

split so that the displacements on the two crack surfaces are independent.

In the case that a crack is located in a symmetry plane, all constraints that may be

applied (such as symmetry) are removed. It is then possible for the crack to open.

If possible, a crack growth direction is computed. For some cases this is instead a

user input.
A number of variables, such as an estimate of the crack length are created.
A mesh suggestion is generated.

By using the J-Integral subnode under Crack, you can compute J-integrals and

stress intensity factors.

By using the Crack Closure subnode under Crack, you can add contact conditions
between the crack faces.
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The selected boundaries can form branched cracks.

MESH
At a crack tip, there will be an automatic mesh refinement. In the mesh sequence, you
will find an extra Size node, with all crack tips selected. You may want to adjust the

mesh size in that node.

J-integrals

The J-integral is a path independent integral that can be used to characterize the
severity of the stress state at the crack tip, both for linear and some nonlinear materials.

You can compute J-integrals by adding one or more J-integral subnodes under Crack.

Originally, the J-integral concept was derived for 2D, in which case it was sufficient to
integrate certain functions of stress and strain along an arbitrary curve from one

boundary of the crack to the other.

Tface

Figure 2-29: Example of a J-integral path.
There are some important assumptions when computing the J-integral:

* The curve is completely inside the domain.

* The curve does not enclose any other singularities, such as crack tips.
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¢ No volume forces act inside the curve.

e Ifthere is a load on the crack faces, this requires an extra correction. This is taken
into account if the load is given using the Face Load subnode under Crack.

You can specify the integration path as a circle with a given radius, in which case it cuts
the mesh elements at arbitrary locations. In 2D, you can also select a sequence of
internal or external boundaries describing the path. It is recommended that you

evaluate more than one path to assess the accuracy of the solution.

The importance of this method is that stresses and strains far from the singular fields
at the crack tip are used for the evaluation.

J-integrals can be computed also in 3D, but there are some complications. In the 3D
case, the value of ] will vary along the crack front. The local value is computed by a
similar path integral, which then must be placed in the plane perpendicular to the crack
front. This is automatically handled by the J-integral node. The J-integral in 3D should
be considered as a continuous function along the crack front.

In 3D, there is also a surface integral contribution which needs to be computed for the
area that is enclosed by the curve. Unfortunately, this causes the singular field to enter
the integration, a fact that reduces accuracy. In addition, the computational effort

increases significantly. Evaluations of J-integrals in 3D can take a noticeable time.

Another problem, that exists only in 3D, occurs if the crack front terminates at a free
boundary. If the crack front is not perfectly perpendicular to the free boundary, the
integration path will not entirely remain inside the solid domain. This is manifested as

spurious results close to the free boundary.

PREDEFINED PLOTS
When J-integral nodes are present, they will generate predefined plots. These plots

reside in a Cracks plot group. The contents of the plots differ significantly between 2D
and 3D, as described below.

2D
The integration paths are plotted as magenta curves. An arrow shows the crack growth
direction. At the crack tips, the value from the last J-integral node is printed. An

example is shown in Figure 2-30.
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Figure 2-30: Predefined plot for a 2D case with a crack in a symmetry plane. Three

integration paths ave shown; 2 circular and one alonyg boundaries.

3D

In 3D, the integration paths are shown as transparent gray boundaries. The actual

integration paths are located where this boundary is intersected by planes

perpendicular to the crack front.

A colored arrow plot shows the crack growth direction, as well as the local value of the

J-integral as computed in the last J-integral node. An example is shown in Figure 2-31.
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Figure 2-31: Predefined plot for a case with a 3D crack in o symmetry plane. One
integration path is used.

DEFAULT EVALUATION GROUPS

In both 3D and 2D, a default evaluation group, named Cracks, is also generated. It
contains a table with values of J-integrals and stress intensity factors for all integration

paths. In 3D, however, only the maximum value of ] along the crack front is reported.

Stress Intensity Factors

Stress intensity factors are computed from the J-integral. For a linear elastic material,
there is a relation between the J-integral (or energy release rate) and the stress intensity
factors. This relation is, however, only unique when the stress intensity factors are

known, and not when the value the J-integral is known:

J =

1 (.2 .2 1 .2
_ (2-37)
Eeff(KI tR+ o VKIII)
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The split between Ky, Kyp, and Kyyy is estimated using the displacement field on the

crack faces at some distance behind the crack tip.

In Equation 2-37, Eis an effective Young’s modulus, defined as

—— if plane strain
Eeff = 1- V2

E if plane stress

This expression is actually only defined for 2D stress states. In 3D, the expression for
plane strain is used, since the stress state at the crack tip in a thick solid essentially

resembles plane strain.

FREE BOUNDARY IN 3D

At a free boundary, a state of plane stress prevails. Close to the boundary, there will be
a transition zone where neither plane stress nor plane strain is applicable. In this region,
the stress intensity factors, as computed from the J-integral, may be uncertain. It
should be noted, however, that for most metals, the variation in E g between plane
strain and plane stress is about 10%, leading to an error in the computed stress intensity

factor in the transition region that is no more than 5%.

UNITS FOR STRESS INTENSITY FACTORS

The ST unit for stress intensity factors is N/ m32. Other common units are MPa-m /2 ,
psi-inl/z, and ksi-in’2. The unit handling system in COMSOL Multiphysics only
operates with integer powers of the base units, and can thus not handle stress intensity

factors in a consistent manner.

Because of this, the expressions that define the stress intensity factors include a removal
of the units, and the stress intensity factors appear as a unitless quantities. The value of
a stress intensity factor should be interpreted as having an implicit unit, which is

composed from the base units in the current unit system, for example, N/ m?/2,

Contact Between Crack Faces

When a crack is defined by an internal boundary, or is located on a symmetry
boundary, it is possible to consider contact between the crack faces by adding a Crack
closure subnode. When such a node is added, all boundaries selected in the Crack node
are applicable and selected in the Crack closure subnode as well, which means that

contact is added between all crack faces.
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Contact between crack faces is implemented by the penalty method as described in
Contact Analysis Theory in the Structural Mechanics Theory Chapter. By default,
frictionless contact is considered. However, if the crack is defined by internal

boundaries, you can also take friction into account.

The kinematics of the contact condition between crack faces differs from that used in
general contact analysis and the Contact node. It is fully defined by the displacement
discontinuity defined by the slit condition of the crack, and thus involves no contact

search algorithm. The gap g, is then given by
gn =n- (uu_ud)

where n is the spatial normal to the internal boundary, and u, and uy are the
displacements on the “upside” and “downside”, respectively. Similarly, the tangential

deformation gy is given by
gy =-t-(u,—uy)

where t is the spatial tangent to the internal boundary. In 3D, there are two
components of gy given by t; and to, respectively. Friction is based on an incremental

formulation, and the incremental slip is given by
Agy = 8,—8t0ld

where gi ]q is the tangential deformation at the previous converged increment. For a
symmetric crack u, = 0 and uy = u. Note that no tangential deformation is computed
in such cases. Given that the gap and the slip are computed from the displacement

jump across an internal boundary, the contact formulation is only valid for small sliding

since the same nodal points are always connected even as the bodies deform.

STRUCTURAL MECHANICS MODELING



Buckling Analysis

Linearized Buckling Analysis

A linearized buckling analysis can be used for estimating the critical load at which a
structure becomes unstable. This is a predefined study type that consists of two study
steps: An initial step in which a unit load is applied to the structure, and a second step

in which an eigenvalue problem is solved for the critical buckling load.
The idea behind this type of analysis can be described in the following way:

Consider the equation system to be solved for a stationary load £, in case of geometric

nonlinearity;

Ku = (K, +Kyp)u = £
Here the total stiffness matrix, K, depends in the solution, since the problem is
nonlinear. It has been split into a linear part, Ky, and a nonlinear contribution, Ky,

In a first-order approximation, Ky, is proportional to the stress in the structure and
thus to the external load. If the linear problem is solved first for an arbitrary initial load

level £y,
Kiu, = £, (2-38)
then the nonlinear problem can be approximated as
(Ki,+ MKy (up)u = Af

where A is called the load multiplier.

An instability is reached when this system of equations becomes singular, so that the
displacements tend to infinity. The value of the load at which this instability occurs can
be determined by, in a second study step, solving an eigenvalue problem for the load

multiplier A.
(K, + MKy1(up))u = 0
COMSOL reports a critical load factor, which is the value of A at which the structure

becomes unstable. The corresponding deformation is the shape of the structure in its
buckled state.
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The level of the initial load used is immaterial since a linear problem is solved. If the
initial load actually was larger than the buckling load, then the critical value of A is
smaller than 1. Itis also possible that the computed value of A is negative. This signifies

that a reversed load will give the critical case.

LIVE AND DEAD LOADS

In some situations, not all loads that act on the structure can vary, and you may want
to compute the critical load factor only with respect to the uncertain (‘live’) load. For
example, gravity is often treated as a ‘dead’ load. The dead loads do, however, affect
the stress distribution in the structure, so they cannot be completely ignored. Using

the same terminology as above,
Ku = (K, + Ky +Ky)u =

Here, the superscripts ‘d’ and ‘I’, stands for live and dead loads, respectively. By solving
two problems, one with the live loads, and one with the dead loads, it is possible to
separate their effects:

Now, the following eigenvalue problem is solved to determine the critical load factor:
d 1
(Kp, + Ky1,(ug) + AKyp,(ug))u = 0
For any load feature, you can specify that is a dead load by selecting the Treat as dead
load check box in the Linear Buckling section.

To perform a buckling analysis including both live and dead loads, you need three

study steps: two stationary steps, and the linear buckling study step.

I In the first study step, you solve for the dead loads only. Disable any live loads in the
solver.

2 In the second study step, you solve for all loads; the live loads with an arbitrary

scaling factor plus the dead loads.
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3 Finally, in settings for the Linear Buckling study step, you need to point to these two

solutions as Values at linearization point and Live loads solution, respectively.

Settings M
Linear Buckling
= Compute ' Update Solution

Label: Linear Buckling E

¥ Study Settings
Include geometric nonlinearity
Desired number of buckling modes: 2

Values of linearization point

Settings: User controlled =
Method: Solution =
Study: Study 1 {std1}, Stationary ~ E
Solution: Current hd

Use: Solution Store 1 (sol2) {sc = Ej
Selection: Automatic (single solution) -

Live loads solution

Settings: User controlled =
Method: Solution =
Study: Study 1 {std1}, Stationary ~ E
Solution: Current hd

Use: Solution Store 2 (sol3) {sc = E
Selection: Automatic (single solution) -

Figure 2-32: Selecting the solutions for a buckling analysis with live and dead loads.

GEOMETRIC NONLINEARITY

Sometimes, the preload case requires a geometrically nonlinear analysis in order to
produce the correct state. This means that it is no longer solved using the linear set of
equations given by Equation 2-38, but rather

(Ky, + Ky, (up)u, = £ (2-39)

The assumption for the buckling analysis is still that Ky, is proportional to the external
load, even though this may be disputable for a strongly nonlinear case. Kyy, is based
on the stresses, which must be computed in the same way for both cases, that is, under

the same assumption about geometric nonlinearity. The effect is that the stiffness
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matrix at the linearization point includes the nonlinear part from Equation 2-39, and

the eigenvalue problem is reformulated as

(K1, + Knp,(ug) + (A - 1D Kyp,(ug))a = 0

FOLLOWER LOADS

Loads that depend on the deformation are called follower loads. An example of this is
a pressure load, since the orientation of the load will depend on surface deformation.
Such loads contribute to the stiffness matrix, and can thus affect the buckling load. As
a default, all loads in the structural mechanics interfaces are multiplied by the load

factor A in a linear buckling study step.

If the computation of the predeformation requires a geometrically
nonlinear analysis, then geometric nonlinearity must be used also in the

n Linear Buckling study step.

In this case, it must be assumed that the critical load factor A is

significantly larger than 1.

* Be aware that for some structures, the true buckling load can be
significantly smaller than what is computed using a linearized analysis.
This phenomenon is sometimes called imperfection sensitivity. Small
deviations from the theoretical geometrical shape can then have a large
impact on the actual buckling load. This is especially important for
curved shells.

i

For a structure that exhibits axial symmetry in the geometry,
constraints, and loads, the critical buckling mode shape can still be
nonaxisymmetric. A full 3D model should always be used when

computing buckling loads.

e It must always be checked that allowable stresses are not exceeded
before the buckling load is reached.

e Studies and Solvers and Linear Buckling in the COMSOL Multiphysics
Reference Manual

Linear Buckling in the theory section of the Structural Mechanics
Module User’s Guide

CHAPTER 2:
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* Bracket — Linear Buckling Analysis: Application Library path

Structural_Mechanics_Module/Tutorials/bracket_linear_buckling

m * Buckling Analysis of & Truss Tower: Application Library path
Structural_Mechanics_Module/Buckling_and_Wrinkling/

truss_tower_buckling

Nonlinear Buckling Analysis

A linear buckling analysis gives an approximation to the critical load of a structure. To
gain more confidence in the results, a full nonlinear analysis where the load is slowly
increased can be performed. Such an analysis will, in general, not give a distinct value
of the buckling load. Rather, there will be an increasing level of deviation from the
linear response. The allowable load is given by some criterion of allowable deformation
or stress. In some cases, the nonlinear buckling analysis will stop because a singularity

is encountered. This can then be considered as the buckling load.

In a nonlinear buckling analysis, you use an auxiliary sweep, where a parameter for the
load is increased. This type of analysis requires significantly more computing time than
a linearized buckling analysis.

Modeling Imperfection in a Buckling Analysis

Real structures always contain some level of imperfections in the geometry. Beams are
not perfectly straight, plates are not perfectly flat, and so on. For some structures, the
real-life failure load is much smaller than the ideal buckling load that would be the
result of a linearized buckling study.

There are different ways in which you can take imperfections into account. If the actual
imperfections are known, they may even be part of the geometry. More common,
however, is that the analysis is based on the ideal geometry. In this case, using the
deformed geometry concept provides a convenient tool for introducing the

imperfection.

For more information about deformed geometries, see Deformed
Geometry and Moving Mesh and Deformed Geometry Features in the
COMSOL Multiphysics Reference Manual
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If the imperfection is known from some external source, say a standard that stating that
a certain curvature must be assumed for a beam, then you can directly enter

expressions for such deviations. Do as follows:

I On the Definitions tab, click Deformed Geometry, and sclect Prescribed Deformation.
Alternatively, you can right-click on the Component node and select

Deformed Geometry>Prescribed Deformation.

2 In the added Prescribed Deformation node, select the appropriate Geometric entity

level, and then select the part of the geometry to perturb.

3 Enter expressions for the Prescribed deformation in terms of the geometry frame

coordinates, for example, Xg, Yg, and Zg.

Another common approach for generating an initial imperfection is to first perform a
linearized buckling analysis, and then add one or more suitably scaled buckling modes
as initial imperfection. The rationale behind this is that it is reasonable to assume that

the structure is sensitive to an imperfection that resembles a buckling mode.

The procedure for entering buckling models as imperfections is also based on a
deformed geometry, but is more complicated. For this reason, a special tool is available

for setting up such an analysis, as described below.

I Run a linear buckling analysis, in which you solve for one or more buckling modes.

2 On the Definitions tab, click Physics Utilities, and select Buckling Imperfection.
Alternatively, you can right-click on the Definitions node and select Physics Utilities>

Buckling Imperfection.
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3 In the added Buckling Imperfection node, do the following

a

From the Linear buckling study list, choose the study from which the imperfection
mode shapes are to be selected. Only studies containing a Linear Buckling study

step are shown in the list.

Under Mode selection, add the buckling modes to include in the Mede column.
Also, specify a scale factor for each mode in the corresponding field under Scale

factor.

To add a Deformed Geometry node with necessary subnodes in which the selected
sum of buckling modes are used as predeformation, click the Create button ( /7 )

in the Deformed Geometry scction header.

From the Study list, choose the study that is the nonlinear buckling study. The
default, and most common case, is New, in which case the study does not already

exist. You can also select any existing Stationary study.

From the Load parameter list, choose the parameter to use as a load parameter for
ramping up the load. The parameter must be defined under a Parameters node,
so you may have to move there to create it. Its purpose is to act as a multiplier to

the same load that was used in the linear buckling study.

Click the Create button ('“‘:?) in the Nonlinear Buckling Study section header to set
up the nonlinear study. If Study is set to New, a new study is created. If an existing
study is selected, its settings will be modified. In either case, geometrical

nonlinearity will be activated in the study, and a continuation solver will be set up
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using the Load parameter as auxiliary sweep parameter. The range of the sweep is
based on the lowest buckling mode selected in the Mode selection table.

Settings
Buckling Imperfection
Label:  Buckling Imperfection 1
Mame:  bckil
Deformed Geometry

Linear buckling study:
Study 1
Mode selection

" Mode Scale factor
1 1e3

N—é

MNonlinear Buckling Study

Study:
Study 2
Load parameter:

load (Applied load)

Figure 2-33: Settings in the Buckling Imperfection node.
4 Go back to the physics, and make sure that the loads are multiplied by the load

multiplier parameter.
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5 Run the nonlinear buckling study.

* When the nonlinear study is generated, the default expression for the

auxiliary sweep parameter values is set to

<CritFactor>*log(range(1,1,20))/1log(15)

Here, <CritFactor> is the critical load factor in the linearized

!

buckling analysis. This means that the load is increased in 20 decreasing

steps, from 0 to about 1.1 times the critical load factor.

¢ Under Definitions, a Deformed Geometry node with one or more

Prescribed Deformation subnodes is created. These subnodes contain

references to special variables containing the selected superposition of
buckling modes (Figure 2-34).

4 G truss_tower_buckling.mph (root)
I () Global Definitions
4 | Component1 (comp1)
4 = Definitions

I g Selections

/% Buckling Imperfection 1 (bokil)
[ Boundary System 1 {sys1)

; View 1
[ Geormetry 1
I 5z& Materials
4 [T] Deformed Geometry

/7" Prescribed deformation, Truss

[ Truss (truss)
A Mesh 1
[~ Study 1
4 o Study 2
[= Step 1: Stationary 1
I [fre Solver Configurations

b I8 Results

Settings

Prescribed Deformation

Label: Prescribed deformation, Truss
Geometric Entity Selection

Geometric entity level: Edge

Selection: Manual

=

L T

Cverride
¥ Prescribed Deformation

Prescribed deformation:

bekil.dtrussx
dx  bckil.dtrussy
bekil.dtrussZ

E=lim
|

[

S

Figure 2-34: The automatically generated deformed geometry settings.

Buckling Analysis of @ Truss Tower: Application Library path

[|]]] Structural_Mechanics_Module/Buckling_and_Wrinkling/truss_tower_buckling
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Performing a Random Vibration
Analysis

INTRODUCTION

Sometimes, the loads on a structure are random in nature. An example is the wind load
on a tower. In addition to the average wind, there are gusts caused by the turbulence
in the flow. The gusts will give a time-dependent excitation, which can induce a
dynamically amplified response in the structure. The frequency and amplitude of these
gusts will be randomly distributed. If the structure is large, the peaks in the wind speed

may not even occur synchronously at locations far from each other.

If the pressure is measured, it is possible to give a statistical representation of the wind
load. The statistical representation of an input like a force to be used in a random
vibration analysis is the power spectral density (PSD), which is a function of the

frequency.

Similarly, the computed results quantities are represented by their PSD, from which it

is possible to derive a root-mean-square (RMS) value.

There are two main cases when a random vibration analysis is useful. In addition to the
scenario outlined above, it is common that design standards (in particular for
electronic components and devices) include requirements on random vibration
testing. To simulate such a test, a random vibration analysis can be performed. In this
case, the prescribed PSD of the excitation is a simplified envelope intended to cover a

multitude of loading conditions.

& For a detailed theory, see Random Vibration Theory.

CHAPTER 2:

Correlation
When several loads act on a structure, they can have different degrees of
interdependency. This is described by a statistical measure of their correlation. There

are two important special cases of correlation, which significantly simplify the analysis.

If the loads are random in nature and completely independent of each other, they can
be described as being uncorrelated. This would be the case when, for example, two

separate drilling machines are used simultaneously at some distance from each other.
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If several loads have the same source, they can be fully correlated. Vibration testing is
a common example. In such case, several points on the structure are attached to the
same shaker table. Thus, they will experience identical (but random) acceleration
histories. Another example could be when a certain load is decomposed into
components along different coordinate axes. Clearly, the X- and Y-components are just
scaled versions of the total load, and thus they are fully correlated.

In a general case, the correlation between two loads is a function of both the distance
between their positions and the frequency. The input to the analysis includes not only

the PSD of each load but also their cross-correlation.

Spatial Variation of Random Loads

The PSDs and cross-correlation matrices are assumed to be functions of frequency
only. Itis not allowed to write expressions that are functions of the spatial coordinates.
The expression for the load inside the physics interface, however, can have such

dependencies as long as they appear as a pure multiplier to the spectrum.

In principle, however, the PSD and even the full cross-correlation functions could be
considered to vary continuously over a structure, and thus be functions of the spatial

coordinates. An example of this could be the wind pressure on a high tower.

If you want to model such situation, you need to split the loaded region into smaller
parts, each with its own constant spectrum definition. Note that the number of

off-diagonal cross-correlation functions increases quadratically with the subdivision.

SETTING UP A RANDOM VIBRATION ANALYSIS
Random vibration analysis is based on a modal representation of the structure. It
represents a type of mode superposition and relies on the reduced-order model (ROM)

concept.

In principle, you can perform random vibration analysis on any reduced-order model
that is of the Frequency Domain, Modal type. This requires a number of settings and

studies run in an appropriate order.

It is significantly more convenient to start by adding a Random Vibration (PSD) study,

cither from the Add Study window or from the Select Study page in the Model Wizard.

The Random Vibration (PSD) study is not a study in itself; rather, it adds a number of
nodes to the Model Builder tree to facilitate a random vibration analysis. These nodes
serve the purpose of setting up the ROM and providing input data to the random

vibration analysis.
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Two studies are added:

* One study with an Eigenfrequency study step for computing the eigenfrequencies

and corresponding eigenmodes.

* One study with a Model Reduction study step, in which the ROM is created. It
references the eigenfrequency study, as well as an embedded Frequency Domain study
step. The latter can mainly be considered as a placeholder which is a mandatory
input to the model reduction. In case you have already computed the eigenmodes,
you can change the setting of the Training study in this node to point to the
corresponding existing eigenfrequency study, and then delete the newly generated

one.

The Model Reduction study step is set up to be suitable for a random
n vibration analysis. In particular, it is required the Ensure reconstruction

capability is selected.

CHAPTER 2:

Under Global Definitions, a Reduced-Order Modeling node becomes available. It contains

three subnodes:

* A Global Reduced Model Inputs node, in which you define the control parameters for
the ROM. All loads that represents random excitations must have a value multiplied

by one of such parameters.
* A Frequency Domain, Modal Reduced-Order Model node. This is a placeholder for the
ROM to be created.

* A Random Vibration node. Here, you prescribe the PSD functions and the
cross-correlation functions, if needed. They can be function of frequency only (the

internal variable freq); it is not possible to prescribe a coordinate dependency.

WORKFLOW

Here, you find recommended steps to perform a random vibration analysis.

I Add a Random Vibration (PSD) study.

2 In the Global Reduced Model Inputs node, add all required control parameters. The
values that you assign to the parameters are not important. Control parameters are
used in the same manner as ordinary parameters in expressions for the loads in the
physics interface. You need as many control parameters as you have different PSD

functions.
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3 In the physics interface, create the loads that should have a random variation.
Typically, the value is just the name of a control parameter, even though it is possible
to also add a scalar multiplier to it.

* The reduced-order models on which the random vibration analysis is
based are not unit aware. Always use the base units from the current

unit system in the context of a random vibration analysis.

* Only ‘Neumann type’ loads like forces and pressures can be given a
random excitation. It is not possible to use ‘Dirichlet type’ loads like
prescribed displacements, velocities, or accelerations. This is similar to

n other mode superposition methods.

For the common case that a number of support points have the same
acceleration PSD, the support acceleration can be replaced by a frame
acceleration load, using the Base Excitation feature. This is how
vibration testing is analyzed. See also Absolute Versus Relative

Accelerations.

4 If you want any scalar outputs, define them as Variables under Definitions in the
component. You can use, for example, probes or functions like at3() to create
scalar outputs. It is also possible to compute scalar results using, for example, Point
Evaluation during result presentation. Such evaluations will, however, require a
larger computational effort than scalar outputs that are part of the ROM definition.

5 In case you want to reuse a previously computed eigenfrequency study, go to the
Model Reduction study step. Change the settings for Training study in the Model

Reduction Settings scction to point to the correct eigenfrequency study.

6 Run the study containing the Model Reduction study step. It will automatically create
a ROM that can be used for all further evaluations.
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7 Define the PSD and cross-correlation functions required for representing the
loading as functions under Global Definitions. These functions should depend on

frequency only.

It is common that an input PSD is provided in terms of straight lines in a
log-log diagram of PSD value versus frequency, f. To mimic this behavior,
you can use an interpolation function (say int1) where you enter pairs of
n log(f) and log(PSD) values. You then reference this function through an
expression like exp (int1(log(freq[1/Hz]))). Thiswill provide alinear

interpolation in a log-log space.

CHAPTER 2:

8 Go to the Random Vibration node. Select the appropriate Correlation type.

9 For each control parameter, enter the corresponding spectrum function. The
argument to the function should be the built-in frequency variable freq.

10 If the correlation type is Cross-correlated, enter also the off-diagonal part of the
Correlation matrix.

Il To make these settings available for result evaluation, run Update Solution for the

model reduction study.

RESULTS EVALUATION
For presentation of random vibration results, you can use the standard features under
Results, with the provision that the quantity you are studying is a linear function of the

displacements. You can use any linear expression, not only built-in variables.

In addition to linear variables, there is also a special case where the RMS of quadratic

forms can be computed.

The evaluation of random vibration results is done through special operators, listed in
Table 2-17, which are defined by the Random Vibration node (with a tag rvib1 in this

example).

TABLE 2-17: RANDOM VIBRATION OPERATORS

OPERATOR SYNTAX EXPLANATION

psd rvib|.psd(expr) Evaluates the PSD of an expression for the
given frequency

cross rvibl.cross(exprl, expr2)  Evaluates the cross-correlation between two
expressions for a given frequency,
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TABLE 2-17: RANDOM VIBRATION OPERATORS

OPERATOR SYNTAX

EXPLANATION

rms rvibl.rms(expr, fl, f2, N)
rms rvibl.rms(expr)

m rvibl.m(K,expr, fl, 2, N)
m rvibl.m(K,expr)

q2 rvibl.q2(expr, fl, 2, N)
q2 rvibl.q2(expr)

Evaluates the RMS value of an expression
within the frequency interval [fl, f2]. N
points are used for integrating over the
interval.

Evaluates the RMS value of an expression.
The frequency interval, as well as the
integration settings are taken from settings
in the corresponding Random Vibration
node.

Evaluates the K:th order moment of the
PSD. Thus, rvibl.rms(expr, fl, f2, N) =
sqrt(rvibl.m(0,expr, fl, f2, N)). The
maximum supported moment order is K=4.

Evaluates the K:th order moment of the
PSD. The frequency interval, as well as the
integration settings are taken from settings
in the corresponding Random Vibration
node. The maximum supported moment
order is K=4.

Evaluates the RMS of a quadratic form, for
example the square of an effective
displacement, or the square of the von Mises
equivalent stress. The expression must not
contain time derivatives like velocities or
accelerations. Rather than
rvibl.q2(utt?2,...), you can write
rvibl.q2(ur2*(2*pi*freq)”4,...).

The quadratic form itself must be
real-valued. This means that evaluation using
the von Mises stress can only be done if the
material properties are real-valued. In
particular, it should be noted that loss factor
damping implies a complex-valued stiffness.

Evaluates the RMS value of a quadratic form.
The frequency interval, as well as the
integration settings are taken from settings
in the corresponding Random Vibration
node.
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TABLE 2-17: RANDOM VIBRATION OPERATORS

OPERATOR SYNTAX EXPLANATION

q2sq rvibl.q2sq(expr, fl, f2, N)  Evaluates the square root of the RMS of the
quadratic form. The norm of the quadratic
form is used as input. See q2 operator above
for more information. The relation between
these two operators is:
rvibl.q2sq(sqrt(expr),...) =
sqrt(rvibl.q2(expr,...))

q2sq rvibl.q2sq(expr) Evaluates the square root of the RMS of the
square root of a quadratic form. The
frequency interval, as well as the integration
settings are taken from settings in the
corresponding Random Vibration node.

The operator g2sq() is a convenience version of the q2() operator. Some important
quantities have special variables, intended for use in the q2sq() operator, see
Table 2-18.

TABLE 2-18: PREDEFINED VARIABLES FOR USE WITH THE Q2SQ OPERATOR

VARIABLE DESCRIPTION

<phys>.mises_rv von Mises equivalent stress
<phys>.disp_rv Norm of displacement
<phys>.vel_rv Norm of velocity
<phys>.utt_rv Norm of acceleration
<phys>.rot_rv Norm of rotation
<phys>.rotvel_rv Norm of rotational velocity
<phys>.rotacc_rv Norm of rotational acceleration

You cannot use ordinary variables like <phys>.mises or <phys.disp> as

n arguments to the q2sq () operator. The reason is that the argument must
never evaluate to zero.

CHAPTER 2:

It is convenient to plot the PSD of a result quantity computed, for example, at certain
point in the structure for a given frequency range. Such evaluation sweeps over the
frequency can be defined in a Global Evaluation Sweep node.

The RMS of a result quantity does not give direct information about its peak value.

Formally, probability theory says that for a long enough process, the peak value can be
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arbitrarily large. In practice, it is common to assume that the peak value is three (or
sometimes four) times larger than the RMS value. There are good reasons for this

practice.

* The input signal is usually bounded for physical reasons. It is not a true Gaussian

distribution.

* For testing, the shaker table accelerations are limited, and this is even expected in

the requirements on the signal.

* The whole random vibration analysis assumes linearity. Nonlinear effects will

typically limit the response.

Absolute Versus Relative Accelerations

It is common that the input to a random vibration analysis is a PSD for a base
acceleration. Since it is not possible to directly prescribed nonzero displacements (or
accelerations) at constrained points, the standard approach is to replace the base
acceleration with an inertia load on the structure. This can be seen as a frame
transformation, where the analysis is made in a coordinate systems that is connected to

the fixture. This change of frame does not affect for example stress or strain results.

The computed accelerations, however, are measured relative to the support points, not
relative to a room fixed frame. In most cases, you are interested in the absolute
accelerations, that is what would be measured by an accelerometer. When the Base
Excitation feature is used to describe the acceleration, special variables containing the

absolute (room fixed) accelerations are also available.

* Bracket — Random Vibration Analysis: Application Library path
Structural_Mechanics_Module/Tutorials/bracket_random_vibration
m * Random Vibration Analysis of & Deep Beam: Application Library
path Structural_Mechanics_Module/Verification_Examples/

random_vibration_deep_beam
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Performing a Response Spectrum
Analysis

INTRODUCTION

Response spectrum analysis is used to approximately determine the structural response
to short nondeterministic events like earthquakes and shocks. The idea is that the event
is characterized by the peak response that it would give a single degree of freedom
(SDOF) oscillator having a certain natural frequency and damping ratio. The response

value is provided as a function of the natural frequency of the oscillator.

If the dynamic structural response is viewed as a mode superposition, each eigenmode
within the given frequency range acts as an SDOF oscillator, with a peak amplitude that
is known from the spectrum. There is, however, no information about when each
mode reaches its peak value. The most conservative assumption is that all modes
should be combined using the individual peak values. Using such approach will in most
cases result into an extremely conservative design. For this reason, other summation
methods have been developed. When performing a response spectrum analysis, you

will have access to several such methods.

SETTING UP A RESPONSE SPECTRUM ANALYSIS

The response spectrum analysis is not a study type. The computations are performed
during results evaluation. You enter the methods and parameters in the settings for the
Response Spectrum 2D or Response Spectrum 3D datasets. These datasets require the

following:

* An eigenfrequency solution, where the eigenmodes to be included in the response
spectrum analysis have been computed. All computed eigenmodes are used. If you
want to filter out a particular set of modes, you can add a Combine Solutions study
step after the Eigenfrequency study step. Such a filter can for example be based on the
effective modal mass, so that only modes which contribute significantly to the mass
are included.

The time to evaluate a result when using a response spectrum dataset

n varies almost quadratically with the number of eigenmodes you include.

CHAPTER 2:
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* A corresponding set of modal participation factors. To generate them, add a
Response Spectrum node under Definitions in the component. If you have computed
the eigenfrequency prior to adding the Response Spectrum node, you need to
perform an Update Solution.

der ~ *|| Settings

Mode

- w v =t E

v Response Spectrum

4 {# building_response_spectrum.mph [root)

@ Global Definitions Label:  Response Spectrum 1 =]
4 @ Componentl (compl) Mame:  rspl
4 = Definitions
b: Response Spectrum 1 (rspl) | Response Spectrum
=/ Boundary System 1 {sys1)
View 1 Eigenfrequency study: Study: Eigenfrequency =
/A Geometry 1 Missing mass correction study: Create

2= Materials
* Insome response spectrum evaluation methods, you are required to compensate for
the mass that is not represented by the included eigenmodes. In order to do so, a
number of special stationary load cases must also be computed. You can set up all
nodes required in the model builder tree by clicking the Create missing mass
correction study (}l) button on the Response Spectrum section header in the

Response Spectrum node settings.

Adding a Response Spectrum Study
In the Add Study dialog, there is a study type called Response Spectrum. When you select
it, two things happen:

* A study, containing a single Eigenfrequency study step is created.

* A Response Spectrum node is added under Definitions in the first component which
contains at least one structural mechanics physics interface. In this node, the
Eigenfrequency study list will be initialized to point to the Eigenfrequency study step
that was just created.

If you already have computed the eigenfrequencies of a structure, and then want to
perform a response spectrum evaluation, there is no need to add a new study. Just add
a Response Spectrum node under Definitions->Variable Utilities, and then do an Update

Solution to make the new variables available.
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Missing Mass Correction
You create a missing mass correction study from the Response Spectrum node by

clicking the Missing mass correction study: Create button.

It is not possible to undo this operation. To revert, you will have to
n manually delete all the nodes which were created.

A number of items are then created in the model tree:

* A set of load group nodes are created under Global Definitions. There are two load
groups for each spatial direction. The load group nodes are placed under a common

group named Load Groups for Missing Mass Correction.

Model Builder ~ *|| Settings

-t 1F-ome

4 & building_response_spectrum.mph (root)
) Global Definitions

Parameters Parameter name:  IgRspXMode

Functions

oad Groups for Missing Mass Corrr ¥ Group Members

Load Group: Total Mass X N

Load Group: Modal Mass X Feature Interface Compon

Load Group: Total Mass ¥ % Modal Mass Load X | Bearn (beam) compl

Load Group: Modal Mass ¥

Load Group: Total Mass Z

i Load Group: Modal Mass Z

Materials

4

Load Group

Label: Load Group: Modal Mass X =

The Parameter name of the load group is reserved, and you should not modify it.

* A new study named Study: Missing Mass Load Cases is created. This study contains
three or four study steps, depending on the space dimension. First, there is one
Combine Solutions study step for each spatial direction. In these steps, a weighted
sum of the eigenmodes is computed. The weights are the modal participation factors
in each direction. This gives a measure of the mass that the eigenmodes represent.
These study steps must reference the eigenvalue solution, including any subsequent
filtering. If you change the study from which the eigenmodes are to be taken, you

must also change the choice in the Solution list in all of the Combine Solutions nodes.
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The final study step in the study is a stationary study step, where each load group is
solved separately by adding one load case per load group.

Model Builder ~ 1| Settings
- 1=~ =tE -~ Combine Soluticns
4 {® building_response_spectrum.mph (root) = Compute

) Global Definitions

B Componentl fcompl)

~co Study: Eigenfrequency

~db Study: Gravity

4 ~on Study: Missing Mass Load Cases

28 Step 1: Modal Mass Summation X
o Step 2: Modal Mass Summation ¥ Solution: Study: Eigenfrequency/Sol. » | |Z9
R Step 3: Modal Mass Summation Z

Label: Modal Mass Summation X =

¥ Combine Solutions Settings

Solution operation: Weighted summation -

Weights method: One expression -
E Step 4: Missing Mass Static Load Cases eights metho B
4 . Solver Configurations Expression: compl.rspl.pflX
4 El Solution 4 {sold) [] Clear source solution

«c'[; Combine Solutions 1
E Solution Store 2 (sol5)
5 Combine Solutions 2
E Solution Store 3 [solf)
«é;; Combine Sclutions 3
E Solution Store 4 [(sol7)
:_‘-Jaf Compile Equations: Missing Mz
uvw Dependent Variables 1
IS_S Stationary Solver 1
[ Results

If the physics interface has loads other than those automatically generated
for missing mass correction, you need to make sure that those loads are
not solved for in the Missing Mass Static Load Cases study step. There are

several ways of doing that. You can, for example:

* Disable the other load nodes temporarily in the model tree before

n solving.

* Disable them in this study, by using Modify model configuration for study
step in the Physics and Variables scction in the settings for the study

step. This is the preferred method.

* Assign the other loads to a new load group.

* In each structural mechanics physics interface in the component, a set of Gravity
nodes are added. There are two such nodes for each spatial direction. Each gravity
node is connected to a corresponding load group. Half of the loads are pure gravity
loads, used when only together with the Static ZPA method. The other set of loads,

which are used in the Missing mass method, are referencing the combined solutions
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as the depend on the computed eigenmodes. The gravity nodes are placed under a

common group, named Loads for Missing Mass Correction.

4 @ building_response_spectrum.mph (root)

@ Global Definitions Label:  Modal Mass Load X =l
4 [ Componentl (compl .
- P (comply ¥ Edge Selection

= Definitions
7\ Geometry 1 Selection: | All edges -
=2 Materials n
4 :E 1:IBear'r? (beam) . . 2 L_" _
23 Linear Elastic Material 1 3 B B
23 Cross Section Data - Columns Active 4 [Tj ol
B Freel 5 fear
23 Initial Values 1 6
#5 Cross Section: Horizontal X (HEA260) g -
&5 Cross Section: Horizontal ¥ (HEA220)
3 Fixed Constraint 1 I Override and Contribution
5 Added Mass - Horizontal X _ .
5 Added Mass - Horizontal ¥ b Equation
Gravity 1 v Coordinate System Selection
- Loads for Missing Mass Correction
8 Total Mass Load X Coordinate systerm:
[ Modal Mass Load X Global coordinate system v
8 Total Mass Load ¥
% Modal Mass Load ¥ v Gravity
9 Total Mass Load Z
4 Modal Mass Load Z (withsel('sol5",u/1[m])-1)"1[m/s"2] |x
A Mesh1 9  (withsol{'sol5' v/1[m]))*1[m/s"2] ¥y | om/s
~db Study: Eigenfrequency (withsel('sol5",w/1[m]))"1[m/s"2] z

SETTINGS FOR THE RESPONSE SPECTRUM DATASETS

Defining the Spectra
You input the spectra as functions under Global Definitions. Usually, either an

interpolation function, or an analytic function, or a piecewise function is used.

There are two common methods to describe the design response spectra: either as
function of frequency, or as function of period time. Use the Depends on setting to

control this.

The handling of units in the functions are nonstandard:

e The unit of the argument is ignored. The function is called with either frequency
(hertz) or period time (seconds) as defined by the setting in Depends on.

e The unit of the function is not checked. The function will, however, be scaled to
model units, so if you, for example, enter the unit mm/s"2 for an acceleration
spectrum, the function will (in an SI system) be scaled by 1,/1000. You would get

the same effect if the entered unit is inconsistent (for example, mm).
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The spectra you enter have the following correlation to the spatial directions:

* In 2D, you give two spectra: one horizontal and one vertical. The horizontal

spectrum acts along the global X-axis, and the vertical one acts along the Y-axis.
* In 3D, the vertical spectrum always acts along the global Z-axis.

* In 3D, you can supply two different horizontal spectra, called primary and
secondary horizontal spectrum. Those spectra act in two orthogonal directions,
which by default coincide with the global X and Y directions. By giving a nonzero
value to Primary axis rotation, you can make the primary spectrum act in an arbitrary

direction in the XY-plane.

* Some Spatial combination methods in 3D (CQC3 and SRSS3) assume that the two
horizontal spectra are equal except for an amplitude scale factor. In such case, you
only provide one spectrum together with a Secondary horizontal spectrum scale factor
(value between 0 and 1).

Mode Combination

The combination of the eigenmodes is the core of the response spectrum methods.
Most commonly the combination is done in two passes: first the response to the
excitation in each spatial direction is determined, and then a total response is computed
by combining the spatial responses. However, for certain methods the total response

is computed in one pass.

First, you select a Spatial combination method. If it is SRSS or Percent method, you also

select a Mode combination method.

The mode combination methods require different inputs. In particular, several of them
provides a possibility to choose whether the coupling terms between modes are to be
considered as always positive, or they may actually reduce the total response. This is
controlled by the Use absolute value for coupling terms check box. Its default value
differs between the methods, according to what is expected to be the most common

choice.

Periodic Modes and Rigid Modes

For frequencies higher than the highest frequency content of the excitation, the SDOF
system will respond as a rigid body. Some of the response spectrum evaluation methods
take this into account. The effect is that high-frequency (“rigid”) modes are assumed
to have a higher degree of correlation than low-frequency (“periodic”) modes. To take
this effect into account, you can select Rigid modes to be the Gupta method or the

Lindley-Yow method.
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Missing Mass Correction

In general, only a small fraction of the total number of eigenmodes are used in the
superposition. Therefore, some fraction of the total mass of the structure is not
accounted for. The ignored modes usually have high natural frequencies. Such modes
will not have a significant dynamic amplification. The mass in the corresponding
SDOF system will just follow the movement of the foundation. This means that if the
distribution of the missing mass is known, then it can be treated as an extra stationary

mass force, where the peak acceleration during the event replaces the acceleration of
gravity.
You can use two different methods for missing mass correction:

* In the Missing mass method, the difference between the true mass distribution and
the mass represented by the used eigenmodes will act as extra static load. Typically,
most of the missing mass is located close to support points, where the modal
amplitudes are low. This method can be used together with either the Gupta method

or the Lindley-Yow method.

e In the Static ZPA method, the total inertial force is used as static load. At the same
time, only the periodic part of the response is used in the mode summation. This
method can only be used together with the Lindley-Yow method because it is only

compatible with the assumptions about how the rigid modes are scaled.

RESULT INTERPRETATION

All results from a response spectrum analysis are positive; the evaluation methods
contain absolute values or RMS-like operations. This has important implications for
the interpretation of the results:

 If the sign of your result quantity is important for the conclusions, you need to

manually consider also the case of a negative value.

¢ It is not meaningful to show deformation or vector plots of response spectrum
results.

An underlying implicit assumption for response spectrum analysis is that it is
performed in a frame of reference that follows the foundations of the structure. Thus,
all displacements, velocities, and accelerations are relative to the foundation, which in
itself is accelerating. Thus, it is difficult to evaluate the absolute acceleration. The
conservative way of doing so is to add the peak acceleration of the underlying event to
the computed acceleration. This will usually be rather conservative since the peak of

the excitation seldom coincides in time with the peak of the response.
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For displacements, the relative displacements between two objects within the same
moving frame is usually a more important result than the absolute displacement, so it

does seldom matter whether a constant value is added to all points or not.

* The theory is described in Response Spectrum Analysis Theory.

e The Response Spectrum node is described in the COMSOL
Multiphysics Reference Manual.

* Combine Solutions and Updating a Solution in the COMSOL
Multiphysics Reference Manual.

¢ The settings for the special datasets are described in Response
Spectrum 2D and Response Spectrum 3D in the COMSOL
Multiphysics Reference Manual.

o Earthquake Analysis of & Building: Application Library path
Structural_Mechanics_Module/Dynamics_and_Vibration/

building_response_spectrum

Shock Response of & Motherboard: Application Library path
Structural_Mechanics_Module/Dynamics_and_Vibration/

motherboard_shock_response
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Stress Linearization

The information about stress linearization is applicable if your license

includes the Structural Mechanics Module.

Stress linearization is a procedure in which the stress distribution along a line through
the thickness in a solid is approximated with an equivalent linear stress distribution,
similar to what would be the result of an analysis using shell theory. The line is
commonly referred to a stress classification line, SCL. This type of evaluation is
common in the analysis of pressure vessels. It is also useful for the design of

reinforcements for concrete structures and for fatigue analysis of welds.

To perform a stress linearization, you add one Stress Linearization node for each SCL.

ORIENTATION OF STRESS COMPONENTS
The stresses along the SCL are represented in a local orthonormal coordinate system,
x1-x2-x3. The x1 direction is oriented along the SCL, so it is mainly the stresses in the

second and third directions that are of interest.

* In 3D, you must specify the x2 direction and thus implicitly the x3 direction. You
specify the orientation either by selecting a point in the x1-x2 plane or by defining
an orientation vector in an approximate x2 direction. In either case, the actual x2
direction is chosen so that it is perpendicular to the SCL and lies in the plane you
have specified. The x3 orientation is then taken as perpendicular to x1 and x2. As
long as you are only interested in a stress intensity, the choice of orientation is

arbitrary.

e In 2D, the x3 direction is the out-of-plane direction, and the x2 direction is

perpendicular to the SCL in the XY-plane.

* In 2D axial symmetry, the x3 direction is the azimuthal direction, and the x2

direction is perpendicular to the SCL in the RZ-plane.

CREATING THE STRESS CLASSIFICATION LINE
The most straightforward way to create an SCL is to include it in the geometry, and
then select it in a Stress Linearization node. This corresponds to using the Line

linearization type where the SCL is defined by Edge.
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Figure 2-35: Four stress classification lines in a transition region at a pressurve vessel
nozzle.

There are, however, some situations where this direct approach is less convenient:

* When the introduction of the SCL in the geometry must be done after the analysis,
since the locations of critical regions were not obvious when setting up the initial
analysis. It is of course possible to add new edges and rerun the analysis, but this
may not be a good solution if the analysis time is long.

* When the introduction of the edges for the SCL makes the meshing more difficult.
It may, for example, not be possible to use swept meshes anymore, or the mesh
quality is reduced in critical regions.

In the two above cases an alternative is to define an SCL that is not included in the
geometry by connecting two arbitrary points with a straight line. This corresponds to
using the Line linearization type where the SCL is defined by Twe points. The
introduction of the SCL will in this case not make it necessary to update the geometry
and rerun the analysis. Since the SCL is disconnected from the geometry and mesh,
this option will also make meshing easier. The downside is then the you cannot control
the mesh quality along the SCL.
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In some cases it is difficult to a priori determine where to create the SCL or the critical
location may change depending on, for example, loading conditions or time. For such
cases, it is also possible to define it in a distributed manner such that an infinite number
of SCLs are created in a domain. The starting point of the SCLs are given by a
boundary selection, and they extend along the normals of the boundary through the
selected domains. This corresponds to using the Distributed linearization type.

STUDIES AND SOLUTIONS

Stress linearization is a pure postprocessing operation. The Stress Linearization node
will only create a number of variables, which can be evaluated under Results. It is thus
possible to add such nodes after the main analysis has been performed. In order to
make the new variables available for postprocessing, you must then run an Update

Solution.

RESULTS
When you have included one or more Stress Linearization nodes in a model, a number

of datasets and an extra predefined plot are generated.

One edge dataset is created for each SCL. These datasets are named Linearization

Line <n>, where n is an integer number.

4 ([ Results
4 Z: Datasets
& Study 1/5olution 1 {sol1)
T Study 1/Solution Store 1 (s0l2)
[H Linearization Line
[H Linearization Line 1
[H Linearization Line 2
[H Linearization Line 3
[H Linearization Line 4
[H Linearization Line 5

Figure 2-36: Generated datasets in a model with five SCL.

The plot contains graphs for the 22 component of the actual stress, the membrane
stress, and the linearized stress. The first Linearization Line dataset is selected. By
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changing edge dataset in the plot group, you can easily move between the different

stress classification lines.

Line Graph: Stress tensor, linearization line system, 22 component
Line Graph: Membrane stress, 22 component
Line Graph: Membrane plus bending stress, 22 component

x10° T T T T T

0.9r 5
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0.7r 5
0.6~ g
0.5F B
0.4 &
0.3r -
0.2 &
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Figure 2-37: Plot along a stress classification line.

For the Distributed linearization type, the created Linearization Line dataset corresponds
to a single SCL in selected domain. The starting point is specified in the Postprocessing
section of the feature, and must lie on the selected boundaries. The endpoint is

computed internally such that the cut line extends through the selected domains along

the boundary normal of the point.

VARIABLE NAMES

Each Stress Linearization node adds a number of variables. Many of these variables exist
with two different scopes, physics scope and feature scope. The physics scope is the
name of the physics interface, having the default value ‘solid’. The feature scope

contains also the tag of the Stress Linearization node, for example, ‘s11’.

As an example, the variable solid.Sm22 and the variable solid.s11.Sm22 have the
same value. The variables with physics scope make it more convenient to create

expressions using postprocessing. You could, for example, make a line plot of
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solid.sb22 and get all edges having a stress linearization colored by their individual
results.

TABLE 2-19: VARIABLES FOR STRESS LINEARIZATION

VARIABLE DESCRIPTION VARIABLE IN COMMENT SCOPE
THEORY SECTION
Sllsij Stress tensor in Gjj ij=11,12,13,22, Physics,
local coordinate 23,33 Feature
system
Smij Membrane stress oy, ;; ij=11,12,13,22, Physics,
23,33 Feature
Sbmaxij Maximumbending  Gy(may) i ij=11,12,13,22, Feature
stress 23, 33
Sbij Bending Stress Ob,ij ij=11,12,13,22, Physics,
23,33 Feature
Smbij Membrane + Smb,ij ij=11,12,13,22, Physics,
bending stress 23,33 Feature
Spsij Peak stress, Op(start),ij ij=11,12,13,22, Feature
starting point 23,33
Speij Peak stress, Oh(end),ij ij=11,12,13,22, Feature
starting point 23,33
Slm Stress intensity, Gint Physics,
membrane Feature
Slmbs Stress intensity, Gint Feature

membrane +
bending, starting
point
Simbe Stress intensity, Gint Feature
membrane +
bending, endpoint

Simb Stress intensity, max(SImbs, SImbe)  Physics,
membrane + Feature
bending,

Nij Local in-plane Ny ij=122,23,33 Feature
force

Mij Local bending M;; ij=22,23,33 Feature
moment

Qi Local out-of-plane i=2,3 Feature

shear force
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TABLE 2-19:

VARIABLES FOR STRESS LINEARIZATION

VARIABLE DESCRIPTION VARIABLE IN COMMENT SCOPE
THEORY SECTION
lengthtot Length of SCL L Feature
arclength Coordinate along X Feature
SCL

@,

Stress Linearization in the Structural Mechanics Theory Chapter.
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Solver Settings for Structural
Mechanics

COMSOL Multiphysics includes many solvers and solver settings. To make it easier to
use a suitable solver and its associated solver parameters, the physics interfaces have

different default settings based on the study type and features used. In some situations,
the default settings may need to be changed. This section helps you to select a solver

and its settings to solve structural mechanics and related multiphysics problems.
In this section:

e Symmetric Matrices
e Selecting Iterative Solvers

* Specifying Tolerances and Scaling for the Dependent Variables

{'i}‘ Studies and Solvers in the COMSOL Multiphysics Reference Manual

If you make changes to the physics, this will not be reflected in the solver

-& settings unless you regenerate the solver sequence.

CHAPTER 2:

Symmetric Matrices

Use the Matrix symmetry list (see the General section on the Settings window for
Advanced for a solver node such as Stationary Solver). There you can explicitly state
whether the assembled matrices (stiffness matrix, mass matrix) resulting from the

compiled equations are symmetric or not.

Normally the matrices from a single-physics structural mechanics problem are

symmetric, but there are exceptions, including the following cases:

*  Multiphysics models solving for several physics simultaneously (for example, heat
transfer and structural mechanics). Solving for several Structural Mechanics
interfaces, such as shells combined with beams, does not create unsymmetrical

matrices.
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¢ Contact with friction.

* Elastoplastic analysis

Advanced and Stationary Solver in the COMSOL Multiphysics Reference
ﬁ Mannal

One of the benefits of using the symmetric solvers is that they use less memory and are
faster. The default option is Automatic, which means the solver automatically detects if
the system is symmetric or not. Some solvers do not support symmetric matrices and

always solve the full system regardless of symmetry.

Selecting the Symmetric option for a model with unsymmetric matrices

may lead to incorrect results. For a nonlinear problem that is only weakly
.& unsymmetric, it may still be useful, since the faster solution of the

symmetric problem may offset the lower convergence rate. This is, for

example, the case for contact problems with a low coefficient of friction.

Complex matrices can be unsymmetric, symmetric, or Hermitian. Hermitian matrices

do not appear in structural mechanics problems.

Selecting the Hermitian option for a model with complex-valued

.& symmetric matrices produces incorrect results.

Selecting Iterative Solvers

The default solver for structural mechanics is the MUMPS direct solver in 2D and the
PARDISO direct solver in 3D. For large 3D problems (several hundred thousands or
millions of degrees of freedom) it is beneficial to use iterative solvers when possible to
save time and memory. The drawback is that they are more sensitive and might not
converge if the mesh quality is low. The iterative solvers also have more options than
the direct solvers.

For Stationary and Time Dependent studies and Frequency Domain studies in 3D, a
GMRES iterative solver is preconfigured and available as an alternative solver

suggestion for solid mechanics models.
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If the model is set up using quadratic (default) or higher-order elements for the
displacement dependent variable, this GMRES solver will use geometric multigrid
(GMQG) as the preconditioner.

For slender geometries, changing to SOR Line as presmoother and postsmoother can
give better results compared to SOR, which is the default for the GMG preconditioner.

For models using linear elements for the displacement dependent variable, the
preconditioner will be changed to smoothed aggregated algebraic multigrid (AMG).
This is to avoid remeshing when creating the discretization on the coarse level. Note
that you need to manually regenerate the solver sequence after you change the element
order if you want to make use of such change in the predefined iterative solver

configuration.

For eigenfrequency and eigenvalue studies, use the default direct solver

Specitying a shift frequency greater than the lowest eigenfrequency results

i

in indefinite matrices.

@ Studies and Solvers in the COMSOL Multiphysics Reference Manual

CHAPTER 2:

Solver Settings for Viscoelasticity, Creep, and Viscoplasticity

Viscoelasticity, creep, and viscoplasticity are time-dependent phenomena. The time
scale, however, is often such that inertial effects can be ignored. When that is the case,
you can modify the solver settings to improve the performance of the time-dependent

analysis.

PHYSICS INTERFACE SETTINGS

In the Model Builder, click the Solid Mechanics node. In the Settings window, under
Structural Transient Behavior, sclect Quasi static to treat the elastic behavior as

quasi static (with no mass effects; that is, no second-order time derivatives for the
displacement variables). Selecting this option gives a more efficient solution for
problems where the variation in time is slow when compared to the natural frequencies

of the system since no mass matrix will be created.
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SOLVER SETTINGS
When Quasi static is selected on the physics interface Settings window, the automatic

solver suggestion changes the method for the Time Stepping from Generalized alpha to
BDF.

For a Fully Coupled node (or Segregated node for multiphysics problems), the default
Nonlinear method under Method and Termination is Automatic (Newton). To get a faster
computation time when the strain rate is low or moderate, select Constant (Newton) as

the Nonlinear method instead.

In the COMSOL Multiphysics Reference Manual:

ﬁ * Studies and Solvers
 Fully Coupled and Segregated

Specifying Tolevances and Scaling for the Dependent Variables

The absolute tolerance parameters used for time-dependent studies are problem
specific. By default, the absolute tolerance is applied to scaled variables, with the

default value being 0.001 for all solution components.

The default scaling for the displacement components is based on the size of the
geometry in the model, and certain reasonable scales are used for the pressure and
contact force variables, if any. You are encouraged to change these scales as soon as
better values are known or can be guessed or estimated from the applied forces, yield
stress, reaction forces, maximum von Mises stress, or similar. The same suggestion
applies to the displacement scale, which can be estimated easily if the problem is
displacement controlled. This approach can significantly improve the robustness of the
solution. The variable scaling is accessed under Dependent Variables in the solver

sequence. The scales need to be entered using the main unit system in the model.

Solver Settings

In many situations, the default in COMSOL Multiphysics when having several physics
interfaces is to generate a solver sequence with a segregated solver. When several

structural mechanics interfaces are present, it can happen that the degrees of freedom
are placed in different segregated steps by the default solver generation. It is, however,

not possible to solve a model where the structural mechanics degrees of freedom are
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placed in different segregated groups, so in this case you must modify the solver

settings.

* If the model only consists of structural mechanics interfaces, the best option is

usually to replace the segregated solver with a fully coupled solver.

* If the model contains contact conditions where the augmented Lagrangian method
is used, there are two versions of the algorithm: one based on a special segregated
solver, and one based on a fully coupled solver. In the first case, a segregated solver
must be used. Place all structural mechanics degrees of freedom except the contact
variables in one segregated step. The contact variables should remain in the lumped
step, which should appear directly after the step with the other mechanical degrees
of freedom.

* If there are other types of physics interfaces than structural mechanics being solved
in the same study, then the segregated solver should usually be kept. Make sure that
all structural mechanics degrees of freedom except segregated contact variables are

solved in one segregated step.

In the COMSOL Multiphysics Refervence Manual:

'@l ¢ Solution Operation Nodes and Solvers

* About the Stationary Solver
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Using Reduced Integration

Using reduced integration in structural mechanics often have two main justifications:

* Reduce the per mesh element computational effort for assembly of system matrices.

* Improve the accuracy of the finite element by, for example, alleviating locking and

an overly stiff behavior.

The reduced computational effort stems from the fewer quadrature points in which
expressions are evaluated during the assembly of the system matrices. This reduction
can be particularly beneficial for models where a comparably large time is spent in
assembly, as compared to the time needed to solve the system of equations. Typical
examples include structural dynamics where the many increments can lead to a
significant time spent on assembling, and nonlinear material models where each
assembly step can be expensive. Plasticity, for example, involves solving a system of
nonlinear equations at each quadrature point, thus reducing the number of quadrature

points can significantly speed up the assembly time.

Reduced integration can be used selectively for different material models within the

same physics interface.

DISPLACEMENT ORDER AND MESH ELEMENT TYPES

The accuracy and performance of finite elements derived using a reduced integration
scheme depends on both the shape order of the displacement field and on the mesh
element type. For some combinations, reduced integration will give “exact” results,
whereas other combinations may result in deformation modes that produce zero strain
energy — so-called spurious zero energy modes or hourglass modes. In the latter case,

stabilization is needed to suppress such unwanted modes of deformation.

Linear

Using a linear displacement shape order is typically not encouraged in structural
mechanics, since all mesh element types lead to a deficient formulation. The derived
finite elements can be considered overly stiff, especially when a coarse mesh is used.

This overly stiff behavior is commonly caused by shear-locking effects.

These deficiencies can be alleviated by using a reduced integration scheme, which for
linear shape order results in a quadrature order equal to zero. Having only a single

integration point per mesh element removes the shear locking for linear elements, and
it can significantly improve the accuracy in coarse meshes. However, the derived finite

elements exhibit severe hourglassing and require stabilization to be useful. An example
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CHAPTER 2:

of a two-dimensional bending problem is given in Figure 2-38, which shows the
performance of linear quadrilaterals using reduced integration with and without
stabilization. A so-called hourglass pattern emerges without stabilization making the

solution clearly not viable.

Figure 2-38: Two-dimensional bending example using a linear displacement field and
reduced integration with stabilization (left) and without it (vight).

Using reduced integration for a linear displacement shape order can also remove
volumetric locking and improve the accuracy for incompressible materials, either with

or without a mixed formulation.

The derived finite elements are still sensitive to hourglassing even when stabilization is
used. It is therefore recommended to avoid singularities, since these can excite

hourglass modes and consequently be detrimental for features such as:

* Point and edge loads

* Point and edge constraints

Linear triangular and tetrahedral mesh elements exhibit poor accuracy when using

reduced integration, and are generally not recommended for such scheme.

For quadrilateral and brick mesh elements, the accuracy of the finite element and the
efficiency of the hourglass stabilization is best for mesh element with a good aspect

ratio and quality. The same applies to pyramid and wedge mesh elements.

Quadratic Serendipity

Finite elements derived using quadratic serendipity shape functions and reduced
integration in general have a less stiff behavior than their fully integrated counterparts.
The coarse mesh accuracy in terms of displacements can therefore be improved by

using reduced integration.

If the displacement field uses quadratic serendipity shape functions, any mesh element

leads to a finite element that has no hourglass modes, and therefore no stabilization is
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needed when using reduced integration. For this reason, using quadratic serendipity
shape functions together with reduced integration can be a very efficient formulation.
In theory, there could appear hourglass modes, but these are suppressed when the

finite elements are assembled.

If Automatic hourglass stabilization is selected, no stabilization is added
n when serendipity shape functions are used for the displacement field.

Quadratic Lagrange

Finite elements derived using quadratic Lagrange shape functions and reduced
integration in general have a less stift behavior than their fully integrated counterpart.
The coarse mesh accuracy in terms of displacements can therefore be improved by

using reduced integration.

However, when using reduced integration some mesh element types may lead to finite
elements that exhibit hourglass modes, this is the case for quadrilaterals and bricks.
Although these finite elements are not as sensitive as their linear counterpart, they
require stabilization to be viable. Stabilization is also encouraged for mesh elements

that have deformation modes with a very small stiffness, such as pyramids and wedges.

Higher-Order Shape Functions

Higher-order shape functions share many characteristics with the corresponding
quadratic shape orders. That is, there is no need for stabilization when using
serendipity shape functions, whereas finite elements derived from Lagrange shape

functions will have hourglass modes that require stabilization.

Triangular and Tetrahedral Mesh Elements

Triangular and tetrahedral mesh elements are special cases for which the reduced
integration scheme is exact given that the corresponding mesh element is not
distorted. These mesh element types do not exhibit hourglass modes when using
reduced integration, and therefore stabilization is not needed. If the current mesh only
consists of such mesh element types, turning oft the hourglass stabilization may
improve the performance of your model. The accuracy is not affected by enabling or

disabling stabilization, since the stabilization terms would evaluate to zero.

However, it is not recommended to use triangular or tetrahedral mesh elements in

combination with a linear displacement shape order.
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HOURGLASS STABILIZATION
A number of energy quantities are added that can be used to evaluate the amount of
hourglass stabilization energy introduced, and also to portrait parts of the model that

are prone to hourglassing. These include:

* <phys>.Wstb, a field showing the stabilization energy density. Note that values are

extrapolated from the true quadrature points.

e <phys>.Wstbavg, a mesh-element average of the variable <phys>.Wstb. This
variable is not available for layered shell features.

* <phys>.Wstb_tot, the total amount of stabilization energy in the model.

As a crude rule-of-thumb, the total stabilization energy should not be more than 5%

of the total strain energy in the model. If this is not the case, revise the model or use

full integration.

Always make sure that the obtained solution does not exhibit hourglassing when using
reduced integration with formulations prone to it. This is especially the case when the
displacement field is linear, since such finite elements can be particularly sensitive to

hourglassing.
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Result Presentation

In this section, some special postprocessing techniques that are particularly useful for

structural mechanics models are presented.
In this section:

* Local Orientations

* How an Expression Is Evaluated
* Quality Settings

* Gauss Point Evaluation

» Postprocessing of Eigenmodes

* Dlotting Applied Loads

General principles for result presentation and how to work with the
ﬁl features under Results in the Model Builder are provided in Results
Analysis and Plots in the COMSOL Multiphysics Refevence Manual.

Local Orientations

Many stress and strain tensor components are available both in local and global
directions. Some examples are:
* solid.sxy — Cauchy stress with respect to the global spatial coordinate system

* solid.s112 — Cauchy stress with respect to the local coordinate system of the

material.

* solid.SXY — Second Piola—Kirchhoft stress with respect to the global material

coordinate system

* s0lid.S112 — Second Piola—Kirchhoff stress with respect to the local coordinate
system of the material

* solid.eXY — Strain with respect to the global material coordinate system
* solid.el12 — the local coordinate system of the material
As can be seen, tensor component indices containing the names of a coordinate

directions has orientations along those axes. Components in local directions contain

the letter ‘I’ and numerical indices.
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The local directions are defined by the coordinate system attached to a material model.
For most material models, you can select a local coordinate system in the Coordinate

System Selection section of its settings. The purpose of this selection is twofold:

It provides the orientations along which orthotropic and anisotropic material data
are interpreted.

* Itacts as the coordinate system in which the local stress and strain tensor

components are presented.

When the material is isotropic, you can utilize the local coordinate system just for the
second purpose. In this case, the results of the analysis itself are independent of the
selected coordinate system. It just provides a transformation to be utilized during
results evaluation. If you want to change the orientations for the local components of
the tensors, you do not have to solve the study again. Instead, you select the new
coordinate system in the material model node, and then run Update Solution ( () for

the study or studies where you want the new definition to be applied.

@l Updating a Solution in the COMSOL Multiphysics Refervence Manual.

CHAPTER 2:

ADDING YOUR OWN TRANSFORMATIONS
If there are no suitable local coordinate system variables defined from the physics

interface itself, you can create your own transformations.

The easiest way of doing that is to use the Local System Results node, available in some

of the structural mechanics interfaces. Here, the input is just a local coordinate system.

A more general approach is to add a Vector Transtorm or Matrix Transform under
Definitions>Variable Utilities, depending on the type of object you are going to
transform.

These nodes provide a large degree of flexibility in defining various types of transforms,
but for a pure rotation into a new coordinate system, the settings are straightforward.
Do the following;:

I Add the local coordinate system in which the results are to be presented under

Definitions.
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2 In the Input section, enter the components of the vector or tensor to be

transformed. In most cases, you can pick it using Replace Expression ( 5 ).

Some tensors within the structural mechanics interfaces do not contain an
intrinsic information about the associated coordinate system. This is in

particular true for those tensors labeled as ‘local’. When using them in the

!

Matrix Transform node, you must then manually select the coordinate

system for the input tensor.

3 In the Vector Transform or Matrix Transform node, sclect the local coordinate system

in the Output section. In the latter node, select it twice.
4 Select the domain where you want this transformation to be valid.
5 Often, you want to enter your own name for the transformed object in the Name
text field.
Settings
Vector Transform
Label:  Vector Transform 1 =
MName:  u_cyl

Domain Selection

Selection: | All domains -
1 .
2 L—'EI -
3 =
1 O &
5 e
6

v Input IR

® ¥ z

u v w

Coordinate system: | Global spatial -

¥ Qutput

Coordinate syster: | Cylindrical System 2 (sys2) =

Figure 2-39: Example of settings for transforming the displacement vector to a cylindrical
coordinate system.
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Ifyou define the transformation after the study was solved, you will need to run Update
Solution ( () for the study or studies where you want to access the transformed

variables.

You can now access the new transformed quantities for various type of result
presentation. They are accessible under Definitions in the Replace Expression dialog.

Type filter text

Materials
Mesh
4  Componentl

4 Definitions
Component couplings
Frame transforms
Variables
Matrix Transform 1 (mattrl)
Boundary Systermn 1

Cylindrical System 2
4 Vector Transform 1 (u_cyl)
u_cyl.J - Volume factor
Transformation matrix (spatial frame) - rad L8
Input vector (spatial frame) - m

4 Transformed vector (spatial frame) - m
u_cyl.wr - Transformed vector, r component
u_cyl.vphi - Transformed vector, phi component
u_cyl.va - Transformed vector, a component
Geometry
Double-click or press Enter to add selected expression. )

Figure 2-40: Picking a transformed vesult in the Replace Expression dialoy.

Vector Transform and Matrix Transform in the COMSOL Multiphysics
E}‘ Reference Manual.

How an Expression Is Evaluated

In order to get optimal quality in the result presentation, it is necessary to have some

understanding about how expressions are evaluated.

In structural engineering, the maybe most commonly evaluated result quantities are
stresses and strains. Stress expressions can, however, be sensitive to specific settings
during result presentation, and are for this reason used as an example in the discussion

below.
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Consider a linear elastic material with thermal expansion and creep. The stress tensor

o is then computed as
G =0 +Cigy =0 +C:(e—g)

«.”

where C is the 4th-order elasticity tensor, “:” stands for the double-dot tensor product
(double contraction). The elastic strain g is the difference between the total strain €
and all inelastic strains &;,1. In this example, the inelastic strain tensor has two

contributions, creep strain €. and thermal strain &,. There may also be an extra stress

term Ggy With contributions from initial stress and external stress.
When a stress tensor component is to be evaluated, the following happens:

* A position X in an element is identified, where the value is to be computed.

* The total strain € is computed from the derivatives of the shape functions at x. The
strain depends on the values of the displacement degrees of freedom at the nodes

and on the shape functions in the element.

* The expression giving the thermal strain &, is evaluated at X. This expression will
depend on a temperature, which may be prescribed or computed in another physics
interface.

* The creep strain g, is a state variable, which is stored at the Gauss points in the

element. The value is picked from the Gauss point closest to x.

* The inelastic strain g;,¢] (in this example, the creep strains is now subtracted from
the total strains, to form the elastic strain &g.

* The elastic strain &g is multiplied by the elasticity tensor C, evaluated at X, to give
the stress 6. The material properties may depend on the location, either explicitly,
or for example by a temperature dependency.

* Any extra stress Ggy, cvaluated at X, is added to the stress tensor.

The subtraction between total and inelastic strains is however a sensitive operation. It
is not uncommon that these two terms are close to each other in value, so that the
resulting elastic strain is a small number obtained by subtraction of two larger
numbers. Since the three types of strain in this example have different types of
distribution through the element, there is a risk that this difference will exhibit artificial

variations inside the element.

As an example, let’s assume that the temperature has a quadratic variation through the
element, and that standard quadratic shape functions are used in Solid Mechanics. The
total strain is a linear function within each element, since it contains derivatives of the

shape functions. The computed elastic strain is the difference between the linear total
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strain and the quadratic thermal strain. If there also are creep strains present, they will

be piecewise constant, since they are taken from the nearest integration point.

It must, moreover, be realized that the total strain is ‘correct’ only in an average sense.

It provides a kind of best fit given by the finite element formulation.

Qunality Settings

In many features under Results, such as surface plots and line graphs, there is a section
named Quality, through which details of how the results are computed can be specified.
In some situations, you need to modify these settings to obtain optimal accuracy or

visually attractive presentations.

First, it can be noticed that stresses, strains, and any other variables that are based on
derivatives of the shape functions are not continuous over element borders. The
Smoothing control is used for improving plots by applying an averaging between
neighboring elements. The default when you add a result feature is to use smoothing,
and this will in general improve the results. It does however also hide any jumps in the
solution, which could indicate a too low resolution in the mesh. As soon as you are
investigating the quality of the solution, it is a recommended to avoid smoothing. In
the default stress plots that are generated by the structural mechanics interfaces, an
intermediate path is taken: the Smoothing threshold is set to Manual, with the Threshold
value set to 0.2. This means that as long as the values from adjacent elements do not
differ by more than 20%, smoothing is applied. If, however, there are significant jumps

in the solution, they will be clearly visible.

The Resolution sctting determines at how many points in the element the result
quantity is evaluated. Essentially, a local finer mesh is used within the element for the
visualization. Using a high resolution can be problematic and lead to local overshoots
and artificial ‘waviness’ of the solution. For smooth expressions, like a stress in the
absence of inelastic strains or a displacement, this is not a problem. If, however, the
function has sudden variations within the element, a high resolution will give results

having artificial variations.

The default resolution depends on several factors, but will generally result in that a
result quantity is evaluated in a rather large number of points in the element. In
addition to affecting plot quality, having a high resolution can make the plotting

significantly slower.

Using a low resolution will remove the sudden variations, but may still not be an

optimal choice. If you set the quality to No refinement, the expression is evaluated only
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at the corners of the element. This is, for example, rather far from the Gauss points
where many types of inelastic strains are stored. Also, a thermal strain with a quadratic

distribution will be rather far from its best linear approximation at the element corners.

The most robust solution if you encounter this type of problems it to create a
low-order field that approximates the “wavy” expression over the element, as described

in the next section.

Entering Quality Settings for Plot Settings Windows in the COMSOL
@ Multiphysics Reference Manual.

Gauss Point Evaluation

You can create a smooth field within each element for any expression by using the
gpeval() operator. In its most basic version, this operator has the following syntax:
gpeval(integration_order, expression).

For a general description of the gpeval() operator, see gpeval in the
@ COMSOL Multiphysics Reference Manual.

The gpeval() operator evaluates an expression at a given set of Gauss points and
creates an approximate smooth field using the least squares fit. It is important to use
the correct integration order to accurately evaluate state variables stored at Gauss
points, as in the case with many nonlinear material models. For example, when
quadratic shape functions are used with full integration, the first argument to the
gpeval() operator should be 4.

For some common cases, physics interfaces define built-in variables with Gauss point
evaluation. As an example, the built-in variable solid. sGpx is equivalent to using the
expression gpeval(4,solid.sx). Another example is solid.misesGp. However,
similarly using gpeval(4,solid.mises) can lead to unphysical negative values
caused by the extrapolation done by the operator. Hence, for a variable that is strictly
positive, one should use max (0, gpeval(4,solid.mises)) or similar expressions;

this is done for all relevant built-in variables with Gauss point evaluation.

When working with surface plots in a 3D geometry, or with line graphs in 2D and 3D,
there is a subtle difference between the built-in variables and the operator syntax. The
built-in variables are defined in the domain, and the field is projected from the domain

to be evaluated on boundaries and edges. If, however, you type in the operator syntax
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as an expression in a line graph, the field is created only on that line, using only Gauss
points on the element edges. In order to avoid this, create domain variables under
Definitions>Variables using the operator syntax, and then use them on boundaries or
edges. Another alternative is to use the mean () operator, which evaluates any
expression in adjacent entities of higher order. For example, to evaluate a domain
variable in different plots in 3D, use the following syntax:

* Surface plot: mean(gpeval(integration_order, expr))

¢ Line graph: mean(mean(gpeval(integration_order, expr)))

* DPoint graph: mean(mean(mean(gpeval(integration_order, expr))))

There are also built-in operators that can be used specifically for evaluating domain
variables in any type of plot. Their syntax is summarized in Table 2-20. These operators
also automatically set the integration order to be consistent with its parent physics

interface <phys>, as opposed to the corresponding general operators. Also, for

example, reduced integration is taken into account.

TABLE 2-20: SUMMARY OF OPERATORS FOR EVALUATION EXPRESSION IN GAUSS POINTS OF DOMAIN MESH
ELEMENTS.

OPERATOR SYNTAX EXPLANATION

<phys>.elemavg(expr) Elementwise average in domain mesh
elements

<phys>.elemgpmax (expr) Elementwise maximum over Gauss points in

domain mesh elements

<phys>.elemgpmin(expr) Elementwise minimum over Gauss points in
domain mesh elements

<phys>.elemint (expr) Elementwise integration in domain mesh
elements
<phys>.gpeval(expr) Elementwise Gauss point evaluation in

domain mesh elements

Postprocessing of Eigenmodes

EIGENMODE SCALING

The eigenmodes that form the solution to eigenvalue problems, like eigenfrequency
and linear buckling, have some special properties that require attention. The most
important property is that an eigenmode is only defined up to an arbitrary

multiplicative factor. Thus, the actual values of the modal displacements have no
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physical significance. In order to emphasize this, the default eigenmode plots have no

color legend.

The underlying theory does, however, assume that the mode shape is an infinitesimal

perturbation to the geometric shape.

If the eigenmodes have an unfortunate scaling, confusing effects can appear during
postprocessing:

* Any variable or expression used during postprocessing of an eigenvalue solution will
be evaluated using the setting of the Include geometric nonlinearity check box of the
cigenfrequency study step. If the values of the modal displacements are large and the
study step is geometrically nonlinear, then the nonlinear parts of the strain tensor
may become large. This is not consistent with the assumption of a small

perturbation.

 If'the study step is geometrically linear, there can be other types if inconsistencies if
the modal displacements are large. Many variables are then defined under the
assumption that angles are small. As an example, the normal vectors to a shell can

appear to no longer have unit length.

* Rotational degrees of freedom scale the same way as the displacements. Computed

rotations can potentially get values of more than a full revolution.

In most cases, you only have to be aware of these phenomena. But if you really need
to access quantitative values (for example, as modal stresses), you need to use some

caution.

In a response spectrum analysis, all result quantities are computed by
n scaling the modal results. In this case, it is necessary that all eigenmodes

are scaled so that the assumptions of geometric linearity are fulfilled.

The scaling of eigenmodes can be controlled in the Output section in the settings for
the Eigenvalue Solver node. By setting Scaling of Eigenvectors to Maximum and using a
small value for the Maximum absolute value, you can force the eigenmodes to be small.
All structural mechanics interfaces override the default value and set it to 107 times
the size of the bounding box of the geometry in order to keep the eigenmode

displacements small.

DEFORMATION PLOT ARTIFACTS
The automatic scaling of a deformation plot can give strange impressions, in particular

when the main deformation shape is a rotation. The geometry then seems to become
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wider, since the displacements are directed in the infinitesimal tangential direction

rather than along a circular path.

Figure 2-41: A torsional eigenmode in a box beam.

EIGENMODES IN A DEFORMED STRUCTURE

When you perform a prestressed eigenvalue analysis, it is possible that the prestress
load case causes a significant deformation to the structure. The default eigenmode plot
will still show the mode relative to the original undeformed structure. Sometimes this

does not give a good enough representation of actual mode shape.
To improve the visualization, do the following:

I Go to the settings for the 2D or 3D plot group containing the mode shape plot.
Under Plot dataset edges, sct Frame to Spatial. This will make the outline to be given
by the deformed shape from the prestress load case.

2 In the dataset for the eigenvalue solution, set Frame to Spatial. The mode shapes are
now plotted relative to the deformed shape.

Plotting Applied Loads

When solving, predefined plots containing the applied loads are generated. You can
add them from the Add Predefined Plots window. Figure 2-42 shows an example of such
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a plot. In this section, it is described in detail how you can work with these plots to

fine-tune the visualization.

Time=0 Boundary Loads (solid)

N/m?*
x10°

v‘a\/ gﬁﬁv‘ v

0

Figure 2-42: Example of an automatically genevated plot to visualize the boundary loads
applied to o bracket.

STRUCTURE OF DEFAULT LOAD PLOTS

For each structural mechanics physics interface and dataset, a node group is generated
under Results. Its name is Applied Loads (<interfaceTag>). Within this node group, one

plot group per type of load is created. The possible plot group names are listed in
Table 2-21.

TABLE 2-21: PLOT GROUP NAMES AND PLOT TYPES

LOAD GROUP NAME  PLOT TYPE DESCRIPTION

Volume Loads Arrow Volume,  Generated from Body Load, Gravity, Linearly
Arrow Surface,  Accelerated Frame, and Rotating Frame. The
Arrow Line, plot type depends on the geometrical
Arrow Point dimension of the physics interface.

Boundary Loads  Arrow Surface  Generated from Boundary Load. Also, from
Added Mass on a boundary combined with
Gravity or Rotating Frame.

Face Loads Arrow Surface Generated from Face Load in Shell, Plate, and
Membrane interfaces.

Face Moments Arrow Surface Generated from Face Load in Shell, Plate, and
Membrane interfaces of nonzero moments are
present.
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TABLE 2-21: PLOT GROUP NAMES AND PLOT TYPES

LOAD GROUP NAME  PLOT TYPE DESCRIPTION

Edge Loads Arrow Line Generated from Edge Load. Also, from Added
Mass on an edge combined with Gravity or
Rotating Frame.

Edge Moments Arrow Line Generated from Edge Load in Shell, Plate, and
Beam interfaces if nonzero moments are
present.

Point Loads Arrow Point Generated from Point Load.

Point Moments Arrow Point Generated from Point Load in Shell, Plate, and
Beam interfaces if nonzero moments are
present.

Global Loads, Point Generated from global features like Rigid

Global Moments  Trajectories Connector and Rigid Material, which have

subnodes as Applied Load and Applied Moment.
Such loads are a type of point load, but they are
applied at a certain location in space, rather
than at a point in the geometry.

Fluid Loads Line Generated from Fluid Load in Pipe Mechanics
(Pressure) interface.
Fluid Loads Arrow Line Generated from Fluid Load in Pipe Mechanics
(Drag Force) interface.

In general, load groups are generated as soon as there is load of a certain type,
irrespective of whether the value of the load is nonzero or not. Load features in which
it is possible to enter both a force and a moment contribution, such as Edge Load in the

Beam interface, have a special behavior:

* A plot group for forces is always generated.

* A plot group for moments is only generated if there is a nonzero value in at least

one of the components of the moment vector.

Within a load group, there is one plot per load feature. In most cases, the plot has the
same label as the generating load feature, for example Boundary Load 2.

MODIFYING THE VISUALIZATION

The default appearance of the load plots provides a good overall visualization of the
loads applied to the model. However, for complex models or for creating plots for
export, you might want to modify the default setting. Most default settings are
presented in the following together with some prepared alternative settings and

suggestions that you can make use of. While the plots are automatically generated, you
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can modify them in any way you want to improve the visualization for your specific

model; the plots are not reset each time you compute the study.

Style Inheritance

Within a load group, the style of each load plot is inherited from the previous plot. The
inheritance can be modified in the Inherit Style section. For example, clear the Color
check box to enable different color schemes for different loads and the Color and data

range to allow different ranges of the color legends.

Filled Surfaces

In order not to hide any load arrows, the default is to use a transparent representation
of the geometry. This is obtained through the extra surface plot Gray Surfaces together
with a Transparency subnode. This plot adds a uniform gray surface on each boundary
of the geometry. The effect is shown in Figure 2-42. If you disable the Gray Surfaces
plot, the structure will have a wireframe outline only. You can modify the transparency
level in the Transparency subnode, or delete the node completely. You can,
furthermore, add a Selection subnode to the Gray Surfaces node to modify on which

boundaries to plot the gray surface.

The Gray Surfaces plot is only generated for physics that use a 2D or 3D representation
of the geometry.

Arrow Heads

You can change the attachment of the arrow by changing the setting of Arrow base in
the Coloring and Style section. The default is in most cases to place the tail on the
geometry. One exception is, for example, a pressure boundary load for which the head

of the arrow is placed at the geometry.

Number of Arrows

For distributed fields, the default is to place one arrow at the center of each element,
element face, or element edge. If the density of arrows is not appropriate, you can
modify the settings in the Arrow Positioning section. For example, change Placement to
Mesh nodes to place an arrow in each point of the of the linear mesh, or set it to Uniform

to specify an arbitrary number of arrows to be plotted.

Color Scheme

The color scheme of the arrow plots is controlled in a Color Expression subnode. The
default color table is a Gradient going from red to black. You can change this in the
Coloring list. By selecting Color table, the color table is automatically set to Spectrum.
This color table can be useful for a clear visualization of the applied loads, when, for

example, the magnitude varies significantly between load features.
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Deformation

By default, the load plots are presented in the initial configuration of the model.
However, when applicable, a Deformation subnode is added to each plot, but with the
Scale factor sct to zero. Modify the scale factor to view the loads in a deformed state.
Note that when multiple load plots exist in a plot group, the scale factor is by default
inherited from the first plot. The exception is the Gray Surfaces plot, where the scale
factor is set independently of the other plots.

When the analysis includes geometric nonlinearities, the Scale factor is by default set to

one. Hence, the loads are presented in the deformed configuration for such cases.

e Under geometric nonlinearity, the size of the boundary load arrows
will scale with the local area deformation. Thus, a constant pressure
may appear as nonconstant.

n * Load plots that make use of a Point Trajectories node include the
displacements explicitly in order to visualize the current position of the
load.

CHAPTER 2:

USING LOAD PLOTS DURING PREPROCESSING

The automatically generated plots of the applied loads can be useful during
preprocessing, for example to verify that loads are applied on the correct boundary and
in the intended direction. To generate the load plots before computing the study,
right-click the Study node, and select Get Initial Value, see Computing the Initial
Values. Doing so will generate all default and predefined plots requested by the
currently active features in all physics interfaces active in the study. You can then insert

the plot from the Add Plot window.

Note that plots are only generated the first time a dataset is created, which means that
the settings will not be updated for subsequent computation of the solution.
Moreover, load plots will not be generated for load features that are added after the
creation of the dataset. To generate new plots when new load features have been
added, delete the current load plots. Then compute the solution or do the Get Initial

Value, and insert the new load plots from the Add Plot window.
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Part Libraries

The Part Libraries can be used to store and access a set of standard geometric entities.
It is possible to create custom user-defined geometry libraries or to use built-in
collections of geometric entities that are available with many add-on modules for
COMSOL Multiphysics.

A dedicated part library for the Structural Mechanics Module is included. The library

consists of two main parts:

* Bolts, nuts, and washers. These are parts intended for quick modeling of fasteners.
The bolts geometries are prepared for use with the Modeling Pretensioned Bolts
functionality. Some of the bolt geometries are also augmented with an extra domain

intended for use as a “drill” when building the geometry.

Hex Bolt

blen

Bolt with hexagonal head.

Figure 2-43: Example of & bolt part.

* Beam cross sections. These are 2D geometries, primarily intended for use in The

Beam Cross Section Interface. The library includes geometries for all standard beam
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cross sections according to European and US standards, as well as generic beam

geometries.

European HEA-beam

European wide flange beams.

A single size parameter controls all section dimensions, For example, entering 120 as
parameter gives a standard HEA 120 beam cross section.

Figure 2-44: Example of a standard beam cross section.

Generic channel cross-section shape with either flat or tapered flange.

Figure 2-45: Example of a generic beam cross section.
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All entities in the built-in the Part Libraries are fully parameterized, making them easy

to use as parts in large-scale industrial models.

@l Part Libraries in the COMSOL Multiphysics Reference Manual
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Structural Mechanics Theory

This chapter contains the theory behind the implementation of the structural
mechanics functionality in COMSOL Multiphysics.

In this chapter:

Solid Mechanics Theory
Frames and Coordinate Systems
Analysis of Deformation
Stresses

Equation of Motion

Material Models

Formulation of the Equilibrium Equations
Study Types

Damping

Loads and Constraints

Contact Analysis Theory

Bolt Modeling Theory

Stress Linearization
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* J-Integral Theory

* Embedded Elements

* Theory for Thin Layers

* Reduced Integration and Hourglass Stabilization
* Average Rotation

e Energy Quantities
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Solid Mechanics Theory

Introduction

In the following, the theory for the Solid Mechanics interface is described. To a large
extent, this theory covers other structural mechanics physics interfaces, such as Shell
and Beam, which are included with the Structural Mechanics Module. For these other
interfaces, only the details which are specific to the interface are described in its
additional documentation.

* Theory for the Shell and Plate Interfaces
e Theory for the Membrane Interface
@}‘ * Theory for the Beam Interface
* Theory for the Beam Cross Section Interface

e Theory for the Truss Interface

TENSOR NOTATION
Some of the theory is developed using tensor notation. In most cases, explicit index
notation is avoided. This means that the order of a tensor usually must be understood

from the context. As an example, Hooke’s law for linear elasticity is usually written like
c = C:e
Here, the stress tensor ¢ and the strain tensor € are second-order tensors, while the
constitutive tensor C is a fourth-order tensor. The :” symbol means a contraction over
two indices. In a notation where the indices are shown, the same equation would read
Sij = Cijkiri
where the Einstein summation convention has been used as a shorthand for

3 3

o= D, Y Cijnitul

k=1l=1

In a few cases, nonorthonormal coordinate systems must be considered. It is then
necessary to keep track of the covariance and contravariance properties of tensors. In

such a case, Hooke’s law is written
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The stress and constitutive tensors have contravariant components, while the strain

tensor has covariant components.
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Frames and Coordinate Systems

In this section:

* Material and Spatial Coordinates

* Coordinate Systems

Material and Spatial Coordinates

The Solid Mechanics interface, through its equations, describes the motion and
deformation of solid objects in a 1-, 2-, or 3-dimensional space. In COMSOL
Multiphysics terminology, this physical space is known as the spatial frame, and
positions in the physical space are identified by lowercase spatial coordinate variables

x,y,and z (or r, ¢, and z in axisymmetric components).

Continuum mechanics theory also makes use of a second set of coordinates, known as
material (or reference) coordinates. These are normally denoted by uppercase
variables X, Y, and Z (or R, ®, and Z) and are used to label material particles. Any
material particle is uniquely identified by its position in some given initial or reference
configuration. As long as the solid stays in this configuration, material and spatial

coordinates of every particle coincide and displacements are zero by definition.

More information can be found in About Frames chapter in the COMSOL
Multiphysics Reference Manual.

When the solid object deforms due to external or internal forces and constraints, each
material particle keeps its material coordinates X (bold font is used to denote
coordinate vectors), while its spatial coordinates change with time and applied forces

such that it follows a path
x = x(X,¢) = X+u(X,?) (3-1)

in space. Because the material coordinates are constant, the current spatial position is
uniquely determined by the displacement vector u, pointing from the reference
position to the current position. The global Cartesian components of this displacement
vector in the spatial frame, by default called u, v, and w, are the primary dependent

variables in the Solid Mechanics interface.

By default, the Solid Mechanics interface uses the calculated displacement and

Equation 3-1 to define the difference between spatial coordinates x and material
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coordinates X. This means the material coordinates relate to the original geometry,

while the spatial coordinates are solution dependent.

Material coordinate variables X, Y, and Z must be used in coordinate-dependent
expressions that refer to positions in the original geometry, for example, for material
properties that are supposed to follow the material during deformation. On the other
hand, quantities that have a coordinate dependence in physical space — for example, a
spatially varying electromagnetic field acting as a force on the solid — must be

described using spatial coordinate variables x, y, and z.

In a geometrically linear analysis, no difference is made between the two
coordinate systems. For this case, the material and spatial coordinates
coincide. This may seem inconsistent with equation Equation 3-1 but
ensures linearity for problems that are expected to be linear. It is then, for
n example, equivalent to choose a coordinate system related to the material
frame or one related to the spatial frame. In a geometrically nonlinear
analysis, however, any use of a spatial coordinate in an expression will
introduce a nonlinear contribution because it will be deformation

dependent.

Coordinate Systems

Force vectors, stress and strain tensors, as well as various material tensors are
represented by their components in a specified coordinate system. By default, material
properties use the canonical system in the material frame. This is the system whose
basis vectors coincide with the X, Y, and Z axes. When the solid deforms, these vectors

rotate with the material.

Loads and constraints, on the other hand, are applied in spatial directions, by default
in the canonical spatial coordinate system. This system has basis vectors in the x, y, and
z directions, which are forever fixed in space. Both the material and spatial default
coordinate system are referred to as the global coordinate system in the physics

interface.
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Vector and tensor quantities defined in the global coordinate system on either frame
use the frame’s coordinate variable names as indices in the tensor component variable

names.

For example, solid.SXY is the material frame XY-plane shear stress, also
known as a second Piola—Kirchhoff stress, while solid.sxy is the
corresponding spatial frame stress, or Cauchy stress. There are also a few

[

mixed tensors, most notably the deformation gradient solid.FdxY,
which has one spatial and one material index because it is used in

converting quantities between the material and spatial frames.

It is possible to define any number of user coordinate systems on the material and
spatial frames. Most types of coordinate systems are specified only as a rotation of the
basis with respect to the canonical basis in the underlying frame. This means that they
can be used both in contexts requiring a material system and in contexts requiring a
spatial one. A coordinate system defined on the spatial frame will in general introduce
nonlinearities in the problem, since its directions are deformation dependent in case of

a geometrically nonlinear analysis.

The coordinate system can be selected separately for each added material model, load,
and constraint. This is convenient when for example, an anisotropic material with
different orientation in different domains is required. The currently selected

coordinate system is called the local coordinate system.

Coordinate systems used for describing a material must be defined on the material

frame.

Boundary System

Many quantities for shells, membranes and thin layers can best be interpreted in a local
coordinate system aligned to the surface. Material data, initial stresses and stress results
are always represented in this local coordinate system. The local system for stress

output coincides with the orientations defined for the material input.

When a Boundary System is selected, the orientation of the local system is fully defined
by the boundary system.

When using a boundary system, it also possible to control the orientation of the

normal by selecting the Reverse normal direction check box.
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Analysis of Deformation

CHAPTER 3:

The analysis of deformation aims at deriving descriptions of the local deformation in a
material suitable for use in a constitutive relation. Often, but not always, this amounts

to deriving a strain tensor.

This section starts by a general description of finite deformation in solids. At the end,

the specialization to engineering strains used in geometrically linear analysis, is made.
In this section:

» Lagrangian Formulation

¢ Deformation Measures

e Invariants of Strain

¢ Inelastic Strain Contributions
* Deformed Geometry

* Axial Symmetry

¢ DPlane Strain

¢ Generalized Plane Strain

Lagrangian Formulation

The formulation used for structural analysis in COMSOL Multiphysics for both small
and finite deformations is a zotal Lagrangian formulation. This means that the
computed stress and deformation state is always referred to the material configuration

rather than to current position in space.

Likewise, material properties are always given for material particles and with tensor

components referring to a coordinate system based on the material frame. This has the
obvious advantage that spatially varying material properties can be evaluated just once
for the initial material configuration, and they do not change as the solid deforms and

rotates.

Consider a certain physical particle, initially located at the coordinate X. During

deformation, this particle follows a path
x = x(X,?)

Here, x is the spatial coordinate and X is the material coordinate.
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For simplicity, assume that undeformed and deformed positions are measured in the

same coordinate system. Using the displacement u it is then possible to write
x = X+u(X,?)

The displacement is considered as a function of the material coordinates (X, Y, Z), but
it is not explicitly a function of the spatial coordinates (x, y, 2). It is thus only possible

to compute derivatives with respect to the material coordinates.

N
M

In the following, the gradient operator is assumed to be a gradient with respect to the

material coordinates, unless something else is explicitly stated.

V =vy =|90 0 0
oX oY 0Z

The gradient of the displacement, which occurs frequently in the following theory, is
always computed with respect to material coordinates. In 3D:

ou ou ou
0X oY o0Z
Vu = |[Ov Ov Ov

0X 0Y oZ
ow ow ow

10X 3Y 3Z)

The deformation gradient tensor, F, shows how an infinitesimal line element, dX is
mapped to the corresponding deformed line element dx by

ANALYSIS OF DEFORMATION
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ox
dx = &dx = FdX

The deformation gradient F' contains the complete information about the local
straining and rotation of the material. It is a two-point tensor (or a double vector),
which transforms as a vector with respect to each of its indices. It involves both the

reference and present configurations.

In terms of the displacement gradient, F' can be written as

0x
F===vu+l
oX
The deformation of the material (stretching) will in general cause changes in the
material density. The ratio between current and initial volume (or mass density) is
given by
dV _ Po
— = — =det(F) = J
=% (F)
Here, py is the initial density and p is the current density after deformation. The
determinant of the deformation gradient tensor F is related to volumetric changes with
respect to the initial state. A pure rigid body displacement implies / = 1. Also, an
incompressible material is represented by JJ = 1. These are called #sochoric processes.

The determinant of the deformation gradient tensor is always positive (since a negative
mass density is unphysical). The relation p = pg/J implies that for J < 1 there is
compression, and for J > 1 there is expansion. Since J > 0, the deformation gradient

F is invertible.

In the material formulations used within the structural mechanics interfaces, the mass
density should in general be constant because the equations are formulated for fixed

material particles. Thus, do not use temperature-dependent material data for the mass
density. The changes in volume caused by temperature changes are incorporated using
the coefficient of thermal expansion when adding Thermal Expansion (for Materials)

to the material model.

The variable solid.rho represents a “reference” or “initial” density py,

and not the “current” density p. If you are interested in finding the

= density of the deformed material (the density in the spatial frame), you
can compute it using the expression solid.rho/solid.dJ.

CHAPTER 3:
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Deformation Measures

Since the deformation tensor F is a two-point tensor, it combines both spatial and
material frames. It is not symmetric. Applying a singular value decomposition on the
deformation gradient tensor gives an insight into how much stretch and rotation a unit

volume of material has been subjected to. The right polar decomposition is defined as
F =RU

where U is the right stretch tensor given in the material frame, and R is a proper
orthogonal tensor such that det(R) = 1 and R = RT. The rotation tensor R describes
the rigid rotation, and all information about the deformation of the material is

contained in the symmetric tensor U.

¢ The internal variables for the deformation gradient tensor with respect
to global material coordinates are named solid.FdxX, solid.FdxY,
and so on.

¢ The internal variables for the deformation gradient tensor with respect
to local material coordinates are named solid.Fdx1, solid.Fdx2,

and so on.

!

The rotation tensor components are named solid.RotxX,
solid.RotxY, and so on.

¢ The right stretch tensor components are named solid.UstchXX,

solid.UstchXY, and so on.

An uppercase index refers to the material frame, and a lowercase index
refers to the spatial frame.

The stretch tensor contains physically important information about the deformation
state. The eigenvalues of the U tensor are the principal stretches, A1, A9, and Ag. The
stretch of a line element with initial length L and current length L is

}\,=—=1+Een

g
0

where g¢pg is the engineering strain. The three principal stretches act along three

orthogonal directions. In the coordinate system defined by these principal directions,
the U tensor will be diagonal:
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% 00
U={02x, 0
0 0 %y

The right Canchy—Green deformation tensor C defined by
c=F"F=02

It is a symmetric and positive definite tensor, which accounts for the strain but not for
the rotation. The eigenvalues of the C tensor are the squared principal stretches, thus
providing a more efficient way to compute the principal stretches than by using the

stretch tensor U directly.

The Green—Lagrange strain tensor is a symmetric tensor defined as
1 1.7
e = 2(C—I) = 2(F F-I)

Since C is independent of rigid body rotations, this applies also to the Green—Lagrange
strain tensor.

Using the displacement components and Cartesian coordinates, the Green—Lagrange

strain tensor can be written on component form as

_1f oy 5uj Ouy, Ouy
sij_ZYj-F@_Xi*-aXi.@Xj . (3-2)

The rotation independence of the Green—Lagrange strain tensor,
together with the fact that it for small strain approaches the engineering
strain tensor explains why it is a common choice in constitutive models

for small strain- finite rotation. As an opposite, a pure rigid rotation causes

i

strains when engineering strains are used.

The Green—Lagrange is the natural strain representation in a Lagrangian
description. Since it is a tensor in the material frame, its values should be

interpreted in along the undeformed axis orientations.
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* The internal variables for the Green—Lagrange strains are named
solid.eX, solid.eXY, and so on.

¢ The internal variables for the Green—Lagrange strain tensor in local
coordinates are named solid.el11, solid.el12, and so on.

In a geometrically linear analysis, the strain variables
solid.eX,solid.el11, and so on, will instead represent engineering

!

strain.

¢ The right Cauchy-Green deformation tensor in local coordinate
system are named so0lid.C1l11, solid.C112, and so on.

Some textbooks prefer to use the left Canchy—Green deformation tensor
B=FF T, which is also symmetric and positive definite but it is defined in

!

the spatial frame.

ENGINEERING STRAIN
Under the assumption of small displacements and rotations, the normal strain
components and the shear strain components are related to the deformation as follows:

_ du _ Yy _ 1<6u ov
6= = f= 5= 5lay ¥ o

_ o _Yyz_ l(ov  ow (3-3)
K e 5= 3Gt o)

_ow e 10w o)
" % " o 2\ T

In COMSOL Multiphysics, the tensor form of strain representation (&, €y, &) is

used.
In the documentation, the symbol € is used to denote the strain tensor in
general. In a geometrically nonlinear analysis, strains should be
n interpreted as a Green—Lagrange strains. In a geometrically linear analysis,

the engineering strain is used.

The symmetric strain tensor € consists of both normal and shear strain components:
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€y 8acy €z

e =
Exy & &y

€ €

Xz syz z
The strain-displacement relationships for the axial symmetry case for small

displacements are

_ 6u+6w

€ =22
0z Or

_Ou _u _ ow d
rSa P Ty BT Trz

A special problem occurs at the axis of rotation, where both u and r are zero. To avoid

dividing by zero, the circumferential strain is for very small values of r redefined to

ou
e - —_—
¢ or
The alternative expression is obtained by applying L’Hébpital’s rule.
A general description of the axially symmetric case is given in Axial Symmetry.
LOGARITHMIC STRAIN
The logarithmic strain, also called true strain, or Hencky strain, is a popular strain

measure for large strain, in particular when representing data from tensile tests. For a

uniaxial case, it is defined on the incremental form

dL

ds:L

where L is the current length of the specimen. If this relation is integrated, the total

strain can be written as

€= log(l%) = logh

Here Ly is the initial length and A is the stretch.

In order to generalize the logarithmic strain to a strain tensor, it is necessary to first
compute the three principal stretches and their orientation. Then, a logarithmic strain

tensor in the local principal stretch system is defined as
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logh; O 0
€p = 0 10g7\.2 0
0 0 loghg

This tensor is then transformed to the global coordinate system in order to give the

logarithmic strain tensor.

Invariants of Strain

PRINCIPAL STRAINS
The principal strains are the eigenvalues of the strain tensor (¢), computed from the

cigenvalue equation
(e- spl )vp =0
The three principal strains are sorted so that
€p128p 2 8p3

This sorting is true also for the 2D and 1D cases. The corresponding vectors in the

principal directions, v.;, are orthonormal.

pi>

* The internal variables for the principal strains are named solid.ept,
solid.ep2, and solid.ep3.

e The internal variables for the components of the directions of the first
principal strains are named solid.ep1X, solid.ep1Y, and
solid.ep1Z. The direction vectors for the other two principal strains

!

are named analogously.

The Green—-Lagrange strain tensor is used in a geometrically nonlinear
analysis. The orientations of the principal directions will thus be with
respect to the material directions. If you plot the principal strains as

arrows, you should thus use an undeformed plot.

PRINCIPAL STRETCHES
The principal stretches are the eigenvalues of the stretch tensor U, and are also sorted
by size:
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hp12hyo2hog

The internal variables for the principal stretches are named
solid.stchpi, solid.stchp2, and solid.stchp3. The elastic
principal stretches are named solid.stchelp1, solid.stchelp2, and
solid.stchelp3.

i

The different invariants of the strain tensor form are useful for constitutive modeling

and result interpretation. The three fundamental invariants for any tensor are

I,(e) = trace(e)
I,(e) = %(trace(a)Z — trace(2))

I5(e) = det(e)

The invariants of the strain deviator tensor is also useful.

dev(e) = e— %trace(a)l
J(¢) = trace(dev(e)) = 0
Jy(e) = %dev(s):dev(e) - %11(8)2 L(e)

J4(e) = det(dev(e)) = 23711(8)3 _ %11(8)12(8) +Iy(e)

As defined above Jg > 0. I represents the relative change in volume for infinitesimal
strains and g represents the magnitude of shear strain.

In tensor component notation, the invariants can be written as

trace(e) = g,

£

dcv(s)ij =g 3

5ij
1
I,(e) = é(giigjj - sijsji)

Jo(e) = %dcv(s)ijdcv(s)ji

The volumetric strain is defined as
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€, = trace(e)

and the equivalent deviatoric strain as

2 4
Edeve = A/gdcv(g)ijdcv(s)ji = Jng(s)

The internal variable for the volumetric strain is solid.evol. The
internal variables for the components of the deviatoric strain tensor in the

!

local coordinate system are solid.eldevi1, and so on. The internal

variable for the equivalent deviatoric strain is solid.edeve.

In terms of the principal strains, the strain invariants can be written as

Ii(e) = €51+ Epg + Epg
I,(e) = €p18p2 * Epatp3 + Ep18p3

I(e) = €518p2Ep3

The principal strains are the roots of the characteristic equation (Cayley—Hamilton

theorem)

3 2
€ —118p +I2sp—l3 =0

STRAIN RATE AND SPIN

The spatial velocity gradient is defined in components as

0
Lkl = a—‘xlvk(x, t)

where vp(x,¢) is the spatial velocity field. It can be shown that L can be computed in
terms of the deformation gradient as

ar 1
L=%F

where the material time derivative is used.

The velocity gradient can be decomposed into symmetric and skew-symmetric parts

L =Ly+L,
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where
1 T
Ly = Q(L +L7)
is called the rate of strain tensor, and

w

1 T
L_= E(L_L )

is called the spin tensor. Both tensors are defined on the spatial frame.

It can be shown that the material time derivative of the Green—Lagrange strain tensor
can be related to the rate of strain tensor as
T
de _ pTL.F
dt
The spin tensor Ly (X,t) accounts for an instantaneous local rigid-body rotation about
an axis passing through the point x.

Components of both Lg and L, are available as results and analysis

variables under the Solid Mechanics interface.

¢ The components of the rate of strain tensor are named solid.Ldx,

m

solid.Ldxy, and so on.

¢ The components of the spin tensor are named solid.Lwx,
solid.Lwxy, and so on.

CHAPTER 3:

Inelastic Strain Contributions

Many of the material models in COMSOL Multiphysics will compute a stress based on
an elastic strain. The elastic strain tensor is obtained after removing any inelastic
deformation contribution from the total deformation from the displacements. There
are several possible inelastic strain contributions:

e Initial strain, gg

e External strain, gq4

* Thermal strain, gy,

* Hygroscopic strain, g4

* Plastic strain, g
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* Creep strain, €.

¢ Viscoplastic strain, &
P > Eyp

* Viscoelastic strain, €y,

ADDITIVE DECOMPOSITION

In a geometrically linear analysis, the elastic strain is computed by a straightforward

subtraction of the inelastic strain:

where

€inel = 80 T Eex T Eth T Ens T Ep T Ecp T &y H 8¢

Additive decomposition of strains can also be used in a geometrically nonlinear
analysis. In this case, it can however only be justified as long as the strains are small. In
the case of large deformations, the different strain contributions may not even be

commutative.

Choose to use additive decomposition also for geometric nonlinearity by selecting the
Additive strain decomposition check box in the settings for Linear Elastic Material or

Nonlinear Elastic Material.

MULTIPLICATIVE DECOMPOSITION

In the finite deformation case, the inelastic strain is instead removed using a
multiplicative decomposition of the deformation gradient tensor. The elastic
deformation gradient tensor is the basis for all strain energy formulations in
hyperelastic materials, and also for the elastic strain in linear and nonlinear elasticity. It
is derived by removing the inelastic deformation from the total deformation gradient

tensor.

The total deformation gradient tensor is defined as the result of two successive

operations, an inelastic deformation followed by an elastic deformation:
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F =F,F (3-4)

inel

The order is important here, multiplication from the left makes the elastic
deformation act on the inelastically deformed state.

Since a deformation gradient tensor describes a mapping from one frame

to another, there are actually three frames involved in this operation. The

i

F tensor is defined by the displacements as usual and describes the
mapping from the material frame to the spatial frame. The F},) tensor,
however, describes a mapping from the material frame to an intermediate
frame, and the Fg tensor describes a mapping from the intermediate

frame to the spatial frame.

When the inelastic deformation gradient tensor is known, the elastic deformation
gradient tensor is computed as

Fel = Frlel (3'5)

in

so the inelastic deformations are removed from the total deformation gradient tensor.
The inelastic deformation tensor Fjy, e is derived from inelastic processes, such as
thermal expansion or plasticity. When there are several inelastic contributions, they are

applied sequentially to obtain the total inelastic deformation tensor Fy)-

Finel = F1FoF3F,
where Fj is the inelastic strain contribution from subnode i under a Linear Elastic

Material, Nonlinear Elastic Material, or Hyperelastic Material.

¢ The order is important when deformations are finite. The
contributions are applied in the same order as the subnodes appear in
the model tree. If a Thermal Expansion node appears before a Plasticity
node, then the physical process can be viewed as a thermal expansion

followed by a plastic deformation.

e When a certain inelastic strain contribution is small, the order is not

significant.

* If the inelastic strain is a pure isotropic volume change, as is often the
case for thermal expansion and hygroscopic swelling, the order is not

significant.
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The right Canchy-Green deformation tensor C is computed from the deformation

gradient F', as well as the Green—Lagrange strain tensor €
T 1
C=FPFande = E(C—I)
The elastic right Cauchy—Green deformation tensor is then computed from Fy)
T
C'el =F elF el

and the elastic Green—Lagrange strain tensor is computed as:

1
€el = E(Cel -1

The internal variables for the elastic right Cauchy—Green deformation

tensor in the local coordinate system are named solid.Cell1,

[

solid.Cel12, and so on; and for the elastic Green-Lagrange tensor in
local coordinates solid.eel11, solid.eel12, and so on.

The elastic, inelastic, and total volume ratios are related as

det(F) = det(F  )det(F, ) or J = J 4

inel

. The internal variables for the elastic, inelastic, and total volume ratio are
= named solid.Jel, solid.Ji, and solid.dJ.

After Equation 3-5, the elastic Green—Lagrange strain depends on the inelastic
deformation as

1 1.-T 1 T 1
€ = E(Cel_l) = éFi_nel(C_Cinel)Fi_nel = Fi_nel(g_ginel)Fi_nel (3-6)

where the inelastic Green—Lagrange strain reads

1 1,.T
€inel = Q(Cinel_l) = Q(F

inel

F inel — I)
When using multiplicative decomposition of deformation gradients, Hooke’s law for a

Linear Elastic Material produces a second Piola—Kirchhoft stress tensor which is

linearly related to the elastic Green—Lagrange strain
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S, =Cigy

This is however, a stress tensor defined in the intermediate configuration. Introducing
a pull-back operation of this tensor, Hooke’s law for the multiplicative decomposition
of elastic and inelastic strains reads

(8 - ginel)F_T

inel

S = dJy g F L .C

inel ™ °

Large Strain Plasticity
In case of large strain plasticity, the plastic strains are primarily not represented as

strains, but as the plastic deformation gradient tensor, F.

The plastic Green—Lagrange strain tensor is computed from the plastic deformation

gradient tensor as
1.1
Spl = E(Fplel —I)

As opposed to the small strain formulation, the total, plastic, and elastic Green—

Lagrange strain tensors are related after Equation 3-6 as follow

T 1
gq = Fpy(e—2p)Fp)

Deformed Geometry

The equations solved by the Solid Mechanics interface are formulated in the material
frame. The Deformed Geometry functionality in COMSOL Multiphysics allows one
to make the material frame differ from the geometry frame, which implies that the
geometry of the structure on the material frame can differ from that originally drawn.
This is useful for analyzing the behavior of different shapes of an original object, for

example as part of shape optimization.

In the COMSOL Multiphysics Refervence Manual:

@

Deformed Geometry and Moving Mesh

CHAPTER 3:

By default, the material does not follow a change in shape. Deformation of the

geometric boundaries therefore corresponds to addition or removal of material.

The deformed geometry functionality can be also used to set up an incremental

deformation of a structure. This can be achieved by using the Elastic Predeformation
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node in the Solid Mechanics interface. This can significantly speed up computations is

case of large deformations.

An example can be found in Hyperelastic Seal: Application Library path
[|]]] Nonlinear_Structural_Materials_Module/Hyperelasticity/hyperelastic_seal

ELASTIC PREDEFORMATION
The total displacement field of the solid is represented as

U = U +u
and the corresponding deformation gradient is multiplicatively decomposed as
Fi = FF pd

One can use upq to define the displacement of the material frame with respect to the
geometry frame, and take u as an update solution of the equations solved by the Solid
Mechanics interface on the material frame. (The corresponding deformation gradient
F connects the material and spatial frames.) Note that the virtual work on such a

displacement update is done by the total stress, and to get the correct stress, one can
usc as Fpq the deformation gradient connecting the geometry and material frames, and

then set the elastic deformation gradient to

Fo = Fiot (3-7)
This is used in the stress calculation during the update step. Thus, the transformation
from geometry to material frame is assumed to be a result of elastic deformation.

The process can be repeated in a parametric sweep, for example, by gradually ramping
up the load, so that the displacement update on each step is small. During each step,

the previous value of the total displacement is used in the material frame definition

upd = utot, old

Alternatively, a time-dependent study can be used. In this situation, the above formula
will be applied during each time step to recompute upq before the step, using the
stored previous solution, while u will represent a displacement increment computed
during the time step. In addition, the density is updated as po/e/pq where

Joq = det(F )
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Again, Fpq is the deformation gradient connecting the geometry and material frames,
and it will be updated before each time step or parameter sweep value.

The approach can be combined with large strain plasticity. In this case,

Ftot = Felel

which together with Equation 3-7 gives

1
Fy = FdeF;1

Note that both Fj and Fp) represent the total deformations of their corresponding
types, while F,q is the total (clastic and plastic) deformation gradient from the previous
update.

Axial Symmetry

The 2D axisymmetric implementation in COMSOL Multiphysics by default assumes
independence of the azimuthal component of the displacement. Therefore, the
physical components of the radial and axial displacement, v and w, are used by default
as dependent variables for the axially symmetric geometry. It is also possible to include
the dependent variable v for the out-of-plane displacement, or an azimuthal mode
extension in time-harmonic studies. See Circumferential Displacement and
Circumferential Modes.

STRAINS

The displacement gradient with respect to the cylindrical coordinates of the
undeformed geometry reads

ou low v ou
OR Ro® R 0Z
va = |0v 10v  u Ov

2R Rod 'R 0Z
w low aw
R Rod 0Z)

The assumption of axial symmetry neglect gradients in the azimuthal direction, so the
displacement vector is considered independent on the azimuthal angle, u = w(R, Z),
and

ou/0® = ov/0® = ow/0® = 0.
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The displacement gradient after this assumption reads

and the Green—Lagrange strain tensor is
17T T
€ = é(Vu +Vu+Vu Vu)

Assuming that there is no torsion around the axis of symmetry, so there is no
out-of-plane displacement, v = 0, the deformation gradient can be further simplified

to read

au g ou
OoR =~ 0Z

Vu = u
0 3 0
ow , Ow

o ° 7Z|

For geometrically linear analysis, the nonlinear terms in the Green—-Lagrange strain

tensor are dropped

ou l(au 6‘@
& °2z"r
I - u
€ = 2(Vu +Vu) = 0 7 0
1(ou  ow ow
_2(% Yaw Y 2z
and the volumetric strain is computed from
ou ,u, ow
€y0l = Il(a) = E"LE"Lﬁ
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For the 1D axisymmetric representation, only the radial component of the

displacement field is computed, and only gradients with respect to the radial direction

are considered, this is, # = u(R), and du/0® = ou/0Z = 0.

CIRCUMFERENTIAL DISPLACEMENT

When the out-of-plane displacement is considered in a 2D axisymmetric model,

torsion is allowed with respect to the symmetry axis. In this case, the displacement

gradient reads

Vu =

ou

oR

ov

oR

ow

oR

"ROZ

v Ou

v
oz
ow
oz

and the Green-Lagrange strain tensor is
1 T T
€ = E(Vu +Vu+Vu Vu)

For geometrically linear analysis, the nonlinear terms in the Green—Lagrange strain
tensor are dropped

o)

L vaT 1(8 10
g=>(Vu +Vu) = |1fov v u v
2 2(6R R) R 20Z
l(éu + c’?w) 1ov. w
12\0Z OR 2072 oz |
and the volumetric strain is computed from
ou , u , ow
€yol = Il(s) = ﬁ+R +ﬁ

CIRCUMFERENTIAL MODES
A standard 2D axisymmetric representation of the structure assumes the independence
of the solution with respect to the azimuthal angle ¢ . The following 3D solution

represents an extension of this assumption:
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u(R,¢,Z,t) = uy(R,Z)+u (R, Z)exp(int -imd)

where m is a circumferential mode number (or azimuthal mode number) that can
only have integer values to obey the axially symmetric nature of the corresponding 3D

problem, that is, there is an azimuthal symmetry ¢ = ¢ + 27. Thus,
u(R, ¢ +2m,2Z,t) = u(R, §,Z,1)

The static prestress solution ug can be obtained using a standard static analysis in 2D
axially symmetric geometry; and the circumferential wave number &,,, = m /R can be

introduced to describe the circumferential modes.

The displacement vector u; can have nonzero values in all three components, which
are functions of the radial and axial positions. For a given circumferential mode
number m, the displacement vector u; can be found using an eigenfrequency analysis

in a 2D axially symmetric geometry. Hence,

o =2xf
f:f(m, uO)

and the perturbation solution becomes
u; = uy (R, Z)exp[2nif(m, uy)t —im¢]
The solution u = uy + uy represents eigenmodes in the corresponding 3D structure,

which can be computed assuming certain constraints on the axis and possible static

prestress and independent of the position along the axis.

Plane Strain

For two-dimensional problems, there are tree possible approximations: plane strain,
Generalized Plane Strain, and Plane Stress. The selection is made in the settings for the
Solid Mechanics node.

For plane strain, the deformation occurs in the xy-plane and it is fully characterized by
the in-plane displacement components u(X,Y) and v(X,Y). There is no out-of-plane

displacement, w = 0, and there are only in-plane strains. In this case, the displacement
gradient reads
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ou o
0X oY
v
0X 0Y

Vu =

and the strain tensor ¢;; = &;;(X,Y) only has in-plane components:

j
£ €

. [ x xy‘|

Cxy &y

For the 1D plane strain representation, only the x-component of the displacement field
is computed, and only gradients with respect to the x-direction are considered, this is,
u=uX), 0u/0Y = ou/0Z = 0, and ey = &y = 0.

Generalized Plane Strain

One possible extension of the Plane Strain formulation is to assume that the
displacement field depends on the out-of-plane coordinate Z, but in-plane strains are

independent of it.

The above assumption have the following 3D solution for the displacement field:

u=uyX, Y)_%‘z2
v = vy(X,Y)- gzz
w=(aX+bY+c)Z

here, ug(X,Y) and v((X,Y) are the in-plane displacement components; and a, b, and ¢
are constants independent of the X, Y, and Z coordinates. The gradient of the

displacement field then reads:

Oug Oug

X 77 -aZ
V=160, dv, -

0X oY

aZ bZ aX+bY +c
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At the cross section Z = 0, the in-plane deformation is fully characterized by the
in-plane displacement components ©(X,Y) and v((X,Y). The displacement gradient

then simplifies to

Oug Oug 0
0X oY

Vua = ovy v 0
0X oY

0 0 aX+bY+c

The out-of-plane shear strains are zero, €,, = &,, = 0, and under the assumption of

yz
small displacements and rotations the normal strain reads

e, =ax+by+c (3-8)

z

The above conditions differ from the Plane Strain formulation only by the fact that the

out-of-plane strain component &, can vary linearly throughout the cross section.

The generalized plane strain approximation is good when the structure is free to
expand in the out-of-plane direction, and the possible bending curvature is small with
respect to the extents of the structure in the xy-plane. In the case where there is no

out-of-plane bending, the out-of-plane strain component simplifies to €, = c.

In COMSOL Multiphysics, the coefficients @, b, and ¢ in Equation 3-8 are modeled

as extra degrees of freedom that are constant throughout the model (global variables).

For the 1D representation, only the x-component of the displacement field is
considered, and only gradients with respect to this direction are computed, this is,
u=u(X), 0u/0Y = ou/0Z = 0,and ¢, = &, = 0. Itis possible to apply the
generalized plane strain assumption to either the xy-plane, the xz-plane, or to both

planes, in which case the strain components are augmented to &, = bandeg, =c.

For the 1D axisymmetric representation, only the radial component of the
displacement field is considered, and only gradients with respect to this direction are
computed, this is, u = w(R), and 0u/0® = du/0Z = 0. Itis possible to apply the
generalized plane strain assumption to the r¢-plane, so the strain is augmented to

SZ=C.

GEOMETRIC NONLINEARITY
In case of geometric nonlinearity, the strains are represented by the Green—Lagrange

strain tensor:
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£ = %(VuT +Vu+VvVulvu)

Consider the following displacement field expressed in terms of the material
coordinates:

u(X, Y)_%z2
v= o(X, Y)-gz2
(aX+u)+b(Y+v)+c)Z

Coecfficients a, b, and ¢ are assumed to be small. Then, using the above displacement

field in the displacement gradient evaluated in the plane Z = 0 simplifies to

ou ou 0
0X oY

Vu = aial 0
0X oY

0 0 aX+u)+b(Y+v)+c

We obtain the strain components by dropping quadratic and higher order terms in the
coefficients a, b, and c:

1 2 2
SXX=uX+§(uX+UX)
1, 2 2
Eyy = Uy + Q(uY+ vy)

1
Exy = §(uY+ Uyt Uxly+ UxUy)

exz =¢eyz=0
egz=aX+u)+b(Y+v)+c

Thus, in the leading order approximation, the strains become independent of the
out-of-plane coordinate Z.

OUT-OF-PLANE WAVES

When a 2D plane strain model represents a cross-section of the structure that has a
significant uniform extension in the out-of-plane Z direction, the following 3D

solution can be sought in form of the amplitude expansion:
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ulX, Y, Z,t) = uy(X,Y)+u,(X,Y)exp(iot —ik,Z)

The first term, w, represents a static in-plane prestress deformation:

uO(Xa Y)
Uy = |vy(X,Y)
0

This can be obtained by a standard static analysis using a 2D geometry for the cross

section with the corresponding boundary conditions.

The second part of the solution, uy, presents a time-harmonic linear perturbation with
an amplitude that can be a function of the in-plane coordinates X and Y. Such a
perturbation can be seen as an out-of-plane wave, with a small amplitude that

propagates in the Z direction, a wavelength L, and phase velocity c:

ky;=2n/L
c=w/ky

u; =uy (X, Y)exp [ZTm(ct —Z)}

Note that in contrast to the prestress solution ug, the perturbation amplitude wy can

have nonzero values in all the displacement components:

u(X,Y)
u = v,(X)Y)
w(X,Y)

There are two alternative approaches. The wavelength L, and thus the wave number
ky, can be considered as a parameter. Then, ® can be computed by an eigenfrequency
analysis for the 2D cross section with all three displacement components taken as

dependent variables. As a result, one obtains
o = 2nf

f=f(L,ay)
c(huy) = Lf(L,a)

ANALYSIS OF DEFORMATION | 407



408 |

CHAPTER 3:

Thus, the wave speed for the out-of-plane wave is computed as a function of the
wavelength L and possible prestress ug in the material. The dependence of the wave

speed on the wavelength is often called dispersion.

Alternatively, the frequency f (and thus ©) can be taken as a parameter. Then, the
solution can be computed via eigenvalue analysis with respect to the wave number ky,
using the 2D cross section geometry. Hence,

ky=2n/L
L = L(f,a)
c(f, uy) = fL(f, uo)
which determine the wavelength L and phase velocity ¢ for the wave that propagates
out-of-plane for a given frequency f under given in-plane prestress deformation uy.

Such interpretation of the perturbation solution is sometimes called a signaling
problem.
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Stresses

In this section:

* Defining Stress

e Invariants of the Stress Tensor
e DPlane Stress

e Initial Stresses and Strains

* Axial Symmetry and Stresses

Defining Stress

This section summarizes the definition of different stress measures, stress invariants,

and other important definitions.

Three different stress measures are used in COMSOL Multiphysics:

* Cauchy stress o defined as force /deformed area in fixed spatial directions not
following the body. This is a symmetric tensor.

* First Piola—Kirchhoff stress P. The forces in the spatial directions are related to the

area in the original (material) frame. This is an unsymmetric two-point tensor.

* Second Piola—Kirchhoff stress S. Both force and area are represented in the material
configuration. For small strains the values are the same as Cauchy stress tensor but

the directions are rotating with the body. This is a symmetric tensor.
The stresses relate to each other as
S=F'P
o =J 'PF" = J'FSF"

Ina geometrically linear analysis, the distinction between the stress measures disappear,

and they all converge to the same values.

In the documentation, the symbol ¢ is used to denote not only Cauchy
stress, but stress in general. The symbols P and S are used whenever it is
n necessary to make a distinction. In geometrically nonlinear analysis, the

stress should in general be interpreted as second Piola—Kirchhoff stress.
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¢ The internal variables for the Cauchy stresses are named solid.sx,

solid.sxy, and so on.

¢ The internal variables for the first Piola—Kirchhoff stresses are named
solid.PxX, solid.PxY, and so on.

i

¢ The internal variables for the second Piola—Kirchhoff stresses are
named solid.SX, solid.SXY, and so on.

CHAPTER 3:

SIGN CONVENTIONS
A positive normal stress in COMSOL Multiphysics acts in tension. This is the most
widely used definition in general physics and engineering.

Within the field of geomechanics it is however common to let compressive stresses be
positive, since compression is almost always dominant in that field of science. When
working with the material models intended for soils and rocks, you must be aware of
that the “positive in tension” convention is used also there in order to maintain

consistency within the software.

Specifically, the ordering of Principal Stresses is such that 61 = 6pg 2 op3 (including
signs). In geotechnical applications the dominant principal stresses will usually be
compressive, so the third principal stress will the be the one which you may consider

as “largest”.

The convention used in Ref. 1 refers to the hydrostatic pressure (trace of the stress
Cauchy tensor) with a positive sign. The use of the first invariant of Cauchy stress
tensor I1(o) is preferred in this document where there is a risk of confusion. The
pressure in COMSOL Multiphysics is always defined as positive under compression, or

equivalently, it has the opposite sign of the Cauchy stress tensor’s trace.

Invariants of the Stress Tensor

The different invariants of the stress tensor form an important basis for constitutive
models and also for interpretation of stress results. The three fundamental invariants
for any tensor are
I,(c) = trace(o)
1 2 2
Iy(o) = é(trace(c) —trace(c")) (3-9)
I3(c) = det(o)
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In many cases, the invariants of the deviatoric stress tensor are also useful.

dev(c) =0 - %trace(c)[

J (o) = trace(dev(c)) = 0

1 1 9 (3-10)
Jy(o) = Edcv(c):dcv(c) = 511(6) —-1Iy(o)

J5(0) = det(dev(c)) = %11(0)3 - %11(0)12(0) +I4(c)

As defined above Jy > 0. In many material models, the most relevant invariants are I,
Jy, and J3. I represents the effect of mean stress, JJ represents the magnitude of shear

stress, and Jg contains information about the direction of the shear stress.

In tensor component notation, the invariants can be written as

trace(c) = oy,

2

dcv(c)ij =0;i— 3

8,
1

I,(o) = Q(Giicjj_ Gijcji)
1

Jy(o) = édev(c)ijdev(c)ji

The pressure is defined as

—trace(o) _ -I,(o)
3 3

p:

and is thus positive in compression.

* The internal variables for the invariants Iy, I, and I3 are named
solid.I1s, solid.I2s,and solid.I3s, respectively.

I'i-l" * The internal variables for the invariants Jg and /3 are named
s0lid.II2s and solid.II3s, respectively.

* The internal variable for the pressure is solid.pm.

PRINCIPAL STRESSES

The principal stresses are the eigenvalues of the stress tensor, computed from the
eigenvalue equation.
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(o- GpI )vlD =0
The three principal stresses are ordered so that
Gp1 2 Cp2 2 Op3

This ordering is true also for the 2D cases. The corresponding principal directions vy,

are orthonormal.

¢ The internal variables for the principal stresses are named solid.sp1,
solid.sp2, and solid.sp3.

¢ The internal variables for the components of the directions of the first

i

principal stress are named solid.sp1x, solid.sp1y, and
solid.sp1z. The direction vectors for the other two principal stresses

are named analogously.

In terms of the principal stresses, the stress invariants can be written as

Ii(o)= Op1+Opg+0p3
I,(o) = 0p10p2 + OpaOp3 + 05103

I3(o) = 0p10p20p3

The principal stresses are the roots of the characteristic equation (Cayley-Hamilton
theorem)

3 2
o —Ilcp +12c5p—13 =0

OTHER STRESS INVARIANTS

Itis possible to define other invariants in terms of the primary invariants. One common

auxiliary invariant is the Lode angle 0.

cos30 = e (3-11)

[J)
o
-
w

The Lode angle is bounded to 0 < 0 < /3 when the principal stresses are sorted as
Opl1 2 Op2 2 Gp3 (Ref. 1).

Following this convention, 0 = 0 corresponds to the tensile meridian, and 0 = /3

corresponds to the compressive meridian. The Lode angle is part of a cylindrical
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coordinate system (the Haigh—Westergaard coordinates) with height (hydrostatic
axis) & = Il/ﬁ and radius r = /2, .

The Lode angle is undefined at the hydrostatic axis, where all three
principal stresses are equal (o1 = 09 = 6p3 = I1/3) and J5 = 0. To avoid
division by zero, the Lode angle is actually computed from the inverse

!

tangent function atan2, instead of the inverse cosine, as stated in

Equation 3-11.

The Lode angle and the equivalent (von Mises) stress can be called in user
defined yield criteria by referencing the variables solid.thetaL and
solid.mises, where solid is the name of the physics interface node.

The octahedral plane (also called n-plane) is defined perpendicular to the hydrostatic
axis in the Haigh-Westergaard coordinate system. The stress normal to this plane is

Goct = 11/3, and the shear stress on that plane is defined by

Toee = A2/3d9

The functions described in Equation 3-9 and Equation 3-10 enter into expressions
that define various kind of yield and failure surfaces. A yield surface is a surface in the

3D space of principal stresses that circumscribe an elastic state of stress.

The principal stresses (G1, Opg, and 6p,3) can, when sorted as 61 2 Gpg 2 O3, be
written by using the invariants I1 and Jg and the Lode angle (Ref. 1):

4
Op1 = %Il+ —§—2c0s9
1 45 2n
sz = §Il+ ?COS(G—g)
1 [4d 4 2n
GPS = gll+ ?COS<9+?)

Plane Stress

For two-dimensional problems, there are tree possible approximations: Plane Strain,
Generalized Plane Strain, and plane stress. The selection is made in the settings for the
Solid Mechanics node.
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In the plane stress formulation in COMSOL Multiphysics, the plane stress conditions
o..=0..=0..=0 (3-12)

are not enforced through a modified constitutive relation, as is common in many
textbooks. Instead, an extra set of degrees of freedom for the out-of-plane strains are

introduced, and Equation 3-12 is enforced by solving for the strains.

For a general anisotropic linear elastic material in case of plane stress, COMSOL
Multiphysics solves three equations. For isotropy and orthotropy, only one extra
degree of freedom is needed since the out-of-plane shear components of the stress

tensor are zero.

» For isotropic and orthotropic materials, the extra degree of freedom is

named wZ, and represents ow/0Z .

i

For anisotropic materials in 3D or 2D, two more degrees of freedom
area added, uZ and vZ. They represent ou/0Z and ov/0Z .

CHAPTER 3:

Initial Stresses and Strains

Initial stresses and strains refer to a stress and strain state that would exist even without
the external loads. Initial stresses and strains are not initial values in the mathematical
sense. They apply all through the solution, and may even vary with time or solution

parameters. They should rather be considered as an offset to the stress and strain state

in the constitutive relation.

The initial strain is subtracted from the total strain, before the constitutive law is
applied for computing the stresses. The initial stress is added to the stress computed by
using the constitutive law. As an example, linear elasticity including both an initial

strain gq and an initial stress sy can be written as
§ =853+C:(e—-¢gg)

It can also be noted that the effect of the initial strain is analogous to, for example, a

thermal strain or other inelastic strain contributions.

Use cither the initial strain or the initial stress (but not both) when you have results
from another analysis or another physics interface, which you want to incorporate into

the stress-strain relation.

STRUCTURAL MECHANICS THEORY



Both the initial stress and strain are tensor variables defined via components in the local

coordinate system for each domain.

In case of nearly incompressible material (mixed formulation), the components of the
total initial stress (that is, without volumetric-deviatoric split) are still input. The initial

pressure in the equation for the pressure help variable p, is computed as
1
Pgy = —gl 1(s0)

In the case of geometric nonlinearity, the initial stress represents the second Piola—
Kirchhoff stress, not the Cauchy stress. The initial strain is interpreted as a Green—
Lagrange strain.

OTHER POSSIBLE USES OF INITIAL STRAINS AND STRESSES

Many inelastic effects in solids mechanics (for example creep, plasticity, damping,
viscoelasticity, poroelasticity, and so on) are represented by additive contributions to
cither the total strain or total stress. Then the initial value input fields can be used for
coupling the elastic equations (solid mechanics) to the constitutive equations (usually
General Form PDEs) modeling such extra effects. When adding stress contributions,

you may however find it more convenient to use the External Stress concept.

The Initial Stress and Strain node can be added to Linear Elastic Material, Nonlinear
Elastic Materials, Piezoelectricity, Elastoplastic Soil Models, Magnetostriction and

Piezomagnetism, or Shape Memory Alloy materials.

External Stress

The external stress represents an additional stress contribution which has a source
other than the constitutive relation. It is similar to the initial stress described in Initial
Stresses and Strains, and the two features can be used interchangeably. As an example,

linear elasticity including an external stress Goy¢ can be written as
0 =0,4+C:¢ (3-13)

This additive contribution is the default option when adding external stresses to either
the material representation (second Piola—Kirchhoft stress) or spatial representation

(Cauchy stress).

It is also possible to prescribe a stress contribution that only acts as a load on the
structure, but that is not added into the stress tensor definition as described in

Equation 3-13. The typical case is when there is a pore pressure in a porous material,
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a common case in geotechnical engineering. The stress carried by the solid material
excluding the pore pressure is often called the effective stress. The load from the pore
pressure helps to balance the external loads, while not contributing to the stress tensor
of the solid. The contribution to the virtual work of the external stress (load) is then
SW = j 08§ Oy d (3-14)
With the External Stress feature it is also possible to model residual stresses due to, for
instance, manufacturing processes. The Residual stress option augments the stress
tensor as defined in Equation 3-13, and it also removes the deformation created from
it by applying an external load with opposite sign, as described in Equation 3-14. In
this way there is no induced deformation in the solid, but the definition of the stress
tensor and its invariants are augmented, which has an impact in plasticity, creep, or

viscoplasticity.

When External Stress (Nominal) is sclected, the external stress tensor does not have to
by symmetric, thus the contribution of the external stress acts as an external load, to

the virtual work is

SW = J.V—SVu P dv

ext

IN SITU STRESS

The in situ stress is a common residual stress used in geotechnical engineering. The
vertical stress, Gy, also called overburden pressure, lithostatic pressuve, or confining
pressure, represents the stress in a point given by the weight of the overlaying material.

c, = pgD

The elevation D is the distance of a point in the soil to the top boundary, p is the
density and g the acceleration of gravity. This analytical expression for the vertical stress

is derived for a slab of soil of infinite lateral extension.

The lateral or horizontal stress oy, is normally given as a factor or the vertical stress
oy, = kyo,

The factor k), called the coefficient of lateral earth pressure, is normally computed
from the angle of internal friction, from the Poisson’s ratio, or more complex formulas.

When the z-axis represents the vertical coordinate, the in situ stress tensor is written as
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Op

Oins = O}

The External Stress subnode can be added to Linear Elastic Material, Nonlinear Elastic

Materials, Elastoplastic Soil Models, Shape Memory Alloy, or Hyperelastic Materials.

External Strain

The external strain represents an inelastic strain contribution which has a source other
than the elastic deformation. It is similar to the initial strain described in Initial Stresses
and Strains, and the two features can be used interchangeably. As an example, linear

elasticity including an external strain gqy¢ can be written as
6 =C:gy withey = e-g, (3-15)

This Additive Decomposition of strains, € = g, + €, , is the default option when

adding external strains to represent either the second Piola—Kirchhoff stress or the
Cauchy stress.

It is possible to prescribe a large external strain contribution that follows a
Multiplicative Decomposition of the deformation gradient tensor. In this case, the

elastic deformation gradient reads
Fy = FF (3-16)

Enter the external deformation gradient, F' the external stretches in the local

ext >

. - . . 1
or the inverse deformation gradient, F/_, . The external

coordinate system, A, oxt

ext >
strain can also be computed by Using External Materials.

The External Strain subnode can be added to Linear Elastic Material, Nonlinear Elastic
Materials, Shape Memory Alloy, or Hyperelastic Materials.

See also

'@l * Using External Materials

e External Material and Working with External Materials in the
COMSOL Multiphysics Reference Manual.
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Axial Symmetry and Stresses

The physical stress components are defined on the global coordinate system:

_ 1
G, =0
92 22
G(P =rao
_ 33
GZ =0
13
(¢ =0

rz

The first invariant of the stress tensor is

11(0) = Z(Gugij) = Gr+0w+02
i.J

418 | CHAPTER 3: STRUCTURAL MECHANICS THEORY



Equation of Motion

The first Piola—Kirchhoft stress P is calculated from the second Piola—Kirchhoff stress
as P =FS. The first Piola—Kirchhoff stress relates forces in the present configuration

with areas in the reference configuration, and it is sometimes called the nominal stress.
Using the first Piola—Kirchhoff stress tensor, the equation of motion can be written in
the following form:

2
pOZT;‘ = vy PT4+F, (3-17)

where the density corresponds to the material density in the initial undeformed state,
the volume force vector Fy, has components in the actual configuration but given with
respect to the undeformed volume, and the tensor divergence operator is computed
with respect to the coordinates on the material frame. Equation 3-17 is the strong
form that corresponds to the weak form equations within the Solid Mechanics
interface (and many related multiphysics interfaces) in COMSOL Multiphysics. Using

vector and tensor components, the equation can be written as

2
auxz(anX+anY+an

Z
Tl _(Pax, Cav Pz p
Pz “ax ey Yoz )+ Fu

2
0 u, (ﬁyx+ny+ﬁyZ)+FV
y

P—5 =
2 ex ‘v Yoz

2

Ou, (oP,; oPy apzz)

S > I S B
Po 2 (6X Yoy Taz )TV

The components of the first Piola—Kirchhoff stress tensor are nonsymmetric in the

general case, thus
P,;#P 1j

because the component indices correspond to different frames.

The boundary load vector F4 in case of geometric nonlinearity can be related to the

first Piola—Kirchhoft stress tensor via the following formula:
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F, = Pn,

where the normal ng corresponds to the undeformed surface element. This force
vector is often referred to as the nominal traction. In components, it can be written as

Fpy=Pxny+Poyny+P gny

FAy =P ynx+ PyYnY+PyZnZ

Fy, =P xnx+P yny+P zny
The Cauchy stress, o, can be calculated as

1

o = JPFT = JFSFT

The Cauchy stress is a true stress that relates forces in the present configuration (spatial
frame) to areas in the present configuration, and it is a symmetric tensor.

Equation 3-17 can be rewritten in terms of the Cauchy stress as

2

pa—u =V, .c+fy

ot”

where the density corresponds to the density in the actual deformed state, the volume
force vector fy, has components in the actual configuration (spatial frame) given with
respect to the deformed volume, and the divergence operator is computed with respect
to the spatial coordinates.

The pressure is computed as
1
= —={
p 3 race(o)

which corresponds to the volumetric part of the Cauchy stress, and it is positive in

compression. The deviatoric part is defined as
64 = o+pl
The second invariant of the deviatoric stress
Jy(o) = lcdzcd
2

is used for the computation of von Mises (equivalent) stress
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mises — A/ 3J2(G)
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Material Models

There are many material models available for structural analysis in COMSOL
Multiphysics. In this section, the theory for all material models is presented. The
material models available, and also some detailed aspects of them, depend on which
licenses you have. The material models, grouped by families, are as follows:
e Linear Elastic Material
e Nonlinear Elastic Materials

- Ramberg-Osgood

- Power Law

- Bilinear Elastic

- Uniaxial Data

- Shear Data

- Hyperbolic Law

- Hardin—Drnevich

- Duncan-Chang

- Duncan—Selig

- User Defined
* Linear Viscoelasticity

- The Maxwell Model

- The Generalized Maxwell Model

- The Kelvin—Voigt Model

- The Generalized Kelvin—Voigt Model

- Standard Linear Solid Model

- The Burgers Model

- Generalized Maxwell Model with Fractional Derivatives

- Generalized Kelvin—Voigt Model with Fractional Derivatives

- Standard Linear Solid Model with Fractional Derivatives

- Burgers Model with Fractional Derivatives

- User Defined
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Hyperelastic Materials

Distributed Fiber Models
Elastoplastic Materials

- The von Mises Criterion
- The Tresca Criterion

- Orthotropic Plasticity

Neo-Hookean

St Venant—Kirchhoff
Mooney-Rivlin, Two Parameters
Mooney—Rivlin, Five Parameters

Mooney-Rivlin, Nine Parameters

Yeoh

Ogden
Storakers
Varga
Arruda—Boyce
Gent

van der Waals
Blatz—Ko

Gao
Murnaghan
Delfino

Fung
Extended Tube
User Defined
Mullins Effect
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* Porous Plasticity
- The Shima—Oyane Criterion
- The Gurson Criterion
- The Gurson-Tvergaard—-Needleman Criterion
- The Fleck-Kuhn—-McMeceking Criterion
- The FKM-GTN Criterion
- Capped Drucker-Prager

* Soil Plasticity
- The Mohr-Coulomb Criterion
- The Drucker-Prager Criterion
- The Matsuoka—Nakai Criterion

- The Lade—Duncan Criterion

¢ Failure Criteria for Concrete, Rocks, and Other Brittle Materials
- The Bresler-Pister Yield Criterion
- The Willam-Warnke Criterion
- The Ottosen Criterion
- The Original Hoek—Brown Criterion

- The Generalized Hoek—Brown Criterion

 Elastoplastic Soil Models
- The Modified Cam-Clay Soil Model
- The Modified Structured Cam-Clay Soil Model
- The Extended Barcelona Basic Soil Model
- The Hardening Soil Model
* Creep and Viscoplasticity
- Creep
- Viscoplasticity
- Creep and Viscoplasticity for Large Strains
* Inelastic Strain Rate
e Shape Memory Alloy

e Diczoelectricity
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* Magnetomechanics

* Magnetostriction and Piezomagnetism
* Electrostriction

* Ferroelectroelasticity

* Rigid Material

* Damage Models

 Safety Factor Evaluation

You can also add a material model which you have coded yourself and made available

as a binary library file using an External Stress-Strain Relation.

In the COMSOL Multiphysics Reference Manual:

l@}‘ * Working with External Materials

¢ External Material

Linear Elastic Material

For a linear elastic material, Hooke’s law relates the stress tensor to the elastic strain

tensor:
G =0, +Cigy =GO +C:(e—gy,) (3-18)

where C is the 4th order elasticity tensor, “:” stands for the double-dot tensor product
(or double contraction). The elastic strain &g is the difference between the total strain
€ and all inelastic strains g;,0]. There may also be an extra stress contribution Ggx with
contributions from initial stresses and viscoelastic stresses. In case of geometric

nonlinearity, the second Piola—Kirchhoff stress tensor and the Green—Lagrange strain

tensor are used.

The elastic strain energy density is

1 1 .
W, = 58l ! (C:ey+20p) = 58 ! (c+0p) (3-19)
This expression assumes that the initial stress contribution is constant during the

straining of the material.
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TENSOR VS. MATRIX FORMULATIONS

Because of the symmetry, the strain tensor can be written as the following matrix:

€ €

X axy Xz
Sxy 8}’ gyZ

Cxz 8yz €2

A similar representation applies to the stress tensor:

Due to the symmetry, the elasticity tensor can be completely represented by a

symmetric 6-by-6 matrix as:

- ] [ 1111 1122 1133 _1112 1123 _1113]
Dy Dyy Dy3 Dy Dy Dy c c C c c c
1122 2222 2233 2212 _2223 2213
D1y Dyy Dyg Doy Dys Dy C C C C C Cc
D D3 Dyg Dyg Dy, Dys Dy ) cl133 2233 3333 3312 3323 3313
D,y Dy, Dyy Dy Dys Dy clll2 2212 (3312 1212 1223 1213
D15 Dy Doy D s Dy D cl123 2223 (3323 1223 2323 2313
D16 D2g D36 Dy Dsg D) _C1113 2218 3313 1213 2313 C1313_
which is the elasticity matrix.
ISOTROPIC MATERIAL AND ELASTIC MODULI
In this case, the elasticity matrix becomes
1-v v v 0 0 0
1-v v 0 0 0
v 1-v 0 0 0
E o 0o o =2 o o
D = e 3-20
(I+v)(1-2v) 2 (3-20)
1-2v
0 0 0 0
2
o o o o o 1L ‘22V
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Different pairs of elastic moduli can be used, and as long as two moduli are defined,

the others can be computed according to Table 3-1.

TABLE 3-1: EXPRESSIONS FOR THE ELASTIC MODULI.

DESCRIPTION  VARIABLE D(E,v) D(E,G) D(K,G) D\, )
Young’s E-= E E 9KG 3h+2p
modulus 3K+G s u
Poisson’s v= v E 4 13K-2G A
ratio 2G 23K+G 2(A+p)
Bulk K= E EG K 54 21
modulus 3(1-2v) 3(3G-E) 3
Shear G= E G G n
modulus 2(1+v)

Lamé A= Ev GE-2G) . 2G A
parameter A (1+v)(1-2v) 3G-E 3

Lamé = E G G n
parameter 2(1+v)

Pressure- ¢ = J E(1-v) G(4G-E) JK+ 4G/3 Jx +2u
wave speed p(1+v)(1-2v)N p(3G-E) p p
Shear-wave ¢4 = JT IG/p /G/p /u/p
speed 2p(1+v)

According to Table 3-1, the elasticity matrix D for isotropic materials is written in

terms of Lamé parameters A and p,

A+20 A A 000
A A+24 A 000
D-| % A A+21000 (3-21)
0 0 0 poo
0 0 0 0po
0 0 0 00y

or in terms of the bulk modulus K and shear modulus G:
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K+4G g _2G p 2G
3 3 3
2G . 4G ;» 2G
K-28 g4 20 g 26
D=1g 26 g 2G p 4G
3 3
0 0 0
0 0 0
0 0 0

000

000

000

GO0O
0GO

00G

ORTHOTROPIC AND ANISOTROPIC MATERIALS

There are two different ways to represent orthotropic or anisotropic data. The
Standard (11, 22, 33, 12, 23, 13) material data ordering converts the indices as:

11

22

33
12,21
23,32

S U W N

113, 31]

(3-22)

thus, Hooke’s law is presented in the form involving the elasticity matrix D and the

following vectors:

Gx 8x
Oy Ey
c, D g,
Oy 28xy
Oy, 28y2
_G.’XZZ_ ex _28962_

inel/

COMSOL Multiphysics uses the complete tensor representation internally to perform

the coordinate system transformations correctly.

Beside the Standard (11, 22, 33, 12, 23, 13) Material data ordering, the clasticity
coeflicients can be entered following the Voigt notation. In the Voigt (11, 22, 33, 23,
13, 12) Material data ordering, the sorting of indices is:
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11 1

22 2

33 3
23,32 4 yz
13,31 5
112, 21] 6

The last three rows and columns in the elasticity matrix D are thus swapped.

Orthotropic Material
The elasticity matrix for orthotropic materials in the Standard (11, 22, 33, 12, 23, 13)
Material data ordering has the following structure:

D11D12D13 0
D12D22D23 0
D13D23D33 0

S O © o
S © © o

D = (3-23)
0 0 0 Dy
0 0 0 0 Dgp O
0 0 0 0 0 Dg
where the components are as follows:
11 — D > 12 — D
denom denom
2 2
- _ExEyEz(ny Voot Ve, D,, - Ey(EvaZ—Ex)
Ddenom Ddenom
2
D,y = Z(Ey xy x2+ExVyz) Dy, = EyEz(Enyy_Ex)
denom Ddenom
Dy =G,,, Ds=G,,, and Dgg=G,,

where

DdenoszE EE+2VVVEE+EEV +Ev

y-z xz xy ' yz Yxz"yz x "z yz

MATERIAL MODELS | 429



430 |

The values of Ey, Ey, B, Vyy, Vyzs Vazs Giy» Gyzy and Gy, are supplied in designated

xy» yz»
fields in the physics interface. COMSOL Multiphysics deduces the remaining

COMPONENES — Vyy, Vzy, a0 V,y, — using the fact that the matrices D and D lare

v
Yy
symmetric. The compliance matrix has the following form:

1 Vyx  Vex
L Ve Ve g g
E, E, E,
Vey 1 Vay
Yoy L Ve g g
E, E, E,
sz Y_xz 1
Yee Vyx Lo
D_l = Ex Ey EZ
0 0 0 = 0 o
G,
1
0 0 0 0 == o
G,
1
0 0 0 0 0 -
ze

The values of vy, and v, are different for an orthotropic material. For a
certain set of given material data, you must make sure that the definition

n of the indices is consistent with the definition used in COMSOL
Multiphysics.

CHAPTER 3:

The elasticity matrix in the Voigt (11, 22, 33, 23, 13, 12) Material data ordering changes

the sorting of the last three elements in the elasticity matrix:

D44 = Gyz’ D55 = ze> and D66 = ny

If a pair of elastic moduli is present in the material definition, the values of Ey, E,, E.,

Vxy> Vyz> Vaz» nya Gyz>

elasticity matrix will be isotropic. Depending on which pair of elastic moduli that is

and G, are computed automatically. Note that the resulting

available, the expressions in Table 3-1 are used to find the above values.

Transversely Isotropic Material

Transversely isotropic material is a subclass of orthotropic materials, for which one
principal direction in the material is different from the other two that are equivalent.
This special direction is assumed to be the first axis of the selected coordinate system.

Because of the symmetry, the following relations hold:
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Viz = Vi
E
G 2
27 2(1+vyy)
Gy = Gyg

Thus, only five elasticity parameters are needed to characterize the material.

Anisotropic Material

In the general case of fully anisotropic material, you provide explicitly all 21
components of the symmetric elasticity matrix D, in either Standard (11, 22, 33, 12, 23,
13) or Voigt (11, 22, 33, 23, 13, 12) Material data ordering.

If a pair of elastic moduli is present in the material definition, the components of the
symmetric elasticity matrix D are computed using one of Equation 3-20 to
Equation 3-22. Depending on which pair of elastic moduli that is available, the
expressions in Table 3-1 are used to compute the necessary values. In case the

orthotropic properties E;, v;;, and Gy; are present in the material definition, the

i
components of the symmetric elasticity matrix D are computed using Equation 3-23.

Note that the resulting elasticity matrix will not be fully anisotropic in either case.

Crystal Symmetry

Here, the components of the elasticity matrix in Voigt notation (denoted by ¢;;) are
referred to as elasticity constants. Because of the material symmetry, only certain
components need to be specified. The following Crystal systems are available in
COMSOL Multiphysics:

Cubic (3 constants) c11, C19, C44

€11 C12¢12 O

cigc1p ¢y O
0 0 0 cy
0 0 0 0 cy O
0 0 0 0 0 cyy

0
cig €13 ¢12 00
0
0

S © o o

This crystal system includes the following crystal classes: 23, m3, 432, 43m, m3m .
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Hexagonal (5 constants) c{1, ¢19, C13, €33, C44

€1
C1
€1
0
0
0

where cgg = 0.5(cy;—cq9) -

1€12¢13 0 0 0
2¢11¢13 0 0 0
sci3css 0 0 0
0 0cy OO
0 0 0cy O
0 0 0 0 cg

This crystal system includes the following crystal classes:

6,6,6/m, 622, 6mm, 62m, 6/mmm ,and itis equivalent to a Transversely Isotropic

Material.

Trigonal (6 constants) cq1, c19, C13,
‘n
€12
€13

C14
0

0

where cgg = 0.5(cy;—cq9) -

This crystal system includes the foll

€14, €33, C44

Cig €13 €14 O
€1y €13 €14 O
ci3 cg3 0 0

oS O© ©

<14 0 ¢4y 0 O

0 0 0 cyycyy

0 0 0 cqqcq

owing crystal classes: 32, 3m, 3m .

Trigonal (7 constants) cq1, C19, C13, C14, C25, C33, C44

11
C12
C13
C14
—Co5
0

where cgg = 0.5(cqq—cq9) .

CHAPTER 3: STRUCTURAL MECHANICS THEORY

Cig €13 €14 €95 0
€11 €13 €14 Cg5 0
ci3 ¢33 O 0 O
14 0 cyy 0 cy5
e 0 0 ¢y cyy
0 0 co5 c14 Cog




This crystal system includes the following crystal classes: 3, 3 .

Tetragonal (6 constants) c11, C19, C13, €33, C44, C66

€11 €12 ¢13 0
1 €11 ¢13 O
€13 €13 ¢33 0
0 0 0 cy
0 0 0 0cyO
0 0 0 0 0 cg

0
0
0
0

S O © o

This crystal system includes the following crystal classes: 422, 4mm, 43m, 4/mmm .

Tetragonal (7 constants) c11, €19, €13, C16, C33> C44> C66

€11 12 €13 0 0 ¢y
€12 €11 €13 0 0 —cq6
€13 13 ¢33 0 0 0
0 0 0cy O O
0 0 0 Ocy O
c16 16 0 0 0 cq

This crystal system includes the following crystal classes: 4, 4, 4/m .

Orthorhombic (9 constants) C11> €125 €135 €22, €23, €33, C44, C55, C66

€11 ¢9¢13 0 0 0
€19 CogCog 0 0 0
ci13Cg3¢33 0 0 0
0 0 0cyy O O
0 0 0 0 cz5 O
0 0 0 0 0 cg

This crystal system includes the following crystal classes: 222, mm2, mmm . This type

of crystal symmetry is equivalent to an Orthotropic Material.

AXIAL SYMMETRY

For the linear elastic material, the stress components in coordinate system are
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i ij ijkl
G = Ogx +C (Ep7~ Einel, k1)

For anisotropic and orthotropic materials, the 4th-order elasticity tensor is defined
from the D matrix according to:

GI‘ Gr gr gr
S| _ [%]| Lpl|Be]|_]| %
GZ GZ 82 82
GrZ Grz ex 287‘2 287‘2 ine

The user input D matrix always contains the physical components of the elasticity

tensor

phys
ijkl

and the corresponding tensor components are computed internally according to:

phys
ijkl Ciinl

) Jgf-i@ gkk@

For an isotropic material:

- o 0 0
= 0g"g" + g +8"¢")

where A and p are the first and second Lamé elastic parameters and g is the metric

tensor.
For a hyperelastic material, the second Piola—Kirchhoff stress tensor is computed as

_ 9 's
S‘Qac

which is computed as the contravariant components of the stress in the local

coordinate system:

i o_ s
§Y = 2"

tj

The energy variation is computed as
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S : test(s) = ZSijtest(sij
ij

which can be also written as

rz)

S, test(e,) + S(ptest(s(p) + S, test(g,) + 25, test(e

ENTROPY AND THERMOELASTICITY

The free energy for the linear thermoelastic material can be written as
F = pf(T)+ W(e, T)

where the strain energy density W(e, T) is given by Equation 3-19. Hence, the stress
can be found as

c = (S_I'DT = (2—ZV)T = C:(8—&jyy)

and the entropy per unit volume can be calculated as

[6)
—(%8 = pCplog(T/Ty) +Seagt

where Ty is a reference temperature, the volumetric heat capacity pCp can be assumed

to be independent of the temperature (Dulong-Petit law), and the elastic entropy is

Selast =a.0
where o is the thermal expansion coefficient tensor. For an isotropic material, it

simplifies into

Solast = oo, + o, + G,)

The heat balance equation can be written as

oT

a = .
pCpms + TS V- (kVT)+Q,

elast —

where £ is the thermal conductivity matrix, and the heat source caused by the

dissipation is

thr:é
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where ¢ is the strain-rate tensor and the tensor t represents all possible inelastic stresses

(for example, a viscous stress).

Using the tensor components, the heat balance can be rewritten as:

oT

pCPE * Z Tamn%cymn = V- (kV])+@Q, (3-24)

m,n

In many cases, the second term can be neglected in the left-hand side of Equation 3-24
because all Ta,,,,, are small. The resulting approximation is often called uncoupled

thermoelasticity.

WAVE SPEED COMPUTATION
In case of geometric linearity, the governing equations for a linear elastic medium of

any anisotropy can be written in terms of the structural displacement vector u as:

2

pa—uzv-(C:Vu)

ot?

where C is the elasticity tensor.

Since the equations are linear, they possess the following time-harmonic wave

solutions:

iot—ik-r

u=upe

where k = kn is the wave number vector, and n is the direction vector that defines the
wavefront propagation direction. The wavefront is an imaginary line connecting solid
particles of the same phase. The velocity of such wavefront in the direction normal to

it is given by the phase velocity ¢ = w/k.

Using such a wave solution form leads to Christoftel’s equation:

pc2uIl =I,-a, (3-25)

where the Christoffel’s tensor is defined as
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The Christoftel’s equation can be considered as an eigenvalue problem. Thus, to have

a nontrivial solution u,, the phase velocity must satisfy

det(I,/p - c2I) =0

which is often called the dispersion relation. In a general case, this is a cubic polynomial
with three roots ¢2 = cj2(Fn/ p). Thus, for an arbitrary anisotropic medium, three waves

with different phase velocities can propagate in each given direction.

If the wave propagation is initiated by a small perturbation that is initially localized in
space, the solution can be found using the Fourier and Laplace transforms, and it will
represent a so-called wave packet. The wave packet will propagate with the group

velocity given by:

éU)J - = . . =
__ j_(un’j r, un’j), Jj=123

where uy, ; is the wave polarization vector that is the eigenvector corresponding to the

cigenvalue solution cj2(Fn/p) of Christoftel’s equation.

COMSOL Multiphysics provides predefined variables for the phase and group
velocities for waves of different types propagating in any chosen direction. These
variables do not affect the solution as such, but are available during result presentation

if the Wave Speeds node has been added to the material.

The wave speed variables can be found in the Wave speeds folder under

ril Solid Mechanics in the Replace Expression tree.

Mixed Formulation

Nearly incompressible materials can cause numerical problems if only displacements

are used in the interpolating functions. Small errors in the evaluation of the volumetric
strain, due to the finite resolution of the discrete model, are exaggerated by the high
bulk modulus (or low bulk modulus to shear modulus ratios). This leads to an unstable
representation of stresses, and in general, to an underestimation of the deformation, as

spurious volumetric stresses might balance applied shear and bending loads.

When the Pressure formulation is sclected in the Use mixed formulation list, the

volumetric stress py, is treated as an additional dependent variable. The resulting mixed
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formulation is also known as a #-p formulation. This formulation removes the effect
of the volumetric strain from the original stress tensor, and replaces it with an

interpolated pressure, py,. A separate equation constrains the auxiliary pressure variable
to make it equal (in an average sense) to the original pressure which is calculated from

the strains and material model.

When the Strain formulation is selected in the Use mixed formulation list, the volumetric

strain g, is treated as an additional dependent variable.

The mixed formulation is beneficial when the material data is such that the
deformation is close to being incompressible. For an isotropic elastic material, this

happens when the Poisson’s ratio approaches 0.5.

The mixed formulation is useful not only for linear elastic materials but

also for nonlinear elastic materials, elastoplastic materials, hyperelastic

materials, and viscoelastic materials.

The order of the shape function for the auxiliary variable (py, or &)

should be of lower order than that of the displacement field. Note that
n some iterative solvers do not work well together with mixed formulation

because the stiffness matrix becomes indefinite.

CHAPTER 3:

When the Pressure formulation is selected for isotropic linear elastic materials, the stress

tensor s, computed directly from the strains, is replaced by a modified version:
s =s+(p-py)I
where I is the unit tensor. The pressure p is calculated from the stress tensor as
p = —1tracc(s)
3
This is equivalent to define
s = dev(s)-p,I
The auxiliary dependent variable py, is set equal to p using the equation

Py—P

o = 0 (3-26)
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where K is the bulk modulus. Scaling by the bulk modulus is necessary, since typical
values for the auxiliary pressure py, are in the order of 10° to 10° Pa, while typical

values for the displacement degrees of freedom are orders of magnitude smaller.
The modified stress tensor s is then used then in calculations of the energy variation.

When the Strain formulation is sclected for isotropic linear elastic materials, the
auxiliary volumetric strain &, is used instead of the auxiliary pressure p,, and it is the

set equal to the volumetric strain &, using the equation

~K(s,,—£,) = 0 (3-27)

W
The modified stress tensor then reads
s = s+K(e,—e,,DI = dev(s) + Ke I

The advantage of using the Strain formulation is that the values for the auxiliary strain

&y are of a similar order of magnitude as the displacement degree of freedom.

For orthotropic and anisotropic materials, the auxiliary pressure equation is scaled to
make the stiffness matrix symmetric. Note, however, that the stiffness matrix in this

formulation is not positive definite and even contains a zero block on the diagonal in
the incompressible limit. This limits the possible choices of direct and iterative linear

solver.

In case of linear elastic materials without geometric nonlinearity (and also

for hyperelastic materials), the stress tensor s in the above equations is

!

replaced by the 2nd Piola—Kirchhoff stress tensor S, see Nearly

Incompressible Hyperelastic Materials.

Nonlinear Elastic Materials

As opposed to hyperelastic materials, where the stress-strain relationship becomes
significantly nonlinear at moderate to large strains, nonlinear elastic materials present

nonlinear stress-strain relationships even at infinitesimal strains.

Here, nonlinear effects on the strain tensor are not as relevant as the nonlinearity of
the elastic properties. Important materials of this class are Ramberg-Osgood for

modeling metal and other ductile materials, and the Duncan-Chang soil model.
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The nonlinear elastic materials as such do not include strain-rate nor stress-rate in the
constitutive equations. It is however possible to add linear viscoelasticity to these

materials.

For a nonlinear material to be “energetically sound” it should be possible to take any
path in stress-strain space and return to the undeformed state without producing or
dissipating any net energy. A requirement is then that the bulk modulus depends only

on the volumetric strain, and the shear modulus depends only on the shear strains.

The splitting into volumetric and deviatoric components of the stress tensor helps

ensuring the “path independent” restriction for isotropic nonlinear elastic materials.

For isotropic linear elastic materials, the stress tensor follows Hooke’s law:
0 =0 +tCigy =0,+C:(e—-gy,)

For a more detailed discussion, see Equation 3-18.

It is possible to split the stress and elastic strain tensors into the deviatoric and

volumetric contributions
1
6 = dev(o) + gtrace(c)l
and

g = dev(ey) + %tracc(ad)l

Assuming only elastic stresses in linear isotropic elastic medium, Hooke’s law simplifies

to
o = dev(o) + L;l)trace(cs)l = 2Gdev(e,) + Ktrace(g )l

where K is the bulk modulus and G is the shear modulus. By using the convention that

the pressure is the mean stress defined as positive in compression,
1
p= —gtracc(c)

The volumetric strain (positive in tension) is
| = trace(gy)

8cl,vo

The linear relation between pressure and volumetric elastic strain is thus
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p = Keg

el,vol

The deviatoric stress and deviatoric elastic strain tensors are related by the shear
modulus

dev(c) = 2Gdev(e,)

By using the contraction of the deviatoric stress and strain tensors, the invariants of
these tensors can alternatively be related through

1 2
Jy(o) = Edev(c):dcv(c) = (2G) Jqy(ey)
For a body subject to pure torsion on the plane 12, the stress tensor components are

zero except the shear stress 619 = 691 = T, and also the elastic strain tensor has zero

components beside the shear strains on that plane €19 = €91 = yo/2.

Then
1 2
Jo(0) = Edcv(c):dcv(c) =1
and
1 12
Jo(ey) = Edev(sd):dcv(sd) = 7V

The shear stress on the plane © = ,/J4(0) is then related to the elastic shear strain
Yo = 2819 = 2,/J5(g,) by the shear modulus

T = Gy,

Nonlinear Moduli
For nonlinear elastic materials, there is a nonlinear relation between shear stress and

shear strain and/or a nonlinear relation between pressure and volumetric strain.

For the purpose of this discussion, © = ,fJo(c) and v, = 2, /J4(g) are used

alternatively as variables.

In the most general case:

b = p(scl,vol) and 1 = T(ycl)
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Tangent and Secant Moduli
The tangent shear modulus Gy(y,)) and the secant shear modulus G4(v¢)) in the most

general case depend nonlinearly on the shear strain, and are defined as

o andG, =

G, =
6ycl Tel

Note that the secant modulus is sometimes called the chord modulus between zero and

current strain level.

The tangent bulk modulus Ki(g] vo1) and the secant bulk modulus Ky(&e] vo1) depend
on the elastic volumetric strain, and are defined as

K, =- p andK_ = - p
8cl,vol 8cl,vol
For linear elastic materials, it is clear that Gy = G = G and K = K = K, but this is not
the case for nonlinear elastic materials.

At zero strain, the secant and shear moduli are equal to each other G4(0) = Gy (0) and
K(0) = K¢ (0).

The nonlinear elastic materials described in the next sections are represented by

introducing nonlinear secant shear and/or bulk moduli.

Geometric Nonlinearity

The nonlinear elastic material models are primarily intended for small strain analysis.
When used in a geometrically nonlinear study step, the strains will be interpreted as
Green—Lagrange strains and the stresses will be interpreted as second Piola—Kirchhoff
stresses. This is relevant for a situation with large rotations but small strains. If the
strains become larger than a few percent, then you must be careful when interpreting
input parameters and results since the strain and stress tensors also have a nonlinear

dependence on the displacements.

RAMBERG-0SGOOD

The Ramberg-Osgood material model (Ref. 1) is a nonlinear elastic material
commonly used to model plastic deformation in metals, but it also often used in soil
engineering. As it is an elastic model, it can only represent plasticity during pure

on-loading conditions.

For uniaxial extension, the stress-strain curve is defined by the expression
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_ o c \"*
€= E+8rcf<c_)

ref

Here, E means the initial Young’s modulus, and &.¢ is the strain at a reference stress
Gref- The parameter n is the stress exponent. It is common to use €,er = 0.002, 50 Gef
is the stress at 0.2% strain, typically denoted by the symbol 6 5. This parameter has
several names depending on the literature: 0.2% offset yield strength, 0.2% proof stress,
0.2% proof strength, or 0.2% yield stress. Typical values for stainless steel are

E =200 GPa, 6 9 =600 MPa, and n = 4.8.

The linear strain is given by

and the nonlinear strain by

The total strain is the sum of linear and nonlinear strains

- -9 o\
€= & tey = E+8rc o
ref
In order to avoid a circular dependence of internal variables, the nonlinear strain €, is

defined with an auxiliary degree of freedom, so the stress reads ¢ = E(e — g1).

Ramberg—Osgood Material in Soil Engineering
In soil engineering, it is common to write the Ramberg-Osgood material with the

stress-strain expression

e= Zyosd( o) (3-28)
E E \c,

so at the reference stress Gpef, the strain is € = (1 + a)o,e¢/E. It is common to use

o = 3/7, so operrepresents the stress level at which the secant Young’s modulus has

been reduced to 70% its initial value: Eg 7 =E/(1 + o) = 0.7E. At this reference stress

the strain is € = Gt/ E 7.

POWER LAW
For this type of material, the shear stress is related to the elastic shear strain y by the

strain exponent n and a reference shear strain yor (Ref. 2)
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n
0/ref Ve

The secant shear modulus is given by the power law relation

G, = Go(yric)"*l

The strain exponent controls the nonlinear deformation:

e For n > 1 the material behaves as a dilatant (shear-thickening) solid
* For n =1 the material is linear elastic
* For 0 <n <1 the material behaves as pseudoplastic (shear-thinning) solid

¢ For n =0 the material is perfectly plastic

BILINEAR ELASTIC

The most commonly mentioned model of “bilinear elastic” material is defined with
two different bulk moduli for either tension and compression. Commonly, brittle
materials like graphite and ceramics exhibit this behavior. The secant bulk modulus

reads:

K = K, for g1 >0
and

K = K, for g5 451 <0

where gg] yo1 is the volumetric strain, K, is the bulk modulus for compression, and Kj
the bulk modulus for tension.

UNIAXIAL DATA
Many nonlinear stress-strain curves are measured in a tensile test, for which a nonlinear

curve of force vs displacement is obtained.

If only the uniaxial behavior is measured, the measurements do not fully define the
material behavior. An extra assumption is needed. The Uniaxial data material model
allows you to assume either a constant Poisson’s ratio, or a constant bulk modulus.
Also, if only uniaxial extension data is available, further assumptions are needed for

covering the uniaxial compressive behavior of the material.

For the uniaxial tensile test, the axial stress corresponds to the principal stresses

Oax = 01 = Opises> a1d the other two principal stresses are equal to zero, 69 = 63 = 0.
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The principal (axial) strain is positive in tension, g,4 = €1, and the other two

(transverse) strains are negative and related by the Poisson’s ratio €9 = g3 = —vey.

For uniaxial compression, the axial strain is negative, and when the principal strains are
sorted as €1 > €9 > &g it corresponds to the third principal strain, &, = €3. The other
two (transverse) strains are positive and related by the Poisson’s ratio g1 = g9 = —veg.
Also, the axial stress is negative in compression, and it corresponds to the third
principal stress Gy = 03 = —Gppiges- L€ Other two transverse stresses are zero

01262:0.

Other strain measures that can be obtained from the elastic strain tensor or its principal
values, are the elastic volumetric strain
| = trace(ey)

€yol ¢

and the elastic shear strain,

Yo = 2.0d5(e) = .j2dev(e,):dev(e,) -
These are used to define the elastic axial strain variable for multiaxial loading.

The uniaxial test defines the relation between the axial stress and elastic axial strain as

c,, = E_¢

ax s’ax

Here, Eg is the secant Young’s modulus, and the axial stress 6, is considered as a

function of the elastic axial strain €45. Thus

Assuming a constant Poisson’s ratio, the secant shear modulus is defined as

G - B
ST 2(1+v)

and the secant bulk modulus as
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E

S

K, = ————
3(1-2v)
Furthermore, if only tensile stress-strain data is available, the elastic axial strain for

multiaxial loading is computed from the elastic shear strain y and Poisson’s ratio v as

o = 3y
ax = (1 +v)

When nonsymmetric stress-strain data is available, the elastic axial strain for multiaxial

loading is computed from the elastic volumetric strain and Poisson’s ratio

_ €yol

fax T 19y

as this expression captures the change of sign in the elastic axial strain when changing
from a tensile to a compressive state.

When using a constant bulk modulus assumption, only the symmetric part from the

stress-strain data is considered. The secant shear modulus is instead defined as

o - SKE,
ST 9K-E,

and the elastic axial strain is defined from both volumetric and shear elastic strains

e = L [Pl

ax A/g 3

It is possible to use any uniaxial data function to define the axial stress as a function of

elastic axial strain
Gax = Gax(aax)

provided that
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Gux = 0 whene, =0

The elastic axial strain ,4 can be called in user defined uniaxial stress
functions by referencing the variables solid.eax, where solid is the

la name of the physics interface node. See also the description of the
Uniaxial Data material model in the Solid Mechanics interface
documentation.
SHEAR DATA

Many nonlinear stress-strain curves are measured in a shear test, for which a nonlinear

curve of force vs displacement is obtained.

If only the shear behavior is measured, the measurements do not fully define the
material behavior and therefore an extra assumption is needed. The Shear data

material model assumes a constant bulk modulus.

Other strain measures that can be obtained from the strain tensor or its principal

values, are the elastic volumetric strain
8vol,cl = trace(scl)

and the elastic shear strain,

v =2,/Jd5(eq) = [2dev(ey):dev(ey) .
These are used to define the nonlinear stress-strain relation for multiaxial loading.

From the shear test one could define the relation between the shear stress T and the

clastic shear strain y as
Tt = Gyy

Here, the secant shear modulus Gy is constant for Linear Elastic materials, but in
general one could use a nonlinear relation. It is possible to use shear data to define the

shear stress as a function of elastic shear strain as follows:
T =1(y)
provided that

=0 wheny =0
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in which case, the secant shear modulus is computed from

G =W
Sy

With the help of the secant shear modulus G computed from shear data, Hooke’s law

simplifies to
c = 2Gdev(g,) + Ktrace(g )]

where K is the bulk modulus.

The elastic shear strain y can be called in user defined shear stress functions
by referencing the variables solid.esh, where solid is the name of the
@}‘ physics interface node. See also the description of the Shear Data material

model in the Solid Mechanics interface documentation.
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HYPERBOLIC LAW

A hyperbolic relation between shear stress and shear strain is obtained by setting the

secant shear modulus

° 1+<:{-ﬁ-)n

where the strain exponent n and a reference shear strain y e control the shape of the

hyperbola.

For hyperbolic material models, the maximum shear modulus occurs at zero shear
strain, so practitioners might call G the “maximum shear modulus” and use the

notation Gy 5. Sometimes it is also called “small strain shear modulus”.

HARDIN-DRNEVICH
The Hardin—-Drnevich model (Ref. 3) is a hyperbolic soil model (with n = 1) defined
by two input parameters: the initial shear modulus G and a reference shear strain Yo

1

1+-L
Yref

G, =G

S

This nonlinear soil model is commonly used for modeling soil dynamics in earthquake

engineering problems.
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Since © = Ggy, the shear stress is bounded by T, = Gyper as the shear strain increases.

The hyperbolic Hardin-Drnevich model is normally used for quantifying stiffness
reduction curves in soils. Commonly, the reference shear strain y,..¢ is replaced by the
reference shear strain at which the secant shear modulus has been decreased to 70% of

its initial value. Calling this shear strain value yg 7, the reference strain is written as

7
Yret = 3%0.7
and the secant shear modulus as

G, = G—L1—
3y

1+51L

o7

so that when y = yq 7 the secant shear modulus is G4 =0.7G.

DUNCAN-CHANG

The original model was originated by Kondner to fit triaxial test data for undrained
soils. Duncan and Chang (Ref. 4) and other coworkers (Ref. 5) developed this
hyperbolic model to its current state. The material model is written in terms of the axial
and radial stresses 61 and o3 and the axial strain €, and it describes the stress-strain

curve by fitting the hyperbola

£
a+be

61-03 =

here @ and b are material parameters obtained by curve fitting data from the triaxial

test. The parameter a is related to the initial Young’s modulus E

and the parameter b defines the asymptote of the hyperbola, which is related to the

ultimate value of 61 — o3 denoted q ¢

1
- (01-08) = Quke

The ultimate value g is related to the strength of the soil.

For the triaxial test, the axial strain ¢ is related to the shear strain y by the Poisson’s

ratio as
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/3

ET e+

and the axial and radial stresses are related to the shear stress as 61 — 65 = J3T.

It is possible then to write the relation between shear stress and shear strain as

_1

L. 2w’
l+_1__...[§__y
E g 2(0+v)

Since the initial shear modulus is related to the initial Young’s modulus as

G = E/2(1 + v), this stress-strain relation can alternatively be written as

1= —Y
1,48
G 9yl

which is an hyperbolic law with a secant shear modulus of

G. = —2G

< - T
1+4 /3y
9y

DUNCAN-SELIG

The Duncan-Selig model is a combination of the Duncan’s hyperbolic material model
(Ref. 4, Ref. 5) and Selig’s model to describe nonlinear bulk modulus behavior. Selig
(Ref. 6) further developed the model of Duncan and others in order to include a

nonlinear volumetric response in soils.

The model defines the nonlinear volumetric response for the pressure as

p=-K €el vol
Eelvol
1 _ Zelvo

Eqlt

where g v is the volumetric strain, and g4 is the asymptote of the hyperbola, the
maximum value for the volumetric compression. Note that K represents the bulk

modulus at zero strain.

The secant (nonlinear) bulk modulus is defined for this material model as
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USER DEFINED

This option allows you to write explicitly how the pressure depends on the elastic

volumetric strain. This could be an analytic function or data interpolated from a table.

The elastic volumetric strain &) ¢ can be called in user defined
expressions by referencing the variables solid.eelvol, where solid is
the name of the physics interface node.

Linear Viscoelasticity

Viscoelastic materinls have a time-dependent response even if the loading is constant
in time. Many polymers and biological tissues exhibit this behavior. Linear
viscoelasticity is a commonly used approximation where the stress depends linearly on
the strain and its time derivatives (strain rate). Also, linear viscoelasticity deals with the
additive decomposition of stresses and strains. It is usually assumed that the viscous
part of the deformation is incompressible so that the volumetric deformation is purely

elastic.

THE GENERALIZED MAXWELL MODEL
For isotropic linear elastic materials in the absence of inelastic stresses, Hooke’s law in
Equation 3-18 reduces to

G =C:gy

where the elastic strain tensor €] = € — €;0] represents the total strain minus initial and

inelastic strains, such as thermal strains.

The stress tensor can be decomposed into a pressure and a deviatoric stress:
c = -pl+oy

The pressure, mean stress, or volumetric stress, is given with a positive sign in

compression

p = —%tracc(c)
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and the deviatoric stress is computed from the total stress minus the volumetric

contribution

o4 = dev(o) = cs—étracc(c) = oc+pl

The elastic strain tensor g can in the same way be decomposed into volumetric and

deviatoric components

_1 I
€] = ggel,vol t&q
with the volumetric elastic strain defined as

Eelvol = trace(eg))

and the deviatoric contribution
gq = dev(ey)

For isotropic linear elastic materials, the pressure is then related to the volumetric

elastic deformation by the bulk modulus K

p = —L;l)trace(c) = —Ktrace(g,)) = _K‘C'el,vol

and the deviatoric stress tensor is linearly related to the deviatoric elastic strain tensor
by the shear modulus G

o4 = dev(o) = 2Gdev(gy) = 2Gey
The total stress in Equation 3-18 is then

o = KSel,VOII+ 2G8d

In case of geometric nonlinearity, o represents the second Piola—Kirchhoff stress tensor

and &g the elastic Green—Lagrange strain tensor.

For viscoelastic materials, the deviatoric stress o4 is not linearly related to the deviatoric
strain gg but it also depends on the strain history. It is normally defined by the
hereditary integral:

t
o4 = 2jr(t—t')
0

88d
Edt
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The function I'(¢) is called the relaxation shear modulus function (or just relaxation
function) and it can be found by measuring the stress evolution in time when the

material is held at a constant strain.
The relaxation function is often approximated by a Prony series:

N
rit) =G+ Z Gmexp< i)

_‘cm
m=1
A physical interpretation of this approach, often called the generalized Maxwell

model, is shown in Figure 3-1

Od

Od

Figure 3-1: Generalized Maxwell model.

Hence, G is the stiffness of the main elastic branch, G,, represents the stiffness of the
spring in branch m, and 1,,, is the relaxation time constant of the spring-dashpot pair

in branch m.

The relaxation times T,, are normally measured in the frequency domain, so the
viscosity of the dashpot is not a physical quantity but instead it is derived from stifthess
and relaxation time measurements. The viscosity of each branch can be expressed in

terms of the shear modulus and relaxation time as
nm = Gmrm

The auxiliary strain variable g, is introduced to represent the extension of the
corresponding abstract spring, and the auxiliary variables v,,, = € — g,,, represent the

extensions in the dashpots.

The shear modulus of the elastic branch G is normally called the long-term shear

modulus, or steady-state stiffness, and it is often denoted with the symbol G,. The
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instantaneous shear modulus Gy is then defined as the long-term shear modulus plus
the sum of the stiffnesses of all the viscoelastic branches

N
Go=G+ Y G,

m=1

This is the equivalent stiffness when the external load is applied much faster than the

shortest relaxation time of any viscoelastic branch.

Sometimes, the relaxation function I'(¢) is expressed in terms of the instantaneous

stiffness and relative weights, so that the Prony series is given as
N
t
re =G + (——)
() ol Wes Z W, eXp -
m=1

In this case, the long-term shear modulus is related to the instantaneous shear modulus
by the weight w,, < 1

G =w,G,
and the shear moduli in each branch are defined by the weights w,,
Gm = meO

It must be assumed then that the weights fulfill the constraint
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N
w,, + Z w, =1
m=1

The long-term shear modulus G is given in the parent material model (for
example, Linear Elastic Material). If your material data consists of the
instantaneous shear modulus Gy and the weights w,,,, you can convert the

data using the formulas above.

If your data consists of Young’s modulus and relaxation time per branch,
'g' you can convert it to the equivalent shear moduli. As the strain tensors in

the dashpots are isochoric (volume preserving) it means that G,, = E,,,/3.

In the parent Linear Elastic Material, you can enter the long-term elastic
data in any form, for example in terms of Young’s modulus, E, and
Poisson’s ratio, v. It will then be converted to the corresponding shear

modulus G internally.

The stress per branch can be written either in terms of the strain in the spring, gq,,, or
the strain in the dashpot, y,,

o, = 2G,q,, = 20,7, = 2G,(c-7,)

The sum of the stresses in the viscoelastic branches is then computed from

N N
Oy = Z G,y = Z 2G,,(e-7v,,)
m=1 m=1
The total stress in Hooke’s law (Equation 3-18) is then augmented by the viscoelastic
stress Gy

G =0p+Cigy+0, (3-29)

Computing the Stress in Each Branch
The auxiliary variable y,, is a symmetric isochoric (volume preserving) strain tensor,
which has as many components as the number of strain components of the problem

class. Since the stress per branch is written as

c,, = 2G,q,, = 2nm«}m = 2G,,(e-7v,,)
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the auxiliary variables y,,, can be computed by solving the ODE

M¥m = G (&= 1,) (3-30)
The relation between viscosity and relaxation time is
My = Gt
so that Equation 3-30 can equivalently be written as
T ¥m + ¥ = € (3-31)

The viscoelastic strain variables, v,,,, are treated as additional degrees of freedom
(DOFs). The shape functions are chosen to be one order lower than those used for the
displacement field, because these variables add to the strains and stresses computed
from displacement derivatives. Alternatively, Equation 3-31 can be solved using a

Local Time Integration algorithm.

The viscoelastic strain variables v,,, are called for instance
solid.lemmi.vis1.ev1_11, where solid is the tag of the physics
interface, 1emm1 is the tag of the linear elastic material, and vis1 is the tag
of the viscoelasticity node. The trailing numbers indicate the branch

number and the strain tensor indices.

CHAPTER 3:

Volumetric Response
It is usually assumed that the viscous part of the deformation is incompressible so that

the volumetric deformation is purely elastic, but this does not have to be the case.

The same derivation as stated in previous sections can be applied to the volumetric
response, in which case the sum of the stresses in the viscoelastic branches is computed

from
N

N
cFq = z Om = Km(ael,vol - evol, m)I
m=1

m=1

where gg] yo1 is the elastic volumetric strain, and the auxiliary variables ey , represent

the volumetric deformation per branch. These are computed by solving the ODE

Tmevol, m = 8el,vol - evol, m
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where 1, is the relaxation time per branch.

The volumetric viscoelastic strain variables ey, , are called, for example,
solid.lemmi.vis1.evvol1, where solid is the tag of the physics
interface, lemm1 is the tag of the linear elastic material node, and vis1 is
the tag of the viscoelasticity node. The trailing number represents the
branch number (that is, the first branch in this case).

Using a Suitable Number of Branches

Only branches that have a relaxation time which is of the same order of magnitude as
the temporal variation of the loading are important for the viscoelastic response. The
cost in terms of memory consumption and computational speed increase significantly
if the model contains many branches, particularly in time domain and for
eigenfrequency analyses. In these cases many auxiliary equations of the form

Equation 3-31 have to be solved for.

However, if a viscoelastic branches relaxes much faster or much slower than the time
scale of the excitation period of external loads, the corresponding dashpots may be

considered to be either fully relaxed or rigid, depending on the relaxation time of the
branch relative to the excitation frequency. These branches can then be removed and

grouped into equivalent branches, thus reducing the computational cost.

When the frequency band of interest is bounded by two cutoft frequencies, flgwer and
fupper- it is possible to prune viscoelastic branches that have relaxation times such as

R
fhigh " flow

Branches with short relaxation times tj, represent the response of the viscoelastic
material to high frequency excitations. When the external loads represent excitations
bounded by an upper frequency fypper- it is possible to prune branches with relaxation
times that fulfill the relation 1;f,pper < 1. These branches are grouped into an
equivalent branch, with relaxation time and stiffness such as
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Viscoelastic branches with relaxation times 13, such that 1 < 13 fj,, are grouped into an
equivalent branch forming the low frequency cutoft. The stiffness and relaxation time

for the equivalent branch are computed from

1 1 Gy _
= G_TOWZE and Gy, = ZGk
k k

Frequency Domain

In frequency domain, the relaxation function becomes complex-valued. The complex
shear modulus for the generalized Maxwell model is then defined as the sum of the
shear modulus in the pure elastic branch plus the complex shear moduli in the

viscoelastic branches

N .
Jjot,,
Gom = G+ Z Gml +jot,,
m=1

The storage and loss moduli are then computed as the real and imaginary parts of the

complex shear modulus

(01,
G' = real(Ggy) = G+ Z G,/
_, 1+ (o1,
and
N
ot
G" = imag(Ggyy) = z Gm—-——-’-'-l-—-é
1+ (o1,,)
=1

Energy Dissipation
The dissipated energy density rate (SI unit: W/ms) in each dashpot m is

Wm = Gm:&m

The rate of total dissipated energy density in the Generalized Maxwell material is then
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In order to compute the dissipated energy density, the variable Wy is integrated over
time. For frequency domain studies, the dissipation of viscous forces averaged over a

time period 21/® is computed from the shear loss modulus G" as

W, = wG"sNd : conj(s:d)

THE MAXWELL MODEL
The Maxwell model (or Maxwell element) consists of a spring and a dashpot arranged
series. Maxwell elements are building blocks used in the generalized Maxwell model.

o4

R

Cd

Figure 3-2: Maxwell model.

In frequency domain, the compliance of the Maxwell model is defined as the sum of

the compliance modulus of the elastic part plus the compliance in the damper

1 1
Jo = =
M= Gt oG
The complex shear modulus then reads
_ 1 _ _jor
Gy = JIym T 1l+jot

The storage and loss moduli are defined as the real and imaginary parts of the complex

shear modulus

2
G' = real(Gyy) = (O)—T)ZG
1+ (o71)

and

G" = imag(Gy) = LZG
1+ (w7)
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THE GENERALIZED KELVIN-VOIGT MODEL
The generalized Kelvin—Voigt model is used to simulate the viscoelastic deformation

in a wide range of materials such as concrete, biological tissues, and glassy polymers.

Just as for the generalized Maxwell model, the deviatoric strain gq is not linearly related
to the deviatoric stress 4, but it also depends on the strain history. It is normally
defined by the hereditary integral:

t
aﬁd
6q = J\u(t—t')ﬁdt'
0

The function y(2) is called the compliance function (also called creep compliance or
creep function) and it can be found by measuring the strain evolution in time when

the material is held at a constant stress.
The compliance function is often approximated by a Prony series:

N

y(t) = J+ z Jm(l—exp(—f-))

m=1

A physical interpretation of this rheological model consists of an elastic branch plus a
number of Kelvin—Voigt elements arranged in series, this approach is shown in
Figure 3-3.

| : |

1 Y1 | | Y2 | I N |

| - | | |

G4
1 N2 - - NN
G
| Gy Gy Gn |
|
gq

Figure 3-3: The generalized Kelvin—Voigt model.

Here, G is the stiffness of the main elastic branch, G,, represents the stiffness of the
spring in element m, and t,, is the relaxation time constant of the spring-dashpot pair
in branch m. The compliance ¢/ in the pure elastic branch is related to the shear
modulus by
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and the compliances per branch are related to the shear moduli as
1
J ==
m Gm

The relaxations time T,,, is normally measured in the frequency domain, so the viscosity
of the dashpot is not a physical quantity but instead it is derived from stiftness and
relaxation time measurements. The viscosity in each branch can be expressed in terms

of the stiffness or compliance modulus and relaxation time as
nm = Gmtm = Tm/Jm
The auxiliary strain variables y,,, are introduced to represent the extension of the

corresponding Kelvin—Voigt element. Since the elements are arranged in series, the

total viscoelastic strain is given as the sum of the auxiliary strains
Y=Y m (3-32)
m

The deviatoric stress 64 in the pure elastic branch is the same as in all the Kelvin—Voigt

elements
o4 = 2Gdev(e,) = 2G,,v,, + 2N, Ym (3-33)

Here, the deviatoric elastic strain is defined by the difference between the total and

inelastic strains.

Computing the Strain in Each Branch
The auxiliary strain variables y,,, represent a symmetric isochoric (volume preserving)
strain tensor, which has as many components as the number of strain components of

the problem class.

The stress in each element m is given by the sum of the stresses in the spring and

dashpot arranged in parallel

G4 = 2vam+2ﬂm“}m = 2Gm(ym+tm}.’m)

Here, v,, is the strain in the element m, and n,, = 1,,G,,, is the viscosity. The auxiliary

variables y,,, are computed by solving the ODE
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Ym + rm}./m = -Z-—é—-cd (3-34)
m

The compliance of the elastic branch, J = 1/G, is normally called the instantaneouns
compliance, and it is often denoted with the symbol JJi. This gives the equivalent
stiffness when the material is loaded by an abrupt load much faster than the shortest

relaxation time of any branch.

The long-term compliance J, is defined as the instantaneous compliance plus the sum

of the compliances of the viscoelastic branches

N N
J, =dJ+ ZszéJ'ZGL
=1 m:lm

The long-term shear modulus then reads G, = 1/ ,.

Sometimes, the compliance function y(¢) is expressed in terms of the instantaneous

compliance J and relative weights w,,,, so that the Prony series reads

N

y(t) =J| 1+ z wm(l—exp(—%))

m
m=1

In this case, the compliance and shear modulus in each branch are

J, =w,J and G,, = G/w,,

m

and the long-term shear compliance and long-term shear modulus read

N N

J,=dJ 1+ Zwm and G, = G/| 1+ Zwm

=1 m=1
Frequency Domain
In frequency domain, the compliance function becomes complex valued. The complex
compliance for the generalized Kelvin—Voigt model is then defined as the sum of the

compliance in the pure elastic element (parent material) plus the complex compliances

in the viscoelastic elements.
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N
11
ZG l+jot,,

G)IH

Jovk =

The storage and loss compliances are then computed as the real and imaginary parts of

the complex compliance function

N N
1 1 1 1 W,
J' = real(Jgyg) = 5+ - = =1+
G ZGm1+(mtm) G Z 1+(ot,)
m=1 =1
and
N N
) 1 -0T, 1 -w,, 0T,
J" = imag(Jgyg) = L —m_m
Z Gm1+(mr )2 G z 1+ (ot )2
m=1 m=1 m

Energy Dissipation
The dissipated energy density rate (SI unit: W/, ms) in each branch m is given by the
dissipation in the dashpot

Wm = 2T]m3'(m:“'/m

The rate of total dissipated energy density in the generalized Kelvin—-Voigt material is
then

In order to compute the dissipated energy density, the variable Wy, is integrated over
time. For frequency domain studies, the dissipation of viscous forces averaged over a

time period 21/® is computed from the shear loss modulus G" as

W, = wG"sNd : COIl_].(SNd)

v
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THE KELVIN-VOIGT MODEL

The Kelvin—Voigt viscoelastic model is represented by a spring connected in parallel

1

€ G§ N o

* L

Od

with a dashpot:

od

Figure 3-4: The Kelvin—Voigt model.

The stress tensor in the viscous branch is computed from the elastic strain rate

oy = 2ne = 2Gte (3-35)

so there is no need to add the extra DOFs to compute the auxiliary strain tensor y.

The relaxation time relates the viscosity and shear modulus by n = tG. The equivalent

shear modulus is used in case of an anisotropic linear elastic material.
The dissipated energy density rate of the Kelvin—Voigt model is then computed from

its rate

W, = O4i&

The Kelvin—Voigt model is equivalent to viscous damping, see Viscous
=] Damping.
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STANDARD LINEAR SOLID MODEL

The standard linear solid model, also called SLS model, Zener model, or
three-parameter model, is a simplification of the generalized Maxwell model with only
one spring-dashpot branch:

P

el G Oq

S
Figure 3-5: Standard linear solid (SLS) model.

Od

The stress in the single branch is computed as

oq = 2G1q1 = 2T]1Y1 = 2G1(8 -Y1)
where the relaxation time is related to the stiffness and relaxation time as Ny = 11Gy.

The auxiliary strain tensor yq is computed by solving by the ODE
Y14y = €

and the dissipated energy density rate of the single branch is calculated from
W, = qu“'{l

The long-term shear modulus G, = G is given in the parent Linear Elastic Material,

and the instantaneous stiftness is given by Gy = G + G.
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THE BURGERS MODEL
The Burgers model consists of a Maxwell (spring-dashpot) branch in series with a
Kelvin—Voigt branch. The rheological representation of this material model is shown

in Figure 3-6:

G Is—y
an 1
€ J—
Gog M2iy  |T2

St

od

Figure 3-6: The Burgers model.

The strain in the first dashpot follows the ODE
dev(o) = 2G(e-7) = 211
where the shear modulus G is taken from the parent Linear Elastic material.
The strain in the second dashpot follows the ODE
21]23'(2 = dev(c) - 2Ggyy
The total strain in the dashpots is computed from
Y =7Y1tYe

Combining these equations, it is possible to recover a second-order ODE for the strain

tensor vy:

. 1 1 . Gy. G,
vo = | =— +—]dev(c) - —7+
(2111 2n2) Ny 2nym,

dev(o)
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Note that the Burgers material has two relaxation times related to the stiffness and
viscosity in the springs and dashpots. The relaxation times t1 and tq are related to the

stiffness and viscosities as 11 =11 /G and 19 =g/ Gs.

The instantaneous stiffness Gy = G is given in the parent Linear Elastic Material.

GENERALIZED MAXWELL MODEL WITH FRACTIONAL DERIVATIVES
Typically, the rheology of viscoelasticity models consists of springs and dashpots
arranged in series and in parallel. Using the framework of fractional calculus, the
constitutive equations of linear viscoelasticity can be generalized with a new type of
element, named spring-pot (Ref. 44). In some cases, viscoelasticity models with

fractional derivatives have shown to better match experimental data.

b B

Figure 3-7: Spring-pot element.

The basic stress-strain relation of the spring-pot element is given by a proportionality

factor p and a fractional time derivative of order B

d’ B
dev(o) = 2p—Bs = 2pD"¢
dt

The fractional order B takes a value between 0 < 8 < 1. For = 0, the parameter p plays
the role of a stiffness in a spring, and for = 1 the parameter plays the role of the
viscosity in a dashpot. The SI unit for such material parameter would be Pa.sP.

For a pair of one spring and one spring-pot element connected in series, a so-called

Maxwell element with a fractional time derivative, the stress strain relation is given by

dev(o) = 2pDBy = 2G(e-vy)
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The rheological representation of this arrangement is shown in Figure 3-8

Od

G &
€

Figure 3-8: A spring-pot element connected in sevies with a spring.

In frequency domain, substitute the fractional time derivative operator by

Jo LN (jo))B

The fractional derivative models are available for frequency domain

i analyses only.

CHAPTER 3:

Thus, the stress-strain relationship reads

N
dev(o) = 2—-@2@—2——8
G+p(o)

For a standard spring-dashpot branch, the relaxation time is given by the ratio of
viscosity and stiffness, T = 1)/G. Equivalently, the relaxation time t for a branch with a
spring and a spring-pot element in series is derived from

P =

Qls

Thus, p = rB/G, and the stress-strain relationship in the spring-spring-pot system reads

- \B
dev(oc) = 2—%@—‘9—[—38
1+ (jor)

The complex-valued shear modulus for this Maxwell element reads

G, - U’ g
1+(jcor)ﬁ
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Storage and loss moduli are defined as the real and imaginary part of the complex shear

modulus
G' = real(Gy;) and G" = imag(Gy)
The loss factor is computed from

_ G _ sinBr/2
ey —
(o71)" + cosPrn/2
For The Generalized Maxwell Model with fractional derivatives, all dashpots are

replaced with spring-pot elements. The rheological representation of this material

model is shown in Figure 3-9

1 2 \L Tm

Figure 3-9: The generalized Maxwell model with fractional derivatives.

The complex-valued shear modulus for the generalized Maxwell model with fractional

derivatives reads

. B
Jot,,) G

G =G+
oM Z1 + (j(otm)ﬁ"’ "

m

where G,,,, T,,,, and B,,, are the shear modulus, relaxation time, and fractional order of
branch m, respectively. Storage and loss moduli are defined as the real and imaginary

part of the complex shear modulus.

G' = real(Ggy) and G" = imag(Ggyp)

GENERALIZED KELVIN-VOIGT MODEL WITH FRACTIONAL DERIVATIVES
The Kelvin-Voigt viscoelastic model with fractional time derivative consists of a spring
connected in parallel with a spring-pot element. The stress strain relation for such

arrangement reads
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dev(oc) = 2pDﬁa +2Ge

The rheological representation of this arrangement is shown in Figure 3-10

I

Od

!

Od

Figure 3-10: Spring spring-pot elements connected in paraliel.

In frequency domain, substitute the fractional time derivative operator by
D’ 5 (o)’
The stress-strain relationship for this Kelvin element then reads
dev(o) = 2(p(jo)® + G)e

The relaxation time t for a spring and a spring-pot element in parallel is derived from

sop= rB/G, and the stress-strain relationship in the Kelvin—Voigt element reads
dev(o) = 2G((ot)® + 1)e
The complex-valued shear modulus in a spring-spring-pot arrangement reads
Gy = (1+(jor)HG

Storage and loss moduli are defined as the real and imaginary part of the complex shear

modulus.
G' = real(Gyy) = (1+(01)’cospr/2)G

and
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G" = imag(Gyy) = (01)’sin(Br/2)G
The loss factor is computed from

G _ _(0t)’sinBr/2
1+ (mr)Bcoan/2

The complex-valued compliance of the Kelvin—Voigt element with fractional time

derivative reads

11
G4 (]'(ot)B

1
JKV
GKV
For The Generalized Kelvin—Voigt Model with fractional derivatives, all dashpots are

replaced with spring-pot elements.

The rheological representation of this material model is shown in Figure 3-11.
Y

|
|
P N R N L 'N
|

Figure 3-11: The generalized Kelvin—Voigt model with fractional derivatives.

The complex-valued compliance reads

where G,,,, 1,,,, and B,,, are the shear modulus, relaxation time, and fractional order of
clement m, respectively. Storage and loss moduli are defined as the real and imaginary

part of the complex shear modulus

1
Jakv

Gogy =
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G' = real(Ggky) and G" = imag(Ggky)

STANDARD LINEAR SOLID MODEL WITH FRACTIONAL DERIVATIVES
In the rheological representation of the Standard Linear Solid Model with fractional
derivatives, the dashpot is replaced with a spring-pot element.

Gd

G]_ J}l
& G Ie}
B, IYl )

Od

Figure 3-12: Standord linear solid (SLS) model with fractional derivatives.

The deviatoric stress in the spring-spring-pot branch is computed as
o = 2G(e-vq) = 2pDBy1

here, y; is the strain in the spring-pot element. In the frequency domain this equation
translates to
Gl

ﬁ2p(jm)B£
G{+p(jo)

oq = 2p(io)y; =
Using the relaxation time 1 = (p/Gl)l/ﬁ, this reads

G, N
0y = 2————(or)e = 2Gqs
1+ (ort)

where G = Gl(jm‘c)ﬁ/(1+(j(nr)ﬁ) is the complex shear modulus of the spring-pot

branch.

Subsequently, the shear modulus is for the SLS model with fractional derivatives reads

B
Gys = G+G, = G+-Y2) g
1+ (ot
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The storage and loss moduli are defined as the real and imaginary parts of the shear
modulus Ggy g, respectively

G' = real(Gg¢) and G" = imag(Gyg;g)

BURGERS MODEL WITH FRACTIONAL DERIVATIVES
In the rheological representation of The Burgers Model with fractional derivatives, the
dashpots are replaced with a spring-pot elements. The rheological representation of

this material model is shown in Figure 3-13:

Od

G ls—y

B1, T1 11

Go <2 Bo, T2 Y2

oq
Figure 3-13: The Burgers model with fractional derivatives.
The deviatoric stress in the main branch is computed as
= 2G(s-v) = 2p;D"
oq = 2G(e-v) = 2p, D71y

here, v1 is the strain in the spring-pot element. In frequency domain, and using the

relaxation times 11 = (pl/G)l/Bl, this equation translates to

Od . B
é‘é =g~y = (ot 1

The stress in the second spring-pot follows

2P2DB2Y2 = 0q-2Gy1,
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here, y9 is the strain in the second spring-pot element. In frequency domain, and using

the relaxation time 19 = (pZ/GQ)l/m, this equation reads

The total strain in the spring-pots is computed from
Y= Y1172
which combined with the relations for the strains in the spring-pots

1

G4 and vy = J——
2G4(1+ (joty)™)

e
2G(joty)

gives the stress and strain relation for Burgers model with fractional derivatives

1 1 1 _
ﬁ + - B + - . Gyq = €
2G(joty)"" 2G4(1+ (joty)”
Subsequently, the compliance for the Burgers model with fractional derivatives reads

1 + 1

+
(j(D‘Cl)BIG (1+ (jo)t2)ﬁz)G2

Jy =

QI

The storage and loss moduli are defined as the real and imaginary parts of the shear

modulus Gg = 1/Jg, respectively

G' = real(Gy) and G" = imag(Gy)

USER DEFINED

With the user-defined viscoelastic material model it is possible to directly enter
complex-valued expressions for the bulk and shear moduli or compliances, or for the
loss factor. The bulk and shear moduli or compliances are entered in terms of storage
and loss moduli or compliances, respectively. The expressions can be entered as
functions taken directly from interpolated data, or can be analytical expressions of the

frequency variable ®.

When the viscoelastic strain is deviatoric, the deviatoric stress is computed from the

elastic deviatoric strain as
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64 = 2(G'(0) +jG"(0))s

and when the viscoelastic strain is volumetric, the pressure is computed from
volumetric elastic strain

p = «(K'(0)+jK"(0))e

el,vol

When loss factor damping is selected, the stress-strain relation is augmented by a

complex constitutive matrix
D® = (1+jn,(@))D

where D is the constitutive matrix computed from the material data, and D€ is the

complex constitutive matrix used to compute the viscoelastic stresses.

The User defined viscoelastic models are available for frequency domain

and eigenfrequency analyses only.

g The internal variables for the frequency f and angular frequency o are
named phys.freq and phys.omega. Here, phys is the name of the
physics interface, for instance solid.

TEMPERATURE EFFECTS

For many polymers, the viscoelastic properties have a strong dependence on the
temperature. A common assumption is that the material is thermorheologically simple
(TRS). In a material of this class, a change in the temperature can be transformed

directly into a change in the time scale. The reduced time is defined as
¢

_ dt'
t’_gaﬂTWD

where op(T) is a temperature-dependent shift function.

The implication is that the problem can be solved using the original material data,
provided that the time is transformed into the reduced time.

Think of the shift function ap(T') as a multiplier to the viscosity in the dashpot in the
Generalized Maxwell model. This multiplier shifts the relaxation time, so
Equation 3-31 for a TRS material is modified to
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oap(T)TYm + Y,y = €

For the SLS model, the shift applies to a single branch

ap(T)tyy1+7, = €
and for the Kelvin—Voigt model, it applies to the viscosity in the dashpot

Williams—Landel—Ferry Shift
One commonly used shift function is defined by the WLF (Williams—Landel-Ferry)

equation:

_Cl(T B Trcf)

log(ayp) = C_.._..._..._._.._2 (T-T_)

where a base-10 logarithm is used. This shift is only valid over a certain temperature

range, typically around the glass transition temperature.

The first step to compute the shift function op(T') consists of building a master curve
based on experimental data. To do this, the curves of the viscoelastic properties (shear
modulus, Young’s modulus, and so forth) versus time or frequency are measured at a
reference temperature Tpor. Then, the same properties are measured at different

temperatures.

The shift value of each curve, with respect to the master curve obtained at the
temperature Tyef, defines the shift factor op(T'). The constants C; and Cg are material
dependent and are calculated after plotting log(ay) versus T — T'pef.

The shift factor at the reference temperature equals op(Tyef) = 1, so that

T et is the temperature at which the master curve is given. If the

m

temperature T drops below T'or — Cy, the WLF equation is no longer
valid.

CHAPTER 3:

Since the master curve is measured at an arbitrary reference temperature T'.qf, the shift
factor ap(T') can be derived with respect to any temperature, and it is commonly taken
as the shift with respect to the glass transition temperature. The values C; = 17.4 and
Cy = 51.6 K are reasonable approximations for many polymers at this reference

temperature.
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Arrhenius Shift
Below the Vicat softening temperature, the shift factor in polymers is normally
assumed to follow an Arrhenius law. In this case, the shift factor is given by the

equation

1 1

1 _Q1_ 1

og(ar) R(T Trc)

here, a base-e logarithm is used, @ is the activation energy (SI unit: J/mol), and R is

the universal gas constant.

Tool-Narayanaswamy—Moynihan Shift
Structural relaxation in glass can be modeled using the so-called Tool-

Narayanaswamy—Moynihan shift factor which is given as

S 9y, 1oy 1
log(op) = R(T+ T, T )

ref

here, a base-e logarithm is used, @ is the activation energy (SI unit: J/mol), R is the
universal gas constant, T'is the current temperature, T,..¢is a reference temperature, ,
is a dimensionless activation energy fraction, and T% is the so-called fictive

temperature. The fictive temperature is given as the weighted average of partial fictive

temperatures.
_ with _
Ty = ZwiTﬁ Zwi =1
i i

Here, w; are the weights and T; are the partial fictive temperatures. The partial fictive
temperatures are determined from a system of coupled ordinary differential equations
(ODEs) which follow Tool’s equation

dmp T-Tg
ZTy=
dt OLT7\.0i

here, Ag; is a structural relaxation time.

STATIONARY ANALYSIS
For stationary analysis it is possible to select either the long-term stiffness, in which
case the stiffness of the viscoelastic branches is neglected, or the instantaneous stiffness,

in which case the contribution from all branches is used.
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The instantaneous shear modulus Gy is defined as the sum of the stiffness of all the

branches

N
Go=G+ Y G,

m=1

FREQUENCY DOMAIN ANALYSIS AND DAMPING

For frequency domain analysis, the frequency decomposition is performed as
o4 = real(§dejmt)
gq = real(z;dejmt)
Equation 3-29 and Equation 3-31 are then simplified to
Gq = 2(G'+jG"ey

where the shear storage modulus G' and the shear loss modulus G" are defined for the
generalized Maxwell model as

2

G+ z G m) and Gn — z Gm (O‘Em

14 (01, )2 1+(w1,,)

m=1
for the SLS model as
(o7 )2 ot

G=G+G—— ad G" = G———;

1+ (w1y) 1+ (w1y)

for the Kelvin—Voigt model as
G' =G and G" = no = Gto
The internal work of viscous forces averaged over a time period 2n/® is computed as
Q, = (J)G"S:i : conj(aNd)

EIGENFREQUENCY ANALYSIS
The direct use of frequency-dependent shear or bulk moduli, as described in

Frequency Domain Analysis and Damping, leads to a nonlinear eigenvalue problem.
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COMSOL Multiphysics solves such nonlinear problems by expanding all nonlinear
expressions with quadratic polynomials around a frequency linearization point which
you can specify in the Eigenvalue Solver node. The linearized eigenvalue problem then

reads
[K(op)-o Mlu = 0

where oy, is the angular frequency at the linearization point. Thus, the solution of the

linearized system of equations depends on the choice of the linearization frequency o,

Selecting the linearization frequency closer to one of the eigenfrequencies will produce
a better result for that particular frequency, but not for all eigenfrequencies in the
study. Hence, the eigenfrequencies need to be computed one by one using a certain
iterative process that updates the linearization frequency oy,. This iterative procedure
is needed when fractional derivatives are used, and also for the User Defined

viscoelasticity model.

In order to avoid solving a nonlinear eigenvalue problem for the built-in viscoelasticity
models, the same procedure as for time-dependent analysis is used, that is, each
viscoelastic branch is represented by additional variables. For instance, for the The

Generalized Maxwell Model in a eigenfrequency analysis, Equation 3-31 reads
JOT, Y +Vm = €

The viscoelastic strain variables, v,,, are treated as additional degrees of freedom
(DOFs), and contribute to the damping and stiffness matrices of the coupled system

of equations.

This procedure results in a damped linear eigenvalue problem that can be solved using
the default eigenfrequency solver in a single run, for any specified number of

eigenfrequencies.

For more information see the Eigenfrequency section in the Studies and
@ Solvers chapter in the COMSOL Multiphysics Reference Manual.

An example of a nonlinear eigenvalue problem is shown in Eigenmodes of
a Viscoelastic Structural Damper: Application Library path
[m] Structural_Mechanics_Module/Dynamics_and_Vibration/

viscoelastic_damper_eigenmodes
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LOCAL TIME INTEGRATION

For the The Generalized Maxwell Model and the Standard Linear Solid Model it is
possible to use a local time integration algorithm for time-dependent analysis. By using
this algorithm, the degrees-of-freedom related to viscoelasticity are treated as internal
state variables, which makes the overall solution more efficient and also leaner in terms
of memory usage. The implemented algorithm is based on the method originally

suggested in Ref. 27, and it is schematically described in the following.
Each branch in the Generalized Maxwell model is characterized by an ODE on the

following form

T¥m + ¥y = &(0) (3-36)

where y,, is the viscoelastic strain in the branch. The exact solution to Equation 3-36 is

n+1
t

n+1 At n 1 tn *1_ T
Y | = exp(—rm) Y + a I exp(——-—-%——-—— g(t)dr (3-37)

m
¢
By assuming that the strain g(¢) varies linearly within each time increment, the integral

in Equation 3-37 is analytically computed, so the viscoelastic strain at increment n + 1

reads
1—exp(—£
T
= ep( B ) - ) 389)
Ty At
Tm

All variables in Equation 3-38 evaluated at increment 7 are stored as internal state
variables, and the equation can be applied to each branch of the Generalized Maxwell
model. The same implementation is also used for the single branch in the Standard
Linear Solid model.

See also the description of Viscoelasticity in the Solid Mechanics interface

Gl documentation.
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Large Strain Viscoelasticity

The implementation for large strain viscoelasticity follows the derivation by Holzapfel
(Ref. 1).
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The generalized Maxwell model is based on the splitting of the strain energy density

into volumetric, isochoric, and the contribution from the viscoelastic branches
N
Ws = Wiso + Wvol + Z Ym
=1

The strain energy in the main hyperelastic branch is normally denoted with the

superscript o to denote the long-term equilibrium (as ¢ — o).
The second Piola-Kirchhoff stress is computed from

N

ow,
S = 2@ = Siso+Svol+ Z Qm

m=1

where the auxiliary second Piola—Kirchhoff stress tensors @, are defined as

ov,,
Qn = 257

The time evolution of the auxiliary stress tensor @,,, in each viscoelastic branch is given
by the rate
Qm + _Qm = Siso,m
T
m
here, Sjso p, is the isochoric second Piola—Kirchhoft stress tensor in the branch m.
These tensors are derived from the strain energy density in the main hyperelastic
branch and the energy factors B, as

ow. ow.

-9 iso, m

Siso, m aC = ZBm%

iso
= Bmsiso

so the time evolution of the auxiliary stress tensor @,, is given by

Qm + ‘C_Qm = ﬁmSiso

m

This equation is not well suited for modeling prestressed bodies. Applying the change

of variables

a9Qm = BmSiso - Qm
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the time evolution of the auxiliary stress tensor q,,, reads

qum 4, = ﬁmsiso

For the The Generalized Maxwell Model, it is possible to write the Prony series in

terms of weights w,,, with respect to the instantaneous stiftness Gy

N
It) = Golw,, + Z wmexp( i)

Tm
m=1
Here, w,, is the ratio between the long term and instantaneous stiftness, w,, = G./Gy,
and the weight w,, relates the branch stiffness to the instantaneous stiffness through

w,, = G,,/Go. The weights are bounded by

N
w,,+ z w, =1
m=1

Use this expression to relate the instantaneous stiffness in the small strain regime to the
large strain formulation. The instantaneous response for the second Piola—Kirchhoff

stress is computed from

N
S = Siso +Svol+ Z Bmsiso

m=1

In this expression, the isochoric response represents the long term stiffness, and the
sum of the energy factors the contribution to the overall stiffness from the Maxwell

branches.

The weights in the Generalized Maxwell model for the small strain formulation are
related to the energy factors in the large strain formulation by
GO Gm

P =W =G

0
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equivalently, the energy factors represent the ratio between the branch stiffness and the

long term stiftness in the main branch.

The volumetric contribution from the auxiliary stress tensor g, is
removed before adding these to the viscoelastic stresses per branch

Q1 = BiSiso — Qms SO the stresses @, are isochoric.

TEMPERATURE EFFECTS
The same options for defining Temperature Effects as described for Linear

Viscoelasticity are available for large strain viscoelasticity.

Hyperelastic Materials

A hyperelastic material is defined by its elastic strain energy density Wy, which is a
function of the elastic strain state. It is often referred to as the energy density. The
hyperelastic formulation normally gives a nonlinear relation between stress and strain,

as opposed to Hooke’s law in linear elasticity.

Most of the time, the right Canchy—Green deformation tensor C is used to describe
the current state of strain (although one could use the left Cauchy—Green tensor B,

the deformation gradient tensor F, and so forth), so the strain energy density is written

as Wy(C).

For isotropic hyperelastic materials, any state of strain can be described in terms of
three independent variables — common choices are the inyariants of the right
Cauchy—Green tensor C, the invariants of the Green—Lagrange strain tensor, or the
principal stretches.

Once the strain energy density is defined, the second Piola—Kirchhoft stress is

computed as

oW
- “oC

S

S

In the general case, the expression for the energy Wy is symbolically evaluated down to

the components of C using the invariants definitions prior to the calculations of the
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components of the second Piola—Kirchhoff stress tensor. The differentiation is

performed in components on the local coordinate system.

In Equation View, the definitions of the stress components are shown as

solid.S111 = 2*d(solid.Ws,so0lid.Cl11),
so0lid.S112 = d(solid.Ws,so0lid.C112), and so on
n The factor 2 in front of the differentiation operator for the shear stresses

is omitted, since the symmetry in the Cauchy—Green tensor will cause two

equal contributions.

@l Modeling Geometric Nonlinearity

CHAPTER 3:

For hyperelastic materials, the decomposition between elastic and inelastic

deformation is made using a multiplicative decomposition of the deformation gradient
F, = FF;'
el — in

Here, the inelastic deformation tensor Fy, depends on the inelastic process, such as
thermal expansion, hygroscopic swelling, or plasticity.

In this case, the strain energy density depends on the elastic deformation only, Wy (Cq)),

and the second Piola-Kirchoff stress can be written in terms of its elastic counterpart
-1 -T
S = JinFin SelFin
where J;, = det(F;,) and

oW,
el T aC

el

THERMAL EXPANSION
If thermal expansion is present, a stress-free volume change occurs. This is a pure
volumetric change, so the multiplicative decomposition of the deformation gradient

tensor in Equation 3-4 implies

o o) _ J
el 7 dev(Fy) Iy
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Here, the thermal volume ratio, Jyy,, depends on the thermal stretch Ay, which for
linear thermal expansion in isotropic materials can be written in terms of the isotropic

coeflicient of thermal expansion, o, and the absolute change in temperature
18O

Jth = 7\'1331’1 and kth =1+a. (T_Tref)

Here, the term ogo(T-T'yof) is the thermal strain. The isotropic thermal gradient is

therefore a diagonal tensor defined as
Fy = hnl

When the coefficient of thermal expansion o is anisotropic, the thermal strain is

computed from
&th = o(T - Tref)
and the anisotropic thermal gradient is defined as

Fth = I+8th

The internal variables for the thermal stretch and the thermal volume
= ratio are named solid.stchth and solid.Jth.

HYGROSCOPIC SWELLING
Hygroscopic swelling is an internal strain caused by changes in moisture content. This

strain depends linearly on the moisture content

€hs = Bh(cmo_cmo,ref)

where By, is the coefficient of hygroscopic swelling, ¢, is the moisture concentration,
and ¢y ref is the strain-free reference concentration. The coefficient of hygroscopic
swelling can represent isotropic or anisotropic swelling. The anisotropic hygroscopic

gradient is defined as
FhS =1+ ghS
HYPERELASTICITY WITH PLASTICITY
Itis possible to combine the hyperelastic material models with plasticity, viscoplasticity

and creep. Since these models are primarily used for large strain applications, only the

large strain formulation is available. The decomposition between elastic and plastic
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deformation is made using a multiplicative decomposition of the deformation gradient
tensor,

-1
FeleFpl

Here, the plastic deformation tensor F, depends on the plastic flow rule, yield

function, and plastic potential.

e Multiplicative Decomposition
E}‘ * Plastic Flow for Large Strains

e Creep and Viscoplasticity for Large Strains

CHAPTER 3:

ISOCHORIC ELASTIC DEFORMATION

For some classes of hyperelastic materials it is convenient to split the strain energy
density into volumetric (also called dilatational) and isochoric (also called
distortional or volume-preserving) contributions. The elastic deformation tensor is

then multiplicatively decomposed into the volumetric and isochoric components

Fg, =F el,volF—el

el

with Fg] yo1 as the volumetric elastic deformation (a diagonal tensor) and F_el the
isochoric elastic deformation gradient. Isochoric deformation means that the volume
ratio is kept constant during deformation, so the isochoric elastic deformation is
computed by scaling it by the elastic volume ratio. The elastic volume ratio is defined

by
Jel = det(Fel) = dEt(Fel,VOI)
and the volumetric deformation as

Fo oo = JY3I

el,vol —
By using J it is possible to define the isochoric-elastic deformation gradient

— ~1/3
el = J,

el

=

Fel

the zsochoric-elastic right Canchy—Green tensor

=T -2/3
Cel = Fel Fel = Jel Cel
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and the isochoric-elastic Green—Lagrange strain tensor
- 1 -
€el = i(Cel_I)

This scaling changes the eigenvalues of the tensor, but not its principal directions, so

the original and isochoric tensors remain coaxial to each other.

Some authors call F_el and CTCI the modified tensors. Note that

det(Fy) = det(Cy)) = 1

The internal variables for the isochoric-elastic Cauchy—Green
I'i-l deformation tensor in local coordinate system are named solid.CIel11,
s0lid.CIel12, and so on.

The other two invariants normally used together with /) are the first and second
invariant of the isochoric-elastic right Cauchy—Green deformation tensor

I,(Cy) and I,(Cy))
In these equations:

1,(Cy) = trace(Cy) = Jo/°1,(Cy)

el

_ 1 _ __9
Iy(Cy) = 5U1(Cy) - trace(Cy ) = I *Iy(Cy)

Since I S(C_el) = det(C_el) = 1, the third invariant is never explicitly used.

The internal variables for the invariants Jg, I l(C_d) ,and I 2(0_451) are
= named solid.Jel, solid.I1CIel, and solid.I2CIel.

The invariants of the isochoric (modified) elastic Green—Lagrange strain tensor are
related to the invariants of the isochoric-elastic right Cauchy—Green deformation
tensor

I,(s,) = trace(e,) = %(II(C_el)—3)
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I(eq) = 2T (e0) - trace(zy?) = 2,(Co)—20,(Cq) +3)

Iy(eg) = det(ig) = 2(1,(Co) ~1,(C)

The internal variables for the invariants of the isochoric elastic Green—
Lagrange strain tensor are named solid.I1eIel, solid.I2eIel, and
solid.I3elIel.

[
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COUPLED AND UNCOUPLED RESPONSES
The isochoric and volumetric responses of most materials are coupled (Ref. 11), in this

case, the strain energy density is written as a function of the elastic deformation
Ws = Ws(Cel)

however, in many situations it is possible to assume that the pressure and deviatoric
stress are uncoupled, and therefore for numerous hyperelastic materials it is possible to

define the strain energy density as the sum of isochoric and volumetric counterparts

Ws =W, (Cel)+ Wvol(Jel)

1O

here, C_el is the isochoric elastic right Cauchy—Green deformation tensor, and J/ is

the elastic volume ratio.

VOLUMETRIC RESPONSE
The volumetric strain energy density, Wy, is defined as an expression of the elastic

volumetric deformation JJ) and the bulk modulus .

The Quadratic volumetric strain energy density is defined as:
W) = S(Tq-1)
vol(Je) = 5(Je = 1) (3-39)
The Logarithmic volumetric strain energy density (Ref. 11) is defined as:
K
Woo(Je) = éanel (3-40)

The Hartmann-Neff volumetric strain energy density (Ref. 12) is defined as:
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5 5
Wvol(Jel) = '5%(Je1 +J;1 - 2) (3-41)

The Miehe volumetric strain energy density (Ref. 14) is defined as:
Weola)) = k(g —Indy - 1) (3-42)

and the Simo-Taylor volumetric strain energy density (Ref. 15) is defined as:
K, 12
Wvol(Jel) = Z(Jel - 21nJel -1) (3-43)

For a given volumetric strain energy density, the volumetric stress (pressure) is

calculated as

_ 8WV01

3-44

Py =

When the quadratic expression in Equation 3-39 is used, the pressure becomes linearly

related to the volume change:
pm = _K(Jel - 1)

but for other volumetric representations the pressure becomes a nonlinear function of
the volume change. For instance, if the expression in Equation 3-41 is used instead of
the quadratic function, the pressure reads

1 4 -6
Pnp = _i-(_)K(Jel _Jel )

THE LOCKING PROBLEM

A numerical scheme is said to exhibit Jocking if the accuracy of the approximation
deteriorates as a parameter tends to a limiting value (Ref. 16). Finite elements in solid
mechanics are said to “lock” when exhibiting an unphysical response to deformation
(Ref. 17). Locking can occur for many different reasons. For linear elastic materials,
this typically happens as Poisson’s ratio tends to 0.5, or the bulk modulus is much
larger than the shear modulus. Numerical errors arise because the shape functions are

unable to properly describe the volume preserving deformation.

To avoid the locking problem in computations, the mixed formulation replaces p,, in
Equation 3-44 with a corresponding interpolated pressure help variable p,, which

adds an extra degree of freedom to the ones defined by the displacement vector u.
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The general procedure is the same as described in Mixed Formulation for Linear

Elastic materials.

INCOMPRESSIBLE HYPERELASTIC MATERIALS
For incompressible hyperelastic materials, the volumetric strain energy density W is
not defined at all, and the strain energy density W consists only of the isochoric

contribution and the incompressibility constraint

Ws(u’pw) = Wiso_(Jel - 1)pw

Instead of deriving the pressure from the volumetric strain energy, a weak constraint is

added to account for the incompressibility condition

dJ

el

=1

The auxiliary pressure variable, py, acts as Lagrange multiplier to enforce the
constraint /) = 1. This variable, positive in compression, is then used as the pressure

when computing stresses.

The contribution to the virtual work is
8W = [ S:5e dv+ [ (Jy-1)dp,, dv

The second Piola—Kirchhoft stress is then given by

g =9 Wse_ yot (3-45
= %7C Pw -45)

and the Cauchy stress tensor by
1 T 1 Wiso por
c = JIFSF' = 2J-1F el F'p I (3-46)

NEARLY INCOMPRESSIBLE HYPERELASTIC MATERIALS
For nearly incompressible hyperelastic materials, the strain energy density Wy is

decoupled into isochoric and volumetric counterparts:
Ws = Wiso + Wvol

here, Wi, is the isochoric strain energy density and Wy, is the volumetric strain energy
density.
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The isochoric strain energy density depends on the material model, and it can be an

expression involving the following:

* Components of the isochoric elastic right Cauchy-Green tensor C_el in the local

coordinate system.

* Principal invariants of the isochoric elastic right Cauchy—Green tensor C_el .

* Principal invariants of the isochoric elastic Green—Lagrange strain € .
* For User Defined hyperelastic materials, it is also possible to define the strain energy

density in terms of components of the isochoric elastic deformation gradient F_d .

The volumetric strain energy density can be any of the expression described in
Volumetric Response. The default value for the bulk modulus is set to 100 times the
equivalent shear modulus at infinitesimal deformation, which gives an initial Poisson’s

ratio of approximately v = 0.495.

An auxiliary variable, py,, is added to map the pressure p,, derived from the volumetric

strain energy density as described in Equation 3-44.

Then the variational problem is computed by the so-called perturbed Lagrangian

method (Ref. 18), so the contribution to the virtual work reads

W = —JVS:5S dv +.[V %(pw—pm)éipW dv

The second Piola—Kirchhoff stress is then defined as

g = oW ) ot 3-47
=2%C v (547

where the extra pressure variable satisfies the weak constraint

oW

vol

Sy,

Py = P, Wherep =
the Cauchy stress tensor then reads

ow,
o = JIFSFT = 2J \F—2FTp I

Using the Quadratic volumetric strain energy density results in the only

n mixed formulation that returns a symmetric coupled stiffness matrix.
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PREDEFINED HYPERELASTIC MATERIAL MODELS

Different hyperelastic material models are constructed by specifying different elastic
strain energy expressions. There are several predefined material models, as well as the
option to enter user defined expressions for the isochoric and volumetric strain energy

densities.

NEO-HOOKEAN
The strain energy density for the Compressible, coupled version of the Neo-Hookean
material is written in terms of the elastic volume ratio /) and the first invariant of the

elastic right Cauchy—Green deformation tensor I1(Cg)) (Ref. 10, 13)

1 1
W, = Su(I;-3)-uln(J) + EMn(Jel)2

S

Here, A and p are the Lamé parameters (SI unit: Pa).

In Ref. 8 the coupled strain energy density is defined from Lamé parameters

1 .
W, = éu(ll—S)—%(JgP—l) with B = ﬁ - 1%2\/

The Compressible, uncoupled and Nearly incompressible versions use the isochoric

invariant 1 1(C_el) to define the isochoric strain energy density
W.=W_+W. =0l -3)+W
s = "Miso vol — 2“ 1 vol
where the volumetric strain energy W, can use any of the expressions described in

Volumetric Response. See Nearly Incompressible Hyperelastic Materials for details.

The Incompressible option uses the same isochoric strain energy, but an extra variable
is added to enforce the incompressibility condition ) = 1, see Incompressible

Hyperelastic Materials.

It is possible to define the isotropic hyperelastic material from other pair
of elastic moduli, see the conversion from one set of elastic moduli to
'El Lamé parameters in Table 3-1.

See also the description of the Neo-Hookean material model in the Solid

Mechanics interface documentation.
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ST VENANT-KIRCHHOFF
One of the simplest hyperelastic material models is the St Venant—Kirchhoft material,

which is an extension of a linear elastic material into the hyperelastic regime.

For the Compressible, coupled response, the elastic strain energy density is written with
two parameters and two invariants of the elastic Green—-Lagrange strain tensor, I1(gg))
and Iy(eq)

1
W, = Q(K+2u)l%—2ul2

Here, A and p are Lamé parameters (SI unit: Pa). The bulk modulus « is calculated
from k =\ + 2p/3.

The Compressible, uncoupled and the Nearly incompressible versions use the isochoric
invariants I;(g,) and I4(g,)) to define the isochoric strain energy density

1 — —
Wio = 50+ 201 - 2pl,

The elastic volume ratio /) and the bulk modulus « are used to define the volumetric
strain energy density Wy, see Volumetric Response and Nearly Incompressible

Hyperelastic Materials.

It is possible to define the isotropic hyperelastic material from other pair
of elastic moduli, see the conversion from one set of elastic moduli to
'El Lamé parameters in Table 3-1.

See also the description of the St Venant—Kirchhoft material model in the

Solid Mechanics interface documentation.

MOONEY-RIVLIN, TWO PARAMETERS
For the Compressible, uncoupled and Nearly incompressible versions, the isochoric strain
energy density is written in terms of the two isochoric invariants of the elastic right

Cauchy—Green deformation tensors I l(c_el) and I Z(C_el)
Wi = C1o1=3)+ Coy(I5-3)

The material parameters Cq and C; (SI unit: Pa) are related to the Lamé parameter
(shear modulus) p=2(Cqg+ Cp7).
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The elastic volume ratio /) and the bulk modulus « are used to define the volumetric
strain energy density W, see Volumetric Response and Nearly Incompressible
Hyperelastic Materials.

The Incompressible option uses the same isochoric strain energy, but an extra variable
is added to enforce the incompressibility condition Jg = 1, see Incompressible
Hyperelastic Materials.

See also the description of the Mooney—Rivlin, Two Parameters material

model in the Solid Mechanics interface documentation.

CHAPTER 3:

MOONEY-RIVLIN, FIVE PARAMETERS

Rivlin and Saunders (Ref. 2) proposed a phenomenological model for small
deformations in rubber-based materials on a polynomial expansion of the first two
invariants of the elastic right Cauchy—Green deformation, so the strain energy density
is written as an infinite series

Wy= 3 3 €l -3)"Iy-3)"

m=0n=0

with Cgg = 0. This material model is sometimes also called polynomial hyperelastic
material.

In the first-order approximation, the material model recovers the Mooney—Rivlin

strain energy density
W, = Cio1-3)+Cy;Iy-3)
while the second-order appro