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 1
I n t r o d u c t i o n
This guide describes the Structural Mechanics Module, an optional add-on 
package that extends the COMSOL Multiphysics modeling environment with 
customized physics interfaces that solve problems in the fields of structural and 
solid mechanics, including special physics interface for modeling of shells, 
membranes, beams, plates, trusses, wires, and pipes.

This chapter introduces you to the capabilities of this module and includes a 
summary of the physics interfaces as well as information about where you can find 
additional documentation and model examples. The last section is a brief overview 
with links to each chapter in this guide.

• About the Structural Mechanics Module

• Overview of the User’s Guide
 29
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Abou t  t h e  S t r u c t u r a l  Me chan i c s  
Modu l e

In this section:

• A Quick Overview of the Structural Mechanics Module

• What Problems Can It Solve?

• The Structural Mechanics Module Physics Interface Guide

• Common Physics Interface and Feature Settings and Nodes

• Where Do I Access the Documentation and Application Libraries?

A Quick Overview of the Structural Mechanics Module

The Structural Mechanics Module solves problems in the fields of structural and solid 
mechanics, adding special physics interfaces for modeling shells and beams, for 
example.

The physics interfaces in this module are fully multiphysics enabled, making it possible 
to couple them to any other physics interfaces in COMSOL Multiphysics or the other 
modules. Available physics interfaces include:

• Solid mechanics for 1D and 2D plane stress, plane strain, and generalized plane 
strain, 2D axial symmetry, and 3D solids

• Beams in 2D and 3D, Euler and Timoshenko theory

• Pipes in 2D and 3D

• Truss elements in 2D and 3D

• Wires in 2D and 3D

• Shells and plates, Mindlin theory, 3D and 2D axial symmetry

• Membranes, 3D and 2D axial symmetry

• With the Composite Materials Module, the Layered Shell interface is also available.

The Physics Interfaces and Building a COMSOL Multiphysics Model in 
the COMSOL Multiphysics Reference Manual
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The module’s study capabilities include static, eigenfrequency, time dependent 
(transient), frequency response, buckling, response spectrum, random vibration, and 
parametric studies.

There are several material models:

• Linear Elastic Materials can be isotropic, orthotropic, or fully anisotropic, and you 
can use local coordinate systems to specify material properties.

• Linear Viscoelastic Materials

• Piezoelectric Materials

• Magnetostrictive Materials are available when used together with the AC/DC 
module.

• Material models for hyperelasticity, metal plasticity, porous plasticity, creep, 
viscoplasticity, nonlinear elasticity, soil plasticity, concrete, rocks, and clay are 
available with the optional Nonlinear Structural Materials Module and 
Geomechanics Module.

Large deformations, as well as contact and friction, can also be modeled.

Coupling structural analysis with thermal analysis is one example of multiphysics easily 
implemented with the module, which provides predefined multiphysics couplings for 
thermal stress and other types of multiphysics. Piezoelectric materials, coupling the 
electric field and strain in both directions are fully supported inside the module 
through special multiphysics couplings solving for both the electric potential and the 
displacements. Structural mechanics couplings are common in simulations done with 
COMSOL Multiphysics and occur in interaction with, for example, fluid flow (fluid–
structure interaction, FSI), chemical reactions, acoustics, electric fields, magnetic 
fields, and optical wave propagation.

What Problems Can It Solve?

The Structural Mechanics Module contains a set of physics interfaces adapted to a 
broad category of structural-mechanics analyses. The module serves as an excellent 
tool for the professional engineer, researcher, and teacher. In education, the benefit of 
the short learning curve is especially useful because educators need not spend excessive 
time learning the software and can instead focus on the physics and the modeling 
process.

A short summary is given below.
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S T A T I C  A N A L Y S I S

In a static analysis, the load and constraints are fixed in time.

E I G E N F R E Q U E N C Y  A N A L Y S I S

An eigenfrequency analysis finds the damped or undamped eigenfrequencies and 
mode shapes of a structure, sometimes referred to as the free vibration of a structure. 
Prestress effects and damping can also be taken into account.

T R A N S I E N T  A N A L Y S I S

A transient analysis finds the transient response for a time-dependent model, taking 
into account mass and mass moment of inertia. The transient analysis can be either 
direct or using a modal solution.

F R E Q U E N C Y  R E S P O N S E  A N A L Y S I S

A frequency response analysis finds the steady-state response to harmonic loads. The 
frequency-response analysis can be either direct or using a modal solution. Effects of 
prestress can be included.

L I N E A R  B U C K L I N G  S T U D Y

A linear buckling analysis uses the stiffness coming from stresses and material to 
define an eigenvalue problem where the eigenvalue is a load factor that, when 
multiplied with the actual load, gives the critical load in a linear context.

P A R A M E T R I C  A N A L Y S I S

A parametric analysis finds the solution dependence due to the variation of a specific 
parameter, which could be, for instance, a material property or the position of a load.

R E S P O N S E  S P E C T R U M  A N A L Y S I S

Response spectrum analysis provides a method to estimate peak values of, for example, 
displacements and stresses when a structure is subjected to a short, non-deterministic 
event like an earthquake or a shock.

R A N D O M  V I B R A T I O N  A N A L Y S I S

For steady-state random dynamic loading, like wind or waves, it is possible to perform 
random vibration analysis where the input is given in terms of a power spectrum 
density (PSD).
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T H E R M A L  S T R E S S

In a transient thermal stress study, the program neglects mass effects, assuming that 
the time scale in the structural mechanics problem is much smaller than the time scale 
in the thermal problem.

L A R G E  D E F O R M A T I O N S

You can also enable geometric nonlinearity for all structural mechanics interfaces. The 
engineering strain is then replaced with the Green–Lagrange strain and the stress with 
the second Piola–Kirchhoff stress. To solve the problem, the program uses a total 
Lagrangian formulation.

E L A S T O P L A S T I C  M A T E R I A L S

An elastoplastic analysis involves a nonlinear material with or without hardening. 
Several isotropic and kinematic hardening models are available.

The material models allow large strains.

The elastoplastic material models are available in the Solid Mechanics, Shell, Layered 
Shell, Membrane, and Truss interfaces.

C R E E P  A N D  V I S C O P L A S T I C  M A T E R I A L S

A number of different material models for creep and viscoplasticity are available. In 
these materials, the rate of strain depends on the stress.

H Y P E R E L A S T I C  M A T E R I A L S

In hyperelastic materials, the stresses are computed from a strain energy density 
function. They are often used to model rubber and biological tissue, but are also used 
in acoustic elasticity. Many different models are available.

The hyperelastic materials are available in the Solid Mechanics, Shell, Layered Shell, 
and Membrane interfaces.

N O N L I N E A R  E L A S T I C  M A T E R I A L S

The nonlinear elastic materials are intended for materials that exhibit a nonlinear 
behavior already at small strains. Some brittle material as well as soils show this 
behavior.
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V I S C O E L A S T I C  M A T E R I A L S

Viscoelastic materials have a time-dependent response, even if the loading is constant. 
Viscoelasticity is available in the Solid Mechanics, Shell, Layered Shell, and Membrane 
interfaces.

C O N T A C T  M O D E L I N G

You can model contact between parts of a structure. The Solid Mechanics, Shell, 
Layered Shell, and Membrane interfaces support contact with or without friction. 
Three contact algorithms are available: penalty, augmented Lagrangian, and Nitsche 
methods. The contact models can be augmented with adhesion and decohesion.

S P E C I A L  M O D E L I N G  T E C H N I Q U E S

In the Structural Mechanics Module, you will find support for many important special 
modeling techniques. Some examples are:

• Bolt pretension

• Bolt thread modeling

• Stress linearization

• Rigid connectors

• Transitions between solid, shell, and beam elements

The Structural Mechanics Module Physics Interface Guide

• Hyperelastic, elastoplastic, creep, viscoplastic, and nonlinear elastic 
material models are available with the Nonlinear Structural Materials 
Module.

• Additional functionality and material models for geomechanics and soil 
mechanics — nonlinear elasticity, soil plasticity, concrete, rock, and clay 
material models — is available with the Geomechanics Module.

The Poroelasticity interface requires and is coupled with the Structural 
Mechanics Module, and is discussed in the Subsurface Flow Module 
User’s Guide.
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At any time, a new model can be created or physics interfaces added. Right-click the 
Root (top) node and select Add Component or right-click a Component node and select 
Add Physics.

Depending on the physics interface, specify parameters defining a problem on points, 
edges (3D), boundaries, and domains. It is possible to specify loads and constraints on 
all available geometry levels, but material properties can only be specified for the 
domains, except for shells, membranes, beams, and trusses, where they are defined on 
the boundary or edge level.

In the COMSOL Multiphysics Reference Manual:

• Studies and Solvers

• The Physics Interfaces

• For a list of all the core physics interfaces included with a COMSOL 
Multiphysics license, see Physics Interface Guide.

PHYSICS INTERFACE ICON TAG SPACE 
DIMENSION

AVAILABLE STUDY TYPE

 Acoustics

 Elastic Waves

Elastic Waves, Time 
Explicit

elte 3D, 2D, 2D 
axisymmetric

time dependent

Piezoelectric Waves, 
Time Explicit

— 3D, 2D, 2D 
axisymmetric

time dependent

 Fluid Flow

 Fluid-Structure Interaction

Fluid-Solid Interaction2 — 3D, 2D, 2D 
axisymmetric

stationary; time dependent

Fluid-Shell Interaction2 — 3D, 2D 
axisymmetric

stationary; time dependent
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Fluid-Shell Interaction, 
Fixed Geometry2

— 3D, 2D 
axisymmetric

stationary; stationary, one 
way; time dependent; time 
dependent, one way

Fluid-Membrane 
Interaction2

— 3D, 2D 
axisymmetric

stationary; time dependent

Fluid-Membrane 
Interaction, Fixed 
Geometry2

— 3D, 2D 
axisymmetric

stationary; stationary, one 
way; time dependent; time 
dependent, one way

Fluid-Pipe Interaction, 
Fixed Geometry7

— 3D, 2D stationary; time dependent

Conjugate Heat Transfer, 
Fluid-Solid Interaction2

— 3D, 2D, 2D 
axisymmetric

stationary; time dependent;

Fluid-Solid Interaction, 
Viscoelastic Flow2,10

— 3D, 2D, 2D 
axisymmetric

time dependent; time 
dependent with phase 
initialization

Fluid-Solid Interaction, 
Two-Phase Flow, Phase 
Field2, 6

— 3D, 2D, 2D 
axisymmetric

time dependent; time 
dependent with phase 
initialization

PHYSICS INTERFACE ICON TAG SPACE 
DIMENSION

AVAILABLE STUDY TYPE
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 Structural Mechanics

Solid Mechanics1 solid 3D, 2D, 2D 
axisymmetric, 
1D, 1D 
axisymmetric

stationary; eigenfrequency; 
eigenfrequency, 
prestressed; mode analysis; 
time dependent; time 
dependent, modal; time 
dependent, modal 
reduced-order model; 
frequency domain; 
frequency domain, modal; 
frequency domain, 
prestressed; frequency 
domain, prestressed, 
modal; frequency domain, 
modal reduced-order 
model; frequency domain, 
AWE reduced-order 
model; response spectrum; 
random vibration (PSD); 
linear buckling; bolt 
pretension

Thermal Stress, Solid2 — 3D, 2D, 2D 
axisymmetric

stationary; time dependent

Thermal Stress, Shell2, 4 — 3D, 2D 
axisymmetric

stationary; time dependent

Thermal Stress, 
Membrane2, 4

— 3D, 2D 
axisymmetric

stationary; time dependent

Joule Heating and Thermal 
Expansion2

— 3D, 2D, 2D 
axisymmetric

stationary; time dependent

PHYSICS INTERFACE ICON TAG SPACE 
DIMENSION

AVAILABLE STUDY TYPE
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Shell shell 3D stationary; eigenfrequency; 
eigenfrequency, 
prestressed; time 
dependent; time 
dependent, modal; time 
dependent, modal 
reduced-order model; 
frequency domain; 
frequency domain, modal; 
frequency domain, 
prestressed; frequency 
domain, prestressed, 
modal; frequency domain, 
modal reduced-order 
model; response spectrum; 
random vibration (PSD); 
linear buckling

Plate plate 2D stationary; eigenfrequency; 
eigenfrequency, 
prestressed; time 
dependent; time 
dependent, modal; time 
dependent, modal 
reduced-order model; 
frequency domain; 
frequency domain, modal; 
frequency domain, 
prestressed; frequency 
domain, prestressed, 
modal; frequency domain, 
modal reduced-order 
model; response spectrum; 
random vibration (PSD); 
linear buckling

PHYSICS INTERFACE ICON TAG SPACE 
DIMENSION

AVAILABLE STUDY TYPE
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Beam beam 3D, 2D stationary; eigenfrequency; 
time dependent, modal; 
time dependent, modal 
reduced-order model; 
frequency domain; 
frequency domain, modal; 
frequency domain, modal 
reduced-order model; time 
dependent; response 
spectrum; random 
vibration (PSD); linear 
buckling

Beam Cross Section bcs 3D, 2D stationary

Truss truss 3D, 2D stationary; eigenfrequency; 
eigenfrequency, 
prestressed; time 
dependent; time 
dependent, modal; time 
dependent, modal 
reduced-order model; 
frequency domain; 
frequency domain, modal; 
frequency domain, 
prestressed; frequency 
domain, prestressed, 
modal; frequency domain, 
modal reduced-order 
model; response spectrum; 
random vibration (PSD); 
linear buckling

PHYSICS INTERFACE ICON TAG SPACE 
DIMENSION

AVAILABLE STUDY TYPE
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Wire wire 3D, 2D stationary; eigenfrequency; 
eigenfrequency, 
prestressed; time 
dependent; time 
dependent, modal; time 
dependent, modal 
reduced-order model; 
frequency domain; 
frequency domain, modal; 
frequency domain, 
prestressed; frequency 
domain, prestressed, 
modal; frequency domain, 
modal reduced-order 
model; response spectrum; 
random vibration (PSD); 
linear buckling

Membrane mbrn 3D, 2D 
axisymmetric

stationary; eigenfrequency; 
eigenfrequency, 
prestressed; time 
dependent; time 
dependent, modal; time 
dependent, modal 
reduced-order model; 
frequency domain; 
frequency domain, modal; 
frequency domain, 
prestressed; frequency 
domain, prestressed, 
modal; frequency domain, 
modal reduced-order 
model; response spectrum; 
random vibration (PSD)

PHYSICS INTERFACE ICON TAG SPACE 
DIMENSION

AVAILABLE STUDY TYPE
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Pipe Mechanics pipem 3D, 2D stationary; eigenfrequency; 
time dependent, modal; 
time dependent, modal 
reduced-order model; 
frequency domain; 
frequency domain, modal; 
frequency domain, modal 
reduced-order model; time 
dependent; response 
spectrum; random 
vibration (PSD)

Solid Thin-Film Damping — 3D, 2D, 2D 
axisymmetric

stationary; eigenfrequency; 
time dependent; time 
dependent, modal; time 
dependent, modal 
reduced-order model; 
frequency domain; 
frequency domain, modal; 
frequency domain, modal 
reduced-order model; time 
dependent; response 
spectrum; random 
vibration (PSD)

Shell Thin-Film Damping — 3D, 2D 
axisymmetric

stationary; eigenfrequency; 
time dependent; time 
dependent, modal; time 
dependent, modal 
reduced-order model; 
frequency domain; 
frequency domain, modal; 
frequency domain, modal 
reduced-order model; time 
dependent; response 
spectrum; random 
vibration (PSD)

PHYSICS INTERFACE ICON TAG SPACE 
DIMENSION

AVAILABLE STUDY TYPE
A B O U T  T H E  S T R U C T U R A L  M E C H A N I C S  M O D U L E  |  41



42 |  C H A P T E R
Piezoelectricity2 — 3D, 2D, 2D 
axisymmetric

stationary; eigenfrequency; 
eigenfrequency, 
prestressed; time 
dependent; time 
dependent, modal; 
frequency domain; 
frequency domain, modal; 
frequency domain, 
prestressed; frequency 
domain, prestressed, 
modal; small-signal analysis, 
frequency domain; linear 
buckling

Piezoelectricity, Layered 
Shell2 5

— 3D stationary; eigenfrequency; 
time dependent; frequency 
domain

Magnetostriction2,3 — 3D, 2D, 2D 
axisymmetric

stationary; eigenfrequency; 
time dependent; frequency 
domain; small-signal 
analysis, frequency domain; 
eigenfrequency, 
prestressed; frequency 
domain, prestressed

Magnetomechanics2,3 — 3D, 2D, 2D 
axisymmetric

stationary; eigenfrequency; 
time dependent; frequency 
domain; small-signal 
analysis, frequency domain; 
eigenfrequency, 
prestressed; frequency 
domain, prestressed

Magnetomechanics, No 
Currents2,3

— 3D, 2D, 2D 
axisymmetric

stationary; eigenfrequency; 
time dependent; frequency 
domain; small-signal 
analysis, frequency domain; 
eigenfrequency, 
prestressed; frequency 
domain, prestressed

Ferroelectroelasticity2,9 — 3D, 2D, 2D 
axisymmetric

stationary; time dependent; 
frequency domain

PHYSICS INTERFACE ICON TAG SPACE 
DIMENSION

AVAILABLE STUDY TYPE
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Common Physics Interface and Feature Settings and Nodes

There are several common settings and sections available for the physics interfaces and 
feature nodes. Some of these sections also have similar settings or are implemented in 
the same way no matter the physics interface or feature being used. There are also some 
physics feature nodes that display in COMSOL Multiphysics.

Electrostriction2,9 — 3D, 2D, 2D 
axisymmetric

stationary; time dependent; 
frequency domain

1 This physics interface is included with the core COMSOL Multiphysics software but has 
added functionality for this module.

2 This physics interface is a predefined multiphysics coupling that automatically adds all the 
physics interfaces and coupling features required.

3 Requires the addition of the AC/DC Module.

4 Requires the addition of the Heat Transfer Module.

5 Requires the addition of the Composite Materials Module.

6 Requires the addition of the CFD Module, or the Polymer Flow, or the Microfluidics 
Module.

7 Requires the addition of the Pipe Flow Module.

8 Requires the addition of the Porous Media Flow Module.

9 Requires the addition of the AC/DC Module or the MEMS Module.

10 Requires the addition of the Polymer Flow Module.

PHYSICS INTERFACE ICON TAG SPACE 
DIMENSION

AVAILABLE STUDY TYPE
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In each module’s documentation, only unique or extra information is included; 
standard information and procedures are centralized in the COMSOL Multiphysics 
Reference Manual.

Where Do I Access the Documentation and Application Libraries?

A number of online resources have more information about COMSOL, including 
licensing and technical information. The electronic documentation, topic-based (or 
context-based) help, and the Application Libraries are all accessed through the 
COMSOL Desktop.

T H E  D O C U M E N T A T I O N  A N D  O N L I N E  H E L P

The COMSOL Multiphysics Reference Manual describes the core physics interfaces 
and functionality included with the COMSOL Multiphysics license. This book also has 
instructions on how to use COMSOL Multiphysics and how to access the electronic 
Documentation and Help content.

Opening Topic-Based Help
The Help window is useful as it is connected to the features in the COMSOL Desktop. 
To learn more about a node in the Model Builder, or a window on the Desktop, click 
to highlight a node or window, then press F1 to open the Help window, which then 

In the COMSOL Multiphysics Reference Manual, see Table 2-4 for 
links to common sections and Table 2-5 to common feature nodes. 
You can also search for information: press F1 to open the Help 
window or Ctrl+F1 to open the Documentation window.

If you are reading the documentation as a PDF file on your computer, 
the blue links do not work to open an application or content 
referenced in a different guide. However, if you are using the Help 
system in COMSOL Multiphysics, these links work to open other 
modules, application examples, and documentation sets.
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displays information about that feature (or click a node in the Model Builder followed 
by the Help button ( ). This is called topic-based (or context) help.

Opening the Documentation Window

To open the Help window:

• In the Model Builder, Application Builder, or Physics Builder, click a node 
or window and then press F1.

• On any toolbar (for example, Home, Definitions, or Geometry), hover the 
mouse over a button (for example, Add Physics or Build All) and then 
press F1.

• From the File menu, click Help ( ).

• In the upper-right corner of the COMSOL Desktop, click the Help ( ) 
button.

To open the Help window:

• In the Model Builder or Physics Builder, click a node or window and then 
press F1.

• On the main toolbar, click the Help ( ) button.

• From the main menu, select Help>Help.

To open the Documentation window:

• Press Ctrl+F1.

• From the File menu, select Help>Documentation ( ).

To open the Documentation window:

• Press Ctrl+F1.

• On the main toolbar, click the Documentation ( ) button.

• From the main menu, select Help>Documentation.
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T H E  A P P L I C A T I O N  L I B R A R I E S  W I N D O W

Each model or application includes documentation with the theoretical background 
and step-by-step instructions to create a model or application. The models and 
applications are available in COMSOL Multiphysics as MPH-files that you can open 
for further investigation. You can use the step-by-step instructions and the actual 
models as templates for your own modeling. In most models, SI units are used to 
describe the relevant properties, parameters, and dimensions, but other unit systems 
are available.

Once the Application Libraries window is opened, you can search by name or browse 
under a module folder name. Click to view a summary of the model or application and 
its properties, including options to open it or its associated PDF document.

Opening the Application Libraries Window
To open the Application Libraries window ( ):

C O N T A C T I N G  C O M S O L  B Y  E M A I L

For general product information, contact COMSOL at info@comsol.com.

C O M S O L  A C C E S S  A N D  T E C H N I C A L  S U P P O R T

To receive technical support from COMSOL for the COMSOL products, please 
contact your local COMSOL representative or send your questions to 
support@comsol.com. An automatic notification and a case number will be sent to you 

The Application Libraries Window in the COMSOL Multiphysics 
Reference Manual.

From the File menu, select Application Libraries.

To include the latest versions of model examples, from the File>Help 
menu, select ( ) Update COMSOL Application Library.

Select Application Libraries from the main File or Windows menus.

To include the latest versions of model examples, from the Help menu, 
select ( ) Update COMSOL Application Library.
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by email. You can also access technical support, software updates, license information, 
and other resources by registering for a COMSOL Access account.

C O M S O L  O N L I N E  R E S O U R C E S

COMSOL website www.comsol.com

Contact COMSOL www.comsol.com/contact

COMSOL Access www.comsol.com/access

Support Center www.comsol.com/support

Product Download www.comsol.com/product-download

Product Updates www.comsol.com/support/updates

COMSOL Blog www.comsol.com/blogs

Discussion Forum www.comsol.com/forum

Events www.comsol.com/events

COMSOL Application Gallery www.comsol.com/models

COMSOL Video Gallery www.comsol.com/video

Support Knowledge Base www.comsol.com/support/knowledgebase
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Ove r v i ew o f  t h e  U s e r ’ s  Gu i d e

The Structural Mechanics Module User’s Guide gets you started with modeling using 
COMSOL Multiphysics. The information in this guide is specific to this module. 
Instructions how to use COMSOL in general are included with the COMSOL 
Multiphysics Reference Manual.

T A B L E  O F  C O N T E N T S ,  G L O S S A R Y ,  A N D  I N D E X

To help you navigate through this guide, see the Contents, Glossary, and Index.

M O D E L I N G  W I T H  T H E  S T R U C T U R A L  M E C H A N I C S  M O D U L E

The Structural Mechanics Modeling chapter gives you an insight on how to approach 
the modeling of various structural mechanics problems.

S T R U C T U R A L  M E C H A N I C S  T H E O R Y

The Structural Mechanics Theory chapter introduces the general theory on which the 
physics interfaces in the Structural Mechanics Module are based.

T H E  S O L I D  M E C H A N I C S  I N T E R F A C E

The Solid Mechanics chapter describes The Solid Mechanics Interface, which is used 
to model 3D solids, plane strain and plane stress 2D and 1D models, and 2D 
axisymmetric models.

T H E  S H E L L  A N D  P L A T E  I N T E R F A C E S

The Shell and Plate chapter describes The Shell and Plate Interfaces, which are used to 
model thin 3D structures (shell) and out-of-plane loaded plates (plate). The 
underlying theory is described in Theory for the Shell and Plate Interfaces.

T H E  B E A M  I N T E R F A C E

The Beam chapter describes The Beam Interface, which contains Euler (Euler–
Bernoulli) and Timoshenko beams for modeling slender 3D and 2D structures. 
Typical examples are frameworks and latticeworks. The underlying theory for the 
physics interface is described in Theory for the Beam Interface.

As detailed in the section Where Do I Access the Documentation and 
Application Libraries?, this information can also be searched from the Help 
menu in COMSOL Multiphysics.
 1 :  I N T R O D U C T I O N



T H E  B E A M  C R O S S  S E C T I O N  I N T E R F A C E

The Beam Cross Section chapter describes The Beam Cross Section Interface, which 
is used for computing cross section properties for beams. It can also be used for a 
detailed evaluation of stresses in a beam when the section forces to which it is subjected 
are known. The first section discusses Using the Beam Cross Section Interface, and the 
underlying theory is described in Theory for the Beam Cross Section Interface.

T H E  T R U S S  I N T E R F A C E

The Truss chapter describes The Truss Interface, which models slender 3D and 2D 
structures with components capable to withstand axial forces only. Typical applications 
are latticeworks, but it can also be used for modeling cables. In the section Modeling 
with Truss Elements, you will find a discussion about how to set up models using this 
interface. The underlying theory for the physics interface is described in Theory for the 
Truss Interface.

T H E  M E M B R A N E  I N T E R F A C E

The Membrane chapter describes The Membrane Interface, which can be used for 
prestressed membranes, cladding on solids, and balloons, for example. The underlying 
theory for the physics interface is also included in Theory for the Membrane Interface.

T H E  M U L T I P H Y S I C S  I N T E R F A C E S

The Multiphysics Interfaces and Couplings chapter describes these physics interfaces 
found under the Structural Mechanics branch when adding a physics interface:

• The Thermal Stress, Solid Interface combines a Solid Mechanics interface with a 
Heat Transfer interface. The coupling appears on the domain level, where the 
temperature from the Heat Transfer interface acts as a thermal load for the Solid 
Mechanics interface, causing thermal expansion.

• The Thermal Stress, Shell Interface combines a Shell interface with a Heat Transfer 
in Shells interface. The coupling appears on the boundary level, where the 
temperature from the Heat Transfer in Shells interface acts as a thermal load for the 
Shell interface, causing thermal expansion.

• The Thermal Stress, Layered Shell Interface combines a Layered Shell interface with 
a Heat Transfer in Shells interface. The coupling appears on the boundary level, 
where the temperature from the Heat Transfer in Shells interface acts as a thermal 
load for the Layered Shell interface, causing thermal expansion.

• The Thermal Stress, Membrane Interface combines a Membrane interface with a 
Heat Transfer in Shells interface. The coupling appears on the boundary level, 
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where the temperature from the Heat Transfer in Shells interface acts as a thermal 
load for the Membrane interface, causing thermal expansion.

• The Joule Heating and Thermal Expansion Interface combines solid mechanics 
using a thermal linear elastic material with an electromagnetic Joule heating model. 
This is a multiphysics combination of solid mechanics, electric currents, and heat 
transfer for modeling of, for example, thermoelectromechanical (TEM) 
applications.

• The Piezoelectricity Interface, Solid combines a Solid Mechanics interface with an 
Electrostatics interface. Piezoelectric materials in 3D, 2D plane strain and plane 
stress, and 2D axial symmetry can be modeled.

• The Piezoelectricity, Layered Shell Interface combines a Layered Shell interface with 
an Electric Currents in Layered Shells interface. This makes it possible to model 
piezoelectric effects in thin layered structures.

• The Electrostriction Interface combines a Solid Mechanics with an Electrostatics 
interface. Using this interface, you can solve problems where strains are caused by 
electrostrictive effects.

• The Ferroelectroelasticity Interface combines a Solid Mechanics with an 
Electrostatics interface. Using this interface, you can solve problems involving 
ferroelectric materials, for example within nonlinear piezoelectricity.

• Hygroscopic Swelling Coupling combines a Solid Mechanics with a Magnetic Fields 
interface. Using this interface, you can solve problems in the magnetostrictive field 
with linear as well as nonlinear material models.

• The Fluid-Solid Interaction Interface combines fluid flow with the Solid Mechanics 
interface to capture the interaction between the fluid and the solid in a situation 
where the fluid domain has significant deformation. The solid material exists on 
domains which are adjacent to the fluid.

• The Fluid-Shell Interaction Interface combines fluid flow with the Shell interface to 
capture the interaction between the fluid and the solid in a situation where the fluid 
domain has significant deformation. The shell is modeled on the boundary of the 
fluid.

• The Fluid-Membrane Interaction Interface combines fluid flow with the Membrane 
interface to capture the interaction between the fluid and the membrane in a 
situation where the fluid domain has significant deformation. The membrane is 
modeled on the boundary of the fluid.

• The Fluid-Solid Interaction, Fixed Geometry Interface combines fluid flow with the 
Solid Mechanics interface to capture the interaction between the fluid and the solid 
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in a situation where the fluid domain can be considered to be nondeforming. The 
solid material exists on domains which are adjacent to the fluid.

• The Fluid-Shell Interaction, Fixed Geometry Interface combines fluid flow with the 
Shell interface to capture the interaction between the fluid and the solid in a 
situation where the fluid domain can be considered to be nondeforming. The shell 
is modeled on the boundary of the fluid

• The Fluid-Membrane Interaction, Fixed Geometry Interface combines fluid flow 
with the Membrane interface to capture the interaction between the fluid and the 
membrane in a situation where the fluid domain can be considered to be 
nondeforming. The membrane is modeled on the boundary of the fluid.

• The Fluid-Pipe Interaction, Fixed Geometry Interface combines flow computed 
using the Pipe Flow interface with structural analysis in the Pipe Mechanics 
interface. Different types of fluid loads are transferred to the structural analysis.

• The Fluid-Solid Interaction, Conjugate Heat Transfer Interface combines fluid flow 
with the Solid Mechanics interface and the Heat Transfer in Solids and Fluids 
interface. It combines fluid-structure interaction modeling with a nonisothermal 
flow. Heat transfer is considered both in the fluid and in the solid in order to capture 
thermal expansion effects.

• The Fluid-Solid Interaction, Two-Phase Flow, Phase Field Interface combines 
two-phase fluid flow with the Solid Mechanics interface to capture the interaction 
between the fluid and the solid in a situation where the fluid domain has significant 
deformation. The solid material exists on domains which are adjacent to the fluid.

• The Fluid-Solid Interaction, Two-Phase Flow, Phase Field, Fixed Geometry 
Interface combines two-phase fluid flow with the Solid Mechanics interface to 
capture the interaction between the fluid and the solid in a situation where the fluid 
domain can be considered to be nondeforming. The solid material exists on 
domains which are adjacent to the fluid.
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 2
S t r u c t u r a l  M e c h a n i c s  M o d e l i n g
The goal of this chapter is to give you an insight on how to approach the modeling 
of various structural mechanics problems.

Some physics interfaces and features discussed in this chapter are only available with 
certain products. For a detailed overview of the functionality available in each 
product, visit https://www.comsol.com/products/specifications/
 53
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In this chapter:

• Study Types

• Selecting the Physics Interface

• Selecting Discretization

• Coupling Different Element Types

• Applying Loads

• Defining Constraints

• Calculating Reaction Forces

• Introduction to Material Models

• Modeling Piezoelectric Problems

• Modeling Electrostrictive and 
Ferroelectroelastic Materials

• Modeling Magnetostrictive 
Materials

• Mechanical Damping and Losses

• Modeling Geometric Nonlinearity

• Contact Modeling

• Activating and Deactivating 
Material

• Springs and Dampers

• Defining Multiphysics Models

• Thermally Coupled Problems

• Fluid-Structure Interaction

• Component Mode Synthesis

• Computing Mass Properties

• Effective Properties of Periodic 
Structures

• Modeling Pretensioned Bolts

• Simplified Modeling of Bolt 
Threads

• Modeling Embedded Structures 
and Reinforcements

• Modeling Thin Layers

• Modeling Cracks

• Buckling Analysis

• Performing a Random Vibration 
Analysis

• Performing a Response Spectrum 
Analysis

• Stress Linearization

• Solver Settings for Structural 
Mechanics

• Using Reduced Integration

• Result Presentation

• Part Libraries
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S t u d y  T yp e s

Introduction

In this section, you will find information about when and how to apply the study types 
which are available for structural mechanics problems:

• Stationary Analysis

• Eigenfrequency Analysis

• Mode Analysis

• Time-Domain Analysis

• Frequency-Domain Analysis

• Mode Superposition

• Harmonic Perturbation

• Modal Reduced-Order Models

• Linearized Buckling Analysis

• Bolt Pretension Study

• Random Vibration (PSD) Study

• Response Spectrum Analysis Study

Stationary Analysis

You can consider a structural mechanics problem as stationary if the following two 
criteria are fulfilled:

• The loads vary so slowly that inertial forces are negligible. Problems of this type are 
referred to as quasi static.

• There are no explicit time dependencies in the material model. Viscoelasticity and 
creep have such time dependencies.

To perform this type of analysis, you use a Stationary study step.

For general information about study types and solvers, see Studies and 
Solvers in the COMSOL Multiphysics Reference Manual
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In many cases, there is a variation in the load, even though the solution for each value 
of the load can be considered as stationary. There are three conceptually different 
cases:

• The load values are independent; it is just a number of different load cases you want 
to compute. The load case handling functionality described in Load Cases is well 
suited for this purpose.

• You want to study a nonlinear problem where the solution is path dependent, or 
where the load must be increased in small increments in order to obtain a converged 
solution. In this case you should use the parametric continuation solver. Create a 
parameter under Global Definitions>Parameters, which you use to control the 
variation of the load. Then select Auxiliary sweep under Study Extensions in the 
settings for the Stationary solver. In the table for the auxiliary sweep parameters, add 
the load controlling parameter, and define its range of variation.

• In a multiphysics problem, another physical quantity might be truly time dependent 
but on a time scale that is “slow” from the structural mechanics point of view. This 
is usually the case with, for example, problems coupled to heat transfer or diffusion. 
If the problem also is such that the structural deformations do not affect the other 
physics, it will be unnecessarily expensive to solve also the structural problem in the 
time domain, irrespective of whether it is linear or nonlinear. In this situation, you 
should first solve the other physics in a time-dependent study and then the structural 
mechanics problem in a subsequent stationary study step using the time t as the 
parameter in the auxiliary sweep.

C O N S T R A I N T S

A stationary problem is solvable only if the structure is sufficiently constrained. There 
must not be any possible rigid body modes. Thus, no stress-free deformation states are 
allowed.

For an example of how to set up such a study sequence, see 
Fluid-Structure Interaction in a Network of Blood Vessels: Application 
Library path Structural_Mechanics_Module/Fluid-Structure_Interaction/

blood_vessel.

For a more detailed discussion about sufficient constraints, see Rigid 
Body Motion.
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Eigenfrequency Analysis

An Eigenfrequency study solves for the eigenfrequencies (natural frequencies) and the 
shapes of the corresponding eigenmodes.

When performing an eigenfrequency analysis, you can specify whether to look at the 
mathematically more fundamental eigenvalue, , or the eigenfrequency, f, which is 
more commonly used in a structural mechanics context. The relation between the two 
is

where i is the imaginary unit.

The undamped eigenvalue problem is commonly written as

where K is the stiffness matrix, M is the mass matrix, u is the eigenmode displacement 
vector, and   f is the angular frequency. If damping is present, the eigenvalue 
equation is expanded to

 (2-1)

where C is the viscous damping matrix, and K can be complex-valued.

Because only the shape and not the size of the modes (eigenvectors) have physical 
significance, the computed modes can be scaled arbitrarily. You can select the method 
for scaling in the Eigenvalue Solver node of the solver sequence. If Scaling of eigenvectors 
is set to Mass matrix, the eigenmodes u are orthogonalized with respect to the mass 
matrix M so that

 (2-2)

This is a common choice for the scaling of eigenvectors within the structural mechanics 
field. The choice of eigenvector scaling does not affect for example the results of a 
subsequent mode superposition analysis, but it will affect the interpretation of an 
exported modal representation of the system.

f 
2i
---------–=

K 2M– u 0=

K iC 2M–+ u 0=

ui
TMui 1=
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M O D A L  P A R T I C I P A T I O N  F A C T O R S

Modal (or mass) participation factors are useful tools when working with the modal 
representation of a structure. Through them, you can get the following information:

• The fraction of the total mass of a structure that a certain number of modes 
represent is a result. This can be important when judging if a set of modes forms a 
good enough base for a mode superposition.

• The main direction of vibration for a certain mode can be seen from the relation 
between the participation factors.

• When you have a large set of modes, an examination of the participation factors can 
give information about the dominant modes.

To compute modal participation factors, a Participation Factors node must be present 
under Definitions in the current component. When you add an Eigenfrequency study 
from the Add Study window, such a node is automatically created.

You can also add it manually under Definitions>Physics Utilities. If you do that after an 
eigenfrequency study has been run, you need to do an Update Solution in order to get 
access to the variables containing the participation factors.

The modal participation factors are available as global variables, and these can for 
example be displayed in a table using a Global Evaluation node under Derived Values in 
the Results branch. The participation factor results are available as predefined variables 
in the Definitions submenu for the component. In Table 2-1, the variables created from 
a Participation Factors node is listed (assuming the default tag mpf1).

The normalized participation factors are those that would be obtained if mass matrix 
scaled eigenmodes would have been used.

TABLE 2-1:  PARTICIPATION FACTOR VARIABLES

VARIABLE DESCRIPTION

mpf1.mass Total mass

mpf1.CMJ Center of mass, J coordinate

mpf1.mEffLJ Effective mass, translation along J axis

mpf1.mEffRJ Effective mass, rotation around J axis

mpf.pfLJ Participation factor, translation along J axis

mpf.pfRJ Participation factor, rotation around J axis

mpf.pfLnormJ Normalized participation factor, translation along J axis

mpf.pfRnormJ Normalized participation factor, rotation around J axis
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If a Participation Factors node is present in the model when an eigenfrequency study is 
run, an evaluation group named Participation Factors is automatically generated. It 
contains a table with the translational and rotational modal participation factors for all 
computed eigenfrequencies.

It is possible to compute eigenfrequencies for structures which are not fully 
constrained; this is sometimes referred to as free-free modes. For each possible rigid 
body mode, there is one eigenvalue which in theory is zero. The number of possible 
rigid body modes for different geometrical dimensions is shown in the table below.

If you would compute all eigenmodes of a structure, and sum all modal 
masses, they will usually not exactly match the total mass of the structure. 
The reason is that any mass which is associated with constrained degrees 
of freedom is lost. This effect is discretization dependent. The mass lost 
is a fraction of the mass of the elements having constrained nodes.

For an example showing how to compute modal participation factors and 
modal mass, see In-Plane Framework with Discrete Mass and Mass 
Moment of Inertia: Application Library path 
Structural_Mechanics_Module/Verification_Examples/

inplane_framework_freq.

In the COMSOL Multiphysics Reference Manual:

• Eigenvalue Solver

• Studies and Solvers

• Postprocessing of Eigenmodes

• Derived Values, Evaluation Groups, and Tables

In the theory chapter of the Structural Mechanics User’s Guide:

• Modal Participation Factors

TABLE 2-2:  NUMBER OF POSSIBLE RIGID BODY MODES

DIMENSION NUMBER OF RIGID BODY MODES

3D 6 (3 translations + 3 rotations)

2D axisymmetric 1 (Z-direction translation)
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The computed rigid body modes will in general not be recognizable as having pure 
translation or rotation. Rather, they will contain linear combinations of all the 
fundamental rigid body motions.

In a piezoelectric model, one more zero eigenfrequency could appear if you have not 
set a reference value for the electric potential.

In practice, the natural frequencies of the rigid body modes are not computed as 
exactly zero, but can appear as small numbers which may even be negative or complex. 
If rigid body modes are present in the model, then it is important to use a nonzero 
value in the Search for eigenfrequencies around text field in the settings for the 
Eigenfrequency study step. The value should reflect the order of magnitude of the first 
important nonzero eigenfrequency.

D A M P I N G

If any type of damping is included in the model, an eigenfrequency solution 
automatically returns the damped eigenvalues. The eigenfrequencies and, in general, 
also the mode shapes are complex in this case. A complex-valued eigenfrequency can 
be interpreted so that the real part represents the actual frequency, and the imaginary 
part represents the damping. The damping ratio of the corresponding eigenmode can 
be defined as

where the approximate expression is valid with high accuracy (within 2%) as long as the 
damping is less than 0.2.

2D (solid, beam, truss) 3 (2 translations + 1 rotation)

2D (plate) 3 (1 translation + 2 rotations)

TABLE 2-2:  NUMBER OF POSSIBLE RIGID BODY MODES

DIMENSION NUMBER OF RIGID BODY MODES

For an example showing an eigenfrequency computation in a model 
having a rigid body mode, see Eigenfrequency Analysis of a Free 
Cylinder: Application Library path Structural_Mechanics_Module/

Verification_Examples/free_cylinder.

i
i imag

i
-------------------------

i imag
i real

-------------------------=
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In a complex mode shape, there are phase shifts between different parts of the 
structure, so that not all points reach the maximum at the same time under free 
vibration.

Some damping types will still give real-valued eigenmodes, this is the case for Rayleigh 
damping and loss factor damping.

P R E S T R E S S E D  A N A L Y S I S

In a loaded structure, the natural frequencies may be shifted due to stress stiffening.

To do a prestressed analysis, Include geometric nonlinearity must be selected in the 
Eigenfrequency study step. This is automatic when you add the Eigenfrequency, 
Prestressed study type.

The prestress loading can include a contact analysis, in which case the subsequent 
eigenfrequency analysis provide as linearization around the current contact state.

F R E Q U E N C Y  D E P E N D E N T  M A T E R I A L  P R O P E R T I E S

If the material data (stiffness or damping) is frequency dependent, the eigenvalue 
problem will become nonlinear. This can, for example, occur for some viscoelastic 
materials. In this case, the eigenvalue equation Equation 2-1 becomes

 (2-3)

The eigenvalue solver as such assumes that the matrices involved are constant, so they 
must be evaluated at a certain frequency, the linearization point.

 (2-4)

If an eigenfrequency study is performed as a first step of a mode 
superposition analysis, then all features that supply damping should be 
disabled in this step. This can be done in the Physics and Variables Selection 
section in the settings for the Eigenfrequency study step.

The damping is taken into account in the mode superposition studies.

See also the discussion under Mode Superposition.

Prestressed Structures

K   iC   2M–+ u 0=

K L  iC L  2M–+ u 0=
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In order to get a correct solution to Equation 2-3, the linearization point L must be 
close to the actual eigenvalue . This is in general possible only for one single 
eigenfrequency at a time. You must solve this problem either by manual iteration, or 
by using some type of scripting, for example through a model method.

Mode Analysis

The Mode Analysis study type ( ) is available with the Solid Mechanics interface in 
2D plane strain.

Elastic waves can propagate over large distances in structures like rails and pipes, with 
a generic name referred to as waveguides. After some distance of propagation in a 
waveguide of uniform cross section, such guided waves can be described as a sum of 
just a few discrete propagating modes, each with its own shape and phase speed. The 
equation governing these modes can be obtained as a spatial Fourier transform of the 
linearized time-harmonic equation in the waveguide axial z direction or by inserting 
the assumption that the mode is harmonic in space,

and eliminating all out-of-plane z dependence.

Similar to the full time-harmonic equation, the transformed equation can be solved at 
a given frequency with a nonzero excitation for most axial wave numbers kz. But at 
certain discrete values the equation breaks down. These values are the propagation 
constants or wave numbers of the propagating or evanescent waveguide modes. The 

Eigenmodes of a Viscoelastic Structural Damper: Application Library 
path Structural_Mechanics_Module/Dynamics_and_Vibration/

viscoelastic_damper_eigenmodes.

The built-in viscoelastic materials use a special formulation that do not 
generate a nonlinear eigenvalue problem, as long fractional derivatives are 
not used.

u ue ikz z–=
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eigenvalue solver can solve for these propagation constants together with the 
corresponding mode shapes.

The most common use for mode analysis is to define sources for a subsequent 
time-harmonic simulation. If there is a component with one or more waveguide 
connections, its behavior can be described by simulating its response to the discrete set 
of propagating modes on the waveguide opening cross sections.

Time-Domain Analysis

There are two classes of problems where a stationary solution cannot be used:

• When the inertial forces no longer are negligible, the full problem as given by 
Newton’s first law must be solved.

• When there are time dependencies in the material model, as for creep or 
viscoelasticity.

The most general way of handling time-dependent problems is to use a Time Dependent 
study. In this type of analysis, you can incorporate any type of nonlinearity, and there 
are no limitations on the time dependence of the loads.

A time-domain solution can be preceded by a stationary study, if, for example, prestress 
effects are needed.

For a linear problem including inertia, using the mode superposition method is often 
much more efficient than using the standard direct method.

S O L V E R  S E L E C T I O N

The two classes of dynamic problems presented above have quite different properties. 
The inertial forces in the full structural dynamics problem contain second-order time 
derivatives of the displacements, whereas creep and viscoelasticity only have first-order 

The propagating wave number is a function of the frequency. The relation 
between the two is commonly referred to as a dispersion curve.

• Out-of-Plane Waves in the Structural Mechanics Theory Chapter

• Studies and Solvers and Mode Analysis in the COMSOL Multiphysics 
Reference Manual
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derivatives. The physical and numerical properties of these equations differ 
significantly.

There are two general solvers for time-dependent problems in COMSOL 
Multiphysics.

• The Generalized alpha method, which is recommended for structural dynamics 
problems. This is the default solver if Structural Transient Behavior is set to Include 

inertial terms in the physics interface settings.

• The BDF method, which is recommended for first-order problems. This is the 
default solver if Structural Transient Behavior is set to Quasistatic in the physics 
interface settings.

Frequency-Domain Analysis

In a frequency-domain analysis, you study the response to a harmonic steady state 
excitation for certain frequencies. Such a steady state can prevail once all transient 
effects have been damped out.

The response must be linear, so that the single frequency harmonic excitation gives a 
pure harmonic response with the same frequency. The model may, however, contain 
nonlinearities. The harmonic response is computed around a certain linearization 
point. In such a case, the frequency-domain analysis can be considered as a very small 
perturbation around that linearization point.

In the COMSOL Multiphysics Reference Manual:

• Time-Dependent Solver

• Studies and Solvers

Harmonic Perturbation
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All loads and responses in a frequency-domain analysis are in general complex-valued 
quantities. If all loads do not have the same phase, you can describe the phase of a 
certain load in two ways:

• Add a Phase subnode to the load, in which you directly give the phase angle.

• Enter the load as a complex value, for example as
100[N]*(1+0.3*i)/sqrt(1+0.3^2).

Most results from a frequency domain analysis are complex-valued. In many results 
evaluation nodes, the real value of any result quantity will be shown. Assuming that 
you want to display for example the displacement in the x direction, u, you have the 
following options:

• Plot u or real(u). This gives the displacement at current (default zero) phase angle.

• Plot imag(u). This gives the displacement at a phase angle shifted 90 degrees from 
the current value.

• Plot abs(u). This gives the amplitude of the displacement.

• Plot arg(u). This gives the phase angle of the displacement.

The reference phase, with respect to which the results above are reported can be 
entered in the settings for the dataset.
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Result quantities that are nonlinear in terms of the displacements, such as principal 
stresses, should be interpreted with great care in frequency domain. They will in 
general not be harmonic, so the information about amplitude and phase is not reliable.

P R E S T R E S S E D  A N A L Y S I S

The shift in the natural frequencies in a prestressed structure may have a significant 
effect on the frequency response. This is particularly important when the frequencies 
of the load are close to any of the natural frequencies of the structure.

To do a prestressed analysis, Include geometric nonlinearity must be selected in the 
Frequency Domain study step. This is automatic when you add the Frequency Domain, 
Prestressed study type.

Some extra variables for postprocessing are created in a frequency-domain 
analysis. As an example, in a Solid Mechanics interface with the name 
solid, the following variables are defined:

• solid.disp — norm of displacement (at current phase angle)

• solid.vel — norm of velocity (at current phase angle)

• solid.acc — norm of acceleration (at current phase angle)

• solid.disp_rms — RMS displacement over a cycle

• solid.vel_rms — RMS velocity over a cycle

• solid.acc_rms — RMS acceleration over a cycle

• solid.uAmpX — amplitude of displacement in the X direction

• solid.uAmp_tX — amplitude of velocity in the X direction

• solid.uAmp_ttX — amplitude of acceleration in the X direction

• solid.uPhaseX — phase of X displacement, in radians

• solid.uPhase_tX — phase of X velocity, in radians

• solid.uPhase_ttX — phase of X displacement, in radians

• solid.mises — von Mises equivalent stress at current phase angle.

• solid.mises_peak — maximum von Mises equivalent stress over a 
cycle.

The components in other coordinate directions are obtained by replacing 
X by another coordinate name.
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The prestress loading can include a contact analysis, in which case the subsequent 
frequency domain analysis provides a linearization around the current contact state.

O B T A I N I N G  A  T I M E  H I S T O R Y

Sometimes you want to study the time history over a period for the results of a 
frequency domain analysis. You can do that by adding a Frequency to Time FFT study 
step. The frequency response results are then viewed as terms in a Fourier series, which 
can be transformed to time domain. It is possible combine the results for several 
frequencies into a single time history, under the assumption that they are all multiples 
of the same fundamental frequency.

Mode Superposition

Analyzing forced dynamic response for large models can be very time-consuming. You 
can often improve the performance dramatically by using the mode superposition 
technique. The following requirements must be met for a modal solution to be 
possible:

• The analysis is linear. It is possible, however, that the structure has been subjected 
to a preceding nonlinear history. The modal response can then be a linear 
perturbation around that state.

• There are no nonzero prescribed displacements.

• The important frequency content of the load is limited to a range that is small when 
compared to all the eigenfrequencies of the model, so that its response can be 

• Prestressed Structures

• Harmonic Perturbation

For examples showing how to obtain a time history from frequency 
domain results, see

• Viscoelastic Structural Damper: Application Library path 
Structural_Mechanics_Module/Dynamics_and_Vibration/

viscoelastic_damper_frequency.

• Vibration Analysis of a Deep Beam: Application Library path 
Structural_Mechanics_Module/Verification_Examples/

vibrating_deep_beam.
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approximated with a small number of eigenmodes. In practice, this excludes wave 
and shock type problems.

• If the modal solution is performed in the time domain, all loads must have the same 
dependency on the time. This requirement can be relaxed if you use a reduced-order 
model to represent the system, rather than using one of the mode superposition 
studies.

When using the Structural Mechanics Module, there are three predefined study types 
for mode superposition:

• Time Dependent, Modal

• Frequency Domain, Modal

• Frequency Domain, Prestressed, Modal

The two first of these study types consist of two study steps: One step for computing 
the eigenfrequencies and one step for the modal response. The last one has three study 
steps. Before the eigenfrequency step, you solve a static load case in order to get a 
prestress state used in the eigenfrequency computation.

In practice, you have often computed the eigenfrequencies already, and then want to 
use them in a mode superposition. In this case, start by adding an empty study, and 
then add a Time Dependent, Modal or Frequency Domain, Modal study step to it. After 
having added the study step this way, you must point the modal solver to the solution 
containing the eigenfrequencies and eigenmodes. You do this by first selecting Show 

default solver at the study level, and then selecting the eigenfrequency solution to be 
used in the Eigenpairs section of the generated modal solver.

In a mode superposition, the deformation of the structure is represented by a linear 
combination of its eigenmodes. The amplitudes of these modes are the degrees of 
freedom of the reduced problem. You must select which eigenmodes to include in the 
analysis. This choice is usually based on a comparison between the eigenfrequencies of 
the structure and the frequency content of the load. As a rule of thumb, select 
eigenmodes up to approximately twice the highest frequency of the excitation.

In the mode superposition formulation in COMSOL Multiphysics, the full model is 
projected onto the subspace spanned by the eigenmodes. A problem having the 
number of degrees equal to the number of included modes is then solved. Note that 
this differs from many implementations of mode superposition, where it often is 
assumed that the modal equations are totally decoupled.
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An implication of this, is that it is not necessary to assume a certain structure of the 
damping matrix. Any type of damping which is allowable in the corresponding analysis 
of the full system can also be used in the modal based analysis.

For many common cases, the mode superposition analysis is not sensitive to whether 
the eigenmodes were computed using damping or not. The reason is that the 
eigenmodes of problems with Rayleigh damping and loss factor damping can be shown 
to be identical to those of the undamped problem, so that the projection to the 
subspace spanned by the eigenmodes is the same in both cases. For more general 
damping, it is however recommended that you suppress all contributions to the 
damping during the eigenfrequency step, and thus base the mode superposition on the 
solution to the undamped eigenfrequency problem.

F R E Q U E N C Y  D O M A I N  A N A L Y S I S

All loads are assumed to have a harmonic variation. This is a perturbation type analysis, 
so only loads having the Harmonic perturbation property selected are then included in 
the analysis.

T I M E - D E P E N D E N T  A N A L Y S I S

Only the factor of the load which is independent of time should be specified in the load 
features. The dependency on time is specified as Load factor under the Advanced section 
of the modal solver. This factor is then applied to all loads.

Harmonic Perturbation

Analyses in the frequency domain assume that the problem your study is linear, at least 
with respect to the response to the harmonic excitation. There may be other 
nonlinearities, such that the structure has responded nonlinearly to a previous loading. 

• Modal Solver and Studies and Solvers in the COMSOL Multiphysics 
Reference Manual

• Mechanical Damping and Losses

For an example showing how to perform mode superposition in time and 
frequency domain, see Various Analyses of an Elbow Bracket: 
Application Library path Structural_Mechanics_Module/Tutorials/

elbow_bracket.
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This loading could, for example, have caused a large rotations or prestress of a rubber 
membrane.

The concept of harmonic perturbation is in COMSOL Multiphysics used for 
distinguishing the linear harmonic analysis from a possible prestress analysis. The most 
important implication is that if a load has the Harmonic Perturbation selection, it is 
applied only in a study that is of the perturbation type. A load without this selection is, 
on the other hand, ignored in such a study. In this way two sets of loads can be 
distinguished from each other. Technically speaking, the effect of marking a load as 
Harmonic Perturbation is that the linper() operator is applied to the value of the load.

The default settings for the different structural mechanics study types in the frequency 
domain are summarized in Table 2-3.

Note the following:

• With the default settings you cannot use the same set of loads for a Frequency Domain 
and a Frequency Domain, Modal study because only the latter responds to 
perturbation loads.

• You can change the behavior of a Frequency Domain study to be of the perturbation 
type by modifying the solver sequence. In the General section of the settings for the 
Stationary Solver, change Linearity to Linear perturbation.

• A solver that does not have Linearity set to either Linear perturbation or Linear may 
respond to nonlinear effects. There are multiphysics problems where this is wanted 
because there may be a nonlinearity in another physics, even though the harmonic 
solution within structural mechanics is linear. But if there are nonlinearities within 

TABLE 2-3:  DEFAULT PERTURBATION SETTINGS FOR STRUCTURAL MECHANICS STUDY TYPES

STUDY TYPE STUDY STEP PERTURBATION

Frequency Domain Frequency Domain No

Frequency Domain, Prestressed Stationary
Frequency Domain, Perturbation

No
Yes

Frequency Domain, Modal Eigenfrequency
Frequency Domain, Modal

N/A
Yes

Frequency Domain, Prestressed, 
Modal

Stationary
Eigenfrequency
Frequency Domain, Modal

N/A
N/A
Yes
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the structural mechanics parts of the model, you must be careful with the solver 
settings.

For most load types, the use of Harmonic Perturbation is straightforward, but some 
cases need a more detailed discussion:

• A Rigid Connector can be assigned a Harmonic Perturbation subnode in which you can 
prescribe harmonic perturbation values to constrained degrees of freedom. If you 
have added Applied Force or Applied Moment nodes under a Rigid Connector, you can 
independently assign Harmonic Perturbation to these nodes, so that the loads are 
considered as being of the perturbation type.

In a Frequency-Domain, Perturbation study step, that is when Linearity is set 
to Linear perturbation, geometric nonlinearity will be incorporated in the 
sense that there is a split between the material and spatial frames. This 
makes it possible to take for example stiffness from follower loads into 
account, and to use a contact solution as linearization point.

This frame split was introduced in version 5.3. As an effect, models 
created in an earlier version, in which some expressions have a frame 
dependency, may produce results that differ from before. Examples of 
such cases are:

• Pressure loads

• Loads defined in coordinate systems with deformation dependent axis 
orientation

• User-defined expressions containing spatial (“lowercase”) coordinates

In the COMSOL Multiphysics Reference Manual:

• Frequency Domain Perturbation Study Step

• Harmonic Perturbation — Exclusive and Contributing Nodes

• Built-In Operators (linper() operator)
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• Even though initial stresses and strains are not usually considered as loads, you can 
assign Harmonic Perturbation also to the Initial Stress and Strain nodes.

• Rather assigning Harmonic Perturbation to a load, you can write the load value 
enclosed in the linper() operator. This is particularly useful when the feature that 
provide the loading does not have the Harmonic Perturbation option.

Modal Reduced-Order Models

Reduced-order modeling seeks to reduce the number of degrees of freedom in a 
physical model whilst still retaining the essential physics. For a lightly damped resonant 
system driven at one of its resonant frequencies, it is reasonable to consider only the 
contributions to the system of a small number (m) of modes within the signal 
bandwidth. In some cases, a single mode is sufficient. A system with n degrees of 
freedom has mass, stiffness, and damping matrices of size n-by-n. A reduced-order 
representation of the system considering m modes has size m-by-m. The reduction in 
complexity of the system, and the computational speed up is therefore significant when 
m « n. This section describes the theory of the reduced-order system and gives 
guidelines on how to obtain reduced-order models from a COMSOL model.

This can be employed in two different ways: Either you can use the built-in modal 
solvers for the time or frequency domain, or you can export the small equivalent system 
and analyze it outside COMSOL Multiphysics, for example, as a component in a larger 
system simulation.

T H E  M O D A L  C O O R D I N A T E  S Y S T E M

Consider a mechanical system, with n degrees of freedom, described by an equation of 
the form

 (2-5)

where u is the displacement vector (size: n-by-1), K is the stiffness matrix (size: 
n-by-n), D is the damping matrix (size: n-by-n), and M is the mass matrix (size: 
n-by-n). In the frequency domain the problem takes the form

For an example showing how to use harmonic perturbation, see Bracket 
— Frequency-Response Analysis: Application Library path 
Structural_Mechanics_Module/Tutorials/bracket_frequency.

Muꞏꞏ Duꞏ Ku+ + F=
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where u = u0eit.

Initially consider the system in the absence of damping and forces. The undamped 
system has n eigenvalues i, which satisfy the equation

 (2-6)

These eigenvectors can be shown to be orthogonal with respect to both M and K:

 (2-7)

 (2-8)

Next the following n-by-n matrix is constructed, with columns taken from the n 
eigenvectors:

Then consider the following matrix:

From Equation 2-7 it is clear that this is a diagonal matrix. Similarly, from 
Equation 2-8 it is clear that UTKU is also diagonal.

From the properties of the eigenvectors it is possible to expand any function in terms 
of the eigenvectors. Thus, the displacement u can be written as:

This equation can also be expressed in the form:

2M– u0 iDu0 Ku0+ + F=

Kûi i
2Mûi=

ûj
TMûi 0= i j  i j,

ûj
TKûi 0= i j  i j,

U û1  û2,  ûn=

UTMU

û1
TMû1 û1

TMû2    

û2
TMû1 û2

TMû2    

     

   ûn 1–
T Mûn 1– ûn 1–

T Mûn

   ûn
TMûn 1– ûn

TMûn

=

u aiûi

i 1=

n

=
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 (2-9)

where a is a column vector containing the coefficients ai as rows. In general a is 
time dependent.

Now consider the original equation: Equation 2-5. First substitute for u using 
Equation 2-9. Then transform the equation to the modal coordinate system by 
premultiplying by UT. This gives:

 (2-10)

It has already been established that the matrices UTMU and UTKU are diagonal and 
frequently a damping model is chosen that results in a diagonal damping matrix. For 
example, in Rayleigh damping D  M + K, where  and  are constants. For a 
general damping, the transformed damping matrix is however not diagonal. As an 
alternative, a damping ratio, i, can be assigned to each mode.

E I G E N V A L U E  S C A L I N G

The precise form of Equation 2-10 is determined by the normalization adopted for the 
eigenfunctions. In structural applications the eigenfunctions are often normalized such 
that UTMU  I. This is referred to as mass matrix scaling in the eigenvalue solver. In 
this case Equation 2-6 gives

so that

where diag(i
2) is the diagonal matrix with diagonal elements i

2. Similarly, if 
damping ratios for each mode are defined, the damping matrix can be expressed in the 
form

Thus, if mass matrix scaling is used Equation 2-10 takes the form

 (2-11)

It is also possible to scale the eigenvectors so that the point of maximum displacement 
has given displacement. This is referred to as max scaling in the eigenvalue solver. For 

u Ua=

UTMUaꞏꞏ UTDUaꞏ UTKUa+ + UTF=

ûi
TKûi i

2ûi
TMûi i

2
= =

UTKU diag i
2 =

UTDU diag 2ii =

aꞏꞏ diag 2ii aꞏ diag i
2 a+ + UTF=
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an individual mode this scaling has a simple physical interpretation — the 
corresponding component of a, ai, is the amplitude of the i:th mode, measured at the 
point of maximum displacement, when the mode is driven by the force F. In this case 
Equation 2-10 takes the form

 (2-12)

Here meff,i is the effective mass of the i:th mode, ceff,i = 2meff,iii is the effective 
damping parameter for the mode, and keff,i is the effective spring constant. Each 
element of the vector UTF gives the force component that acts on each of the 
respective modes.

R E D U C E D - O R D E R  M O D E L S

The preceding discussion did not consider how to reduce the number of degrees of 
freedom in the system. For systems in which the vector UTF has only a few significant 
components (for example, components i = 1, …, m where m « n) the following 
approximation can be made:

The expression for u in matrix becomes:

where U' is now an m-by-n and a' is a vector with m components. The equation 
system in modal coordinates now takes the form

 (2-13)

diag meff  i, aꞏꞏ diag ceff  i, aꞏ diag keff  i, a+ + UTF=

When using max scaling, it is the largest value of a degree of freedom 
which is scaled to 1. The total displacement in that node will thus be 
between 1 and  times the given scaling factor.

If degrees of freedom other than displacements are active in the 
eigenfrequency problem, the maximum value may occur in another type 
of degree of freedom such as electric potential or pressure. Consequently, 
the peak displacement in that mode can then be less than the scaling 
factor.

3

u aiûi

i 1=

m



u U'a'=

U'
TMU'a'ꞏꞏ U'

TDU'a'ꞏ U'
TKU'a'+ + U'

TF=
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The matrices U'TMU', U'TDU', and U'TKU' now have dimensions m-by-m. 
Similarly, the vector U'TF has m components. This results in a significant reduction in 
the system complexity.

R E D U C E D - O R D E R  M O D E L S  W I T H  P H Y S I C A L  D A M P I N G

If physically relevant damping is present in the system, the above theory must be 
modified as the damping matrix is no longer diagonal in the modal coordinate system. 
COMSOL can still handle this case as the modal solver does not assume that any of the 
matrices are diagonal. In this case the eigenvalues become complex and the 
eigenvectors split into right and left eigenvectors. The right eigenvectors Ur are 
solutions of the equation:

As in the previous section, for a reduced set of modes, it is assumed that:

where U'r is the n-by-m matrix containing the right eigenvectors chosen for the modal 
analysis. Once again a' is a vector with m components. The system in modal 
coordinates takes the form

where U'l is the n-by-m matrix containing the left eigenvectors chosen for the modal 
analysis.

The matrices U'l
TMU'r, U'l

TDU'r, and U'l
TKU'r are no longer necessarily diagonal. 

The modal solver accepts any linearly independent set of vectors to project the solution 
vector and equations onto and constructs the reduced-order system accordingly.

A C C E S S I N G  T H E  R E D U C E D - O R D E R  M O D E L  M A T R I C E S

The Model Reduction and Modal Reduced-Order Model study steps have the property that 
they can assemble the modal matrices and make them available for output. In the Model 

Reduction node, the Store reduced matrices check box must be selected.

After the model has solved, right-click the Results>Derived Values node and select 
System Matrices. In the output section choose the Matrix to display in the list. The mass 
matrix corresponds to the matrix U'l

TMU'r the stiffness matrix corresponds to 
U'l

TKU'r, and the damping matrix corresponds to U'l
TDU'r. The vector U'l

TF is 
available as the load vector. These matrices are given in a format that respects the 

i
2M– ûr i, iiDûr i, Kûr i,+ + F=

u U'ra'=

U'l
TMU'ra'ꞏꞏ U'l

TDU'ra'ꞏ U'l
TKU'ra'+ + U'l

TF=
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normalization of the preceding Eigenvalue Solver. To change this, select the Eigenvalue 

Solver node, and change the Scaling of Eigenvectors setting under the Output section. 
Use the Max setting if an equivalent Mass-Spring-Damper system is required, in which 
case the modal amplitude corresponds to the maximum displacement of the mode.

Linearized Buckling Analysis

A linearized buckling analysis can be used to estimate the critical load at which a 
structure becomes unstable. This is a predefined study type that consists of two study 
steps: An initial step in which a unit load is applied to the structure, and a second step 
in which an eigenvalue problem is solved for the critical buckling load.

COMSOL reports a critical load factor, ,which is the multiplier to the initial load at 
which the structure becomes unstable. The corresponding eigenmode is the shape of 
the structure in its buckled state.

The level of the initial load used is immaterial since a linear problem is solved. If the 
initial load actually was larger than the buckling load, then the critical value of  is 
smaller than 1. It is also possible that the computed value of  is negative. This signifies 
that a reversed load will give the critical case.

When performing a linearized buckling study, it is possible to discriminate between live 
and dead loads, where the former are the ones with respect to which the critical load 
factor is computed, and the latter are assumed to be constant. In this case, two 
different basic load cases need to be solved before the eigenvalue solution.

The buckling computed buckling modes can be used to provide an initial imperfection 
for a subsequent nonlinear buckling analysis,

• For more details about how to model buckling, see Buckling Analysis.

• The numerical formulation is described in the section Linear Buckling 
in the theory chapter.

• Settings for the solvers are described in Studies and Solvers, Linear 
Buckling, and Buckling Imperfection in the COMSOL Multiphysics 
Reference Manual.
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Bolt Pretension Study

The Bolt Pretension study step is a special case of a Stationary study step, where the 
special degrees of freedoms used for modeling prestressed bolts are solved for. In all 
other study types, these degrees of freedom are inactive. Typically, you include a Bolt 

Pretension study step as the first step in a study in order to simulate the state after the 
assembly of a bolted joint. You can then add any other types of study steps for 
computing the effects of the service loads.

In a Bolt Pretension study step, it is possible to tension the bolts sequentially, or to 
change the bolt prestress more than once, if an auxiliary sweep over some history 
parameter is used.

Random Vibration (PSD) Study

A random vibration study is used to analyze the response of a structure subjected to 
loads that randomly vary in time, but their statistical properties do not change with 
time.

The input to a random vibration analysis is given in terms of power spectral densities 
(PSD) and, in the case of several loading sources, the load cross-correlations.

• Bracket — Linear Buckling Analysis: Application Library path 
Structural_Mechanics_Module/Tutorials/bracket_linear_buckling

• Buckling Analysis of a Truss Tower: Application Library path 
Structural_Mechanics_Module/Buckling_and_Wrinkling/

truss_tower_buckling

Modeling Pretensioned Bolts

• Modeling of Pretensioned Bolts: Application Library path 
Structural_Mechanics_Module/Tutorials/bolt_pretension_tutorial

• Prestressed Bolts in a Tube Connection: Application Library path 
Structural_Mechanics_Module/Contact_and_Friction/tube_connection
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The results of this type of analysis can only be interpreted in a statistical sense. Usually, 
the root mean square (RMS) of the result quantities is studied.

The analysis is based on a mode superposition and the reduced-order model (ROM) 
functionality. Except from the computation of eigenfrequencies and corresponding 
eigenmodes, and the creation of the reduced model, the core of the computation is 
performed during result evaluation.

The Random Vibration (PSD) study is mainly an entry point when adding studies. When 
you select it, you actually get two studies and a number of nodes under Global 

Definitions added to the model.

Response Spectrum Analysis Study

Response spectrum analysis is used for computing an approximation of the structural 
response to transient, nondeterministic events, such as earthquakes or shocks.

The Response Spectrum Analysis study is mainly an entry point when adding studies. 
What you actually get when you add such study is an Eigenfrequency study step together 
with a Response Spectrum node under Definitions.

The actual response is computed on demand during result evaluation, using the 
computed eigenfrequencies and modes. The settings for the evaluation are done in the 
Response Spectrum 2D and Response Spectrum 3D datasets.

• See Performing a Random Vibration Analysis for a detailed description 
of how to study random vibration.

• The theory is described in Random Vibration Theory.

• Bracket — Random Vibration Analysis: Application Library path 
Structural_Mechanics_Module/Tutorials/bracket_random_vibration

• Random Vibration Test of a Motherboard: Application Library path 
Structural_Mechanics_Module/Dynamics_and_Vibration/

motherboard_random_vibration

• Random Vibration Analysis of a Deep Beam: Application Library 
path Structural_Mechanics_Module/Verification_Examples/

random_vibration_deep_beam
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If your response spectrum evaluation requires inclusion of missing mass correction, 
you need also to compute a set of stationary load cases. To set up that analysis, use the 
Create missing mass correction study button ( ) on the header of the Response 

Spectrum section the in the Response Spectrum node settings.

• See Performing a Response Spectrum Analysis for a detailed 
description of how to work with response spectrum evaluations.

• The theory is described in Response Spectrum Analysis Theory.

• The settings for the special datasets are described in Response 
Spectrum 2D and Response Spectrum 3D in the COMSOL 
Multiphysics Reference Manual.

• The Response Spectrum node is described in the COMSOL 
Multiphysics Reference Manual.

• Earthquake Analysis of a Building: Application Library path 
Structural_Mechanics_Module/Dynamics_and_Vibration/

building_response_spectrum

• Shock Response of a Motherboard: Application Library path 
Structural_Mechanics_Module/Dynamics_and_Vibration/

motherboard_shock_response
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S e l e c t i n g  t h e  Ph y s i c s  I n t e r f a c e

The structural mechanics products contain a number of physics interfaces for a wide 
range of applications. This section contains some guidelines for how to select an 
appropriate physics interface for your analysis.

The basic physics interfaces for structural mechanics are:

• Solid Mechanics — General modeling of solid objects with extension in all 
directions.

• Elastic Waves, Time Explicit — For efficient analysis of linear elastic wave 
propagation in solid domain.

• Shell and Plate — For objects which are thin in one direction, but have significant 
bending stiffness

• Membrane — For objects which are thin in one direction, and have negligible 
bending stiffness

• Beam — For objects where two directions have significantly smaller dimensions 
than the third; significant bending stiffness

• Pipe Mechanics — For analysis of pipes with internal pressure. This interface is 
similar to the Beam interface, but specialized for analysis of pipes.

• Truss — For objects where two directions have significantly smaller dimensions than 
the third; only axial forces can be transmitted

• Wire — Similar to Truss, but only tensile forces can be transmitted

Solid Mechanics

The Solid Mechanics interface offers the most general modeling of structural 
mechanics problems and is based on general principles of continuum mechanics. It is 
the interface which contains the largest number of material models, and the most 
advanced boundary conditions.

For a detailed overview of the functionality available in each product, visit 
https://www.comsol.com/products/specifications/
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The drawback with using solid elements is that the models can become 
computationally expensive, especially in 3D. For structures which are thin or slender, 
you should consider using one of the specialized physics interfaces.

3 D  S O L I D  G E O M E T R Y

The degrees of freedom (dependent variables) in 3D are the global displacements u, v, 
and w in the global x, y, and z directions, respectively.

Figure 2-1: Loads and constraints applied to a 3D solid using the Solid Mechanics 
interface.

2 D  G E O M E T R Y

Plane Stress
The plane stress variant of the 2D physics interface is useful for analyzing thin in-plane 
loaded plates. For a state of plane stress, the out-of-plane components of the stress 
tensor are zero.

Figure 2-2: Plane stress is used to model plates where the loads are only in the plane; it does 
not include any out-of-plane stress components.

The 2D physics interface for plane stress allows loads in the x and y directions, and 
assumes that these are constant throughout the material’s thickness, which can vary 
with x and y. The plane stress condition prevails in a thin (compared to the in-plane 
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dimensions) flat plate in the xy-plane loaded only in its own plane and without any 
z direction restraint.

Plane Strain
The plane strain variant of the 2D physics interface that assumes that all out-of-plane 
strain components of the total strain tensor z, yz, and xz are zero.

Figure 2-3: A geometry suitable for plane strain analysis.

Loads in the x and y directions are allowed. The loads are assumed to be constant 
throughout the thickness of the material, but the thickness can vary with x and y. 
Formally, the plane strain condition requires that the ends of the object are constrained 
in the z direction, but it is often also used for central parts of an object that is long in 
the z direction (compared to the in-plane dimensions). One example is a long tunnel 
along the z-axis where it is sufficient to study a unit-depth slice in the xy-plane.

Generalized Plane Strain
Generalized plane strain is similar to plane strain in the sense that transverse stresses 
can develop in the 2D cross section of a long object. The requirement that the 
out-of-plane strain is zero, is however relaxed. Instead, an assumption about zero 
resulting force in the transverse direction is used. Optionally, assumptions about zero 
bending moments over the cross section can be added. Generalized plane strain 
conditions prevail in the in the inner parts of a long object with free ends. For many 
cases, generalized plane strain conditions is the 2D approximation that is closest to a 
full 3D solution.

For an in-depth discussion of different aspects of 2D solid mechanics, see 
https://www.comsol.com/blogs/
what-is-the-difference-between-plane-stress-and-plane-strain
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A X I S Y M M E T R I C  G E O M E T R Y

The axisymmetric variant of the Solid Mechanics interface uses cylindrical coordinates 
r, (phi), and z. All properties are independent of the azimuthal angle .

In the default version of the interface, displacements occur only in the r-z plane, and 
there are two degrees of freedom, u and w. By selecting the Include circumferential 

displacement option, you can model also torsion around the axis of rotational 
symmetry. The azimuthal rotation degree of freedom v is then included. In addition, 
many features, such as load features, allow values to be entered in the direction.

The 2D axisymmetric geometry is viewed as the intersection between the original 
axially symmetric 3D solid and the half plane  0, r  0. Therefore, the geometry is 
drawn only in the half plane r  0, and it recovers the original 3D solid by rotating the 
2D geometry about the z-axis.

Figure 2-4: Rotating a 2D geometry to recover a 3D solid.

Elastic Waves, Time Explicit

The Elastic Waves, Time Explicit is used to compute the velocity and strain field in 
solids with propagating linear elastic waves. In the Add Physics dialog, it is found in 
the Acoustics branch, under Elastic Waves.

In general, the interface is suited for modeling the propagation of waves over large 
distances relative to the wavelength, for example, ultrasound propagation for 
nondestructive testing (NDT), or seismic waves. The interface exists in 2D 
(generalized plane strain) and 3D.

 





• Axisymmetric Twist and Bending: Application Library path 
Structural_Mechanics_Module/Verification_Examples/

axisymmetric_twist_and_bending
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The interface is based on the discontinuous Galerkin (dG or dG-FEM) method and 
uses a time explicit solver. The method is very memory efficient and can solve problems 
with many million degrees of freedom (DOFs). The method is also well suited for 
distributed computing on clusters.

Shell and Plate

The Shell interface is useful when the object is thin in one direction. Structures built 
from welded or bolted flat plates are archetypal shell structures and so are pressure 
vessels. The Shell interface is available in 3D and 2D axisymmetry.

The Plate interface is a specialization of the Shell interface, used for 2D modeling in 
the XY-plane. A plate model has its main action in bending out of the plane, but can 
optionally also treat in-plane forces. If the loads act only in the plane, using Solid 
Mechanics with the Plane Stress option is a better choice.

Shells are modeled on boundaries, and the transverse direction is represented only by 
the mathematical model. The degrees of freedom consist of displacements and 
rotations at the modeled boundary. This results in an assumption where the in-plane 
strains vary linearly through the thickness, and the stress in the thickness direction is 
zero. The thickness of a shell does not have to be constant, although this is by far the 
most common case.

When the Composite Materials Module is available, it is possible to model also 
multilayered shells.

For nonlinear material models, a layered approach with a single layer is used. There is 
a virtual mesh in the thickness direction, in order to accommodate the potential 
variation of the material properties in the thickness direction.

Rather than computing the shell stiffness from material properties and thickness, you 
can also directly enter that stiffness properties in tension, bending, and shear.

The Shell and Plate interfaces can be used both for “thin” and “thick” shells. Shear 
deformations are taken into account; this is usually called Mindlin theory. The material 
model is linear elastic.

In the Acoustics Module User’s Guide:

• The Elastic Waves, Time Explicit Interface

• Theory for the Elastic Waves, Time Explicit Interface
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When modeling with shells, it is important to keep track of “top” and “bottom” side 
when applying loads and interpreting the results.

The in-plane stiffness of an elastic shell is proportional to the thickness h, while the 
bending stiffness is proportional to h3. The difference in stiffness along different 
directions can thus become very large. When an object is very thin, a shell model may 
be numerically ill-posed due to the negligible bending stiffness. It is then better to use 
the Membrane interface.

Membrane

The Membrane interface can be used for very thin objects, like cloth, where only 
in-plane forces are important. Membranes can be considered as plane stress elements 
but with an arbitrary, possibly curved configuration in space. The Membrane interface 
is available in 3D and 2D axisymmetry.

In most applications, a membrane must be pretensioned in order to have a stable 
configuration, so it will almost invariably be used in a geometrically nonlinear analysis. 
The main exception is when it is used as a “cladding” on top of a solid, since it will 
then be stabilized by the solid.

You can study configurations when there is local wrinkling in a membrane by adding 
a special nonlinear material model.

In the Membrane interface a large number of different material models can be used. 
When the Composite Materials Module is available, it is possible to model also 
multilayered membranes.

Beam

A beam is an abstract model where only the extension in the axial direction is modeled 
explicitly on an edge. The cross section is usually specified in terms of geometrical 
properties such as area and moments of inertia. Several predefined cross-section types 
are also available. The Beam interface is available in 3D and 2D.

The exact stress distribution in the beam is not explicitly modeled. It is actually not 
even fully determined by the cross-sectional properties. Instead, six (in 3D) resultant 
section forces are used: axial force, shear forces in two perpendicular directions, two 
bending moments, and one twisting moment.

The Beam interface assumes linear elasticity.
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Two formulations are available in the Beam interface:

• The classical Euler-Bernoulli beam theory, which is applicable for slender beams.

• Timoshenko theory, where also shear deformations are considered. This theory 
makes it possible to use the Beam interface to model rather thick beams.

Pipe Mechanics

Pipes are similar to beams, and many properties of the Pipe Mechanics interface are 
shared with the Beam interface. The most distinguishing feature is that the internal 
pressure usually causes a significant part of the stresses in a pipe. Also, temperature 
gradients usually occur through the pipe wall, rather than across the entire section.

The loads from internal pressure and drag forces can be taken directly from results in 
the Pipe Flow interface. Similarly, the temperature in the pipe walls can be taken from 
the Heat Transfer in Pipes interface.

Truss

The Truss interface has two main purposes:

• Modeling of trusses, consisting of straight bars carrying only axial forces

• As reinforcements, used in conjunction with other physics interfaces

The Truss interface is available in 3D and 2D.

For a truss model, only one geometrical property is needed, the cross-section area. The 
material model can be linear elastic, elastoplastic, or a shape memory alloy. There is also 
a special material model for creating spring/damper data.

The truss element has no stiffness in the directions perpendicular to its extension. For 
trusses, this is usually not a problem since they are designed such that each member is 
stabilized by its neighbors.

In the Pipe Flow Module User’s Guide:

• The Pipe Flow Interface

• The Heat Transfer in Pipes Interface
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Wire

The Wire interface intended for modeling of cables and wires. The structures are often 
prestressed, but also cables sagging under, for example, self-weight can be modeled.

The main difference between the Truss interface and the Wire interface is that the 
wires cannot sustain any compressive forces. In reality the wire will wrinkle. 
Numerically, this is handled by using a very low stiffness in compression.
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S e l e c t i n g  D i s c r e t i z a t i o n

Shape Function Order

In structural mechanics analysis, the focus is often on the stresses and strains rather 
than on the displacements. Since the strains are derivatives of the displacement field, 
the accuracy of the strains will be one order less than the accuracy of the displacements. 
For this reason, second-order shape functions are used as default in most of the 
structural mechanics interfaces. Often this gives the best tradeoff between model size 
and accuracy.

It is well known that using first-order shape functions in solid mechanics will give an 
overly stiff solution, unless a very fine mesh is used. This is especially noticeable for 
triangular and tetrahedral elements. This can, to some extent, be counteracted by using 
reduced integration, see Using Reduced Integration.

If the purpose of the analysis is only to compute stiffness, rather than stresses, the use 
of linear shape functions can still be justified. This is the default choice in the 
Multibody Dynamics interface, available with the Multibody Dynamics Module.

If the solution contains discontinuities, for example when some type of front is moving 
through the material, first-order elements and a fine mesh is often a good choice, since 
the advantage of the higher-order elements lies in their ability to represent smooth 
gradients.

T R U S S  E L E M E N T S

In the Truss interface the default is to use first-order shape functions, since the 
elements are mainly used in a context where the axial force in each element is constant.

When truss elements share an edge with other structural elements, you should choose 
the same discretization in both interfaces, usually quadratic.

B E A M  E L E M E N T S

The beam elements have only one set of shape functions, which cannot be changed. 
The axial displacement and the twist are represented by first-order shape functions, 
while the bending is represented by cubic Hermitian shape functions. This element can 
then represent a constant axial force, a constant twisting torque, a linear bending 
moment, and a constant shear force. This is the exact solution for a beam having no 
distributed loads.
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A consequence of this formulation is that it may not possible to obtain a perfectly 
conforming approximation if a beam shares an edge with elements from another 
physics interface.

Lagrange and Serendipity Shape Functions

In the Solid Mechanics and Membrane interfaces, you can choose between two 
families of shape functions: Lagrange and serendipity. The default is to use serendipity 
shape functions.

The serendipity elements have the advantage of generating significantly fewer degrees 
of freedom for structured meshes. The accuracy is in most cases almost as good as for 
the Lagrange elements. The Lagrange elements are however less sensitive to strong 
mesh distortions.

The serendipity shape functions differ from the Lagrange shape functions only for the 
following element shapes:

• 2D: Quadrilateral elements of discretization order higher than 1

• 3D: Hexahedral, prism, and pyramid elements of discretization order higher than 1

When coupling two structural mechanics physics interfaces, the same type of shape 
functions should be used in both interfaces to ensure conformity in displacement shape 
functions. Since there is no difference between the two families of shape functions in 
1D, this is not an issue when connecting edges.

Choosing Shape Functions in Multiphysics Models

In problems where several physics fields participate, the accuracy can sometimes be 
improved by considering how the different fields interact. In structural mechanics, it 
is common that other physics fields directly affect the inelastic strains. This is the case 
in, for example, thermal expansion and hygroscopic swelling.

In the COMSOL Multiphysics Reference Manual:

• The Lagrange Element (shlag)

• The Nodal Serendipity Element (shnserp)
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In thermal expansion, the elastic strain used in most constitutive relations is the 
difference between the total strain, which is computed from derivatives of the 
displacement field, and the thermal strain:

Since the thermal strain is directly proportional to the temperature, a consistent 
approximation would be to use one step lower discretization order for the temperature 
than for the displacements. When using built-in couplings, such as Thermal Expansion, 
such a modification is not necessary. Any mismatch is automatically taken care of by 
re-interpolating the thermal strains to an order that matches the general strain field.

Another type of coupling appears on the boundary between two domains having 
different physics, as in fluid-structure interaction and acoustic-structure interaction. 
When, for example, Thermoviscous Acoustics is coupled to Solid Mechanics, then the 
time derivative of the displacement in the solid is set equal to the velocity in the 
acoustic medium on the shared boundary. In this case, it makes sense to have the same 
shape function order for these two fields.

Implicit Shape Function Orders

Some solid mechanics formulations contain other degrees of freedom in addition to 
the displacements. The shape functions are then selected internally based on your 
choice of displacement discretization.

V I S C O E L A S T I C  S T R E S S  A N D  S T R A I N

When using a viscoelastic material model, auxiliary degrees of freedom are added either 
for the viscoelastic strains or the viscoelastic stresses, depending on whether a linear or 
a nonlinear formulation is used. These degrees of freedom are local to the element, and 
you can select either the discontinuous Lagrange or Gauss point data type.

The discontinuous Lagrange shape functions will have an order that is one below what 
is used for the displacement shape functions.

If Gauss point data is used, the same integration points as used for the numerical 
integration of the stiffness matrix are used. This order depends on the selected 
displacement discretization order and whether reduced integration is used or not.

I N E L A S T I C  S T R A I N S

For material models like plasticity and creep, the inelastic strains are formally degrees 
of freedom. They will be allocated at the same integration points as used for the 

el tot th– tot  T Tref– –= =
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numerical integration of the stiffness matrix. This order depends on the selected 
displacement discretization order and whether reduced integration is used or not.
 2 :  S T R U C T U R A L  M E C H A N I C S  M O D E L I N G



Coup l i n g  D i f f e r e n t  E l emen t  T yp e s

In this section:

• Introduction to the Element Types

• Coupling Techniques

Introduction to the Element Types

In some engineering structures, the optimal idealization is a mixture of different 
element types. Some examples are:

• Structures that are thin in large regions, but more three-dimensional at certain 
locations. A mixture of solids and shells can then significantly reduce the model size.

• Plates or shells having beams as stiffeners.

• Truss elements acting as reinforcement bars in a concrete structure.

• A thin layer of one material on top of another material. In this case, an idealization 
with shells or membranes covering the boundary of a solid can be useful.

When several physics interfaces are added in COMSOL Multiphysics, the default is 
always that each physics interface has individual and unique degrees of freedom. In 
structural mechanics, the first physics interface has the displacement variables (u, v, w), 
then the second physics interface has (u2, v2, w2), and so on. This means that the 
physics interfaces initially are independent, even when defined on the same geometrical 
part. To get the intended interaction requires that a coupling is established between 
the physics interfaces.

Various methods to couple different element types are discussed in this section.

Coupling Techniques

The following basic techniques to connect physics interfaces with displacement 
degrees of freedom are discussed in this section:

• Renaming Degrees of Freedom

• Using Customized Coupling Features

• Using General Coupling Operators
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R E N A M I N G  D E G R E E S  O F  F R E E D O M

The easiest coupling method is to rename the displacement degrees of freedom so that 
these are the same for all physics interfaces. This is sufficient, for example, when using 
membranes as cladding on a solid boundary or truss elements as reinforcement bars in 
a solid.

In the Beam, Pipe Mechanics, Shell, and Plate interfaces, the deformation is described 
also by rotational degrees of freedom. In the general case, these degrees of freedom 
interact with the translational degrees of freedom in a connection.

In some special cases — for example, when a thin shell acts as cladding on a solid — it 
is sufficient to make the degree of freedom names for the displacements common; the 
rotational degrees of freedom are not important. If, however, a shell edge is connected 
to a solid, it acts as a “hinge”, which in most cases is not the intended behavior. You 
then need to use the more sophisticated techniques described next.

U S I N G  C U S T O M I Z E D  C O U P L I N G  F E A T U R E S

There are a number of built-in couplings, by which you can add connections that are 
nontrivial to set up manually:

• Shell Edge to Solid Boundary (3D)

• Shell Boundary to Solid Boundary (3D)

• Membrane Boundary to Solid Boundary (3D)

The default shape functions in the Solid Mechanics interface are of the 
serendipity type, whereas Lagrange shape functions are used in the Shell 
interface. If you are placing a shell element on the boundary of a solid 
element, you must select Lagrange shape functions also in the Solid 
Mechanics interface so that the two physics interfaces share the same node 
points.

The shape functions used in the Beam and Pipe Mechanics interfaces have 
special properties, and a beam cannot have the same degrees of freedom 
as another physics interface if the same edge is shared.

Also, the representation of rotations differs between the Shell and Plate 
interfaces (displacement of normal) and the Beam and Pipe Mechanics 
interfaces (rotation angle). It is therefore not possible to use common 
degree of freedom names for the rotational degrees of freedom.
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• Beam Point to Solid Boundary (2D)

• Beam Point to Solid (3D)

• Beam Edge to Solid Boundary (2D)

• Beam Edge to Solid Boundary (3D)

• Beam Edge to Shell Edge (3D)

• Beam Point to Shell Boundary (3D)

• Beam Point to Shell Edge (3D)

• Pipe Point to Solid Boundary (3D)

• Pipe Point to Shell Edge (3D)

• Embedded Reinforcement

Shell Edge to Solid Boundary (3D)
A shell can be coupled to a solid by adding a Solid-Thin Structure Connection 
multiphysics coupling. In the settings, set Connection type to Solid boundaries to shell 

edges. This situation typically occurs when you want to make a transition from a thin 
region to one that is thicker. Usually, shell assumptions should be valid on both sides 
of the transition. The solid geometry is expected to have the same thickness as the 
thickness given in the Shell interface.

You can choose between two different formulations, by setting Method to either Rigid 
or Flexible. The flexible version is significantly more accurate locally at the connected 
solid boundary, but it comes with a cost in terms of some extra degrees of freedom. 
Also, this method requires a large enough number of degrees of freedom in the 
thickness direction of the solid. For second-order elements, typically three elements are 
required.

Shell Boundary to Solid Boundary (3D)
A shell can also be coupled to a solid by adding a Solid-Thin Structure Connection 
multiphysics coupling with Connection type set to Shared boundaries or Parallel 

boundaries. This connection is used to add a shell on top of a solid as a ‘cladding’. It is 
possible to include an offset distance. The boundaries may be coincident or parallel.

Membrane Boundary to Solid Boundary (3D)
A membrane can be coupled to a solid by adding a Solid-Thin Structure Connection 
multiphysics coupling with Connection type set to Shared boundaries. When the thin 
structure is a membrane, this is the only available connection type. It is used to add a 
membrane on top of a solid as a ‘cladding’.
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Beam Point to Solid Boundary (2D)
A beam in 2D can be coupled to a solid by adding a Solid-Beam Connection 
multiphysics coupling. In the settings, set Connection type to Solid boundaries to beam 

points. This connection is intended for modeling a transition from a beam to a solid, 
where beam assumptions are valid on both sides of the connection.

You can choose between two different formulations, by setting Method to either Rigid 
or Flexible. The flexible version is significantly more accurate locally at the connected 
solid boundary, but it comes with a cost in terms of some extra degrees of freedom. 
Also, this method requires a large enough number of degrees of freedom in the 
thickness direction of the solid. For second-order elements, typically three elements are 
required.

Beam Point to Solid (3D)
A beam in 3D can be coupled to a solid by adding a Solid-Beam Connection 
multiphysics coupling. In the settings, set Connection type to either Solid boundaries to 

beam points, general. or Solid boundaries to beam points, transition. These two 
couplings are fundamentally different.

The Solid boundaries to beam points, general connection is used for modeling a beam 
with one end “welded” to the face of the solid. You can specify the size of the area on 
the solid boundary that is connected to the endpoint of the beam in several different 
ways.

The Solid boundaries to beam points, transition coupling is intended for modeling a 
transition from a beam to a solid where beam assumptions are valid on both sides of 
the connection. Thus, the geometry of the solid at the transition should match the 
cross-section data given to the beam.

This connection type can include warping of the solid cross section. In order to 
compute the warping properties, an extra PDE is solved over the cross-section 
boundaries. To improve the performance, you should preferably solve for these 
variables once in a separate stationary study or study step. In that study step, clear all 
physics interfaces except the Solid-Beam Connection multiphysics coupling in the Physics 

and Variables Selection section.

You can manually control whether to include warping or not. If not included, the setup 
of the solver sequence is simplified, but there will be significant stress disturbances 
close to the connection boundaries if the cross section is susceptible to warping.

There are four warping variables: one named Warping function and three named 
Warping constant. In the successive study steps, you need to manually suppress 
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them. You can do so under the Dependent Variables node, where you first set Defined 

by study step to User Defined. Then, for each of these four variables, clear the Solve for 

this field check box.

Beam Edge to Solid Boundary (2D)
A beam in 2D can also be coupled to a solid by adding a Solid-Beam Connection 
multiphysics coupling with Connection type set to Shared boundaries or Parallel 

boundaries. This connection is used for adding a beam on top of a solid as a “cladding”. 
It is possible to include an offset distance. The boundaries may be coincident or 
parallel.

Beam Edge to Solid Boundary (3D)
A beam in 3D can also be coupled to a solid by adding a Solid-Beam Connection 
multiphysics coupling with Connection type set to Solid boundaries to beam edges. This 
connection is used for adding a beam that is “welded” along the surface of the solid.

Beam Edge to Shell Edge (3D)
A beam can be coupled to a shell by adding a Shell-Beam Connection multiphysics 
coupling with Connection type set to either Shared boundaries or Parallel boundaries. 
This connection is used for adding beams as stiffeners to shells. The edges may be 
coincident or parallel. It is possible to prescribe that the beam has an offset from the 
shell when a coincident edge is used.

Beam Point to Shell Boundary (3D)
A beam can be coupled to a shell by adding a Shell-Beam Connection multiphysics 
coupling with Connection type set to Shell boundaries to beam points. This connection 
is used for modeling a beam with one end “welded” to the face of the shell. You can 
specify the size of the area on the shell boundary that is connected to the end point of 
the beam in several different ways.

Beam Point to Shell Edge (3D)
A beam can be coupled to a shell by adding a Shell-Beam Connection multiphysics 
coupling with Connection type set to Shell edges to beam points. This connection is 
used for modeling a beam with one end “welded” to the edge of the shell. You can 
specify the part of the shell edge that is connected to the end point of the beam in 
several different ways.

Pipe Point to Solid Boundary (3D)
A pipe in 3D can be coupled to a solid by adding a Structure-Pipe Connection 
multiphysics coupling. The coupling is intended for modeling a transition from a pipe 
to a solid where beam assumptions are valid on both sides of the connection. Thus, the 
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geometry of the solid at the transition should match the cross-section data given to the 
pipe. The connection assumes that the pipe cross section is circular; if another cross 
section is used, it is converted to an equivalent circular cross section. This means that 
warping is not considered.

The connection can be considered an extension of the Solid boundaries to beam points, 

transition coupling in Solid-Beam Connection to also account for radial deformation 
of the pipe caused by the fluid pressure and the temperature difference over the cross 
section.

Pipe Point to Shell Edge (3D)
A pipe in 3D can be coupled to a shell by adding a Structure-Pipe Connection 
multiphysics coupling. The coupling is intended for modeling a transition from a pipe 
to a shell where beam assumptions are valid on both sides of the connection. Thus, the 
geometry of the shell at the transition should match the cross-section data given to the 
pipe. The connection assumes that the pipe cross section is circular; if another cross 
section is used, it is converted to an equivalent circular cross section. This means that 
warping is not considered.

The connection can be considered an extension of the Shell edges to beam points 
coupling in Shell-Beam Connection to also account for radial deformation of the pipe 
caused by the fluid pressure and the temperature difference over the cross section.

Embedded Reinforcement
Lower dimension structural elements can be connected to a solid domain by adding 
an Embedded Reinforcement multiphysics coupling. This connection supports 
coupling truss, beam, and membrane elements to a Solid Mechanics interface. The 
connection can either be rigid, or made by attaching springs between points on the 
embedded structure and points in the solid. A more detailed discussion about this type 
of modeling is given in Modeling Embedded Structures and Reinforcements.

The underlying theory and more details about the built-in couplings can 
be found in

• Connection Between Shells and Solids

• Connection Between Shells and Beams

• Embedded Elements
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U S I N G  G E N E R A L  C O U P L I N G  O P E R A T O R S

The most general method of connecting parts modeled with different physics 
interfaces is by using a General Extrusion operator. In this case the parts need not even 
be in contact, so the connection is an abstraction.

An example could be a shell stiffened by beams. In practice, you would probably use 
the built-in coupling described in Beam Edge to Shell Edge (3D) for this case, but the 
example shows the principles.

In structure like this, the beam is usually placed at one side of the shell, so that the 
centerline of the beam and the midsurface of the shell do not coincide. This difference 

• Examples of all types of couplings between shells and beams are shown 
in Connecting Shells and Beams: Application Library path 
Structural_Mechanics_Module/Beams_and_Shells/shell_beam_connection

• An example of couplings between shells and solids is shown in 
Connecting Shells and Solids: Application Library path 
Structural_Mechanics_Module/Beams_and_Shells/shell_solid_connection

• An example of couplings between beams and solids is shown in 
Connecting Beams and Solids: Application Library path 
Structural_Mechanics_Module/Beams_and_Shells/beam_solid_connection
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must be taken into account, so the edges representing the beam are geometrically 
disconnected from the midsurface of the shell.

Mathematically, the connection between the beam and the shell can be expressed as

or equivalently as

Here,  is the rotation vector, which contains the rotational degrees of freedom in the 
Beam interface. The rotation vector is also available as a variable in the Shell interface, 
where it is derived from the rotational degrees of freedom a. The shell normal is 
denoted by n. Small rotations are assumed.

To create the coupling:

1 Add a General Extrusion node under Definitions>Nonlocal Couplings. Select the line on 
the shell midsurface as source. Enter data in the Destination Map.

Beam centerline

ubeam ushell  Xbeam Xshell– +=

beam shell=






ubeam ushell Xbeam Xshell–  n a+=

beam shell=







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2 Add a Prescribed Displacement/Rotation node in the Beam interface and select the 
corresponding edge.

3 Enter data for the prescribed displacements and rotations, for example 
genext1(u)+genext1(shell.thy)*zdist, where zdist is some expression 
defining the distance from the beam axis to the shell midsurface.

Because a shell does not have a valid rotation degree of freedom around 
its normal, the rotation of the beam should not be connected in that 
direction.

In the COMSOL Multiphysics Reference Manual:

• Nonlocal Couplings and Coupling Operators and General Extrusion

• About Nonlocal Couplings
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App l y i n g  L o ad s

An important aspect of structural analysis is the formulation of the forces applied to 
the modeled structure. You can use custom expressions, predefined or user-defined 
coordinate systems, and even variables from other modeling physics interfaces.

Loads can be applied in the structural mechanics interfaces on the body, face, edge, or 
point levels. You can also apply loads to special features like Rigid Material or Rigid 

Connector. There is also an option to apply point loads to given coordinates, which do 
not have to coincide with a geometrical point or a mesh node.

In this section:

Units, Orientation, and Visualization

U S I N G  U N I T S

Enter loads in any unit, independently of the base SI unit system in the model, because 
COMSOL automatically converts any unit to the base SI unit system. To use the 
feature for automatic unit conversion, enter the unit in square brackets, for example, 
100[lbf/in^2].

The exception is random vibration analysis. In that case, no automatic unit conversions 
are available, so you must enter loads in the base units of the model.

P R E D E F I N E D  A N D  C U S T O M  C O O R D I N A T E  S Y S T E M S

In this module, different predefined coordinate systems are available when materials or 
boundary conditions are specified. There is always the global coordinate system. 
Depending on the dimensionality of the part being worked with, there can also be 

• Units, Orientation, and 
Visualization

• Load Cases

• Singular Loads

• Moments in the Solid Mechanics 
Interface

• Pressure

• Acceleration Loads

• Temperature Loads — Thermal 
Expansion

• Hygroscopic Swelling

• Total Loads

• Loads with a Spatial Variation

• Variables for Loads
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predefined coordinate systems such as the local tangent and normal coordinate system 
for boundaries.

Custom coordinate systems are also available and are useful, for example, to specify a 
load in any direction without splitting it into components. From the Definitions 
toolbar, select a Coordinate System ( ) from the menu.

V I S U A L I Z A T I O N

If you have switched on the physics symbols (see Displaying Physics Symbols in the 
Graphics Window — An Example in the COMSOL Multiphysics Reference Manual), 
then an applied load is indicated by a symbol together with a coordinate system 
indicator displaying the definition directions for the load. The actual direction or 
magnitude of the load you enter is not, however, reflected by the symbol. As a load in 
COMSOL Multiphysics can be a function of parameters, variables, the solution, or 
results from other physics interfaces, it is not possible to display it with only the 
information available in the individual load feature.

Once you have turned on the physics symbols for a certain physics interface, you can 
fine-tune the display. Every feature which has associated physics symbols will now have 
a check box Show physics symbols, by which you can control the display of the symbols 
for that specific feature.

Loads are among the results for which predefined plots are generated, so you will 
always have access to a visual feedback of the loads after the solution. How to work 
with the default load plots is described in detail in the Plotting Applied Loads section.

Sometimes, especially if you have entered complicated load expressions in a large 
model, it is important to inspect the load distribution before you run the analysis. You 
will then need to generate a dataset and the predefined plots. The fastest way to do that 

Some coordinate systems can have solution dependent axis directions. If 
you use such a system for defining a load, the directions of the load follow 
the moving coordinate axis directions if the Include geometric nonlinearity 
check box is selected under the Study settings section of the current study 
step.
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is to click Get Initial Value on the Study toolbar. Note that if you change the loads, you 
will have to delete the dataset and generate it again.

Load Cases

For a Stationary or Frequency Domain study, you can define load cases and constraint 
cases. Any load or constraint can be assigned to a load or constraint group, and then 
be used conditionally.

For most load types, the load case acts as a simple multiplier, but some cases need a 
more detailed discussion:

• A Prescribed Displacement or Prescribed Displacement/Rotation node can be assigned 
both a constraint group and a load group. You can use the constraint group to 
switch on and off the whole constraint. The load group acts as a multiplier to any 
nonzero prescribed values of displacement and rotations, and will not have any 
effect unless the constraint is active.

• When a load case multiplier is used for Thermal Expansion, the multiplier is applied 
not to the actual temperature, but to the difference between the temperature and 
the strain free reference temperature. The temperature difference, and thus the 
thermal strain, is proportional to the load case multiplier.

• Since Thermal Expansion nodes are exclusive (only the last one given gives a 
contribution for a certain domain), you cannot switch between different Thermal 

Expansion nodes only by assigning them to different load cases.

• Hygroscopic Swelling behaves analogously to Thermal Expansion.

In the COMSOL Multiphysics Reference Manual:

• Physics Symbols

• Using Units

• Coordinate Systems

• Plotting Applied Loads

For an example showing how to examine the load distribution, see 
Bracket — Static Analysis: Application Library path 
Structural_Mechanics_Module/Tutorials/bracket_static. This is also the first 
example used in the Introduction to the Structural Mechanics Module.
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• For External Stress, the given stress values are multiplied by the load case multiplier.

• A Spring Foundation or Thin Elastic Layer node can be assigned a constraint group, 
which you can use to switch the whole boundary condition on and off. If there is 
also a Predeformation subnode, then you can assign a load group to that subnode. 
The prescribed predeformation is then multiplied by the load case multiplier. 
Predeformation nodes are exclusive, you cannot switch between them by assigning 
them to different load cases.

• A Rigid Connector can be assigned both a constraint group and a load group. You can 
use the constraint group to switch off the prescribed displacements and rotations. 
The load group acts as a multiplier to nonzero prescribed values of displacement and 
rotations.

• If you have added Applied Force or Applied Moment nodes under a Rigid Connector, 
you can assign individual load groups to these nodes.

• If you have added Applied Force or Applied Moment nodes under a Rigid Material, you 
can assign individual load groups to these nodes.

Any expression that acts purely as a load, that is, contributes only to the 
right-hand side of the system of equations, can be part of the load case 
handling. This is true even if, for example, the corresponding feature does 
not have a setting for load cases, or if it is a contribution you have created 
using equation based modeling.

To do this, you can modify any such expression expr to 
if(group.<lgName>,group.<lgName>*expr). Here, <lgName> is the 
parameter name you have chosen in the settings for the load group.

In most cases, the expression group.<lgName>*expr is sufficient. The 
only reason to use the longer version with the if() statement if you want 
to avoid that expr is evaluated for load cases in which it is not used.

For example, if you have a boundary load which partially is always active, 
and partially is conditional, you can write 20[MPa]+group.lg1*10[MPa] 
in the input field for the pressure.

In particular, this approach is useful for features that override each other, 
like Thermal Expansion, since you can then accommodate several load 
cases in a single node in the Model Builder.
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Singular Loads

In reality, loads always act on a finite area or over a volume. However, in a model loads 
are sometimes defined on points or edges, which leads to a singularity. The reason for 
this is that points and lines have no area, so the stress becomes infinite. Because of the 
stress singularity, there are high stress values in the area surrounding the applied load. 
The size of this area and the magnitude of the stress depend on both the mesh and the 
material properties. The stress distribution at locations far from these singularities is 
unaffected according a to a well-known principle in solid mechanics, the St. Venant’s 
principle. It states that for an elastic body, statically equivalent systems of forces 
produce the same stresses in the body, except in the immediate region where the loads 
are applied.

Figure 2-5 shows a plate with a hole in plane stress loaded with a distributed load and 
a point load of the same magnitude. The mesh consists of triangular elements with 
quadratic shape functions. The high stress around the point load is dissipated within 
the length of a few elements for both mesh cases. The stresses in the middle of the plate 
and around the hole agree for the distributed load and the point load. The problem is 
that due to the high stress around the singular load it is easy to overlook the high stress 
region around the hole. When the point load is applied, the range must be manually 
set for the stress plot to get the same visual feedback of the high stress region around 
the hole in the two cases. This is because the default plot settings automatically set the 
range based on the extreme values of the expression that is plotted.

Despite these findings it is good modeling practice to avoid singular loads because it is 
difficult to estimate the size of the singular region. In the Structural Mechanics 

In the COMSOL Multiphysics Reference Manual:

• About Load Cases

• Defining Load Groups and Constraint Groups

• Load Group

• Constraint Group

For an example about how to set up expressions for controlling position 
and distribution of loads using load cases, see Tapered Cantilever with 
Two Load Cases: Application Library path COMSOL_Multiphysics/

Structural_Mechanics/tapered_cantilever.
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Module, it is possible to define loads on all boundary types. However, avoid singular 
loads altogether with elastoplastic or creep materials.

Figure 2-5: A plate with a hole subject to a distributed load (left) and a point load (right).

The Plasticity and Creep nodes are available as a subnode to Linear Elastic 

Material nodes with the Nonlinear Structural Materials Module or the 
Geomechanics Module.

normal mesh size

finer mesh size

For more details about singularities, see also

https://www.comsol.com/blogs/
singularities-in-finite-element-models-dealing-with-red-spots/

https://www.comsol.com/blogs/
applying-and-interpreting-saint-venants-principle/
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Moments in the Solid Mechanics Interface

The Solid Mechanics interface, as opposed to the Beam, Pipe Mechanics, Plate, and 
Shell interfaces, does not have rotational degrees of freedom. This makes the direct 
specification of moment loads somewhat more complicated. To specify moments, you 
can attach a Rigid Connector to the loaded area. The rigid connector has rotational 
degrees of freedom, and it is possible to apply moments directly. For load application, 
the flexible formulation of the rigid connector is particularly useful, since it avoids 
artificial stiffening of the boundary where the load is applied.

Pressure

A pressure is a load acting toward the normal of a face of the structure. If there are 
large deformations in the model and the Include geometric nonlinearity check box is 
selected under the Study settings section of the current study step, the pressure acts as 
a follower load. The pressure is then defined with respect to the geometry and, as the 
geometry deforms locally, the orientation of the load changes. The size of the loaded 
area can also change as an effect of straining.

Acceleration Loads

Within the structural mechanics interfaces, you will find four different types of loads 
to describe acceleration loads:

• Gravity

• Base Excitation

• Rotating Frame

• Linearly Accelerated Frame

The two first nodes have are of a global type. They will be applied to all features in the 
physics interface, and cannot have a spatial variation.

The Rotating Frame and Linearly Accelerated Frame nodes have a domain selection. They 
can be applied selectively, and also depend on the coordinates. When applied to a set 
of selected domains, such loads are applied also to lower dimensional objects, for 
example, a point mass or an added mass on an edge.

All acceleration loads share the property that they are not applied to mass contributions 
that belong to global features such as rigid connectors. There, you must add loads 
explicitly.
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When a structure is subjected to an acceleration which is applied to all its support 
points, then it often more convenient to replace the support acceleration by a an 
acceleration force, using a Base Excitation node. In particular, this is necessary when 
using modal based dynamic analyses, in which nonzero prescribed displacements 
cannot be used. Changing to a frame acceleration load does not affect the distribution 
of forces and stresses. It will however imply that displacements, velocities, and 
accelerations are measured relative to the supports, and not relative to a room fixed 
coordinate system. The Base Excitation node does however also define absolute 
acceleration variables, which are what would be measured by an accelerometer.

Temperature Loads — Thermal Expansion

When performing thermal expansion analysis, temperature loads are specified by 
entering a temperature and a reference temperature in a thermal expansion subnode 
which is available from the context menu (right-click the parent node, a Linear Elastic 
Material node, for example) or from the Physics toolbar, Attributes menu. Enter a 
constant temperature or an analytic expression that can depend on the coordinates or 
dependent variables. For beams, plates, and shells it is also possible to specify bending 
temperature loads. More details are available in the descriptions for each physics 
interface.

When a separate physics interface is used to model heat transfer in the material, the 
entry for the temperature is the dependent variable for the temperature from that 
physics interface, typically T. In most cases, possible temperature variables from other 
physics interfaces can be directly selected from a list.

Hygroscopic Swelling

Some materials have the capability to absorb significant amounts of moisture through 
diffusion processes. Changes in the moisture content may then cause volume changes.

To include the effects of hygroscopic swelling, the Hygroscopic Swelling subnode is 
available from the context menu (right-click the parent node, Linear Elastic Material 

• For more information about how to couple heat transfer analysis with 
structural mechanics analysis, see Thermal-Structure Interaction. This 
module also includes The Thermal Stress, Solid Interface.

• For a detailed discussion about thermal effects in structural mechanics 
models, see Thermally Coupled Problems.
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node, for example) or from the Physics toolbar, Attributes menu. Enter a constant 
concentration or an analytic expression that can depend on the coordinates or 
dependent variables. For beams, plates, and shells it is also possible to specify bending 
swelling loads caused by concentration gradient in the transverse direction. More 
details are available in the descriptions for each physics interface.

When a separate physics interface is used to model the moisture diffusion in the 
material, the entry for the concentration is the dependent variable for the 
concentration from that physics interface, typically c. In most cases, possible 
concentration variables from other physics interfaces can be directly selected from a 
list.

The diffusion of the moisture into the material also adds to the mass density. You can 
choose to automatically include this effect in a dynamic analysis, and also in mass 
proportional loads, such as gravity and rotating frame loads.

Total Loads

You can specify a load either as a distributed load per unit length, area, or volume, or 
as a total force to be distributed on a boundary. In the case of a total load, the applied 
distributed load is the given load divided by the area (or length, or volume) on which 
its acts. Thus, entering a total load is usually only meaningful when its orientation is 
given by a Cartesian coordinate system.

Loads with a Spatial Variation

Since you can write any type of expression in an input text field, it is easy to describe 
loads having a spatial variation.

H Y D R O S T A T I C  L O A D

Hydrostatic loading is a common special case of spatial variation. In this case, there is 
often a fluid surface, above which there is no load. Such a load you can describe with 
an expression like if(Z<ZSurf,rhoFluid*g_const*(ZSurf-Z),0). Here, ZSurf 
and rhoFluid are assumed to be parameters containing the Z-coordinate of the fluid 
surface and the mass density of the fluid respectively.

L O A D S  W I T H  A  F A S T  S P A T I A L  V A R I A T I O N

If a load has a spatial variation which is fast relative to the element size, you may need 
to increase the accuracy of the numerical integration used to compute the load 
contribution. As a default, a load which varies no faster than the polynomial order of 
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the displacement shape functions can be integrated exactly. To change the integration 
order, enable Equation View. In the Equation View node under the current load node 
in the Model Builder tree, you can then increase the integration order.

The local stress state within the loaded element is still limited by what can be described 
by the shape functions, but the total load applied on the structure will be more 
accurate it you increase the integration order.

T R A V E L I N G  L O A D S

Loads that are moving along the structure with time can be modeled using an 
expression X-v*t, where v is the velocity of the load. The mesh independent point 
load of the type Point Load, Free is particularly well suited for this type of modeling. If 
a distributed load is modeled using this approach, it is often necessary to increase the 
integration order as discussed in the previous section, since the load patch will typically 
cover partial element faces.

Variables for Loads

Each node in which a load is given, such as Boundary Load or Point Load, creates a 
number of variables which you have access to, for example during postprocessing. 
These variables have standardized names. The names are constructed using the 
following pattern: <phys>.<loadTag>_<loadType>_<geom><dir>, for example 
solid.bndl1.F_Ax.

TABLE 2-4:  THE LOAD VARIABLE NAMING SCHEME

DESCRIPTION EXAMPLES

<phys> Physics interface tag solid, truss2

<loadTag> Tag of the load feature bndl1, el2

<loadType> Force or moment F (force)
M (moment)

<geom> The type of object to which 
the load is applied

P (point)
L (line)
A (area)
V (volume)

<dir> Orientation x, y, z, r (vector 
components)
_Mag (magnitude of 
the vector)
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For loads which are do not have a geometrical selection, such as loads on Rigid 

Connector and Rigid Material, the _<geom> part of the name is omitted. As an example, 
a load created through an Applied Force node under a Rigid Connector, is contained in 
a variable such as solid.rig2.rf4.Fy.
 2 :  S T R U C T U R A L  M E C H A N I C S  M O D E L I N G



De f i n i n g  Con s t r a i n t s

Defining the proper constraints for structural mechanics models is just as important as 
defining the loads as together they make up the model boundary conditions. There are 
many useful predefined physics features to define the constraints or to create 
user-defined expressions that define constraints.

In this section:

• Rigid Body Motion

• Orientation

• Prescribed Displacements, Velocities, and Accelerations

• Symmetry Constraints

• Elemental and Nodal Constraints

• Suppressing Constraints on Lower Dimensions

• Kinematic Constraints

• Rotational Joints

• Attachments

Rigid Body Motion

In most cases, a structure must have a set of constraints which is sufficient to suppress 
any rigid body motions. A stationary problem is solvable only if the structure is 
sufficiently constrained. There must not be any possible rigid body modes. Thus, no 
stress-free deformation states are allowed. In a dynamic analysis, rigid body motions 
are admissible. The inertial forces will then balance the external forces.

The number of possible rigid body modes for different geometrical dimensions is 
shown in the table below.

TABLE 2-5:  NUMBER OF POSSIBLE RIGID BODY MODES

DIMENSION NUMBER OF RIGID BODY MODES

3D 6 (3 translations + 3 rotations)

2D axisymmetric 1 (Z-direction translation)

2D (solid, beam, truss) 3 (2 translations + 1 rotation)

2D (plate) 3 (1 translation + 2 rotations)
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If the model is under constrained, you may encounter the following problems:

• The solver reports that the stiffness matrix is singular.

• The solver reports that the stiffness matrix is ill-conditioned. Theoretically, the 
matrix is singular for a structure with rigid body modes, but because of the roundoff 
errors during the solution this is not exactly determined.

• A nonlinear analysis fails to converge.

• An iterative linear equation solver fails to converge.

• You get a solution with an extremely large displacement, orders of magnitude larger 
than what is expected.

For a single body, it is seldom difficult to see whether it is fully constrained or not, but 
for a more complex assembly, including several physics interfaces, or advanced 
couplings and boundary conditions, it may not be trivial. If you suspect that rigid body 
modes are a problem in your model, you can run an eigenfrequency analysis, and check 
for modes with zero eigenfrequency as described in Eigenfrequency Analysis.

If there are no constraints which are dictated by the physical boundary conditions of 
the structure, you can use the Rigid Motion Suppression feature to automatically 
remove the rigid body motions. When you do this, the assumption is that the external 
loads are in equilibrium. If not, reaction forces and stress concentrations will appear at 
seemingly arbitrary points where the automatic constraints were placed.

As an alternative to applying constraints, you can also add elastic supports through a 
Spring Foundation node to suppress rigid body motion.

Orientation

You can specify constraints in global as well as in any previously defined local 
coordinate system.

Rigid Motion Suppression in the Structural Mechanics Theory chapter.

Coordinate Systems in the COMSOL Multiphysics Reference Manual
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Prescribed Displacements, Velocities, and Accelerations

The most fundamental constraint is the prescribed displacement, where the individual 
components of displacement or rotation can be prescribed to zero or nonzero values 
for points, edges, boundaries, or domains.

For dynamic analysis, you can also directly prescribe the velocity or acceleration. The 
conditions for prescribing displacements, velocities, or accelerations are mutually 
exclusive for the same geometrical object since they prescribe the same degree of 
freedom.

F R E Q U E N C Y  D O M A I N

In frequency domain, a prescribed velocity vp or prescribed acceleration ap can be 
directly interpreted as a prescribed displacement up:

where  is the angular frequency.

T I M E  D O M A I N

In the case of a time-dependent analysis, the prescribed displacement is obtained as

or

up
vp
i
------=

up
a– p

2
---------=

A prescribed velocity with zero phase is assumed to have its peak at the 
reference phase. As an effect, the corresponding peak displacement is 
shifted by 90°. Similarly, a positive prescribed acceleration with zero phase 
corresponds to a negative value of the displacement.

These definitions are particularly important if you mix prescribed velocity 
or acceleration conditions with other boundary conditions.

up t  u0 t0  vp   d

t0

t

+=
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where u0 and v0 are is given by the initial conditions. It is not possible to set explicit 
initial conditions, but if initial values are taken from a previous study, they will be 
respected. In order to compute the integrals, up is introduced as a separate degree of 
freedom which is solved for by adding an extra ODE.

As prescribing the velocity or acceleration in time domain comes with an extra cost, 
you should always consider using a prescribed displacement instead. As long as the 
time history of the velocity or acceleration is a known a priori and does not depend on 
the solution itself, this is possible.

• When the velocity or acceleration has a simple time dependence, you can integrate 
it analytically one or two times to obtain the displacement, and directly prescribe the 
displacement instead.

• When you have complicated known velocity or acceleration histories, for example 
from measurements, you can use the integrate() operator. In this case, you enter 
the prescribed displacement as integrate(my_data(tau),tau,0,t). Here 
my_data is the measured data as function of time, and tau is a dummy integration 
variable

When a local coordinate system is used for prescribing a prescribed velocity or 
acceleration, the axis directions must be fixed in space. As an example, you cannot use 
a Boundary System rotating with the deformation.

S T A T I O N A R Y  A N A L Y S I S

In a stationary analysis, the prescribed velocity and acceleration nodes can have two 
different behaviors. As a default, they are ignored, but you can also select that the 
degrees of freedom having a prescribed velocity or acceleration in a dynamic analysis 
should be constrained to zero in a static analysis.

Symmetry Constraints

In many cases symmetry of the geometry and loads can be used to your advantage in 
modeling. Symmetries can often greatly reduce the size of a model and hence reduce 
the memory requirements and solution time. When a structure exhibits axial 
symmetry, use the axisymmetric physics interfaces. A solid that is generated by rotating 
a planar shape about an axis is said to have axial symmetry. In order to make use of 

up t  u0 t0  v0 t0  ap   d

t0



+
 
 
 
 

d

t0

t

+=
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the axisymmetric physics interfaces, all loads and constraints must also be the same 
around the circumference.

For other types of symmetry, use the predefined symmetry and antisymmetry 
constraints. This means that no expressions need to be entered — instead just add the 
type of constraint to apply to the model.

If the geometry exhibits two symmetry planes (Figure 2-6), model a quarter of the 
geometry by using the Symmetry node for the two selected surfaces.

Figure 2-6: If the geometry exhibits two symmetry planes, model a quarter of the geometry 
by using the Symmetry feature for the two selected surfaces.

Figure 2-7 shows symmetric and antisymmetric loading of a symmetric geometry. 
When modeling half of the geometry, the correct constraint for the face at the middle 

Physics Interface Axial Symmetry Node in the COMSOL Multiphysics 
Reference Manual

Symmetry planes Apply symmetry constraints

Both geometric symmetry and loads are important when selecting the 
correct constraints for a model.

In an eigenfrequency or buckling analysis, the eigenmodes might be 
nonsymmetric even if the structure is symmetric.
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of the object would be Antisymmetry in the case of antisymmetric loading and 
Symmetry in the case of symmetric loading of the object.

Figure 2-7: Symmetry plane (left) and antisymmetry plane (right).

S Y M M E T R Y  I N  2 D  A X I S Y M M E T R Y

In an axisymmetric model, the only possible symmetry is when the symmetry plane is 
normal to the Z-axis. For models in 2d axisymmetry, the Symmetry Plane node is used 
for prescribing this type of symmetry.

Antisymmetry cannot exist in this case.

T R A N S L A T I O N  O F  T H E  S Y M M E T R Y  P L A N E

In some situations, you may want to use a symmetry condition, in which the symmetry 
boundary actually can move along its normal. This may for example the case when you 
use symmetry conditions to terminate your modeled region even though the situation 
is not truly symmetric. The best approximation may then be that the boundary remains 
planar, but that there is no resultant reaction force from the boundary condition.

You can modify the symmetry condition, so that it can translate in various ways by 
using the controls in the Normal Direction Condition section of the settings for the 
Symmetry constraint. You can model the following cases:

• Reaction force free translation.

• Prescribed total force acting on the constrained part.

• The displacement in the normal direction is prescribed.

Symmetry plane Antisymmetry plane
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Note that allowing translation in the symmetry constraint is only meaningful if the 
geometry selection corresponds to a single symmetry plane.

Elemental and Nodal Constraints

For most constraints, you can select between using elemental and nodal constraints. 
To do this, select Advanced Physics Options, so that the Constraint Settings section is 
displayed.

When using nodal constraints, one constraint is generated for each node within the 
selection a certain constraint feature. With elemental constraints, the number of 
constraints added at a node equals the number of elements connected to that node. 
This means that if some values used in the constraints differ between the elements, 
then different constraints will be generated by the elemental method, whereas with the 
nodal method an average is computed at the node before adding the constraint.

When several constraints are present at a node, the internal constraint elimination 
algorithm is responsible for reducing them to a minimum unique set. Using elemental 
constraints will clearly put an extra burden on this algorithm, so whenever possible you 
should use nodal constraints.

The two different options exist, since under some circumstances the actual constraints 
can differ between the two methods. Consider for example a symmetry constraint, 
where the displacement in the direction normal to the boundary is constrained by the 
equation

where n is the unit normal vector.

For an example showing how to force a boundary to remain plane, but 
still allow it to translate in its normal direction using this special version 
of Symmetry, see Thermo-Mechanical Analysis of a Surface-Mounted 
Resistor: Application Library path Structural_Mechanics_Module/

Thermal-Structure_Interaction/surface_resistor.

Symmetry Condition with Translation in the Structural Mechanics 
Theory chapter.

u n 0=
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If there are several intersecting symmetry planes, like in Figure 2-6, using nodal 
constraints could cause a problem:

• If both boundaries are selected in the same Symmetry node, then only a single 
constraint is applied for each node along the common edge, while you actually want 
constraints along the normals of both planes. The normal used would be pointing 
somewhere between the two planes, since a nodal constraint uses averaging of the 
values from the adjacent elements.

• If two Symmetry nodes are used, so that the selection in any one of them only 
contains boundaries without a normal direction discontinuity, the intended 
constraints are added. On the common edge, there will be two contributions, one 
from each Symmetry node, and each using the normal direction of its boundary. If 
you want to use nodal constraints, you must set up your model in this way if the 
constraints are orientation dependent.

Elemental constraints, on the other hand, can cause problems if the constraints added 
by adjacent elements are not exactly the same. This could for example happen if the 
normal orientation differs between neighboring elements. In such a case, a boundary 
could behave as if it were fixed when a Symmetry, Antisymmetry, or Roller constraint is 
applied. Such a situation could occur when the component consists of an imported 
mesh, so that no underlying geometry exists.

The default type of the constraint, nodal or elemental, differs between different 
constraint features. A nodal formulation is the default whenever it is considered safe, 
like for a Fixed Constraint. Whenever the constraint can have a dependency on the 
surface orientation, the default value is elemental.

Suppressing Constraints on Lower Dimensions

Sometimes, boundary conditions on two adjacent objects can come into conflict on a 
shared object.

For most constraints in the structural mechanics interfaces, you have the possibility to 
select that certain objects of lower dimensions should be excluded from the main 
selection. To do this, you must first select Advanced Physics Options. In the settings for 
a constraint, like for example Prescribed Displacement, new sections named Excluded 

See also Constraint Settings in the COMSOL Multiphysics Reference 
Manual.
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Surfaces, Excluded Edges, and Excluded Points will then appear. In these sections, you 
can select geometrical objects which should be excluded from the main selection when 
the constraint is applied.

In the structural mechanics interfaces, there are many types of complex constraints, 
and sometimes you may get conflicts or duplicates which makes the model either 
overconstrained, or problematic for the automatic constraint elimination algorithm. If 
you are aware of such situations, it is good practice to remove one of the potentially 
conflicting constraints. One example of such a situation is when you have a Solid-Shell 

Connection meeting a symmetry plane, as shown in Figure 2-8.

Figure 2-8: Example of potentially conflicting constraints

Here you would add a Symmetry condition on a boundary in the Solid Mechanics 
interface, as well as a Symmetry condition on an edge in the Shell interface. But at the 
same time, the displacements on whole boundary where the solid meets the shell are 
controlled by shell degrees of freedom as an effect of the Solid-Shell Connection. As a 
result, on the edge marked with Conflict in the sketch, the displacements will be 
controlled both by the symmetry condition is Solid Mechanics, and implicitly through 
the coupling, by the symmetry condition in the Shell interface. Particularly if the 
geometry is curved, there is a risk that these constraints are not identical from a 
numerical point of view. In this case, excluding the conflicting edge from the selected 
boundary in the Solid Mechanics interface will make the behavior unique and fully 
predictable.

Another example where constraints will come in conflict is if you want to constrain the 
displacement on parts of the geometry using weak constraints, while keeping the 
default pointwise constraints on other parts. If the same mesh node has both types of 
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constraints, the solution will fail, so you must exclude any common geometrical objects 
from the selection in one of the constraints.

Kinematic Constraints

Kinematic constraints are equations that control the motion of solids, faces, edges, or 
points. Add a Prescribed Displacement constraint to enter expressions for constraints. 
You can define the equations using predefined coordinate systems as well as custom 
coordinate systems. Special constraints, for instance to keep an edge of body straight 
or to make a boundary rotate, require such constraint equations.

Rotational Joints

Joints between elements in The Truss Interface are automatically rotational joints 
because the truss elements have no rotational degrees of freedom. For beams, however, 
the rotational degrees of freedom are by default coupled between elements. To create 
a rotational joint between two beam elements, add one additional Beam interface to a 
geometry. Make sure that it is only active for the edge that includes the point where 
the joint is positioned and that no other physics interface is active here. Couple the 
translational degrees of freedom and leave the rotational degrees of freedom 
uncoupled at the joint.

Attachments

An Attachment is a set of boundaries, edges, or points on a flexible or rigid component 
used to connect it to another flexible or rigid component through a joint or spring. An 

See also Excluded Surfaces, Excluded Edges, and Excluded Points in the 
COMSOL Multiphysics Reference Manual.

In the 3D and 2D Solid Mechanics interfaces and in the Shell and Beam 
interface there is a special constraint called a Rigid Connector. A rigid 
connector is applied to one or more boundaries, edges, or points and force 
them to behave as connected to a common rigid body. The rigid 
connector can be given prescribed displacements and rotations and thus 
simplifies the realization of some constraints.
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attachment can be defined on the boundaries of a solid element, on the edges of a shell 
element, and on the points of a beam element.

When an attachment is connected to a flexible body, you can use two different 
formulations: rigid or flexible.

In the rigid attachment formulation, all selected boundaries or edges behave as if they 
were connected to a common rigid body. This may cause an unrealistic stiffening and 
local stress concentrations.

In the flexible version, the boundaries are allowed to deform, and the rigid body 
constraints are enforced only in an average sense.

The attachment formulation is similar to that of a rigid connector. In the rigid case, 
the only degrees of freedom needed to represent this assembly are the ones needed to 
describe the movement of a rigid body. In 2D this is just two in-plane translations, and 
the rotation around the out-of-plane axis.

In 3D the situation is more complex. Six degrees of freedom are necessary, usually 
selected as three translations and three parameters for the rotation. For finite rotations 
any choice of three rotation parameters is singular at some specific set of angles. For 
this reason, a four-parameter quaternion representation is used.

Some extra degrees of freedom are added for each attachment where the flexible 
formulation is used.

When an attachment is defined on a rigid component, it does not create any degrees 
of freedom of its own and directly picks the degrees of freedom of the rigid 
component.

Some useful information about the attachment feature:

• The attachment can be defined either on a flexible or on a rigid component. It is not 
possible to select the boundaries from both types of components in a single 
attachment. The reason is the different formulation of attachment for flexible or 
rigid components.

The formulation of the attachment feature is same as the rigid connector 
formulation, which is discussed in Rigid Connector in the Structural 
Mechanics Module User’s Guide.
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• The attachment’s center of rotation is the centroid of its selected boundaries, edges, 
or points. In a joint, it is possible to select the attachment center of rotation as the 
center of the joint.

• If the attachment is connected to a flexible domain, the forces and moments on an 
attachment with a boundary selection are computed by summing the reaction forces 
on the selected boundaries. There is an option to use these forces and moments to 
evaluate the joint forces.

• For an attachment in the Shell interface, the selection consists of edges. The forces 
and moments on an attachment are then computed by summing the reaction forces 
and reaction moments on the selected edges. There is an option to use these forces 
and moments to evaluate the joint forces.

• For an attachment in the Beam interface, the selection consists of points. The forces 
and moments on an attachment are then computed by summing the reaction forces 
and reaction moments on the selected points. There is an option to use these forces 
and moments to evaluate the joint forces.

• When an attachment is defined in the Shell or Beam interface, the normal force 
cannot be defined through Attachment reaction forces in the Friction subnode of a 
joint.

• In a joint you select attachments to establish its connection with flexible, or 
optionally, rigid bodies. This is accomplished by setting up a relation between the 
source attachment and destination attachment degrees of freedom. Thus, the 
motion of an attachment is governed by the joints where this attachment is used.

• An attachment which is not referenced by any joint acts as an unconstrained rigid 
connector.

• The Multibody Dynamics Interface

• The Solid Mechanics Interface, The Shell and Plate Interfaces, and The 
Beam Interface in the Structural Mechanics Module User’s Guide.
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Ca l c u l a t i n g  R e a c t i o n  Fo r c e s

There are different ways to evaluate reaction forces and these are discussed in this 
section.

• Using Predefined Variables to Evaluate Reaction Forces

• Using Weak Constraints to Evaluate Reaction Forces

• Using Surface Traction to Evaluate Reaction Forces

• Evaluating Surface Traction Forces on Interior Boundaries

The following sections describe the merits and costs of these methods.

Using Predefined Variables to Evaluate Reaction Forces

The results analysis capabilities include easy access to the reaction forces and moments. 
They are available as predefined variables. The reaction force variables are available 
only at the nodes, and not as a continuous field, so they are not suitable for graphic 
presentation.

Reaction forces are computed as the sum of the nodal values over the selected volume, 
face, or edge. Reaction moments are calculated as the sum of the moment from the 
reaction forces with respect to a reference point, and any explicit reaction moments (if 

To compute the sum of the reaction forces over a region, use 
Volume Integration, Surface Integration, or Line Integration under Results>

Derived Values or under an Evaluation Group node. The integration 
method discovers that the reaction forces are discrete values and applies a 
summation instead of an integration.

If you create an integration operator under Component>Definitions>

Nonlocal Couplings>Integration to sum reaction forces, you must explicitly 
set Method to Summation over nodes.
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there are rotational degrees of freedom). During postprocessing, you can modify the 
coordinates of the reference point in the Parameters section of a result feature.

Using Weak Constraints to Evaluate Reaction Forces

Select the Use weak constraints check box to get accurate distributed reactions. Extra 
variables that correspond to the reaction traction distribution are automatically added 
to the solution components.

• Reaction forces are not available for eigenfrequency analysis or when 
weak constraints are used.

• Reaction force variables are computed where there are constraints, that 
is Dirichlet conditions like Fixed Constraint, or Prescribed Displacement. 
Reaction force variables are found in the Reactions folder in the result 
menus, and have names like solid.RFx and solid.RMz for an 
x-directed force and a moment around the z-axis, respectively.

• From the physical point of view, there can be other sources of reaction 
forces, such as the elastic and viscous forces from a Spring Foundation. 
Such forces are not included in the reaction force variables, but are 
placed in separate variables. You will find them in the Spring and 
damping forces folder in the result menus.

• Total reaction force variables are available. In these variables, reaction 
forces, spring forces, and damping forces have been integrated over the 
whole physics interface. These variables are found in the Reactions 
folder in the result menus, and have names like solid.RFtotalx and 
solid.RMtotalz for an x-directed force and a moment around the 
z-axis, respectively. These variables should thus, for a stationary 
analysis, be equal to the total applied load.

• If reaction forces are summed independently for two adjacent 
boundaries, the total sum is not the same as if the reaction forces were 
summed for both boundaries in one operation. The values of the nodes 
at the common edge always contain contributions from the elements 
at both sides of the edge.

Derived Values, Evaluation Groups, and Tables in the COMSOL 
Multiphysics Reference Manual
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With weak constraints activated, COMSOL Multiphysics adds the reaction forces to 
the solution components. The variables are denoted X_lm, where X is the name of the 
constrained degree of freedom (as, for example, u_lm and v_lm). The extension lm 
stands for Lagrange multipliers. It is only possible to evaluate reaction forces on 
constrained boundaries in the directions of the constraints.

Since the reaction force variables are added to the solution components, the number 
of DOFs for the model increases slightly, depending on the mesh size for the 
boundaries in question. Boundaries that are adjacent to each other must have the same 
constraint settings. The reason for this is that adjacent boundaries share a common 
node.

Using weak constraints affects the structure of the equation system to be solved, and 
is not suitable for all types of equation solvers.

Using Surface Traction to Evaluate Reaction Forces

As an alternative method, you can obtain values of the reaction forces on constrained 
boundaries by using boundary integration of the relevant components of the surface 
traction vector.

To compute the total reaction force on a boundary, integrate one of the 
variables X_lm using Volume Integration, Surface Integration, or Line 

Integration under Derived Values or under an Evaluation Group node.

If the constraint is defined in a local coordinate system, the degrees of 
freedom for the weak constraint variables are defined along the directions 
of that system.

In the COMSOL Multiphysics Reference Manual:

• Derived Values, Evaluation Groups, and Tables

• Symmetric and Nonsymmetric Constraints

For 2D and 1D axisymmetric components, multiply the surface traction 
by the cross-section thickness, and for 1D components multiply the 
surface traction by the cross-section area before integrating to calculate 
the total reaction force.
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Two different types of surface traction results can be computed in COMSOL 
Multiphysics:

The first type, contained in the variables interface.Tax, is computed from the 
stresses. It is always available. Since the surface traction vector is based on computed 
stress results, this method is less accurate for computing reactions than the other 
methods.

The second type, contained in the variables interface.Tracx, is computed using a 
method similar to the weak constraints, but without introducing the Lagrange 
multipliers as extra degrees of freedom. The accuracy is high, but there is an extra 
computational cost. These traction variables are computed only if the Compute 

boundary fluxes check box in the Discretization section is selected for the Solid 
Mechanics interface.

Evaluating Surface Traction Forces on Interior Boundaries

As opposed to the other methods for reaction force computation, the boundary flux 
based tractions are computed not only on external boundaries, but also on interior 
boundaries. On interior boundaries, there are then two traction fields: One acting 
from each of the domains sharing the boundary. These internal traction fields are 
contained in the variables interface.iTracux and interface.iTracdx. The letters 
u and d in the variable names indicate the upside and downside of the boundary, 
respectively. If you need the value of the total force acting on an internal section 
through your model, these variables can be integrated. The interface.iTracux and 
interface.iTracdx variables are only available if the Compute boundary fluxes check 
box is selected in the Discretization section of the physics interface, and there are 
interior boundaries in your model.

In case of geometric nonlinearity, the two types of traction variables are 
interpreted differently. The interface.Tax variables are based on 
Cauchy stress, and contains a force per current area. If you integrate them 
you must use the spatial frame. The interface.Tracx variables are based 
on First Piola–Kirchhoff stresses and contains a force per undeformed 
area. An integration must then be done on the material frame.

Computing Accurate Fluxes in the COMSOL Multiphysics Reference 
Manual
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I n t r o du c t i o n  t o  Ma t e r i a l  Mode l s

In this section:

• Material Models for Structural Mechanics

• Entering Material Data

• Introduction to Linear Elastic Materials

• Introduction to Viscoelastic Materials

• Mixed Formulation

• Modeling Damage

• About the Material Databases for the Structural Mechanics Module

• Using External Materials

Material Models for Structural Mechanics

The Structural Mechanics Module without any add-on modules provides the Linear 
Elastic material with Viscoelasticity and Thermal Expansion modeling capabilities. It 
also provides access to piezoelectric and magnetostrictive materials.

If you have the optional products Nonlinear Structural Materials Module or 
Geomechanics Module, many other classes of nonlinear materials are also available. 
These models can be modified and extended, and custom material models can be 
defined.

You can also add a material model which you have coded yourself and made available 
as a binary library file using an External Stress-Strain Relation.

• Modeling Piezoelectric Problems

• Modeling Magnetostrictive Materials

In the COMSOL Multiphysics Reference Manual:

• Working with External Materials

• External Material
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In Table 2-6 and Table 2-7 you can find an overview of the families of materials, and 
their applicability in the various structural mechanics interfaces.

TABLE 2-6:  MATERIAL MODELS IN THE PHYSICS INTERFACES ON DOMAINS AND BOUNDARIES

MATERIAL
MODEL

SOLID
MECHANICS

ELASTIC 
WAVES, 
TIME 
EXPLICIT

SHELL/
PLATE

LAYERED 
SHELL

MEMBRANE

Linear Elastic Material X — X X X

Layered Linear Elastic 
Material

— — X — X

Section Stiffness — — X — —

Elastic Waves, Time 
Explicit Model

— X — — —

Nonlinear Elastic 
Material

X — — — X

Hyperelastic Material X — — X X

Layered Hyperelastic 
Material

— — X — —

Shape Memory Alloy X — — — —

Piezoelectric Material X — — X —

Piezomagnetic 
Material

X — — — —

Viscoelasticity X — X X X

Plasticity X — X X X

Soil Plasticity X — — — —

Creep X — X X X

Elastoplastic Soil 
Material

X — — — —

Viscoplasticity X — X X X

Porous Plasticity X — — — —

Concrete X — — — —

Rocks X — — — —

Damage X — — — —

External Stress-Strain 
Relation

X — — — X

Rigid Material X — X X —
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Many of the material models can be augmented by effects like thermal expansion, 
hygroscopic swelling, initial stresses and strains, external stress, and activation.

Combination of Material Models

It is possible to combine many of the effects in an additive manner. The models based 
on elasticity all have the same structure where

1 An elastic strain is computed by removing all inelastic strains (for example, plastic or 
thermal strains) from the total strain.

2 An “elastic stress” is computed from the elastic strains.

3 Any additional stresses (for example viscous stresses, or initial stresses) are added to 
form the total stress.

This concept will give you a great freedom in combining effects. Some such useful 
combinations are

• Plasticity and thermal expansion

• Plasticity and creep

• Thermal expansion and hygroscopic swelling

• Viscoelasticity and creep

Entering Material Data

For most material data, you have the option to choose between From material and 
User defined. The preferred way of supplying the material data, is through the Materials 

TABLE 2-7:  MATERIAL MODELS IN THE PHYSICS INTERFACES ON EDGES

MATERIAL
MODEL

BEAM PIPE 
MECHANICS

TRUSS

Linear Elastic Material X — X

Fluid and Pipe 
Materials

— X —

Section Stiffness X — —

Plasticity — — X

Rigid Material X X —

Spring-Damper 
Material

— — X
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node. If you are using data from the Material Library, this is the only option, but also 
when supplying your own data this will improve clarity of model.

Constitutive matrices, such as the elasticity matrix for an anisotropic material, are in 
many cases per definition symmetric. Only the upper diagonal of the matrix given as 
input is used for forming the matrix used, so you need not enter the lower diagonal 
part.

Introduction to Linear Elastic Materials

Linear elasticity forms the basis for the majority of structural mechanics simulations.

For isotropic linear elasticity, two parameters are enough to describe the material 
behavior. The number of parameters increases to (at most) 21 for the fully anisotropic 
case in 3D. When setting up a model, make sure that the material parameters are 
defined in agreement with the type of relationship used. If necessary, transform the 
material data before entering it in the physics interface. For example, for orthotropic 
materials calculate the Poisson’s ratio xy by

Introduction to Viscoelastic Materials

The generalized Maxwell, standard linear solid (SLS) and Kelvin-Voigt viscoelastic 
materials are available. All the models are linear, and the corresponding materials can 
be described as consisting of one or more branches with a spring and a dashpot acting 
in parallel to a linear elastic material. For each viscoelastic branch, the shear modulus 
and the relaxation time (or viscosity) are entered.

xy yx
Ex
Ey
------=

In the theory section Linear Elastic Material

• Linear Viscoelasticity

• Viscoelasticity
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Mixed Formulation

Nearly and fully incompressible materials can cause numerical problems if only 
displacements are used in the interpolating functions. Small errors in the evaluation of 
volumetric strain, due to the finite resolution of the discrete model, are exaggerated by 
the high bulk modulus. This leads to an unstable representation of stresses, and in 
general to underestimation of the deformation, because spurious volumetric stresses 
might balance also applied shear and bending loads.

In several material models you will find settings named Use mixed formulation or 
Compressibility, by which you can introduce a mixed formulation.

Use a mixed formulation when the material data is such that the deformation is close 
to being incompressible. For an isotropic elastic material, this happens when Poisson’s 
ratio approaches 0.5.

There are different approaches to assess which combinations of displacement shape 
function types and auxiliary variable shape function types yield numerically sound and 
effective elements. In general, the shape function order of the auxiliary variable should 
be lower than for the displacement field, to avoid locking. However, this is not a 
sufficient requirement. The inf-sup condition (Ref. 1) can be used to analytically or 
numerically identify sound mixed element formulations. In general, the outcome of 
such a test will depend not only on the shape function type combination, but also on 
the element type. For instance, a sound and effective combination of shape function 
types for a tetrahedral element is not necessarily suitable for a hexahedral element. 
COMSOL Multiphysics provides four types of shape functions for the auxiliary 
pressure or auxiliary volumetric strain variable. The different shape function types for 
the auxiliary variable are described below. Depending on the particular context, one of 
these types is implicitly selected using Automatic.

D I S C O N T I N U O U S  L A G R A N G E

If this shape function type is selected, the auxiliary variable shape function is 
discontinuous across element boundaries, and it is one order lower than the shape 
function order of the displacements.

Note that in the case of a mixed mesh, you may have to sub-divide the 
domain by element type, to be able to control the shape functions for the 
auxiliary variable.
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C O N T I N U O U S

If this shape function type is selected, the auxiliary variable shape function is 
continuous across element boundaries. It will be of the same type (Lagrange or 
Serendipity) as that of the displacements, but one order lower. A special case is for a 
linear displacement field, for which a discontinuous, constant, shape function is used.

L I N E A R

If this shape function type is selected, the auxiliary variable is regarded as a linearly 
interpolated field in the element. In the case of an auxiliary pressure, the interpolation 
in a 3D isoparametric element is

where p0, p1, p2, and p3 are auxiliary pressure coefficients, and 1, 2, and 3 are 
isoparametric coordinates. Note that the field is linear in the local element coordinates, 
and that it is not continuous across element boundaries.

C O N S T A N T

This shape function type represents a constant auxiliary variable in the element, p = p0.

p p0 1 p1 p0–  2 p2 p0–  3 p3 p0– + + +=

The linear shape function type is not available for layered material 
features.

The mixed formulation is useful not only for linear elastic materials but 
also for nonlinear elastic materials, elastoplastic materials, hyperelastic 
materials, and viscoelastic materials.

Note that some iterative solvers do not work well together with mixed 
formulation because the stiffness matrix becomes indefinite.

For more details, see Mixed Formulation in the theory chapter.
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Modeling Damage

Modeling problems with strain localization might turn into unstable behavior and 
convergence difficulties. The following techniques can be used to help in such 
situations:

• Use a displacement-controlled loading scheme, since damage is often associated 
with a reduction in load carrying capacity, see the Cracking of a Notched Beam 
example in the Geomechanics Module or in the Nonlinear Structural Mechanics 
Module Application Libraries.

• Better convergence is often obtained when the Nonlinear method is set to Constant 
(Newton) with a Damping factor equal to 1, and a Jacobian update on every iteration.

• Reduce the smallest and/or largest allowable step size in an Auxiliary sweep, or 
restrict the time steps in a time-dependent study.

• Introducing a soft spot where a crack is expected can make the localization of strains 
more stable, see the Brittle Damage in Uniaxial Tension example in the 
Geomechanics Module or in the Nonlinear Structural Mechanics Module 
Application Libraries. Alternatively, a random spatial distribution of the material 
parameters could be employed to obtain a more stable solution.

When using the crack band method or no regularization at all, the following steps are 
recommended:

• The size of the biggest mesh element h should not exceed 2EGf/ts
2, where E is 

the Young’s modulus, Gf is the fracture energy per unit area, and ts is the tensile 
strength. Larger values of h will cause a snap-back of the stress-strain curve at the 
material point level.

• Use linear shape functions for the displacement field. When using higher-order 
shape functions, strains may localize in either rows of Gauss points, or entire 
elements, depending on the stress state and numerical rounding errors.

• If cracks are located on a symmetry plane, the model parameters should be modified 
so that the amount of dissipated energy is reduced by one half in the elements 
adjacent to the symmetry plane. This can be achieved, for example, by reducing the 
fracture energy in that row of elements.

When using the implicit gradient method, the element size should be sufficiently small 
to resolve damaged zones. The same applies to the Phase field damage model, where it 
is recommended that size of the mesh elements in the expected crack path follows 
h < lint/2 for a linear displacement field, otherwise h < lint.
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While it is possible to solve brittle fracture problems with the Phase field damage model 
by applying a fully coupled strategy, this can often exhibit poor or slow convergence. 
An alternative and often more stable approach is to use a segregated solution strategy, 
by splitting the evolution of the crack phase field and the displacement field in two 
groups. This type of algorithmic operator split can conceptually be summarized as 
follows for step n+1:

1 Initialization. The crack phase field, displacement field and state variables are 
known at step n.

2 Update state variables. Update internal state variables used by the phase field 
model with values from step n.

3 Solve for the Crack Phase Field. Compute the crack phase field variable in a Newton 
step, with the displacement field frozen at step n.

4 Solve for the Displacement field. Compute displacement field variables in a Newton 
step with the updated crack phase field.

This leads to a single-pass algorithm that is accurate only for sufficiently small 
parameter or time steps.

An improvement to the method is to add a multi-pass correction by iterating over steps 
3 and 4 in each increment; either until convergence is achieved or for a predefined 
number of iterations. This type of strategy is demonstrated in the Brittle Fracture of 
a Holed Plate example in the Geomechanics Module or in the Nonlinear Structural 
Mechanics Module Application Libraries, where a multi-pass algorithm with a 
maximum of 3 outer iterations is used. Note that although the solution is accepted 
without requiring convergence of the outer problem, each sub group locally fulfills the 
defined convergence criterion. Hence the displacement field can be considered as a 
converged solution given the current crack phase field.

About the Material Databases for the Structural Mechanics Module

The Structural Mechanics Module includes these material databases: Liquids and 
Gases, with temperature-dependent fluid dynamic and thermal properties, MEMS, an 

The default solver will suggest the above single-pass algorithm for the 
Phase field damage model when it is feasible to perform the operator split. 
Cases where this is not possible include when some multiphysics 
couplings are present in the model and when a segregated contact 
algorithm has to be used.
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extended solid materials library with metals, semiconductors, insulators, and polymers 
common in MEMS devices, and a Piezoelectric database with over 20 common 
piezoelectric materials. The materials include temperature-dependent fluid dynamic 
and thermal properties.

Using External Materials

If you need to use a constitutive model which is not available among the built-in 
material models, it is possible to program it yourself. Such a material function, termed 
an external material, is coded in C. If you already have an existing code in another 
language like Fortran or C++, it is however possible to write a wrapper function to it.

Before moving to implementing your own material model, there are however two 
other options to consider:

• Many material models like hyperelasticity, creep and plasticity have User defined as 
one of the options in addition to the standard models. Any material model which 
you can describe using built-in variables is most conveniently described here.

• A material model which can partially described in terms of a PDE can often be 
implemented using one of the mathematical interfaces. Stresses or strains computed 
in that interface are then injected in an existing material model using the External 
Stress and External Strain subnodes.

There are two basic types of external material functions: those which completely 
replace other material definitions in a domain, and those that just compute an inelastic 
strain contribution to be used as part of an existing material model. The former is 

In the COMSOL Multiphysics Reference Manual:

• MEMS Material Library

• Piezoelectric Materials Library

• Liquids and Gases Materials Library

• Materials

For an example of the MEMS materials database and Piezoelectric 
materials database, see Piezoelectric Shear-Actuated Beam: Application 
Library path Structural_Mechanics_Module/Piezoelectric_Effects/

shear_bender.
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referenced from an External Stress-Strain Relation node, whereas the latter is 
referenced from an External Strain subnode.

During the solution, an external material routine is always called for each Gauss point 
during evaluation of stiffness matrices and computation of residuals. During result 
presentation, the external material can be called from any location in the geometry, as 
requested by for example graphs and point evaluations.

Almost invariably, you need to store state variables in the external material, such as for 
example plastic strains. The state variables are stored at the Gauss points. If an external 
material is called at another location, the state variables will be interpolated to that 
location. This means that the state of the material may not be exactly consistent there, 
which can lead to some artifacts during result presentation. You can avoid this problem 
by using the gpeval operator.

L I B R A R Y  O F  U T I L I T Y  F U N C T I O N S

In order to simplify the task of writing the code for an external material, a library of 
utility routines is provided. It provides a toolkit for operations common in solid 
mechanics such as various tensor operations or computing principal stresses and 
equivalent stresses.

L I S T  O F  U T I L I T Y  F U N C T I O N S

csext_add: Function that adds two matrices
/*
 * Function: csext_add
 * -------------------
 * Description:
 *    Adds two (3 x 3) matrices 'A' and 'B' and stores the
 *    result 'A + B' in 'C'.
 *
 * Arguments:
 *    double A[3][3]
 *    double B[3][3]
 *    double C[3][3] (output)
 *
 * Return value:

In the COMSOL Multiphysics Reference Manual:

• Working with External Materials

• External Material
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 *    void
 */
void csext_add(double A[3][3],double B[3][3], double C[3][3]);

csext_det: Function that computes the matrix determinant
/*
 * Function: csext_det
 * -------------------
 * Description:
 *    Computes the determinant of a (3 x 3) matrix 'A' and
 *    returns the value.
 *
 * Arguments:
 *    double A[3][3]
 *
 * Return value:
 *    double
 *
 */
double csext_det(double A[]3[3]);

csext_dev: Function that computes the deviator of a matrix
/*
 * Function: csext_dev
 * -------------------
 * Description:
 *    Computes the deviator of a (3 x 3) matrix 'A'
 *    and stores the value in 'dev'.
 *
 * Arguments:
 *    double A[3][3]
 *    double dev[3][3] (output)
 *
 * Return value:
 *    void
 *
 */
void csext_dev(double A[3][3], double dev[3][3]);

csext_dot: Function that computes the inner product of two matrices
/*
 * Function: csext_dot
 * -------------------
 * Description:
 *    Computes the inner product of (3 x 3) matrices 'A' and 'B',
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 *    and returns 'A : B'.
 *
 * Arguments:
 *    double A[3][3]
 *    double B[3][3]
 *
 * Return value:
 *    double
 *
 */
double csext_dot(double A[3][3],double B[3][3]);

csext_eig: Function that computes the spectral decomposition of a symmetric matrix
/*
 * Function: csext_eig
 * -------------------
 * Description:
 *    Computes the eigenvalues and eigenvectors of a
 *    symmetric (3 x 3) matrix 'A'.
 *    The eigenvalues are stored in 'vals', sorted with the
 *    largest value in vals[0].
 *    The eigenvectors are stored column-wise in 'vecs' with
 *    the same ordering as the eigenvalues.
 *    Normal execution returns 0. nonzero means that the
 *    computation failed.
 *
 * Arguments:
 *    double A[3][3]
 *    double vals[3]    (output)
 *    double vecs[3][3] (output)
 *
 * Return value:
 *    int
 *
 */
int csext_eig(double A[3][3], double vals[3], double vecs[3][3]);

csext_gl: Function that computes the Green-Lagrange strain tensor
/*
 * Function: csext_gl
 * ------------------
 * Description:
 *    Computes the Green-Lagrange strain tensor 'egl' based on
 *    the Right Cauchy-Green deformation tensor 'rcg'.
 *
 * Arguments:
 *    double rcg[3][3]
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 *    double egl[3][3] (output)
 *
 * Return value:
 *    void
 *
 */
void csext_gl(double rcg[3][3],double egl[3][3]);

csext_inv: Function that computes the matrix inverse
/*
 * Function: csext_inv
 * -------------------
 * Description:
 *    Computes the inverse of a (3 x 3) matrix 'A'.
 *    The inverse, if it exists, is stored in 'inv'.
 *    0 is returned if successful, -1 if 'A' is numerically
 *    singular. The matrix 'A' is considered singular if
 *    abs(det(A))<tol.
 *
 * Arguments:
 *    double A[3][3]
 *    double tol
 *    double inv[3][3] (output)
 *
 * Return value:
 *    int
 *
 */
int csext_inv(double A[3][3], double tol, double inv[3][3]);

csext_lcg: Function that computes the Left Cauchy–Green deformation tensor
/*
 * Function: csext_lcg
 * -------------------
 * Description:
 *    Computes the Left Cauchy-Green deformation 'lcg' tensor
 *    based on the deformation gradient 'defgrad'.
 *
 *
 * Arguments:
 *    double defgrad[3][3]
 *    double lcg[3][3] (output)
 *
 * Return value:
 *    void
 *
 */
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void csext_lcg(double defgrad[3][3], double lcg[3][3]);

csext_linsolv: Function to solve a linear system of equations
/*
 * Function: csext_linsolv
 * -------------------
 * Description:
 *    Solves a linear system of equations, 'Ax = b', for 'x',
 *    where 'A' is (n x n), and 'b' is (n x 1).
 *    The maximum allowed size of the system is n = 6.
 *
 *    The solution vector 'x' is stored in 'b' as output.
 *    The elements of matrix 'A' are not preserved.
 *
 *    If successful, 0 is returned.
 *    If the solution cannot be determined, -1 is returned.
 *    If n < 1 or n > 6, -2 is returned.
 *
 * Arguments:
 *    double *A
 *    double *b     (input/output)
 *
 * Return value:
 *    int
 *
 */
CSEXTUTILS_SYMBOLS int csext_linsolv(int n, double *A, double *b);

csext_lpolar: Function that computes the Left polar decomposition of a matrix
/*
 * Function: csext_lpolar
 * -------------------
 * Description:
 *    Computes the Left polar decomposition F = VR,
 *    such that the deformation gradient 'defgrad' is
 *    multiplicatively decomposed into a rotation, 'R',
 *    and a stretch tensor, 'V'.
 *    If the polar decomposition fails, -1 is returned.
 *    If successful, 0 is returned.
 *
 * Arguments:
 *    double defgrad[3][3]
 *    double V[3][3]     (output)
 *    double R[3][3]     (output)
 *
 * Return value:
 *    int
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 *
 */
int csext_lpolar(double defgrad[3][3], double V[3][3],
double R[3][3]);

csext_mises: Function that computes the von Mises equivalent stress
/*
 * Function: csext_mises
 * ---------------------
 * Description:
 *    Computes and returns the von Mises equivalent stress based
 *    on a stress tensor 'sig'.
 *
 * Arguments:
 *    double sig[3][3]
 *
 * Return value:
 *    double
 *
 */
double csext_mises(double sig[3][3]);

csext_mul: Function that multiplies two matrices
/*
 * Function: csext_mul
 * -------------------
 * Description:
 *    Multiplies two (3 x 3) matrices 'A' and 'B'.
 *    The result 'AB' is stored in 'C'.
 *
 * Arguments:
 *    double A[3][3]
 *    double B[3][3]
 *    double C[3][3] (output)
 *
 * Return value:
 *    void
 *
 */
void csext_mul(double A[3][3], double B[3][3], double C[3][3]);

csext_rcg: Function that computes the Right Cauchy–Green deformation tensor
/*
 * Function: csext_rcg
 * -------------------
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 * Description:
 *    Computes the Right Cauchy-Green deformation tensor 'rcg'
 *    based on the deformation gradient 'defgrad'.
 *
 * Arguments:
 *    double defgrad[3][3]
 *    double rcg[3][3]     (output)
 *
 * Return value:
 *    void
 *
 */
void csext_rcg(double defgrad[3][3], double rcg[3][3]);

csext_rpolar: Function that computes the Right polar decomposition of a matrix
/*
 * Function: csext_rpolar
 * -------------------
 * Description:
 *    Computes the Right polar decomposition F = RU,
 *    such that the deformation gradient 'defgrad' is
 *    multiplicatively decomposed into a rotation, 'R',
 *    and a stretch tensor, 'U'.
 *    If the polar decomposition fails, -1 is returned.
 *    If successful, 0 is returned.
 *
 * Arguments:
 *    double defgrad[3][3]
 *    double R[3][3]     (output)
 *    double U[3][3]     (output)
 *
 * Return value:
 *    int
 *
 */
int csext_rpolar(double defgrad[3][3], double R[3][3],
double U[3][3]);

csext_spect: Function that computes a matrix based on its spectral decomposition
/*
 * Function: csext_spect
 * -------------------
 * Description:
 *    Computes a symmetric (3 x 3) matrix 'A' based on
 *    its spectral decomposition A=Q*diag*Q^T.
 *    The matrix 'diag' is diagonal and stores the
 *    eigenvalues of 'A'. The matrix 'Q' stores the
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 *    eigenvectors (column-wise) of 'A', with the ordering
 *    corresponding to the eigenvalues in 'diag'.
 *    The vector 'd' stores the diagonal elements of 'diag'.
 *
 * Arguments:
 *    double Q[3][3]
 *    double d[3]
 *    double A[3][3]     (output)
 *
 * Return value:
 *    void
 *
 */
void csext_spect(double Q[3][3], double d[3], double A[3][3]);

csext_trace: Function that computes the matrix trace
/*
 * Function: csext_trace
 * ---------------------
 * Description:
 *    Computes and returns the trace of a (3 x 3) matrix 'A'.
 *
 * Arguments:
 *    double A[3][3]
 *
 * Return value:
 *    double
 *
 */
double csext_trace(double A[3][3]);

csext_transp: Function that computes the matrix transpose
/*
 * Function: csext_transp
 * ----------------------
 * Description:
 *    Computes the transpose of a (3 x 3) matrix 'A'.
 *    The result is stored in 'transp'.
 *
 * Arguments:
 *    double A[3][3]
 *    double transp[3][3] (output)
 *
 * Return value:
 *    void
 *
 */
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void csext_transp(double A[3][3], double transp[3][3]);

csext_add_voigt: Function that adds two matrices
/*
 * Function: csext_add_voigt
 * ---------------------------
 * Description:
 *    Adds two matrices 'A' and 'B' stored on Voigt form.
 *    The result is stored in 'C'.
 *
 * Arguments:
 *    double A[6]
 *    double B[6]
 *    double C[6] (output)
 *
 * Return value:
 *    void
 */
void csext_add_voigt(double A[6], double B[6], double C[6]);

csext_dev_voigt: Function that computes the deviator of a symmetric matrix
/*
 * Function: csext_dev_voigt
 * ---------------------------
 * Description:
 *    Computes the deviator of a (symmetric) matrix 'A' stored on 
Voigt form.
 *    The result is stored in 'dev'.
 *
 * Arguments:
 *    double A[6]
 *    double dev[6] (output)
 *
 * Return value:
 *    void
 */
void csext_dev_voigt(double A[6], double dev[6]);

csext_dot_voigt: Function that computes the inner product of symmetric matrices
/*
 * Function: csext_dot_voigt
 * ---------------------------
 * Description:
 *    Computes and returns the dot product (inner product) of two
 *    symmetric (3 x 3) matrices 'A' and 'B' stored on Voigt form.
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 *
 * Arguments:
 *    double A[6]
 *    double B[6]
 *
 * Return value:
 *    double
 */
double csext_dot_voigt(double A[6], double B[6]);

csext_mises_voigt: Function that computes the von Mises equivalent stress
/*
 * Function: csext_mises_voigt
 * ---------------------
 * Description:
 *    Computes and returns the von Mises equivalent stress based
 *    on a stress tensor 'sig' on Voigt form.
 *
 * Arguments:
 *    double sig[6]
 *
 * Return value:
 *    double
 *
 */
double csext_mises_voigt(double sig[6]);

csext_utils_trace_voigt: Function that computes the matrix trace
/*
 * Function: csext_trace_voigt
 * ---------------------------
 * Description:
 *    Computes and returns the trace of a symmetric (3 x 3) matrix
 *    'A' stored on Voigt form.
 *
 * Arguments:
 *    double A[6]
 *
 * Return value:
 *    double
 */
double csext_trace_voigt(double A[6]);

csext_from_voigt: Function to change from Voigt notation
/*
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 * Function: csext_from_voigt
 * -------------------
 * Description:
 *    Converts a symmetric (3 x 3) matrix 'A' stored
 *    on Voigt form to matrix form. The result is stored in 'B'.
 *    If 'def' = 1, the values of last three elements of 'A' are
 *    un-altered when passed into 'B'.
 *    If 'def' = 2, the values of last three elements of 'A' are
 *    halved when passed into 'B'.
 *    Returns -1 if the value of 'def' is invalid, 0 otherwise.
 *
 * Arguments:
 *    double A[6]
 *    int def
 *    double B[3][3] (output)
 *
 * Return value:
 *    int
 *
 */
int csext_from_voigt(double A[6], int def, double B[3][3]);

csext_to_voigt: Function to change to Voigt notation
/*
 * Function: csext_to_voigt
 * -------------------
 * Description:
 *    Converts a symmetric (3 x 3) matrix 'A' to Voigt form.
 *    The result is stored in 'B'.
 *    If 'def' = 1, the values of the off-diagonal components
 *    of 'A' are un-altered when passed into 'B'.
 *    If 'def' = 2, the values of the off-diagonal components
 *    of 'A' are doubled  when passed into 'B'.
 *    Returns -1 if the value of 'def' is invalid, 0 otherwise.
 *
 * Arguments:
 *    double A[3][3]
 *    int def
 *    double B[6] (output)
 *
 * Return value:
 *    int
 *
 */
int csext_to_voigt(double A[3][3], int def, double B[6]);
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csext_jac_conv: Function to convert the Jacobian
/*
 * Function: csext_jac_conv
 * ------------------------
 * Description:
 *    Converts a Jacobian from 'dSde' to 'dSdF' using the deformation
 *    gradient 'defgrad', where:
 *     - 'S' is the 2:nd Piola-Kirchhoff stress tensor,
 *     - 'e' is the Green-Lagrange strain tensor,
 *     - 'F' is the deformation gradient.
 *    If 'def' = 1, dSde is defined using tensor shears.
 *    If 'def' = 2, dSde is defined using engineering shears.
 *    Returns -1 if the value of 'def' is invalid.
 *
 * Arguments:
 *    double dSde[6][6]
 *    int def
 *    double defgrad[3][3]
 *    double dSdF[6][9]    (output)
 *
 * Return value:
 *    int
 *
*/
int csext_jac_conv(double dSde[6][6], int def,
double defgrad[3][3], double dSdF[6][9]);

csext_unit: Function to define a unit matrix
/*
 * Function: csext_unit
 * -------------------
 * Description:
 *    Initializes an (n x n) matrix 'A' to the identity matrix.
 *    Returns -1 if n < 1,
 *    0 otherwise.
 *
 * Arguments:
 *    int n
 *    double *A (output)
 *
 * Return value:
 *    int
 *
 */
int csext_unit(int n, double *A);
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csext_zero: Function to initialize a matrix
/*
 * Function: csext_zero
 * -------------------
 * Description:
 *    Initializes an (m x n) matrix 'A' to zero.
 *    Returns -1 if m < 1 or n < 1,
 *    0 otherwise.
 *
 * Arguments:
 *    int m
 *    int n
 *    double *A (output)
 *
 * Return value:
 *    void
 *
 */
int csext_zero(int m, int n, double *A);

References

1. D. Chapelle and K.J. Bathe, The Inf-Sup test, Comp. Struct., Vol. 47, No. 4/5, pp. 
537–545, 1993.
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Mode l i n g  P i e z o e l e c t r i c  P r ob l em s

In this section:

• About Piezoelectric Materials

• Piezoelectric Coupling

• Create the Piezoelectric Effect Interface and Define Domains

• Complete Settings of Piezoelectric Materials

• Add Damping and Loss

• Define Material Properties

About Piezoelectric Materials

Piezoelectric materials become electrically polarized when strained. From a 
microscopic perspective, the displacement of atoms within the unit cell (when the solid 
is deformed) results into electric dipoles within the medium. In certain crystal 
structures, this combines to give an average macroscopic dipole moment or electric 
polarization. This effect, known as the direct piezoelectric effect, is always 
accompanied by the converse piezoelectric effect, in which the solid becomes strained 
when placed in an electric field.

Within a piezoelectric, there is a coupling between the strain and the electric field, 
which is determined by the constitutive relation:

 (2-14)

Here, the naming convention used in piezoelectricity theory is assumed: S is the strain, 
T is the stress, E is the electric field, and D is the electric displacement field. The 
material parameters sE, d, and T, correspond to the material compliance, the coupling 
properties and the permittivity. These quantities are tensors of rank 4, 3, and 2, 

• Multiphysics Modeling Workflow in the COMSOL Multiphysics 
Reference Manual.

• Piezoelectric Coupling

• Piezoelectricity in the theory section

S sET dTE+=

D dT TE+=
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respectively. The tensors, however, are highly symmetric for physical reasons, and they 
can be represented as matrices within an abbreviated subscript notation, which is 
usually more convenient. In the Piezoelectricity interface, the Voigt notation is used, 
which is a standard in the literature for piezoelectricity but which differs from the 
defaults in the Solid Mechanics interface.

Equation 2-14 will, using the notation from structural mechanics, then read

 (2-15)

Equation 2-14 (or Equation 2-15) is known as the strain-charge form of the 
constitutive relations. The equation can be re-arranged into the stress-charge form, 
which relates the material stresses to the electric field:

 (2-16)

The material properties, cE, e, and S are related to sE, d, and T. It is possible to use 
either form of the constitutive relations. In addition to Equation 2-14 or 
Equation 2-16, the equations of solid mechanics and electrostatics must also be solved 
within the material.

Piezoelectric Material Orientation

The orientation of a piezoelectric crystal cut is frequently defined by the system 
introduced by the IRE standard of 1949 (Ref. 8). This standard has undergone a 
number of subsequent revisions, with the final revision being the IEEE standard of 

The Piezoelectric Material uses the structural mechanics nomenclature. 
The strain is named  (instead of S) and the stresses are denoted by either 
 or S (instead of T). This makes the names consistent with those used in 
the other structural mechanics interfaces.

 sE dTE+=

D d 0rTE+=

 cE eTE–=

D e 0rSE+=

• Piezoelectric Coupling

• Modeling Piezoelectric Problems

• Piezoelectricity in the theory section
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1987 (Ref. 9). Unfortunately, the 1987 standard contained a number of serious errors 
and the IEEE subsequently withdrew it. COMSOL therefore adopts the preceding 
1978 standard (Ref. 10), which is similar to the 1987 standard, for material property 
definitions. Most of the material properties in the material library are based on the 
values given in the book by Auld (Ref. 11), which uses the 1978 IEEE conventions. 
This is consistent with general practice except in the specific case of quartz, where it is 
more common to use the 1949 IRE standard to define the material properties. 
COMSOL therefore provides additional sets of material properties consistent with this 
standard for the case of quartz. Note that the material properties for quartz are based 
on Ref. 12, which uses the 1949 IRE standard (the properties are appropriately 
modified according to the different standards).

The stiffness, compliance, coupling, and dielectric material property matrices are 
defined with the crystal axes aligned with the local coordinate axes. Note that the signs 
of several matrix components differ between the 1949 and the 1978 standards (see 
Table 2-8). In the absence of a user-defined coordinate system, the local system 
corresponds to the global X, Y, and Z coordinate axes. When an alternative coordinate 
system is selected this system defines the orientation of the crystal axes. This is the 
mechanism used in COMSOL to define a particular crystal cut, and typically it is 
necessary to calculate the appropriate Euler angles for the cut (given the thickness 
orientation for the wafer). All piezoelectric material properties are defined using the 
Voigt form of the abbreviated subscript notation, which is universally employed in the 
literature (this differs from the standard notation used for the Solid Mechanics 
interface material properties). The material properties are defined in the material 
frame, so that if the solid rotates during deformation the material properties rotate 
with the solid. See Modeling Geometric Nonlinearity.

Crystal cuts are usually defined by a mechanism introduced by the IEEE/IRE 
standards. Both standards use a notation that defines the orientation of a virtual slice 
(the plate) through the crystal. The crystal axes are denoted X, Y, and Z and the plate, 
which is usually rectangular, is defined as having sides l, w, and t (length, width, and 
thickness). Initially the plate is aligned with respect to the crystal axes and then up to 
three rotations are defined, using a right-handed convention about axes embedded 
along the l, w, and t sides of the plate. Taking AT cut quartz as an example, the IEEE 
1978 standard defines the cut as: (YXl) 35.25°. The first two letters in the bracketed 
expression always refer to the initial orientation of the thickness and the length of the 
plate. Subsequent bracketed letters then define up to three rotational axes, which move 
with the plate as it is rotated. Angles of rotation about these axes are specified after the 
bracketed expression in the order of the letters, using a right-handed convention. For 
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AT cut quartz only one rotation, about the l axis, is required. This is illustrated in 
Figure 2-10. Note that within the 1949 IRE Standard AT cut quartz is denoted as: 
(YXl) 35.25°, since the X-axis is rotated by 180° in this convention and positive 
angles therefore correspond to the opposite direction of rotation (see Figure 2-9). 
Table 2-9 summarizes the differences between the standards for different crystal cuts.

When defining the material properties of Quartz, the orientation of the 
X, Y, and Z axes with respect to the crystal differs between the 1987 IEEE 
standard and the 1949 IRE standard. Figure 2-9 shows the alignment of 
the axis for the case of right-handed quartz. A consequence of this is that 
both the material property matrices and the crystal cuts differ between the 
two standards. Table 2-8 summarizes the signs for the important matrix 
elements under the two conventions. Table 2-9 shows the different 
definitions of the crystal cuts under the two conventions.

TABLE 2-8:  SIGNS FOR THE MATERIAL PROPERTIES OF QUARTZ, WITHIN THE TWO STANDARDS COMMONLY 
EMPLOYED.

IRE 1949 STANDARD IEEE 1978 STANDARD

MATERIAL 
PROPERTY

RIGHT HANDED 
QUARTZ

LEFT HANDED 
QUARTZ

RIGHT HANDED 
QUARTZ

LEFT HANDED 
QUARTZ

s14 + + - -

c14 - - + +

d11 - + + -

d14 - + - +

e11 - + + -

e14 + - + -

TABLE 2-9:  CRYSTAL CUT DEFINITIONS FOR QUARTZ CUTS WITHIN THE TWO STANDARDS COMMONLY 
EMPLOYED AND THE CORRESPONDING EULER ANGLES FOR DIFFERENT ORIENTATIONS OF THE CRYSTAL 
THICKNESS.

STANDARD REPRESENTATION AT CUT BT CUT

IRE 1949 Standard (YXl) +35.25 (YXl) 49

Y-thickness Euler 
angles

(ZXZ: 035.250) (ZXZ: 0490)

Z-thickness Euler 
angles

(ZXZ: 0°,125.250) (ZXZ: 0 410)

IEEE 1978 Standard (YXl) 35.25 (YXl) +49
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When defining the material orientation, it is necessary to consider the orientation of 
the plate with respect to the global coordinate system in addition to the orientation of 
the plate with respect to the crystallographic axes. Consider the example of AT cut 
quartz in Figure 2-10. The definition of the appropriate local coordinate system 
depends on the desired final orientation of the plate in the global coordinate system. 
One way to set up the plate is to orientate its normal parallel to the Y axis in the global 
coordinate system. Figure 2-11 shows how to define the local coordinate system in this 
case. Figure 2-12 shows how to define the local system such that the plate has its 
normal parallel to the global Z axis. In both cases it is critical to keep track of the 
orientation of the local system with respect to the global system, which is defined 
depending on the desired orientation of the plate in the model.

There are also a number of methods to define the local coordinate system with respect 
to the global system. Usually, it is most convenient to define the local coordinates with 
a Rotated System node, which defines three Euler angles according to the ZXZ 
convention (rotation about Z, then X, then Z again). Note that these Euler angles 
define the local (crystal) axes with respect to the global axes — this is distinct from the 
approach of defining the cut (global) axes with respect to the crystal (local) axes.

Y-thickness Euler 
angles

(ZXZ: 0 35.250) (ZXZ: 0 490)

Z-thickness Euler 
angles

(ZXZ: 0 54.750) (ZXZ: 0 1390)

TABLE 2-9:  CRYSTAL CUT DEFINITIONS FOR QUARTZ CUTS WITHIN THE TWO STANDARDS COMMONLY 
EMPLOYED AND THE CORRESPONDING EULER ANGLES FOR DIFFERENT ORIENTATIONS OF THE CRYSTAL 
THICKNESS.

STANDARD REPRESENTATION AT CUT BT CUT
M O D E L I N G  P I E Z O E L E C T R I C  P R O B L E M S  |  155



156 |  C H A P T E R
Figure 2-9: Crystallographic axes defined for right-handed quartz in COMSOL and the 
1978 IEEE standard (color). The 1949 standard axes are shown for comparison (gray).

Figure 2-9 is reproduced with permission from: IEEE Std 176-1987 - 
IEEE Standard on Piezoelectricity, reprinted with permission from 
IEEE, 3 Park Avenue, New York, NY 10016-5997 USA, copyright 1987, 
by IEEE. This figure must not be reprinted or further distributed without 
prior written permission from the IEEE.
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Figure 2-10: Definition of the AT cut of quartz within the IEEE 1978 standard. The AT 
cut is defined as: (YXl) 35.25°. The first two bracketed letters specify the initial 
orientation of the plate, with the thickness direction, t, along the crystal Y axis and the 
length direction, l, along the X axis. Then up to three rotations about axes that move with 
the plate are specified by the corresponding bracketed letters and the subsequent angles. In 
this case only one rotation is required about the l axis, of 35.25° (in a right-handed 
sense).
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Figure 2-11: Defining an AT cut crystal plate within COMSOL, with normal in the 
global Y direction. Within the 1978 IEEE standard the AT cut is defined as (YXl) 
-35.25°. Start with the plate normal or thickness in the Ycr direction (a) and rotate the 
plate 35.25° about the l axis (b). The global coordinate system rotates with the plate. 
Finally rotate the entire system so that the global coordinate system is orientated as it 
appears in COMSOL (c). The local coordinate system should be defined with the Euler 
angles (ZXZ - 0, 35.25°, 0). (d) shows a coordinate system for this system in COMSOL.
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Figure 2-12: Defining an AT cut crystal plate within COMSOL, with normal in the 
global Z direction. Within the 1978 IEEE standard the AT cut is defined as (YXl) 
35.25°. Begin with the plate normal in the Zcr direction, so the crystal and global systems 
are coincident. Rotate the plate so that its thickness points in the Ycr direction (the starting 
point for the IEEE definition), the global system rotates with the plate (b). Rotate the plate 
35.25° about the l axis (d). Finally rotate the entire system so that the global coordinate 
system is orientated as it appears in COMSOL (d). The local coordinate system should be 
defined with the Euler angles (ZXZ: 0, -54.75°, 0). (e) shows a coordinate system for this 
system in COMSOL.
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Piezoelectric Losses

Losses in piezoelectric materials can be generated both mechanically and electrically.

In the frequency domain, these can be represented by introducing complex material 
properties in the elasticity and permittivity matrices. Taking the mechanical case as an 
example, this introduces a phase lag between the stress and the strain, which 
corresponds to a Hysteretic Loss. These losses can be added to the Piezoelectric 
Material by three subnodes: Mechanical Damping, Coupling Loss, and Dielectric Loss. 
The losses typically defined as loss factors (see below).

The hysteretic electrical losses are usually used to represent high frequency electrical 
losses that occur as a result of friction impeding the rotation of the microscopic dipoles 
that produce the material permittivity.

Low frequency losses, corresponding to a finite material conductivity, can be added to 
the model through an Electrical Conductivity (Time Harmonic) subnode. This feature 
operates only in the frequency domain.

In the time domain, the losses can be added by:

• Using the Rayleigh Damping option in the Mechanical Damping and Coupling Loss 
subnodes to the Piezoelectric Material,.

• Using either the Dispersion, or Complex permittivity, or Maximum Loss Tangent option 
in the Dielectric Loss subnode to the Piezoelectric Material.

These types of damping are also available in the frequency domain.

H Y S T E R E T I C  L O S S

In the frequency domain, the dissipative behavior of the material can be modeled using 
complex-valued material properties, irrespective of the loss mechanism. Such hysteretic 
losses can be applied to model both electrical and mechanical losses. For more 
information about hysteretic losses, see Ref. 1 to Ref. 4.

Rayleigh Damping

Rayleigh Damping
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For the case of piezoelectric materials, this means that the constitutive equations are 
written as follows.

For the stress-charge formulation

where T is the stress tensor, and S is the strain tensor.

For the strain-charge formulation,

All constitutive matrices in the above equation can be complex-valued matrices, where 
the imaginary parts define the dissipative function of the material.

Both the real and complex parts of the material data must be defined so as to respect 
the symmetry properties of the material being modeled and with restrictions imposed 
by the laws of physics.

In COMSOL, you can enter the complex-valued data directly or by means of loss 
factors. When loss factors are used, the complex data  is represented as pairs of a 
real-valued parameter

and a loss factor

the ratio of the imaginary and real part, and the complex data is then:

T c̃ES ẽTE–=

D ẽT 0̃rSE+=

S s̃ET d̃
T

E+=

D d̃S 0̃rTE+=

A key requirement is that the dissipation density is positive; that is, there 
is no power gain from the passive material. This requirement sets rules for 
the relative magnitudes for all material parameters. This is important 
when defining the coupling losses.

X̃

X real X̃ =

X imag X̃  real X̃ =

X̃ X 1 jX =
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where the sign depends on the material property used. The loss factors are specific to 
the material property, and thus they are named according to the property they refer to, 
for example, cE. For a structural material without coupling, simply use s, the 
structural loss factor.

The loss factors are defined so that a positive loss factor value usually corresponds to a 
positive loss. The complex-valued data is then based on sign rules.

By default, there is no damping until at least one of the damping and losses related 
subnodes is added.

For the Piezoelectric Material node, the following equations apply via the 
corresponding three subnodes:

Mechanical Damping

where m and n refer to components of each matrix.

Coupling Loss

Dielectric Loss

Note that the multiplication is applied component-wise.

The loss factors can also be entered as scalar isotropic factors independently of the 
material and the other coefficients.

A good check on the chosen values is to compute a number of eigenfrequencies, 
possibly using some different sets of boundary conditions. All computed 
eigenfrequencies must have a positive imaginary part in order to represent a damped 
motion.

c̃E
m n cE

m n 1 jcE
m n

+ =

s̃E
m n sE

m n 1 jsE
m n

– =

ẽm n em n 1 je
m n

+ =

d̃
m n

dm n 1 jd
m n

+ =

̃rS
m n

rS
m n 1 jS

m n
– =

̃rT
m n

rT
m n 1 jT

m n
– =
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In practice, it is often difficult to find complex-valued data for each of the matrix 
elements in the literature. Measuring the losses independently is a challenging task.

D I E L E C T R I C  D I S P E R S I O N

The Dielectric Loss subnode can be set to use the Dispersion option. In such case, the 
following equations need to be solved in the time domain:

 (2-17)

 (2-18)

where you can specify two material parameters: the relaxation time d and the relative 
permittivity increment rS. The latter can be either a matrix or a scalar quantity. This 
model is a one-term version of the more general Debye dispersion model, Ref. 13.

The constitutive relation is assumed as

 (2-19)

where S is the strain tensor, and  is the relative permittivity in the high frequency 
limit (that is, for excitations with a characteristic time much shorter than the relaxation 
time d).

 Two important particular cases are available in COMSOL, for which the 
dielectric loss data can be entered based on experimentally measurable 
quantities:

• Complex permittivity

• Maximum Loss Tangent


t

D Jp+ 
  0=

Jp d t
Jp+ 0rS t

E
=

D eS + 0E=



The parent Piezoelectric Material node has an input for the relative 
permittivity, rS, which is used in stationary study. You can chose how this 
input will be interpreted in the dispersion computations. The options are:

• High frequency limit. In such case,  will be used.

• Low frequency limit. In such case,  will be used. Note 
that for consistency,  must be always positive valued.

 rS=

 rS rS–=


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With the absence of free electric charges, Equation 2-17 and Equation 2-18 can be 
combined and integrated in time to yield the following equation:

This is the equation form used in COMSOL Multiphysics for time-dependent analysis.

For the eigenfrequency and frequency domain analyses, the corresponding equation is:

In most cases, i can be factored out, so that the following equation is solved:

This equation, together with the constitutive relation Equation 2-19 gives

 (2-20)

where

and

Equation 2-20 shows how the dispersion parameters contribute to the polarization 
and losses. Thus, the effective relative permittivity decreases with the excitation 
frequency from the low frequency limit  down to the high frequency limit 

. The damping effect vanishes for both large and small frequencies, and it reaches 
the maximum for   1d.

The following two sections present two cases, for which the dielectric dispersion data 
can be related to other experimentally measurable quantities. Both cases, can be used 

 D d t
D

+ 0rSE+ 
  0=

 1 jd+ jD 0rSjE+  0=

 D jd+ D 0rSE+  0=

 eS 0 ' j''– E+  0=

' 
rS

1 d 2+
---------------------------+=

''
d0rS

1 d 2+
----------------------------=

 rS+



If your license includes either the AC/DC Module or MEMS Module, 
more options for modeling dielectric dispersion can be found in 
Dispersion section in the AC/DC Module User’s Guide.
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in Eigenfrequency, Frequency Domain, and Time Dependent study. The software will 
apply the dispersion model equations, for which the effective relaxation time and 
relative permittivity increment are computed automatically based on the node input 
parameters.

Complex permittivity
In this case, the complex relative permittivity is known at a certain reference frequency

The relaxation time and relative permittivity contribution cane be computed as

where .

If the relative permittivity rS (input on the Piezoelectric Material parent node) is 
selected to represent the low frequency limit, one has

If rS is selected to represent the high frequency limit, one can simply use  
instead.

Maximum Loss Tangent
The loss tangent is defined as a function of the frequency

so that the complex relative permittivity can be written as

For many materials, the loss tangent reaches a maximum at certain frequency fref 
within the frequency range of interested

The relaxation time cane be computed as

' fref  j'' fref –

d ref
1– '' ' –  1–

=

rS ' – '' 2 ' –  1–
+=

ref 2fref=

 ' '' 2 rS '–  1–
–=

 rS=

 f  tan '' '= =

r f  ' I j– =

max max f   fref = =

d ref
1– max max

2 I+ 
1 2

+ =
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where .

If the relative permittivity rS (input on the Piezoelectric Material parent node) is 
selected to represent the low frequency limit, the relative permittivity contribution is 
computes as

where .

If the relative permittivity rS is selected to represent the high frequency limit, it is 
computed as

where .

E L E C T R I C A L  C O N D U C T I V I T Y  ( T I M E  H A R M O N I C )

For frequency domain and eigenfrequency analyses, the effect of electrical conductivity 
of the piezoelectric material (see Ref. 2, Ref. 5, and Ref. 6) can be included. Thus, in 
addition to the displacement current, the conduction electric current term is used

where e is the material electrical conductivity, and E is the electric field. The above 
form of the equation is used for the eigenfrequency analysis in COMSOL 
Multiphysics.

ref 2fref=

rS rS –=

 dref  2– rS=

rS dref 2 I– =

 rS=

 jD Je+  0=

Je eE=

When the conduction loss is applied, the default eigenvalue analysis will 
in most cases return a number of pure imaginary eigenfrequencies. To 
avoid this, you can configure the solver to search for eigenvalues with real 
part larger than zero.

Do not use any dielectric loss factor damping together with the 
conduction loss in an eigenfrequency analysis.
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For the frequency domain analysis, the angular frequency is just a parameter, and the 
equation can be transformed into

which allows you to use both a dielectric loss factor and electrical conductivity in a 
frequency response study. In such case, ensure that the loss factor refers to the 
alternating current loss tangent, which dominates at high frequencies, where the effect 
of ohmic conductivity vanishes (Ref. 7).

Conduction loss can be combined with Dielectric Dispersion for both eigenfrequency 
and frequency domain analyses. The following equation forms are used, respectively, 
in the frequency domain:

and in eigenfrequency analyses:
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• Eigenvalue Solver

 D j 1– eE–  0=

 D jd+ D 0rSE d j 1–
– Je+ +  0=

 1 jd+ jD 0rSjE 1 jd+ Je+ +  0=
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Piezoelectric Coupling

The piezoelectric effect is an interaction between the mechanical and electrical physics, 
where a stress applied on a piezoelectric material generates a voltage (direct effect) or 
a voltage applied on it generates the deformation of the material (inverse effect). In 
COMSOL Multiphysics, the Piezoelectricity interface is constituted of one Solid 

Mechanics and one Electrostatics interface, which are coupled together by a Piezoelectric 

Effect multiphysics feature. Hence a piezoelectric problem contains solid and 
electrostatic domains, with at least one domain shared by the two physics interfaces 
and with the piezoelectric coupling defined on it.
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Create the Piezoelectric Effect Interface and Define Domains

A piezoelectric problem can be set up in different ways:

• By selecting Piezoelectricity from the Model Wizard,

• By choosing Piezoelectricity from the Add Physics menu when working in an existing 
model, or

• By adding the corresponding features to create the coupling manually.

In the first two cases, by default all the domains in the model are assumed to be 
piezoelectric materials.

When setting up the problem manually (that is, by adding single physics interfaces one 
at a time) both Solid Mechanics and Electrostatics interfaces should be added. Then, you 
have to specify which domains are in each physics, and which domains are to be 
modeled as piezoelectric materials.

1 On the Solid Mechanics interface Settings window, locate the Domain Selection 
section. Select the domains which undergo structural deformation, including the 
piezoelectric material domains.

2 Go to the Solid Mechanics>Piezoelectric Material node (if it is not yet available, add 
it). Select the domains where the piezoelectric effect applies. Domains which are not 
piezoelectric can be modeled using other available material models.

3 Go to the Electrostatics node and under Domain Selection select the domains the 
electrostatics equations must be solved. These domains include all the piezoelectric 
domains, and any other insulating domains.

4 Go to the Electrostatics>Charge Conservation, Piezoelectric node (if it is not yet 
available, add it). Select the domains where the piezoelectric effect has to be 
modeled.

5 A Multiphysics>Piezoelectric Effect node is already present if the coupling was added 
using either the Model Wizard or Add Physics window. If the model is set up manually 

Since metals usually have a conductivity several orders of magnitude 
higher than other materials, it is normal not to solve the electrostatics 
equations in their corresponding domains, but instead the surfaces of the 
material are represented as isopotentials with an appropriate boundary 
condition (usually a terminal or floating potential).
M O D E L I N G  P I E Z O E L E C T R I C  P R O B L E M S  |  169



170 |  C H A P T E R
(that is, single physics interfaces are added), right-click the Multiphysics Couplings 
node to add a Piezoelectric Effect coupling.

6 Confirm that all the domains where the piezoelectric material is present are selected.

7 Confirm that remaining domains are well assigned:

- Solid and electrostatic domains: In these domains, the electrostatics and 
structural problems are solved independently without any piezoelectric coupling. 
This is the case for insulators.

- Solid-only domains: In these domains, only mechanical phenomena are modeled, 
and the electrostatics phenomena are neglected. Metals are typically modeled in 
this way, because their conductivity is so high that their surfaces can be treated as 
isopotential surfaces within the electrostatics problem. In some cases, insulators 
are modeled using these settings, for example, when there is no potential applied 
across the domain, and correspondingly solving the electrostatics equations 
would produce a constant potential and waste computing resources.

- Electrostatics-only domains: Those domains are nonsolid. This is typically the 
case of air, in which the electrostatics is solved but not mechanics.

- Nonsolid and nonelectrostatic domains: In those domains, another physics is 
solved. A typical example is an acoustic domain in the case of piezoacoustic 
modeling.

Complete Settings of Piezoelectric Materials

Go to the Solid Mechanics>Piezoelectric Material node. On the Settings window 
complete these settings:

• Coordinate System Selection section: The material is poled in the x3 direction of the 
coordinate system (x1, x2, x3) specified in this section. By default, it is set to the 
global coordinate system. If the piezoelectric material is poled along another 
direction, you need to define a coordinate system so that its third direction is aligned 

Only domains that have both Charge Conservation, Piezoelectric selected in 
the Electrostatics interface and Piezoelectric Material selected in the Solid 

Mechanics interface are selected. The selection of this feature cannot be 
edited. If several Solid Mechanics or Electrostatics interfaces are present, 
select the correct ones.
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with the poling direction. Then, assign it as the coordinate system which orients the 
material in the Coordinate System Selection section.

• Piezoelectric Material Properties: Select whether the constitutive relation of 
piezoelectric material is in Stress-charge or in Strain-charge form. This choice 
defines the type of material properties that will be used.

• Geometric Nonlinearity: select the check box to force strains to be linear.

• Energy Dissipation: Select the check box to enable the calculation of the dissipated 
energy.

Add Damping and Loss

In the physics toolbar you can add attributes to the Piezoelectric Material node, 
especially the following damping and loss contributions:

• Mechanical Damping: Specify the domains of application, then choose if you want to 
define a loss factor for cE, a loss factor for sE (in Strain-charge form), an isotropic 
loss factor, or a Rayleigh damping.

• Dielectric Loss: Specify the domains of application, then choose if you want to define 
a loss factor for rS, a loss factor for rT (in Strain-charge form), or dispersion.

• Coupling Loss: Specify the domains of application, then choose if you want to define 
a loss factor for e, a loss factor for d (in Strain-charge form), or Rayleigh damping.

• Conduction Loss (Time-Harmonic): Specify the domains of application, then choose 
how you want to define the Electrical conductivity.

Define Material Properties

Define material properties for the piezoelectric materials. The material library contains 
several common piezoelectric materials under the piezoelectric section. If you want to 
define your own piezoelectric material, you need to specify its properties by hand. The 
required properties depend on whether the constitutive relations are in Stress-charge 
or Strain-charge form, and which damping and loss attributes are created. Defining all 

If a given piezoelectric material is present with several orientations (such 
as stacked piezoelectric disks) you need to define several Piezoelectric 

Material nodes and to assign a different coordinate system for each of 
them.
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piezoelectric settings before materials preselects the required properties and makes the 
completion easier:

M E C H A N I C A L  P R O P E R T I E S

• Density rho (SI unit: kg/m3)

• Elasticity matrix cE (SI unit: Pa) in Stress-charge form.

• Compliance Matrix sE (SI unit: 1/Pa) in Strain-charge form.

E L E C T R O S T A T I C  P R O P E R T I E S

• Relative Permittivity rS (dimensionless) in Stress-charge form.

• Relative Permittivity rT (dimensionless) in Strain-charge form.

C O U P L I N G  P R O P E R T I E S

• Coupling matrix eES (SI unit: C/m2) in Stress-Charge form.

• Coupling matrix dET (SI unit: C/N) in Strain-charge form.

D A M P I N G  A N D  L O S S  P R O P E R T I E S

• Either loss factor cE for elasticity matrix cE, or the loss factor sE for compliance 
matrix sE: required when Mechanical Damping is present. Both are dimensionless, 
the latter is valid only in Strain-Charge form.

• Either loss factor for electrical permittivity matrix rS, or loss factor  for 
electrical permittivity matrix rT: required when Dielectric Loss is present. TBoth 
are dimensionless, the latter is valid only in Strain-Charge form.

• Either loss factor e for coupling matrix e, or loss factor d for coupling matrix d: 
required when Coupling Loss is present. Both are dimensionless, the latter is valid 
only in Strain-Charge form.

• Electrical conductivity e (SI unit: S/m): required when Conduction Loss is 
present.

S T

Working with Materials and Piezoelectric Materials Library in the 
COMSOL Multiphysics Reference Manual.
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Coupling Piezoelectricity with Acoustics

Using piezoelectric materials for an acoustic application is common, such as in sonars, 
microphones, sensors, and so forth. This is why coupling piezoelectric devices with 
acoustic domains is of particular interest for these applications.

Compared to a single piezoelectric model, you need to add a pressure acoustics 
interface, for example, Pressure Acoustics, Frequency Domain or Pressure Acoustics, 

Transient (depending on which study type you want to use) plus an Acoustic-Structure 

Boundary coupling under the Multiphysics Couplings node. You can also directly create 
the nodes that are needed for coupling by adding an Acoustic-Piezoelectric Interaction 
interface from the Model Wizard or Add Physics windows. If solid and acoustic domains 
are correctly defined, then the right coupling boundaries are automatically selected. 
Then specify domains of application for each physics.

• Select solid domains and Piezoelectric Material domains in Solid Mechanics.

• Select electrostatic domains and Charge Conservation, Piezoelectric domains in 
Electrostatics.

• Select acoustic domains in a Pressure Acoustics node.

• Under the Multiphysics branch, confirm that selections for Piezoelectric Effect and 
Acoustic-Structure Boundary are the right ones. If several Pressure Acoustics, Solid 

Mechanics, or Electrostatics interfaces are present, select the right ones that need to 
be coupled in the multiphysics interfaces.

• Continue the modeling process by entering the settings for each physics interface 
and feature and define materials.
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Mode l i n g  E l e c t r o s t r i c t i v e  and 
F e r r o e l e c t r o e l a s t i c  Ma t e r i a l s

Electrostriction Coupling

Electrostriction is an interaction between the mechanical and electric physics, where an 
electric field applied on electrostrictive material generates the deformation of the 
material (direct effect), and a stress applied on it changes the material polarization 
(inverse effect). In contrast to linear piezoelectricity, the electrostrictive strain induced 
in the polarized material is proportional to the square of the polarization. Thus, the 
strain will remain the same if the direction of the applied electric field is changed to the 
opposite.

Ferroelectricity

The ferroelectroelasticity and ferroelectricity phenomena are related to phase 
transitions in materials. In its ferroelectric phase, the material exhibits spontaneous 
polarization, so that it is constituted of domains with nonzero polarization even at zero 
applied field. This is similar to permanent magnetism in ferromagnetics, which explains 
the name used for such materials. Electrostriction in ferroelectroelastic materials can 
be related to the domain rotation. Thus, the applied electric field can both rearrange 
the domains resulting into the net polarization and rotate the domains mechanically. 
Thus, the material extends in the direction of the electric field and contracts in the 
direction perpendicular to the field. The domain rotation can be affected by an applied 
mechanical stress, which also results into the effective polarization. At very large 
electric fields, the electrostrictive effect saturates, as all ferroelectric domains in the 
material are aligned along the direction of the applied field. Domain wall interactions 
can also lead to a significant hysteresis in the polarization and strain.

Many piezoelectric materials exhibit such nonlinear ferroelectroelastic behavior at large 
applied electric fields.

Multiphysics Interfaces

In COMSOL Multiphysics, the electrostrictive effect can be modeled using two 
multiphysics interfaces: Electrostriction and Ferroelectroelasticity. Both interfaces are 
constituted of one Solid Mechanics and one Electrostatics interface, which are coupled 
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together via an Electrostriction multiphysics feature. However, in case of 
Ferroelectroelasticity, the corresponding Electrostatics interface will contain a dedicated 
feature Charge Conservation, Ferroelectric.

The Electrostriction interface electrostatically can be used for modeling electrostatically 
actuated structures in regimes when the electric polarization can be assumed to vary 
linear with the applied electric field.

The Ferroelectroelasticity can be used for modeling nonlinear electromechanical 
interaction in ferroelectric and piezoelectric materials at high applied electric fields. 
Electric polarization in such materials depends nonlinearly on the applied electric field 
including possible hysteresis and saturation effects.

Ferroelectricity in the AC/DC Module User’s Guide.

Electrostriction and Ferroelectroelasticity in the Structural Mechanics 
Module User’s Guide.
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Mode l i n g  Magn e t o s t r i c t i v e  Ma t e r i a l s

Magnetostriction Coupling

Magnetostriction is an interaction between the mechanical and magnetic physics, 
where a magnetic field applied on magnetostrictive material generates the deformation 
of the material (direct effect or Joule effect), while a mechanical stress applied on it 
changes the material magnetization (inverse effect or Villari effect). 

The magnetostrictive strain has a nonlinear dependence on the magnetic field and the 
mechanical stress in the material. However, the effect can be modeled using linear 
coupled constitutive equations if the response of the material consists of small 
deviations around an operating point (bias point). This type of coupling is reffed to as 
Piezomagnetic Effect.

In COMSOL Multiphysics, there are two multiphysics interfaces for modeling either 
linear or nonlinear magnetostriction, respectively:

• The Piezomagnetism Interface

• The Nonlinear Magnetostriction Interface

Both multiphysics interfaces, the Magnetostriction interfaces are constituted of one 
Solid Mechanics and one Magnetic Fields interface, which are coupled together via either 
Piezomagnetic Effect or Nonlinear Magnetostriction multiphysics coupling feature. 
Hence a magnetostriction problem contains solid and magnetic domains, with at least 
one domain shared by the two physics interfaces and with the magnetostriction 
coupling defined on it.

Linear vs. Nonlinear Magnetostriction

For piezomagnetic model, it is possible to express the relation between the stress S, 
strain , magnetic field H, and magnetic flux density B in either a stress-magnetization 
form or strain-magnetization form. In COMSOL Multiphysics, both constitutive 
forms can be used; simply select one, and the software will make all necessary 
transformations if needed. You find all the necessary material data inputs within the 
Piezomagnetic Material selected in the Solid Mechanics interface.

The nonlinear model of magnetostrictive strain can be used for the whole range from 
full demagnetization to saturation magnetization. In case of nonlinear 
magnetostriction, the magnetization model can be selected. The following options are 
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available: Langevin function, Hyperbolic tangent, User defined, and Linear. The last 
option will make it possible to find an explicit expression for the magnetization. Note 
however that such model does not have a proper saturation behavior, and thus it 
should be used only in the operating range far from saturation. For all other choices, 
the magnetization vector components will be treated as extra dependent variables.

For more details, see the corresponding theory section in Magnetostriction and 
Piezomagnetism.

Create the Magnetostriction Interface and Define Domains

A magnetostriction problem can be set up in different ways:

• By selecting either Piezomagnetism or Nonlinear Magnetostriction from the Model 

Wizard,

• By choosing either Piezomagnetism or Nonlinear Magnetostriction from the Add 

Physics menu when working in an existing model, or

• By adding the corresponding coupling features to create the coupling manually.

In the first two cases, by default all the domains in the model are assumed to be 
magnetostrictive materials.

P I E Z O M A G N E T I S M

When setting up the problem manually (that is, by adding single physics interfaces one 
at a time) both Solid Mechanics and Magnetic Fields interfaces should be added. Then, 
you have to specify which domains are in each physics, and which domains are to be 
modeled as piezomagnetic materials.

1 On the Solid Mechanics interface Settings window, locate the Domain Selection 
section. Select the domains which undergo structural deformation, including the 
piezomagnetic material domains.

2 Go to the Solid Mechanics>Piezomagnetic Material node. If it is not yet available, add 
such node. Select the domains where the piezomagnetic effect applies. You find all 
the necessary material data inputs within the Piezomagnetic Material. This includes 
the elasticity, magnetic permeability and coupling matrices. Non piezomagnetic 
domains can be modeled using any other available structural material model.

3 Go to the Magnetic Fields node and under Domain Selection select the domains the 
magnetics equations must be solved. These domains include all the piezomagnetic 
domains, and any other magnetic domains.
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4 Go to the Magnetic Fields>Ampere’s Law, Piezomagnetic node. If it is not yet available, 
add such node. Select the domains where the piezomagnetic effect needs to be 
modeled.

5 A Multiphysics>Piezomagnetic Effect node is already present if the coupling was 
added using either the Model Wizard or Add Physics window. If the model is set up 
manually (that is, single physics interfaces are added), right-click the Multiphysics 

Couplings node to add a Piezomagnetic Effect coupling. If several Solid Mechanics or 
Magnetic Fields interfaces are present, select the correct ones. By default, the model 
will be solved as fully coupled. Alternatively, on the Piezomagnetic Effect coupling 
node, you can select to include only either Joule effect or Villari effect. Confirm that 
all the domains where the piezomagnetic material is present are selected.

6 Confirm that remaining domains are well assigned:

- Solid and magnetic domains: In these domains, the magnetics and structural 
problems are solved independently without any piezomagnetic coupling. This 
represents deformable magnetic materials for which such coupling is negligible. 
Exclude such domains from the selections for all Ampere’s Law, Piezomagnetic and 
Piezomagnetic Material nodes under the corresponding interfaces.

- Solid-only domains: In these domains, only mechanical phenomena are modeled, 
and the magnetics phenomena are neglected. This represents deformable solid 
nonmagnetic materials. Exclude such domains from the selection in the Magnetic 

Fields interface.

- Magnetics-only domains: Those domains are nonsolid. This is typically the case 
of air, in which the magnetics is solved but not mechanics. Exclude such domains 
from the selection in the Solid Mechanics interface.

- Nonsolid and nonmagnetic domains: In those domains another physics is solved. 
Typical examples are acoustic domains and fluid flow domains, which might be 

Only domains that have both Ampere’s Law, Piezomagnetic selected in the 
Magnetic Fields interface and Piezomagnetic Material selected in the Solid 

Mechanics interface are applicable in the selection for Piezomagnetic Effect 
coupling. The selection of this multiphysics coupling node cannot be 
edited directly.
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present in certain multiphysics application. Exclude such domains from the 
selections on both Magnetic Fields and Solid Mechanics interface nodes.

N O N L I N E A R  M A G N E T O S T R I C T I O N

When setting up the problem manually (that is, by adding single physics interfaces one 
at a time) both Solid Mechanics and Magnetic Fields interfaces should be added. Then, 
you have to specify which domains are in each physics, and which domains are to be 
modeled as magnetostrictive materials.

1 On the Solid Mechanics interface Settings window, locate the Domain Selection 
section. Select the domains which undergo structural deformation, including the 
magnetostrictive material domains. The following structural material nodes are 
supported to represent the magnetostrictive domains: Linear Elastic Material and 
Hyperelastic Material (available with the Nonlinear Structural Materials Module).

2 Go to the Magnetic Fields node and under Domain Selection select the domains the 
magnetics equations must be solved. These domains include all the magnetostrictive 
domains, and any other magnetic domains.

3 Go to the Magnetic Fields>Ampere’s Law, Nonlinear Magnetostrictive node. If it is not 
yet available, add such node. Select the domains where the magnetostriction effect 
needs to be modeled. You can specify the magnetization model and enter the related 
material data on the node.

4 A Multiphysics>Nonlinear Magnetostriction node is already present if the coupling was 
added using either the Model Wizard or Add Physics window. If the model is set up 
manually (that is, single physics interfaces are added), right-click the Multiphysics 

Couplings node to add a Nonlinear Magnetostriction coupling. If several Solid 

Mechanics or Magnetic Fields interfaces are present, select the correct ones. On the 
coupling node, you can also select the magnetostriction model depending on the 
material symmetry and enter the corresponding coupling data. By default, the 
model will be solved as fully coupled. Alternatively, on the Nonlinear Magnetostriction 

• Piezomagnetic Material

• Ampère’s Law, Piezomagnetic

Instead of Magnetic Fields interface, you can also use Rotating Machinery, 

Magnetic interface.
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coupling node, you can select to include only either Joule effect or Villari effect. 
Select only the domains where the magnetostrictive effect needs to be modeled.

5 Confirm that remaining domains are well assigned:

- Solid and magnetic domains: In these domains, the magnetics and structural 
problems are solved independently without any magnetostriction coupling. This 
represents deformable magnetic materials for which such coupling is negligible. 
Exclude such domains from the selection in the Nonlinear Magnetostriction 
coupling node.

- Solid-only domains: In these domains, only mechanical phenomena are modeled, 
and the magnetics phenomena are neglected. This represents deformable solid 
nonmagnetic materials. Exclude such domains from the selection in the Magnetic 

Fields interface.

- Magnetics-only domains: Those domains are nonsolid. This is typically the case 
of air, in which the magnetics is solved but not mechanics. Exclude such domains 
from the selection in the Solid Mechanics interface.

- Nonsolid and nonmagnetic domains: In those domains another physics is solved. 
Typical examples are acoustic domains and fluid flow domains, which might be 
present in certain multiphysics applications. Exclude such domains from the 
selections in both Magnetic Fields and Solid Mechanics interfaces.

On the Nonlinear Magnetostriction coupling node, the applicable domains 
in the selection are only domains that have both Ampere’s Law, Nonlinear 

Magnetostrictive selected in the Magnetic Fields interface and Linear Elastic 

Model (or Hyperelastic Model) selected in the Solid Mechanics interface. 

• Ampère’s Law, Nonlinear Magnetostrictive
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Mechan i c a l  Damp i n g  and Lo s s e s

Damping and losses are important factors for determining the response in 
time-dependent and frequency domain studies, and sometimes also when computing 
eigenfrequencies. This section describes how to model damping and loss using 
different damping models. In this section:

In this section:

• About Damping

• Rayleigh Damping

• Loss Factor Damping

• Viscoelastic Damping

• Explicit Complex-Valued Damping

• Equivalence Between Loss Factor, Rayleigh, and Viscous Damping

• Piezoelectric Damping

• Adding Damping in the Modal Solver

Damping Sources

There are many sources of damping in a system. Some of them are:

• Dissipation in the material. This dissipation can be for example be proportional to 
the amplitude of the strain rate (viscous damping) or to the amplitude of the strain 
itself (hysteretic damping).

• Thermoelastic damping, which is a thermodynamic effect which is related not only 
to the state in a point, but also to the gradients of the temperature field.

• Damping caused by the surrounding medium, often air or water.

• Friction between joined parts.

• Components intended to supply damping like a dashpot in a car suspension.

It is often difficult to separate and quantify these effects, so damping modeling is one 
of the biggest challenges in structural dynamics.
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About Damping

Phenomenological damping models are typically invoked to model the intrinsic 
frictional damping present in most materials (material damping). These models are 
easiest to understand in the context of a system with a single degree of freedom. The 
following equation of motion describes the dynamics of such a system with viscous 
damping:

 (2-21)

In this equation u is the displacement of the degree of freedom, m is its mass, c is the 
damping parameter, and k is the stiffness of the system. The time (t) dependent forcing 
term is f(t). This equation is often written in the form:

 (2-22)

where   c2m0 and 0
2  km. In this case  is the damping ratio (  1 for 

critical damping) and 0 is the undamped resonant frequency of the system. In the 
literature it is more common to give values of  than c. The damping ratio  can also 
be readily related to many of the various measures of damping employed in different 
disciplines. These are summarized in Table 2-10.

TABLE 2-10:  RELATIONSHIPS BETWEEN MEASURES OF DAMPING

DAMPING 
PARAMETER

DEFINITION RELATION TO 
DAMPING RATIO

Damping ratio –

Logarithmic 
decrement

where t0 is a reference time and  is the period 
of vibration for a decaying, unforced degree of 
freedom.

md2u

dt2
---------- cdu

dt
------- ku+ + f t =

d2u

dt2
---------- 20

du
dt
------- 0

2u+ + f t 
m

---------=

 c ccritical=

d
u t0 

u t0 + 
---------------------- 
 ln=

d 2

 1« 
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In the frequency domain, the time dependence of the force and the displacement can 
be represented by introducing a complex force term and assuming a similar time 
dependence for the displacement. The equations

 and

are written where  is the angular frequency and the amplitude terms U and F can in 
general be complex (the arguments provide information on the relative phase of 
signals). Usually the real part is taken as implicit and is subsequently dropped. 
Equation 2-21 takes the following form in the frequency domain:

 (2-23)

where the time dependence has canceled out on both sides. Alternatively, this equation 
can be written as:

 (2-24)

There are three basic damping models available in the structural mechanics interfaces 
for explicit modeling of material damping — Rayleigh damping, viscous damping, 
and loss factor models based on introducing complex quantities into the equation 
system. There are also other phenomena which contribute to the damping. Some 
material models, such as viscoelasticity and plasticity are inherently dissipative. It is also 
possible to model damping in spring conditions.

Quality factor

where  is the bandwidth of the amplitude 
resonance measured at  of its peak.

Loss factor

where Qh is the energy lost per cycle and Wh is 
the maximum potential energy stored in the 
cycle. The variables Qh and Wh are available as 
solid.Qh and solid.Wh.

At the resonant 
frequency:

TABLE 2-10:  RELATIONSHIPS BETWEEN MEASURES OF DAMPING

DAMPING 
PARAMETER

DEFINITION RELATION TO 
DAMPING RATIO

Q  =

1 2

Q 1 2 

 1« 

 1
2
------

Qh
Wh
-------- 
 =

 2

 1« 

f t  Re Fejt = u t  Re Uejt =

2mU– jcU kU+ + F=

2U– 2j0U 0
2U+ + F

m
-----=
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Rayleigh Damping

A common method of modeling damping is Rayleigh damping, where two damping 
coefficients are specified. This type of damping is not directly related to any physical 
process, but must be seen as a way to take the total damping of a structure into 
account.

Rayleigh damping introduces damping in a form based on Equation 2-21. This means 
that the method can be applied generally in either the time or frequency domain. The 
parameter c in Equation 2-21 is defined as a fraction of the mass and the stiffness using 
two parameters, dM and dK, such that

 (2-25)

Substituting this relationship into Equation 2-21 and rearranging into the form of 
Equation 2-22 gives:

When there are many degrees of freedom m, k, and c become matrices and the 
technique can be generalized.

Rayleigh damping can therefore be identified as equivalent to the damping ratio at 
resonance of:

 (2-26)

Note that Equation 2-26 holds separately for each vibrational mode in the system at 
its resonant frequency. In the frequency domain it is possible to use frequency 
dependent values of dM and dK. For example, setting dM  0 and dK  2/0 
produces an equivalent viscous damping model at the resonant frequency 0.

While Rayleigh damping is numerically convenient, the model does not agree with 
experimental results for the frequency dependence of material damping over an 
extended range of frequencies. This is because the material damping forces behave 
more like frictional forces (which are frequency independent) than viscous damping 
forces (which increase linearly with frequency as implied by Equation 2-23). In the 
frequency domain it is possible to introduce loss factor damping, which has the desired 
property of frequency independence.

c dMm dKk+=

d2u

dt2
---------- dM dK0

2
+ du

dt
------- 0

2u+ + f t 
m

---------=

 1
2
---

dM
0

----------- dK0+ 
 =
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A complication with the Rayleigh damping model is to obtain good values for the 
damping parameters dM and dK. A more physical damping measure is the damping 
ratio, the ratio between actual and critical damping, often expressed as a percentage of 
the critical damping. Commonly used values of the damping ratio can be found in the 
literature.

Using Equation 2-26, this relationship at two frequencies, f1 and f2, with different 
damping ratio, 1 and 2, results in an equation system that can be solved for dM and 
dK:

The damping ratios are then

Using the same damping ratio, 1 = 2 = 0, does not result in a constant damping 
factor inside the interval f1  f  f2. It can be shown that the damping factor is lower 
inside the interval, as Figure 2-13 shows.

Figure 2-13: An example of Rayleigh damping.

1
4f1
------------ f1

1
4f2
------------ f2

dM

dK

1

2

=

dM 4f1f2
1f2 2f1–

f2
2 f1

2
–

---------------------------=

dK
2f2 1f1–

 f2
2 f1

2
– 

---------------------------=

D
am

pi
ng

 r
at

io

f

Rayleigh damping

Specified damping

f2f1

0

(f)
M E C H A N I C A L  D A M P I N G  A N D  L O S S E S  |  185



186 |  C H A P T E R
Since the coefficients dM and dK should not be negative, the damping ratios are 
constrained by the respective frequencies as

For many applications it is sufficient to leave dM as zero and to define damping only 
using the dK coefficient. Then, according to Equation 2-26, a damping which 
increases linearly with frequency is obtained. If the damping ratio f0 or loss factor 
f0 is known at a given frequency f0, the appropriate value for dK is:

Loss Factor Damping

Loss factor damping (sometimes referred to as material damping, structural damping, 
or hysteretic damping) can be applied in the frequency domain.

The loss factor is a measure of the inherent damping in a material when it is 
dynamically loaded. It is typically defined as the ratio of energy dissipated in unit 
volume per radian of oscillation to the maximum strain energy per unit volume.

In COMSOL Multiphysics the loss information appears as a multiplier to the elastic 
constitutive matrix Dc

For a nonlinear elastic material, this applies to the tangential stiffness.

The use of loss factor damping traditionally refers to a scalar-valued loss factor s. But 
there is no reason that s must be scalar. Because the loss factor is a value deduced from 
true complex-valued material data, it can be represented by a matrix of the same 
dimensions as the anisotropic stiffness matrix. Especially for orthotropic materials, 
there should be a set of loss factors of all normal and shear elasticity modulus 
components, and COMSOL allows all these options, so a more general expression is.

f1
f2
----

2
1
-----

f2
f1
---- 

dK  f0   2f0 = =

In order to visualize the damping ratio as a function of frequency, click 
Damping Ratio Preview ( ).

Dc 1 js+ D=

Dmn
c 1 js mn+ Dmn=
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For hyperelastic materials the loss information appears as a stress contribution to the 
second Piola–Kirchhoff stress, S:

Loss factor damping is available for frequency response analysis and damped 
eigenfrequency analysis in all interfaces.

Viscous Damping

You can add an explicit viscous damping to several material models. Viscous damping 
can be used both in time domain and frequency domain. In the viscous damping 
model, and extra contribution, proportional to the strain rate, is added to the stress 
tensor, as described in Viscous Damping.

You can specify the viscous damping for volumetric strains and shear strains 
independently.

Equivalence Between Loss Factor, Rayleigh, and Viscous Damping

In frequency domain, it is possible to use Rayleigh damping in order to specify an 
equivalent viscous damping. Set the stiffness damping parameter dK, to the loss 
factor, , divided by the excitation frequency:

The mass damping factor, dM, should be set to zero.

If, on the other hand, you would want to use a viscous damping, corresponding to a 
certain Rayleigh stiffness damping, the conversion to bulk and shear viscosity can be 
made using the expressions

where K and G are the bulk and shear moduli, respectively. Equivalently, you can 
transform between loss factor damping and viscous damping,

Sq js
Ws
E

----------=

dK


2f
--------- 


----= =

b KdK=

v GdK=
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Explicit Complex-Valued Damping

In frequency domain, it is possible to define damping by modeling the dissipative 
behavior of the material using complex-valued material properties. In COMSOL 
Multiphysics, you can enter the complex-valued data directly, using i or sqrt(-1) for 
the imaginary unit.

However, entering complex-valued data directly into the material parameters is 
incompatible with the built-in damping and viscoelasticity features.

Viscoelastic Damping

In some cases, damping is included implicitly in the material model. This is the case for 
a viscoelastic material, where damping operates on the shear components of stress and 
strain.

When viscoelasticity is modeled in the frequency domain, it will act as a loss factor 
damping. The complex modulus G*() is the frequency-domain representation of the 
stress relaxation function of viscoelastic material. It is defined as

where G' is the storage modulus, G'' is the loss modulus, and their ratio sG''G' is 
the loss factor. The term G' defines the amount of stored energy for the applied strain, 
whereas G'' defines the amount of energy dissipated as heat; G', G'', and s can all be 
frequency dependent.

Piezoelectric Damping

Piezoelectric losses are more complex and include coupling and electrical losses in 
addition to the material terms. For damping in piezoelectric materials, see Piezoelectric 
Losses.

For piezoelectric materials, dK is only used as a multiplier of the structural 
contribution to the stiffness matrix when building-up the damping matrix as given by 

b
K


--------=

v
G


--------=

G G jG+ 1 js+ G= =
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Equation 2-25. In the frequency domain studies, you can use the coupling and 
dielectric loss factors equal to dK to effectively achieve the Rayleigh damping 
involving the whole stiffness matrix.

Adding Damping in the Modal Solver

In COMSOL it is possible to solve a problem for a set of modes in the absence of 
damping, and then to use those solutions as a modal basis to solve a problem in the 
time (using a time domain modal study) or frequency domain (using a Frequency 
Domain, Modal study). In both of these cases it is possible to manually assign a 
damping ratio to the computed modes in the time or frequency domain study. To do 
that, right click on the study and choose Show Default Solver, then expand the solver 
sequence until the Modal Solver node is visible. In the Settings window for that node, 
add damping ratios for each of the modes.

For more details, see the section Modal Solver in the COMSOL 
Multiphysics Reference Manual.
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Mode l i n g  Geome t r i c  Non l i n e a r i t y

This section discusses how to model problems where displacements or strains are of a 
size where the deformation of the structure has to be taken into account when 
formulating the equations. Examples of the type of problems where this feature is 
useful include:

• Thin structures, where the deflection is of the same order of magnitude as the 
thickness.

• Where the structure exhibits large rotations. A rigid body rotation of only a few 
degrees causes significant strains and stresses in a material where a linear strain 
representation is used.

• Where the strains are larger than a few percent.

• Contact problems.

• Where a prestress must be taken into account for computing the dynamic response 
of a structure.

• Buckling problems.

• Where a deformed mesh is used.

• Fluid-structure interaction problems.

Geometric Nonlinearity, Frames, and the ALE Method

Consider the bending of a beam in the general case of a large deformation (see 
Figure 2-14). In this case the deformation of the beam introduces an effect known as 
geometric nonlinearity into the equations of solid mechanics.

Figure 2-14 shows that as the beam deforms, the shape, orientation, and position of 
the element at its tip changes significantly. Each edge of the infinitesimal cube 
undergoes both a change in length and a rotation that depends on position. 
Additionally, the three edges of the cube are no longer orthogonal in the deformed 

• Contact Modeling

• Fluid-Structure Interaction

• The more formal theory is described in Analysis of Deformation
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configuration (although typically for practical strains the effect of the 
nonorthogonality can be neglected in comparison to the rotation).

From a simulation perspective it is possible to solve the equations of solid mechanics 
on either a fixed domain (this is often called a Total Lagrangian formulation), or on 
a domain that changes continuously with the deformation. The latter approach is often 
called an Updated Lagrangian formulation. These two approaches also stand in 
contrast to the Eulerian formulation which is often used for fluid mechanics. In an 
Eulerian formulation the flow through a domain fixed in space is considered, while in 
the Lagrangian formulation a fixed volume of material is considered.

Solid mechanics in COMSOL Multiphysics is formulated on the material frame. This 
is achieved by defining a displacement field for every point in the solid, usually with 
components u, v, and w. At a given coordinate (X, Y, Z) in the reference configuration 
(on the left of Figure 2-14) the value of u describes the displacement of the point 
relative to its original position. The displacement is considered as a function of the 
material coordinates (X, Y, Z), but it is not explicitly a function of the spatial 
coordinates (x, y, z). The spatial coordinates give the current location in space of a 
point in the deformed solid. As a consequence, it is only possible to compute 
derivatives with respect to the material coordinates.

Taking derivatives of the displacement with respect to X, Y, and Z enables the 
definition of a strain tensor. There are possible representations of the deformation. Any 
reasonable representation must however be able to represent a rigid rotation of an 
unstrained body without producing any strain. The engineering strain fails here, thus 
it cannot be used for general geometrically nonlinear cases. One common choice for 
representing large strains is the Green–Lagrange strain. It contains derivatives of the 
displacements with respect to the original configuration. The values therefore 
represent strains in material directions. This allows a physical interpretation, but it 
must be realized that even for a uniaxial case, the Green–Lagrange strain is strongly 
nonlinear with respect to the displacement. If an object is stretched to twice its original 

In COMSOL Multiphysics, the concepts of a material frame and a 
spatial frame are used. Equations formulated in the material frame will 
give a Total Lagrangian formulation, while equations formulated in the 
spatial frame will give an Eulerian formulation.

See Frames and Coordinate Systems in the theory chapter for more 
details.
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length, the Green–Lagrange strain is 1.5 in the stretching direction. If the object is 
compressed to half its length, the strain would read -0.375.

An even more fundamental quantity is the deformation gradient, which contains the 
derivatives of the deformed coordinates with respect to the original coordinates:

The deformation gradient contains all information about the local deformation in the 
solid, and can be used to form many other strain quantities. As an example, the Green–
Lagrange strain is

An element at a point (X, Y, Z) specified in the material frame moves with a single 
piece of material throughout a solid mechanics simulation. It is often convenient to 
define material properties in the material frame as these properties move and rotate 
naturally together with the volume element at the point at which they are defined as 
the simulation progresses. In Figure 2-14 this point is illustrated by the small cube 
highlighted at the end of the beam, which is stretched, translated, and rotated as the 
beam deforms. The three mutually perpendicular faces of the cube in the Lagrange 

F x
X

------- u I+= =

 1
2
--- FTF I– =
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frame are no longer perpendicular in the deformed (spatial) frame. The deformed 
frame coordinates in this frame are denoted (x, y, z) in COMSOL.

Figure 2-14: An example of the deformation of a beam showing the undeformed state 
(left) and the deformed state (right) of the beam itself with an element near its tip 
highlighted (top), of the element (center), and of lines parallel to the x-axis in the 
undeformed state (bottom).

F R A M E  C O N T R O L  C O N F L I C T S

Under geometric nonlinearity, a Solid Mechanics interface (or a similar structural 
mechanics interface such as Multibody Dynamics) will assume control over the spatial 
frame in the domains where it is active. However, the definition of the spatial frame 
must be unique, and there may be conflicts. Some examples are:

• A Solid Mechanics interface and a moving mesh feature (for example, Deforming 

Domain or Rotating Domain) have a common selection. In this case, the selection in 

It is important to note that, as the solid deforms, the Lagrangian frame 
becomes a nonorthogonal curvilinear coordinate system (see the lower 
part of Figure 2-14 to see the deformation of the X-axis). Particular care 
is therefore required when defining physics in this coordinate system.
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the Solid Mechanics interface will be marked as “not applicable”. Thus, it is not 
possible to solve a structural mechanics problem on such a domain.

• There are more than one frame-controlling physics interfaces active on the same 
domain.

When two physics interfaces are competing for frame control, you will get the error 
message “Multiple moving frame specifications on the same selection” when trying to 
run the study. To identify the problem, go to the settings for the study step, and select 
Modify model configuration for study step. There, you will get an overview of the frame 
control in the model. Note that it is quite possible that several features control the 
spatial frame, as long as it is on different geometric selections.

When you select a physics interface in the tree view, you can click the Control Frame 

Deformation button ( ) to toggle whether that interface should control the spatial 
frame or not.
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For example, in the spatial frame it is easy to define forces per unit area (known as 
tractions) that act within the solid and to define a stress tensor that represents all of 
these forces that act on a volume element. Such forces could be physically measured, 
for example, using an implanted piezoresistor. The stress tensor in the spatial frame is 
called the Cauchy or true stress tensor (in COMSOL Multiphysics this is referred to as 
the spatial stress tensor). To construct the stress tensor in the Lagrangian frame a 
tensor transformation must be performed on the Cauchy stress. This produces the 
second Piola–Kirchhoff (or material) stress, which can be used with the material strain 
to solve the solid mechanics problem in the (fixed) material frame. This is how the 
Solid Mechanics interface works when geometric nonlinearities are enabled.

For the Cauchy stress tensor, both the force components and the normal to the area 
on which the force is acting have fixed directions in space. This means that if a stressed 
body is subjected to a pure rotation, the actual values of the stress components will 
change. What was originally a uniaxial stress state might be transformed into a full 
tensor with both normal and shear stress components. In many cases, this is neither 
what you want to use nor what you would expect.

Consider for example an orthotropic material with fibers having a certain orientation. 
It is much more plausible that you want to see the stress in the fiber direction, even if 
the component is rotated. The Second Piola–Kirchhoff stress has this property as it is 
defined along the material directions. In the figure below, an originally straight 
cantilever beam has been subjected to bending by a pure moment at the tip. The 
xx-component of the Cauchy stress and Second Piola–Kirchhoff stress are shown. 
Since the stress is physically directed along the beam, the xx-component of the Cauchy 
stress (which is related to the global x direction) decreases with the deflection. The 
Second Piola–Kirchhoff stress, however, has the same through-thickness distribution 
all along the beam, even in the deformed configuration.
M O D E L I N G  G E O M E T R I C  N O N L I N E A R I T Y  |  195



196 |  C H A P T E R
Figure 2-15: xx-components of the Cauchy stress tensor (top) and Second-Piola–Kirchhoff 
stress tensor (below) for an initially straight beam

Another stress measure available in COMSOL Multiphysics is the First Piola–Kirchhoff 
stress. It is a multiaxial generalization of the nominal (or engineering) stress. The stress 
is defined as the force in the current configuration acting on the original area. The First 
Piola–Kirchhoff stress is an unsymmetric tensor, and is for that reason less attractive to 
work with. Sometimes you may also encounter the Kirchhoff stress, although it is not 
used in COMSOL Multiphysics. The Kirchhoff stress is just the Cauchy stress scaled 
by the volume change. It has little physical significance, but can be convenient in some 
mathematical and numerical operations.

Unfortunately, even without a rotation, the actual values of all these stress 
representations are not the same. All of them scale differently with respect to local 
volume changes and stretches. This is illustrated in the graph below. The 
xx-component of four different stress measures are plotted at the fixed end of the beam 
from the example above. At this point, the beam axis coincides with the x-axis, so the 
directions of all stress tensor components coincide. In the center of the beam, where 
strains, and thereby volume changes are small, all values approach each other. For a 
case with large rotation but small strains, the different stress representations can be 
seen as pure rotations of the same stress tensor.
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Figure 2-16: Stress distribution across the beam at the constrained end.

If you want to compute the resulting force or moment on a certain boundary based on 
the stresses, there are in practice only two possible choices: Either integrate the Cauchy 
stress over the deformed boundary, or integrate the First Piola–Kirchhoff stress over 
the same boundary in the undeformed configuration. In COMSOL Multiphysics this 
corresponds to selecting either Spatial frame or Material frame in the settings for the 
integration operator.

A L E  M E T H O D

In the case of solid mechanics, the material and spatial frames are associated directly 
with the Lagrangian and Eulerian frames, respectively. In a more general case (for 
example, when tracking the deformation of a fluid, such as a volume of air surrounding 
a moving structure) tying the Lagrangian frame to the material frame becomes less 
desirable. Fluid must be able to flow both into and out of the computational domain, 
without taking the mesh with it. The arbitrary Lagrangian-Eulerian (ALE) method 
allows the material frame to be defined with a more general mapping to the spatial or 
Eulerian frame. In COMSOL Multiphysics, a separate equation is solved to produce 
this mapping — defined by the mesh smoothing method (Laplacian, Winslow, 
hyperelastic, or Yeoh) with boundary conditions that determine the limits of 
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deformation (these are usually determined by the physics of the system, whilst the 
domain level equations are typically being defined for numerical convenience). The 
ALE method offers significant advantages since the physical equations describing the 
system can be solved in a moving domain.

Geometric Nonlinearity for the Solid Mechanics Interface

For the Solid Mechanics interface, you enable a geometrically nonlinear analysis for a 
certain study step by selecting the Include geometric nonlinearity check box in the Study 

Settings section of a study step.

If any active feature in the model requires the analysis to be geometrically nonlinear, 
the Include geometric nonlinearity check box is selected automatically, and it cannot be 
cleared. The following physics features force this behavior:

• Contact, because the deformation between the contacting boundaries must be part 
of the solution.

• Moving mesh (when at least one deforming domain is active).

• Large strain plasticity.

• Hyperelastic materials, which are always formulated for large strains.

Usually you would also want to use geometric nonlinearity when a Moving Mesh 
interface is present, but this setting is not forced by the program.

When you select a geometrically nonlinear study step, the behavior of several features 
differs from that in a geometrically linear case:

• There is an important difference between using uppercase (X, Y, Z, R) and 
lowercase (x, y, z, r) coordinates in expressions. The lowercase coordinates 
represent the deformed position, and this introduces a dependency on the solution.

• Many features, such as coupling operators, can be specified as operating either in the 
material (X, Y, Z) or the spatial (x, y, z) frame. This setting does not make a 
difference unless a geometrically nonlinear analysis is performed. In most cases you 
would want to do the operation in the material frame.

Deformed Geometry and Moving Mesh in the COMSOL Multiphysics 
Reference Manual
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• The strain representation is changed from using engineering strains to Green–
Lagrange strains, unless the Geometrically linear formulation check box is selected in 
the Geometric Nonlinearity section of a certain material.

• Where Green–Lagrange strains are used, Second Piola–Kirchhoff stresses are also 
used. This means that material data must be given in terms of these quantities. This 
distinction is important only when the strains actually are large.

• Pressure loads are interpreted as follower loads, so that the direction of the load as 
well as the loaded area are deformation dependent.

• Rigid connectors take finite rotations into account.

Geometric Nonlinearity for the Shell, Plate, Membrane, Beam and 
Truss Interfaces

For the Shell, Plate, Membrane, Beam, and Truss interfaces, a geometrically nonlinear 
analysis is enabled in the same way described above. For the Membrane interface, 
geometric nonlinearity must almost always be used, since it is nonlinear effects which 
supply the stiffness in the transverse direction.

The geometric nonlinearity in the Beam interface is limited to large rotations and 
displacements, but small strains.

The effect of using geometric nonlinearity in these interfaces is limited to the stress and 
strain representation as the other effects described in Geometric Nonlinearity for the 
Solid Mechanics Interface are not relevant.

Solving Geometrically Nonlinear Problems

Depending on the geometrically nonlinear effects that appear in your model, you may 
have to use different solution strategies. Some problems in this class are strongly 
nonlinear, while others show only a weak deviation from linearity. Some guidelines are:

• If the problem has a path dependent solution, then it must be solved in an 
incremental way in order to give a correct solution. Problems including for example 
plasticity or friction belong to this class. If you do the analysis in time domain, then 
the solution is inherently incremental. If the analysis is stationary, invoke the 

Studies and Solvers in the COMSOL Multiphysics Reference Manual
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parametric continuation solver by adding an Auxiliary Sweep, and ramp up some 
loading parameter. In either case, make sure that the step size is not too large.

• Problem that have a unique solution, like an elastic model subjected to large 
rotations or strains can be solved in a single static load step without loss of accuracy. 
It is however possible that such an approach will not converge, in which case a 
parametric continuation solver must be used.

• In problems involving large rotations, the default settings of the nonlinear solver 
will sometimes give a too conservative solution strategy. You can often decrease the 
solution time significantly by modifying the settings under Method and Termination 
in the settings for the Fully Coupled or Segregated Step node in the solver sequence. 
Set Nonlinear method to Constant (Newton) and use a rather high Damping factor. In 
most cases the value 1 will work.

• If you model a situation which to a large extent is a rigid rotation, it is often 
necessary to use tighter tolerances than usual in order to avoid spurious stresses. 
Since the strains are computed from the differences of the displacements in an 
element, even a small relative error in the displacements (which are large) can cause 
significant strains. This will be visible in a case where the actual stresses are small.

Prestressed Structures

You can analyze eigenfrequency, frequency domain, or time-dependent problems 
where the dynamic properties of the structure are affected by a preload, such as a 
tensioned string.

Usually, a study of a prestressed problem includes using two study steps. The first step 
is a Stationary step in which the static preload is applied. The preload step can be 
computed with or without taking geometric nonlinearity into account. In the second 
study step, where you compute the eigenfrequency or the frequency response, it is 
necessary to take geometric nonlinearity into account. Even if the displacements and 
strains are small, this is what gives the prestress contribution to the equations.

There are three predefined study sequences for prestressed dynamic analysis:

• Eigenfrequency, Prestressed

• Frequency Domain, Prestressed

• Frequency Domain, Prestressed, Modal

The prestressed study types assume that the loading causes small perturbations around 
the prestressed state.
 2 :  S T R U C T U R A L  M E C H A N I C S  M O D E L I N G



In a general nonlinear analysis, like a Stationary or Time Dependent study step, the full 
combined effect of the prestress and other loads will automatically be included.

The same principles apply also to a linear buckling analysis, except that both study steps 
should be geometrically linear. The nonlinear contribution is included in the 
formulation of the buckling eigenvalue itself.

F O L L O W E R  L O A D S

Loads that change orientation with deformation, such as a pressure, actually contribute 
not only to the load but also to the stiffness. This is a physical effect and not just a 
numerical artifact. Whether such loads are included or not in an Eigenfrequency study 
step will affect the computed eigenfrequencies. If you for some reason do not want this 
effect, you must suppress the load in the Physics and Variables section of the 
Eigenfrequency node.

C O N T A C T  A N D  P R E S T R E S S E D  A N A L Y S I S

If a contact is included in the prestress load case, you can perform a subsequent 
eigenfrequency or frequency-domain analysis in which the linearization will be made 
around the computed contact state. The connection between the two boundaries is 
elastic, using the penalty factor as stiffness, both for the penalty method and the 
augmented Lagrangian method. If the augmented Lagrangian method is used for the 
contact modeling, then the penalty factor must be constant and not dependent on the 
iteration number.

If you use a local coordinate system for describing a load, you must, in 
case of geometric nonlinearity, pay attention to whether that coordinate 
system has constant axis orientations or not. As an example, the default 
boundary system has Frame set to Deformed Configuration, so that a load 
represented in that system will behave as a follower load. Change to 
Reference Configuration if the load should act in fixed directions.

In more general terms, any feature in which there is a dependency on the 
choice of frame (material or spatial) can potentially affect the outcome of 
a prestressed analysis.
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The contact state is considered as fixed, so there is no harmonic perturbation in contact 
quantities, such as the contact pressure.

I N E L A S T I C  S T R E S S E S  A N D  S T R A I N S

When inelastic stresses and strains are part of the problem description, you need to 
make some extra considerations. Such contributions are formally part of the 
constitutive model but generate load vector contributions.

The gap distance in a contact analysis is computed from the coordinates 
of the contacting boundaries in the spatial frame. The spatial frame is 
defined by the displacements in the preload step and is not affected by the 
displacements in a subsequent perturbation step.

There are three Preset study types which can be used to set up these two 
study steps: Eigenfrequency, Prestressed; Frequency Domain, Prestressed; 
and Linear Buckling.

If you want to explicitly prescribe the stress field for a prestressed analysis 
rather than solving for it, you should not use the two study step 
procedure. In such a case, prescribe the stress field using an Initial Stress 

and Strain, External Stress, or External Strain node. Then add a separate 
Eigenfrequency or Frequency Domain study and select Include Geometric 

Nonlinearity in the settings for the study step.

Eigenfrequency, Prestressed, Frequency Domain, Prestressed, and Linear 
Buckling in the COMSOL Multiphysics Reference Manual

• For an example of a general prestressed eigenfrequency analysis see 
Bracket — Eigenfrequency Analysis: Application Library path 
Structural_Mechanics_Module/Tutorials/bracket_eigenfrequency.

• For an example of an analysis where the stress state is explicitly 
prescribed, see Vibrating Membrane: Application Library path 
Structural_Mechanics_Module/Verification_Examples/

vibrating_membrane.
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Geometric Nonlinearity for the Piezoelectric Material

P I E Z O E L E C T R I C  M A T E R I A L S  W I T H  L A R G E  D E F O R M A T I O N S

The linear piezoelectric equations as presented in About Piezoelectric Materials with 
engineering strains are valid if the model undergoes only relatively small deformations. 
As soon as the model contains larger displacements or rotations, these equations 
produce spurious strains that result in an incorrect solution. To overcome this 
problem, so-called large deformation piezoelectric equations are required.

The Piezoelectric Material implements the large deformation piezoelectric equations 
according to Yang (Ref. 1). Key items of this formulation are:

• The strains are calculated as the Green–Lagrange strains, ij:

 (2-27)

Green–Lagrange strains are defined with reference to an undeformed geometry. 
Hence, they represent a Lagrangian description. In a small-strain, large rotational 
analysis, the Green–Lagrange strain corresponds to the engineering strain in 
directions that follow the deformed body.

• Electrical field variables are calculated in the material directions, and the electric 
displacement relation is replaced by an expression that produce electric polarization 
in the material orientation of the solid.

• In the variational formulation, the electrical energy is split into two parts: The 
polarization energy within the solid and the electric energy of free space occupied 
by the deformed solid.

The first two items above result in another set of constitutive equations for large 
deformation piezoelectricity:

where S is the second Piola–Kirchhoff stress;  is the Green–Lagrange strain, Em and 
Pm are the electric field and electric polarization in the material orientation; I is the 
identity matrix; and cE, e, and rS are the piezoelectric material constants. The 
expression within parentheses equals the dielectric susceptibility of the solid:

ij
1
2
---

ui
Xj

--------
uj
Xi

--------
uk
Xi

---------
uk
Xj

---------

k
+ +

 
 
 

=

S cE eTEm–=

Pm e 0 rS I– Em+=

 rS I–=
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The electric displacement field in the material orientation results from the following 
relation

where C is the right Cauchy–Green tensor

Fields in the global orientation result from the following transformation rules:

 (2-28)

where F is the deformation gradient; J is the determinant of F; and v and V are the 
volume charge density in spatial and material coordinates, respectively. The 
deformation gradient is defined as the gradient of the present position of a material 
point x  X + u:

Finally, one can rewrite the constitutive equations as

D E C O U P L E D  M A T E R I A L S  W I T H  L A R G E  D E F O R M A T I O N S

The large deformation formulation described in the previous section applies directly to 
materials not being piezoelectric if the coupling term is set to zero: e  0. In that case, 
the structural part corresponds to the large deformation formulation described for the 
solid mechanics interfaces.

The electrical part separates into two different cases: For solid domains, the electric 
energy consists of polarization energy within the solid and the electric energy of free 
space occupied by the deformed solid — the same as for the piezoelectric materials. 
For nonsolid domains this separation does not occur, and the electric displacement in 

Dm Pm 0JC 1– Em+=

C FTF=

E F T– Em=
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D J 1– FDm=

v VJ 1–
=
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-------=
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 2 :  S T R U C T U R A L  M E C H A N I C S  M O D E L I N G



these domains directly results from the electric field — the electric displacement 
relation:

L A R G E  D E F O R M A T I O N  A N D  D E F O R M E D  M E S H

The Piezoelectricity Interface, Solid can be coupled with the Moving Mesh (ALE) 
interface in a way so that the electrical degrees of freedom are solved in an ALE frame. 
This feature is intended to be used in applications where a model contains nonsolid 
domains, such as modeling of electrostatically actuated structures. This functionality is 
not required for modeling of piezoelectric or other solid materials.

The use of ALE has impacts on the formulation of the electrical large deformation 
equations:

• The first impact is that with ALE, the gradient of the electric potential directly 
results in the electric field in the global orientation, and the material electric field 
results after transformation.

• The most visible impact is on the boundary conditions. With ALE, any surface 
charge density or electric displacement is defined per the present deformed 
boundary area, whereas for the case without ALE, they are defined per the 
undeformed reference area.

References

1. J. Yang, An Introduction to the Theory of Piezoelectricity, Springer Science and 
Business Media, N.Y., 2005.

2. A.F. Bower, Applied Mechanics of Solids, CRC Press, Boca Raton, FL (http://
www.solidmechanics.org), 2010.
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Con t a c t  Mode l i n g

Overview

Situations where objects come into contact with each other occur frequently in 
mechanical simulations. Setting up and solving such contact problems can be a 
challenging task, and this section contains information about important aspects of 
creating models involving contact.

In a contact analysis, you solve for the contact state and the contact forces. The most 
fundamental quantity in a contact analysis is the distance between the objects which 
may come into contact, the gap. If the gap is positive then there is no interaction. The 
task of the contact algorithm is to ensure that the gap never becomes negative; that is, 
to avoid overclosure. In order to accomplish this task, contact forces must be 
introduced.

For normal contact, the state only consists of being in contact or not, and the force 
variable is the contact pressure in the normal direction. With friction included, there 
are two possible states for the relative tangential displacement when in contact: 
sticking or sliding. The tangential force vector is added as force variable.

The contact analysis functionality in COMSOL Multiphysics also includes the 
possibility to prescribe adhesion and decohesion between the contacting objects, and 
to model removal of material by wear when the objects are sliding relative to each 
other.

In this section:

• Setting Up a Contact Problem

• Contact Pairs

• Meshing for Contact Analysis

• Settings for Contact Nodes

• Quasistatic Contact Analysis

• Dynamic Contact Analysis

• Multiphysics Contact Analysis

• Special Types of Contact Problems

• Fallback Conditions to Contact 
Regions

• Solver Settings for Contact Analysis

• Monitoring the Solution

• Dependent Variables in Contact 
Analysis

• Important Contact Variables
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Setting Up a Contact Problem

Mechanical contact can be modeled between boundaries in the Solid Mechanics, 
Multibody Dynamics, Shell, Layered Shell, and Membrane interfaces. You can model 
contact not only within a single physics interface, but also between two physics 
interfaces, or even between a physics interface and any boundary having a mesh.

To model a mechanical contact problem, you must do the following fundamental 
steps:

• In the finalization step of the geometry sequence, you should normally have Action 
set to Form an assembly. If Form a union is used, then the contacting boundaries must 
be geometrically separated in the initial configuration.

• Add Contact Pair nodes under Definitions. A contact pair consists of two sets of 
boundaries, which are called the source and destination boundaries. Contact pairs 
can also be added automatically, based on boundary adjacency when the Form an 

assembly action is used. The geometric gap distance is a variable set up by the 
contact pair, which also define operators for mapping variables or expressions 
between the selected boundaries.

• Use the default Contact node or add new Contact nodes in the physics interface. In 
the Contact node, you select the contact pairs to be used, and provide the settings 
for the physical and numerical properties of the contact model.

• If relevant, add Friction, Slip Velocity, Adhesion, Decohesion, or Wear subnodes to 
Contact.
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• Select a suitable study type. You can analyze contact using the following types of 
study steps:

- Stationary; commonly using an auxiliary sweep.

- Bolt Pretension

- Time Dependent

- Any type of prestressed analysis. In this case, the full contact problem is solved in 
the preload step, and in the subsequent perturbation step the contact state is 
considered as fixed.

In a multiphysics analysis, a contact problem can also incorporate for example changes 
in the heat flux or electric current through the contacting boundaries. You will then 
also need to add corresponding features in the other participating interfaces, like a 
Thermal Contact node in the Heat Transfer in Solids interface. The contact state and 
contact pressure used by other physics interfaces are always supplied by the structural 
mechanics interface.

The fact that you add a Contact node to your model will automatically make all study 
steps geometrically nonlinear. For the default Contact node, this requirement can be 
removed by selecting Disconnect pair.

• Documentation of the Contact, Friction, Slip Velocity, Adhesion, 
Decohesion, and Wear nodes.

• Contact Analysis Theory.

• Identity and Contact Pairs in the COMSOL Multiphysics Reference 
Manual.

Because of the multiphysics capabilities, the setup of a contact problem is 
split into two parts. The definition of the contact pair is made under 
Definitions, and can be shared between several physics interfaces. This part 
of the contact problem defines the geometric properties of the contact, 
such as search and mapping operations between the selected boundaries. 
The physics related definitions of the contact properties are then made in 
the respective physics interfaces.
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I N C L U D I N G  F R I C T I O N

In real life, there is always some friction between contacting objects, but this is 
sometimes ignored when setting up the mechanical contact problem. There are several 
reasons to do this simplification:

• In many cases, only the normal forces are significant for the general force 
distribution in the structure, while the frictional forces only cause minor local 
effects.

• The values of the friction coefficients are difficult to obtain, and unless the structure 
is assembled under well controlled conditions, the magnitude of the friction can 
vary a lot. If there is a large degree in uncertainty in the input data, it can be argued 
that the inclusion of friction does not add much to the quality of the results.

• Adding friction to a contact problem will often increase the computation time 
significantly, or even cause convergence problems.

There are a number of situations when friction modeling cannot be avoided. Some of 
them are:

• When a significant portion of the load is carried by shear tractions acting on the 
contact boundaries.

• When a tangential force is necessary to maintain stability and to avoid rigid body 
motions. In many cases, it is however possible to replace the friction by a suitable 
boundary condition instead, as long as there are no resultant forces being resisted 
by such a constraint.

• When modeling wear.

• When the frictional dissipation is an important component of a dynamics problem, 
or when it is needed as a heat source in a thermal analysis.

In some cases, such as when a brake pad slides along a brake disc, the size and 
orientation of the slip velocity is known. You can then employ a simplified form of 
friction modeling by assuming the tangential contact to always be in a slip state, which 
simplifies the computation of the friction forces. This is done using the Slip Velocity 
node. This is particularly useful for wear modeling.

I N C L U D I N G  A D H E S I O N  A N D  D E C O H E S I O N

You can also specify that the contacting boundaries stick to each other, so that they will 
not separate or slide. The onset of adhesion, when the boundaries become 
permanently attached to each other, can be based on several criteria:

• When a certain contact pressure is exceeded.
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• When the gap distance between the contact boundaries is smaller than a certain 
value.

• When a user specified logical expression is fulfilled. This can for example be used if 
an adhesive cures when a certain temperature is exceeded.

• From the start of the analysis. This case is particularly useful if you are interested in 
modeling the subsequent tearing of a thin glue layer by decohesion.

If adhesion is active between the contact boundaries, it is possible to break the bond 
by adding a decohesion model. You can choose between several different decohesion 
models.

Adhesion and friction can be combined, but during the time that two boundaries are 
bonded to each other through adhesion, any settings for friction are ignored.

I N C L U D I N G  W E A R

It is possible to model adhesive or abrasive wear of the material when the contacting 
boundaries are sliding along each other. The removal of material from the domain 
adjacent to the contact boundary can be modeled using three, fundamentally different, 
approaches.

For the Solid Mechanics and the Multibody Dynamics interfaces, the most general 
approach relies on the deformed geometry concept, where material is actually removed 
by using an adaptive mesh technique. In the second, simplified, approach wear is 
incorporated as an offset in the contact condition. This approach is computationally 
less expensive, and is suitable as long as only small amounts of material are removed, 
and wear does not change the orientation of the normal to the boundary significantly. 
In the Shell and Membrane interfaces the structural domain is represented by only a 
meshed surface. Therefore, a different, more suitable approach is used, in which the 
thickness variable and the midsurface offset to the meshed boundary are modified.

Computing the amount of wear involves solving a rate equation, hence, it is only 
possible to compute wear in time-dependent studies. The wear rate is typically a 
function of the contact pressure and the relative slip velocity between the contacting 
boundaries.

The Wear subnode is not available in the Layered Shell interface.
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S E L E C T I N G  T H E  C O N T A C T  M E T H O D

In COMSOL Multiphysics, there are three classes of methods available for solving 
contact problems: the penalty method, the augmented Lagrangian method, and the 
Nitsche method. For all methods, the contact pair is asymmetric, that is, the 
destination contact boundary is constrained not to penetrate the source boundary, but 
not vice versa. However, it is possible to set up a symmetric formulation for the contact 
problem by selecting the same boundaries as source and destination. 

Penalty Method
The default penalty method is rather simple and robust method to introduce the 
contact conditions. Roughly speaking, it is based on inserting a stiff distributed spring, 
active only in compression, between the contacting boundaries. In addition to the 
robustness, it has the advantage that no special solver is required, which makes it easier 
to set up multiphysics problems and time-dependent studies. However, the penalty 
method only enforces the contact conditions approximately. The contact forces 
computed are thus less accurate than when using, for example, the augmented 
Lagrangian method, and there is always some overclosure between the contacting 
surfaces. For stick friction, there is also an ‘elastic’ deformation due to the penalization 
of the constraint.

When using the penalty method, there is always a tradeoff between accuracy and 
stability. While a large penalty factor will reduce nonphysical overclosures, the problem 
may become ill-conditioned and unstable if it is too large. It might therefore be 
beneficial to accept some penetration between the contacting objects. Note, however, 
that if the penalty factor is too small, the contact condition may be violated.

Augmented Lagrangian Method
The augmented Lagrangian method provides better accuracy, but at a higher 
computational cost, and is often less stable from a convergence point of view. All 
contact conditions are enforced in a weak or integral sense, and thus evaluated in the 
integration points on the destination boundary. For normal contact, it is thus possible 
for a node to have a small penetration into the source boundary, even for a well 
converged solution. Both, the contact pressure and the friction forces are added as 
extra degrees of freedom to enforce the contact constraints.

When using the augmented Lagrangian method, it is possible to choose between a 
segregated and a coupled solution method. The segregated solution method sets up 
special type of segregated solver sequence, where the extra degrees of freedom related 
to contact are updated in a separate segregated solver step. As its name implies, there 
is no such need when using the coupled solution method, and you can more freely set 
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up the solver sequence. This less restrictive solver requirement can be particularly 
useful for multiphysics problems where the penalty method does not provide sufficient 
accuracy.

Nitsche Method
The Nitsche method for contact is an extension of the general method suggested by 
J. Nitsche in 1971 to weakly impose Dirichlet conditions. Conceptually, it can be 
viewed as an enhancement of the penalty method where the surface traction of the 
adjacent domains is used to improve the accuracy of the contact condition. Also, as for 
the penalty method, it has the advantage that no special solver is required, which makes 
it easier to set up multiphysics problems and time-dependent studies.

The Nitsche method is intended as an alternative to the augmented Lagrangian 
method for problems where the penalty method lacks sufficient accuracy. Relevant 
examples where this might be the case includes:

• Large deformation problems with hyperelasticity

• Self-contact

• Problems where the structural stiffness of the global system is of importance

For the first two problems in particular, the accuracy and stability can be further 
improved by increasing the quadrature order for the contact equations, see also 
Quadrature Settings. Hence, the Nitsche method uses a higher quadrature order by 
default than the other contact methods.

COMSOL Multiphysics supports three different formulations of the Nitsche method:

• Symmetric

• Skew-symmetric

• Nonsymmetric

The default nonsymmetric formulation is recommended for the majority of cases and 
provides a good tradeoff between performance and stability. In cases where the default 
formulation fails, the skew-symmetric formulation can be an alternative, but it includes 
additional equations that are expensive to evaluate that can increase the solution time.

The Nitsche method is available in the Solid Mechanics and Multibody 
Dynamics interfaces.
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Dynamic Methods
Both the penalty and the augmented Lagrangian methods are additionally available in 
a specialized formulation intended for dynamic contact problems. Both of these are 
based on a viscous formulation that for the normal contact constrains the rate of the 
gap to be zero, rather than the gap. Since the formulations are viscous, the duration of 
the contact should be small, otherwise the overclosure will eventually grow and violate 
the nonpenetration condition. This is especially the case for the dynamic penalty 
method, where the gap rate is only approximately zero.

C O N T A C T  D E T E C T I O N

The contact search is made only towards one side of the source and destination 
boundaries, determined by the positive direction of the contact normal of the selected 
boundary. For contact to be detected, this means that the source and destination 
contact normals must point towards each other. Generally, the contact normal 
coincides with the geometry normal that is determined by the direction of the 
boundary. However, there are situations where this is not the case, or where the 
Contact node can control the sign of the contact normal. Some common situations are 
summarized in the following:

• If the contact boundary is on the exterior of a domain, then the geometry normal 
always point outwards from the domain. This is the most common case, and then 
no other considerations are needed.

• In some cases, like fluid-structure interaction, there may be a domain with a moving 
mesh between the two contacting objects. The source and destination boundaries 
will then, in the geometrical sense, be interior boundaries. In this case, the physics 
interface (Solid Mechanics or Multibody Dynamics) defines a normal vector which 
is pointing outward from the boundaries that are external to the physics interface. 
Thus, this case is also handled automatically.

• When a boundary without an adjacent domain is selected, you need to be careful so 
that the normal is pointing in the intended direction.

• When using the Shell, Layered Shell or Membrane interfaces, contact can potentially 
occur on both sides of the boundary. In a single Contact node, you can only model 
contact on one side. In the Contact Surface section, you can select whether the 
contact should occur on the top side or bottom side. The ‘top’ and ‘bottom’ sides 
are defined by the orientation of the physics interface normal, which may differ from 
the geometry normal. In these interfaces, the orientation of the physics normal is 
controlled by the Boundary System that is attached to each boundary through the 
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material models. The normal direction can be reversed using the settings in the 
Boundary System node.

Visualizing the Orientation of Boundaries
In 2D, a boundary is represented by a line. If you follow the line from its start point 
to its endpoint, the positive normal points to the left. The line orientations can be 
visualized by selecting the Show edge direction arrows check box in the appropriate View 
node under Definitions.

In 3D, the rules for the orientation of a boundary are more complicated. In general, 
you have to visualize the normals, in order to check its orientation. This can be done 
in different ways:

• For a mesh without physics, you will need to use the general result presentation 
tools. Follow these steps:

- Run Get Initial Values for an arbitrary study in order to create data for result 
presentation.

- Add a 3D Plot Group under Results.

- Add an Arrow Surface plot to the new plot group.

- In the Replace Expression ( ) dialog, select the geometry normal.

The actual normal vector used in the contact search algorithm can be 
visualized by plotting <pair_tag>.n<coord_label>. For example, the 
variable p1.nx gives the x-component of the spatial normal used by 
contact pair p1. Plotting the contact normal vector can be useful to verify 
that the source and destination normals point towards each other.
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• When working with the Shell or Membrane interfaces, select Enable physics symbols 
in the settings for the interface. You will then see the physics normals plotted if you 
select a material model like Linear Elastic Material in the Model Builder.

C O N T A C T  B E T W E E N  P H Y S I C S  I N T E R F A C E S

Contact can seamlessly be modeled between Solid Mechanics, Shell and Membrane 
interfaces. Equation are only added to Contact nodes that have an applicable 
destination boundary, that is, a destination boundary that intersects with the selection 
of the physics interface. Properties such as contact surface offset can, however, be 
considered as long as either a source or a destination boundary is applicable in the 
Contact node. Shell and Membrane offsets are automatically considered on both source 
and destination boundaries.

S O U R C E  S E L E C T I O N  O U T S I D E  P H Y S I C S  I N T E R F A C E S

In most cases, the source and destination boundaries belong to the same physics 
interface. The only strict rule, however, is that the destination side belongs to the 
physics interface in which the Contact node resides. The source side only needs to have 
a mesh and can optionally have one or more physics interfaces attached to it.

If the source boundary is not part of the a physics interface with a Contact node, the 
gap is computed using only the current location of its mesh, ignoring any physical 
properties that may exist there. In this case, the Contact node has no control of the 
contact normal used by the source boundary. Care must therefore be taken to ensure 
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that the contact normal of the source and destination points toward each other for the 
contact detection to work.

There are two main scenarios where you may want to use a source selection that is not 
in the current physics interface:

Fixed Rigid Wall
If one side of a contact pair can be considered as rigid and fixed in space, then it is 
sufficient to add a meshed boundary at that location without any physics.

Moving Rigid Wall
This case is similar to the previous. In order to prescribe the path of the rigid wall, add 
Moving Mesh with a Prescribed Deformation node under Definitions.

Contact Pairs

S E L E C T I N G  S O U R C E  A N D  D E S T I N A T I O N

To decide which boundaries to assign as source and destination in a contact pair, 
consider the following guidelines:

• If there is a significant difference in the stiffness in the normal direction between the 
source and destination boundaries, select the stiffer side as source. This is especially 
important if the difference in stiffness is quite large (for example, more than a factor 
of ten).

• When the contacting parts have approximately the same stiffness, consider the 
geometry of the boundaries instead. Make a concave boundary the source and a 
convex boundary the destination rather than the opposite.

• If one of the boundaries belongs to a part that is rigid it should be selected as the 
source boundary. Rigid boundaries can be created in several ways, for example

- The underlying domain has the Rigid Material material model.

- The boundary or its underlying domain is constrained by, for example, Fixed 

Constraint or Prescribed Displacement.

- The source boundary is meshed, but has no physics attached.

- The source boundary position is controlled by Prescribed Deformation under 
Moving Mesh.

• If only one side of the contact pair is within a physics interface that has a Contact 
node, that side must be the destination side.
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For efficiency, include only those boundaries that can potentially come in contact in 
the destination selection. All equations are formed on the destination boundary, and 
includes performing the contact search which can be expensive.

If it is difficult to follow the above guidelines, the same boundaries can be selected as 
both source and destination. Doing so results in an unbiased (or symmetric) 
formulation that is less sensitive to, for example, difference in stiffness or mesh density 
between the contacting boundaries. However, such a formulation involves evaluating 
equation and contact mapping at additional points and can thus be more expensive to 
use.

S T R A T E G I E S  F O R  S E L E C T I N G  C O N T A C T  P A I R S

A Contact node can reference any number of contact pairs.

A contact pair is just a definition, and does not have to be referenced by any Contact 
node.

Neither the source, nor the destination, in a contact pair has to be geometrically 
contiguous. In practice, this means that you often only need a few contact pairs in a 
model. The number of pairs actually needed will be determined by how many different 
settings that are required in the Contact Pair and Contact nodes.

If you have many contact pairs in your model, it is a good idea to manually set the Label 
of each pair in order to simplify the identification during subsequent selections in the 
Contact nodes.

A U T O M A T I C  G E N E R A T I O N  O F  C O N T A C T  P A I R S

Contact pairs can be automatically generated during the finalization of the geometry 
sequence. When Action is set to Form an assembly, you can select Create pairs, and use 
Contact pair as Pair type. Boundaries which are in geometrical contact with each other 
will then be placed in contact pairs. All contact pairs created are automatically added 
to the default Contact node. If you do not want to use all pairs, either delete the pairs 
from the model or disconnect the default Contact node in the relevant physics interface 
by selecting Disconnect pair. For the latter alternative, add new Contact nodes in the 
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physics interface, and select which of available pairs to actually use for the contact 
analysis.

S M A L L  S L I D I N G  C O N T A C T

In some situations, the relative sliding between the contacting boundaries is small. This 
is, for example, often the case for shrink fit simulations, when mounting a component 
using prestressed bolts, or for partial decohesion of two components. The sliding 
distance can be considered as small if it is significantly less than the length of a mesh 
element edge.

In such cases, it is possible to simplify the problem by selecting the Mapping Method to 
be Initial Configuration in the Contact Pair node. With this setting, a material point on 
the destination boundary will see the same material point on the source boundary 
throughout the entire simulation; that is, the mapping is constant. This setting will 
make the contact analysis run faster and convergence to be more stable.

The analysis is geometrically nonlinear also when using this option, and the contact 
region can still have arbitrarily large displacements and rotations.

Friction can be modeled. Even though there is no sliding in a geometrical sense, the 
difference in tangential displacement is computed.

Meshing for Contact Analysis

Once the source and destination boundaries are chosen, you should mesh the 
destination finer than the source. Do not make the destination mesh just barely finer 
than the source because this can cause nonphysical oscillations in the contact pressure. 
Make the element size on the destination at least two times finer than on the source. 
The reason is that the algorithm is asymmetric; the points on the destination side 

The automatic pair generation will not know which side to use as source 
or destination. Based on the suggestions in Selecting Source and 
Destination above, you may need to switch selections using the Swap 

Source and Destination ( ) button in the Source Boundaries section of the 
contact pair settings.

You cannot mix contact pairs with the two different types of Mapping 

Method within the same Contact node.
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connects to the source side, and not vice versa. With a coarse mesh on the destination 
side, a large portion of an element (or even a whole element) on the source side could 
be without connection to the destination.

It is always important that the geometry is well resolved, so that a curved contact 
boundary actually is seen as curved rather than “faceted”. The density of the mesh 
often needs to be finer than what would be needed to resolve stresses on a similar 
boundary without the contact conditions. If the normal to the contact boundary 
changes much from one element to the next, there is a risk that the contact analysis 
does not converge.

If the source boundary is rigid, there are no requirements on the mesh size of the 
destination boundary. In this case, you may use a significantly finer mesh on the source 
boundary than on the destination boundary. This is sometimes necessary in order to 
resolve the geometry well. On the other hand, if you have a flat rigid boundary, you 
only need to mesh it with a single element.

Settings for Contact Nodes

T H E  C O N T A C T  N O D E

Penalty Factor
An important parameter in the settings for the Contact node is the penalty factor. 
When running into convergence problems, check the penalty factor settings and 
consider changing the current value. It is used by all contact methods, but its 
interpretation differs:

• In the penalty method, the penalty factor has a straightforward interpretation as the 
stiffness of a distributed spring connecting the two contacting boundaries. A higher 
value will decrease the unphysical penetration, but can be detrimental to the 
numerical conditioning of the stiffness matrix. A too small value can, however, result 
in violation of the contact condition.

• In the augmented Lagrangian method, the penalty factor is a numerical parameter, 
which affects the convergence properties of the algorithm. Its interpretation is 
different depending on the chosen solution method. For a segregated method, the 
penalty factor mainly affects the rate of convergence of the outer iteration loop; a 
higher value typically leads to faster convergence, but can decrease the stability of 
the algorithm for certain problems. For the coupled method, the penalty factor 
mainly affects the structure of the underlying equations, and the solution is typically 
C O N T A C T  M O D E L I N G  |  219



220 |  C H A P T E R
less sensitive to the value of the penalty factor. However, the convergence properties 
can be improved by tuning the penalty factor.

• In the Nitsche method, the penalty factor is a stabilization parameter which can 
affect the robustness of the solution, but to a lesser extent the accuracy. The suitable 
value of the penalty factor depends on the chose formulation, where the 
skew-symmetric and nonsymmetric formulation are typically less sensitive than the 
symmetric formulation.

High values of the penalty factor can lead to an ill-conditioned stiffness matrix and 
convergence problems in the Newton iterations. This is often identified by that the 
damping factor reported by the solver becomes less than 1 for many Newton iterations, 
or by that the structure “jumps” into an unphysical state. Large errors returned from 
the linear solver are also an indication that the stiffness matrix is ill-conditioned. If this 
occurs, decrease the penalty factor.

The default value for the penalty factor is based on a characteristic stiffness. The 
default is an “equivalent” Young’s modulus (Eequ) of the material on the destination 
side. For linear elastic isotropic materials, Eequ is the actual Young’s modulus. For 
other types of materials, Eequ is defined by an estimate of a similar stiffness at zero 
strain. For materials that are user defined or in other ways nonstandard (for example, 
anisotropic with large differences in stiffness in different directions), Eequ might need 
to be replaced with another estimate.

When using the augmented Lagrangian formulation with a segregated solution 
method, having a well-tuned penalty factor is important for the performance of the 
outer contact iterations. The default value is selected as a compromise between speed 
and stability, but with more weight on stability. The strategy is for each new step 
(parametric step or time step) to start with a softened penalty factor, which is then 

In the augmented Lagrangian method and the Nitsche method, the value 
of the penalty factor does not affect the accuracy of the final solution, like 
it does in the penalty method.

For nonlinear materials in general, and for elastoplastic materials in 
particular, there can be a significant change in stiffness during the solution 
process. Choose the source and destination boundaries accordingly. You 
may even have to adjust the penalty factor as the solution progresses when 
such materials form a contact boundary.
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increased over the first four iterations. The purpose is to stabilize the problem in case 
there are large overclosures during the first iterations. This is called relaxation.

In a situation where the contact is well established, using relaxation will however cost 
extra iterations, and it may even lead to a loss of convergence.

For this method, the penalty factor can be tuned in several ways. You have three basic 
choices, ranging from simple to advanced:

• With a Preset penalty factor, you can choose having it tuned for Stability, Speed, or 
Bending. With Stability, relaxation is used in every step. With Speed, a constant 
penalty factor is used, and the value that is used is equal to the final value obtained 
when using Stability. For Bending, a constant and low penalty factor is used in all 
iterations. The value corresponds to the initial value when using Stability. As the 
name implies, this option is intended for bending dominated problems where the 
structural stiffness is much lower than the bulk stiffness of the material.

• With Manual tuning, you can adjust the magnitude of the penalty factor, and also the 
relaxation strategy.

• With User defined, you can enter any expression for the penalty factor.

Some hints for selecting the penalty factor for the segregated augmented Lagrangian 
method:

• Use relaxation only when large changes in the contact state is expected.

• If an analysis takes a long time, check the convergence graphs. If the contact 
variables show a steady, but slow, convergence it may help to increase the penalty 
factor. Increase by a factor of 2 – 5.

• If a model fails to converge, and the contacting parts appear to have moved far from 
each other, it is probable that the penalty factor is too high. You can then either 
decrease the total stiffness or add more relaxation.

Trigger Cutback
If, during the iterations, a contact problem comes into a state where it is far from the 
converged solution, it is unlikely that the solution will ever converge. In such a case, 
much computing time can be spent before the maximum number of iterations is 
reached, and the solver makes an attempt with a smaller time or parameter step. To 

For details about these settings, see the documentation of the settings for 
the Contact node.
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speed up this process, you can select the Trigger cutback check box when using the 
augmented Lagrangian method. You can then enter a logical expression that will force 
the solver to immediately abandon the iterations and try a smaller step when fulfilled. 
Such an expression can, for example, be a maximum displacement (like solid.disp >

5[mm]), based on what is physically realizable for the structure. The expression is 
evaluated in all points on the boundary, but you can also use a global value, like an 
average or a maximum.

Contact Surface Offset and Adjustment
It is possible to assign an offset to both the source and destination boundaries. When 
an offset is given, the boundary used in the computations is not the geometrical 
boundary, but a virtual boundary displaced by the offset value. You can use this option 
for several purposes:

• When analyzing problems with for example shrink fit, nominal dimensions can be 
used for the geometry, and the overclosure included in the gap by using a positive 
offset.

• When there is a small clearance between two boundaries, a negative offset can be 
used instead of changing the geometry.

• If geometries are such that a large overclosure exists in the initial configuration, the 
contact algorithms may not converge. You can then add a negative offset, which is 
slowly removed by letting it depend on time or on the parameter in the parametric 
continuation solver.

• A positive offset can be used to avoid a complete collapse of a mesh that exists 
between the source and destination boundaries. This is discussed in more detail in 
Multiphysics Contact Analysis.

When the source and destination boundaries are curved, the discretization introduced 
by the meshing may lead to small variations in the computed distance between the 
source and destination boundaries, even though the geometrical shapes of the two 
objects are ideal. When modeling for example a shrinkage fit, this effect can cause 
significant fluctuations in the contact pressure. If you select Force zero initial gap, the 
computed distance from destination to source will be adjusted by the initial gap 
distance detected by the contact search. Positive gap distances smaller than the 
tolerance gap are adjusted to be zero. By default, gap is set to Inf, which means that 
all gaps and overclosures detected are adjusted to be zero. This adjustment can be 
combined with an offset. The offset is applied to the adjusted gap value.
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It is only the gap computation that is affected by this setting, the mesh as such is not 
adjusted. This type of adjustment is most useful when the sliding is small, so that the 
gap distance is always computed between the same points on source and destination.

You can only apply an offset to the source boundaries if they belong to the same physics 
interface as the destination boundaries.

Initial Value
In the augmented Lagrangian method, where the contact pressure is a dependent 
variable, it can be given an initial value. In force-controlled contact problems where no 
other stiffness than the contact prohibits the deformation, the initial contact pressure 
is crucial for convergence. If it is too low, the parts might pass through each other in 
the first iteration. If it is too high, they will never come into contact.

Discretization
When using the augmented Lagrangian method it is possible to change the type and 
order of the shape functions used for the contact pressure and friction force degrees of 
freedom. The default is linear shape functions, which ensures that there are no 
over-constraints in the contact interface. It is allowed to use a shape function order that 
is equal to or lower than the order of the displacement field. Increasing the order of 
the contact variables from the default can increase the accuracy of how well the contact 
conditions are enforced, but can impair convergence and increase the computational 
cost.

For a discretization other than Linear, the lumped solver is no longer optimal for the 
contact pressure update when using a segregated solution method. In such cases, a 
standard segregated step should be used. The default solver generation takes this into 
account, but if you later modify the discretization, you should update the solver 
sequence.

Quadrature Settings
The weak equations set up by the Contact node and its subnodes typically involve 
discontinuous functions. These originate from the contact mapping, where the source 
and destination meshes, in most cases, are nonconforming. The default quadrature 
used in the numerical integration of these integrals is equal to the order used by the 
displacement field. For a quadratic displacement field, this means integration order 
equal to four.

In most situations, the default quadrature provides sufficient accuracy of the numerical 
integration. However, it is sometimes necessary to increase the integration order for 
the contact weak equations. This can improve the stability of the contact model since 
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it reduces numerical errors that might occur during assembly of the system matrices. 
Note that using a too high integration order can significantly increase the cost of 
assembling the matrices.

Jacobian Contribution
In the Advanced section of the Contact node, there is an option to specify the type of 
Jacobian contribution from the contact equations. The default Automatic option will 
choose a suitable setting depending on the mapping method used by the contact pair. 
However, if controlled manually the Nonsymmetric option is the preferable choice 
especially when the source boundaries undergoes large deformations, since it is more 
robust. The Symmetric option can be attractive for large models since it preserves the 
symmetry of the global stiffness matrix, as long as no other features cause it to be 
nonsymmetric. This can decrease the solution time and memory requirements when 
solving the model.

T H E  F R I C T I O N  N O D E

When adding a Friction node, you can specify a constitutive model (friction model) for 
the behavior of the tangential contact. This model includes conditions for switching 
between sticking and sliding, as well as computation of the current friction forces.

Friction Parameters
The friction model specifies the threshold for the friction force in the contact pair. If 
the computed (trial) friction force is above this threshold value, the contact is in a stick 
state; if the (trial) friction force is above the threshold, the contact is in a slip (or 
sliding) state.

Two predefined friction models are available based on the classical Coulomb law, 
where the friction force is proportional to the contact pressure through the friction 
coefficient. Both Coulomb laws are additionally generalized by allowing specification 
of minimum (cohesion) sliding resistance and a cap that sets the maximum tangential 
traction.

It is also possible to define the threshold for the friction force as an arbitrary expression 
that may depend on any quantity in the model, for example temperature or position. 
The only limitation is that the expression may not implicitly depend on the current 
value of the friction force.

Friction Force Penalty Factor Control
This section provides similar settings as described in Penalty Factor of the Contact 
node, but the penalty factor is here used to regularize the stick constraint. However, 
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the same considerations for how to set an appropriate value apply. For convenience, it 
is also possible to utilize the penalty factor set in the parent contact node. 

This section is not available when the Nitsche method is used. The same penalty factor 
as set in the parent Contact node will be used for friction as well.

T H E  S L I P  V E L O C I T Y  N O D E

The Slip Velocity node facilitates a simplified form of slip friction modeling, which can 
be used in the case that the direction and speed of the sliding is known. The same 
friction models as for the Friction node are available. However, it is here assumed that 
the tangential contact is in a sliding state, and that the slip velocity is known 
beforehand. The latter is supplied to the feature as a user input in the local coordinate 
system.

Knowing the slip velocity greatly simplifies the computation of friction forces. There is 
no need to determine the transition between stick and slip contact, which can be 
difficult.

T H E  A D H E S I O N  N O D E

When using the penalty method, you can specify that the boundaries in the contact pair 
should stick to each other after coming into contact by adding an Adhesion node.

The adhesive layer is conceptually without thickness, but by specifying an offset in the 
Contact node, you can to some extent include the dimensions of the adhesive layer.

The adhesive layer always has a finite stiffness. For a glue layer, this represents the true 
stiffness. For a more conceptual joining of two boundaries, this stiffness should be 
considered in the same way as the penalty stiffness in the contact formulation. The 
stiffness can differ between tension and compression: In compression the stiffness is 
always taken as the penalty stiffness, whereas you can change the tensile stiffness.

T H E  D E C O H E S I O N  N O D E

When adhesion is active, it is possible to break the bond between the source and 
destination boundaries by adding a Decohesion subnode to Contact. To model 
decohesion, it is required that an Adhesion node is present and active in the same parent 
Contact node.

Decohesion defines a cohesive zone model (CZM) based on interface damage 
mechanics on the adhesive layer. Damage is assumed to be a scalar variable that initiates 
as 0 and grows to 1 during decohesion, and in principle degrades the stiffness of the 
adhesive layer. Since damage is a scalar, both the normal and tangential stiffness 
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components degrade simultaneously, irrespective of whether the actual loading 
direction. However, the penalty stiffness of the contact condition is not affected by 
damage.

Two alternative CZM are available. The Displacement-based damage models defines 
damage growth as a function of a mixed mode displacement quantity. It comes with 
several traction separation laws that associate the onset of damage with the peak 
strength of the interface. For some of them, it is possible to choose between different 
mixed mode failure criteria. The Energy-based damage models define damage growth 
as a function of the stored undamaged elastic energy density of the interface. It also 
comes with several different traction separation laws. However, these are more general 
and define the onset of damage at an arbitrary elastic energy density. In principle, you 
can define the model so that damage initiates immediately during loading of the 
adhesive layer, that is for zero energy density. The strength of the interface is then 
determined by the critical energy release rate and the shape of the damage evolution 
function. In this way, the energy-based damage models can be viewed as a 
regularization of linear elastic fracture mechanics.

Decohesion is an inherently unstable process. The elastic energy in the strained 
adhesive layer is released during decohesion. Numerically, the decreasing branch of the 
traction-separation curve manifests itself as a local negative stiffness. Such problems are 
only possible to solve as long as the surrounding material can absorb the released 
energy. The numerical stability is, furthermore, closely coupled to the physical stability 
of the structure. The following points can help to set up a model with decohesion and 
to overcome problems with convergence.

• If the structure is in a load-controlled situation, there is no possibility to continue 
the analysis when the peak external load has been exceeded. Physically, this 
corresponds to a sudden collapse of the component, or in the case of decohesion, a 
rapid breakage of the adhesive layer.

• If the structure is loaded by prescribed displacements, it is usually possible to 
continue the analysis further. It may, however, happen that the stored elastic energy 
in the structure is large enough to force a complete breakdown of the adhesive layer 
once a certain external displacement is reached. If possible, use prescribed 
displacements in a decohesion analysis, and evaluate the applied load from the 
reaction forces.

• Sometimes it is not possible to use prescribed displacements, for example if the load 
is distributed. You can then add a Global Equation to control the loading rate by 
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some other quantity that increases monotonically. This is the same technique as the 
one used for post-buckling problems.

• To improve the robustness of the solver, it is sometimes beneficial to modify the 
settings in the Method and Termination section of the Fully Coupled or Segregated 
nodes in the solver sequence. For example, allow a larger number of iterations or try 
a different nonlinear method. Often, the Constant (Newton) method can improve the 
convergence of models with decohesion.

• The robustness of the solver can also be improved by modifying the parameter or 
time stepping algorithm. For a stationary study, you can tune the step size in the 
Parametric node, and for a time-dependent study, you can modify the time stepping 
of the Time-Dependent Solver. A good idea is often to reduce the maximum allowed 
step size of the solver and to allow for smaller step size than the default. Note that 
if the maximum step size allowed is too large, the solver might bypass the 
decohesion process altogether; in other words, even though a converged solution is 
obtained, it might be invalid.

• The solution of the unstable failure due to decohesion is, to some degree, always 
mesh dependent; see, for example, Ref. 1. It is therefore good practice to make sure 
that the mesh of the interface and in its vicinity is fine enough to allow the energy 
released during decohesion to properly redistribute in the structure. This can help 
avoid solution jumps where several mesh elements are completely damaged in a 
single step. Such solution jumps can be difficult for the solver to get pass, and even 
if it does, the solution after the jump might be invalid.

• The true unstable failure of decohesion is a dynamic event. This can be analyzed 
using a time-dependent solver, but the computational cost can be high. The inertial 
forces will then balance the released energy, which is transformed to kinetic energy.

For time-dependent studies, it is possible regularize the CZM with a viscous delay by 
selecting Delayed damage in the Regularization list. This option adds a delay to the 
release of energy, which is controlled by the Characteristic time . Using this option can 
help to suppress the instability of the solution when the step size or mesh size is too 
large. If the viscous damage is used to stabilize a rate-independent decohesion 
C O N T A C T  M O D E L I N G  |  227



228 |  C H A P T E R
problem, the value of  must be chosen with care. As a rule of thumb,  should at least 
be one or two orders of magnitude smaller than the expected time step.

T H E  W E A R  N O D E

By adding a Wear subnode to a Contact node, it is possible to model adhesive or 
abrasive wear of the material when the contacting boundaries are sliding along each 
other. Since wear involves solving evolution equations, the Wear node only adds a 
contribution for time-dependent studies. Moreover, wear is typically a slow process 
where dynamic effects are of small significance. You should, therefore, usually set 
Structural transient behavior to Quasistatic in the Structural Transient Behavior section 
of the physics interface settings.

The most general technique to model the removal of material during the wear process 
relies on the deformed geometry concept. When selecting the Deformed geometry 
formulation, the wear feature adds a (hidden) Deforming Domain feature that controls 
the material frame through an adaptive mesh smoothing. The wear, as computed in the 
Wear node is fed as a (hidden) Prescribed Normal Mesh Displacement boundary 
condition to the deforming domain, and thus describes the actual removal of material 
from the geometry. When using this formulation, you must be aware that the adaptive 
mesh means that state variables stored in Gauss points, for example plastic strains or 
creep strains, will not represent the same material points all the time. Whether or not 
this effect is acceptable must be judged on a case-by-case basis. Unless the amount of 
material that is removed is large, or gradients are strong, this is mainly an issue close 
to the boundary where material is removed by the wear process.

Alternatively, wear can be incorporated as an offset in the contact condition. This 
formulation is computationally less expensive, and is suitable as long as only small 
amounts of material are removed, and the wear does not change the orientation of the 
normal to the boundary significantly.

The slip velocity used for the wear computation can be obtained from either a Friction 
node or a Slip Velocity node, so one of these two nodes should be present and active 
under the same Contact parent node. For the Generalized Archard wear model, this is a 

For an example showing a decohesion analysis, including how to use a 
global equation to control an unstable problem, see Mixed-Mode 
Debonding of a Laminated Composite: Application Library path 
Structural_Mechanics_Module/Contact_and_Friction/

cohesive_zone_debonding.
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requirement. In most cases, the orientation of the slip velocity is known a priori in a 
wear analysis, in which case Slip Velocity provides the more efficient solution.

In general, modeling wear on the destination side is slightly more accurate, since it is 
there that the contact pressure and slip velocity are originally computed. When 
modeling wear on the source side, these quantities are mapped from the destination 
boundary. Multiple Wear nodes under the same Contact node contributes with each 
other, which means that it is possible to model wear on both source and destination 
simultaneously. However, adding multiple wear contributions to either source or 
destination may give unphysical results. On the source side it is possible to also use the 
Rigid Material material model; this is not permitted on the destination due to general 
restrictions of the Contact node.

Quasistatic Contact Analysis

When including contact in a stationary or quasistatic simulation, make sure that the 
bodies are sufficiently constrained. If the bodies are not in contact in the initial 
configuration, and there are no constraints on them, there will be possible rigid body 
displacements. This will cause the solver to fail and must be avoided.

Sometimes, as when simulating mounting processes, the structure is not fully 
constrained until the contact is fully established. There are some strategies for how you 
can deal with this problem.

• Create the geometry or set initial values for the displacement variables so that there 
is a small penetration in the initial configuration.

• Use boundary conditions giving a prescribed displacement rather than a prescribed 
force. When possible, this is usually the best way to stabilize problem. Note that you 
can always obtain the force actually applied from the reaction forces.

• Documentation of the Contact, Friction, Slip Velocity, Adhesion, 
Decohesion, and Wear nodes.

• Contact Analysis Theory in the Structural Mechanics Theory chapter.

For a more detailed discussion about sufficient constraints, see 
Constraints under Stationary Analysis.
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• Add a temporary weak spring during the beginning of the simulation. Assuming 
that a parameter p, ranging from 0 to 1, is used for applying the external load, you 
can introduce a stabilizing spring with stiffness kx in the x direction as

and similarly in any other direction that needs to be restrained. It is not important 
whether the spring is applied to domains, boundaries, or edges, but it should not 
create significant local forces. The value for the stiffness k should be chosen so that 
the force generated by the spring balances the external load at a sufficiently small 
displacement. A too weak spring will give a too large initial overclosure of the 
contact boundaries. A too stiff spring might influence the solution too much.

Dynamic Contact Analysis

The contact formulations in COMSOL Multiphysics can be used in transient as well as 
quasistatic analyses. In truly dynamic problems, where inertial effects are significant, a 
contact formulation must conserve fundamental quantities, such as linear and angular 
momentum and energy, across the contact pair. An important class of dynamic 
problems, where these quantities must be conserved, is impact analysis.

To model dynamic contact events, two specialized contact methods are provided, the 
Penalty, dynamic and the Augmented Lagrangian, dynamic methods. Both are based on 
a viscous formulation that constrains the gap rate to be zero, ensuring that the normal 
contact is dissipative and does not introduce any spurious energy contribution to the 
system. Since the methods are dissipative, they are mainly intended for short duration 
events, such as soft impact between two bodies. For prolonged interaction between 
two bodies, energy dissipation can become significant, and overclosures can become 
large, since the gap rate is only approximately zero. Both the dissipation and the 
accuracy are controlled by a penalty factor that for these two methods conceptually 
represents a dashpot, rather than a spring. It therefore has a characteristic time user 
input that sets its magnitude. As a rule-of-thumb, it should be of the order of the 
contact event duration, but the best choice must be decided on a case-by-case basis.

The Penalty, dynamic method also provides the possibility to combine the stiffness and 
viscous based penalization of the normal contact. For impact analysis, it is often best 
to use only the viscous formulation by setting the stiffness Penalty factor control to 
Viscous only.

When modeling dynamic contact, the main interest is often the kinematics between the 
contacting bodies. If you rely on the (default) adaptive time-stepping algorithm, the 

kx k 1 p– 2 p 10 –
=
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solver typically also tries to resolve the wave propagation in the domains adjacent to 
the contact pairs. This can cause unnecessarily small time steps and increase the 
computation time. To avoid this, you can modify the solver to use a manual 
time-stepping algorithm in the settings for the Time-Dependent Solver in the solver 
sequence. Make sure to use time steps that are small enough to capture the contact 
event, otherwise spurious energy contributions can result, and cause the problem to 
“blow up”.

The time-dependent solvers in COMSOL Multiphysics introduce numerical damping 
to stabilize the time stepping. This kind of stabilization is often necessary. However, 
excessive numerical damping runs the risk of removing vital information from the 
simulation. For this reason, the BDF solvers should be avoided for dynamic contact 
analyses. The default solver suggests the generalized- solver when inertial terms are 
included in the structural mechanics problem.

Regardless of the method that is used, and how the solver is set up, it is good practice 
to do an a posteriori check of conservation of momentum and energy, to ensure that 
the solution is acceptable.

Multiphysics Contact Analysis

Two different classes of multiphysics contact problems will be described in this section.

F L U X E S  T H R O U G H  C O N T A C T  S U R F A C E S

In some contact problems, there is some kind of flux from one domain to another 
through the contact zone. This can for example be a heat flux, an electric current, or 
moisture transport. The common property here is that the other physics fields than the 
displacements are present in domains where the solid mechanics problem is solved. 

For examples of dynamic contact problems, see

• Transient Rolling Contact: Application Library path 
Structural_Mechanics_Module/Contact_and_Friction/

transient_rolling_contact.

• Impact Between Two Soft Rings: Application Library path 
Structural_Mechanics_Module/Verification_Examples/ring_impact.

In both examples, an energy balance check is included. The latter model 
also verifies the conservation of momentum.
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Typically, there will be a more or less perfect insulation as long as there is no contact, 
but as soon as contact is established there will be a flux through the contact area.

This class of problems often exhibit a high degree of nonlinearity, which may lead to 
convergence problems in the nonlinear solver. As an example, consider heat transfer 
through the contact area, where initially only a small spot is in contact. The solution 
for the temperature field is then extremely sensitive to the size of the contact area. If, 
at the same time, the solid deforms due to thermal expansion, there may be large 
changes in the contact area between iterations,

If the contact area is larger, a fine mesh is not required because then the temperature 
solution is not that sensitive to the size. If possible, start with an initial configuration 
where the contact area is not very small.

You can use the contact variables (gap and contact pressure) in expressions for 
quantities in other physics interfaces. As an example, a thermal resistance in the contact 
region can depend on the contact pressure.

In many cases, the penalty method is preferred in multiphysics contact problems 
because of its better stability and less restrictive requirements on solver selections. If 
the contact conditions depend strongly on the contact pressure, use the augmented 
Lagrangian method because if its higher accuracy.

F I E L D S  E X I S T  I N  T H E  G A P

In this class of problems, a field exists between the domains controlled by solid 
mechanics.

This is the case in, for example, fluid-structure interaction (FSI) problems. Here, the 
equations in the fluid are solved on a domain with a moving mesh, so that the shape 
of the fluid domain is controlled by the displacements of the solid. Another case of the 
same type is when there is an electric field in an air gap.

If contact is established, the mesh in the original gap between the source and 
destination boundaries will collapse. This must be avoided. The remedy is to add an 
offset in the contact settings to either the source boundary, the destination boundary, 
or both. If you do this, contact forces will be transmitted without the geometrical gap 
being fully closed.

It is important to resolve the size of the contact area accurately, that is, to 
use a very fine mesh in the contact area when modeling fully coupled 
multiphysics problems.
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If, for example, this technique is used when modeling a valve, there will still be some 
small flux even though the valve is closed, since there is a geometrical gap with the 
width of the artificial offset. By choosing a suitably small offset, you can however make 
that flux negligible.

Special Types of Contact Problems

I N T E R F E R E N C E  F I T

Interference fits can be analyzed using contact modeling. This is necessary if you are 
interested in checking the connection with respect to, for example, slipping or local 
stresses.

There are two possible approaches for modeling interference fits, both equally valid:

• The actual geometry of the two parts before assembly is modeled. In this case, there 
will be some overlap between the two domains.

• A nominal geometry in which the contacting boundaries have the same location is 
created. In this case, the overlap is described as part of the contact modeling.

An imported CAD geometry can use either of these approaches, depending of the 
strategy used during the geometry creation. Often, the geometrical parts are modeled 
as nominal, and instead equipped by tolerance information that describe the amount 
of interference.

True Geometry
With a true geometry, you can often immediately solve the contact problem. 
Sometimes convergence problems may, however, appear, in particular if the material 
model is nonlinear. The cause is often that the initial overlap is too far from the final 
solution.

To deal with such a problem, add an offset in the in the settings for the Contact node. 
The offset should be defined by a parameter, so that the boundaries of the two domains 
are barely in contact in the initial state. Now, the offset can be reduced to zero 
step-by-step, using an auxiliary sweep in the solver.
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Nominal Geometry
When working with a nominal geometry, you always need to add an offset in the 
Contact node. The offset equals the size of the interference. If needed for convergence 
reasons, ramp up the offset using an auxiliary sweep in the solver.

S E L F - C O N T A C T

To model self-contact, include the same boundaries in both the source and destination 
selections of the Contact Pair definition. This will cause the boundaries to act as both 
source and destination in the contact search and mapping. For mechanical contact, this 
results in a unbiased (or symmetric) contact formulation, as the contact conditions are 
formulated on both sides of the contact pair. Note that a source is not allowed to 
partially intersect the destination when used for mechanical contact.

This technique to model self-contact means that some of the considerations discussed 
in this chapter regarding contact modeling do not apply. For example, instead of the 
recommendations in Meshing for Contact Analysis, it is recommended to use a 
uniform mesh element size along the contacting boundaries. Self-contact is a case 
where it might be necessary to increase the quadrature order used in the weak 
equations, see Quadrature Settings.

Fallback Conditions to Contact Regions

In the Solid Mechanics, Shell, and Membrane interfaces, certain boundary conditions 
may act as fallback conditions to a contact region, or any pair region, if their selection 
overlaps with the source and destination boundaries. The Layered Shell interface does 

Interference Fit Connection in a Mountain Bike Fork: Application 
Library path Structural_Mechanics_Module/Contact_and_Friction/

mountain_bike_fork

For examples of self-contact problems, see

• Self-Contact of a Loaded Spring: Application Library path 
Structural_Mechanics_Module/Contact_and_Friction/

loaded_spring_contact.

• Contact Analysis of a Rubber Boot Seal: Application Library path 
Nonlinear_Structural_Materials_Module/Hyperelasticity/rubber_boot_seal.
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not support any fallback conditions. When a boundary condition is considered as a 
fallback, the condition is only active for regions that are not in contact.

In the Solid Mechanics interface, the following boundary conditions are by default 
recognized as fallback conditions if their selection intersects any source and destination 
boundary:

• Boundary Load

• Spring Foundation

• Added Mass

• Free

In the Shell and Membrane interfaces, the following boundary conditions can be 
recognized as fallback conditions:

• Face Load

• Spring Foundation

• Added Mass

To enable the fallback condition in these nodes, change the Allowed region to Fallback 

and nonpair regions in the Applicable Pair Regions section of settings window of the 
node. To display the Applicable Pair Regions section, click the Show More Options 
button ( ) and select Advanced Physics Options in the Show More Options dialog box.

The most common case when a fallback condition is used is when there is a pressure 
load acting on the part of the boundary that is currently not in contact. In this case 
you would add a Boundary Load or Face Load with a selection that intersects with the 
source and destination boundaries.

Solver Settings for Contact Analysis

This section provides useful tips for tuning solver settings for contact analysis in 
general, and tips specific to different methods.

G E N E R A L  S E T T I N G S

The following solver settings can help to successfully perform contact simulations in 
general:

• In a contact analysis, you almost invariably use an incremental approach. It is 
possible to solve a problem without friction in a single stationary load step, but such 
an approach will often fail to converge. In a stationary analysis, you should instead 
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use the parametric continuation solver, and gradually increase the load or 
displacement. Enable it by selecting Auxiliary sweep under Study Extensions in the 
settings for the Stationary solver.

• Use a direct solver, rather than an iterative solver, as linear equation solver if the 
problem size allows it. Direct solvers are less sensitive and can provide better 
convergence.

• As a default, the double dogleg nonlinear solver is selected when a stationary study 
is generated and Contact nodes are present in the model. For the majority of contact 
problems this solver has more stable convergence properties than the Newton 
solver, which is the default solver for most other problems. Using otherwise similar 
settings, the double dogleg solver tends to be somewhat slower than the Newton 
solver on problems where both solvers converge. It is, however, often possible to 
take larger parameter steps when using the double dogleg solver. For some 
problems, the Newton solver can still be the better choice, so if you experience 
problems using the default settings, try to switch solvers.

• For contact problems, it is often necessary to let the parametric solver use a defensive 
strategy when going from one parameter step to the next. This can be controlled by 
setting the value of Predictor in the Parametric. By default, the parametric solver will 
do so by setting the predictor to Constant when contact is present. However, it can 
sometimes be more efficient to use a more aggressive strategy by setting it to Linear.

• Always solve contact problems that involve friction or decohesion incrementally, 
using a parametric or time-dependent solver. The evolution of the friction forces is 
history dependent. For contact problems without friction, an incremental strategy 
is not necessary but often a good choice.

• If the model includes friction, try solving the problem without friction first if 
possible. When the study runs absent friction, enable friction again.

• The convergence of many contact problems can be improved by modifying the 
parameter or time step algorithm. For a stationary study, you can tune the step size 
in the Parametric node, and for a time-dependent study, you can modify the time 
stepping in the Time-Dependent Solver.

• For models that include decohesion, see the suggestions under The Decohesion 
Node.

T H E  P E N A L T Y  M E T H O D

Since the penalty method only adds a weak contribution to the physics, there are no 
special solver requirements, apart from the suggestions that apply to contact analysis 
in general. If the simulation shows poor convergence, or even diverges, it is for the 
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penalty method often related to the choice of the penalty factor. A too high penalty 
factor may cause the ill-conditioning, which can manifest itself either in poor 
convergence of the Newton solver or large errors in the linear solver. If this is 
encountered, consider using a smaller penalty factor. However, a too small penalty 
factor will deteriorate the accuracy of the simulation, and contact might even be lost if 
the overclosure becomes too large.

T H E  S E G R E G A T E D  A U G M E N T E D  L A G R A N G I A N  M E T H O D

The segregated solution method for the augmented Lagrangian formulation 
introduces extra contact degrees of freedom for the contact pressure and the friction 
forces. It also relies on a special solver sequence to obtain the correct solution. Some 
general considerations when using this method are:

• The convergence check relies on the scaling of the degrees of freedom, but since 
contact pressures and friction forces often are zero over parts of the simulation, you 
should not rely on automatic scaling. When the solver sequence is first created, both 
contact pressure and friction forces are given a manual scaling which is relevant for 
typical metal-to-metal contact. You should in most cases change this to values 
appropriate for your application. The variable scaling is accessed under Dependent 

Variables in the solver sequence. Set the scale for each variable to a value that is 
representative for the expected result. Too large values may give a too early 
convergence, while too small values may lead to an excessive number of iterations.

• The default solver sequence generates one lumped step in the segregated solver for 
each Contact node. This split of variables into different lumped steps does not 
influence the solution as such; you can equally well group the contact variables in a 
single lumped step. Each lumped step will however generate an individual curve in 
the convergence plot, making it easier to pinpoint the source of possible 
convergence problems. You can also increase the granularity even more by changing 
Solver log to Detailed in the Advanced node in the solver sequence. This will give a 
separate convergence curve for each dependent variable.

The default solver generates a solver sequence that is stable and gives and accurate 
solution for the majority of contact problems. However, if convergence is difficult 
other settings can be tested:

• The Segregated solver is generated with a termination technique set to Tolerance. 
This setting ensures the convergence of the contact degrees of freedom, that is, that 
their value only changes within the specified tolerance during the latest segregated 
iteration. If, however, convergence of the contact DOFs is of less importance, you 
can accept the solution after n segregated iterations instead. To do this, set the 
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termination technique to Iterations or tolerance and specify the maximum number 
of segregated iterations. The solver will then continue to the next step if the 
tolerance criteria is fulfilled, or if the maximum number of iterations is reached. 
Note that the solution of the segregated groups is still converged in each segregated 
iteration.

• For efficiency purposes, the nonlinear solver in the Segregated Step that includes the 
displacement field is by default set to accept the solution after seven iterations, 
regardless of convergence or not. If you notice in the solver log that the solution is 
far from convergence after these seven iterations it can be necessary to change this 
setting. Updating the contact DOFs with a nonconverged solution can cause the 
overall problem to diverge. By changing the termination technique to Tolerance, the 
segregated solver will instead do a cutback if such a situation is encountered.

T H E  C O U P L E D  A U G M E N T E D  L A G R A N G I A N  M E T H O D

The coupled solution method for the augmented Lagrangian formulation introduces 
special contact degrees of freedom for the contact pressure and the friction forces. 
Otherwise it places no special restriction on the solver sequence. Some general 
considerations when using this method are:

• The convergence check relies on the scaling of the degrees of freedom, but since 
contact pressures and friction forces often are zero over parts of the simulation, you 
should not rely on automatic scaling. When the solver sequence is first created, both 
contact pressure and friction forces are given a manual scaling typical for 
metal-to-metal contact. You should in most cases change this to values appropriate 
for your application. The variable scaling is accessed under Dependent Variables in the 
solver sequence.

• Since the solution to the augmented Lagrangian can be non smooth, the default 
double dogleg nonlinear solver in stationary studies is sometimes too conservative. 
The convergence can in such cases often be improved by using a Newton solver, for 
example, the Constant (Newton) with a full Jacobian update.

• Although the penalty factor does not affect the accuracy of the solution, it can have 
significant influence on the convergence properties of the model.

T H E  N I T S C H E  M E T H O D

Since the Nitsche method only adds a weak contribution to the physics, there are no 
special solver requirements, apart from the suggestions that apply to contact analysis 
in general. If the simulation shows poor convergence, or even diverges, it is often 
related to the choice of the penalty factor. A too low value may cause the solution to 
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be unstable, while as for the penalty method, a too high value may cause 
ill-conditioning.

D Y N A M I C  C O N T A C T

The dynamic contact methods in general inherit the properties and suggested solver 
settings from the corresponding standard method. With regards to solver settings, the 
main difference for the dynamic methods is how to set up the time-dependent solver, 
where it is recommended to use manual time stepping, see Dynamic Contact Analysis.

Monitoring the Solution

It is often useful to monitor the solution during a contact analysis. This can be done 
in different ways.

Using the Results while solving functionality in the study step is a good practice. You 
can either use a stress plot, or a plot of the contact pressure. In most cases, the scale of 
a deformed plot should be set to 1 when monitoring contact problems. If you select 
Results while solving in the Segregated node, the plot is updated after each iteration, 
thus allowing you to monitor the convergence in detail.

For each contact pair, two global variables that can be used in probe plots are available. 
These are the maximum contact pressure (<phys>.Tnmax_<pair>) and the minimum 
gap distance (<phys>.gapmin_<pair>).

Looking at the convergence plot will give valuable information about the convergence 
properties. There will, as a default, be one graph per Contact node in the Model Tree, 
which will help you pinpoint the source of a convergence problem. You can also 
increase the granularity even more by changing Solver log to Detailed in the Advanced 
node in the solver sequence. This will give a separate convergence curve for each 
dependent variable.

You can also select to include information about the contact state in the solver log. To 
do that, select the Add contact status to solver log check box in the Advanced section of 
the settings for the Contact node. For each contact pair, messages like

  69 points of 120 are now in contact.
  33 points started to stick. 72 points are now sticking.
  12 points started to slide. 47 points are now sliding.

will be generated for each time or parameter step. Only changes are reported.
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Dependent Variables in Contact Analysis

The Contact and its subnodes will generate a number of degrees of freedom depending 
on the settings and study type. You will see these degrees of freedom appear under 
Dependent Variables in the solver sequence. There are two types of extra variables 
created:

• Variables changed until convergence is reached during the iterations. These variables 
appear in the Lumped Step nodes in the Segregated solver or in the Fully Coupled 
node.

• Variables used to store the state, once the iterations have converged for a certain 
time or parameter step, so called internal degrees of freedom. Such state variables 
are not immediately visible in the solver sequence, but it you select the Displacement 

Field node under Dependent Variables in the solver sequence, you will see them listed 
as ‘Internal variables’.

In Table 2-11 the dependent variables that can be created by the Contact and its 
subnodes are summarized. To shorten the variable names, the full scope has been 
removed. As an example, the contact pressure variable for pair p1 in component comp1, 
generated in the Solid Mechanics interface solid, will have the full name similar to 
comp1.solid.Tn_p1. In the table, it is shown as Tn.

If you change settings in the Contact or Friction nodes after the solver 
sequence has been generated, dependent variables may be added or 
removed. The second case is never a problem, but when new dependent 
variables are created, they are not automatically added to the groups in the 
segregated solver. You may then encounter the error message 
“Segregated solver steps do not involve all components.” You 
can then either regenerate the solver sequence, or manually insert the 
missing variables into the Lumped Step node.

TABLE 2-11:  DEPENDENT VARIABLES OCCURRING IN CONTACT ANALYSIS

VARIABLE NAME DESCRIPTION EXPLANATION CREATED SOLVER NODE

Tn Contact pressure The contact 
pressure in the 
normal direction

Contact: 
Augmented 
Lagrangian used

Lumped 
Step

Tt Friction force The friction force 
vector

Friction: 
Augmented 
Lagrangian used

Lumped 
Step
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gap_old Previous gap 
distance

Physical gap 
variable from the 
last converged 
solution,

Contact: Penalty, 
dynamic or 
Augmented 
Lagrangian, 
dynamic used

Internal 
state 
variable

cm_old Previous mapped 
source 
coordinates

The location on 
the source where 
this point was 
located at last 
converged 
solution

Friction node 
present

Internal 
state 
variable

sliptot_old Previous 
accumulated slip

Total slip in this 
point at last 
converged 
solution

Friction or Slip 
velocity: Store 
accumulated slip 
selected

Internal 
state 
variable

contact_old Contact variable 
in previous step

Nonzero if the 
point was in 
contact at last 
converged 
solution within 
the friction 
detection 
tolerance

Friction node 
present

Internal 
state 
variable

isContact_old Contact status 
variable in 
previous step

Nonzero if the 
point was in 
contact at last 
converged 
solution

Contact: Add 
contact status to 
solver log 
selected

Internal 
state 
variable

isSliding_old Sliding friction 
status variable 
previous step

Nonzero if the 
point was in a 
sliding state at last 
converged 
solution

Contact: Add 
contact status to 
solver log 
selected. Friction 
node present.

Internal 
state 
variable

isSticking_old Sticking friction 
status variable 
previous step

Nonzero if the 
point was in a 
sticking state at 
last converged 
solution

Contact: Add 
contact status to 
solver log 
selected. Friction 
node present.

Internal 
state 
variable

TABLE 2-11:  DEPENDENT VARIABLES OCCURRING IN CONTACT ANALYSIS

VARIABLE NAME DESCRIPTION EXPLANATION CREATED SOLVER NODE
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Wfric Frictional 
dissipation density

Energy dissipated 
by friction

Friction present 
and Compute 
frictional 
dissipation 
selected.

Segregated 
step

Wfric_old Previous frictional 
dissipation density

Energy dissipated 
by friction at the 
last converged 
solution

Slip velocity 
present and 
Compute 
frictional 
dissipation 
selected.

Internal 
state 
variable

activation_old Adhesion 
condition at 
previous step

Nonzero if the 
adhesion 
condition was 
fulfilled at the last 
converged 
solution

Adhesion node 
present

Internal 
state 
variable

cma_old Previous adhesive 
mapped source 
coordinates

Position on the 
source where this 
point was located 
when adhesion 
was detected.

Adhesion node 
present

Internal 
state 
variable

um_max_old Maximum 
displacement 
jump at previous 
step

Maximum norm 
of displacement 
jump vector 
reached until 
previous step.

Decohesion node 
present and 
Displacement- 
based damage 
selected

Internal 
state 
variable

Ydm_max_old Maximum damage 
energy at 
previous step

Maximum value of 
the stored 
undamaged elastic 
energy at 
previous step

Decohesion node 
present and 
Energy-based 
damage selected

Internal 
state 
variable

TABLE 2-11:  DEPENDENT VARIABLES OCCURRING IN CONTACT ANALYSIS

VARIABLE NAME DESCRIPTION EXPLANATION CREATED SOLVER NODE
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Important Contact Variables

In this section you will find a summary of variables created in the contact node that 
can be useful in postprocessing. In Table 2-12 important field variables are listed. For 
the Shell, Layered Shell and Membrane interfaces, these are appended with the suffix 
‘_top’ or ‘_bot’, depending on which side of the boundary that is in contact. All 
variables are also defined per contact node, for example <phys>.<contact_tag>.Tn 
is the contact pressure from the contact node with the tag <contact_tag>. These 
variables can be useful if the model includes multiple contact nodes. Table 2-13 
presents global variables related to contact that can be useful for postprocessing.

vdmg_old Viscous damage at 
previous step

Value of the 
viscous damage 
variable at the 
previous step

Decohesion node 
present and 
Delayed damage 
selected

Internal 
state 
variable

Wdmg_old

Wsd_old

dmg_old

These variables 
are related to the 
computation of 
the energy 
dissipated by 
damage

Decohesion node 
present and 
Compute damage 
dissipation energy 
selected.

Internal 
state 
variables

TABLE 2-11:  DEPENDENT VARIABLES OCCURRING IN CONTACT ANALYSIS

VARIABLE NAME DESCRIPTION EXPLANATION CREATED SOLVER NODE

TABLE 2-12:  IMPORTANT CONTACT VARIABLES

VARIABLE DESCRIPTION DEFINED IN COMMENTS

<phys>.Tn Contact pressure Contact Vector in global 
coordinates also 
available

<phys>.gap Gap distance including 
offsets

Contact

<phys>.Ttnorm Friction force norm Friction or Slip 
Velocity

<phys>.Tt Friction force Friction or Slip 
Velocity

Vector

<phys>.qfric Friction dissipation 
rate

Friction or Slip 
Velocity

<phys>.fs Adhesive stress Adhesion Vector

<phys>.us Displacement jump Adhesion Vector

<phys>.adhesion Adhesion condition Adhesion
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<phys>.bdmg Damage Decohesion

<phys>.um_max Maximum 
displacement jump

Decohesion If displacement- 
based damage

<phys>.Ydm_max Maximum damage 
energy

Decohesion If energy-based 
damage

<phys>.Wcnt Contact energy 
density

Contact

<phys>.Wfric Frictional dissipation 
density

Friction or Slip 
Velocity

<phys>.Wadhe Adhesive elastic 
energy

Adhesion

<phys>.Wdbmg Damage dissipation 
energy density

Decohesion

TABLE 2-13:  GLOBAL CONTACT VARIABLES

VARIABLE DESCRIPTION DEFINED IN COMMENTS

<phys>.gapmin_

<pair_tag>

Minimum gap 
distance, contact pair 
<pair_tag>

Contact

<phys>.Tnmax_

<pair_tag>

Maximum contact 
pressure, contact pair 
<pair_tag>

Contact

<phys>.T_tot Total contact force Contact Vector

<phys>.Tn_tot Total contact force, 
pressure contribution

Contact Vector

<phys>.Tt_tot Total contact force, 
friction contribution

Friction or Slip 
Velocity

Vector

<phys>.Wcnt_tot Total contact energy Contact Integration over 
all contact 
boundaries

<phys>
.Wfric_tot

Total frictional 
dissipation

Friction or Slip 
Velocity

Integration over 
all contact 
boundaries

TABLE 2-12:  IMPORTANT CONTACT VARIABLES

VARIABLE DESCRIPTION DEFINED IN COMMENTS
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References for Contact Modeling

1. J.L. Chaboche, F. Feyel, and Y. Monerie, “Interface debonding models: a viscous 
regularization with limited rate dependency,” International Journal of Solids and 
Structures, vol. 38, pp. 3127–3160, 2001.

<phys>
.Wadhe_tot

Total adhesive elastic 
energy

Adhesion Integration over 
all contact 
boundaries

<phys>.Wdmg_tot Total damage 
dissipation energy

Decohesion Integration over 
all contact 
boundaries

TABLE 2-13:  GLOBAL CONTACT VARIABLES

VARIABLE DESCRIPTION DEFINED IN COMMENTS
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A c t i v a t i n g  and Dea c t i v a t i n g  Ma t e r i a l

In some applications, you may want to activate or deactivate material during an 
analysis. An example is when you want to model the addition of material during 
processes such as additive manufacturing or welding.

The Activation subnode can be used for this purpose. You enter an activation 
expression to determine whether material is active or not. When this Boolean 
expression is satisfied, the material is activated. Rather than truly adding or removing 
material, the Activation subnode alters the stiffness and density of the material to 
emulate this.

It is typically required that material is activated in a state of zero stress. Therefore, 
Activation activates material in a stress-free state by removing all elastic strains present 
at the point of activation.

A C T I V A T I O N

Add an Activation subnode when you want to activate or deactivate one or several 
domains selected in a Linear Elastic Material node. The Activation expression field is used 
to define when material should be activated, and the Activation scale factor is used to 
reduce the elastic stiffness and density of the material which is not active.

In Figure 2-17 a case is shown where the material in domains 1, 2, and 3 is to be 
activated when an auxiliary sweep parameter para exceeds the value 1.5. The 
activation scale factor has a default value of 10-5.

The activation condition can be any type of expression or function. A common case is 
that it is a function of the temperature. The activation expression is evaluated in each 
Gauss point. This means that an element can be partially activated. If you want to force 
whole elements to be activated, you can for example put the activation expression 
inside the centroid() operator.

The information in this section is applicable if your license includes the 
Structural Mechanics Module or the MEMS Module.
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Figure 2-17: Settings for the Activation subnode.

V A R I A B L E S

Two useful variables are created when you add the Activation subnode. The variable 
isactive is set to ‘1’ when the activation condition is satisfied, and it is ‘0’ otherwise. 
The variable wasactive is used to record if the material has been active at any previous 
step in the analysis. This variable can be used to “lock” the state of activation, once it 
has been reached. Suppose that you want the material in the previous example to 
remain active even if para later becomes less than 1.5. The activation expression for an 
interface with the name solid could then be expressed as:

(para > 1.5) || solid.wasactive

Similarly, the variable wasinactive is used to record if the material has been inactive 
at any previous step in the analysis.
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Domains that are not selected in any Activation subnode always have the isactive 
variable set to ‘1’.

R E S U L T S

If you have performed an analysis in which only part of the material is active, it is useful 
to apply a Filter and only display the regions that actually are active; see Figure 2-18. 
When an Activation subnode is added in a Solid Mechanics or Membrane interface, 
such a Filter node is automatically added to the default stress plots.

Figure 2-18: Filter settings to only display active material.

TABLE 2-14:  VARIABLES DEFINED BY THE ACTIVATION SUBNODE

VARIABLE DESCRIPTION

<physics>.isactive Current state of the material (1 or 0)

<physics>.wasactive Variable set to 1 if isactive has been 1 previously

<physics>.wasinactive Variable set to 1 if isactive has been 0 previously
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S p r i n g s  and Dampe r s

The Spring Foundation and Thin Elastic Layer physics nodes supply elastic and 
damping boundary conditions for domains, boundaries, edges, and points.

The features are completely analogous, with the difference that a Spring Foundation 
connects the structural part on which it is acting to a fixed “ground,” while the Thin 

Elastic Layer acts between two parts, either on an interior boundary or on a pair.

A Spring Foundation is most commonly used for simulating boundary conditions with 
a certain flexibility, such as the soil surrounding a construction. Another important use 
is for stabilizing parts that would otherwise have a rigid-body singularity. This is a 
common problem in contact modeling before an assembly has actually settled. In this 
case a Spring Foundation acting on the entire domain is useful because it avoids the 
introduction of local forces.

A Thin Elastic Layer used as a pair condition can simulate thin layers with material 
properties that differ significantly from the surrounding domains. Common 
applications are gaskets and adhesives.

When a Thin Elastic Layer is applied on an interior boundary, it usually models a local 
flexibility, such as a fracture zone in a geological model.

The following types of data are defined by these nodes:

• Spring Data

• Loss Factor Damping

• Viscous Damping

S P R I N G  D A T A

The elastic properties can be defined either by a spring stiffness or by a force as function 
of displacement. The force as a function of displacement can be more convenient for 
nonlinear springs. Each spring node has three displacement variables defined, which 
can be used to describe the deformation dependency. These variables are named 
<interface_name>.uspring1_<tag>, <interface_name>.uspring2_<tag>, and 
<interface_name>.uspring3_<tag> for the three directions given by the local 
coordinate system. In the variable names, <tag> represents the tag of the feature 
defining the variable. The tag could, for example, be spf1 or tel1 for a Spring 
Foundation or a Thin Elastic Layer, respectively. These variables measure the relative 
extension of the spring after subtraction of any predeformation.
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In addition to explicitly supplying a spring stiffness, you can choose to enter elastic 
material data and the layer thickness. The spring stiffness is then computed internally, 
based on an assumption of plane strain conditions.

L O S S  F A C T O R  D A M P I N G

The loss factor damping adds a loss factor to the spring data above, so that the total 
force exerted by the spring with loss is

where fs is the elastic spring force, and  is the loss factor.

Loss factor damping is only applicable for eigenfrequency and frequency-domain 
analysis. In time-dependent analysis the loss factor is ignored.

V I S C O U S  D A M P I N G

It is also possible to add viscous damping to the Spring Foundation and Thin Elastic 
Layer features. The viscous damping adds a force proportional to the velocity (or in 
the case of Thin Elastic Layer: the relative velocity between the two boundaries). The 
viscosity constant of the feature can be made dependent on the velocity by using the 
variables named <interface_name>.vdamper1_<tag>, <interface_name>
.vdamper2_<tag>, and <interface_name>.vdamper3_<tag>, which contain the 
velocities in the three local directions.

fsl 1 i+ fs=

Bracket — Spring Foundation Analysis: Application Library path 
Structural_Mechanics_Module/Tutorials/bracket_spring

Spring Foundation and Thin Elastic Layer
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De f i n i n g  Mu l t i p h y s i c s  Mode l s

The following modeling tips are about how to define multiphysics models. A good 
place to start reading is in Building a COMSOL Multiphysics Model in the COMSOL 
Multiphysics Reference Manual.

In this section:

• Thermal-Structure Interaction

• Acoustic-Structure Interaction

• Thermal-Electric-Structural Interaction

Thermal-Structure Interaction

The Thermal Stress, Solid Interface included with this module has a predefined 
one-way approach for thermal-structure interaction (thermal stress), which combines 
a Solid Mechanics interface with a Heat Transfer interface from the Heat Transfer 
Module or COMSOL Multiphysics.

There are also similar multiphysics interfaces available for thin structures, as described 
in The Thermal Stress, Shell Interface, The Thermal Stress, Membrane Interface, and 
The Thermal Stress, Layered Shell Interface. The latter requires the Composite 
Materials Module.

By default, COMSOL Multiphysics takes advantage of the one-way dependence and 
solves the problem sequentially using the segregated solver. The solution for the 
temperature is separated from the stress-strain analysis, which then uses the computed 
temperature field from the heat transfer equation.

Using a single iteration in the segregated solver does not produce a 
correct result if there are thermal properties that depend on the 
displacements. Examples are when a heat source causes mechanical losses 
(damping) in the material or when thermal contact is present.
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Acoustic-Structure Interaction

When the Structural Mechanics Module is used together with an acoustics physics 
interface from the Acoustics Module, it is possible to model a wide range of 
acoustic-structure interaction problems.

Thermal-Electric-Structural Interaction

The Joule Heating and Thermal Expansion Interface enables 
thermal-electric-structural interaction. This is a combination of three physics 
interfaces: Solid Mechanics, Heat Transfer in Solids, and Electric Currents.

The thermal-electric coupling is bidirectional, with Joule heating and 
temperature-dependent electrical properties, while the temperature coupling to the 
Solid Mechanics interface is unidirectional.

There are several physics interfaces available that are documented and 
described in the Acoustic-Structure Interaction Interfaces chapter in the 
Acoustic Module User’s Guide

• The Acoustic-Solid Interaction, Frequency Domain Interface

• The Acoustic-Solid Interaction, Transient Interface

• The Acoustic-Piezoelectric Interaction, Frequency Domain Interface

• The Acoustic-Piezoelectric Interaction, Transient Interface

• The Solid Mechanics (Elastic Waves) Interface

• The Elastic Waves, Time Explicit Interface

• The Poroelastic Waves Interface

• The Acoustic-Solid-Poroelastic Waves Interaction Interface

• The Acoustic-Poroelastic Waves Interaction Interface

• The Acoustic-Shell Interaction, Frequency Domain Interface

• The Acoustic-Shell Interaction, Transient Interface

• The Thermoviscous Acoustic-Solid Interaction, Frequency Domain 
Interface

• The Thermoviscous Acoustic-Shell Interaction, Frequency Domain 
Interface
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By default, COMSOL Multiphysics takes advantage of the one-way dependence and 
solves the problem sequentially using the segregated solver. Temperature and electric 
potential are solved using a coupled approach and then the stress-strain analysis uses 
the computed temperature field from the heat transfer equation.

Using a single iteration does not produce a correct result if there are 
thermal properties or electrical that depend on the displacements, making 
the thermal-structure part into a bidirectional coupling.
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Th e rma l l y  C oup l e d  P r ob l em s

A wide class of structural mechanics problems are related to effects of variations in 
temperature. In this section various such effects are discussed.

Temperatures can either be computed using another physics interface, usually Heat 
Transfer in Solids, or directly be prescribed in the input for the various physics nodes.

In this section:

• Temperature-Dependent Material Data

• Thermal Expansion

• Constraints and Thermal Expansion

• Thermoelastic Damping

Temperature-Dependent Material Data

Many material properties, such as Young’s modulus, coefficient of thermal expansion, 
and yield stress, can have a significant dependence on temperature. In many cases, 
materials supplied in the material libraries and databases have such dependencies 
incorporated.

If a material property under the Materials branch has a temperature dependence, you 
have to input the temperature to be used in the Model Input section in the settings 
window for the node in the physics interface that references the property. It is possible 
that not all aspects of a material are defined in the same node in the Model Builder tree. 
For example, if a problem is run with thermal expansion and plasticity, then:

• Young’s modulus, Poisson’s ratio, and mass density are given in the Linear Elastic 
Material node.

For information about the predefined coupling between the Solid 
Mechanics and Heat Transfer in Solids interfaces, see The Thermal Stress, 
Solid Interface.

Materials in the COMSOL Multiphysics Reference Manual
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• Yield stress and hardening function are given in the Plasticity node.

• Coefficient of thermal expansion is given in the Thermal Expansion (for Materials) 
subnode.

For each of these nodes, there is a Model Input section in the Settings window. Some 
of these sections may be empty if none of the properties given in that node have a 
temperature dependence. In general, you have to supply the temperature in all the 
Model Inputs sections.

As a default, the value of the temperature T is obtained from a Common model input. 
You can also select User defined to enter a value or expression for the reference 
temperature locally. This can be done either by explicitly giving a temperature or by 
selecting a temperature variable from another physics interface.

U S I N G  C O M M O N  M O D E L  I N P U T

When the option Common model input is selected in a physics node, you can see or 
modify the value actually used by clicking the Go To Source button ( ). Doing that 
will move you the node in the Model Builder that is defining the value of the property. 
That location can be:

• The Default Model Inputs node under Global Definitions

• A Model Input node under Definitions->Shared Properties in the current component

If you want to create a model input value which is local to your current selection, click 
the Create Model Input button . This will create a new Model Input node under 
Definitions->Shared Properties in the current component, having the same selection as 
in the current node.

M A S S  D E N S I T Y  A N D  V O L U M E  R E F E R E N C E  T E M P E R A T U R E

All structural mechanics interfaces are formulated on the material frame. This means 
that the equations of motion are written for a certain volume in its initial configuration.

The Plasticity node is available as a subnode to the Linear Elastic Material 
node when you have either the Nonlinear Structural Materials Module or 
the Geomechanics Module.

See also Default Model Inputs and Model Input in the COMSOL 
Multiphysics Reference Manual.
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The preservation of mass requires that the mass density is constant. In a structural 
mechanics problem this means that the mass density must not change. If you are using 
a material in which the density has a temperature dependence, you must specify a 
specific temperature at which the value is evaluated. This is the volume reference 
temperature. Conceptually, you can consider this as the temperature at which the 
domain has the size in which it is drawn. In practice, the choice of reference 
temperature is seldom an issue, unless your application requires extreme precision. The 
density of a solid material has a rather slow variation with temperature, so in most cases 
it is sufficient to use room temperature as reference.

If any material in the model has a temperature-dependent mass density, the Volume 

reference temperature list will appear in the Model Input section of the material settings. 
As a default, the value of Tref is obtained from a Common model input. You can also 
select User defined to enter a value or expression for the reference temperature locally.

All effects of volume change with temperature are incorporated through the thermal 
expansion effects.

Thermal Expansion

As the temperature changes, most materials react by a change of volume. For a 
constrained structure, the stresses that evolve even with moderate temperature changes 
can be considerable. The volume change can be represented a thermal strain th, 
which produces stress-free deformations. For a linear elastic material, the constitutive 
law is

See also

• Using Common Model Input.

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.

 C  th– =
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In the computations, the thermal expansion appears as a load, even though it formally 
is a part of the constitutive relations.

T E M P E R A T U R E  D E P E N D E N C E  O F  T H E  T H E R M A L  E X P A N S I O N  

C O E F F I C I E N T

When performing an analysis over a larger range of temperatures, you often need to 
consider the temperature dependence in the values of the thermal expansion 
coefficient itself.

As long as you are using materials from the COMSOL Material Library, everything is 
handled internally. When you want to enter data from your own measurements or from 
the literature, you do, however, need to be aware of some details in the definitions 
used.

Tangent or Secant Data
Thermal expansion coefficients can appear in two forms: tangent and secant.

The tangent form states that the increment in length is

 (2-29)

where t is the tangential thermal expansion coefficient. This form, which is the 
thermodynamic definition, is conceptually simple, because t is uniquely defined at 
each temperature. It is, however, less convenient to use in practice because an 
integration is required for determining the actual change in length for a finite 
temperature difference.

The secant formulation, which is the default in COMSOL Multiphysics, is often used 
in engineering:

In the secant formulation, the actual values of  will however depend on the choice of 
reference temperature, Tref, at which the material has the reference length L0:

You can include thermal expansion in a model either by adding a Thermal 
Expansion (for Materials) subnode to the chosen material, or by using the 
Thermal Expansion.

dL
L

-------- t T dT=

L
L0
--------  T T=
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Converting from Tangent Form to Secant Form
Equation 2-29 can be integrated, giving

 (2-30)

Define

Thus,

giving the secant thermal expansion coefficient as

For most materials and temperature ranges , which makes it possible to 
approximate with the simpler expression

 (2-31)

If you have access to tangent data, you can choose between two different methods for 
using them in COMSOL Multiphysics:

• In most of the physics interfaces, you can enter tangent data directly by selecting 
Tangent coefficient of thermal expansion in the settings for Thermal Expansion. When 
using this option, a numerical integration of Equation 2-30 will be performed each 

L
L0
--------  T,Tref  T Tref– =

L
L0
------ 
 ln t

Tref

T

  d=

I T,Tref  t

Tref

T

  d=

L
L0
-------- L

L0
------ 1– e

I T,Tref 
1–= =

 T,Tref  e
I T,Tref 

1–
T Tref– 

---------------------------------=

I T,Tref  1«

 T,Tref 
I T,Tref 
T Tref– 

-------------------------=
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time the thermal strain is used. This will have a negative impact on the performance, 
when compared to using a secant coefficient of thermal expansion.

• Precompute the expression in Equation 2-29 externally for the intended range of 
temperatures. This can for example be done in a spreadsheet program. Enter the 
computed result as a function, which is then used as any other secant temperature 
dependent thermal expansion coefficient.

Thermal Expansion Coefficient Dependence on Reference Temperature
Letm(T) be the temperature-dependent function that represents the measured values 
of the secant thermal expansion coefficient. The change in length of a sample at a given 
temperature T with respect to the sample’s original length at a temperature Tm is called 
dilation.

Note that by definition, the dilation at T = Tm is zero, so Tm denotes the strain-free 
state of the material as far as the measured values of m(T) is concerned. Denote the 
length of the sample at a temperature T as L(T) and the strain-free length as 
L0 = L(Tm). The dilation can be then expressed as LTL(Tm. Using the definition 
of the secant coefficient of thermal expansion, L(T) can be written as:

 (2-32)

When using the measured data, it is possible that the strain-free state occurs at a 
temperature Tref which differs from Tm. The dilation at any temperature T would then 
be defined as LTL(Tref, where L(Tref) can be written as.

 (2-33)

As a result of this shift in the strain-free temperature, it is necessary to redefine the 
thermal expansion coefficient so that L(T) and L(Tref) can be related using 
Equation 2-32 but with Tm replaced by Tref.

When using Tangent coefficient of thermal expansion, the integrate 
operator is used. It is called with the two integration limits being the 
reference temperature <phys>.Tref and the current temperature <phys>
.T, where <phys> is the tag of the physics interface. If you define the 
expression for the coefficient of thermal expansion yourself, you must 
ensure that it depends on a ‘free’ variable, and not use the same 
temperature variable as you use to prescribe the current temperature 
<phys>.T.

L T  1 m T  T Tm– + L Tm =

L Tref  1 m Tref  Tref Tm– + L Tm =
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 (2-34)

Here r(T) is the redefined thermal expansion coefficient, based on Tref. It can be 
derived from the relations above. Using Equation 2-32 and Equation 2-34 there are 
two ways of writing the current length L(T), so that

 (2-35)

Equation 2-33 makes it is possible to eliminate L(Tref) and L(Tm) from 
Equation 2-35, and after some algebra r(T) can then be written as

 (2-36)

Representation in COMSOL Multiphysics
Most materials listed in the material libraries and databases available with COMSOL 
Multiphysics and its add-on products contain a function for the measured 
temperature-dependent thermal expansion coefficient curve. You can find this from 
the Materials branch, as shown in Figure 2-19. The Piecewise function named 
alpha_solid_1 is the measured thermal expansion coefficient m(T).

The Material Contents section in Figure 2-19 shows the material property alpha, 
which is the redefined thermal expansion coefficient r(T). The complete expression 
for alpha is as follows:

(alpha_solid_1(T[1/K])[1/K]+(Tempref-293[K])*
if(abs(T-Tempref)>1e-3,(alpha_solid_1(T[1/K])[1/K]
-alpha_solid_1(Tempref[1/K])[1/K])/(T-Tempref),
d(alpha_solid_1(T[1/K]),T)[1/K]))/
(1+alpha_solid_1(Tempref[1/K])[1/K]*(Tempref-293[K]))

This is essentially Equation 2-36, but with a small modification to avoid problems if 
T=Tref.

L T  1 r T  T Tref – + L Tref  =

1 r T  T Tref – + L Tref   1 m T  T Tm– + L Tm =

r T 
m T  Tref Tm– 

m T  m Tref –

T Tref–
-----------------------------------------------+

1 m Tref  Tref Tm– +
------------------------------------------------------------------------------------------------------=

Using Functions in Materials in the COMSOL Multiphysics Reference 
Manual
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Figure 2-19: An example in COMSOL Multiphysics showing the Materials branch and 
where to find the temperature-dependent thermal expansion coefficient.

In the definition of alpha (to be more specific: <material_tag>.def.alpha) in 
COMSOL Multiphysics, Tm is set as 293 K and Tref is obtained from the variable 
Tempref, which typically fetches its value from the physics interface.

Using Your Own Material Data
If you use our own material data in COMSOL Multiphysics (via an interpolation or 
any other function), you can still copy-paste the built-in expression for alpha into your 
New Material. You just need to:

• Replace the function name alpha_solid_1(T[1/K])[1/K], with the function 
name that you have assigned to the temperature-dependent measured thermal 
expansion coefficient and use the correct temperature units.

r(T)

m(T)

Take care when describing the units. Temperature unit conversions can be 
the cause of subtle errors because of the shift in zero-point value. Use 
kelvin (K) as the temperature unit to the largest possible extent. As an 
alternative, you can use the other absolute temperature scale, Rankine 
(R). Avoid using Fahrenheit and Celsius unless you are completely 
familiar with how the temperature unit conversion works.
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• Ensure that the value of Tm is changed from 293 K to the actual value of 
temperature that was used as the strain-free temperature to compute m(T) in the 
function that you created.

Constraints and Thermal Expansion

When a structure is undergoes thermal expansion, the fact that the motion is restricted 
by constraints will in general cause stresses. There are three types of such effects:

• The global expansion is restricted by constraints at different locations, so that 
internal forces are introduced throughout the structure.

• At a boundary that is constrained, local stresses can appear if the boundary is not 
free to expand in the tangential direction.

• Internally, the same type of local constraint effects will be caused by rigid objects, 
such as Rigid Material.

In many cases, not only the structure which actually is modeled deforms due to the 
changes in temperature, but also the surroundings (which are approximated by 
constraints) will deform. You can take this effect into account by adding a Thermal 

Expansion subnode to the constraints. The constraints will then provide an extra 
displacement based on a given temperature field. For thermal strains, which have a 
simple variation in space (for example, linear temperature variations), it is possible to 
completely offset the constraint stresses using this method. For more general cases, the 
stresses caused by the constraint can be significantly reduced.

The thermal expansions of the constraints are independent of that of the material in 
the adjacent domain, so that the surrounding structure can be made from another 
material, or have a different temperature distribution.

User-Defined Materials and Libraries in the COMSOL Multiphysics 
Reference Manual
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You can, however, also inherit temperature and thermal expansion coefficient from the 
domain being constrained. This is useful for the common case that the temperature 
and materials are the same over the modeled structure body and its surroundings.

Thermoelastic Damping

In most engineering problems, the coupling between temperatures and structural 
problems can be considered as unidirectional. Only the thermal expansion is 
considered.

The opposite effect, where changes in stress cause heat generation, may be important 
in small structures vibrating at high frequencies. The Thermoelasticity interface, 
available with the MEMS Module, is designed for analyzing such problems.

It is also possible to take this effect into account by adding the Thermoelastic Damping 
node to the Heat Transfer in Solids interface. When you add a Thermal Expansion node 
to a material in the Solid Mechanics interface, the heat source term is computed and 
made available to the Heat Transfer in Solids interface.

When you add a Thermal Expansion node under the Multiphysics Couplings branch, it is 
possible to select whether the thermoelastic damping effect should be taken into 
account or not. The heat source contribution is then included automatically without 
adding any data in the heat transfer interface.

The spatial variation of the temperature and coefficient of thermal 
expansion must be explicit functions of the material frame coordinates. It 
is not possible to use a computed temperature distribution for the thermal 
expansion of the constraints.

• Thermal Expansion (for Constraints)

• Thermal Expansion of Constraints in the theory section.

For an example showing how to relive the stress at constraints in a heated 
structure, see Thermal Expansion in a MEMS Device: Application 
Library path Structural_Mechanics_Module/Thermal-Structure_Interaction/

thermal_expansion.
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In either case, the heat source term is only present when Structural Transient Behavior 
is set to Include inertial terms.

See also

• Entropy and Thermoelasticity

• Thermal Expansion (for Materials)

• The Fluid-Solid Interaction Interface
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F l u i d - S t r u c t u r e  I n t e r a c t i o n

Fluid-structure interaction (FSI) involves several phenomena where a solid structure 
and a fluid interact with each other. The interaction has three possible components, 
which can be more or less important:

• The pressure and viscous forces in the fluid provides a load on the boundary of the 
solid. Usually, the pressure is dominant.

• The deformation of the structure changes the geometry of the fluid domain.

• The fluid sees the structure as a moving wall, which imposes a velocity at the 
interface.

You can model FSI with four different structural mechanics interfaces: Solid 
Mechanics, Multibody Dynamics, Shell, and Membrane. The fluid-flow can be 
modeled with any domain-level physics interface from the Single-Phase Flow group and 
the Two-Phase Flow groups under Multiphase Flow.

Deforming Fluid Domains

When a fluid-structure interaction multiphysics interface is added using the Model 

Wizard, a Deforming Domain node can be added automatically in the Model Builder under 
the Definitions node. This is the case for the following interfaces:

• Fluid-Solid Interaction

• Fluid-Shell Interaction

• Fluid-Membrane Interaction

• Fluid-Multibody Interaction

• Fluid-Multibody Interaction, Assembly

The Deforming Domain node is, however, not added for multiphysics interfaces denoted 
‘Fixed Geometry’, which are intended for cases where the deformation of the fluid 
domains is small everywhere.

A deforming domain represents domains and boundaries where the mesh can deform. 
By default, the Deforming Domain node has an empty selection. You can then select any 
fluid domain. However, this is only needed if the geometry of such a domain 
experience significant changes due to the deformation or rotation of the adjacent solid 
domains. Otherwise, the moving mesh computations could introduce unnecessary 
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overhead and nonlinearity in the model (see Deformed Mesh Fundamentals). 
Domains selected in the Solid Mechanics interface are not applicable. The 
deformations of the solid parts are handled in the formulation of the Solid Mechanics 
interface.

Under the Deforming Domain, you can also choose the Mesh smoothing type, by default 
set to Hyperelastic. More information of the smoothing type can be found in 
Deforming Domain chapter in the COMSOL Multiphysics Reference Manual

By default, the mesh is free at all external boundaries of the geometry, and it follows 
the solid boundaries at the solid-fluid interfaces. You can also add other types of 
boundary conditions for the mesh motion; for details, see Deformed Geometry and 
Moving Mesh in the COMSOL Multiphysics Reference Manual.

Union or Assembly

In most cases you model FSI problems so that the geometry sequence is set up to form 
a union, and the same multiphysics coupling, Fluid-Structure Interaction, is used 
irrespective of the type of structural mechanics interface. This coupling will 
automatically find all boundaries that are shared between the structure and the fluid.

There are, however, cases where the assembly mode must be chosen, particularly when 
having mechanisms, as is common in the Multibody Dynamics interface. In that case, 
the interface between the solid and the fluid is no longer formed by a common 
boundary. Rather, it consists of two boundaries, located at the same place in space. 
These boundaries will in general slide with respect to each other. To model this, you 
use the Fluid-Structure Interaction, Pair multiphysics coupling. You must create 
appropriate pairs containing the boundaries from both types of physics under 
Definitions, and manually select them in the Fluid-Structure Interaction, Pair node.

U N I O N  —  F L U I D - S T R U C T U R E  I N T E R A C T I O N

When using Fluid-Structure Interaction, the spatial frame also deforms with a mesh 
deformation that is equal to the displacements u_solid of the solid within the solid 
domains. The mesh is free to move inside the fluid domains, and it adjusts to the 
motion of the solid walls. This geometric change of the fluid domain is automatically 
accounted for in COMSOL Multiphysics by the ALE method.

If no domains are selected in the Deforming Domain node, a fixed 
geometry case is solved.
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A S S E M B L Y  —  F L U I D - S T R U C T U R E  I N T E R A C T I O N ,  P A I R

The Fluid-Structure Interaction, Pair coupling does not automatically transfer the mesh 
deformation at the interface from structural displacements.

For the moving mesh, you must specify the deformation of the mesh manually. Add a 
Prescribed Mesh Displacement node under the Moving Mesh node, in which you give the 
structural displacement as the mesh displacement expression. The variables for the 
displacement in the structure is provided by the multiphysics coupling.

Contact and FSI

Sometimes the structural deformations are so large that objects may come into contact 
with each other with the fluid being squeezed in between. Modeling contact together 
with FSI requires some special considerations. The mesh in the fluid domain may 
deform, but the topology remains the same — a fluid domain cannot be split into two. 
If you are to model a valve or a similar structure, then the two solid parts cannot come 
exactly into contact.

By adding an offset in the settings for the Contact node, you can force the two sides of 
the solid to experience contact at some distance before they meet in the geometrical 
sense. This approach only will, however, leave a thin channel through which the fluid 
can pass. The reduction in flow may be sufficient, but you can block it even further by 
increasing the viscosity in the channel when the gap is closed. To do that, you can, for 
example, compute the minimum gap anywhere in the contact pair, and then make the 
viscosity a function of it. Another option is to compute the wall distance in the fluid 
from both sides of the contact pair and use that information to modify the viscosity. 
Do not increase the viscosity more than a couple of orders of magnitude, to avoid 
numerical problems.

In configurations where you more or less completely cut off the whole flow, you must 
pay particular attention to your boundary conditions. A prescribed flux will cause an 
extreme pressure build-up upstream of the valve and thus unrealistically large forces on 
the structure.

The variable names to use have the form <tag>.u_solid, <tag>
.v_solid, and <tag>.w_solid, where <tag> is the tag of the 
multiphysics coupling, for example fsip1.
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One-Way FSI

For some fixed geometry FSI problems, you can consider the coupling as being 
unidirectional. One physics interface affects the other, but it is not reciprocal. Typical 
examples are when the fluid slightly deforms the structure, or when small structural 
vibrations modify the fluid flow. In this case, it is not necessary to compute the solution 
with both physics interface solved together. It is more efficient to first solve for the 
governing physics interface only, and then the other one with results from the first as 
input. To solve such a problem sequentially, you need to create a study configuration 
manually, with one study step for each physics interface. The governing physics 
depends on the coupling type. For the case of fluid loading on a structure, the 
governing physics is the fluid one. For the case of velocity transmission to a fluid, the 
governing physics is the solid one.

Below are the steps to follow to compute a one-way FSI problem sequentially:

1 In the study step settings windows, under the Physics and Variables Selection section, 
clear the physics that is solved in the second step, so that only the governing physics 
is selected.

2 Add a second study step to the study and in the settings windows make sure you 
have the governing physics cleared.

If the selected study steps are of stationary type, you can generate the default solver 
configuration, edit it if necessary, and compute the solution. The mapping of the 
solution from the first to the second study step is done automatically.

In case of a transient problem, continue with the steps below:

3 In the second study step settings window, expand the section Physics and Variables 

Selection. Under Initial values of variables solved for make sure the settings are 
defined as in the table below:

Deformed geometry FSI, or fixed geometry fully coupled FSI, should not 
be solved using a one-way approach.

Settings User controlled

Method Solution

Study <previous study step>

Selection First
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4 Under Values of variables not solved for define the settings as in the table below:

In the case of a fluid loading to structure coupling type, the structural mechanics 
problem can be treated as quasistatic. This can be handled by running the structural 
analysis as a parametric sweep over a number of static load cases, where time is used as 
the parameter.

Settings User controlled

Method Solution

Study <previous study step>

Selection All

For an example of one-way FSI using a quasistatic structural analysis, see 
Fluid-Structure Interaction in a Network of Blood Vessels: Application 
Library path Structural_Mechanics_Module/Fluid-Structure_Interaction/

blood_vessel.
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Componen t  Mode S y n t h e s i s

Introduction

Component mode synthesis (CMS) is a family of procedures in which one or more 
parts of a finite element model are represented by a small reduced-order model 
(ROM). There are several possible algorithms through which such a reduction can be 
made. In COMSOL Multiphysics, the popular Craig–Bampton method is used for 
model reduction with a dual assembly technique to ensure compatibility between 
components.

The reduced component is sometimes called a dynamic substructure. Essentially, it 
contains small mass, damping, and stiffness matrices, tuned so that it can represent the 
static stiffness, as well as a set of important eigenmodes and the inertia of the original 
component. An important assumption is that the reduced structure is linear.

The reduced component accounts for the constraints applied on the component. It can 
also contain, for example, information about loads applied to the component prior to 
model reduction.

Since the reduced components only have a small number of degrees of freedom (often 
of the order of 10-100), they are computationally more efficient than the original full 
FEM components. To create a reduced component, it is necessary to both perform an 
eigenfrequency analysis and to solve for a number of static load cases. These studies 
are, however, computed at the component level, and are thus usually computationally 
much cheaper than analyzing the full model.

COMSOL Implementation

The Component Mode Synthesis (CMS) technique is currently implemented in the 
Solid Mechanics, Shell and Multibody Dynamics interfaces. You use the Reduced 

For general information on reduced-order modeling and model 
reduction, see also

• Reduced-Order Modeling

• Model Reduction

in the COMSOL Multiphysics Reference Manual.
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Flexible Components node in either of these interfaces to control the generation and use 
of such reduced components.

Reduced components are connected to each other and to nonreduced parts of the 
model through Attachment features. It means that all physics features that can access 
an attachment can be used to connect the reduced components. The most common 
option is to use joints, but there are other alternatives, such as Spring-Damper, or 
bearing foundations in the rotordynamics interfaces.

The global model can consist of either a set of reduced components, or a mix of 
ordinary FE discretized domains and reduced components. The reduced components 
can be used as linear parts in an otherwise nonlinear model.

A requirement to be able to create a valid reduced component is that its underlying 
physics is linear with regards to material models, the strain formulation, and other 
possible contributions such as springs and loads

You can compute all type of results and visualize reduced components just as if they 
are ordinary domains in your model. One important property of the reduced 
component is that only the results for the reduced set of degrees of freedom are stored. 
It means that for time-dependent studies with many time steps, the file sizes can be 
reduced by orders of magnitude.

Applications

Some examples of applications of the CMS reduction technique include:

• In multibody dynamics models, you usually have a number of physical components, 
coupled by joints. The ultimate reduction is then to use rigid domains. When it is 
necessary to take the flexibility of a component into account, using a reduced 
flexible component is attractive.

COMSOL Multiphysics always forces a geometrically linear formulation 
on selections that intersect that of a Reduced Flexible Components node.

When using a reduced component in the global model, the connection to 
nonreduced parts must be such that the deformation of the reduced 
component is limited to small rotations and small strains.
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• In rotordynamics, it is common that the foundation supporting the rotor must be 
part of the analysis. Such a foundation will almost invariably have linear properties. 
It is then well suited to be considered as a reduced flexible component. This can 
greatly reduce the number of the degrees of freedom in the rotordynamic analysis, 
which is often computationally heavy.

• In many situations, only a smaller part of a model is nonlinear. It is then possible to 
reduce the linear parts once and for all, and then iterate on a much smaller nonlinear 
system of equations. For this to be feasible, it must however be possible to dissect 
the structure in a way that can be represented by attachments.

Working With CMS Models

C R E A T I N G  R E D U C E D  C O M P O N E N T S

A reduced component can be created in an applicable physics interface by adding a 
Reduced Flexible Components node, in which you select all domains that are to be 
reduced, as shown in Figure 2-20. Subsequently, one Component Definition subnode 
should be added for each set of domains for which a reduced-order model (ROM) is 
to be generated. By default, this step is automated and the selected domains are 
grouped into disconnected components as detected from the geometry. With this 
setting, a number of Component Definition subnodes are created and their selections are 
set automatically. However, by setting Component definition to User defined in the 
Reduced Flexible Components node, you can take manual control of the geometric 
definition of the components by adding, removing, or modifying Component Definition 
nodes. In each such node, select a number of domains that defines a component. This 
may be necessary if domains are not physically adjacent, but connected by other means, 
for example, by springs.

By default, disconnected geometries connect by the Continuity and Thin Elastic Layer 
pair features are merged when automatically generating Component Definition 
subnodes. This also applies to Boundary to Boundary, Edge to Boundary, and Edge to 

Edge connection features in the Shell interface. The automatic handling of such 
connections can be disabled by clearing Include connections and pairs in component 

definition in the Reduced Flexible Components node.
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Figure 2-20: A Reduced Flexible Components node with two automatically generated 
Component Definition subnodes.

• If the components are geometrically disjoint, then Form Union should 
be used in the geometry sequence. If not, Form Assembly is probably a 
better choice, but then you may have to either create unions between 
domains that are part of the same components, or edit the settings in 
the Component Definition nodes manually.

• In the majority of cases, it is sufficient with one Reduced Flexible 

Components node per physics interface. If you, however, do not want to 
train all ROMs in one sweep, having a single Reduced Flexible 

Components node per actual component can be useful. Another case is 
if you decide to reduce one additional component after already having 
reduced one or several other components. Then, adding an additional 
Reduced Flexible Components node can be an alternative.
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A disconnected reduced component, as defined by a Component Definition subnode, 
can only be connected to other parts of the geometry by attachment features. In fact, 
to be able to create the ROM, each component must be connected to at least one 
Attachment node. By using attachments, a reduced component can be connected to 
any number of other parts, reduced or full, of the model assembly.

When working with CMS, the full static and dynamic behavior of a component is 
represented by a number constraint modes and constrained eigenmodes that are 
computed in the training phase. These are independent of each other and are used to 
construct one ROM for each component. Each Attachment node connected to a 
component will add a number of static load cases that describe the constraint modes: 
six in 3D, and three in 2D. The number of eigenmodes to be used is controlled 
manually. You can either define it for all components in the Reduced Flexible 

Components node, or individually in each Component Definition subnode. To get an 
accurate representation of the reduced component, always make sure to use a sufficient 
number of eigenmodes to describe the dynamics of each component. During the 
eigenfrequency training step, all attachments are treated as fixed constraints, hence, the 
eigenmodes are always constrained.

Note that, from a computational point of view, each eigenmode is represented as a 
degree of freedom when using the reduced component in a global analysis. For 
computational efficiency, you should avoid using unnecessarily many eigenmodes.

To create the ROMs, a special study sequence needs to be set up for each Reduced 

Flexible Components node. It should sweep over all Component Definition subnodes, and 
for each component, compute the static load cases and the requested eigenmodes in 
training study steps as outlined above. The results from these study steps are then used 
in a Model reduction step to generate a ROM. By using the Configure CMS Study ( ) 
button in the Reduced Flexible Components node, the set-up of this special study 

The Reduced Flexible Components node is only applicable on domains 
where the material behavior is determined by a Linear Elastic Material node 
or a Section Stiffness node in the Shell interface. You can, however, have 
several such nodes with different properties and settings within one 
reduced component.

See also Attachments.
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sequence is automated. In the model tree, a generated ROM is represented as a node 
with the label Reduced Component under Global Definitions as seen in Figure 2-21.

Figure 2-21: Nodes in the model tree that are added automatically when working with 
CMS.

• When a Reduced Flexible Components node is added, a set of parameters 
are also automatically added under the Global Definitions branch. These 
are placed in the CMS Parameters node seen in Figure 2-21, which is 
created by the first Reduced Flexible Components node in the model. 
Additionally, each Reduced Flexible Components node creates an explicit 
selection node with the label CMS Component (<tag>) in its model 
component. The parameters and selection are used in the 
corresponding CMS study and should therefore not be deleted or 
modified. As a safeguard, they are regenerated if missing when the 
Configure CMS Study ( ) action is executed.

• If you change the number of Component Definition nodes or add new 
features to the physics interface after setting up the CMS study and 
want to run it again, the safest option is to reconfigure the study by 
using the Configure CMS Study ( ) action. Note that this will delete 
any ROMs that have previously been generated. To save these in the 
model, you can temporarily change the name of the existing Reduced 

Component nodes under Global Definitions before reconfiguring the 
CMS study.
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A P P L Y I N G  L O A D S  T O  R E D U C E D  C O M P O N E N T S

Loads can be applied to a reduced component in two fundamentally different ways:

1 External to the ROM: In this case, the weak contribution of the load on the reduced 
component is part of the assembly procedure for the global FE model. This is the 
default choice and can handle any type of loads. It is, however, the computationally 
more expensive of the two methods.

2 Internal to the ROM: The load can either be constant or a function of a global 
reduced model input. In this case, the load is stored as part of the ROM.

Be careful not to mix up the two alternatives; doing so can lead to double load 
contributions. For this reason, option 1 is usually recommended. When the Configure 

CMS study ( ) button is used, all load type features are disabled in the study steps of 
the CMS study.

Figure 2-22: Loads are, by default, disabled in the model reduction study.

The advantage of option 2 is that it can be computationally cheaper in the global 
analysis, since any evaluation of weak equations in domains of the reduced component 
is avoided. To use this approach, enable the relevant load features in the reference 
study step to the Model Reduction study step in the CMS study. The same load features 
should then be disabled in all other studies. By selecting Include load contributions in 

Reduced Components in the Reduced Flexible Components node, you can change the 
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default behavior of loads when the Configure CMS study ( ) button is used. When 
selected, all loads are enabled in the study steps of the generated CMS study.

While conceptually similar to other load features, Linearly Accelerated Frame, Rotating 

Frame, Gravity, and Base Excitation are always considered as internal to the ROM and 
part of the reduced component. They are, by default, enabled in the CMS Study when 
using the Configure CMS study ( ) button. The reason is that they are considered to 
contribute to the acceleration of the frame. If necessary, use control inputs to 
parameterize, for example, the gravity vector or rotation speed.

T H E  C M S  S T U D Y

The CMS study is a parametric sweep over a set of components as defined by the 
Component Definition subnodes of a Reduced Flexible Components node with the aim to 
create one ROM for each component. The study is automatically generated by using 
the Configure CMS Study ( ) button in a Reduced Flexible Components node. The 
auto-generated study and solver sequences have a number of built-in features and 
settings that greatly simplifies the process of creating a reduced component; especially 
when there are multiple components to be reduced. The study sequence is shown in 
Figure 2-23 and consists of:

• A Parametric sweep over the components to be reduced

• A Stationary training study step to compute the constraint modes from the static 
load cases

• An Eigenfrequency training study step to compute the constrained eigenmodes

• A Model Reduction study step to generate the ROM. This step can either use a Time 

Dependent or Frequency Domain study step as a reference.

You can find an example of both approaches for load application in this 
tutorial model:

• Component Mode Synthesis Tutorial: Application Library path 
Structural_Mechanics_Module/Tutorials/cms_tutorial

• Component Mode Synthesis Tutorial: Application Library path 
Multibody_Dynamics_Module/Tutorials/cms_tutorial

• Component Mode Synthesis Tutorial: Application Library path 
MEMS_Module/Dynamics_and_Vibration/cms_tutorial
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Figure 2-23: The automatically generated CMS study.

Key to the CMS study is that all study steps are solved on a subset of the total model; 
the selection of the component. This is controlled in the Compile Equations nodes of 
the solver sequence. When using an auto-generated CMS study, the selections used are 
automatically updated during the sweep over components.

Running a CMS study creates a number of datasets in the Results branch as well as 
subnodes to the Reduced-Order Modeling node under Global Definitions.

• The Reduced Model Data datasets contains the solution that is used to create a ROM, 
including the constraint modes and eigenmodes. It also contains the matrices of the 
ROM, which can be inspected by using the System Matrix derived values node.

• Depending on the chosen reference study step during model reduction, Frequency 

Domain, Modal Reduced-Order Model or Time Dependent, Modal Reduced-Order Model 
nodes are created under Global Definitions. When created from a CMS Study, these 
are always created with a default label Reduced Component and names that are related 
to the generating study and physics. Moreover, the CMS study generates ROMs 
with a stateful interface, which is a requirement for it to connect to other parts of 
the model. You can use Model Control Inputs and other settings in the generated 
ROMs to modify their behavior when used in a global analysis.

If the global model is to be used in a frequency domain analysis, use a 
Frequency Domain study step as a reference during model reduction. If not, 
use a Time Dependent study step. Both steps are added by the Configure CMS 

study ( ) action, and can be enabled or disabled depending on the use 
case. By default, the Time Dependent study step is enabled.

Once the ROMs have been created, you can in principle delete the CMS 
study to clean up the model tree. In fact, you only need to keep the 
Reduced Flexible Components node and the generated ROMs under Global 

Definitions.
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S E T T I N G  U P  T H E  G L O B A L  M O D E L

Using ROMs created from a Reduced Flexible Components node and a CMS Study in a 
global model, in general, requires no further steps to be taken. The only requirement 
is that the states of the ROMs are solved together with the other dependent variables 
of the model. By default, the Solve for status of these ROMs are synchronized with the 
Solve for status of the generating physics in non-CMS studies, which takes care of this 
requirement.

One way to add more control over the behavior of a ROM is to add control inputs in 
Global Reduced Model Inputs under Global Definitions. These should be added to the 
model before solving the CMS study, and can be used in expressions in relevant physics 
nodes. After running the CMS study, you can modify the input expression for each 

Neither the names, nor the order of the list of ROMs in the Reduced-Order 

Modeling node under Global Definitions should be changed, as this will 
break the connection between the ROMs, the physics, and the reduced 
component. The automatic naming convention has the structure <rom>
_n_<feat>_<phys>_<i>, where <rom> is a generic tag for the generating 
ROM, <feat> is the tag of the Reduced Flexible Components node that 
generated the CMS study, <phys> is the physics tag, and <i> is a number. 
For example, the ROM of the first component in a Solid Mechanics 
interface is typically named rom1_n_rfc1_solid_1.

If all the domains of the physics interface are reduced, it is possible to turn 
off the synchronization of the Solve for status, since in such cases it is only 
necessary to solve for the states of the ROMs. By not solving for the 
dependent variables of the physics, it is made sure that no double 
contributions are added by, for example, load features. Clear the 
Synchronize ‘Solve for’ study setting for Reduced Components check box in 
the Reduced Flexible Components node to make this possible.
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added control input, either globally or individually in each of the generated Reduced 

Component nodes.

I M P O R T A N T  C O N S I D E R A T I O N S

A number of important considerations to be aware of when working with CMS and 
reduced components are listed below:

• Do not modify the content of automatically generated nodes in the model tree, such 
as the CMS Parameters node, and the CMS Component selection.

• Only zero-valued constraints can be applied to a reduced component. While it is 
fundamentally possible to apply constraints on a reduced component in a global 
analysis, the correct way is to apply them when generating the ROMs in a CMS 
study so that such constraints can be accounted for while computing constraint 
modes and eigenmodes. Later, constraints can be removed in all other studies. This 
is handled automatically for most such features including for example: 

- Fixed Constraint

- Prescribed Displacement

- Roller

- Symmetry

No constraint equations are added for these features on selections that intersect that 
of a Reduced Flexible Components node. For the Prescribed Displacement node and 
similar features, any non-zero values set for the constraint are, moreover, ignored in 
the CMS study.

• Attachment nodes can be used without a connection to other parts of the model to 
define additional static modes of the reduced component. Note that attachments by 
default induce a rigid boundary on its selection.

If you include a load in a reduced component, and enter a value or a 
parameter for its amplitude, then that load will have a constant value when 
the component is reused. If you want to be able to, for example, make that 
load time dependent, or to switch it off, then you define it using a control 
input.

For a more detailed discussion on how to work with ROM control inputs 
and their limitations, see Reduced-Order Model Inputs in the COMSOL 
Multiphysics Reference Manual.
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• Added Mass, Spring Foundation, and Thin Elastic Layer are special features that add 
either mass or stiffness to the reduced component, and can therefore be considered 
as part of its basic properties. By default, these are enabled in the CMS Study when 
using the Configure CMS study ( ) button. No mass nor stiffness is added in a 
global study on selections intersecting with that of a Reduced Flexible Components 
node.

• When working with CMS, the following subnodes to Linear Elastic Material and 
Section Stiffness are supported when creating reduced components:

- Thermal Expansion

- Hygroscopic Swelling

- Initial Stress and Strain

- External Stress

- External Strain

- Damping

- Fiber

All other subnodes are, by default, disabled in the CMS Study when using the 
Configure CMS study ( ) button. Some options in the supported features may, 
however, not be supported. For example, the External material option in External 

Strain is not supported with CMS.

• In the Damping subnode to Linear Elastic Material or Section Stiffness, the following 
Damping types are supported:

- Isotropic loss factor

- Anisotropic loss factor

- Loss factor

- Rayleigh damping

- Viscous damping

- Wave attenuation

When using the Configure CMS study ( ) button, the Damping subnode is disabled 
in the training steps to avoid complex eigenpairs, but active in the reference step to 
the model reduction. Any contributions are removed on selections that intersects 
with that of a Reduced Flexible Components node in a global study.

• Damping can also be added to reduced components by Spring Foundation, Thin 

Elastic Layer, and Low-Reflecting Boundary nodes. For these features, damping 
contributions are only added on selections intersecting with that of a Reduced 
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Flexible Components node in the reference step to the model reduction. No 
contributions are added in the training steps for such selections to avoid complex 
eigenpairs.

• Reduced components are by definition linear. Do not use any features that are 
nonlinear such as Creep, Damage, or Plasticity on the same selection as a Reduced 

Flexible Components node. Also, make sure not to induce nonlinearity by user 
defined expressions in features that are to be reduced. This also applies to boundary, 
edge, and point features adjacent to the domains selected in a Reduced Flexible 

Components node.

• It is not possible to compute dissipated energy due to for example damping on 
selections that intersect that of a a Reduced Flexible Components node. The Calculate 

dissipated energy setting is ignored for such selections.

• Certain features that add weak contributions on domain, boundary, edge, or point 
level should be used with care if their selections intersect that of a Reduced Flexible 

Components node. To get consistent results and avoid double contributions, it may 
be necessary to manually disable some features in the model tree of the training 
study step of a generated CMS study, or in the global study that uses a ROM. 
Examples of such features, other than loads, include Weak Contribution. By default, 
these are disabled in the CMS Study when using the Configure CMS study ( ) button.

• Most features that add global dependent variables are not applicable together with 
reduced components. The reason is that it is difficult to automatically determine to 
which part of the model such variables belong. Hence, do not use features such as 
Average Rotation, Rigid Body Contact, Rigid Connector, Prescribed Velocity, or Point 

Load, Free when setting up reduced components. By default, all such features are 
disabled in the CMS Study when using the Configure CMS study ( ) button. The only 
exception is the Attachment feature which is specially designed to work with reduced 
components.

• Features and functionality that add dependent variables which are expected to have 
a significantly different order of magnitude compared to the displacements should 
be used with caution when creating reduced components. The reason is that such 
DOFs can corrupt the scaling of the eigenvectors used to train the ROM during 
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model reduction, which in the end will result in a inaccurate ROM. Examples of 
functionality that may cause this are:

- The Pressure mixed formulation in Linear Elastic Material

- The Flexible connection type in Attachment nodes

- The Lagrange multipliers added by weak constraints

If such functionality must be used, you can try to manually adjust the scaling of the 
eigenvectors by changing the Maximum absolute value in the Eigenvalue Solver of the 
CMS Study. Another alternative is the try setting Scaling of eigenvectors to Mass Matrix.

• Translating or rotating a ROM is not supported. Hence you cannot use a single 
ROM to represent multiple reduced components.

• Import of ROMs created in another COMSOL Multiphysics model or any external 
software is not supported for reduced components.
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Compu t i n g  Ma s s  P r op e r t i e s

In structural mechanics analysis, especially when modeling dynamic problems, the 
mass properties of a structure or its part can be an important aspect of the design. To 
compute such mass properties, you can use Mass Properties node, which can be added 
under Component>Definitions>Physics Utilities. There, you can select the geometry 
domains to be included into the computations and select physics interfaces that will 
define the mass properties. You can add and configure several mass property 
contributions if needed.
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Volume, mass, center of mass, and moments of inertia will be computed. They will 
become available as predefined variables, which you find in the Equation View node’s 
settings window under the corresponding Mass Properties node.

Besides for postprocessing purposes, you can also use these variables in any 
user-defined expressions, user inputs, and in optimization criteria.

Structural mechanics interfaces contribute to the mass properties in several ways:

• All material models, including Rigid Material, define mass density contributions.

• Added Mass nodes for all geometric entity levels can also contribute with added mass 
density. It is possible to suppress the contribution from an Added Mass node by using 
the Exclude contribution check box in the Frame Acceleration Forces section.

• Point Mass nodes contribute both with mass and with the specified mass moment of 
inertia. It is possible to suppress the contribution from a Point Mass node by using 
the Exclude contribution check box in the Frame Acceleration Forces section.

• The Hygroscopic Swelling nodes, which can be added to most material models for all 
structural elements, can use the moisture content as an extra mass density 
contribution.
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• Rigid Material and Rigid Connector can contribute directly to the total mass properties 
via their Mass and Moment of Inertia subnodes.

• Structural elements like beams and shells take their true geometrical dimensions into 
account when contributing to the mass properties. As an example, a beam 
contributes to the rotational inertia around its axis, even though the geometrical 
model is only an edge. The beam cross-section properties are used to compute the 
data.

The mass properties can be computed on both initial geometry (material frame) and 
deformed geometry (spatial frame). The results may differ considerably in case of large 
deformations. To compute the results in the undeformed geometry, you do not have 
to perform the whole analysis; it is sufficient to choose Get Initial Values under the Study 
node. To obtain the mass properties in the deformed configuration, you need to the 
full analysis, so that the displacement results are available.

In the COMSOL Multiphysics Reference Manual:

• Mass Properties

• Studies and Solvers

• Derived Values, Evaluation Groups, and Tables
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E f f e c t i v e  P r op e r t i e s  o f  P e r i o d i c  
S t r u c t u r e s

Sometimes you need to model on different scales. The heterogeneous properties of a 
material in the microscopic scale are often unfeasible to use directly on a macroscopic 
scale, in which a structure is typically analyzed. In such a case, you typically want to use 
a homogeneous material model with appropriately averaged properties.

The Cell Periodicity feature facilitates the evaluation of such average properties. It is 
based on the idea of a representative volume element (RVE). The RVE is a domain 
that is representative for the material on a microscopic scale.

If the material is truly periodic, an RVE is typically identified as the smallest possible 
unit cell. If the material has a random distribution of, for example, porosities, the RVE 
should be large enough to be representative for the average properties of the material 
on a macroscopic scale.

The only requirement on the shape of the RVE is that it should be possible to fill space 
with a repetitive pattern of RVEs. This means that there are a set of matching boundary 
pairs, each pair having the same geometry, but offset by a given distance.

RVE Modeling Using the Cell Periodicity Node

To model an RVE, you add the domain feature Cell Periodicity, and select the domains 
representing the RVE. For each pair of matching boundaries, add a Boundary Pair 
subnode, and select the boundaries.

In principle, there is no limitation on the physics features you can use for modeling the 
RVE, as long as the basic assumptions about periodicity are not violated. You should, 
however, not add any displacement constraints because the possible rigid-body 
motions are automatically constrained by the Cell Periodicity node.

M E S H I N G

The accuracy of the analysis is significantly better if each pair of matching boundaries 
has the same mesh. Mesh the boundaries before the domains, and use Copy Face to 
ensure that the boundary meshes match.

If you decide to use a nonmatching mesh, then the stress disturbances can be reduced 
by using a weak form of the periodicity constraints.
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H O M O G E N I Z E D  M A T E R I A L  P R O P E R T I E S

Two different types of material properties can be automatically evaluated using the Cell 

Periodicity node. With the Free Expansion periodic condition, you can calculate the 
homogenized material properties related to the free expansion of the RVE when 
exposed to a variation in temperature or moisture concentration — that is, the 
averaged coefficient of thermal expansion and the averaged coefficient of hygroscopic 
swelling. To set up an analysis for the evaluation of thermal properties, add a Thermal 

Expansion subnode to each material model used in the RVE, and apply a unit rise in 
temperature. Similarly, for hygroscopic properties, add Hygroscopic Swelling subnodes 
and apply a unit rise in concentration. Without adding these subnodes to the material 
models of the RVE, no expansion is applied to the unit cell, and consequently the 
results will be zero. Results will also be zero if no variation in temperature or 
concentration is applied. If requested, the computed material properties are by default 
presented in a separate evaluation group under Results.

With the Average strain and Average stress periodic conditions, you can calculate the 
homogenized elastic properties of the RVE. Use the average strain condition to 
compute the elasticity matrix, or the average stress to compute the compliance matrix. 
In order to compute these properties, the deformation of the RVE needs to be 
evaluated for a number of fundamental load cases. These correspond to the 
perturbations of the unit cell with each component of the average strain or stress 
tensor, while keeping the other components equal to zero. Setting up this analysis can 
be automated with the Create Load Groups and Study option under the Study and 

Material Generation button. It creates a load group for each tensor component, 
populates the average strain or stress tensor, and creates a study with a load case for 
each created load group. If the calculation of an average material property is requested, 
the computed values are by default presented in a separate evaluation group under 
Results. If no material property evaluation is requested, or if it is not available, the 
results can be used to study the response of the RVE to the applied load cases.

You can also create a global material using the Create Material option under the Study 

and Material Generation button for the Average strain or Average stress periodic 
conditions. This option creates a material that contains the homogenized elasticity or 
compliance matrix, which can be accessed by other components in the model. Note 
that if you want to use the computed material properties in another model or store 
them to a user-defined material library, you should use the Create Material by Value 
option. For the Create Material by Reference option, the automatically generated global 
material contains variables linked to the Cell Periodicity node in the current model.
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Micromechanical Model of a Fiber Composite: Application Library path 
Structural_Mechanics_Module/Material_Models/

micromechanical_model_of_a_fiber_composite
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Mode l i n g  P r e t e n s i o n ed Bo l t s

Bolted joints are common in mechanical and civil engineering structures. If you are 
interested in analyzing the details of a bolted joint, the prestress in the bolt must be 
taken into account in order to correctly capture the behavior under service loads. The 
Bolt Pretension functionality in COMSOL Multiphysics is designed to simplify such 
analyses. You can model the bolts either using solid or beam elements.

During mounting, a bolt is tightened to a certain prestress. The mounting of the bolt 
is, in general, accompanied by deformations of the surrounding structure. In the 
subsequent service, the force in the bolt can then change due to external loads.

Sometimes the sequence in which the bolts are tightened is important. This will be the 
case if significant nonlinearities are induced by the tightening process. Modeling such 
a process is also fairly straightforward. This is, however, a less common case which adds 
some extra complexity to the modeling, so it will be discussed separately below.

M O D E L I N G  T H E  B O L T S

You must use a specific modeling technique in order to use a bolt in a prestress analysis.

Using Solid Elements
1 You can model bolts using solid elements in 3D or 2D axial symmetry. In 3D, it is 

usually most efficient to add the predefined bolt geometries from the Part Libraries. 
In 2D axial symmetry, the bolt is always assumed to be axially symmetric, and thus 
having the Z-axis as its center of rotation.

2 Make sure that there is at least one interior boundary perpendicular to the bolt axis 
somewhere in the shank. In the following, this boundary is referred to as the slit 
boundary (Figure 2-24). The slit boundary can be composed of several adjacent 
boundaries in the geometry.

3 If you are using bolts from the Part Libraries, a slit boundary is predefined, and has 
the selection name Pretension cut. In order to make this boundary selection 
visible from the physics interface, select its Keep check box in the Boundary Selections 
section of the settings for the part instance (Figure 2-25).

4 If needed, add contact conditions between the bolt head and the component and 
between different components clamped by the bolt. In many cases, it is sufficient 

The information about pretensioned bolts is applicable if your license 
includes the Structural Mechanics Module.
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and more efficient to use a continuity condition between the bolt head and the 
component.

5 Add a Bolt Pretension node, in which the pretension force or stress is prescribed for 
a set of bolts sharing the same data.

6 For each bolt having the same essential data, add a Bolt Selection subnode where its 
slit boundary is selected.

7 The label of the bolt, which is an input in the Bolt Label section, is used to identify 
the bolts during result evaluation. A suggestion for the name is automatically 
generated, based on the base name given in the parent node.

Figure 2-24: Example of a bolted joint with the bolt modeled as a solid.

When a bolt is located in a symmetry plane (so that only half the bolt is 
modeled), and Automatic symmetry detection is selected in the Bolt 

Selection node, the given pretension force is interpreted as the force in the 
whole bolt, and not as the force in the half-present bolt. This makes it 
possible to use the same Bolt Pretension node for a set of similar bolts 
where some of them are located in symmetry planes.
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Figure 2-25: Getting access to the slit boundary selection for a bolt from the Part Libraries.

Using Beam Elements
1 When modeling with beam elements, you will typically use a Polygon with three 

points to model each bolt (Figure 2-26).

2 There must be at least one interior point somewhere in the shank. In the following, 
this point will, in analogy with the solid, be referred to as the slit boundary.
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3 Since there is no explicit bolt head when you model a bolt using beams, you need 
to connect it to the solid component using some type of abstract coupling. There 
are several options:

- You can connect the end of the beam to the edge of the bolt hole (the lower end 
in Figure 2-26). Then, use the Solid-Beam Connection multiphysics coupling, 
with Connection type set to Solid Edges to Beam Points. In this case, you select the 
edge of the bolt hole.

- You can create a circular boundary having the diameter of the bolt head on the 
surface of the component (the upper end in Figure 2-26). Then, use the 
Solid-Beam Connection multiphysics coupling, with Connection type set to Solid 

Boundaries to Beam Points. In this case, you select the annular solid boundary.

- Even without creating an extra boundary, you can use the Solid-Beam 
Connection multiphysics coupling, with Connection type set to Solid Boundaries to 

Beam Points, general. Then set Connected region to Distance (manual) and enter half 
the head diameter as Connection radius. In this case, you select the entire 
boundary on which the bolt head is residing. This method is convenient, but will 
often give more spurious stresses around the bolt hole, since partial element faces 
will be connected.

- You can use the two first approaches, but rather than using a multiphysics 
coupling for the connection, you can add rigid connectors in both physics 
interfaces, and then connect them. This approach is more expensive, since it adds 
degrees of freedom in both the rigid connectors, plus the constraints to couple 
them. It is however an approach that may be suitable for imported meshes, where 
connection data in this form is available.

All these techniques are shown in the Application Libraries example Modeling of 
Pretensioned Bolts.

4 Add a Bolt Pretension node, in which the pretension force or stress is prescribed for 
a set of bolts with the same data.

5 For each bolt having the same essential data, add a Bolt Selection subnode where its 
slit boundary is selected.
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6 The label of the bolt, which is an input in the Bolt Label section, is used to identify 
the bolts during result evaluation. A suggestion for the name is automatically 
generated, based on the base name given in the parent node.

Figure 2-26: A bolt modeled using the Beam interface.

T H E  P R E D E F O R M A T I O N  D E G R E E  O F  F R E E D O M

Each bolt defined in the Bolt Selection node has a single global degree of freedom called 
predeformation, d. At the slit boundary, the two sides of the bolt are disconnected so 
that the displacements over it can be discontinuous. The discontinuity is represented 
by:

Here the subscript u denotes the upside of the slit boundary, and d denotes the 
downside. n is the normal pointing out from the downside. The sign has been selected 
so that d gets a positive value when the bolt force is tensile. An optional relaxation r 
can also be included.

The axial force in the bolt is thus caused by a small overlap between the two sides of 
the slit boundary. It is computed as the reaction force belonging to the degree of 
freedom d.

uu ud d r– n–=
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It is only meaningful to introduce the relaxation in a later study step. If it is present all 
the time, then its only effect would be to increase the predeformation during the 
pretension analysis by r. Thus, the value of r is usually a function of the load history, 
which is initially zero.

S E T T I N G  U P  T H E  S T U D Y  S T E P S

In an analysis of prestressed bolts, you have to use two or more separate study steps. 
They can be part of a single study or be placed in different studies. The first study step, 
in which the bolt prestress is prescribed, simulates the mounting process. If you would 
only use a force to load the bolt (for example, as an initial stress), the resulting stress 
in the bolt would be less than the intended, due to the compression of the material 
around the bolt. The prestress step ensures that the bolts have the intended prestress, 
irrespective of the flexibility of the surrounding structure and their interaction.

In the subsequent studies, the bolt force is allowed to change, while keeping the 
extension of the bolt, as caused by the first study, fixed. The procedure to do this is as 
follows:

1 Run the study step for the mounting simulation. The predefined study type Bolt 

Pretension is designed for this. You may need to apply the pretension load in smaller 
steps, if there are nonlinearities in the system. Then, you select Auxiliary sweep in the 
Study Extensions section in the settings for the Bolt Pretension study step. Introduce 
a load ramping parameter, which is used to multiply the pretension forces.

2 Add one or more studies or study steps to analyze the effects of the service loads.

3 Since the pretension degrees of freedom are not solved for in the service load study 
steps, they must obtain their values from the pretension study step. If the study steps 
are sequential within the same study, no special action is needed, since the default 
then is to inherit values from the previous study step. For other cases, go to the 
Values of Dependent Variables section of the study step, set Values of variables not 

solved for to User controlled, and then select the pretension study step.

S E Q U E N T I A L  T I G H T E N I N G

If you need to take the order of the bolt tightening into account, then you must use 
an auxiliary sweep where the sweep parameter is used to control the tightening history.

You need to perform the following steps:

1 In each Bolt Selection node representing a bolt that is not fully pretensioned from 
the beginning of the study step, select the Sequential tightening check box.
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2 A new text field, Pretensioning expression, is now shown. In this text field, you enter 
a Boolean expression, which evaluates to a nonzero value at the parameter values 
when the prestress is applied. It may happen more than once, if the bolt is not given 
its full pretension force at once. An example of such an expression is 
round(par)==3 || round(par)==11.

3 If you want the bolt prestress (when applied) to have a value that differs from the 
value given in the parent Bolt Pretension node, change the setting of Pretension type 
from From parent to another option. Extending the example above, the expression 
for the pretension force could be 50[kN]*if(par>3.5, 1, 0.6). The only thing 
that matters here is the value of the force at the parameter values when the 
pretension force is set, in this example 3 and 11.

A sequential tightening precess may have a quite slow convergence rate until a certain 
number of bolts have been loaded. The reason is that it is common that two mating 
boundaries barely touch, so that many contact iterations are needed. It is advisable to 
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start by giving all bolts a small prestress, maybe 1% of the final value, in order to 
stabilize the model.

R E S U L T S

The results in a bolt do not belong to any part of the geometry, but are global 
variables. To access the result from a certain bolt, a full scope of the type <interface>
.<Bolt Pretension tag>.<Bolt Selection tag>.<variable> must be used. An 

It is important to make sure that you only solve for the bolt 
predeformation degrees of freedom in the pretension study step, and not 
when analyzing the service loads.

If you use the Bolt Pretension study type for the pretension study step, and 
any other study type to analyze the service loads, the solvers are 
automatically set up to handle this. The Bolt Pretension study type is 
actually a special case of a Stationary study step, with the sole purpose of 
activating the predeformation degrees of freedom. These degrees of 
freedom are by default not solved for in any other study type.

If you, however, set up your studies manually, the information below is 
useful. Also, in versions prior to 5.3, this automatic mechanism was not 
available, so in older models the studies were always set up manually.

You enable or disable the solution of individual degrees of freedom under 
the Dependent Variables node for a certain study step in the solver 
sequence. If required, begin by clicking Show Default Solver in the study 
node or in the Solver Configurations node of the study. Then move to the 
Dependent Variables node, and in the General section, set Defined by study 

step to User defined.

You can now go to the node for each predeformation degree of freedom 
below Dependent Variables and adjust the state of the Solve for this state 
check box.

For more information, see also Dependent Variables and Studies and 
Solvers in the COMSOL Multiphysics Reference Manual.
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example could be solid.pblt1.sblt1.F_bolt. The bolt results are summarized in 
the table below.

If you place a bolt in a symmetry plane, that only half of the bolt is modeled, this will 
automatically be detected. The results are reported for the whole bolt, not for the 
symmetric half.

When there are pretensioned bolts in a study, evaluation groups containing the bolt 
forces will automatically be generated.

TABLE 2-15:  BOLT VARIABLES

VARIABLE DESCRIPTION

d_pre Predeformation

F_bolt Axial force in the bolt

F_shear Shear force in the bolt (3D only)

Studies and Solvers in the COMSOL Multiphysics Reference Manual

• Modeling of Pretensioned Bolts: Application Library path 
Structural_Mechanics_Module/Tutorials/bolt_pretension_tutorial

• Prestressed Bolts in a Tube Connection: Application Library path 
Structural_Mechanics_Module/Contact_and_Friction/tube_connection
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S imp l i f i e d  Mode l i n g  o f  Bo l t  T h r e ad s

When an internal and an external thread are engaging, there will be a complex local 
stress state. When analyzing such geometries, you can approach the problem at three 
levels:

• Make a full 3D model of the actual thread geometry and solve the contact problem. 
This approach is only used in some rare cases, since such a model by necessity 
becomes very large. Also, the actual stress state in the thread itself is seldom the 
target of an analysis.

• Ignore the thread completely and just connect the two parts by a union operation 
or through a Continuity pair. This approach will provide an accurate solution outside 
a region with a size of a couple of bolt diameters from the bolt hole.

• Use the simplified Bolt Thread Contact condition. With this approach, the stresses 
will be correct, except at distances where stress concentrations caused by the actual 
thread geometry are significant. The important part of the solution that can be 
captured by this simplified contact condition is that the contact pressure between 
the threads will push the walls of the bolt hole outward. This will cause significant 
tensile hoop stresses around the bolt hole.

When you use Bolt Thread Contact, you model the face of both the bolt and the bolt 
hole as cylinders. The actual geometry of the thread is taken care of by the 
mathematical formulation of the contact condition. The most important parameter is 
the thread angle, since it determines the direction of the contact forces.

For each individual bolt, you need to add one Bolt Thread Contact node.

P E N A L T Y  F A C T O R

The contact condition is enforced using a penalty formulation. In practice, this means 
that a stiff spring is inserted between the two boundaries. In most contact problems, 
you want to use a high penalty factor, in order to avoid excessive overclosure of the 
contacting boundaries. In this case, however, there is a certain flexibility which has its 
source in a slight bending of the threads in real life. This effect can to some extent be 
accounted for by allowing a certain flexibility in the contact condition. For this reason, 
the default penalty factor is rather low. You may need to adjust it to suit your 
conditions.

A higher penalty factor also means that the force is transferred from the external thread 
to the internal thread over a shorter distance along the bolt axis.
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C O N T A C T  O R I E N T A T I O N

In most cases, you know a priori which side of the thread that will be in contact. You 
can reduce the size of the contact problem by a factor of two by selecting an 
appropriate value for the Contact orientation. The default is to search in both 
directions.

If a bolt is pretensioned, the contact orientation will be Up if the bolt orientation is such 
that the Orientation vector points toward the bolt head. If the bolt geometry, including 
orientation, is computed using the Automatic option, you will often have to use the 
Direction adjustment option to have full control over the up and down directions.

M O D E L I N G  H I N T S

• You must create one Contact Pair for each bolt and mating bolt hole. The bolt 
should be the destination side of the contact pair.

• In the Part Libraries, you will find predefined parameterized bolt geometries that 
also contain a domain intended to be used as drill for the bolt hole.

• The cylindrical surfaces of the bolt and bolt hole should have the same diameter. If 
you want to decrease the stiffness of the bolt because it is not solid all the way out 
to the nominal diameter, a good suggestion is to decrease Young’s modulus by a 
factor based on the stress area of the bolt.

• Since the contacting boundaries are cylindrical, there is a risk that the bolt, instead 
of computing the gap to the nearest point on the bolt hole, will instead see a point 
on the opposite side. A good practice is to select Manual from the Search distance list 
in the settings for the Contact Pair. Half the diameter of the bolt is an appropriate 
search distance.

• Since the relative displacements between the bolt and the hole are small, setting 
Mapping method to Initial Configuration in the settings for the Contact Pair can 
improve efficiency.

• In the initial state, the two objects being joined may possess rigid body modes, just 
like in any other contact problem. If so, you can for example add weak springs to 
maintain stability.
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Mode l i n g  Embedded S t r u c t u r e s  and 
R e i n f o r c emen t s

Lower dimension structural elements such as trusses, beams, and membranes can be 
embedded into a solid domain by adding an Embedded Reinforcement multiphysics 
coupling. This modeling technique is intended for efficient modeling of thin structures 
in solids, where it is unfeasible or not necessary to resolve the geometry of the thin 
structure. Some typical use cases include:

• Reinforcement bars in concrete structures

• Piles or sheets in soil

• Fibers in composite materials

• Embedded sensors in a structure. Embedding sensors can either be used to model 
a real sensor, or as a modeling technique to extract, for example strain in some 
predefined location and direction in a solid domain.

The connection between the embedded structure and the solid can be set up using 
different techniques; either a rigid connection by adding constraints between the 
points in the respective interface, or by adding springs. When a spring type connection 
is used, the connection can be linear or nonlinear. Using a nonlinear connection can 
be important when modeling reinforcement in structures, especially when predicting 
failure and postfailure behavior.

The multiphysics coupling is intended for situations where the volume of the 
embedded structure is small compared to the solid domain. Hence, no compensation 
is made for the mass of the small structure. If a detailed model of the connection and 
composite structure is required, the geometry should include the interface between 
the embedded structure and the solid. The connection should then be modeled using 
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some other coupling technique as discussed in Coupling Different Element Types, or 
using Contact Modeling.

G E O M E T R Y  A N D  M E S H I N G

When modeling embedded structures, it is sometimes easier to form the geometries of 
the coupled interfaces from an assembly. In the finalization step of the geometry 
sequence, you should select Form an assembly in the Action list. This will also put less 
restrictions on the mesh of the respective geometry. If Form Union is selected in the 
Action list, the same mesh will be shared by both interfaces; which has to respect and 
resolve the geometry of the embedded structure.

While there is no strict restriction on the mesh size when modeling embedded 
structures in an assembly; a good practice is that the mesh used for the two coupled 
interfaces is of approximately the same size, or that the mesh of the embedded 
structure is slightly finer. Use the same shape order in both interfaces when modeling 
embedded structures that share the geometry and mesh with the solid domain, that is, 
when Form Union is selected in the Action list.

When the Embedded structure is a Beam interface and a Rigid connection 
type is used, the displacements are only constrained to the solid domain 
at the mesh nodes of the beam elements. This means that higher-order 
variations of the displacement field between mesh nodes is allowed. The 
Spring connection will, however, constrain also the higher-order variations 
of the displacement field.

The functionality provided by the Embedded Reinforcement multiphysics 
coupling to some extent overlaps with other couplings available to 
different structural mechanics interfaces. For example, both the Embedded 

Reinforcement and the Solid-Thin Structure Connection can be used to 
attach a membrane as a cladding on a solid domain. An important 
difference is, however, that the Solid-Thin Structure Connection will add 
constraints on the solid domain, while the Embedded Reinforcement will 
add constraints on the membrane. Depending on the mesh, the results 
may differ significantly.

The same difference applies when comparing the Embedded Reinforcement 
to a Solid-Beam Connection on shared edges.
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In some situations, the connection can be sensitive to mesh elements of the embedded 
structure that are partially within the solid domain. This is especially sensitive for the 
penalty connection, where the weak equations are evaluated at the integration points 
of the embedded mesh element. A slight shift in the mesh can cause an integration 
point to either be inside or outside the solid domain.

P E N A L T Y  F A C T O R S

When using the spring type connection, the accuracy of the connection is controlled 
by the spring stiffness matrix. The components of this matrix are most naturally 
represented in the local coordinate system of the embedded structure, for which only 
the diagonal components are of interest. Mathematically, the spring stiffness can be 
viewed as penalty factors that must be sufficiently high to accurately enforce the 
regularized constraint, but if they are too high the overall stiffness matrix will be 
ill-conditioned. This means that in most cases, the spring stiffness in only a numerical 
parameter. However, there can be situations where the interface between the 
embedded structure and the solid domain has a measurable stiffness, for example, if 
the connection is used to idealize an interface with a finite, but small, thickness such 
as a glue layer. In such cases the spring stiffness will have a real physical interpretation.

The default expression for the spring stiffness of the connection is derived from the 
stiffness and cross-sectional properties of the mesh element of the embedded structure. 
The available spring connection types and the corresponding default expressions for 
the spring stiffness are summarized in Table 2-16. All spring stiffness components have 
the same default expressions.

L O C A L  O R I E N T A T I O N S

Many quantities used by the connection, such as the spring stiffness and constitutive 
models, are most naturally represented in the local coordinate system of the embedded 
structure. For beam and membranes, the multiphysics coupling picks up the local 
coordinate system defined by the physics interface. However, in the Truss interface 
only the direction of the local edge tangent tle is defined. For the multiphysics 

TABLE 2-16:  DEFAULT EXPRESSION FOR SPRING STIFFNESS.

CONNECTION 
TYPE

SPRING CONSTANT PER UNIT LENGTH SPRING CONSTANT PER UNIT 
SURFACE AREA

Truss 1e3*truss.Eequ*
truss.area/h^2

1e3*truss.Eequ*
truss.perimeter/h^2

Beam 1e3*beam.Eequ*beam.area/h^2 N/A

Membrane N/A 1e5*mbrn.Eequ*
mbrn.d/h^2
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coupling, two transverse direction are also needed when using a spring connection. 
Thus, the multiphysics coupling defines a local coordinate system by assuming that tle 
is the normal to a plane. The actual directions of the two in-plane tangents are not 
important, and it is assumed that the first tangent points in the global z direction. 
Hence, the first transverse direction is

and the second transverse direction is

where ez is the base vector that points in the global z direction. Since no distinction is 
made between t1 and t2, only a single transverse spring constant, kt, has to be entered 
when defining the spring stiffness matrix.

B O N D  S L I P  M O D E L S

It is possible to include a bond slip model of the interface when modeling the 
embedded structure connection with a nonlinear spring. This nonlinear behavior 
follows a plasticity model, where the relative displacement between the two coupled 
interfaces is additively decomposed into an elastic displacement and a plastic 
displacement, or slip. Modeling bond slip is limited to small sliding only, since the 
mapping between the embedded structure and the solid domain is made in the 
reference configuration.

The slip is defined using a local constitutive model. This local model adds a set of 
internal degrees-of-freedom that are solved for and stored in the model at each Gauss 
point of the embedded structure. Typically, these internal variables include the relevant 
components of the slip vector ul,p, the accumulated slip upe, and the friction 
dissipation density Wp. The last variable is only added if the Calculate dissipated energy 
check box is selected in the Energy Dissipation section. The internal variables used by 
the Embedded Reinforcement multiphysics coupling are shown as separate fields under 
Dependent Variables node in the solver sequence.

The resistance to slide in the bond slip model is determined by the cohesion c, which 
can be a function of any variable or field present in the model; by adding a generic 
expression to the initial cohesion c0. A built-in hardening model with respect to upe 

t1

ez tle e z tle–

ez tle e z tle–
----------------------------------------------=

t2 tle t1
tle ez

ez tle e z tle–
----------------------------------------------= =
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can be also be added, in which case c = c0+ch, where ch describes some hardening 
function.

In many applications the bond slip behavior of the interface is described by a Coulomb 
type friction. However, the bond slip model by default has no dependence on the 
normal force acting on the interface since the connection has no formal direction of 
the normal of the interface. A Coulomb type friction model can still be considered if a 
good estimate of the normal force can be found by adding such a dependence to c0. 
If, for example, the pressure in the solid domain can be considered as the normal 
pressure acting on the interface, use an expression like 0.1*<tag>
.ExtCplOp(solid.p) to define c0 with a friction coefficient equal to 0.1. Here <tag> 
is the tag of the multiphysics coupling and <tag>.ExtCplOp(expr) is the operator 
that maps the expression from the solid domain to the embedded structure.

S O L V E R  S E T T I N G S

When adjusting the settings of the solver sequence for a model that includes an 
Embedded Reinforcement multiphysics coupling, make sure that the dependent variables 
of the coupled interfaces are solved in the same group. Also, note that the fields related 
to the bond slip model should be included in the same solver group as well. This is only 
a potential issue if a segregated solver is used, and it is handled automatically by the 
default solver suggestion.
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Mode l i n g  Th i n  L a y e r s

Sometimes, there are thin layers between larger components that cannot be ignored in 
a structural analysis. The reasons are either because they have significant flexibility or 
damping properties, or that they may fail. Examples of such layers are glue layers, 
O-rings, and gaskets. Other cases can involve transition zones between particles or 
fibers and the binder in a composite material.

When the layer is thin compared to other dimensions of the structure, it is difficult to 
produce a mesh with acceptable quality without compromising the numerical 
conditioning of the stiffness matrix. The Thin Layer boundary feature allows to 
overcome this problem by making simplifications, so that there is no need for a mesh 
in the through-thickness direction.

There are three different approximations available for modeling thin layers:

• Solid

• Membrane 

• Spring

These approximations differ in the simplifications made for obtaining the deformation 
gradient in the thin layer. For more details see Theory for Thin Layers.

The Thin Layer Node

The Thin Layer node is used to identify boundaries that have a thin layer attached to 
them. These boundaries may either be exterior or interior boundaries to the domain 
where the physics interface is active. The Thin Layer node also determines the thickness 
of the thin layer, and how to approximate the deformation gradient on it. The first 
choice is whether to use a Layered or a Nonlayered thin structure. 

In the majority of cases, the Nonlayered approximation is sufficient to capture the 
behavior of the thin layer. For this type of layer, two sets of degrees of freedom (DOFs) 
are introduced at the boundary; one set corresponds to the upside, and one set to the 
downside as illustrated in Figure 2-27. In COMSOL Multiphysics, this is referred as a 
slit of the displacement field on the thin layer boundary.

Note that in Figure 2-27 no extra integration points are introduced in the 
through-thickness direction, and that numerical integration is made on the 
midsurface. Hence, dependent variables always have a linear variation in the thickness 
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direction; that is, their gradients are constant in the through-thickness direction. This 
also applies to inelastic quantities such as plastic strains.

Figure 2-27: Illustration of a nonlayered thin stratum between two mesh elements using 
quadratic serendipity shape functions. Circles indicate nodal points and squares 
integration points.

The Layered type can be used when a more detailed description of the 
through-thickness behavior is needed. For this type of thin layer, a slit of the 
displacement field is made on the boundary, and additional DOFs are introduced 
between the upside and downside as illustrated in Figure 2-28. These extra DOFs 
facilitate a more detailed through-thickness representation of stresses and strains, and 
they make it possible to, for example, model composites and laminate strata. 
Continuity is enforced by constraints between the DOFs on the up- and downside, and 
the extra DOFs. The through-thickness discretization is controlled by the attached 
material. For more details about modeling layered structures, see Composite Materials 
Modeling

Figure 2-28: Illustration of a discretized layered thin layer using a single mesh element in 
the through-thickness direction. The thin layer is injected between two mesh elements using 
quadratic serendipity shape functions. Circles indicate nodal points and squares 
integration points.

Upside

Downside

Midsurface

Upside

Downside

Midsurface
M O D E L I N G  T H I N  L A Y E R S  |  307



308 |  C H A P T E R
When the Nonlayered type is used, it is possible to chose different approximations of 
the deformation measure in the thin layer:

• Solid

• Membrane 

• Spring

The description in Figure 2-27 is representative of the solid and spring 
approximations. The solid approximation is the most general and accounts for the full 
normal and tangential deformations in the thin layer. The spring approximation is 
similar but neglects the membrane deformation. This is useful for cases where the 
behavior of the thin layer is given by force versus extension data, as is often the case 
when modeling gaskets. 

For the membrane approximation, no slit is introduced and the thin layer only 
accounts for the membrane deformation. It thus only contributes with tangential 
stress, while plane stress conditions apply in the through-thickness direction. This is 
typically the case when the thin layer describes a cladding on an exterior boundary or 
a reinforcement layer on an interior boundary.

Interior and Exterior Boundaries

A Thin Layer can be applied to either exterior or interior boundaries of the physics 
interface. However, there are some noticeable differences between adding a thin layer 
on an exterior or on an interior boundary. 

On an interior boundary, the selected boundary is always considered to be the 
midsurface of the thin layer. It is not possible to apply any loads or boundary 
conditions on interior boundaries.

On an exterior boundary, the bottom of the thin layer is attached to the adjacent 
domain. This means that the thickness of the thin layer extends outwards from the 
domain in the direction of the normal. For a nonlayered thin structure, an exterior 
displacement field is introduced to create the slit, so it is possible to apply loads and 
boundary conditions to this exterior field. For example, applying a fixed constraint on 
an exterior thin layer makes it equivalent to a Spring Foundation. For a layered thin 

The different thin layer approximations are compared in Thin Layer 
Interfaces: Application Library path 
Nonlinear_Structural_Materials_Module/Hyperelasticity/thin_layer_interfaces
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structure, the top side of the layered material is always the exterior. Loads and 
boundary conditions can be applied to the top side only.

When the thin layer boundary is part of a contact pair, the thickness of the exterior thin 
layer is considered when modeling contact.

Material Models

A Thin Layer can be assigned different material models:

• Linear Elastic Material

• Nonlinear Elastic Material

• Hyperelastic Material

• Spring Material

The first three material models are equivalent to the corresponding domain material, 
hence the discussion in Introduction to Material Models is valid also for thin layers.

The Spring Material is a special material model only available with the spring 
approximation. As the name implies, data for this material model is given in terms of 
spring constants, or as force as a function of extension. It can be useful for certain types 
of modeling where data is given in this format, for instance, when normal force versus 
closure curves are available.

It is also possible incorporate inelastic effects by adding one or several subnodes to 
these material models. 

Loads and Boundary Conditions

Several loads and boundary conditions can be applied to a thin layer. Exactly what 
boundary conditions are available and how they are treated depends on the thin layer 
approximation. Whether the thin layer is an exterior or interior boundary of the physics 
interface also affects the available boundary conditions.

On exterior boundaries, loads and boundary conditions can be applied to the exterior 
displacement field of the nonlayered stratum, or on the top side of a layered material 
for a layered stratum. For example, applying a fixed constraint to a thin layer on an 
exterior boundary makes is equivalent to a Spring Foundation. It is also possible to 
apply loads and boundary conditions to edges and points of the thin layer. For a 
nonlayered stratum, loads and other boundary conditions apply to the exterior 
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displacement field. However, for a layered stratum, all extra DOFs attached to the edge 
or point are constrained.

On interior boundaries, only loads and boundary conditions on edges and points are 
available. Moreover, these are only relevant for a layered stratum. For a nonlayered 
stratum, there are no free DOFs on which to apply the boundary conditions.

Results Evaluation and Visualization

For a nonlayered thin structure, many variables defined by the material models have 
the same name for both the thin layer and the adjacent domain. For example, the von 
Mises stress is always called solid.mises. Hence, the context in which the variable is 
evaluated is important. 

If solid.mises is evaluated using a surface plot in a 3D model, it will have the 
following interpretation:

• On boundaries with no thin layer, it will show the von Mises stress of the adjacent 
domain.

• On boundaries that intersect a nonlayered thin layer, it will show the von Mises 
stress on the thin layer.

Use the mean() and side() operators to force the evaluation of variables in adjacent 
domains. For example, using mean(solid.mises) for a surface plot will average the 
stresses from the two adjacent domains, and it will not consider the stress in the thin 
layer between these two.

Extra care must be taken when evaluating results on entities of lower dimensions, such 
as points, to make sure that the expression is evaluated in the correct context. The 
mean() or side() operators can then be applied multiple times. For example, using 
mean(mean(mean(solid.mises)))in a point plot for a 3D model will ensure that the 
von Mises stress in the domain material is evaluated. Similarly, a point plot with the 
expression mean(side(1,solid.mises)) will evaluate the von Mises stress in the 
thin layer on boundary 1.

When a Roller is applied on a boundary perpendicular to a thin layer, a 
Roller should in most cases also be added to the edge of the thin layer. This 
is especially important if the roller represents a symmetry condition.
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When one or more thin layers are present in a model, a default plot is 
added to show the stress in the thin layer.

See Results Evaluation in Composite Materials Modeling for a discussion 
on how to evaluate and visualize results for layered thin layer.
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Mode l i n g  C r a c k s

A crack in a solid model can be represented in two fundamentally different ways:

• As an ideal crack — that is, by a single boundary. Across this boundary, the 
displacement field is discontinuous. Using COMSOL Multiphysics nomenclature, 
this is called a slit condition.

• By the crack geometry, in which case the two sides of the crack are two different 
boundaries. In the true geometry, the two crack surfaces may coincide, or there may 
be a distance between them.

Both cases have an analogous representation in a symmetry plane. The ideal crack is 
just a boundary located in the symmetry plane, but without the symmetry conditions, 
so that it can open. This can, however, just as well be considered as special case of a 
geometrical crack, so in symmetry planes the distinction more or less disappears.

Fundamental for cracks is that the stress and strain states at the crack tip are singular, 
so any mesh refinement will only produce even higher stresses. For a linear elastic 
material, the stresses and strains in the vicinity of the crack vary as , where r is 
the distance from the crack tip.

The Crack Node

The Crack node serves several purposes:

• In the case of an ideal crack on an internal boundary, the degrees of freedom are 
split so that the displacements on the two crack surfaces are independent.

• In the case that a crack is located in a symmetry plane, all constraints that may be 
applied (such as symmetry) are removed. It is then possible for the crack to open.

• If possible, a crack growth direction is computed. For some cases this is instead a 
user input.

• A number of variables, such as an estimate of the crack length are created.

• A mesh suggestion is generated.

• By using the J-Integral subnode under Crack, you can compute J-integrals and 
stress intensity factors.

• By using the Crack Closure subnode under Crack, you can add contact conditions 
between the crack faces.

1 r
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The selected boundaries can form branched cracks.

M E S H

At a crack tip, there will be an automatic mesh refinement. In the mesh sequence, you 
will find an extra Size node, with all crack tips selected. You may want to adjust the 
mesh size in that node.

J-integrals

The J-integral is a path independent integral that can be used to characterize the 
severity of the stress state at the crack tip, both for linear and some nonlinear materials. 
You can compute J-integrals by adding one or more J-integral subnodes under Crack.

Originally, the J-integral concept was derived for 2D, in which case it was sufficient to 
integrate certain functions of stress and strain along an arbitrary curve from one 
boundary of the crack to the other.

Figure 2-29: Example of a J-integral path.

There are some important assumptions when computing the J-integral:

• The curve is completely inside the domain.

• The curve does not enclose any other singularities, such as crack tips.

m



x

y

face
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• No volume forces act inside the curve.

• If there is a load on the crack faces, this requires an extra correction. This is taken 
into account if the load is given using the Face Load subnode under Crack.

You can specify the integration path as a circle with a given radius, in which case it cuts 
the mesh elements at arbitrary locations. In 2D, you can also select a sequence of 
internal or external boundaries describing the path. It is recommended that you 
evaluate more than one path to assess the accuracy of the solution.

The importance of this method is that stresses and strains far from the singular fields 
at the crack tip are used for the evaluation.

J-integrals can be computed also in 3D, but there are some complications. In the 3D 
case, the value of J will vary along the crack front. The local value is computed by a 
similar path integral, which then must be placed in the plane perpendicular to the crack 
front. This is automatically handled by the J-integral node. The J-integral in 3D should 
be considered as a continuous function along the crack front.

In 3D, there is also a surface integral contribution which needs to be computed for the 
area that is enclosed by the curve. Unfortunately, this causes the singular field to enter 
the integration, a fact that reduces accuracy. In addition, the computational effort 
increases significantly. Evaluations of J-integrals in 3D can take a noticeable time.

Another problem, that exists only in 3D, occurs if the crack front terminates at a free 
boundary. If the crack front is not perfectly perpendicular to the free boundary, the 
integration path will not entirely remain inside the solid domain. This is manifested as 
spurious results close to the free boundary.

P R E D E F I N E D  P L O T S

When J-integral nodes are present, they will generate predefined plots. These plots 
reside in a Cracks plot group. The contents of the plots differ significantly between 2D 
and 3D, as described below.

2D
The integration paths are plotted as magenta curves. An arrow shows the crack growth 
direction. At the crack tips, the value from the last J-integral node is printed. An 
example is shown in Figure 2-30.
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Figure 2-30: Predefined plot for a 2D case with a crack in a symmetry plane. Three 
integration paths are shown; 2 circular and one along boundaries.

3D
In 3D, the integration paths are shown as transparent gray boundaries. The actual 
integration paths are located where this boundary is intersected by planes 
perpendicular to the crack front.

A colored arrow plot shows the crack growth direction, as well as the local value of the 
J-integral as computed in the last J-integral node. An example is shown in Figure 2-31.
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Figure 2-31: Predefined plot for a case with a 3D crack in a symmetry plane. One 
integration path is used.

D E F A U L T  E V A L U A T I O N  G R O U P S

In both 3D and 2D, a default evaluation group, named Cracks, is also generated. It 
contains a table with values of J-integrals and stress intensity factors for all integration 
paths. In 3D, however, only the maximum value of J along the crack front is reported.

Stress Intensity Factors

Stress intensity factors are computed from the J-integral. For a linear elastic material, 
there is a relation between the J-integral (or energy release rate) and the stress intensity 
factors. This relation is, however, only unique when the stress intensity factors are 
known, and not when the value the J-integral is known:

 (2-37)J 1
Eeff
---------- KI

2 KII
2 1

1 –
------------K

III

2
+ + 

 =
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The split between KI, KII, and KIII is estimated using the displacement field on the 
crack faces at some distance behind the crack tip.

In Equation 2-37, Eeff is an effective Young’s modulus, defined as

This expression is actually only defined for 2D stress states. In 3D, the expression for 
plane strain is used, since the stress state at the crack tip in a thick solid essentially 
resembles plane strain.

F R E E  B O U N D A R Y  I N  3 D

At a free boundary, a state of plane stress prevails. Close to the boundary, there will be 
a transition zone where neither plane stress nor plane strain is applicable. In this region, 
the stress intensity factors, as computed from the J-integral, may be uncertain. It 
should be noted, however, that for most metals, the variation in Eeff between plane 
strain and plane stress is about 10%, leading to an error in the computed stress intensity 
factor in the transition region that is no more than 5%.

U N I T S  F O R  S T R E S S  I N T E N S I T Y  F A C T O R S

The SI unit for stress intensity factors is N/m3/2. Other common units are MPa·m1/2, 
psi·in1/2, and ksi·in1/2. The unit handling system in COMSOL Multiphysics only 
operates with integer powers of the base units, and can thus not handle stress intensity 
factors in a consistent manner.

Because of this, the expressions that define the stress intensity factors include a removal 
of the units, and the stress intensity factors appear as a unitless quantities. The value of 
a stress intensity factor should be interpreted as having an implicit unit, which is 
composed from the base units in the current unit system, for example, N/m3/2.

Contact Between Crack Faces

When a crack is defined by an internal boundary, or is located on a symmetry 
boundary, it is possible to consider contact between the crack faces by adding a Crack 

closure subnode. When such a node is added, all boundaries selected in the Crack node 
are applicable and selected in the Crack closure subnode as well, which means that 
contact is added between all crack faces.

Eeff

E

1 2
–

---------------   if plane strain

E   if plane stress





=
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Contact between crack faces is implemented by the penalty method as described in 
Contact Analysis Theory in the Structural Mechanics Theory Chapter. By default, 
frictionless contact is considered. However, if the crack is defined by internal 
boundaries, you can also take friction into account.

The kinematics of the contact condition between crack faces differs from that used in 
general contact analysis and the Contact node. It is fully defined by the displacement 
discontinuity defined by the slit condition of the crack, and thus involves no contact 
search algorithm. The gap gn is then given by

where n is the spatial normal to the internal boundary, and uu and ud are the 
displacements on the “upside” and “downside”, respectively. Similarly, the tangential 
deformation gt is given by

where t is the spatial tangent to the internal boundary. In 3D, there are two 
components of gt given by t1 and t2, respectively. Friction is based on an incremental 
formulation, and the incremental slip is given by

where gt,old is the tangential deformation at the previous converged increment. For a 
symmetric crack uu  0 and ud  u. Note that no tangential deformation is computed 
in such cases. Given that the gap and the slip are computed from the displacement 
jump across an internal boundary, the contact formulation is only valid for small sliding 
since the same nodal points are always connected even as the bodies deform.

gn n uu ud– =

gt t– uu ud– =

gt gt gt,old–=
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Bu ck l i n g  Ana l y s i s

Linearized Buckling Analysis

A linearized buckling analysis can be used for estimating the critical load at which a 
structure becomes unstable. This is a predefined study type that consists of two study 
steps: An initial step in which a unit load is applied to the structure, and a second step 
in which an eigenvalue problem is solved for the critical buckling load.

The idea behind this type of analysis can be described in the following way:

Consider the equation system to be solved for a stationary load f, in case of geometric 
nonlinearity;

Here the total stiffness matrix, K, depends in the solution, since the problem is 
nonlinear. It has been split into a linear part, KL, and a nonlinear contribution, KNL.

In a first-order approximation, KNL is proportional to the stress in the structure and 
thus to the external load. If the linear problem is solved first for an arbitrary initial load 
level f0,

 (2-38)

then the nonlinear problem can be approximated as

where  is called the load multiplier.

An instability is reached when this system of equations becomes singular, so that the 
displacements tend to infinity. The value of the load at which this instability occurs can 
be determined by, in a second study step, solving an eigenvalue problem for the load 
multiplier .

COMSOL reports a critical load factor, which is the value of at which the structure 
becomes unstable. The corresponding deformation is the shape of the structure in its 
buckled state.

Ku KL KNL+ u f= =

KLu0 f0=

KL KNL u0 + u f0=

KL KNL u0 + u 0=
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The level of the initial load used is immaterial since a linear problem is solved. If the 
initial load actually was larger than the buckling load, then the critical value of  is 
smaller than 1. It is also possible that the computed value of  is negative. This signifies 
that a reversed load will give the critical case.

L I V E  A N D  D E A D  L O A D S

In some situations, not all loads that act on the structure can vary, and you may want 
to compute the critical load factor only with respect to the uncertain (‘live’) load. For 
example, gravity is often treated as a ‘dead’ load. The dead loads do, however, affect 
the stress distribution in the structure, so they cannot be completely ignored. Using 
the same terminology as above, 

Here, the superscripts ‘d’ and ‘l’, stands for live and dead loads, respectively. By solving 
two problems, one with the live loads, and one with the dead loads, it is possible to 
separate their effects:

Now, the following eigenvalue problem is solved to determine the critical load factor:

For any load feature, you can specify that is a dead load by selecting the Treat as dead 

load check box in the Linear Buckling section. 

To perform a buckling analysis including both live and dead loads, you need three 
study steps: two stationary steps, and the linear buckling study step.

1 In the first study step, you solve for the dead loads only. Disable any live loads in the 
solver.

2 In the second study step, you solve for all loads; the live loads with an arbitrary 
scaling factor plus the dead loads.

Ku KL KNL
d

KNL
l+ + u f= =

KLu0
l f0

l
=

KLu0
d f0

d
=

KL KNL u0
d  KNL u0

l + + u 0=
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3 Finally, in settings for the Linear Buckling study step, you need to point to these two 
solutions as Values at linearization point and Live loads solution, respectively.

Figure 2-32: Selecting the solutions for a buckling analysis with live and dead loads.

G E O M E T R I C  N O N L I N E A R I T Y

Sometimes, the preload case requires a geometrically nonlinear analysis in order to 
produce the correct state. This means that it is no longer solved using the linear set of 
equations given by Equation 2-38, but rather

 (2-39)

The assumption for the buckling analysis is still that KNL is proportional to the external 
load, even though this may be disputable for a strongly nonlinear case. KNL is based 
on the stresses, which must be computed in the same way for both cases, that is, under 
the same assumption about geometric nonlinearity. The effect is that the stiffness 

KL KNL u0 + u0 f0=
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matrix at the linearization point includes the nonlinear part from Equation 2-39, and 
the eigenvalue problem is reformulated as

F O L L O W E R  L O A D S

Loads that depend on the deformation are called follower loads. An example of this is 
a pressure load, since the orientation of the load will depend on surface deformation. 
Such loads contribute to the stiffness matrix, and can thus affect the buckling load. As 
a default, all loads in the structural mechanics interfaces are multiplied by the load 
factor in a linear buckling study step.

KL KNL u0 +   1– KNL u0 + u 0=

If the computation of the predeformation requires a geometrically 
nonlinear analysis, then geometric nonlinearity must be used also in the 
Linear Buckling study step.

In this case, it must be assumed that the critical load factor  is 
significantly larger than 1.

• Be aware that for some structures, the true buckling load can be 
significantly smaller than what is computed using a linearized analysis. 
This phenomenon is sometimes called imperfection sensitivity. Small 
deviations from the theoretical geometrical shape can then have a large 
impact on the actual buckling load. This is especially important for 
curved shells.

• For a structure that exhibits axial symmetry in the geometry, 
constraints, and loads, the critical buckling mode shape can still be 
nonaxisymmetric. A full 3D model should always be used when 
computing buckling loads.

• It must always be checked that allowable stresses are not exceeded 
before the buckling load is reached.

• Studies and Solvers and Linear Buckling in the COMSOL Multiphysics 
Reference Manual

• Linear Buckling in the theory section of the Structural Mechanics 
Module User’s Guide
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Nonlinear Buckling Analysis

A linear buckling analysis gives an approximation to the critical load of a structure. To 
gain more confidence in the results, a full nonlinear analysis where the load is slowly 
increased can be performed. Such an analysis will, in general, not give a distinct value 
of the buckling load. Rather, there will be an increasing level of deviation from the 
linear response. The allowable load is given by some criterion of allowable deformation 
or stress. In some cases, the nonlinear buckling analysis will stop because a singularity 
is encountered. This can then be considered as the buckling load.

In a nonlinear buckling analysis, you use an auxiliary sweep, where a parameter for the 
load is increased. This type of analysis requires significantly more computing time than 
a linearized buckling analysis.

Modeling Imperfection in a Buckling Analysis

Real structures always contain some level of imperfections in the geometry. Beams are 
not perfectly straight, plates are not perfectly flat, and so on. For some structures, the 
real-life failure load is much smaller than the ideal buckling load that would be the 
result of a linearized buckling study.

There are different ways in which you can take imperfections into account. If the actual 
imperfections are known, they may even be part of the geometry. More common, 
however, is that the analysis is based on the ideal geometry. In this case, using the 
deformed geometry concept provides a convenient tool for introducing the 
imperfection.

• Bracket — Linear Buckling Analysis: Application Library path 
Structural_Mechanics_Module/Tutorials/bracket_linear_buckling

• Buckling Analysis of a Truss Tower: Application Library path 
Structural_Mechanics_Module/Buckling_and_Wrinkling/

truss_tower_buckling

For more information about deformed geometries, see Deformed 
Geometry and Moving Mesh and Deformed Geometry Features in the 
COMSOL Multiphysics Reference Manual
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If the imperfection is known from some external source, say a standard that stating that 
a certain curvature must be assumed for a beam, then you can directly enter 
expressions for such deviations. Do as follows:

1 On the Definitions tab, click Deformed Geometry, and select Prescribed Deformation. 
Alternatively, you can right-click on the Component node and select 
Deformed Geometry>Prescribed Deformation.

2 In the added Prescribed Deformation node, select the appropriate Geometric entity 

level, and then select the part of the geometry to perturb.

3 Enter expressions for the Prescribed deformation in terms of the geometry frame 
coordinates, for example, Xg, Yg, and Zg.

Another common approach for generating an initial imperfection is to first perform a 
linearized buckling analysis, and then add one or more suitably scaled buckling modes 
as initial imperfection. The rationale behind this is that it is reasonable to assume that 
the structure is sensitive to an imperfection that resembles a buckling mode.

The procedure for entering buckling models as imperfections is also based on a 
deformed geometry, but is more complicated. For this reason, a special tool is available 
for setting up such an analysis, as described below.

1 Run a linear buckling analysis, in which you solve for one or more buckling modes.

2 On the Definitions tab, click Physics Utilities, and select Buckling Imperfection. 
Alternatively, you can right-click on the Definitions node and select Physics Utilities>

Buckling Imperfection.
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3 In the added Buckling Imperfection node, do the following

a From the Linear buckling study list, choose the study from which the imperfection 
mode shapes are to be selected. Only studies containing a Linear Buckling study 
step are shown in the list.

b Under Mode selection, add the buckling modes to include in the Mode column. 
Also, specify a scale factor for each mode in the corresponding field under Scale 
factor.

c To add a Deformed Geometry node with necessary subnodes in which the selected 
sum of buckling modes are used as predeformation, click the Create button ( ) 
in the Deformed Geometry section header.

d From the Study list, choose the study that is the nonlinear buckling study. The 
default, and most common case, is New, in which case the study does not already 
exist. You can also select any existing Stationary study.

e From the Load parameter list, choose the parameter to use as a load parameter for 
ramping up the load. The parameter must be defined under a Parameters node, 
so you may have to move there to create it. Its purpose is to act as a multiplier to 
the same load that was used in the linear buckling study.

f Click the Create button ( ) in the Nonlinear Buckling Study section header to set 
up the nonlinear study. If Study is set to New, a new study is created. If an existing 
study is selected, its settings will be modified. In either case, geometrical 
nonlinearity will be activated in the study, and a continuation solver will be set up 
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using the Load parameter as auxiliary sweep parameter. The range of the sweep is 
based on the lowest buckling mode selected in the Mode selection table.

Figure 2-33: Settings in the Buckling Imperfection node.

4 Go back to the physics, and make sure that the loads are multiplied by the load 
multiplier parameter.
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5 Run the nonlinear buckling study.

Figure 2-34: The automatically generated deformed geometry settings.

• When the nonlinear study is generated, the default expression for the 
auxiliary sweep parameter values is set to

<CritFactor>*log(range(1,1,20))/log(15)

Here, <CritFactor> is the critical load factor in the linearized 
buckling analysis. This means that the load is increased in 20 decreasing 
steps, from 0 to about 1.1 times the critical load factor.

• Under Definitions, a Deformed Geometry node with one or more 
Prescribed Deformation subnodes is created. These subnodes contain 
references to special variables containing the selected superposition of 
buckling modes (Figure 2-34).

Buckling Analysis of a Truss Tower: Application Library path 
Structural_Mechanics_Module/Buckling_and_Wrinkling/truss_tower_buckling
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Pe r f o rm i n g  a  Random V i b r a t i o n  
Ana l y s i s

I N T R O D U C T I O N

Sometimes, the loads on a structure are random in nature. An example is the wind load 
on a tower. In addition to the average wind, there are gusts caused by the turbulence 
in the flow. The gusts will give a time-dependent excitation, which can induce a 
dynamically amplified response in the structure. The frequency and amplitude of these 
gusts will be randomly distributed. If the structure is large, the peaks in the wind speed 
may not even occur synchronously at locations far from each other.

If the pressure is measured, it is possible to give a statistical representation of the wind 
load. The statistical representation of an input like a force to be used in a random 
vibration analysis is the power spectral density (PSD), which is a function of the 
frequency.

Similarly, the computed results quantities are represented by their PSD, from which it 
is possible to derive a root-mean-square (RMS) value.

There are two main cases when a random vibration analysis is useful. In addition to the 
scenario outlined above, it is common that design standards (in particular for 
electronic components and devices) include requirements on random vibration 
testing. To simulate such a test, a random vibration analysis can be performed. In this 
case, the prescribed PSD of the excitation is a simplified envelope intended to cover a 
multitude of loading conditions.

Correlation
When several loads act on a structure, they can have different degrees of 
interdependency. This is described by a statistical measure of their correlation. There 
are two important special cases of correlation, which significantly simplify the analysis.

If the loads are random in nature and completely independent of each other, they can 
be described as being uncorrelated. This would be the case when, for example, two 
separate drilling machines are used simultaneously at some distance from each other.

For a detailed theory, see Random Vibration Theory.
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If several loads have the same source, they can be fully correlated. Vibration testing is 
a common example. In such case, several points on the structure are attached to the 
same shaker table. Thus, they will experience identical (but random) acceleration 
histories. Another example could be when a certain load is decomposed into 
components along different coordinate axes. Clearly, the X- and Y-components are just 
scaled versions of the total load, and thus they are fully correlated.

In a general case, the correlation between two loads is a function of both the distance 
between their positions and the frequency. The input to the analysis includes not only 
the PSD of each load but also their cross-correlation.

Spatial Variation of Random Loads
The PSDs and cross-correlation matrices are assumed to be functions of frequency 
only. It is not allowed to write expressions that are functions of the spatial coordinates. 
The expression for the load inside the physics interface, however, can have such 
dependencies as long as they appear as a pure multiplier to the spectrum.

In principle, however, the PSD and even the full cross-correlation functions could be 
considered to vary continuously over a structure, and thus be functions of the spatial 
coordinates. An example of this could be the wind pressure on a high tower.

If you want to model such situation, you need to split the loaded region into smaller 
parts, each with its own constant spectrum definition. Note that the number of 
off-diagonal cross-correlation functions increases quadratically with the subdivision.

S E T T I N G  U P  A  R A N D O M  V I B R A T I O N  A N A L Y S I S

Random vibration analysis is based on a modal representation of the structure. It 
represents a type of mode superposition and relies on the reduced-order model (ROM) 
concept.

In principle, you can perform random vibration analysis on any reduced-order model 
that is of the Frequency Domain, Modal type. This requires a number of settings and 
studies run in an appropriate order.

It is significantly more convenient to start by adding a Random Vibration (PSD) study, 
either from the Add Study window or from the Select Study page in the Model Wizard.

The Random Vibration (PSD) study is not a study in itself; rather, it adds a number of 
nodes to the Model Builder tree to facilitate a random vibration analysis. These nodes 
serve the purpose of setting up the ROM and providing input data to the random 
vibration analysis.
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Two studies are added:

• One study with an Eigenfrequency study step for computing the eigenfrequencies 
and corresponding eigenmodes.

• One study with a Model Reduction study step, in which the ROM is created. It 
references the eigenfrequency study, as well as an embedded Frequency Domain study 
step. The latter can mainly be considered as a placeholder which is a mandatory 
input to the model reduction. In case you have already computed the eigenmodes, 
you can change the setting of the Training study in this node to point to the 
corresponding existing eigenfrequency study, and then delete the newly generated 
one.

Under Global Definitions, a Reduced-Order Modeling node becomes available. It contains 
three subnodes:

• A Global Reduced Model Inputs node, in which you define the control parameters for 
the ROM. All loads that represents random excitations must have a value multiplied 
by one of such parameters.

• A Frequency Domain, Modal Reduced-Order Model node. This is a placeholder for the 
ROM to be created.

• A Random Vibration node. Here, you prescribe the PSD functions and the 
cross-correlation functions, if needed. They can be function of frequency only (the 
internal variable freq); it is not possible to prescribe a coordinate dependency.

W O R K F L O W

Here, you find recommended steps to perform a random vibration analysis.

1 Add a Random Vibration (PSD) study.

2 In the Global Reduced Model Inputs node, add all required control parameters. The 
values that you assign to the parameters are not important. Control parameters are 
used in the same manner as ordinary parameters in expressions for the loads in the 
physics interface. You need as many control parameters as you have different PSD 
functions.

The Model Reduction study step is set up to be suitable for a random 
vibration analysis. In particular, it is required the Ensure reconstruction 

capability is selected.
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3 In the physics interface, create the loads that should have a random variation. 
Typically, the value is just the name of a control parameter, even though it is possible 
to also add a scalar multiplier to it.

4 If you want any scalar outputs, define them as Variables under Definitions in the 
component. You can use, for example, probes or functions like at3() to create 
scalar outputs. It is also possible to compute scalar results using, for example, Point 

Evaluation during result presentation. Such evaluations will, however, require a 
larger computational effort than scalar outputs that are part of the ROM definition.

5 In case you want to reuse a previously computed eigenfrequency study, go to the 
Model Reduction study step. Change the settings for Training study in the Model 

Reduction Settings section to point to the correct eigenfrequency study.

6 Run the study containing the Model Reduction study step. It will automatically create 
a ROM that can be used for all further evaluations.

• The reduced-order models on which the random vibration analysis is 
based are not unit aware. Always use the base units from the current 
unit system in the context of a random vibration analysis.

• Only ‘Neumann type’ loads like forces and pressures can be given a 
random excitation. It is not possible to use ‘Dirichlet type’ loads like 
prescribed displacements, velocities, or accelerations. This is similar to 
other mode superposition methods.

For the common case that a number of support points have the same 
acceleration PSD, the support acceleration can be replaced by a frame 
acceleration load, using the Base Excitation feature. This is how 
vibration testing is analyzed. See also Absolute Versus Relative 
Accelerations.
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7 Define the PSD and cross-correlation functions required for representing the 
loading as functions under Global Definitions. These functions should depend on 
frequency only.

8 Go to the Random Vibration node. Select the appropriate Correlation type.

9 For each control parameter, enter the corresponding spectrum function. The 
argument to the function should be the built-in frequency variable freq.

10 If the correlation type is Cross-correlated, enter also the off-diagonal part of the 
Correlation matrix.

11 To make these settings available for result evaluation, run Update Solution for the 
model reduction study.

R E S U L T S  E V A L U A T I O N

For presentation of random vibration results, you can use the standard features under 
Results, with the provision that the quantity you are studying is a linear function of the 
displacements. You can use any linear expression, not only built-in variables.

In addition to linear variables, there is also a special case where the RMS of quadratic 
forms can be computed.

The evaluation of random vibration results is done through special operators, listed in 
Table 2-17, which are defined by the Random Vibration node (with a tag rvib1 in this 
example).

It is common that an input PSD is provided in terms of straight lines in a 
log-log diagram of PSD value versus frequency, f. To mimic this behavior, 
you can use an interpolation function (say int1) where you enter pairs of 
log(f) and log(PSD) values. You then reference this function through an 
expression like exp(int1(log(freq[1/Hz]))). This will provide a linear 
interpolation in a log-log space.

TABLE 2-17:  RANDOM VIBRATION OPERATORS

OPERATOR SYNTAX EXPLANATION

psd rvib1.psd(expr) Evaluates the PSD of an expression for the 
given frequency

cross rvib1.cross(expr1, expr2) Evaluates the cross-correlation between two 
expressions for a given frequency,
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rms rvib1.rms(expr, f1, f2, N) Evaluates the RMS value of an expression 
within the frequency interval [f1, f2]. N 
points are used for integrating over the 
interval.

rms rvib1.rms(expr) Evaluates the RMS value of an expression. 
The frequency interval, as well as the 
integration settings are taken from settings 
in the corresponding Random Vibration 
node.

m rvib1.m(K,expr, f1, f2, N) Evaluates the K:th order moment of the 
PSD. Thus, rvib1.rms(expr, f1, f2, N) = 
sqrt(rvib1.m(0,expr, f1, f2, N)). The 
maximum supported moment order is K=4.

m rvib1.m(K,expr) Evaluates the K:th order moment of the 
PSD. The frequency interval, as well as the 
integration settings are taken from settings 
in the corresponding Random Vibration 
node. The maximum supported moment 
order is K=4.

q2 rvib1.q2(expr, f1, f2, N) Evaluates the RMS of a quadratic form, for 
example the square of an effective 
displacement, or the square of the von Mises 
equivalent stress. The expression must not 
contain time derivatives like velocities or 
accelerations. Rather than 
rvib1.q2(utt^2,…), you can write 
rvib1.q2(u^2*(2*pi*freq)^4,…).

The quadratic form itself must be 
real-valued. This means that evaluation using 
the von Mises stress can only be done if the 
material properties are real-valued. In 
particular, it should be noted that loss factor 
damping implies a complex-valued stiffness.

q2 rvib1.q2(expr) Evaluates the RMS value of a quadratic form. 
The frequency interval, as well as the 
integration settings are taken from settings 
in the corresponding Random Vibration 
node.

TABLE 2-17:  RANDOM VIBRATION OPERATORS

OPERATOR SYNTAX EXPLANATION
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The operator q2sq() is a convenience version of the q2() operator. Some important 
quantities have special variables, intended for use in the q2sq() operator, see 
Table 2-18.

It is convenient to plot the PSD of a result quantity computed, for example, at certain 
point in the structure for a given frequency range. Such evaluation sweeps over the 
frequency can be defined in a Global Evaluation Sweep node.

The RMS of a result quantity does not give direct information about its peak value. 
Formally, probability theory says that for a long enough process, the peak value can be 

q2sq rvib1.q2sq(expr, f1, f2, N) Evaluates the square root of the RMS of the 
quadratic form. The norm of the quadratic 
form is used as input. See q2 operator above 
for more information. The relation between 
these two operators is:
rvib1.q2sq(sqrt(expr),…) =
sqrt(rvib1.q2(expr,…))

q2sq rvib1.q2sq(expr) Evaluates the square root of the RMS of the 
square root of a quadratic form. The 
frequency interval, as well as the integration 
settings are taken from settings in the 
corresponding Random Vibration node.

TABLE 2-18:  PREDEFINED VARIABLES FOR USE WITH THE Q2SQ OPERATOR

VARIABLE DESCRIPTION

<phys>.mises_rv von Mises equivalent stress

<phys>.disp_rv

<phys>.vel_rv

Norm of displacement

Norm of velocity

<phys>.utt_rv Norm of acceleration

<phys>.rot_rv Norm of rotation

<phys>.rotvel_rv Norm of rotational velocity

<phys>.rotacc_rv Norm of rotational acceleration

TABLE 2-17:  RANDOM VIBRATION OPERATORS

OPERATOR SYNTAX EXPLANATION

You cannot use ordinary variables like <phys>.mises or <phys.disp> as 
arguments to the q2sq() operator. The reason is that the argument must 
never evaluate to zero.
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arbitrarily large. In practice, it is common to assume that the peak value is three (or 
sometimes four) times larger than the RMS value. There are good reasons for this 
practice.

• The input signal is usually bounded for physical reasons. It is not a true Gaussian 
distribution.

• For testing, the shaker table accelerations are limited, and this is even expected in 
the requirements on the signal.

• The whole random vibration analysis assumes linearity. Nonlinear effects will 
typically limit the response.

Absolute Versus Relative Accelerations
It is common that the input to a random vibration analysis is a PSD for a base 
acceleration. Since it is not possible to directly prescribed nonzero displacements (or 
accelerations) at constrained points, the standard approach is to replace the base 
acceleration with an inertia load on the structure. This can be seen as a frame 
transformation, where the analysis is made in a coordinate systems that is connected to 
the fixture. This change of frame does not affect for example stress or strain results.

The computed accelerations, however, are measured relative to the support points, not 
relative to a room fixed frame. In most cases, you are interested in the absolute 
accelerations, that is what would be measured by an accelerometer. When the Base 

Excitation feature is used to describe the acceleration, special variables containing the 
absolute (room fixed) accelerations are also available.

• Bracket — Random Vibration Analysis: Application Library path 
Structural_Mechanics_Module/Tutorials/bracket_random_vibration

• Random Vibration Analysis of a Deep Beam: Application Library 
path Structural_Mechanics_Module/Verification_Examples/

random_vibration_deep_beam
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Pe r f o rm i n g  a  R e s pon s e  S p e c t r um 
Ana l y s i s

I N T R O D U C T I O N

Response spectrum analysis is used to approximately determine the structural response 
to short nondeterministic events like earthquakes and shocks. The idea is that the event 
is characterized by the peak response that it would give a single degree of freedom 
(SDOF) oscillator having a certain natural frequency and damping ratio. The response 
value is provided as a function of the natural frequency of the oscillator.

If the dynamic structural response is viewed as a mode superposition, each eigenmode 
within the given frequency range acts as an SDOF oscillator, with a peak amplitude that 
is known from the spectrum. There is, however, no information about when each 
mode reaches its peak value. The most conservative assumption is that all modes 
should be combined using the individual peak values. Using such approach will in most 
cases result into an extremely conservative design. For this reason, other summation 
methods have been developed. When performing a response spectrum analysis, you 
will have access to several such methods.

S E T T I N G  U P  A  R E S P O N S E  S P E C T R U M  A N A L Y S I S

The response spectrum analysis is not a study type. The computations are performed 
during results evaluation. You enter the methods and parameters in the settings for the 
Response Spectrum 2D or Response Spectrum 3D datasets. These datasets require the 
following:

• An eigenfrequency solution, where the eigenmodes to be included in the response 
spectrum analysis have been computed. All computed eigenmodes are used. If you 
want to filter out a particular set of modes, you can add a Combine Solutions study 
step after the Eigenfrequency study step. Such a filter can for example be based on the 
effective modal mass, so that only modes which contribute significantly to the mass 
are included.

The time to evaluate a result when using a response spectrum dataset 
varies almost quadratically with the number of eigenmodes you include.
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• A corresponding set of modal participation factors. To generate them, add a 
Response Spectrum node under Definitions in the component. If you have computed 
the eigenfrequency prior to adding the Response Spectrum node, you need to 
perform an Update Solution.

• In some response spectrum evaluation methods, you are required to compensate for 
the mass that is not represented by the included eigenmodes. In order to do so, a 
number of special stationary load cases must also be computed. You can set up all 
nodes required in the model builder tree by clicking the Create missing mass 

correction study ( ) button on the Response Spectrum section header in the 
Response Spectrum node settings.

Adding a Response Spectrum Study
In the Add Study dialog, there is a study type called Response Spectrum. When you select 
it, two things happen:

• A study, containing a single Eigenfrequency study step is created.

• A Response Spectrum node is added under Definitions in the first component which 
contains at least one structural mechanics physics interface. In this node, the 
Eigenfrequency study list will be initialized to point to the Eigenfrequency study step 
that was just created.

If you already have computed the eigenfrequencies of a structure, and then want to 
perform a response spectrum evaluation, there is no need to add a new study. Just add 
a Response Spectrum node under Definitions->Variable Utilities, and then do an Update 

Solution to make the new variables available.
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Missing Mass Correction
You create a missing mass correction study from the Response Spectrum node by 
clicking the Missing mass correction study: Create button.

A number of items are then created in the model tree:

• A set of load group nodes are created under Global Definitions. There are two load 
groups for each spatial direction. The load group nodes are placed under a common 
group named Load Groups for Missing Mass Correction. 

The Parameter name of the load group is reserved, and you should not modify it.

• A new study named Study: Missing Mass Load Cases is created. This study contains 
three or four study steps, depending on the space dimension. First, there is one 
Combine Solutions study step for each spatial direction. In these steps, a weighted 
sum of the eigenmodes is computed. The weights are the modal participation factors 
in each direction. This gives a measure of the mass that the eigenmodes represent.
These study steps must reference the eigenvalue solution, including any subsequent 
filtering. If you change the study from which the eigenmodes are to be taken, you 
must also change the choice in the Solution list in all of the Combine Solutions nodes. 

It is not possible to undo this operation. To revert, you will have to 
manually delete all the nodes which were created.
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The final study step in the study is a stationary study step, where each load group is 
solved separately by adding one load case per load group.

• In each structural mechanics physics interface in the component, a set of Gravity 
nodes are added. There are two such nodes for each spatial direction. Each gravity 
node is connected to a corresponding load group. Half of the loads are pure gravity 
loads, used when only together with the Static ZPA method. The other set of loads, 
which are used in the Missing mass method, are referencing the combined solutions 

If the physics interface has loads other than those automatically generated 
for missing mass correction, you need to make sure that those loads are 
not solved for in the Missing Mass Static Load Cases study step. There are 
several ways of doing that. You can, for example:

• Disable the other load nodes temporarily in the model tree before 
solving.

• Disable them in this study, by using Modify model configuration for study 

step in the Physics and Variables section in the settings for the study 
step. This is the preferred method.

• Assign the other loads to a new load group.
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as the depend on the computed eigenmodes. The gravity nodes are placed under a 
common group, named Loads for Missing Mass Correction.

S E T T I N G S  F O R  T H E  R E S P O N S E  S P E C T R U M  D A T A S E T S

Defining the Spectra
You input the spectra as functions under Global Definitions. Usually, either an 
interpolation function, or an analytic function, or a piecewise function is used.

There are two common methods to describe the design response spectra: either as 
function of frequency, or as function of period time. Use the Depends on setting to 
control this.

The handling of units in the functions are nonstandard:

• The unit of the argument is ignored. The function is called with either frequency 
(hertz) or period time (seconds) as defined by the setting in Depends on.

• The unit of the function is not checked. The function will, however, be scaled to 
model units, so if you, for example, enter the unit mm/s^2 for an acceleration 
spectrum, the function will (in an SI system) be scaled by 1/1000. You would get 
the same effect if the entered unit is inconsistent (for example, mm).
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The spectra you enter have the following correlation to the spatial directions:

• In 2D, you give two spectra: one horizontal and one vertical. The horizontal 
spectrum acts along the global X-axis, and the vertical one acts along the Y-axis.

• In 3D, the vertical spectrum always acts along the global Z-axis.

• In 3D, you can supply two different horizontal spectra, called primary and 
secondary horizontal spectrum. Those spectra act in two orthogonal directions, 
which by default coincide with the global X and Y directions. By giving a nonzero 
value to Primary axis rotation, you can make the primary spectrum act in an arbitrary 
direction in the XY-plane.

• Some Spatial combination methods in 3D (CQC3 and SRSS3) assume that the two 
horizontal spectra are equal except for an amplitude scale factor. In such case, you 
only provide one spectrum together with a Secondary horizontal spectrum scale factor 
(value between 0 and 1).

Mode Combination
The combination of the eigenmodes is the core of the response spectrum methods. 
Most commonly the combination is done in two passes: first the response to the 
excitation in each spatial direction is determined, and then a total response is computed 
by combining the spatial responses. However, for certain methods the total response 
is computed in one pass.

First, you select a Spatial combination method. If it is SRSS or Percent method, you also 
select a Mode combination method.

The mode combination methods require different inputs. In particular, several of them 
provides a possibility to choose whether the coupling terms between modes are to be 
considered as always positive, or they may actually reduce the total response. This is 
controlled by the Use absolute value for coupling terms check box. Its default value 
differs between the methods, according to what is expected to be the most common 
choice.

Periodic Modes and Rigid Modes
For frequencies higher than the highest frequency content of the excitation, the SDOF 
system will respond as a rigid body. Some of the response spectrum evaluation methods 
take this into account. The effect is that high-frequency (“rigid”) modes are assumed 
to have a higher degree of correlation than low-frequency (“periodic”) modes. To take 
this effect into account, you can select Rigid modes to be the Gupta method or the 
Lindley-Yow method.
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Missing Mass Correction
In general, only a small fraction of the total number of eigenmodes are used in the 
superposition. Therefore, some fraction of the total mass of the structure is not 
accounted for. The ignored modes usually have high natural frequencies. Such modes 
will not have a significant dynamic amplification. The mass in the corresponding 
SDOF system will just follow the movement of the foundation. This means that if the 
distribution of the missing mass is known, then it can be treated as an extra stationary 
mass force, where the peak acceleration during the event replaces the acceleration of 
gravity.

You can use two different methods for missing mass correction:

• In the Missing mass method, the difference between the true mass distribution and 
the mass represented by the used eigenmodes will act as extra static load. Typically, 
most of the missing mass is located close to support points, where the modal 
amplitudes are low. This method can be used together with either the Gupta method 
or the Lindley-Yow method.

• In the Static ZPA method, the total inertial force is used as static load. At the same 
time, only the periodic part of the response is used in the mode summation. This 
method can only be used together with the Lindley-Yow method because it is only 
compatible with the assumptions about how the rigid modes are scaled.

R E S U L T  I N T E R P R E T A T I O N

All results from a response spectrum analysis are positive; the evaluation methods 
contain absolute values or RMS-like operations. This has important implications for 
the interpretation of the results:

• If the sign of your result quantity is important for the conclusions, you need to 
manually consider also the case of a negative value.

• It is not meaningful to show deformation or vector plots of response spectrum 
results.

An underlying implicit assumption for response spectrum analysis is that it is 
performed in a frame of reference that follows the foundations of the structure. Thus, 
all displacements, velocities, and accelerations are relative to the foundation, which in 
itself is accelerating. Thus, it is difficult to evaluate the absolute acceleration. The 
conservative way of doing so is to add the peak acceleration of the underlying event to 
the computed acceleration. This will usually be rather conservative since the peak of 
the excitation seldom coincides in time with the peak of the response.
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For displacements, the relative displacements between two objects within the same 
moving frame is usually a more important result than the absolute displacement, so it 
does seldom matter whether a constant value is added to all points or not.

• The theory is described in Response Spectrum Analysis Theory.

• The Response Spectrum node is described in the COMSOL 
Multiphysics Reference Manual.

• Combine Solutions and Updating a Solution in the COMSOL 
Multiphysics Reference Manual.

• The settings for the special datasets are described in Response 
Spectrum 2D and Response Spectrum 3D in the COMSOL 
Multiphysics Reference Manual.

• Earthquake Analysis of a Building: Application Library path 
Structural_Mechanics_Module/Dynamics_and_Vibration/

building_response_spectrum

• Shock Response of a Motherboard: Application Library path 
Structural_Mechanics_Module/Dynamics_and_Vibration/

motherboard_shock_response
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S t r e s s  L i n e a r i z a t i o n

Stress linearization is a procedure in which the stress distribution along a line through 
the thickness in a solid is approximated with an equivalent linear stress distribution, 
similar to what would be the result of an analysis using shell theory. The line is 
commonly referred to a stress classification line, SCL. This type of evaluation is 
common in the analysis of pressure vessels. It is also useful for the design of 
reinforcements for concrete structures and for fatigue analysis of welds.

To perform a stress linearization, you add one Stress Linearization node for each SCL.

O R I E N T A T I O N  O F  S T R E S S  C O M P O N E N T S

The stresses along the SCL are represented in a local orthonormal coordinate system, 
x1-x2-x3. The x1 direction is oriented along the SCL, so it is mainly the stresses in the 
second and third directions that are of interest.

• In 3D, you must specify the x2 direction and thus implicitly the x3 direction. You 
specify the orientation either by selecting a point in the x1-x2 plane or by defining 
an orientation vector in an approximate x2 direction. In either case, the actual x2 
direction is chosen so that it is perpendicular to the SCL and lies in the plane you 
have specified. The x3 orientation is then taken as perpendicular to x1 and x2. As 
long as you are only interested in a stress intensity, the choice of orientation is 
arbitrary.

• In 2D, the x3 direction is the out-of-plane direction, and the x2 direction is 
perpendicular to the SCL in the XY-plane.

• In 2D axial symmetry, the x3 direction is the azimuthal direction, and the x2 
direction is perpendicular to the SCL in the RZ-plane.

C R E A T I N G  T H E  S T R E S S  C L A S S I F I C A T I O N  L I N E

The most straightforward way to create an SCL is to include it in the geometry, and 
then select it in a Stress Linearization node. This corresponds to using the Line 
linearization type where the SCL is defined by Edge.

The information about stress linearization is applicable if your license 
includes the Structural Mechanics Module.
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Figure 2-35: Four stress classification lines in a transition region at a pressure vessel 
nozzle.

There are, however, some situations where this direct approach is less convenient:

• When the introduction of the SCL in the geometry must be done after the analysis, 
since the locations of critical regions were not obvious when setting up the initial 
analysis. It is of course possible to add new edges and rerun the analysis, but this 
may not be a good solution if the analysis time is long.

• When the introduction of the edges for the SCL makes the meshing more difficult. 
It may, for example, not be possible to use swept meshes anymore, or the mesh 
quality is reduced in critical regions.

In the two above cases an alternative is to define an SCL that is not included in the 
geometry by connecting two arbitrary points with a straight line. This corresponds to 
using the Line linearization type where the SCL is defined by Two points. The 
introduction of the SCL will in this case not make it necessary to update the geometry 
and rerun the analysis. Since the SCL is disconnected from the geometry and mesh, 
this option will also make meshing easier. The downside is then the you cannot control 
the mesh quality along the SCL.
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In some cases it is difficult to a priori determine where to create the SCL or the critical 
location may change depending on, for example, loading conditions or time. For such 
cases, it is also possible to define it in a distributed manner such that an infinite number 
of SCLs are created in a domain. The starting point of the SCLs are given by a 
boundary selection, and they extend along the normals of the boundary through the 
selected domains. This corresponds to using the Distributed linearization type.

S T U D I E S  A N D  S O L U T I O N S

Stress linearization is a pure postprocessing operation. The Stress Linearization node 
will only create a number of variables, which can be evaluated under Results. It is thus 
possible to add such nodes after the main analysis has been performed. In order to 
make the new variables available for postprocessing, you must then run an Update 

Solution.

R E S U L T S

When you have included one or more Stress Linearization nodes in a model, a number 
of datasets and an extra predefined plot are generated.

One edge dataset is created for each SCL. These datasets are named Linearization 
Line <n>, where n is an integer number.

Figure 2-36: Generated datasets in a model with five SCL.

The plot contains graphs for the 22 component of the actual stress, the membrane 
stress, and the linearized stress. The first Linearization Line dataset is selected. By 
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changing edge dataset in the plot group, you can easily move between the different 
stress classification lines.

Figure 2-37: Plot along a stress classification line.

For the Distributed linearization type, the created Linearization Line dataset corresponds 
to a single SCL in selected domain. The starting point is specified in the Postprocessing 
section of the feature, and must lie on the selected boundaries. The endpoint is 
computed internally such that the cut line extends through the selected domains along 
the boundary normal of the point.

V A R I A B L E  N A M E S

Each Stress Linearization node adds a number of variables. Many of these variables exist 
with two different scopes, physics scope and feature scope. The physics scope is the 
name of the physics interface, having the default value ‘solid’. The feature scope 
contains also the tag of the Stress Linearization node, for example, ‘sl1’.

As an example, the variable solid.Sm22 and the variable solid.sl1.Sm22 have the 
same value. The variables with physics scope make it more convenient to create 
expressions using postprocessing. You could, for example, make a line plot of 
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solid.sb22 and get all edges having a stress linearization colored by their individual 
results.

TABLE 2-19:  VARIABLES FOR STRESS LINEARIZATION

VARIABLE DESCRIPTION VARIABLE IN 
THEORY SECTION

COMMENT SCOPE

Sllsij Stress tensor in 
local coordinate 
system

ij ij = 11, 12, 13, 22, 
23, 33

Physics, 
Feature

Smij Membrane stress m,ij ij = 11, 12, 13, 22, 
23, 33

Physics, 
Feature

Sbmaxij Maximum bending 
stress

b(max),ij ij = 11, 12, 13, 22, 
23, 33

Feature

Sbij Bending Stress b,ij ij = 11, 12, 13, 22, 
23, 33

Physics, 
Feature

Smbij Membrane + 
bending stress

mb,ij ij = 11, 12, 13, 22, 
23, 33

Physics, 
Feature

Spsij Peak stress, 
starting point

p(start),ij ij = 11, 12, 13, 22, 
23, 33

Feature

Speij Peak stress, 
starting point

b(end),ij ij = 11, 12, 13, 22, 
23, 33

Feature

SIm Stress intensity, 
membrane

int Physics, 
Feature

SImbs Stress intensity, 
membrane + 
bending, starting 
point

int Feature

SImbe Stress intensity, 
membrane + 
bending, endpoint

int Feature

SImb Stress intensity, 
membrane + 
bending,

max(SImbs, SImbe) Physics, 
Feature

Nij Local in-plane 
force

Nij ij = 22, 23, 33 Feature

Mij Local bending 
moment

Mij ij = 22, 23, 33 Feature

Qi Local out-of-plane 
shear force

i = 2, 3 Feature
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lengthtot Length of SCL L Feature

arclength Coordinate along 
SCL

X1 Feature

TABLE 2-19:  VARIABLES FOR STRESS LINEARIZATION

VARIABLE DESCRIPTION VARIABLE IN 
THEORY SECTION

COMMENT SCOPE

Stress Linearization in the Structural Mechanics Theory Chapter.
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S o l v e r  S e t t i n g s  f o r  S t r u c t u r a l  
Me c h an i c s

COMSOL Multiphysics includes many solvers and solver settings. To make it easier to 
use a suitable solver and its associated solver parameters, the physics interfaces have 
different default settings based on the study type and features used. In some situations, 
the default settings may need to be changed. This section helps you to select a solver 
and its settings to solve structural mechanics and related multiphysics problems.

In this section:

• Symmetric Matrices

• Selecting Iterative Solvers

• Specifying Tolerances and Scaling for the Dependent Variables

Symmetric Matrices

Use the Matrix symmetry list (see the General section on the Settings window for 
Advanced for a solver node such as Stationary Solver). There you can explicitly state 
whether the assembled matrices (stiffness matrix, mass matrix) resulting from the 
compiled equations are symmetric or not.

Normally the matrices from a single-physics structural mechanics problem are 
symmetric, but there are exceptions, including the following cases:

• Multiphysics models solving for several physics simultaneously (for example, heat 
transfer and structural mechanics). Solving for several Structural Mechanics 
interfaces, such as shells combined with beams, does not create unsymmetrical 
matrices.

Studies and Solvers in the COMSOL Multiphysics Reference Manual

If you make changes to the physics, this will not be reflected in the solver 
settings unless you regenerate the solver sequence.
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• Contact with friction.

• Elastoplastic analysis

One of the benefits of using the symmetric solvers is that they use less memory and are 
faster. The default option is Automatic, which means the solver automatically detects if 
the system is symmetric or not. Some solvers do not support symmetric matrices and 
always solve the full system regardless of symmetry.

Complex matrices can be unsymmetric, symmetric, or Hermitian. Hermitian matrices 
do not appear in structural mechanics problems.

Selecting Iterative Solvers

The default solver for structural mechanics is the MUMPS direct solver in 2D and the 
PARDISO direct solver in 3D. For large 3D problems (several hundred thousands or 
millions of degrees of freedom) it is beneficial to use iterative solvers when possible to 
save time and memory. The drawback is that they are more sensitive and might not 
converge if the mesh quality is low. The iterative solvers also have more options than 
the direct solvers.

For Stationary and Time Dependent studies and Frequency Domain studies in 3D, a 
GMRES iterative solver is preconfigured and available as an alternative solver 
suggestion for solid mechanics models.

Advanced and Stationary Solver in the COMSOL Multiphysics Reference 
Manual

Selecting the Symmetric option for a model with unsymmetric matrices 
may lead to incorrect results. For a nonlinear problem that is only weakly 
unsymmetric, it may still be useful, since the faster solution of the 
symmetric problem may offset the lower convergence rate. This is, for 
example, the case for contact problems with a low coefficient of friction.

Selecting the Hermitian option for a model with complex-valued 
symmetric matrices produces incorrect results.
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If the model is set up using quadratic (default) or higher-order elements for the 
displacement dependent variable, this GMRES solver will use geometric multigrid 
(GMG) as the preconditioner.

For slender geometries, changing to SOR Line as presmoother and postsmoother can 
give better results compared to SOR, which is the default for the GMG preconditioner.

For models using linear elements for the displacement dependent variable, the 
preconditioner will be changed to smoothed aggregated algebraic multigrid (AMG). 
This is to avoid remeshing when creating the discretization on the coarse level. Note 
that you need to manually regenerate the solver sequence after you change the element 
order if you want to make use of such change in the predefined iterative solver 
configuration.

For eigenfrequency and eigenvalue studies, use the default direct solver

Solver Settings for Viscoelasticity, Creep, and Viscoplasticity

Viscoelasticity, creep, and viscoplasticity are time-dependent phenomena. The time 
scale, however, is often such that inertial effects can be ignored. When that is the case, 
you can modify the solver settings to improve the performance of the time-dependent 
analysis.

P H Y S I C S  I N T E R F A C E  S E T T I N G S

In the Model Builder, click the Solid Mechanics node. In the Settings window, under 
Structural Transient Behavior, select Quasi static to treat the elastic behavior as 
quasi static (with no mass effects; that is, no second-order time derivatives for the 
displacement variables). Selecting this option gives a more efficient solution for 
problems where the variation in time is slow when compared to the natural frequencies 
of the system since no mass matrix will be created.

Specifying a shift frequency greater than the lowest eigenfrequency results 
in indefinite matrices.

Studies and Solvers in the COMSOL Multiphysics Reference Manual
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S O L V E R  S E T T I N G S

When Quasi static is selected on the physics interface Settings window, the automatic 
solver suggestion changes the method for the Time Stepping from Generalized alpha to 
BDF.

For a Fully Coupled node (or Segregated node for multiphysics problems), the default 
Nonlinear method under Method and Termination is Automatic (Newton). To get a faster 
computation time when the strain rate is low or moderate, select Constant (Newton) as 
the Nonlinear method instead.

Specifying Tolerances and Scaling for the Dependent Variables

The absolute tolerance parameters used for time-dependent studies are problem 
specific. By default, the absolute tolerance is applied to scaled variables, with the 
default value being 0.001 for all solution components.

The default scaling for the displacement components is based on the size of the 
geometry in the model, and certain reasonable scales are used for the pressure and 
contact force variables, if any. You are encouraged to change these scales as soon as 
better values are known or can be guessed or estimated from the applied forces, yield 
stress, reaction forces, maximum von Mises stress, or similar. The same suggestion 
applies to the displacement scale, which can be estimated easily if the problem is 
displacement controlled. This approach can significantly improve the robustness of the 
solution. The variable scaling is accessed under Dependent Variables in the solver 
sequence. The scales need to be entered using the main unit system in the model.

Solver Settings

In many situations, the default in COMSOL Multiphysics when having several physics 
interfaces is to generate a solver sequence with a segregated solver. When several 
structural mechanics interfaces are present, it can happen that the degrees of freedom 
are placed in different segregated steps by the default solver generation. It is, however, 
not possible to solve a model where the structural mechanics degrees of freedom are 

In the COMSOL Multiphysics Reference Manual:

• Studies and Solvers

• Fully Coupled and Segregated
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placed in different segregated groups, so in this case you must modify the solver 
settings.

• If the model only consists of structural mechanics interfaces, the best option is 
usually to replace the segregated solver with a fully coupled solver.

• If the model contains contact conditions where the augmented Lagrangian method 
is used, there are two versions of the algorithm: one based on a special segregated 
solver, and one based on a fully coupled solver. In the first case, a segregated solver 
must be used. Place all structural mechanics degrees of freedom except the contact 
variables in one segregated step. The contact variables should remain in the lumped 
step, which should appear directly after the step with the other mechanical degrees 
of freedom.

• If there are other types of physics interfaces than structural mechanics being solved 
in the same study, then the segregated solver should usually be kept. Make sure that 
all structural mechanics degrees of freedom except segregated contact variables are 
solved in one segregated step.

In the COMSOL Multiphysics Reference Manual:

• Solution Operation Nodes and Solvers

• About the Stationary Solver
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U s i n g  R edu c ed I n t e g r a t i o n

Using reduced integration in structural mechanics often have two main justifications:

• Reduce the per mesh element computational effort for assembly of system matrices.

• Improve the accuracy of the finite element by, for example, alleviating locking and 
an overly stiff behavior.

The reduced computational effort stems from the fewer quadrature points in which 
expressions are evaluated during the assembly of the system matrices. This reduction 
can be particularly beneficial for models where a comparably large time is spent in 
assembly, as compared to the time needed to solve the system of equations. Typical 
examples include structural dynamics where the many increments can lead to a 
significant time spent on assembling, and nonlinear material models where each 
assembly step can be expensive. Plasticity, for example, involves solving a system of 
nonlinear equations at each quadrature point, thus reducing the number of quadrature 
points can significantly speed up the assembly time.

Reduced integration can be used selectively for different material models within the 
same physics interface.

D I S P L A C E M E N T  O R D E R  A N D  M E S H  E L E M E N T  T Y P E S

The accuracy and performance of finite elements derived using a reduced integration 
scheme depends on both the shape order of the displacement field and on the mesh 
element type. For some combinations, reduced integration will give “exact” results, 
whereas other combinations may result in deformation modes that produce zero strain 
energy — so-called spurious zero energy modes or hourglass modes. In the latter case, 
stabilization is needed to suppress such unwanted modes of deformation.

Linear
Using a linear displacement shape order is typically not encouraged in structural 
mechanics, since all mesh element types lead to a deficient formulation. The derived 
finite elements can be considered overly stiff, especially when a coarse mesh is used. 
This overly stiff behavior is commonly caused by shear-locking effects.

These deficiencies can be alleviated by using a reduced integration scheme, which for 
linear shape order results in a quadrature order equal to zero. Having only a single 
integration point per mesh element removes the shear locking for linear elements, and 
it can significantly improve the accuracy in coarse meshes. However, the derived finite 
elements exhibit severe hourglassing and require stabilization to be useful. An example 
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of a two-dimensional bending problem is given in Figure 2-38, which shows the 
performance of linear quadrilaterals using reduced integration with and without 
stabilization. A so-called hourglass pattern emerges without stabilization making the 
solution clearly not viable.

Figure 2-38: Two-dimensional bending example using a linear displacement field and 
reduced integration with stabilization (left) and without it (right).

Using reduced integration for a linear displacement shape order can also remove 
volumetric locking and improve the accuracy for incompressible materials, either with 
or without a mixed formulation.

The derived finite elements are still sensitive to hourglassing even when stabilization is 
used. It is therefore recommended to avoid singularities, since these can excite 
hourglass modes and consequently be detrimental for features such as:

• Point and edge loads

• Point and edge constraints

Linear triangular and tetrahedral mesh elements exhibit poor accuracy when using 
reduced integration, and are generally not recommended for such scheme.

For quadrilateral and brick mesh elements, the accuracy of the finite element and the 
efficiency of the hourglass stabilization is best for mesh element with a good aspect 
ratio and quality. The same applies to pyramid and wedge mesh elements.

Quadratic Serendipity
Finite elements derived using quadratic serendipity shape functions and reduced 
integration in general have a less stiff behavior than their fully integrated counterparts. 
The coarse mesh accuracy in terms of displacements can therefore be improved by 
using reduced integration.

If the displacement field uses quadratic serendipity shape functions, any mesh element 
leads to a finite element that has no hourglass modes, and therefore no stabilization is 
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needed when using reduced integration. For this reason, using quadratic serendipity 
shape functions together with reduced integration can be a very efficient formulation. 
In theory, there could appear hourglass modes, but these are suppressed when the 
finite elements are assembled.

Quadratic Lagrange
Finite elements derived using quadratic Lagrange shape functions and reduced 
integration in general have a less stiff behavior than their fully integrated counterpart. 
The coarse mesh accuracy in terms of displacements can therefore be improved by 
using reduced integration.

However, when using reduced integration some mesh element types may lead to finite 
elements that exhibit hourglass modes, this is the case for quadrilaterals and bricks. 
Although these finite elements are not as sensitive as their linear counterpart, they 
require stabilization to be viable. Stabilization is also encouraged for mesh elements 
that have deformation modes with a very small stiffness, such as pyramids and wedges.

Higher-Order Shape Functions
Higher-order shape functions share many characteristics with the corresponding 
quadratic shape orders. That is, there is no need for stabilization when using 
serendipity shape functions, whereas finite elements derived from Lagrange shape 
functions will have hourglass modes that require stabilization.

Triangular and Tetrahedral Mesh Elements
Triangular and tetrahedral mesh elements are special cases for which the reduced 
integration scheme is exact given that the corresponding mesh element is not 
distorted. These mesh element types do not exhibit hourglass modes when using 
reduced integration, and therefore stabilization is not needed. If the current mesh only 
consists of such mesh element types, turning off the hourglass stabilization may 
improve the performance of your model. The accuracy is not affected by enabling or 
disabling stabilization, since the stabilization terms would evaluate to zero.

However, it is not recommended to use triangular or tetrahedral mesh elements in 
combination with a linear displacement shape order.

If Automatic hourglass stabilization is selected, no stabilization is added 
when serendipity shape functions are used for the displacement field.
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H O U R G L A S S  S T A B I L I Z A T I O N

A number of energy quantities are added that can be used to evaluate the amount of 
hourglass stabilization energy introduced, and also to portrait parts of the model that 
are prone to hourglassing. These include:

• <phys>.Wstb, a field showing the stabilization energy density. Note that values are 
extrapolated from the true quadrature points.

• <phys>.Wstbavg, a mesh-element average of the variable <phys>.Wstb. This 
variable is not available for layered shell features.

• <phys>.Wstb_tot, the total amount of stabilization energy in the model.

As a crude rule-of-thumb, the total stabilization energy should not be more than 5% 
of the total strain energy in the model. If this is not the case, revise the model or use 
full integration.

Always make sure that the obtained solution does not exhibit hourglassing when using 
reduced integration with formulations prone to it. This is especially the case when the 
displacement field is linear, since such finite elements can be particularly sensitive to 
hourglassing.
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Re s u l t  P r e s e n t a t i o n

In this section, some special postprocessing techniques that are particularly useful for 
structural mechanics models are presented.

In this section:

• Local Orientations

• How an Expression Is Evaluated

• Quality Settings

• Gauss Point Evaluation

• Postprocessing of Eigenmodes

• Plotting Applied Loads

Local Orientations

Many stress and strain tensor components are available both in local and global 
directions. Some examples are:

• solid.sxy — Cauchy stress with respect to the global spatial coordinate system

• solid.sl12 — Cauchy stress with respect to the local coordinate system of the 
material.

• solid.SXY — Second Piola–Kirchhoff stress with respect to the global material 
coordinate system

• solid.Sl12 — Second Piola–Kirchhoff stress with respect to the local coordinate 
system of the material

• solid.eXY — Strain with respect to the global material coordinate system

• solid.el12 — the local coordinate system of the material

As can be seen, tensor component indices containing the names of a coordinate 
directions has orientations along those axes. Components in local directions contain 
the letter ‘l’ and numerical indices.

General principles for result presentation and how to work with the 
features under Results in the Model Builder are provided in Results 
Analysis and Plots in the COMSOL Multiphysics Reference Manual.
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The local directions are defined by the coordinate system attached to a material model. 
For most material models, you can select a local coordinate system in the Coordinate 

System Selection section of its settings. The purpose of this selection is twofold:

• It provides the orientations along which orthotropic and anisotropic material data 
are interpreted.

• It acts as the coordinate system in which the local stress and strain tensor 
components are presented.

When the material is isotropic, you can utilize the local coordinate system just for the 
second purpose. In this case, the results of the analysis itself are independent of the 
selected coordinate system. It just provides a transformation to be utilized during 
results evaluation. If you want to change the orientations for the local components of 
the tensors, you do not have to solve the study again. Instead, you select the new 
coordinate system in the material model node, and then run Update Solution ( ) for 
the study or studies where you want the new definition to be applied.

A D D I N G  Y O U R  O W N  T R A N S F O R M A T I O N S

If there are no suitable local coordinate system variables defined from the physics 
interface itself, you can create your own transformations.

The easiest way of doing that is to use the Local System Results node, available in some 
of the structural mechanics interfaces. Here, the input is just a local coordinate system.

A more general approach is to add a Vector Transform or Matrix Transform under 
Definitions>Variable Utilities, depending on the type of object you are going to 
transform.

These nodes provide a large degree of flexibility in defining various types of transforms, 
but for a pure rotation into a new coordinate system, the settings are straightforward. 
Do the following:

1 Add the local coordinate system in which the results are to be presented under 
Definitions.

Updating a Solution in the COMSOL Multiphysics Reference Manual.
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2 In the Input section, enter the components of the vector or tensor to be 
transformed. In most cases, you can pick it using Replace Expression ( ).

3 In the Vector Transform or Matrix Transform node, select the local coordinate system 
in the Output section. In the latter node, select it twice.

4 Select the domain where you want this transformation to be valid.

5 Often, you want to enter your own name for the transformed object in the Name 
text field.

Figure 2-39: Example of settings for transforming the displacement vector to a cylindrical 
coordinate system.

Some tensors within the structural mechanics interfaces do not contain an 
intrinsic information about the associated coordinate system. This is in 
particular true for those tensors labeled as ‘local’. When using them in the 
Matrix Transform node, you must then manually select the coordinate 
system for the input tensor.
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If you define the transformation after the study was solved, you will need to run Update 

Solution ( ) for the study or studies where you want to access the transformed 
variables.

You can now access the new transformed quantities for various type of result 
presentation. They are accessible under Definitions in the Replace Expression dialog.

Figure 2-40: Picking a transformed result in the Replace Expression dialog.

How an Expression Is Evaluated

In order to get optimal quality in the result presentation, it is necessary to have some 
understanding about how expressions are evaluated.

In structural engineering, the maybe most commonly evaluated result quantities are 
stresses and strains. Stress expressions can, however, be sensitive to specific settings 
during result presentation, and are for this reason used as an example in the discussion 
below.

Vector Transform and Matrix Transform in the COMSOL Multiphysics 
Reference Manual.
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Consider a linear elastic material with thermal expansion and creep. The stress tensor
 is then computed as

where  is the 4th-order elasticity tensor, “:” stands for the double-dot tensor product 
(double contraction). The elastic strain el is the difference between the total strain  
and all inelastic strains inel. In this example, the inelastic strain tensor has two 
contributions, creep strain cr and thermal strain th. There may also be an extra stress 
term ex with contributions from initial stress and external stress.

When a stress tensor component is to be evaluated, the following happens:

• A position x in an element is identified, where the value is to be computed.

• The total strain is computed from the derivatives of the shape functions at x. The 
strain depends on the values of the displacement degrees of freedom at the nodes 
and on the shape functions in the element.

• The expression giving the thermal strain th is evaluated at x. This expression will 
depend on a temperature, which may be prescribed or computed in another physics 
interface.

• The creep strain cr is a state variable, which is stored at the Gauss points in the 
element. The value is picked from the Gauss point closest to x.

• The inelastic strain inel (in this example, the creep strains is now subtracted from 
the total strains, to form the elastic strain el.

• The elastic strain el is multiplied by the elasticity tensor , evaluated at x, to give 
the stress . The material properties may depend on the location, either explicitly, 
or for example by a temperature dependency.

• Any extra stress ex, evaluated at x, is added to the stress tensor.

The subtraction between total and inelastic strains is however a sensitive operation. It 
is not uncommon that these two terms are close to each other in value, so that the 
resulting elastic strain is a small number obtained by subtraction of two larger 
numbers. Since the three types of strain in this example have different types of 
distribution through the element, there is a risk that this difference will exhibit artificial 
variations inside the element.

As an example, let’s assume that the temperature has a quadratic variation through the 
element, and that standard quadratic shape functions are used in Solid Mechanics. The 
total strain is a linear function within each element, since it contains derivatives of the 
shape functions. The computed elastic strain is the difference between the linear total 

 ex Cel+ ex C  inel– += =

C

C
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strain and the quadratic thermal strain. If there also are creep strains present, they will 
be piecewise constant, since they are taken from the nearest integration point.

It must, moreover, be realized that the total strain is ‘correct’ only in an average sense. 
It provides a kind of best fit given by the finite element formulation.

Quality Settings

In many features under Results, such as surface plots and line graphs, there is a section 
named Quality, through which details of how the results are computed can be specified. 
In some situations, you need to modify these settings to obtain optimal accuracy or 
visually attractive presentations.

First, it can be noticed that stresses, strains, and any other variables that are based on 
derivatives of the shape functions are not continuous over element borders. The 
Smoothing control is used for improving plots by applying an averaging between 
neighboring elements. The default when you add a result feature is to use smoothing, 
and this will in general improve the results. It does however also hide any jumps in the 
solution, which could indicate a too low resolution in the mesh. As soon as you are 
investigating the quality of the solution, it is a recommended to avoid smoothing. In 
the default stress plots that are generated by the structural mechanics interfaces, an 
intermediate path is taken: the Smoothing threshold is set to Manual, with the Threshold 
value set to 0.2. This means that as long as the values from adjacent elements do not 
differ by more than 20%, smoothing is applied. If, however, there are significant jumps 
in the solution, they will be clearly visible.

The Resolution setting determines at how many points in the element the result 
quantity is evaluated. Essentially, a local finer mesh is used within the element for the 
visualization. Using a high resolution can be problematic and lead to local overshoots 
and artificial ‘waviness’ of the solution. For smooth expressions, like a stress in the 
absence of inelastic strains or a displacement, this is not a problem. If, however, the 
function has sudden variations within the element, a high resolution will give results 
having artificial variations.

The default resolution depends on several factors, but will generally result in that a 
result quantity is evaluated in a rather large number of points in the element. In 
addition to affecting plot quality, having a high resolution can make the plotting 
significantly slower.

Using a low resolution will remove the sudden variations, but may still not be an 
optimal choice. If you set the quality to No refinement, the expression is evaluated only 
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at the corners of the element. This is, for example, rather far from the Gauss points 
where many types of inelastic strains are stored. Also, a thermal strain with a quadratic 
distribution will be rather far from its best linear approximation at the element corners.

The most robust solution if you encounter this type of problems it to create a 
low-order field that approximates the “wavy” expression over the element, as described 
in the next section.

Gauss Point Evaluation

You can create a smooth field within each element for any expression by using the 
gpeval() operator. In its most basic version, this operator has the following syntax: 
gpeval(integration_order, expression).

The gpeval() operator evaluates an expression at a given set of Gauss points and 
creates an approximate smooth field using the least squares fit. It is important to use 
the correct integration order to accurately evaluate state variables stored at Gauss 
points, as in the case with many nonlinear material models. For example, when 
quadratic shape functions are used with full integration, the first argument to the 
gpeval() operator should be 4.

For some common cases, physics interfaces define built-in variables with Gauss point 
evaluation. As an example, the built-in variable solid.sGpx is equivalent to using the 
expression gpeval(4,solid.sx). Another example is solid.misesGp. However, 
similarly using gpeval(4,solid.mises) can lead to unphysical negative values 
caused by the extrapolation done by the operator. Hence, for a variable that is strictly 
positive, one should use max(0,gpeval(4,solid.mises)) or similar expressions; 
this is done for all relevant built-in variables with Gauss point evaluation.

When working with surface plots in a 3D geometry, or with line graphs in 2D and 3D, 
there is a subtle difference between the built-in variables and the operator syntax. The 
built-in variables are defined in the domain, and the field is projected from the domain 
to be evaluated on boundaries and edges. If, however, you type in the operator syntax 

Entering Quality Settings for Plot Settings Windows in the COMSOL 
Multiphysics Reference Manual.

For a general description of the gpeval() operator, see gpeval in the 
COMSOL Multiphysics Reference Manual.
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as an expression in a line graph, the field is created only on that line, using only Gauss 
points on the element edges. In order to avoid this, create domain variables under 
Definitions>Variables using the operator syntax, and then use them on boundaries or 
edges. Another alternative is to use the mean() operator, which evaluates any 
expression in adjacent entities of higher order. For example, to evaluate a domain 
variable in different plots in 3D, use the following syntax:

• Surface plot: mean(gpeval(integration_order, expr))

• Line graph: mean(mean(gpeval(integration_order, expr)))

• Point graph: mean(mean(mean(gpeval(integration_order, expr))))

There are also built-in operators that can be used specifically for evaluating domain 
variables in any type of plot. Their syntax is summarized in Table 2-20. These operators 
also automatically set the integration order to be consistent with its parent physics 
interface <phys>, as opposed to the corresponding general operators. Also, for 
example, reduced integration is taken into account.

Postprocessing of Eigenmodes

E I G E N M O D E  S C A L I N G

The eigenmodes that form the solution to eigenvalue problems, like eigenfrequency 
and linear buckling, have some special properties that require attention. The most 
important property is that an eigenmode is only defined up to an arbitrary 
multiplicative factor. Thus, the actual values of the modal displacements have no 

TABLE 2-20:  SUMMARY OF OPERATORS FOR EVALUATION EXPRESSION IN GAUSS POINTS OF DOMAIN MESH 
ELEMENTS.

OPERATOR SYNTAX EXPLANATION

<phys>.elemavg(expr) Elementwise average in domain mesh 
elements

<phys>.elemgpmax(expr) Elementwise maximum over Gauss points in 
domain mesh elements

<phys>.elemgpmin(expr) Elementwise minimum over Gauss points in 
domain mesh elements

<phys>.elemint(expr) Elementwise integration in domain mesh 
elements

<phys>.gpeval(expr) Elementwise Gauss point evaluation in 
domain mesh elements
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physical significance. In order to emphasize this, the default eigenmode plots have no 
color legend.

The underlying theory does, however, assume that the mode shape is an infinitesimal 
perturbation to the geometric shape.

If the eigenmodes have an unfortunate scaling, confusing effects can appear during 
postprocessing:

• Any variable or expression used during postprocessing of an eigenvalue solution will 
be evaluated using the setting of the Include geometric nonlinearity check box of the 
eigenfrequency study step. If the values of the modal displacements are large and the 
study step is geometrically nonlinear, then the nonlinear parts of the strain tensor 
may become large. This is not consistent with the assumption of a small 
perturbation.

• If the study step is geometrically linear, there can be other types if inconsistencies if 
the modal displacements are large. Many variables are then defined under the 
assumption that angles are small. As an example, the normal vectors to a shell can 
appear to no longer have unit length.

• Rotational degrees of freedom scale the same way as the displacements. Computed 
rotations can potentially get values of more than a full revolution.

In most cases, you only have to be aware of these phenomena. But if you really need 
to access quantitative values (for example, as modal stresses), you need to use some 
caution.

The scaling of eigenmodes can be controlled in the Output section in the settings for 
the Eigenvalue Solver node. By setting Scaling of Eigenvectors to Maximum and using a 
small value for the Maximum absolute value, you can force the eigenmodes to be small. 
All structural mechanics interfaces override the default value and set it to 10-6 times 
the size of the bounding box of the geometry in order to keep the eigenmode 
displacements small.

D E F O R M A T I O N  P L O T  A R T I F A C T S

The automatic scaling of a deformation plot can give strange impressions, in particular 
when the main deformation shape is a rotation. The geometry then seems to become 

In a response spectrum analysis, all result quantities are computed by 
scaling the modal results. In this case, it is necessary that all eigenmodes 
are scaled so that the assumptions of geometric linearity are fulfilled.
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wider, since the displacements are directed in the infinitesimal tangential direction 
rather than along a circular path.

Figure 2-41: A torsional eigenmode in a box beam.

E I G E N M O D E S  I N  A  D E F O R M E D  S T R U C T U R E

When you perform a prestressed eigenvalue analysis, it is possible that the prestress 
load case causes a significant deformation to the structure. The default eigenmode plot 
will still show the mode relative to the original undeformed structure. Sometimes this 
does not give a good enough representation of actual mode shape.

To improve the visualization, do the following:

1 Go to the settings for the 2D or 3D plot group containing the mode shape plot. 
Under Plot dataset edges, set Frame to Spatial. This will make the outline to be given 
by the deformed shape from the prestress load case.

2 In the dataset for the eigenvalue solution, set Frame to Spatial. The mode shapes are 
now plotted relative to the deformed shape.

Plotting Applied Loads

When solving, predefined plots containing the applied loads are generated. You can 
add them from the Add Predefined Plots window. Figure 2-42 shows an example of such 
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a plot. In this section, it is described in detail how you can work with these plots to 
fine-tune the visualization.

Figure 2-42: Example of an automatically generated plot to visualize the boundary loads 
applied to a bracket.

S T R U C T U R E  O F  D E F A U L T  L O A D  P L O T S

For each structural mechanics physics interface and dataset, a node group is generated 
under Results. Its name is Applied Loads (<interfaceTag>). Within this node group, one 
plot group per type of load is created. The possible plot group names are listed in 
Table 2-21.

TABLE 2-21:  PLOT GROUP NAMES AND PLOT TYPES

LOAD GROUP NAME PLOT TYPE DESCRIPTION

Volume Loads Arrow Volume, 
Arrow Surface, 
Arrow Line, 
Arrow Point

Generated from Body Load, Gravity, Linearly 
Accelerated Frame, and Rotating Frame. The 
plot type depends on the geometrical 
dimension of the physics interface.

Boundary Loads Arrow Surface Generated from Boundary Load. Also, from 
Added Mass on a boundary combined with 
Gravity or Rotating Frame.

Face Loads Arrow Surface Generated from Face Load in Shell, Plate, and 
Membrane interfaces.

Face Moments Arrow Surface Generated from Face Load in Shell, Plate, and 
Membrane interfaces of nonzero moments are 
present.
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In general, load groups are generated as soon as there is load of a certain type, 
irrespective of whether the value of the load is nonzero or not. Load features in which 
it is possible to enter both a force and a moment contribution, such as Edge Load in the 
Beam interface, have a special behavior:

• A plot group for forces is always generated.

• A plot group for moments is only generated if there is a nonzero value in at least 
one of the components of the moment vector.

Within a load group, there is one plot per load feature. In most cases, the plot has the 
same label as the generating load feature, for example Boundary Load 2.

M O D I F Y I N G  T H E  V I S U A L I Z A T I O N

The default appearance of the load plots provides a good overall visualization of the 
loads applied to the model. However, for complex models or for creating plots for 
export, you might want to modify the default setting. Most default settings are 
presented in the following together with some prepared alternative settings and 
suggestions that you can make use of. While the plots are automatically generated, you 

Edge Loads Arrow Line Generated from Edge Load. Also, from Added 
Mass on an edge combined with Gravity or 
Rotating Frame.

Edge Moments Arrow Line Generated from Edge Load in Shell, Plate, and 
Beam interfaces if nonzero moments are 
present.

Point Loads Arrow Point Generated from Point Load.

Point Moments Arrow Point Generated from Point Load in Shell, Plate, and 
Beam interfaces if nonzero moments are 
present.

Global Loads, 
Global Moments

Point 
Trajectories

Generated from global features like Rigid 
Connector and Rigid Material, which have 
subnodes as Applied Load and Applied Moment. 
Such loads are a type of point load, but they are 
applied at a certain location in space, rather 
than at a point in the geometry.

Fluid Loads 
(Pressure)

Line Generated from Fluid Load in Pipe Mechanics 
interface.

Fluid Loads 
(Drag Force)

Arrow Line Generated from Fluid Load in Pipe Mechanics 
interface.

TABLE 2-21:  PLOT GROUP NAMES AND PLOT TYPES

LOAD GROUP NAME PLOT TYPE DESCRIPTION
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can modify them in any way you want to improve the visualization for your specific 
model; the plots are not reset each time you compute the study.

Style Inheritance
Within a load group, the style of each load plot is inherited from the previous plot. The 
inheritance can be modified in the Inherit Style section. For example, clear the Color 
check box to enable different color schemes for different loads and the Color and data 

range to allow different ranges of the color legends.

Filled Surfaces
In order not to hide any load arrows, the default is to use a transparent representation 
of the geometry. This is obtained through the extra surface plot Gray Surfaces together 
with a Transparency subnode. This plot adds a uniform gray surface on each boundary 
of the geometry. The effect is shown in Figure 2-42. If you disable the Gray Surfaces 
plot, the structure will have a wireframe outline only. You can modify the transparency 
level in the Transparency subnode, or delete the node completely. You can, 
furthermore, add a Selection subnode to the Gray Surfaces node to modify on which 
boundaries to plot the gray surface.

The Gray Surfaces plot is only generated for physics that use a 2D or 3D representation 
of the geometry.

Arrow Heads
You can change the attachment of the arrow by changing the setting of Arrow base in 
the Coloring and Style section. The default is in most cases to place the tail on the 
geometry. One exception is, for example, a pressure boundary load for which the head 
of the arrow is placed at the geometry.

Number of Arrows
For distributed fields, the default is to place one arrow at the center of each element, 
element face, or element edge. If the density of arrows is not appropriate, you can 
modify the settings in the Arrow Positioning section. For example, change Placement to 
Mesh nodes to place an arrow in each point of the of the linear mesh, or set it to Uniform 
to specify an arbitrary number of arrows to be plotted.

Color Scheme
The color scheme of the arrow plots is controlled in a Color Expression subnode. The 
default color table is a Gradient going from red to black. You can change this in the 
Coloring list. By selecting Color table, the color table is automatically set to Spectrum. 
This color table can be useful for a clear visualization of the applied loads, when, for 
example, the magnitude varies significantly between load features.
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Deformation
By default, the load plots are presented in the initial configuration of the model. 
However, when applicable, a Deformation subnode is added to each plot, but with the 
Scale factor set to zero. Modify the scale factor to view the loads in a deformed state. 
Note that when multiple load plots exist in a plot group, the scale factor is by default 
inherited from the first plot. The exception is the Gray Surfaces plot, where the scale 
factor is set independently of the other plots.

When the analysis includes geometric nonlinearities, the Scale factor is by default set to 
one. Hence, the loads are presented in the deformed configuration for such cases.

U S I N G  L O A D  P L O T S  D U R I N G  P R E P R O C E S S I N G

The automatically generated plots of the applied loads can be useful during 
preprocessing, for example to verify that loads are applied on the correct boundary and 
in the intended direction. To generate the load plots before computing the study, 
right-click the Study node, and select Get Initial Value, see Computing the Initial 
Values. Doing so will generate all default and predefined plots requested by the 
currently active features in all physics interfaces active in the study. You can then insert 
the plot from the Add Plot window.

Note that plots are only generated the first time a dataset is created, which means that 
the settings will not be updated for subsequent computation of the solution. 
Moreover, load plots will not be generated for load features that are added after the 
creation of the dataset. To generate new plots when new load features have been 
added, delete the current load plots. Then compute the solution or do the Get Initial 

Value, and insert the new load plots from the Add Plot window.

• Under geometric nonlinearity, the size of the boundary load arrows 
will scale with the local area deformation. Thus, a constant pressure 
may appear as nonconstant.

• Load plots that make use of a Point Trajectories node include the 
displacements explicitly in order to visualize the current position of the 
load.
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Pa r t  L i b r a r i e s

The Part Libraries can be used to store and access a set of standard geometric entities. 
It is possible to create custom user-defined geometry libraries or to use built-in 
collections of geometric entities that are available with many add-on modules for 
COMSOL Multiphysics.

A dedicated part library for the Structural Mechanics Module is included. The library 
consists of two main parts:

• Bolts, nuts, and washers. These are parts intended for quick modeling of fasteners. 
The bolts geometries are prepared for use with the Modeling Pretensioned Bolts 
functionality. Some of the bolt geometries are also augmented with an extra domain 
intended for use as a “drill” when building the geometry.

Figure 2-43: Example of a bolt part.

• Beam cross sections. These are 2D geometries, primarily intended for use in The 
Beam Cross Section Interface. The library includes geometries for all standard beam 
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cross sections according to European and US standards, as well as generic beam 
geometries.

Figure 2-44: Example of a standard beam cross section.

Figure 2-45: Example of a generic beam cross section.
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All entities in the built-in the Part Libraries are fully parameterized, making them easy 
to use as parts in large-scale industrial models.

Part Libraries in the COMSOL Multiphysics Reference Manual
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 3
S t r u c t u r a l  M e c h a n i c s  T h e o r y
This chapter contains the theory behind the implementation of the structural 
mechanics functionality in COMSOL Multiphysics.

In this chapter:

• Solid Mechanics Theory

• Frames and Coordinate Systems

• Analysis of Deformation

• Stresses

• Equation of Motion

• Material Models

• Formulation of the Equilibrium Equations

• Study Types

• Damping

• Loads and Constraints

• Contact Analysis Theory

• Bolt Modeling Theory

• Stress Linearization
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• J-Integral Theory

• Embedded Elements

• Theory for Thin Layers

• Reduced Integration and Hourglass Stabilization

• Average Rotation

• Energy Quantities
 3 :  S T R U C T U R A L  M E C H A N I C S  T H E O R Y



S o l i d  Me chan i c s  T h e o r y

Introduction

In the following, the theory for the Solid Mechanics interface is described. To a large 
extent, this theory covers other structural mechanics physics interfaces, such as Shell 
and Beam, which are included with the Structural Mechanics Module. For these other 
interfaces, only the details which are specific to the interface are described in its 
additional documentation.

T E N S O R  N O T A T I O N

Some of the theory is developed using tensor notation. In most cases, explicit index 
notation is avoided. This means that the order of a tensor usually must be understood 
from the context. As an example, Hooke’s law for linear elasticity is usually written like

Here, the stress tensor  and the strain tensor  are second-order tensors, while the 
constitutive tensor C is a fourth-order tensor. The ‘:’ symbol means a contraction over 
two indices. In a notation where the indices are shown, the same equation would read

where the Einstein summation convention has been used as a shorthand for

In a few cases, nonorthonormal coordinate systems must be considered. It is then 
necessary to keep track of the covariance and contravariance properties of tensors. In 
such a case, Hooke’s law is written

• Theory for the Shell and Plate Interfaces

• Theory for the Membrane Interface

• Theory for the Beam Interface

• Theory for the Beam Cross Section Interface

• Theory for the Truss Interface

 C:=

ij Cijklkl=

ij Cijklkl

l 1=

3


k 1=

3

=
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The stress and constitutive tensors have contravariant components, while the strain 
tensor has covariant components.

ij
C

ijklkl=
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F r ame s  and Coo r d i n a t e  S y s t em s

In this section:

• Material and Spatial Coordinates

• Coordinate Systems

Material and Spatial Coordinates

The Solid Mechanics interface, through its equations, describes the motion and 
deformation of solid objects in a 1-, 2-, or 3-dimensional space. In COMSOL 
Multiphysics terminology, this physical space is known as the spatial frame, and 
positions in the physical space are identified by lowercase spatial coordinate variables 
x, y, and z (or r, , and z in axisymmetric components).

Continuum mechanics theory also makes use of a second set of coordinates, known as 
material (or reference) coordinates. These are normally denoted by uppercase 
variables X, Y, and Z (or R, , and Z) and are used to label material particles. Any 
material particle is uniquely identified by its position in some given initial or reference 
configuration. As long as the solid stays in this configuration, material and spatial 
coordinates of every particle coincide and displacements are zero by definition.

More information can be found in About Frames chapter in the COMSOL 
Multiphysics Reference Manual.

When the solid object deforms due to external or internal forces and constraints, each 
material particle keeps its material coordinates X (bold font is used to denote 
coordinate vectors), while its spatial coordinates change with time and applied forces 
such that it follows a path

 (3-1)

in space. Because the material coordinates are constant, the current spatial position is 
uniquely determined by the displacement vector u, pointing from the reference 
position to the current position. The global Cartesian components of this displacement 
vector in the spatial frame, by default called u, v, and w, are the primary dependent 
variables in the Solid Mechanics interface.

By default, the Solid Mechanics interface uses the calculated displacement and 
Equation 3-1 to define the difference between spatial coordinates x and material 



x x X t  X u X t += =
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coordinates X. This means the material coordinates relate to the original geometry, 
while the spatial coordinates are solution dependent.

Material coordinate variables X, Y, and Z must be used in coordinate-dependent 
expressions that refer to positions in the original geometry, for example, for material 
properties that are supposed to follow the material during deformation. On the other 
hand, quantities that have a coordinate dependence in physical space — for example, a 
spatially varying electromagnetic field acting as a force on the solid — must be 
described using spatial coordinate variables x, y, and z.

Coordinate Systems

Force vectors, stress and strain tensors, as well as various material tensors are 
represented by their components in a specified coordinate system. By default, material 
properties use the canonical system in the material frame. This is the system whose 
basis vectors coincide with the X, Y, and Z axes. When the solid deforms, these vectors 
rotate with the material.

Loads and constraints, on the other hand, are applied in spatial directions, by default 
in the canonical spatial coordinate system. This system has basis vectors in the x, y, and 
z directions, which are forever fixed in space. Both the material and spatial default 
coordinate system are referred to as the global coordinate system in the physics 
interface.

In a geometrically linear analysis, no difference is made between the two 
coordinate systems. For this case, the material and spatial coordinates 
coincide. This may seem inconsistent with equation Equation 3-1 but 
ensures linearity for problems that are expected to be linear. It is then, for 
example, equivalent to choose a coordinate system related to the material 
frame or one related to the spatial frame. In a geometrically nonlinear 
analysis, however, any use of a spatial coordinate in an expression will 
introduce a nonlinear contribution because it will be deformation 
dependent.
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Vector and tensor quantities defined in the global coordinate system on either frame 
use the frame’s coordinate variable names as indices in the tensor component variable 
names.

It is possible to define any number of user coordinate systems on the material and 
spatial frames. Most types of coordinate systems are specified only as a rotation of the 
basis with respect to the canonical basis in the underlying frame. This means that they 
can be used both in contexts requiring a material system and in contexts requiring a 
spatial one. A coordinate system defined on the spatial frame will in general introduce 
nonlinearities in the problem, since its directions are deformation dependent in case of 
a geometrically nonlinear analysis.

The coordinate system can be selected separately for each added material model, load, 
and constraint. This is convenient when for example, an anisotropic material with 
different orientation in different domains is required. The currently selected 
coordinate system is called the local coordinate system.

Coordinate systems used for describing a material must be defined on the material 
frame.

Boundary System

Many quantities for shells, membranes and thin layers can best be interpreted in a local 
coordinate system aligned to the surface. Material data, initial stresses and stress results 
are always represented in this local coordinate system. The local system for stress 
output coincides with the orientations defined for the material input.

When a Boundary System is selected, the orientation of the local system is fully defined 
by the boundary system. 

When using a boundary system, it also possible to control the orientation of the 
normal by selecting the Reverse normal direction check box.

For example, solid.SXY is the material frame XY-plane shear stress, also 
known as a second Piola–Kirchhoff stress, while solid.sxy is the 
corresponding spatial frame stress, or Cauchy stress. There are also a few 
mixed tensors, most notably the deformation gradient solid.FdxY, 
which has one spatial and one material index because it is used in 
converting quantities between the material and spatial frames.
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Ana l y s i s  o f  De f o rma t i o n

The analysis of deformation aims at deriving descriptions of the local deformation in a 
material suitable for use in a constitutive relation. Often, but not always, this amounts 
to deriving a strain tensor.

This section starts by a general description of finite deformation in solids. At the end, 
the specialization to engineering strains used in geometrically linear analysis, is made.

In this section:

• Lagrangian Formulation

• Deformation Measures

• Invariants of Strain

• Inelastic Strain Contributions

• Deformed Geometry

• Axial Symmetry

• Plane Strain

• Generalized Plane Strain

Lagrangian Formulation

The formulation used for structural analysis in COMSOL Multiphysics for both small 
and finite deformations is a total Lagrangian formulation. This means that the 
computed stress and deformation state is always referred to the material configuration 
rather than to current position in space.

Likewise, material properties are always given for material particles and with tensor 
components referring to a coordinate system based on the material frame. This has the 
obvious advantage that spatially varying material properties can be evaluated just once 
for the initial material configuration, and they do not change as the solid deforms and 
rotates.

Consider a certain physical particle, initially located at the coordinate X. During 
deformation, this particle follows a path

Here, x is the spatial coordinate and X is the material coordinate.

x x X t =
 3 :  S T R U C T U R A L  M E C H A N I C S  T H E O R Y



For simplicity, assume that undeformed and deformed positions are measured in the 
same coordinate system. Using the displacement u it is then possible to write

The displacement is considered as a function of the material coordinates (X, Y, Z), but 
it is not explicitly a function of the spatial coordinates (x, y, z). It is thus only possible 
to compute derivatives with respect to the material coordinates.

In the following, the gradient operator is assumed to be a gradient with respect to the 
material coordinates, unless something else is explicitly stated.

The gradient of the displacement, which occurs frequently in the following theory, is 
always computed with respect to material coordinates. In 3D:

The deformation gradient tensor, F, shows how an infinitesimal line element, dX, is 
mapped to the corresponding deformed line element dx by

x X u X t +=

 X
X


Y


Z
= =

u

X
u

Y
u

Z
u

X
v

Y
v

Z
v

X
w

Y
w

Z
w

=
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The deformation gradient F contains the complete information about the local 
straining and rotation of the material. It is a two-point tensor (or a double vector), 
which transforms as a vector with respect to each of its indices. It involves both the 
reference and present configurations.

In terms of the displacement gradient, F can be written as

The deformation of the material (stretching) will in general cause changes in the 
material density. The ratio between current and initial volume (or mass density) is 
given by

Here, 0 is the initial density and  is the current density after deformation. The 
determinant of the deformation gradient tensor F is related to volumetric changes with 
respect to the initial state. A pure rigid body displacement implies J  1. Also, an 
incompressible material is represented by J  1. These are called isochoric processes.

The determinant of the deformation gradient tensor is always positive (since a negative 
mass density is unphysical). The relation   0/J implies that for J  1 there is 
compression, and for J  1 there is expansion. Since J  0, the deformation gradient 
F is invertible.

In the material formulations used within the structural mechanics interfaces, the mass 
density should in general be constant because the equations are formulated for fixed 
material particles. Thus, do not use temperature-dependent material data for the mass 
density. The changes in volume caused by temperature changes are incorporated using 
the coefficient of thermal expansion when adding Thermal Expansion (for Materials) 
to the material model.

dx x
X

-------dX F dX= =

F x
X

------- u I+= =

dV
dV0
----------

0

------ det F  J= = =

 The variable solid.rho represents a “reference” or “initial” density 0, 
and not the “current” density . If you are interested in finding the 
density of the deformed material (the density in the spatial frame), you 
can compute it using the expression solid.rho/solid.J.
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Deformation Measures

Since the deformation tensor F is a two-point tensor, it combines both spatial and 
material frames. It is not symmetric. Applying a singular value decomposition on the 
deformation gradient tensor gives an insight into how much stretch and rotation a unit 
volume of material has been subjected to. The right polar decomposition is defined as

where U is the right stretch tensor given in the material frame, and R is a proper 
orthogonal tensor such that det(R) = 1 and R-1 = RT. The rotation tensor R describes 
the rigid rotation, and all information about the deformation of the material is 
contained in the symmetric tensor U.

The stretch tensor contains physically important information about the deformation 
state. The eigenvalues of the U tensor are the principal stretches, 1, 2, and 3. The 
stretch of a line element with initial length L0 and current length L is

where eng is the engineering strain. The three principal stretches act along three 
orthogonal directions. In the coordinate system defined by these principal directions, 
the U tensor will be diagonal:

F RU=

• The internal variables for the deformation gradient tensor with respect 
to global material coordinates are named solid.FdxX, solid.FdxY, 
and so on.

• The internal variables for the deformation gradient tensor with respect 
to local material coordinates are named solid.Fdx1, solid.Fdx2, 
and so on.

• The rotation tensor components are named solid.RotxX, 
solid.RotxY, and so on.

• The right stretch tensor components are named solid.UstchXX, 
solid.UstchXY, and so on.

An uppercase index refers to the material frame, and a lowercase index 
refers to the spatial frame.

 L
L0
------ 1 eng+= =
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The right Cauchy–Green deformation tensor C defined by

It is a symmetric and positive definite tensor, which accounts for the strain but not for 
the rotation. The eigenvalues of the C tensor are the squared principal stretches, thus 
providing a more efficient way to compute the principal stretches than by using the 
stretch tensor U directly.

The Green–Lagrange strain tensor is a symmetric tensor defined as

Since C is independent of rigid body rotations, this applies also to the Green–Lagrange 
strain tensor.

Using the displacement components and Cartesian coordinates, the Green–Lagrange 
strain tensor can be written on component form as

.  (3-2)

U

1 0 0

0 2 0

0 0 3

=

C FTF U2= =

 1
2
--- C I–  1

2
--- FTF I– = =

ij
1
2
---

ui
Xj

--------
uj
Xi

--------
uk
Xi

---------
uk
Xj

---------+ +
 
 
 

=

The rotation independence of the Green–Lagrange strain tensor, 
together with the fact that it for small strain approaches the engineering 
strain tensor explains why it is a common choice in constitutive models 
for small strain- finite rotation. As an opposite, a pure rigid rotation causes 
strains when engineering strains are used.

The Green–Lagrange is the natural strain representation in a Lagrangian 
description. Since it is a tensor in the material frame, its values should be 
interpreted in along the undeformed axis orientations.
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E N G I N E E R I N G  S T R A I N

Under the assumption of small displacements and rotations, the normal strain 
components and the shear strain components are related to the deformation as follows:

 (3-3)

In COMSOL Multiphysics, the tensor form of strain representation (xy, yz, xz) is 
used.

The symmetric strain tensor  consists of both normal and shear strain components:

• The internal variables for the Green–Lagrange strains are named 
solid.eX, solid.eXY, and so on.

• The internal variables for the Green–Lagrange strain tensor in local 
coordinates are named solid.el11, solid.el12, and so on.

• In a geometrically linear analysis, the strain variables 
solid.eX,solid.el11, and so on, will instead represent engineering 
strain.

• The right Cauchy–Green deformation tensor in local coordinate 
system are named solid.Cl11, solid.Cl12, and so on.

Some textbooks prefer to use the left Cauchy–Green deformation tensor 
B  FFT, which is also symmetric and positive definite but it is defined in 
the spatial frame.

x x
u=

y y
v=

z z
w=

xy
xy

2
-------=

1
2
---

y
u

x
v+ 

 =

yz
yz
2

-------=
1
2
---

z
v

y
w+ 

 =

xz
xz
2

-------=
1
2
---

z
u

x
w+ 

 =

In the documentation, the symbol is used to denote the strain tensor in 
general. In a geometrically nonlinear analysis, strains should be 
interpreted as a Green–Lagrange strains. In a geometrically linear analysis, 
the engineering strain is used.
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The strain-displacement relationships for the axial symmetry case for small 
displacements are

A special problem occurs at the axis of rotation, where both u and r are zero. To avoid 
dividing by zero, the circumferential strain is for very small values of r redefined to

The alternative expression is obtained by applying L’Hôpital’s rule.

A general description of the axially symmetric case is given in Axial Symmetry.

L O G A R I T H M I C  S T R A I N

The logarithmic strain, also called true strain, or Hencky strain, is a popular strain 
measure for large strain, in particular when representing data from tensile tests. For a 
uniaxial case, it is defined on the incremental form

where L is the current length of the specimen. If this relation is integrated, the total 
strain can be written as

Here L0 is the initial length and  is the stretch.

In order to generalize the logarithmic strain to a strain tensor, it is necessary to first 
compute the three principal stretches and their orientation. Then, a logarithmic strain 
tensor in the local principal stretch system is defined as



x xy xz

xy y yz

xz yz z

=

r r
u,= 

u
r
---,= z z

w, and= rz z
u

r
w+=

 r
u=

d dL
L

--------=

 L
L0
------ 
 log log= =
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This tensor is then transformed to the global coordinate system in order to give the 
logarithmic strain tensor.

Invariants of Strain

P R I N C I P A L  S T R A I N S

The principal strains are the eigenvalues of the strain tensor (), computed from the 
eigenvalue equation

The three principal strains are sorted so that

This sorting is true also for the 2D and 1D cases. The corresponding vectors in the 
principal directions, vpi, are orthonormal.

P R I N C I P A L  S T R E T C H E S

The principal stretches are the eigenvalues of the stretch tensor U, and are also sorted 
by size:

lp

1log 0 0

0 2log 0

0 0 3log

=

 pI– vp 0=

p1 p2 p3 

• The internal variables for the principal strains are named solid.ep1, 
solid.ep2, and solid.ep3.

• The internal variables for the components of the directions of the first 
principal strains are named solid.ep1X, solid.ep1Y, and 
solid.ep1Z. The direction vectors for the other two principal strains 
are named analogously.

The Green–Lagrange strain tensor is used in a geometrically nonlinear 
analysis. The orientations of the principal directions will thus be with 
respect to the material directions. If you plot the principal strains as 
arrows, you should thus use an undeformed plot.
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The different invariants of the strain tensor form are useful for constitutive modeling 
and result interpretation. The three fundamental invariants for any tensor are

The invariants of the strain deviator tensor is also useful.

As defined above J2  0. I1 represents the relative change in volume for infinitesimal 
strains and J2 represents the magnitude of shear strain.

In tensor component notation, the invariants can be written as

The volumetric strain is defined as

p1 p2 p3 

The internal variables for the principal stretches are named 
solid.stchp1, solid.stchp2, and solid.stchp3. The elastic 
principal stretches are named solid.stchelp1, solid.stchelp2, and 
solid.stchelp3.

I1   trace  =

I2   1
2
--- trace  2 trace 2 – =

I3   det   =

dev    1
3
---trace  I–=

J1   trace dev    0= =

J2   1
2
---dev  :dev   1

3
---I1  2 I2  –= =

J3   det dev    2
27
------I1  3 1

3
---I1  I2   I3  +–==

trace   kk=

dev  ij ij
kk

3
--------ij–=

I2   1
2
--- iijj ijji– =

J2   1
2
---dev  ijdev  ji=
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and the equivalent deviatoric strain as

In terms of the principal strains, the strain invariants can be written as

The principal strains are the roots of the characteristic equation (Cayley–Hamilton 
theorem)

S T R A I N  R A T E  A N D  S P I N

The spatial velocity gradient is defined in components as

where vk(x,t) is the spatial velocity field. It can be shown that L can be computed in 
terms of the deformation gradient as

where the material time derivative is used.

The velocity gradient can be decomposed into symmetric and skew-symmetric parts

vol trace  =

deve
2
3
---dev  ijdev  ji

4
3
---J2  = =

The internal variable for the volumetric strain is solid.evol. The 
internal variables for the components of the deviatoric strain tensor in the 
local coordinate system are solid.eldev11, and so on. The internal 
variable for the equivalent deviatoric strain is solid.edeve.

I1   p1 p2 p3+ +=

I2   p1p2 p2p3 p1p3+ +=

I3   p1p2p3=

p
3 I1p

2
– I2p I3–+ 0=

Lkl xl
 vk x t =

L
td

dFF
1–

=

L Ld Lw+=
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where

is called the rate of strain tensor, and

is called the spin tensor. Both tensors are defined on the spatial frame.

It can be shown that the material time derivative of the Green–Lagrange strain tensor 
can be related to the rate of strain tensor as

The spin tensor Lw(x,t) accounts for an instantaneous local rigid-body rotation about 
an axis passing through the point x.

Inelastic Strain Contributions

Many of the material models in COMSOL Multiphysics will compute a stress based on 
an elastic strain. The elastic strain tensor is obtained after removing any inelastic 
deformation contribution from the total deformation from the displacements. There 
are several possible inelastic strain contributions:

• Initial strain, 0

• External strain, ex

• Thermal strain, th

• Hygroscopic strain, hs

• Plastic strain, pl

Ld
1
2
--- L LT

+ =

Lw
1
2
--- L LT

– =

d
dt
------ FTLdF=

Components of both Ld and Lw are available as results and analysis 
variables under the Solid Mechanics interface.

• The components of the rate of strain tensor are named solid.Ldx, 
solid.Ldxy, and so on.

• The components of the spin tensor are named solid.Lwx, 
solid.Lwxy, and so on.
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• Creep strain, cr

• Viscoplastic strain, vp

• Viscoelastic strain, ve

A D D I T I V E  D E C O M P O S I T I O N

In a geometrically linear analysis, the elastic strain is computed by a straightforward 
subtraction of the inelastic strain:

where

Additive decomposition of strains can also be used in a geometrically nonlinear 
analysis. In this case, it can however only be justified as long as the strains are small. In 
the case of large deformations, the different strain contributions may not even be 
commutative.

Choose to use additive decomposition also for geometric nonlinearity by selecting the 
Additive strain decomposition check box in the settings for Linear Elastic Material or 
Nonlinear Elastic Material.

M U L T I P L I C A T I V E  D E C O M P O S I T I O N

In the finite deformation case, the inelastic strain is instead removed using a 
multiplicative decomposition of the deformation gradient tensor. The elastic 
deformation gradient tensor is the basis for all strain energy formulations in 
hyperelastic materials, and also for the elastic strain in linear and nonlinear elasticity. It 
is derived by removing the inelastic deformation from the total deformation gradient 
tensor.

The total deformation gradient tensor is defined as the result of two successive 
operations, an inelastic deformation followed by an elastic deformation:

e  inel–=

inel 0 ex th hs pl cr vp ve+ + + + + + +=
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 (3-4)

When the inelastic deformation gradient tensor is known, the elastic deformation 
gradient tensor is computed as

 (3-5)

so the inelastic deformations are removed from the total deformation gradient tensor. 
The inelastic deformation tensor Finel is derived from inelastic processes, such as 
thermal expansion or plasticity. When there are several inelastic contributions, they are 
applied sequentially to obtain the total inelastic deformation tensor Finel.

where Fi is the inelastic strain contribution from subnode i under a Linear Elastic 
Material, Nonlinear Elastic Material, or Hyperelastic Material.

F FelFinel=

The order is important here, multiplication from the left makes the elastic 
deformation act on the inelastically deformed state.

Since a deformation gradient tensor describes a mapping from one frame 
to another, there are actually three frames involved in this operation. The 
F tensor is defined by the displacements as usual and describes the 
mapping from the material frame to the spatial frame. The Finel tensor, 
however, describes a mapping from the material frame to an intermediate 
frame, and the Fel tensor describes a mapping from the intermediate 
frame to the spatial frame.

Fel FFinel
1–

=

Finel F1F2F3F4  ...=

• The order is important when deformations are finite. The 
contributions are applied in the same order as the subnodes appear in 
the model tree. If a Thermal Expansion node appears before a Plasticity 
node, then the physical process can be viewed as a thermal expansion 
followed by a plastic deformation.

• When a certain inelastic strain contribution is small, the order is not 
significant.

• If the inelastic strain is a pure isotropic volume change, as is often the 
case for thermal expansion and hygroscopic swelling, the order is not 
significant.
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The right Cauchy–Green deformation tensor C is computed from the deformation 
gradient F, as well as the Green–Lagrange strain tensor 

 and 

The elastic right Cauchy–Green deformation tensor is then computed from Fel

and the elastic Green–Lagrange strain tensor is computed as:

The elastic, inelastic, and total volume ratios are related as

 or 

After Equation 3-5, the elastic Green–Lagrange strain depends on the inelastic 
deformation as

 (3-6)

where the inelastic Green–Lagrange strain reads

When using multiplicative decomposition of deformation gradients, Hooke’s law for a 
Linear Elastic Material produces a second Piola–Kirchhoff stress tensor which is 
linearly related to the elastic Green–Lagrange strain

C FTF=  1
2
--- C I– =

Cel Fel
T Fel=

el
1
2
--- Cel I– =

The internal variables for the elastic right Cauchy–Green deformation 
tensor in the local coordinate system are named solid.Cel11, 
solid.Cel12, and so on; and for the elastic Green–Lagrange tensor in 
local coordinates solid.eel11, solid.eel12, and so on.

det F  det Fel det Finel = J JelJinel=

The internal variables for the elastic, inelastic, and total volume ratio are 
named solid.Jel, solid.Ji, and solid.J.

el
1
2
--- Cel I–  1

2
---Finel

T– C Cinel– Finel
1– Finel

T–  inel– Finel
1–

= = =

inel
1
2
--- Cinel I–  1

2
--- Finel

T Finel I– = =
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This is however, a stress tensor defined in the intermediate configuration. Introducing 
a pull-back operation of this tensor, Hooke’s law for the multiplicative decomposition 
of elastic and inelastic strains reads 

Large Strain Plasticity
In case of large strain plasticity, the plastic strains are primarily not represented as 
strains, but as the plastic deformation gradient tensor, Fpl.

The plastic Green–Lagrange strain tensor is computed from the plastic deformation 
gradient tensor as

As opposed to the small strain formulation, the total, plastic, and elastic Green–
Lagrange strain tensors are related after Equation 3-6 as follow

Deformed Geometry

The equations solved by the Solid Mechanics interface are formulated in the material 
frame. The Deformed Geometry functionality in COMSOL Multiphysics allows one 
to make the material frame differ from the geometry frame, which implies that the 
geometry of the structure on the material frame can differ from that originally drawn. 
This is useful for analyzing the behavior of different shapes of an original object, for 
example as part of shape optimization.

By default, the material does not follow a change in shape. Deformation of the 
geometric boundaries therefore corresponds to addition or removal of material.

The deformed geometry functionality can be also used to set up an incremental 
deformation of a structure. This can be achieved by using the Elastic Predeformation 

Sel Cel=

S JinelFinel
1–

C  inel– Finel
T–

=

pl
1
2
--- Fpl

T Fpl I– =

el Fpl
T–  pl– Fpl

1–
=

In the COMSOL Multiphysics Reference Manual:

Deformed Geometry and Moving Mesh
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node in the Solid Mechanics interface. This can significantly speed up computations is 
case of large deformations.

E L A S T I C  P R E D E F O R M A T I O N

The total displacement field of the solid is represented as

and the corresponding deformation gradient is multiplicatively decomposed as

One can use upd to define the displacement of the material frame with respect to the 
geometry frame, and take u as an update solution of the equations solved by the Solid 
Mechanics interface on the material frame. (The corresponding deformation gradient 
F connects the material and spatial frames.) Note that the virtual work on such a 
displacement update is done by the total stress, and to get the correct stress, one can 
use as Fpd the deformation gradient connecting the geometry and material frames, and 
then set the elastic deformation gradient to

 (3-7)

This is used in the stress calculation during the update step. Thus, the transformation 
from geometry to material frame is assumed to be a result of elastic deformation.

The process can be repeated in a parametric sweep, for example, by gradually ramping 
up the load, so that the displacement update on each step is small. During each step, 
the previous value of the total displacement is used in the material frame definition

Alternatively, a time-dependent study can be used. In this situation, the above formula 
will be applied during each time step to recompute upd before the step, using the 
stored previous solution, while u will represent a displacement increment computed 
during the time step. In addition, the density is updated as 0/Jpd where

An example can be found in Hyperelastic Seal: Application Library path 
Nonlinear_Structural_Materials_Module/Hyperelasticity/hyperelastic_seal

utot upd u+=

Ftot FFpd=

Fel Ftot=

upd utot old,=

Jpd det Fpd =
A N A L Y S I S  O F  D E F O R M A T I O N  |  399



400 |  C H A P T E R
Again, Fpd is the deformation gradient connecting the geometry and material frames, 
and it will be updated before each time step or parameter sweep value.

The approach can be combined with large strain plasticity. In this case,

which together with Equation 3-7 gives

Note that both Fel and Fpl represent the total deformations of their corresponding 
types, while Fpd is the total (elastic and plastic) deformation gradient from the previous 
update.

Axial Symmetry

The 2D axisymmetric implementation in COMSOL Multiphysics by default assumes 
independence of the azimuthal component of the displacement. Therefore, the 
physical components of the radial and axial displacement, u and w, are used by default 
as dependent variables for the axially symmetric geometry. It is also possible to include 
the dependent variable v for the out-of-plane displacement, or an azimuthal mode 
extension in time-harmonic studies. See Circumferential Displacement and 
Circumferential Modes.

S T R A I N S

The displacement gradient with respect to the cylindrical coordinates of the 
undeformed geometry reads

The assumption of axial symmetry neglect gradients in the azimuthal direction, so the 
displacement vector is considered independent on the azimuthal angle, u = u(R, Z), 
and

.

Ftot FelFpl=

Fel FFpdFpl
1–

=

u

R
u 1

R
----


u v

R
----–

Z
u

R
v 1

R
----


v u

R
----+

Z
v

R
w 1

R
----


w

Z
w

=

u  v  w  0= = =
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The displacement gradient after this assumption reads

and the Green–Lagrange strain tensor is

Assuming that there is no torsion around the axis of symmetry, so there is no 
out-of-plane displacement, v = 0, the deformation gradient can be further simplified 
to read

For geometrically linear analysis, the nonlinear terms in the Green–Lagrange strain 
tensor are dropped

and the volumetric strain is computed from

u

R
u v

R
----–

Z
u

R
v u

R
----

Z
v

R
w 0

Z
w

=

 1
2
--- u T u u T u+ + =

u

R
u 0

Z
u

0 u
R
---- 0

R
w 0

Z
w

=

 1
2
--- u T u+ 

R
u 0 1

2
---

Z
u

R
w+ 

 

0 u
R
---- 0

1
2
---

Z
u

R
w+ 

  0
Z

w

= =

vol I= 1  
R

u u
R
----

Z
w+ +=
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For the 1D axisymmetric representation, only the radial component of the 
displacement field is computed, and only gradients with respect to the radial direction 
are considered, this is, u = u(R), and .

C I R C U M F E R E N T I A L  D I S P L A C E M E N T

When the out-of-plane displacement is considered in a 2D axisymmetric model, 
torsion is allowed with respect to the symmetry axis. In this case, the displacement 
gradient reads

and the Green–Lagrange strain tensor is

For geometrically linear analysis, the nonlinear terms in the Green–Lagrange strain 
tensor are dropped

and the volumetric strain is computed from

C I R C U M F E R E N T I A L  M O D E S

A standard 2D axisymmetric representation of the structure assumes the independence 
of the solution with respect to the azimuthal angle . The following 3D solution 
represents an extension of this assumption:

u  u Z 0= =

u

R
u v

R
----–

Z
u

R
v u

R
----

Z
v

R
w 0

Z
w

=

 1
2
--- u T u u T u+ + =

 1
2
--- u T u+ 

R
u 1

2
---

R
v v

R
----– 

  1
2
---

Z
u

R
w+ 

 

1
2
---

R
v v

R
----– 

  u
R
---- 1

2
---

Z
v

1
2
---

Z
u

R
w+ 

  1
2
---

Z
v

Z
w

= =

vol I= 1  
R

u u
R
----

Z
w+ +=


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where m is a circumferential mode number (or azimuthal mode number) that can 
only have integer values to obey the axially symmetric nature of the corresponding 3D 
problem, that is, there is an azimuthal symmetry = + 2. Thus,

The static prestress solution u0 can be obtained using a standard static analysis in 2D 
axially symmetric geometry; and the circumferential wave number km = m/R can be 
introduced to describe the circumferential modes.

The displacement vector u1 can have nonzero values in all three components, which 
are functions of the radial and axial positions. For a given circumferential mode 
number m, the displacement vector u1 can be found using an eigenfrequency analysis 
in a 2D axially symmetric geometry. Hence,

and the perturbation solution becomes

The solution u = u0 + u1 represents eigenmodes in the corresponding 3D structure, 
which can be computed assuming certain constraints on the axis and possible static 
prestress and independent of the position along the axis.

Plane Strain

For two-dimensional problems, there are tree possible approximations: plane strain, 
Generalized Plane Strain, and Plane Stress. The selection is made in the settings for the 
Solid Mechanics node. 

For plane strain, the deformation occurs in the xy-plane and it is fully characterized by 
the in-plane displacement components u(X,Y) and v(X,Y). There is no out-of-plane 
displacement, w = 0, and there are only in-plane strains. In this case, the displacement 
gradient reads

u R  Z t    u0 R Z  u1 R Z  it im– exp+=

 

u R  2+ Z t    u R  Z t   =

 2f=

f f m u0 =

u1 u1= R Z  2if m u0 t im– exp
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and the strain tensor  only has in-plane components:

For the 1D plane strain representation, only the x-component of the displacement field 
is computed, and only gradients with respect to the x-direction are considered, this is, 
u = u(X), , and .

Generalized Plane Strain

One possible extension of the Plane Strain formulation is to assume that the 
displacement field depends on the out-of-plane coordinate Z, but in-plane strains are 
independent of it.

The above assumption have the following 3D solution for the displacement field:

here, u0(X,Y) and v0(X,Y) are the in-plane displacement components; and a, b, and c 
are constants independent of the X, Y, and Z coordinates. The gradient of the 
displacement field then reads:

u X
u

Y
u

X
v

Y
v

=

ij ij X Y =


x xy

xy y

=

u Y u Z 0= = xy y 0= =

u u0 X Y  a
2
---Z2

–=

v v0 X Y  b
2
---Z2

–=

w aX bY c+ + Z=

u
X

u0
Y

u0 aZ–

X
v0

Y
v0 bZ–

aZ bZ aX bY c+ +

=
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At the cross section Z = 0, the in-plane deformation is fully characterized by the 
in-plane displacement components u0(X,Y) and v0(X,Y). The displacement gradient 
then simplifies to 

The out-of-plane shear strains are zero, , and under the assumption of 
small displacements and rotations the normal strain reads

 (3-8)

The above conditions differ from the Plane Strain formulation only by the fact that the 
out-of-plane strain component z can vary linearly throughout the cross section. 

The generalized plane strain approximation is good when the structure is free to 
expand in the out-of-plane direction, and the possible bending curvature is small with 
respect to the extents of the structure in the xy-plane. In the case where there is no 
out-of-plane bending, the out-of-plane strain component simplifies to .

In COMSOL Multiphysics, the coefficients a, b, and c in Equation 3-8 are modeled 
as extra degrees of freedom that are constant throughout the model (global variables).

For the 1D representation, only the x-component of the displacement field is 
considered, and only gradients with respect to this direction are computed, this is, 
u = u(X), , and . It is possible to apply the 
generalized plane strain assumption to either the xy-plane, the xz-plane, or to both 
planes, in which case the strain components are augmented to  and .

For the 1D axisymmetric representation, only the radial component of the 
displacement field is considered, and only gradients with respect to this direction are 
computed, this is, u = u(R), and . It is possible to apply the 
generalized plane strain assumption to the r-plane, so the strain is augmented to 

.

G E O M E T R I C  N O N L I N E A R I T Y

In case of geometric nonlinearity, the strains are represented by the Green–Lagrange 
strain tensor:

u
X

u0
Y

u0 0

X
v0

Y
v0 0

0 0 aX bY c+ +

=

xz yz 0= =

z ax by c+ +=

z c=

u Y u Z 0= = xy y 0= =

y b= z c=

u  u Z 0= =

z c=
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Consider the following displacement field expressed in terms of the material 
coordinates:

Coefficients a, b, and c are assumed to be small. Then, using the above displacement 
field in the displacement gradient evaluated in the plane Z = 0 simplifies to 

We obtain the strain components by dropping quadratic and higher order terms in the 
coefficients a, b, and c:

Thus, in the leading order approximation, the strains become independent of the 
out-of-plane coordinate Z.

O U T - O F - P L A N E  W A V E S

When a 2D plane strain model represents a cross-section of the structure that has a 
significant uniform extension in the out-of-plane Z direction, the following 3D 
solution can be sought in form of the amplitude expansion:

 1
2
--- u T u u T u+ + =

u

u X Y  a
2
---Z2

–

v X Y  b
2
---Z2

–

a X u+  b Y v+  c+ + Z

=

u
X

u
Y

u 0

X
v

Y
v 0

0 0 a X u+  b Y v+  c+ +

=

XX uX
1
2
--- uX

2 vX
2

+ +=

YY vY
1
2
--- uY

2 vY
2

+ +=

XY
1
2
--- uY v+ X uXuY vXvY+ + =

XZ YZ 0= =

ZZ a X u+  b Y v+  c+ +=
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The first term, u0, represents a static in-plane prestress deformation:

This can be obtained by a standard static analysis using a 2D geometry for the cross 
section with the corresponding boundary conditions.

The second part of the solution, u1, presents a time-harmonic linear perturbation with 
an amplitude that can be a function of the in-plane coordinates X and Y. Such a 
perturbation can be seen as an out-of-plane wave, with a small amplitude that 
propagates in the Z direction, a wavelength L, and phase velocity c:

Note that in contrast to the prestress solution u0, the perturbation amplitude u1 can 
have nonzero values in all the displacement components:

There are two alternative approaches. The wavelength L, and thus the wave number 
kZ, can be considered as a parameter. Then,  can be computed by an eigenfrequency 
analysis for the 2D cross section with all three displacement components taken as 
dependent variables. As a result, one obtains

u X Y Z t    u0 X Y  u1 X Y  it ikZZ– exp+=

u0

u0 X Y 

v0 X Y 

0

=

kZ 2 L=

c  kZ=

u1 u1= X Y  2i
L

--------- ct Z– exp

u1

u1 X Y 

v1 X Y 

w1 X Y 

=

 2f=

f f L u0 =

c  u0  Lf L u0 =
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Thus, the wave speed for the out-of-plane wave is computed as a function of the 
wavelength L and possible prestress u0 in the material. The dependence of the wave 
speed on the wavelength is often called dispersion.

Alternatively, the frequency f (and thus can be taken as a parameter. Then, the 
solution can be computed via eigenvalue analysis with respect to the wave number kZ 
using the 2D cross section geometry. Hence,

which determine the wavelength L and phase velocity c for the wave that propagates 
out-of-plane for a given frequency f under given in-plane prestress deformation u0. 
Such interpretation of the perturbation solution is sometimes called a signaling 
problem.

kZ 2 L=

L L f u0 =

c f u0  fL f u0 =
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S t r e s s e s

In this section:

• Defining Stress

• Invariants of the Stress Tensor

• Plane Stress

• Initial Stresses and Strains

• Axial Symmetry and Stresses

Defining Stress

This section summarizes the definition of different stress measures, stress invariants, 
and other important definitions.

Three different stress measures are used in COMSOL Multiphysics:

• Cauchy stress defined as force/deformed area in fixed spatial directions not 
following the body. This is a symmetric tensor.

• First Piola–Kirchhoff stress P. The forces in the spatial directions are related to the 
area in the original (material) frame. This is an unsymmetric two-point tensor.

• Second Piola–Kirchhoff stress S. Both force and area are represented in the material 
configuration. For small strains the values are the same as Cauchy stress tensor but 
the directions are rotating with the body. This is a symmetric tensor.

The stresses relate to each other as

In a geometrically linear analysis, the distinction between the stress measures disappear, 
and they all converge to the same values.

S F 1– P=

 J 1– PFT J 1– FSFT
= =

In the documentation, the symbol is used to denote not only Cauchy 
stress, but stress in general. The symbols P and S are used whenever it is 
necessary to make a distinction. In geometrically nonlinear analysis, the 
stress should in general be interpreted as second Piola–Kirchhoff stress.
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S I G N  C O N V E N T I O N S

A positive normal stress in COMSOL Multiphysics acts in tension. This is the most 
widely used definition in general physics and engineering.

Within the field of geomechanics it is however common to let compressive stresses be 
positive, since compression is almost always dominant in that field of science. When 
working with the material models intended for soils and rocks, you must be aware of 
that the “positive in tension” convention is used also there in order to maintain 
consistency within the software.

Specifically, the ordering of Principal Stresses is such that p1  p2  p3 (including 
signs). In geotechnical applications the dominant principal stresses will usually be 
compressive, so the third principal stress will the be the one which you may consider 
as “largest”.

The convention used in Ref. 1 refers to the hydrostatic pressure (trace of the stress 
Cauchy tensor) with a positive sign. The use of the first invariant of Cauchy stress 
tensor I1() is preferred in this document where there is a risk of confusion. The 
pressure in COMSOL Multiphysics is always defined as positive under compression, or 
equivalently, it has the opposite sign of the Cauchy stress tensor’s trace.

Invariants of the Stress Tensor

The different invariants of the stress tensor form an important basis for constitutive 
models and also for interpretation of stress results. The three fundamental invariants 
for any tensor are

 (3-9)

• The internal variables for the Cauchy stresses are named solid.sx, 
solid.sxy, and so on.

• The internal variables for the first Piola–Kirchhoff stresses are named 
solid.PxX, solid.PxY, and so on.

• The internal variables for the second Piola–Kirchhoff stresses are 
named solid.SX, solid.SXY, and so on.

I1   trace  =

I2   1
2
--- trace  2 trace 2 – =

I3   det   =
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In many cases, the invariants of the deviatoric stress tensor are also useful.

 (3-10)

As defined above J2  0. In many material models, the most relevant invariants are I1, 
J2, and J3. I1 represents the effect of mean stress, J2 represents the magnitude of shear 
stress, and J3 contains information about the direction of the shear stress.

In tensor component notation, the invariants can be written as

The pressure is defined as

and is thus positive in compression.

P R I N C I P A L  S T R E S S E S

The principal stresses are the eigenvalues of the stress tensor, computed from the 
eigenvalue equation.

dev    1
3
---trace  I–=

J1   trace dev    0= =

J2   1
2
---dev  :dev   1

3
---I1  2 I2  –= =

J3   det dev    2
27
------I1  3 1

3
---I1  I2   I3  +–==

trace   kk=

dev  ij ij
kk

3
---------ij–=

I2   1
2
--- iijj ijji– =

J2   1
2
---dev  ijdev  ji=

p trace  –
3

------------------------
I1  –

3
-----------------= =

• The internal variables for the invariants I1, I2, and I3 are named 
solid.I1s, solid.I2s, and solid.I3s, respectively.

• The internal variables for the invariants J2 and J3 are named 
solid.II2s and solid.II3s, respectively.

• The internal variable for the pressure is solid.pm.
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The three principal stresses are ordered so that

This ordering is true also for the 2D cases. The corresponding principal directions vpi 
are orthonormal.

In terms of the principal stresses, the stress invariants can be written as

The principal stresses are the roots of the characteristic equation (Cayley–Hamilton 
theorem)

O T H E R  S T R E S S  I N V A R I A N T S

It is possible to define other invariants in terms of the primary invariants. One common 
auxiliary invariant is the Lode angle 

 (3-11)

The Lode angle is bounded to 0    3 when the principal stresses are sorted as 
p1  p2  p3 (Ref. 1).

Following this convention,  = corresponds to the tensile meridian, and  = 3
corresponds to the compressive meridian. The Lode angle is part of a cylindrical 

 pI– vp 0=

p1 p2 p3 

• The internal variables for the principal stresses are named solid.sp1, 
solid.sp2, and solid.sp3.

• The internal variables for the components of the directions of the first 
principal stress are named solid.sp1x, solid.sp1y, and 
solid.sp1z. The direction vectors for the other two principal stresses 
are named analogously.

I1   p1 p2 p3+ +=

I2   p1p2 p2p3 p1p3+ +=

I3   p1p2p3=

p
3 I1p

2
– I2p I3–+ 0=

3cos 3 3
2

-----------
J3

J2
3 2

------------=
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coordinate system (the Haigh–Westergaard coordinates) with height (hydrostatic 
axis)  and radius .

The octahedral plane (also called -plane) is defined perpendicular to the hydrostatic 
axis in the Haigh–Westergaard coordinate system. The stress normal to this plane is 
oct = I1/3, and the shear stress on that plane is defined by

The functions described in Equation 3-9 and Equation 3-10 enter into expressions 
that define various kind of yield and failure surfaces. A yield surface is a surface in the 
3D space of principal stresses that circumscribe an elastic state of stress.

The principal stresses p1, p2, and p3) can, when sorted as p1  p2  p3, be 
written by using the invariants I1 and J2 and the Lode angle (Ref. 1):

Plane Stress

For two-dimensional problems, there are tree possible approximations: Plane Strain, 
Generalized Plane Strain, and plane stress. The selection is made in the settings for the 
Solid Mechanics node.

 I1/ 3= r 2J2=

The Lode angle is undefined at the hydrostatic axis, where all three 
principal stresses are equal (p1 = p2 = p3 = I1/3) and J2 = 0. To avoid 
division by zero, the Lode angle is actually computed from the inverse 
tangent function atan2, instead of the inverse cosine, as stated in 
Equation 3-11.

The Lode angle and the equivalent (von Mises) stress can be called in user 
defined yield criteria by referencing the variables solid.thetaL and 
solid.mises, where solid is the name of the physics interface node.

oct 2/3J2=

p1  =
1
3
---I1

4J2
3

----------            cos+

p2  =
1
3
---I1

4J2
3

----------  2
3

------– 
 cos+

p3  =
1
3
---I1

4J2
3

----------  2
3

------+ 
 cos+
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In the plane stress formulation in COMSOL Multiphysics, the plane stress conditions

 (3-12)

are not enforced through a modified constitutive relation, as is common in many 
textbooks. Instead, an extra set of degrees of freedom for the out-of-plane strains are 
introduced, and Equation 3-12 is enforced by solving for the strains.

For a general anisotropic linear elastic material in case of plane stress, COMSOL 
Multiphysics solves three equations. For isotropy and orthotropy, only one extra 
degree of freedom is needed since the out-of-plane shear components of the stress 
tensor are zero.

Initial Stresses and Strains

Initial stresses and strains refer to a stress and strain state that would exist even without 
the external loads. Initial stresses and strains are not initial values in the mathematical 
sense. They apply all through the solution, and may even vary with time or solution 
parameters. They should rather be considered as an offset to the stress and strain state 
in the constitutive relation.

The initial strain is subtracted from the total strain, before the constitutive law is 
applied for computing the stresses. The initial stress is added to the stress computed by 
using the constitutive law. As an example, linear elasticity including both an initial 
strain 0 and an initial stress s0 can be written as

It can also be noted that the effect of the initial strain is analogous to, for example, a 
thermal strain or other inelastic strain contributions.

Use either the initial strain or the initial stress (but not both) when you have results 
from another analysis or another physics interface, which you want to incorporate into 
the stress-strain relation.

zz xz yz 0= = =

• For isotropic and orthotropic materials, the extra degree of freedom is 
named wZ, and represents .

• For anisotropic materials in 3D or 2D, two more degrees of freedom 
area added, uZ and vZ. They represent  and .

w Z

u Z v Z

s s0 C  0– +=
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Both the initial stress and strain are tensor variables defined via components in the local 
coordinate system for each domain.

In case of nearly incompressible material (mixed formulation), the components of the 
total initial stress (that is, without volumetric-deviatoric split) are still input. The initial 
pressure in the equation for the pressure help variable pw is computed as

In the case of geometric nonlinearity, the initial stress represents the second Piola–
Kirchhoff stress, not the Cauchy stress. The initial strain is interpreted as a Green–
Lagrange strain.

O T H E R  P O S S I B L E  U S E S  O F  I N I T I A L  S T R A I N S  A N D  S T R E S S E S

Many inelastic effects in solids mechanics (for example creep, plasticity, damping, 
viscoelasticity, poroelasticity, and so on) are represented by additive contributions to 
either the total strain or total stress. Then the initial value input fields can be used for 
coupling the elastic equations (solid mechanics) to the constitutive equations (usually 
General Form PDEs) modeling such extra effects. When adding stress contributions, 
you may however find it more convenient to use the External Stress concept.

The Initial Stress and Strain node can be added to Linear Elastic Material, Nonlinear 
Elastic Materials, Piezoelectricity, Elastoplastic Soil Models, Magnetostriction and 
Piezomagnetism, or Shape Memory Alloy materials.

External Stress

The external stress represents an additional stress contribution which has a source 
other than the constitutive relation. It is similar to the initial stress described in Initial 
Stresses and Strains, and the two features can be used interchangeably. As an example, 
linear elasticity including an external stress ext can be written as

 (3-13)

This additive contribution is the default option when adding external stresses to either 
the material representation (second Piola–Kirchhoff stress) or spatial representation 
(Cauchy stress).

It is also possible to prescribe a stress contribution that only acts as a load on the 
structure, but that is not added into the stress tensor definition as described in 
Equation 3-13. The typical case is when there is a pore pressure in a porous material, 

p0
1
3
---I1 s0 –=

 ext C+=
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a common case in geotechnical engineering. The stress carried by the solid material 
excluding the pore pressure is often called the effective stress. The load from the pore 
pressure helps to balance the external loads, while not contributing to the stress tensor 
of the solid. The contribution to the virtual work of the external stress (load) is then

 (3-14)

With the External Stress feature it is also possible to model residual stresses due to, for 
instance, manufacturing processes. The Residual stress option augments the stress 
tensor as defined in Equation 3-13, and it also removes the deformation created from 
it by applying an external load with opposite sign, as described in Equation 3-14. In 
this way there is no induced deformation in the solid, but the definition of the stress 
tensor and its invariants are augmented, which has an impact in plasticity, creep, or 
viscoplasticity.

When External Stress (Nominal) is selected, the external stress tensor does not have to 
by symmetric, thus the contribution of the external stress acts as an external load, to 
the virtual work is

I N  S I T U  S T R E S S

The in situ stress is a common residual stress used in geotechnical engineering. The 
vertical stress, v, also called overburden pressure, lithostatic pressure, or confining 
pressure, represents the stress in a point given by the weight of the overlaying material.

The elevation D is the distance of a point in the soil to the top boundary, is the 
density and g the acceleration of gravity. This analytical expression for the vertical stress 
is derived for a slab of soil of infinite lateral extension.

The lateral or horizontal stress h is normally given as a factor or the vertical stress

The factor k0, called the coefficient of lateral earth pressure, is normally computed 
from the angle of internal friction, from the Poisson’s ratio, or more complex formulas.

When the z-axis represents the vertical coordinate, the in situ stress tensor is written as

W – ext dv
V=

W u– Pext dv
V=

v gD=

h k0v=
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The External Stress subnode can be added to Linear Elastic Material, Nonlinear Elastic 
Materials, Elastoplastic Soil Models, Shape Memory Alloy, or Hyperelastic Materials.

External Strain

The external strain represents an inelastic strain contribution which has a source other 
than the elastic deformation. It is similar to the initial strain described in Initial Stresses 
and Strains, and the two features can be used interchangeably. As an example, linear 
elasticity including an external strain ext can be written as

 with  (3-15)

This Additive Decomposition of strains, , is the default option when 
adding external strains to represent either the second Piola–Kirchhoff stress or the 
Cauchy stress.

It is possible to prescribe a large external strain contribution that follows a 
Multiplicative Decomposition of the deformation gradient tensor. In this case, the 
elastic deformation gradient reads

 (3-16)

Enter the external deformation gradient, , the external stretches in the local 
coordinate system, , or the inverse deformation gradient, . The external 
strain can also be computed by Using External Materials. 

The External Strain subnode can be added to Linear Elastic Material, Nonlinear Elastic 
Materials, Shape Memory Alloy, or Hyperelastic Materials.

ins

h

h

v

=

 Cel= el  ext–=

 el ext+=

Fel FFext
1–

=

Fext
ext Fext

1–

See also

• Using External Materials

• External Material and Working with External Materials in the 
COMSOL Multiphysics Reference Manual.
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Axial Symmetry and Stresses

The physical stress components are defined on the global coordinate system:

The first invariant of the stress tensor is

r 11
=

 r2
22

=

z 33
=

rz 13
=

I1   ijgij 
i j
 r  z+ += =
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Equa t i o n  o f  Mo t i o n

The first Piola–Kirchhoff stress P is calculated from the second Piola–Kirchhoff stress 
as P  FS. The first Piola–Kirchhoff stress relates forces in the present configuration 
with areas in the reference configuration, and it is sometimes called the nominal stress.

Using the first Piola–Kirchhoff stress tensor, the equation of motion can be written in 
the following form:

 (3-17)

where the density corresponds to the material density in the initial undeformed state, 
the volume force vector FV has components in the actual configuration but given with 
respect to the undeformed volume, and the tensor divergence operator is computed 
with respect to the coordinates on the material frame. Equation 3-17 is the strong 
form that corresponds to the weak form equations within the Solid Mechanics 
interface (and many related multiphysics interfaces) in COMSOL Multiphysics. Using 
vector and tensor components, the equation can be written as

The components of the first Piola–Kirchhoff stress tensor are nonsymmetric in the 
general case, thus

because the component indices correspond to different frames.

The boundary load vector FA in case of geometric nonlinearity can be related to the 
first Piola–Kirchhoff stress tensor via the following formula:

0
t2

2



 u X PT FV+=

0
t2

2



 ux

X
PxX

Y
PxY

Z
PxZ+ + 

  FVx+=

0
t2

2



 uy

X
PyX

Y
PyY

Z
PyZ+ + 

  FVy+=

0
t2

2



 uz

X
PzX

Y
PzY

Z
PzZ+ + 

  FVz+=

PiJ PIj
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where the normal n0 corresponds to the undeformed surface element. This force 
vector is often referred to as the nominal traction. In components, it can be written as

The Cauchy stress, ,can be calculated as

The Cauchy stress is a true stress that relates forces in the present configuration (spatial 
frame) to areas in the present configuration, and it is a symmetric tensor. 
Equation 3-17 can be rewritten in terms of the Cauchy stress as

where the density corresponds to the density in the actual deformed state, the volume 
force vector fV has components in the actual configuration (spatial frame) given with 
respect to the deformed volume, and the divergence operator is computed with respect 
to the spatial coordinates.

The pressure is computed as

which corresponds to the volumetric part of the Cauchy stress, and it is positive in 
compression. The deviatoric part is defined as

The second invariant of the deviatoric stress

is used for the computation of von Mises (equivalent) stress

FA Pn0=

FAx PxXnX PxYnY PxZnZ+ +=

FAy PyXnX PyYnY PyZnZ+ +=

FAz PzXnX PzYnY PzZnZ+ +=

 J 1– PFT J 1– FSFT
= =


t2

2



 u x  fV+=

p 1
3
---– trace  =

d  pI+=

J2   1
2
---d:d=
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mises 3J2  =
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Ma t e r i a l  Mode l s

There are many material models available for structural analysis in COMSOL 
Multiphysics. In this section, the theory for all material models is presented. The 
material models available, and also some detailed aspects of them, depend on which 
licenses you have. The material models, grouped by families, are as follows:

• Linear Elastic Material

• Nonlinear Elastic Materials

- Ramberg–Osgood

- Power Law

- Bilinear Elastic

- Uniaxial Data

- Shear Data

- Hyperbolic Law

- Hardin–Drnevich

- Duncan–Chang

- Duncan–Selig

- User Defined

• Linear Viscoelasticity

- The Maxwell Model

- The Generalized Maxwell Model

- The Kelvin–Voigt Model

- The Generalized Kelvin–Voigt Model

- Standard Linear Solid Model

- The Burgers Model

- Generalized Maxwell Model with Fractional Derivatives

- Generalized Kelvin–Voigt Model with Fractional Derivatives

- Standard Linear Solid Model with Fractional Derivatives

- Burgers Model with Fractional Derivatives

- User Defined
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• Hyperelastic Materials

- Neo-Hookean

- St Venant–Kirchhoff

- Mooney–Rivlin, Two Parameters

- Mooney–Rivlin, Five Parameters

- Mooney–Rivlin, Nine Parameters

- Yeoh

- Ogden

- Storakers

- Varga

- Arruda–Boyce

- Gent

- van der Waals

- Blatz–Ko

- Gao

- Murnaghan

- Delfino

- Fung

- Extended Tube

- User Defined

- Mullins Effect

• Distributed Fiber Models

• Elastoplastic Materials

- The von Mises Criterion

- The Tresca Criterion

- Orthotropic Plasticity
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• Porous Plasticity

- The Shima–Oyane Criterion

- The Gurson Criterion

- The Gurson–Tvergaard–Needleman Criterion

- The Fleck–Kuhn–McMeeking Criterion

- The FKM–GTN Criterion

- Capped Drucker–Prager

• Soil Plasticity

- The Mohr–Coulomb Criterion

- The Drucker–Prager Criterion

- The Matsuoka–Nakai Criterion

- The Lade–Duncan Criterion

• Failure Criteria for Concrete, Rocks, and Other Brittle Materials

- The Bresler–Pister Yield Criterion

- The Willam–Warnke Criterion

- The Ottosen Criterion

- The Original Hoek–Brown Criterion

- The Generalized Hoek–Brown Criterion

• Elastoplastic Soil Models

- The Modified Cam-Clay Soil Model

- The Modified Structured Cam-Clay Soil Model

- The Extended Barcelona Basic Soil Model

- The Hardening Soil Model

• Creep and Viscoplasticity

- Creep

- Viscoplasticity

- Creep and Viscoplasticity for Large Strains

• Inelastic Strain Rate

• Shape Memory Alloy

• Piezoelectricity
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• Magnetomechanics

• Magnetostriction and Piezomagnetism

• Electrostriction

• Ferroelectroelasticity

• Rigid Material

• Damage Models

• Safety Factor Evaluation

You can also add a material model which you have coded yourself and made available 
as a binary library file using an External Stress-Strain Relation.

Linear Elastic Material

For a linear elastic material, Hooke’s law relates the stress tensor to the elastic strain 
tensor:

 (3-18)

where  is the 4th order elasticity tensor, “:” stands for the double-dot tensor product 
(or double contraction). The elastic strain el is the difference between the total strain 
 and all inelastic strains inel. There may also be an extra stress contribution ex with 
contributions from initial stresses and viscoelastic stresses. In case of geometric 
nonlinearity, the second Piola–Kirchhoff stress tensor and the Green–Lagrange strain 
tensor are used.

The elastic strain energy density is

 (3-19)

This expression assumes that the initial stress contribution is constant during the 
straining of the material.

In the COMSOL Multiphysics Reference Manual:

• Working with External Materials

• External Material

 ex Cel+ ex C  inel– += =

C

Ws
1
2
---el Cel 20+  1

2
---el  0+ = =
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T E N S O R  V S .  M A T R I X  F O R M U L A T I O N S

Because of the symmetry, the strain tensor can be written as the following matrix:

A similar representation applies to the stress tensor:

Due to the symmetry, the elasticity tensor can be completely represented by a 
symmetric 6-by-6 matrix as:

which is the elasticity matrix.

I S O T R O P I C  M A T E R I A L  A N D  E L A S T I C  M O D U L I

In this case, the elasticity matrix becomes

 (3-20)

x xy xz

xy y yz

xz yz z

x xy xz

xy y yz

xz yz z

D

D11 D12 D13 D14 D15 D16

D12 D22 D23 D24 D25 D26

D13 D23 D33 D34 D35 D36

D14 D24 D34 D44 D45 D46

D15 D25 D35 D45 D55 D56

D16 D26 D36 D46 D56 D66

C
1111

C
1122

C
1133

C
1112

C
1123

C
1113

C
1122

C
2222

C
2233

C
2212

C
2223

C
2213

C
1133

C
2233

C
3333

C
3312

C
3323

C
3313

C
1112

C
2212

C
3312

C
1212

C
1223

C
1213

C
1123

C
2223

C
3323

C
1223

C
2323

C
2313

C
1113

C
2213

C
3313

C
1213

C
2313

C
1313

= =

D E
1 +  1 2– 

---------------------------------------

1 –   0 0 0
 1 –  0 0 0
  1 – 0 0 0

0 0 0 1 2–
2

---------------- 0 0

0 0 0 0 1 2–
2

---------------- 0

0 0 0 0 0 1 2–
2

----------------

=
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Different pairs of elastic moduli can be used, and as long as two moduli are defined, 
the others can be computed according to Table 3-1.

According to Table 3-1, the elasticity matrix D for isotropic materials is written in 
terms of Lamé parameters  and ,

 (3-21)

or in terms of the bulk modulus K and shear modulus G:

TABLE 3-1:  EXPRESSIONS FOR THE ELASTIC MODULI.

DESCRIPTION VARIABLE DE DEG DKG D

Young’s 
modulus

E = E E

Poisson’s 
ratio

 = 

Bulk 
modulus

K = K

Shear 
modulus

G = G G 

Lamé 
parameter 

 = 

Lamé 
parameter 

 = G G 

Pressure-
wave speed

cp =

Shear-wave 
speed

cs =

9KG
3K G+
------------------- 3 2+

 +
--------------------

E
2G
-------- 1–

1
2
---3K 2G–

3K G+
---------------------- 

2  + 
---------------------

E
3 1 2– 
------------------------ EG

3 3G E– 
---------------------------  2

3
-------+

E
2 1 + 
---------------------

E
1 +  1 2– 

--------------------------------------- G E 2G– 
3G E–

---------------------------- K 2G
3

--------–

E
2 1 + 
---------------------

E 1 – 
 1 +  1 2– 
------------------------------------------ G 4G E– 

 3G E– 
---------------------------- K 4G 3+


--------------------------  2+


----------------

E
2 1 + 
------------------------- G  G   

D

 2+   0 0 0
  2+  0 0 0
   2+ 0 0 0
0 0 0  0 0
0 0 0 0  0
0 0 0 0 0 

=
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 (3-22)

O R T H O T R O P I C  A N D  A N I S O T R O P I C  M A T E R I A L S

There are two different ways to represent orthotropic or anisotropic data. The 
Standard (11, 22, 33, 12, 23, 13) material data ordering converts the indices as:

thus, Hooke’s law is presented in the form involving the elasticity matrix D and the 
following vectors:

COMSOL Multiphysics uses the complete tensor representation internally to perform 
the coordinate system transformations correctly.

Beside the Standard (11, 22, 33, 12, 23, 13) Material data ordering, the elasticity 
coefficients can be entered following the Voigt notation. In the Voigt (11, 22, 33, 23, 

13, 12) Material data ordering, the sorting of indices is:

D

K 4G
3

--------+ K 2G
3

--------– K 2G
3

--------– 0 0 0

K 2G
3

--------– K 4G
3

--------+ K 2G
3

--------– 0 0 0

K 2G
3

--------– K 2G
3

--------– K 4G
3

--------+ 0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

=

11
22
33

12 21
23 32
13 31

1
2
3
4
5
6

x
y
z

xy
yz
xz

 

x

y

z

xy

yz

xz

x

y

z

xy

yz

xz ex

D

x

y

z

2xy

2yz

2xz

x

y

z

2xy

2yz

2xz inel

–

 
 
 
 
 
 
 
 
 
 
 

+=
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The last three rows and columns in the elasticity matrix D are thus swapped.

Orthotropic Material
The elasticity matrix for orthotropic materials in the Standard (11, 22, 33, 12, 23, 13) 

Material data ordering has the following structure:

 (3-23)

where the components are as follows:

where

11
22
33

23 32
13 31
12 21

1
2
3
4
5
6

x
y
z

yz
xz
xy

 

D

D11 D12 D13 0 0 0

D12 D22 D23 0 0 0

D13 D23 D33 0 0 0

0 0 0 D44 0 0

0 0 0 0 D55 0

0 0 0 0 0 D66

=

D11
Ex

2 Ezyz
2 Ey– 

Ddenom
----------------------------------------,= D12

ExEy Ezyzxz Eyxy+ 
Ddenom

-----------------------------------------------------------------–=

D13
ExEyEz xyyz xz+ 

Ddenom
----------------------------------------------------------,–= D22

Ey
2 Ezxz

2 Ex– 
Ddenom

----------------------------------------=

D23
EyEz Eyxyxz Exyz+ 

Ddenom
-----------------------------------------------------------------,–= D33

EyEz Eyxy
2 Ex– 

Ddenom
-----------------------------------------------=

D44 Gxy= ,    D55 Gyz= ,  and D66 Gxz=

Ddenom EyEzxz
2 ExEy– 2xyyzxzEyEz ExEzyz

2 Ey
2xy

2
+ + +=
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The values of Ex, Ey, Ez, xy, yz, xz, Gxy, Gyz, and Gxz are supplied in designated 
fields in the physics interface. COMSOL Multiphysics deduces the remaining 
components —yx, zx, and zy — using the fact that the matrices D and D1 are 
symmetric. The compliance matrix has the following form:

The elasticity matrix in the Voigt (11, 22, 33, 23, 13, 12) Material data ordering changes 
the sorting of the last three elements in the elasticity matrix:

If a pair of elastic moduli is present in the material definition, the values of Ex, Ey, Ez, 
xy, yz, xz, Gxy, Gyz, and Gxz are computed automatically. Note that the resulting 
elasticity matrix will be isotropic. Depending on which pair of elastic moduli that is 
available, the expressions in Table 3-1 are used to find the above values.

Transversely Isotropic Material
Transversely isotropic material is a subclass of orthotropic materials, for which one 
principal direction in the material is different from the other two that are equivalent. 
This special direction is assumed to be the first axis of the selected coordinate system. 
Because of the symmetry, the following relations hold:

D 1–

1
Ex
------

yx
Ey
--------–

zx
Ez
--------– 0 0 0

xy
Ex
--------–

1
Ey
------

zy
Ez
--------– 0 0 0

xz

Ex
--------–

yz

Ey
--------–

1
Ez
------ 0 0 0

0 0 0 1
Gxy
--------- 0 0

0 0 0 0 1
Gyz
--------- 0

0 0 0 0 0 1
Gxz
---------

=

The values of xy and yx are different for an orthotropic material. For a 
certain set of given material data, you must make sure that the definition 
of the indices is consistent with the definition used in COMSOL 
Multiphysics.

D44 Gyz= ,    D55 Gxz= ,  and D66 Gxy=
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Thus, only five elasticity parameters are needed to characterize the material.

Anisotropic Material
In the general case of fully anisotropic material, you provide explicitly all 21 
components of the symmetric elasticity matrix D, in either Standard (11, 22, 33, 12, 23, 

13) or Voigt (11, 22, 33, 23, 13, 12) Material data ordering.

If a pair of elastic moduli is present in the material definition, the components of the 
symmetric elasticity matrix D are computed using one of Equation 3-20 to 
Equation 3-22. Depending on which pair of elastic moduli that is available, the 
expressions in Table 3-1 are used to compute the necessary values. In case the 
orthotropic properties Ei, ij, and Gij are present in the material definition, the 
components of the symmetric elasticity matrix D are computed using Equation 3-23. 
Note that the resulting elasticity matrix will not be fully anisotropic in either case.

Crystal Symmetry
Here, the components of the elasticity matrix in Voigt notation (denoted by cij) are 
referred to as elasticity constants. Because of the material symmetry, only certain 
components need to be specified. The following Crystal systems are available in 
COMSOL Multiphysics:

Cubic (3 constants) c11, c12, c44

This crystal system includes the following crystal classes: .

E3 E2=

13 12=

G23
E2

2 1 23+ 
--------------------------=

G12 G13=

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

23 m3 432 43m m3m 
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Hexagonal (5 constants) c11, c12, c13, c33, c44

where . 

This crystal system includes the following crystal classes: 
, and it is equivalent to a Transversely Isotropic 

Material.

Trigonal (6 constants) c11, c12, c13, c14, c33, c44

where . 

This crystal system includes the following crystal classes: .

Trigonal (7 constants) c11, c12, c13, c14, c25, c33, c44

where .

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

c66 0.5 c11 c12– =

6 6 6 m 622 6mm 62m 6 mmm    

c11 c12 c13 c14 0 0

c12 c11 c13 c– 14 0 0

c13 c13 c33 0 0 0

c14 c– 14 0 c44 0 0

0 0 0 0 c44 c14

0 0 0 0 c14 c66

c66 0.5 c11 c12– =

32 3m 3m 

c11 c12 c13 c14 c– 25 0

c12 c11 c13 c– 14 c25 0

c13 c13 c33 0 0 0

c14 c– 14 0 c44 0 c25

c– 25 c25 0 0 c44 c14

0 0 0 c25 c14 c66

c66 0.5 c11 c12– =
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This crystal system includes the following crystal classes: .

Tetragonal (6 constants) c11, c12, c13, c33, c44, c66

This crystal system includes the following crystal classes: .

Tetragonal (7 constants) c11, c12, c13, c16, c33, c44, c66

This crystal system includes the following crystal classes: .

Orthorhombic (9 constants) c11, c12, c13, c22, c23, c33, c44, c55, c66

This crystal system includes the following crystal classes: . This type 
of crystal symmetry is equivalent to an Orthotropic Material.

A X I A L  S Y M M E T R Y

For the linear elastic material, the stress components in coordinate system are

3 3

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

422 4mm 43m 4 mmm

c11 c12 c13 0 0 c16

c12 c11 c13 0 0 c– 16

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

c16 c– 16 0 0 0 c66

4 4 4 m 

c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

222 mm2 mmm
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For anisotropic and orthotropic materials, the 4th-order elasticity tensor is defined 
from the D matrix according to:

The user input D matrix always contains the physical components of the elasticity 
tensor

and the corresponding tensor components are computed internally according to:

For an isotropic material:

where and  are the first and second Lamé elastic parameters and g is the metric 
tensor.

For a hyperelastic material, the second Piola–Kirchhoff stress tensor is computed as

which is computed as the contravariant components of the stress in the local 
coordinate system:

The energy variation is computed as

ij ex
ij

C+
ijkl

kl inel kl– =

r


z

rz

r


z

rz ex

D

r


z

2rz

r


z

2rz inel

–

 
 
 
 
 
 
 

+=

Cijkl
phys

C
ijkl Cijkl

phys

gii gjj gkk gll

-----------------------------------------------=

C
ijkl gijgkl  gikgjl gilgjk

+ +=

S 2
C

Ws=

Sij 2
Cij

Ws=
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which can be also written as

E N T R O P Y  A N D  T H E R M O E L A S T I C I T Y

The free energy for the linear thermoelastic material can be written as

where the strain energy density Ws T is given by Equation 3-19. Hence, the stress 
can be found as

and the entropy per unit volume can be calculated as

where T0 is a reference temperature, the volumetric heat capacity Cp can be assumed 
to be independent of the temperature (Dulong–Petit law), and the elastic entropy is

where  is the thermal expansion coefficient tensor. For an isotropic material, it 
simplifies into

The heat balance equation can be written as

where k is the thermal conductivity matrix, and the heat source caused by the 
dissipation is

Stest   Sijtest ij 
i j
=

Srtest r  Stest   Sztest z  2Srztest rz + + +

F f0 T  Ws  T +=




F
 
 

T 
W
 
 

T
C  inel– = = =

T
F
 
 


– Cp T T0 log Selast+=

Selast =

Selast  x y z+ + =

Cp t
T T

t
 Selast+  k T  Qh+=

Qh ꞏ=
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where  is the strain-rate tensor and the tensor  represents all possible inelastic stresses 
(for example, a viscous stress).

Using the tensor components, the heat balance can be rewritten as:

 (3-24)

In many cases, the second term can be neglected in the left-hand side of Equation 3-24 
because all Tmn are small. The resulting approximation is often called uncoupled 
thermoelasticity.

W A V E  S P E E D  C O M P U T A T I O N

In case of geometric linearity, the governing equations for a linear elastic medium of 
any anisotropy can be written in terms of the structural displacement vector u as:

where C is the elasticity tensor.

Since the equations are linear, they possess the following time-harmonic wave 
solutions:

where k  kn is the wave number vector, and n is the direction vector that defines the 
wavefront propagation direction. The wavefront is an imaginary line connecting solid 
particles of the same phase. The velocity of such wavefront in the direction normal to 
it is given by the phase velocity c  k.

Using such a wave solution form leads to Christoffel’s equation:

 (3-25)

where the Christoffel’s tensor is defined as

.

ꞏ

Cp t
T Tmn t

 mn

m n
+  k T  Qh+=


t2

2



 u  Cu =

u une
it ik r–

=

c2un n un=

n n C n=
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The Christoffel’s equation can be considered as an eigenvalue problem. Thus, to have 
a nontrivial solution un, the phase velocity must satisfy

which is often called the dispersion relation. In a general case, this is a cubic polynomial 
with three roots c2  cj

2(n). Thus, for an arbitrary anisotropic medium, three waves 
with different phase velocities can propagate in each given direction.

If the wave propagation is initiated by a small perturbation that is initially localized in 
space, the solution can be found using the Fourier and Laplace transforms, and it will 
represent a so-called wave packet. The wave packet will propagate with the group 
velocity given by:

where un,j is the wave polarization vector that is the eigenvector corresponding to the 
eigenvalue solution cj

2(n) of Christoffel’s equation.

COMSOL Multiphysics provides predefined variables for the phase and group 
velocities for waves of different types propagating in any chosen direction. These 
variables do not affect the solution as such, but are available during result presentation 
if the Wave Speeds node has been added to the material.

Mixed Formulation

Nearly incompressible materials can cause numerical problems if only displacements 
are used in the interpolating functions. Small errors in the evaluation of the volumetric 
strain, due to the finite resolution of the discrete model, are exaggerated by the high 
bulk modulus (or low bulk modulus to shear modulus ratios). This leads to an unstable 
representation of stresses, and in general, to an underestimation of the deformation, as 
spurious volumetric stresses might balance applied shear and bending loads.

When the Pressure formulation is selected in the Use mixed formulation list, the 
volumetric stress pw is treated as an additional dependent variable. The resulting mixed 

det n  c2I–  0=

k
j 1

2cj
-----------

n
 un j n un j       j 1 2 3 = =

The wave speed variables can be found in the Wave speeds folder under 
Solid Mechanics in the Replace Expression tree.
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formulation is also known as a u-p formulation. This formulation removes the effect 
of the volumetric strain from the original stress tensor, and replaces it with an 
interpolated pressure, pw. A separate equation constrains the auxiliary pressure variable 
to make it equal (in an average sense) to the original pressure which is calculated from 
the strains and material model.

When the Strain formulation is selected in the Use mixed formulation list, the volumetric 
strain w is treated as an additional dependent variable.

The mixed formulation is beneficial when the material data is such that the 
deformation is close to being incompressible. For an isotropic elastic material, this 
happens when the Poisson’s ratio approaches 0.5.

When the Pressure formulation is selected for isotropic linear elastic materials, the stress 
tensor s, computed directly from the strains, is replaced by a modified version:

where I is the unit tensor. The pressure p is calculated from the stress tensor as

This is equivalent to define

The auxiliary dependent variable pw is set equal to p using the equation

 (3-26)

The mixed formulation is useful not only for linear elastic materials but 
also for nonlinear elastic materials, elastoplastic materials, hyperelastic 
materials, and viscoelastic materials.

The order of the shape function for the auxiliary variable (pw or w) 
should be of lower order than that of the displacement field. Note that 
some iterative solvers do not work well together with mixed formulation 
because the stiffness matrix becomes indefinite.

s̃ s p pw– I+=

p 1
3
---trace s –=

s̃ dev s  pwI–=

pw p–

K
---------------- 0=
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where K is the bulk modulus. Scaling by the bulk modulus is necessary, since typical 
values for the auxiliary pressure pw are in the order of 106 to 109 Pa, while typical 
values for the displacement degrees of freedom are orders of magnitude smaller.

The modified stress tensor  is then used then in calculations of the energy variation.

When the Strain formulation is selected for isotropic linear elastic materials, the 
auxiliary volumetric strain w is used instead of the auxiliary pressure pw, and it is the 
set equal to the volumetric strain vol using the equation

 (3-27)

The modified stress tensor then reads

The advantage of using the Strain formulation is that the values for the auxiliary strain 
w are of a similar order of magnitude as the displacement degree of freedom.

For orthotropic and anisotropic materials, the auxiliary pressure equation is scaled to 
make the stiffness matrix symmetric. Note, however, that the stiffness matrix in this 
formulation is not positive definite and even contains a zero block on the diagonal in 
the incompressible limit. This limits the possible choices of direct and iterative linear 
solver.

Nonlinear Elastic Materials

As opposed to hyperelastic materials, where the stress-strain relationship becomes 
significantly nonlinear at moderate to large strains, nonlinear elastic materials present 
nonlinear stress-strain relationships even at infinitesimal strains.

Here, nonlinear effects on the strain tensor are not as relevant as the nonlinearity of 
the elastic properties. Important materials of this class are Ramberg–Osgood for 
modeling metal and other ductile materials, and the Duncan–Chang soil model.

s̃

K– w vol–  0=

s̃ s K w vol– I+ dev s  KwI+= =

In case of linear elastic materials without geometric nonlinearity (and also 
for hyperelastic materials), the stress tensor s in the above equations is 
replaced by the 2nd Piola–Kirchhoff stress tensor S, see Nearly 
Incompressible Hyperelastic Materials.
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The nonlinear elastic materials as such do not include strain-rate nor stress-rate in the 
constitutive equations. It is however possible to add linear viscoelasticity to these 
materials.

For a nonlinear material to be “energetically sound” it should be possible to take any 
path in stress-strain space and return to the undeformed state without producing or 
dissipating any net energy. A requirement is then that the bulk modulus depends only 
on the volumetric strain, and the shear modulus depends only on the shear strains.

The splitting into volumetric and deviatoric components of the stress tensor helps 
ensuring the “path independent” restriction for isotropic nonlinear elastic materials.

For isotropic linear elastic materials, the stress tensor follows Hooke’s law:

For a more detailed discussion, see Equation 3-18.

It is possible to split the stress and elastic strain tensors into the deviatoric and 
volumetric contributions

and

Assuming only elastic stresses in linear isotropic elastic medium, Hooke’s law simplifies 
to

where K is the bulk modulus and G is the shear modulus. By using the convention that 
the pressure is the mean stress defined as positive in compression,

The volumetric strain (positive in tension) is

The linear relation between pressure and volumetric elastic strain is thus

 ex Cel+ ex C  inel– += =

 dev   1
3
---trace  I+=

el dev el  1
3
---trace el I+=

 dev   1
3
---trace  I+ 2Gdev el  Ktrace el I+= =

p 1
3
---– trace  =

el,vol trace el =
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The deviatoric stress and deviatoric elastic strain tensors are related by the shear 
modulus

By using the contraction of the deviatoric stress and strain tensors, the invariants of 
these tensors can alternatively be related through

For a body subject to pure torsion on the plane 12, the stress tensor components are 
zero except the shear stress 12  21  , and also the elastic strain tensor has zero 
components beside the shear strains on that plane 12  21  el/2.

Then

and

The shear stress on the plane  is then related to the elastic shear strain 
 by the shear modulus

Nonlinear Moduli
For nonlinear elastic materials, there is a nonlinear relation between shear stress and 
shear strain and/or a nonlinear relation between pressure and volumetric strain.

For the purpose of this discussion,  and  are used 
alternatively as variables.

In the most general case:

 and 

p Kel,vol–=

dev   2Gdev el =

J2   1
2
---dev  :dev   2G 2J2 el = =

J2   1
2
---dev  :dev   2

= =

J2 el  1
2
---dev el :dev el  1

4
---el

2
= =

 J2  =

el 212 2 J2 el = =

 Gel=

 J2  = el 2 J2 el =

p p el,vol =   el =
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Tangent and Secant Moduli
The tangent shear modulus Gtel and the secant shear modulus Gsel in the most 
general case depend nonlinearly on the shear strain, and are defined as

 and

Note that the secant modulus is sometimes called the chord modulus between zero and 
current strain level.

The tangent bulk modulus Ktel,vol and the secant bulk modulus Ksel,vol depend 
on the elastic volumetric strain, and are defined as

 and

For linear elastic materials, it is clear that Gt  Gs  G and Kt  Ks  K, but this is not 
the case for nonlinear elastic materials.

At zero strain, the secant and shear moduli are equal to each other Gs0  Gt 0 and 
Ks0  Kt 0.

The nonlinear elastic materials described in the next sections are represented by 
introducing nonlinear secant shear and/or bulk moduli.

Geometric Nonlinearity
The nonlinear elastic material models are primarily intended for small strain analysis. 
When used in a geometrically nonlinear study step, the strains will be interpreted as 
Green–Lagrange strains and the stresses will be interpreted as second Piola–Kirchhoff 
stresses. This is relevant for a situation with large rotations but small strains. If the 
strains become larger than a few percent, then you must be careful when interpreting 
input parameters and results since the strain and stress tensors also have a nonlinear 
dependence on the displacements.

R A M B E R G – O S G O O D

The Ramberg–Osgood material model (Ref. 1) is a nonlinear elastic material 
commonly used to model plastic deformation in metals, but it also often used in soil 
engineering. As it is an elastic model, it can only represent plasticity during pure 
on-loading conditions.

For uniaxial extension, the stress-strain curve is defined by the expression

Gt

el
---------= Gs


el
------=

Kt
p

el,vol
----------------–= Ks

p
el,vol
-------------–=
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Here, E means the initial Young’s modulus, and ref is the strain at a reference stress 
ref. The parameter n is the stress exponent. It is common to use ref  0.002, so ref 
is the stress at 0.2% strain, typically denoted by the symbol 0.2. This parameter has 
several names depending on the literature: 0.2% offset yield strength, 0.2% proof stress, 
0.2% proof strength, or 0.2% yield stress. Typical values for stainless steel are 
E  200 GPa, 0.2  600 MPa, and n  4.8.

The linear strain is given by

and the nonlinear strain by

The total strain is the sum of linear and nonlinear strains

In order to avoid a circular dependence of internal variables, the nonlinear strain nl is 
defined with an auxiliary degree of freedom, so the stress reads    Enl.

Ramberg–Osgood Material in Soil Engineering
In soil engineering, it is common to write the Ramberg–Osgood material with the 
stress-strain expression

 (3-28)

so at the reference stress ref, the strain is   ref/E. It is common to use 
  3/7, so ref represents the stress level at which the secant Young’s modulus has 
been reduced to 70% its initial value: E0.7  E/  0.7E. At this reference stress 
the strain is   ref/E0.7.

P O W E R  L A W

For this type of material, the shear stress is related to the elastic shear strain  by the 
strain exponent n and a reference shear strain ref (Ref. 2)

 
E
---- ref


ref
--------- 
 n

+=

el

E
----=

nl ref

ref
--------- 
 n

=

 el nl+ 
E
---- ref


ref
--------- 
 n

+= =

 
E
---- 

ref
E

--------- 
ref
--------- 
 n

+=
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The secant shear modulus is given by the power law relation

The strain exponent controls the nonlinear deformation:

• For n1 the material behaves as a dilatant (shear-thickening) solid

• For n1 the material is linear elastic

• For 0nthe material behaves as pseudoplastic (shear-thinning) solid

• For n the material is perfectly plastic

B I L I N E A R  E L A S T I C

The most commonly mentioned model of “bilinear elastic” material is defined with 
two different bulk moduli for either tension and compression. Commonly, brittle 
materials like graphite and ceramics exhibit this behavior. The secant bulk modulus 
reads:

 for el,vol  

and

 for el,vol  

whereel,vol is the volumetric strain, Kc is the bulk modulus for compression, and Kt 
the bulk modulus for tension.

U N I A X I A L  D A T A

Many nonlinear stress-strain curves are measured in a tensile test, for which a nonlinear 
curve of force vs displacement is obtained.

If only the uniaxial behavior is measured, the measurements do not fully define the 
material behavior. An extra assumption is needed. The Uniaxial data material model 
allows you to assume either a constant Poisson’s ratio, or a constant bulk modulus. 
Also, if only uniaxial extension data is available, further assumptions are needed for 
covering the uniaxial compressive behavior of the material.

For the uniaxial tensile test, the axial stress corresponds to the principal stresses 
ax  1  mises, and the other two principal stresses are equal to zero, 2  3  0.

 G0ref

ref
------- 
 n

=

Gs G0

ref
------- 
 n 1–

=

K Kt=

K Kc=
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The principal (axial) strain is positive in tension, ax  1, and the other two 
(transverse) strains are negative and related by the Poisson’s ratio 2  3  1.

For uniaxial compression, the axial strain is negative, and when the principal strains are 
sorted as 1  2  3 it corresponds to the third principal strain, ax  3. The other 
two (transverse) strains are positive and related by the Poisson’s ratio 1  2  3. 
Also, the axial stress is negative in compression, and it corresponds to the third 
principal stress ax  3  mises. The other two transverse stresses are zero 
1  2  0.

Other strain measures that can be obtained from the elastic strain tensor or its principal 
values, are the elastic volumetric strain

and the elastic shear strain,

.

These are used to define the elastic axial strain variable for multiaxial loading.

The uniaxial test defines the relation between the axial stress and elastic axial strain as

Here, Es is the secant Young’s modulus, and the axial stress ax is considered as a 
function of the elastic axial strain ax. Thus

At zero strain, the secant Young’s modulus is defined as

Assuming a constant Poisson’s ratio, the secant shear modulus is defined as

and the secant bulk modulus as

vol,el trace el =

el 2 J2 el = 2dev el :dev el =

ax Esax=

Es
ax
ax
---------=

Es
dax
dax
-------------

ax 0=

=

Gs
Es

2 1 + 
---------------------=
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Furthermore, if only tensile stress-strain data is available, the elastic axial strain for 
multiaxial loading is computed from the elastic shear strain  and Poisson’s ratio as

When nonsymmetric stress-strain data is available, the elastic axial strain for multiaxial 
loading is computed from the elastic volumetric strain and Poisson’s ratio

as this expression captures the change of sign in the elastic axial strain when changing 
from a tensile to a compressive state.

When using a constant bulk modulus assumption, only the symmetric part from the 
stress-strain data is considered. The secant shear modulus is instead defined as

and the elastic axial strain is defined from both volumetric and shear elastic strains

It is possible to use any uniaxial data function to define the axial stress as a function of 
elastic axial strain

provided that

Ks
Es

3 1 2– 
------------------------=

ax
3

2 1 + 
---------------------=

ax
vol

1 2–
----------------=

Gs
3KEs

9K Es–
--------------------=

ax

3

-------
vol
3

-----------+=

ax ax ax =
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 when 

S H E A R  D A T A

Many nonlinear stress-strain curves are measured in a shear test, for which a nonlinear 
curve of force vs displacement is obtained.

If only the shear behavior is measured, the measurements do not fully define the 
material behavior and therefore an extra assumption is needed. The Shear data 
material model assumes a constant bulk modulus.

Other strain measures that can be obtained from the strain tensor or its principal 
values, are the elastic volumetric strain

and the elastic shear strain,

.

These are used to define the nonlinear stress-strain relation for multiaxial loading.

From the shear test one could define the relation between the shear stress  and the 
elastic shear strain  as

Here, the secant shear modulus Gs is constant for Linear Elastic materials, but in 
general one could use a nonlinear relation. It is possible to use shear data to define the 
shear stress as a function of elastic shear strain as follows:

provided that

 when 

ax 0= ax 0=

The elastic axial strain ax can be called in user defined uniaxial stress 
functions by referencing the variables solid.eax, where solid is the 
name of the physics interface node. See also the description of the 
Uniaxial Data material model in the Solid Mechanics interface 
documentation.

vol,el trace el =

 2 J2 el = 2dev el :dev el =

 Gs=

   =

 0=  0=
M A T E R I A L  M O D E L S  |  447



448 |  C H A P T E R
in which case, the secant shear modulus is computed from

With the help of the secant shear modulus Gs computed from shear data, Hooke’s law 
simplifies to

where K is the bulk modulus.

H Y P E R B O L I C  L A W

A hyperbolic relation between shear stress and shear strain is obtained by setting the 
secant shear modulus

where the strain exponent n and a reference shear strain ref control the shape of the 
hyperbola.

For hyperbolic material models, the maximum shear modulus occurs at zero shear 
strain, so practitioners might call G the “maximum shear modulus” and use the 
notation Gmax. Sometimes it is also called “small strain shear modulus”.

H A R D I N – D R N E V I C H

The Hardin–Drnevich model (Ref. 3) is a hyperbolic soil model (with n  ) defined 
by two input parameters: the initial shear modulus G and a reference shear strain ref:

This nonlinear soil model is commonly used for modeling soil dynamics in earthquake 
engineering problems.

Gs
  


----------=

 2Gsdev el  Ktrace el I+=

The elastic shear strain can be called in user defined shear stress functions 
by referencing the variables solid.esh, where solid is the name of the 
physics interface node. See also the description of the Shear Data material 
model in the Solid Mechanics interface documentation.

Gs G 1

1 
ref
------- 
  n

+
--------------------------=

Gs G 1

1 
ref
-------+

-----------------=
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Since   Gs, the shear stress is bounded by max  Gref as the shear strain increases.

The hyperbolic Hardin–Drnevich model is normally used for quantifying stiffness 
reduction curves in soils. Commonly, the reference shear strainref is replaced by the 
reference shear strain at which the secant shear modulus has been decreased to 70% of 
its initial value. Calling this shear strain value 0.7, the reference strain is written as

and the secant shear modulus as

so that when   0.7 the secant shear modulus is Gs .7G.

D U N C A N – C H A N G

The original model was originated by Kondner to fit triaxial test data for undrained 
soils. Duncan and Chang (Ref. 4) and other coworkers (Ref. 5) developed this 
hyperbolic model to its current state. The material model is written in terms of the axial 
and radial stresses 1 and 3 and the axial strain , and it describes the stress-strain 
curve by fitting the hyperbola

here a and b are material parameters obtained by curve fitting data from the triaxial 
test. The parameter a is related to the initial Young’s modulus E

and the parameter b defines the asymptote of the hyperbola, which is related to the 
ultimate value of 13 denoted qult

The ultimate value qult is related to the strength of the soil.

For the triaxial test, the axial strain is related to the shear strain  by the Poisson’s 
ratio as

ref
7
3
---0.7=

Gs G 1

1 3
7
--- 
0.7
---------+

-----------------------=

1 3– 
a b+
----------------=

a 1
E
----=

1
b
--- 1 3– ult qult= =
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and the axial and radial stresses are related to the shear stress as .

It is possible then to write the relation between shear stress and shear strain as

Since the initial shear modulus is related to the initial Young’s modulus as 
G  E2(1  ), this stress-strain relation can alternatively be written as

which is an hyperbolic law with a secant shear modulus of

D U N C A N – S E L I G

The Duncan–Selig model is a combination of the Duncan’s hyperbolic material model 
(Ref. 4, Ref. 5) and Selig’s model to describe nonlinear bulk modulus behavior. Selig 
(Ref. 6) further developed the model of Duncan and others in order to include a 
nonlinear volumetric response in soils.

The model defines the nonlinear volumetric response for the pressure as

where el,vol is the volumetric strain, and ult is the asymptote of the hyperbola, the 
maximum value for the volumetric compression. Note that K represents the bulk 
modulus at zero strain.

The secant (nonlinear) bulk modulus is defined for this material model as

 3
2 1 + 
---------------------=

1 3– 3=



1
2 1 + 
---------------------

1
E
----

1
qult
-------- 3

2 1 + 
---------------------+

---------------------------------------------=

 
1
G
---- 3

qult
----------+

---------------------=

Gs
G

1 G
qult
-------- 3+

-----------------------------=

p K–
el,vol

1
el,vol
ult

-------------–

-----------------------=
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U S E R  D E F I N E D

This option allows you to write explicitly how the pressure depends on the elastic 
volumetric strain. This could be an analytic function or data interpolated from a table.

Linear Viscoelasticity

Viscoelastic materials have a time-dependent response even if the loading is constant 
in time. Many polymers and biological tissues exhibit this behavior. Linear 
viscoelasticity is a commonly used approximation where the stress depends linearly on 
the strain and its time derivatives (strain rate). Also, linear viscoelasticity deals with the 
additive decomposition of stresses and strains. It is usually assumed that the viscous 
part of the deformation is incompressible so that the volumetric deformation is purely 
elastic.

T H E  G E N E R A L I Z E D  M A X W E L L  M O D E L

For isotropic linear elastic materials in the absence of inelastic stresses, Hooke’s law in 
Equation 3-18 reduces to

where the elastic strain tensor el    inel represents the total strain minus initial and 
inelastic strains, such as thermal strains.

The stress tensor can be decomposed into a pressure and a deviatoric stress:

The pressure, mean stress, or volumetric stress, is given with a positive sign in 
compression

Ks K 1

1
el,vol
ult

-------------–

-----------------------=

The elastic volumetric strain vol,el can be called in user defined 
expressions by referencing the variables solid.eelvol, where solid is 
the name of the physics interface node.

 Cel=

 pI– d+=

p 1
3
---– trace  =
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and the deviatoric stress is computed from the total stress minus the volumetric 
contribution

The elastic strain tensor el can in the same way be decomposed into volumetric and 
deviatoric components

with the volumetric elastic strain defined as

and the deviatoric contribution

For isotropic linear elastic materials, the pressure is then related to the volumetric 
elastic deformation by the bulk modulus K

and the deviatoric stress tensor is linearly related to the deviatoric elastic strain tensor 
by the shear modulus G

The total stress in Equation 3-18 is then

In case of geometric nonlinearity,  represents the second Piola–Kirchhoff stress tensor 
and el the elastic Green–Lagrange strain tensor.

For viscoelastic materials, the deviatoric stress d is not linearly related to the deviatoric 
strain d but it also depends on the strain history. It is normally defined by the 
hereditary integral:

d dev    1
3
---trace  –  pI+= = =

el
1
3
---el,volI d+=

el,vol trace el =

d dev el =

p 1
3
---– trace   Ktrace el – Kel,vol–= = =

d dev   2Gdev el  2Gd= = =

 Kel,volI 2Gd+=

d 2  t t'– 
d
t'

-------- t'd

0

t

=
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The function (t) is called the relaxation shear modulus function (or just relaxation 
function) and it can be found by measuring the stress evolution in time when the 
material is held at a constant strain.

The relaxation function is often approximated by a Prony series:

A physical interpretation of this approach, often called the generalized Maxwell 
model, is shown in Figure 3-1

Figure 3-1: Generalized Maxwell model.

Hence, G is the stiffness of the main elastic branch, Gm represents the stiffness of the 
spring in branch m, and m is the relaxation time constant of the spring-dashpot pair 
in branch m.

The relaxation times m are normally measured in the frequency domain, so the 
viscosity of the dashpot is not a physical quantity but instead it is derived from stiffness 
and relaxation time measurements. The viscosity of each branch can be expressed in 
terms of the shear modulus and relaxation time as

The auxiliary strain variable qm is introduced to represent the extension of the 
corresponding abstract spring, and the auxiliary variables m    qm represent the 
extensions in the dashpots.

The shear modulus of the elastic branch G is normally called the long-term shear 
modulus, or steady-state stiffness, and it is often denoted with the symbol G. The 

 t  G Gm
t
m
-------– 

 exp

m 1=

N

+=

d

d


1

1

2

2

.....
m

m

G1 G2 Gm
G

qm

m

m

m Gmm=
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instantaneous shear modulus G0is then defined as the long-term shear modulus plus 
the sum of the stiffnesses of all the viscoelastic branches

This is the equivalent stiffness when the external load is applied much faster than the 
shortest relaxation time of any viscoelastic branch.

Sometimes, the relaxation function (t) is expressed in terms of the instantaneous 
stiffness and relative weights, so that the Prony series is given as

In this case, the long-term shear modulus is related to the instantaneous shear modulus 
by the weight w  

and the shear moduli in each branch are defined by the weights wm

It must be assumed then that the weights fulfill the constraint

G0 G Gm

m 1=

N

+=

 t  G0 w wm
t
m
-------– 

 exp

m 1=

N

+
 
 
 
 

=

G wG0=

Gm wmG0=
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The stress per branch can be written either in terms of the strain in the spring, qm, or 
the strain in the dashpot, m

The sum of the stresses in the viscoelastic branches is then computed from

The total stress in Hooke’s law (Equation 3-18) is then augmented by the viscoelastic 
stress q

 (3-29)

Computing the Stress in Each Branch
The auxiliary variable m is a symmetric isochoric (volume preserving) strain tensor, 
which has as many components as the number of strain components of the problem 
class. Since the stress per branch is written as

w wm

m 1=

N

+ 1=

The long-term shear modulus G is given in the parent material model (for 
example, Linear Elastic Material). If your material data consists of the 
instantaneous shear modulus G0 and the weights wm, you can convert the 
data using the formulas above.

If your data consists of Young’s modulus and relaxation time per branch, 
you can convert it to the equivalent shear moduli. As the strain tensors in 
the dashpots are isochoric (volume preserving) it means that Gm  Em

In the parent Linear Elastic Material, you can enter the long-term elastic 
data in any form, for example in terms of Young’s modulus, E, and 
Poisson’s ratio, . It will then be converted to the corresponding shear 
modulus G internally.

m 2Gmqm 2mꞏm 2Gm  m– = = =

q m

m 1=

N

 2Gm  m– 

m 1=

N

= =

 0 Cel q+ +=

m 2Gmqm 2mꞏm 2Gm  m– = = =
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the auxiliary variables m can be computed by solving the ODE

 (3-30)

The relation between viscosity and relaxation time is

so that Equation 3-30 can equivalently be written as

 (3-31)

The viscoelastic strain variables, m, are treated as additional degrees of freedom 
(DOFs). The shape functions are chosen to be one order lower than those used for the 
displacement field, because these variables add to the strains and stresses computed 
from displacement derivatives. Alternatively, Equation 3-31 can be solved using a 
Local Time Integration algorithm.

Volumetric Response
It is usually assumed that the viscous part of the deformation is incompressible so that 
the volumetric deformation is purely elastic, but this does not have to be the case.

The same derivation as stated in previous sections can be applied to the volumetric 
response, in which case the sum of the stresses in the viscoelastic branches is computed 
from

where el,vol is the elastic volumetric strain, and the auxiliary variables evol,m represent 
the volumetric deformation per branch. These are computed by solving the ODE

mꞏm Gm  m– =

m Gmm=

mꞏm m+ =

The viscoelastic strain variables m are called for instance 
solid.lemm1.vis1.ev1_11, where solid is the tag of the physics 
interface, lemm1 is the tag of the linear elastic material, and vis1 is the tag 
of the viscoelasticity node. The trailing numbers indicate the branch 
number and the strain tensor indices.

q m

m 1=

N

 Km el,vol evol m– I

m 1=

N

= =

meꞏvol m el,vol evol m–=
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where m is the relaxation time per branch.

Using a Suitable Number of Branches
Only branches that have a relaxation time which is of the same order of magnitude as 
the temporal variation of the loading are important for the viscoelastic response. The 
cost in terms of memory consumption and computational speed increase significantly 
if the model contains many branches, particularly in time domain and for 
eigenfrequency analyses. In these cases many auxiliary equations of the form 
Equation 3-31 have to be solved for.

However, if a viscoelastic branches relaxes much faster or much slower than the time 
scale of the excitation period of external loads, the corresponding dashpots may be 
considered to be either fully relaxed or rigid, depending on the relaxation time of the 
branch relative to the excitation frequency. These branches can then be removed and 
grouped into equivalent branches, thus reducing the computational cost.

When the frequency band of interest is bounded by two cutoff frequencies, flower and 
fupper, it is possible to prune viscoelastic branches that have relaxation times such as

Branches with short relaxation times k represent the response of the viscoelastic 
material to high frequency excitations. When the external loads represent excitations 
bounded by an upper frequency fupper, it is possible to prune branches with relaxation 
times that fulfill the relation kfupper  1. These branches are grouped into an 
equivalent branch, with relaxation time and stiffness such as

 and 

The volumetric viscoelastic strain variables evol,m are called, for example, 
solid.lemm1.vis1.evvol1, where solid is the tag of the physics 
interface, lemm1 is the tag of the linear elastic material node, and vis1 is 
the tag of the viscoelasticity node. The trailing number represents the 
branch number (that is, the first branch in this case).

1
fhigh
----------- m

1
flow
--------- 

high

Gkk
2

k


Gkk

k

---------------------= Ghigh

1
high
----------- Gkk

k
=
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Viscoelastic branches with relaxation times k such that 1  kflow are grouped into an 
equivalent branch forming the low frequency cutoff. The stiffness and relaxation time 
for the equivalent branch are computed from

 and 

Frequency Domain
In frequency domain, the relaxation function becomes complex-valued. The complex 
shear modulus for the generalized Maxwell model is then defined as the sum of the 
shear modulus in the pure elastic branch plus the complex shear moduli in the 
viscoelastic branches

The storage and loss moduli are then computed as the real and imaginary parts of the 
complex shear modulus

and

Energy Dissipation
The dissipated energy density rate (SI unit: W/m3) in each dashpot m is

The rate of total dissipated energy density in the Generalized Maxwell material is then

1
low
----------

1
Glow
------------

Gk
k
-------

k
= Glow Gk

k
=

GGM G Gm
jm

1 jm+
-----------------------

m 1=

N

+=

G' real GGM  G Gm
m 2

1 m 2+
----------------------------

m 1=

N

+= =

G'' imag GGM  Gm
m

1 m 2+
----------------------------

m 1=

N

= =

Wꞏ m m:ꞏm=

Wꞏ v Wꞏ m

m 1=

N

=
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In order to compute the dissipated energy density, the variable  is integrated over 
time. For frequency domain studies, the dissipation of viscous forces averaged over a 
time period 2 is computed from the shear loss modulus G'' as

T H E  M A X W E L L  M O D E L

The Maxwell model (or Maxwell element) consists of a spring and a dashpot arranged 
series. Maxwell elements are building blocks used in the generalized Maxwell model.

Figure 3-2: Maxwell model.

In frequency domain, the compliance of the Maxwell model is defined as the sum of 
the compliance modulus of the elastic part plus the compliance in the damper

The complex shear modulus then reads

The storage and loss moduli are defined as the real and imaginary parts of the complex 
shear modulus

and

Wꞏ v

Wv G''d
˜ conj d

˜ =

d

d



G




q



JM
1
G
---- 1

jG
--------------+=

GM
1

JM
--------

j
1 j+
-------------------G= =

G' real GM   2

1  2+
------------------------G= =

G'' imag GM  

1  2+
------------------------G= =
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T H E  G E N E R A L I Z E D  K E L V I N – V O I G T  M O D E L

The generalized Kelvin–Voigt model is used to simulate the viscoelastic deformation 
in a wide range of materials such as concrete, biological tissues, and glassy polymers.

Just as for the generalized Maxwell model, the deviatoric strain d is not linearly related 
to the deviatoric stress d, but it also depends on the strain history. It is normally 
defined by the hereditary integral:

The function (t) is called the compliance function (also called creep compliance or 
creep function) and it can be found by measuring the strain evolution in time when 
the material is held at a constant stress.

The compliance function is often approximated by a Prony series:

A physical interpretation of this rheological model consists of an elastic branch plus a 
number of Kelvin–Voigt elements arranged in series, this approach is shown in 
Figure 3-3.

Figure 3-3: The generalized Kelvin–Voigt model.

Here, G is the stiffness of the main elastic branch, Gm represents the stiffness of the 
spring in element m, and m is the relaxation time constant of the spring-dashpot pair 
in branch m. The compliance J in the pure elastic branch is related to the shear 
modulus by

d  t t'– 
d

2 t'
--------- t'd

0

t

=

 t  J Jm 1 t
m
-------– 

 exp– 
 

m 1=

N

+=

G1 G2 GN

1 2 N

1 2 N

G



d

d
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and the compliances per branch are related to the shear moduli as

The relaxations time m is normally measured in the frequency domain, so the viscosity 
of the dashpot is not a physical quantity but instead it is derived from stiffness and 
relaxation time measurements. The viscosity in each branch can be expressed in terms 
of the stiffness or compliance modulus and relaxation time as

The auxiliary strain variables m are introduced to represent the extension of the 
corresponding Kelvin–Voigt element. Since the elements are arranged in series, the 
total viscoelastic strain is given as the sum of the auxiliary strains

 (3-32)

The deviatoric stress d in the pure elastic branch is the same as in all the Kelvin–Voigt 
elements

 (3-33)

Here, the deviatoric elastic strain is defined by the difference between the total and 
inelastic strains.

Computing the Strain in Each Branch
The auxiliary strain variables m represent a symmetric isochoric (volume preserving) 
strain tensor, which has as many components as the number of strain components of 
the problem class.

The stress in each element m is given by the sum of the stresses in the spring and 
dashpot arranged in parallel

Here, m is the strain in the element m, and m  mGm is the viscosity. The auxiliary 
variables m are computed by solving the ODE

J 1
G
----=

Jm
1

Gm
---------=

m Gmm m Jm= =

 m

m
=

d 2Gdev el  2Gmm 2mꞏm+= =

d 2Gmm 2mꞏm+ 2Gm m mꞏm+ = =
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 (3-34)

The compliance of the elastic branch, J  1/G, is normally called the instantaneous 
compliance, and it is often denoted with the symbol J0. This gives the equivalent 
stiffness when the material is loaded by an abrupt load much faster than the shortest 
relaxation time of any branch.

The long-term compliance J is defined as the instantaneous compliance plus the sum 
of the compliances of the viscoelastic branches

The long-term shear modulus then reads G  1/J.

Sometimes, the compliance function (t) is expressed in terms of the instantaneous 
compliance J and relative weights wm, so that the Prony series reads

In this case, the compliance and shear modulus in each branch are

 and 

and the long-term shear compliance and long-term shear modulus read

 and 

Frequency Domain
In frequency domain, the compliance function becomes complex valued. The complex 
compliance for the generalized Kelvin–Voigt model is then defined as the sum of the 
compliance in the pure elastic element (parent material) plus the complex compliances 
in the viscoelastic elements.

m mꞏm+
1

2Gm
------------d=

J J Jm

m 1=

N

+ 1
G
---- 1

Gm
---------

m 1=

N

+= =

 t  J 1 wm 1 t
m
-------– 

 exp– 
 

m 1=

N

+
 
 
 
 

=

Jm wmJ= Gm G wm=

J J 1 wm

m 1=

N

+
 
 
 
 

= G G 1 wm

m 1=

N

+
 
 
 
 
=
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The storage and loss compliances are then computed as the real and imaginary parts of 
the complex compliance function

and

Energy Dissipation
The dissipated energy density rate (SI unit: W/m3) in each branch m is given by the 
dissipation in the dashpot

The rate of total dissipated energy density in the generalized Kelvin–Voigt material is 
then

In order to compute the dissipated energy density, the variable  is integrated over 
time. For frequency domain studies, the dissipation of viscous forces averaged over a 
time period 2 is computed from the shear loss modulus G'' as

JGVK
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--------- 1
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-----------------------
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= = =
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T H E  K E L V I N – V O I G T  M O D E L

The Kelvin–Voigt viscoelastic model is represented by a spring connected in parallel 
with a dashpot:

Figure 3-4: The Kelvin–Voigt model.

The stress tensor in the viscous branch is computed from the elastic strain rate

 (3-35)

so there is no need to add the extra DOFs to compute the auxiliary strain tensor .

The relaxation time relates the viscosity and shear modulus by   G. The equivalent 
shear modulus is used in case of an anisotropic linear elastic material.

The dissipated energy density rate of the Kelvin–Voigt model is then computed from 
its rate

d

d

 G q

q 2ꞏ 2Gꞏ= =

Wꞏ v q:ꞏ=

The Kelvin–Voigt model is equivalent to viscous damping, see Viscous 
Damping.
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S T A N D A R D  L I N E A R  S O L I D  M O D E L

The standard linear solid model, also called SLS model, Zener model, or 
three-parameter model, is a simplification of the generalized Maxwell model with only 
one spring-dashpot branch:

Figure 3-5: Standard linear solid (SLS) model.

The stress in the single branch is computed as

where the relaxation time is related to the stiffness and relaxation time as 1  1G1.

The auxiliary strain tensor 1 is computed by solving by the ODE

and the dissipated energy density rate of the single branch is calculated from

The long-term shear modulus G  G is given in the parent Linear Elastic Material, 
and the instantaneous stiffness is given by G  G  G.

d

d

1

G1
G

1

q1

1
q

q 2G1q1 21
ꞏ
1 2G1  1– = = =

1
ꞏ
1 1+ =

Wꞏ v q:ꞏ1=
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T H E  B U R G E R S  M O D E L

The Burgers model consists of a Maxwell (spring-dashpot) branch in series with a 
Kelvin–Voigt branch. The rheological representation of this material model is shown 
in Figure 3-6:

Figure 3-6: The Burgers model.

The strain in the first dashpot follows the ODE

where the shear modulus G is taken from the parent Linear Elastic material.

The strain in the second dashpot follows the ODE

The total strain in the dashpots is computed from

Combining these equations, it is possible to recover a second-order ODE for the strain 
tensor :
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Note that the Burgers material has two relaxation times related to the stiffness and 
viscosity in the springs and dashpots. The relaxation times 1 and2 are related to the 
stiffness and viscosities as 1  1/G and 2  2/G2.

The instantaneous stiffness G  G is given in the parent Linear Elastic Material.

G E N E R A L I Z E D  M A X W E L L  M O D E L  W I T H  F R A C T I O N A L  D E R I V A T I V E S

Typically, the rheology of viscoelasticity models consists of springs and dashpots 
arranged in series and in parallel. Using the framework of fractional calculus, the 
constitutive equations of linear viscoelasticity can be generalized with a new type of 
element, named spring-pot (Ref. 44). In some cases, viscoelasticity models with 
fractional derivatives have shown to better match experimental data.

Figure 3-7: Spring-pot element.

The basic stress-strain relation of the spring-pot element is given by a proportionality 
factor p and a fractional time derivative of order 

The fractional order  takes a value between     . For   , the parameter p plays 
the role of a stiffness in a spring, and for    the parameter plays the role of the 
viscosity in a dashpot. The SI unit for such material parameter would be Pa·s.

For a pair of one spring and one spring-pot element connected in series, a so-called 
Maxwell element with a fractional time derivative, the stress strain relation is given by

p, 

dev   2p
t



d

d  2pD= =

dev   2pD 2G  – = =
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The rheological representation of this arrangement is shown in Figure 3-8

Figure 3-8: A spring-pot element connected in series with a spring.

In frequency domain, substitute the fractional time derivative operator by

Thus, the stress-strain relationship reads

For a standard spring-dashpot branch, the relaxation time is given by the ratio of 
viscosity and stiffness,   G. Equivalently, the relaxation time  for a branch with a 
spring and a spring-pot element in series is derived from

Thus, p  G, and the stress-strain relationship in the spring-spring-pot system reads

The complex-valued shear modulus for this Maxwell element reads

d

d

G




q

p, 

D j 

The fractional derivative models are available for frequency domain 
analyses only.
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Storage and loss moduli are defined as the real and imaginary part of the complex shear 
modulus

 and 

The loss factor is computed from

For The Generalized Maxwell Model with fractional derivatives, all dashpots are 
replaced with spring-pot elements. The rheological representation of this material 
model is shown in Figure 3-9

Figure 3-9: The generalized Maxwell model with fractional derivatives.

The complex-valued shear modulus for the generalized Maxwell model with fractional 
derivatives reads

where Gm, m, and m are the shear modulus, relaxation time, and fractional order of 
branch m, respectively. Storage and loss moduli are defined as the real and imaginary 
part of the complex shear modulus.

 and 

G E N E R A L I Z E D  K E L V I N – V O I G T  M O D E L  W I T H  F R A C T I O N A L  D E R I V A T I V E S

The Kelvin–Voigt viscoelastic model with fractional time derivative consists of a spring 
connected in parallel with a spring-pot element. The stress strain relation for such 
arrangement reads
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The rheological representation of this arrangement is shown in Figure 3-10

Figure 3-10: Spring spring-pot elements connected in parallel.

In frequency domain, substitute the fractional time derivative operator by

The stress-strain relationship for this Kelvin element then reads

The relaxation time  for a spring and a spring-pot element in parallel is derived from

so p  G, and the stress-strain relationship in the Kelvin–Voigt element reads

The complex-valued shear modulus in a spring-spring-pot arrangement reads

Storage and loss moduli are defined as the real and imaginary part of the complex shear 
modulus.

and
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The loss factor is computed from

The complex-valued compliance of the Kelvin–Voigt element with fractional time 
derivative reads

For The Generalized Kelvin–Voigt Model with fractional derivatives, all dashpots are 
replaced with spring-pot elements.

The rheological representation of this material model is shown in Figure 3-11.

Figure 3-11: The generalized Kelvin–Voigt model with fractional derivatives.

The complex-valued compliance reads

where Gm, m, and m are the shear modulus, relaxation time, and fractional order of 
element m, respectively. Storage and loss moduli are defined as the real and imaginary 
part of the complex shear modulus
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 and 

S T A N D A R D  L I N E A R  S O L I D  M O D E L  W I T H  F R A C T I O N A L  D E R I V A T I V E S

In the rheological representation of the Standard Linear Solid Model with fractional 
derivatives, the dashpot is replaced with a spring-pot element.

Figure 3-12: Standard linear solid (SLS) model with fractional derivatives.

The deviatoric stress in the spring-spring-pot branch is computed as

here, 1 is the strain in the spring-pot element. In the frequency domain this equation 
translates to

Using the relaxation time   (p/G1), this reads

where Gq  G1(j)/(1+(j)) is the complex shear modulus of the spring-pot 
branch.

Subsequently, the shear modulus is for the SLS model with fractional derivatives reads

G' GGKV real= G'' GGKV imag=

d

d

1

G1
G

q1

1
q

q 2G1  1–  2pD1= =

q 2p j 1
G1

G1 p j +
-------------------------------2p j = =

q 2
G1

1 j +
-------------------------- j  2Gq= =

GSLS G Gq+ G j 

1 j +
--------------------------G1+= =
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The storage and loss moduli are defined as the real and imaginary parts of the shear 
modulus GSLS, respectively

 and 

B U R G E R S  M O D E L  W I T H  F R A C T I O N A L  D E R I V A T I V E S

In the rheological representation of The Burgers Model with fractional derivatives, the 
dashpots are replaced with a spring-pot elements. The rheological representation of 
this material model is shown in Figure 3-13:

Figure 3-13: The Burgers model with fractional derivatives.

The deviatoric stress in the main branch is computed as

here, 1 is the strain in the spring-pot element. In frequency domain, and using the 
relaxation times 1  (p1/G), this equation translates to

The stress in the second spring-pot follows

G' GSLS real= G'' GSLS imag=

d

d

11

G

1

G2



2





22

d 2G  –  2p1D
11= =

d
2G
--------  – j1 

11= =

2p2D
22 d 2G22–=
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here, 2 is the strain in the second spring-pot element. In frequency domain, and using 
the relaxation time 2  (p2/G2), this equation reads

The total strain in the spring-pots is computed from

which combined with the relations for the strains in the spring-pots

 and 

gives the stress and strain relation for Burgers model with fractional derivatives

Subsequently, the compliance for the Burgers model with fractional derivatives reads

The storage and loss moduli are defined as the real and imaginary parts of the shear 
modulus GB  1/JB, respectively

 and 

U S E R  D E F I N E D

With the user-defined viscoelastic material model it is possible to directly enter 
complex-valued expressions for the bulk and shear moduli or compliances, or for the 
loss factor. The bulk and shear moduli or compliances are entered in terms of storage 
and loss moduli or compliances, respectively. The expressions can be entered as 
functions taken directly from interpolated data, or can be analytical expressions of the 
frequency variable .

When the viscoelastic strain is deviatoric, the deviatoric stress is computed from the 
elastic deviatoric strain as

j2 
22

d
2G2
----------- 2–=

 1 2+=
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-----------------------------------------------d=

1
2G
-------- 1

2G j1 1
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2G2 1 j2 2+ 
-----------------------------------------------+ +

 
 
 

d =
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1
G
---- 1

j1 1G
-------------------------- 1

1 j2 2+ G2

-------------------------------------------+ +=

G' GB real= G'' GB imag=
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and when the viscoelastic strain is volumetric, the pressure is computed from 
volumetric elastic strain

When loss factor damping is selected, the stress-strain relation is augmented by a 
complex constitutive matrix

where D is the constitutive matrix computed from the material data, and Dc is the 
complex constitutive matrix used to compute the viscoelastic stresses.

T E M P E R A T U R E  E F F E C T S

For many polymers, the viscoelastic properties have a strong dependence on the 
temperature. A common assumption is that the material is thermorheologically simple 
(TRS). In a material of this class, a change in the temperature can be transformed 
directly into a change in the time scale. The reduced time is defined as

where T(T) is a temperature-dependent shift function.

The implication is that the problem can be solved using the original material data, 
provided that the time is transformed into the reduced time.

Think of the shift function T(T) as a multiplier to the viscosity in the dashpot in the 
Generalized Maxwell model. This multiplier shifts the relaxation time, so 
Equation 3-31 for a TRS material is modified to

d 2 G'   jG''  + =

p K'   jK''  + – el,vol=

Dc 1 jv  + D=

The User defined viscoelastic models are available for frequency domain 
and eigenfrequency analyses only.

The internal variables for the frequencyf and angular frequency  are 
named phys.freq and phys.omega. Here, phys is the name of the 
physics interface, for instance solid.

tr
t'd

T T t'  
------------------------

0

t

=
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For the SLS model, the shift applies to a single branch

and for the Kelvin–Voigt model, it applies to the viscosity in the dashpot

Williams–Landel–Ferry Shift
One commonly used shift function is defined by the WLF (Williams–Landel–Ferry) 
equation:

where a base-10 logarithm is used. This shift is only valid over a certain temperature 
range, typically around the glass transition temperature.

The first step to compute the shift function T(T) consists of building a master curve 
based on experimental data. To do this, the curves of the viscoelastic properties (shear 
modulus, Young’s modulus, and so forth) versus time or frequency are measured at a 
reference temperature Tref. Then, the same properties are measured at different 
temperatures.

The shift value of each curve, with respect to the master curve obtained at the 
temperature Tref, defines the shift factor T(T). The constants C1 and C2 are material 
dependent and are calculated after plotting log(T) versus T  Tref.

Since the master curve is measured at an arbitrary reference temperature Tref, the shift 
factor T(T) can be derived with respect to any temperature, and it is commonly taken 
as the shift with respect to the glass transition temperature. The values C1 = 17.4 and 
C2 = 51.6 K are reasonable approximations for many polymers at this reference 
temperature.

T T mꞏm m+ =

T T 1
ꞏ
1 1+ =

T log
C– 1 T Tref– 

C2 T Tref– +
--------------------------------------=

The shift factor at the reference temperature equals T(Tref) = 1, so that 
Tref is the temperature at which the master curve is given. If the 
temperature T drops below Tref  C2, the WLF equation is no longer 
valid.
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Arrhenius Shift
Below the Vicat softening temperature, the shift factor in polymers is normally 
assumed to follow an Arrhenius law. In this case, the shift factor is given by the 
equation

here, a base-e logarithm is used, Q is the activation energy (SI unit: J/mol), and R is 
the universal gas constant.

Tool–Narayanaswamy–Moynihan Shift
Structural relaxation in glass can be modeled using the so-called Tool–
Narayanaswamy–Moynihan shift factor which is given as

here, a base-e logarithm is used, Q is the activation energy (SI unit: J/mol), R is the 
universal gas constant, T is the current temperature, Tref is a reference temperature,  
is a dimensionless activation energy fraction, and Tf is the so-called fictive 
temperature. The fictive temperature is given as the weighted average of partial fictive 
temperatures.

 with 

Here, wi are the weights and Tfi are the partial fictive temperatures. The partial fictive 
temperatures are determined from a system of coupled ordinary differential equations 
(ODEs) which follow Tool’s equation

here, 0i is a structural relaxation time.

S T A T I O N A R Y  A N A L Y S I S

For stationary analysis it is possible to select either the long-term stiffness, in which 
case the stiffness of the viscoelastic branches is neglected, or the instantaneous stiffness, 
in which case the contribution from all branches is used.

T log Q
R
---- 1

T
---- 1

Tref
---------– 

 =

T log Q
R
---- 

T
---- 1 –

Tf
------------ 1

Tref
---------–+ 

 =

Tf wiTfi
i
= wi

i
 1=

td
d Tfi

T T– fi
T0i
-----------------=
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The instantaneous shear modulus G0 is defined as the sum of the stiffness of all the 
branches

F R E Q U E N C Y  D O M A I N  A N A L Y S I S  A N D  D A M P I N G

For frequency domain analysis, the frequency decomposition is performed as

Equation 3-29 and Equation 3-31 are then simplified to

where the shear storage modulus G' and the shear loss modulus G'' are defined for the 
generalized Maxwell model as

 and 

for the SLS model as

 and 

for the Kelvin–Voigt model as

 and 

The internal work of viscous forces averaged over a time period 2 is computed as

E I G E N F R E Q U E N C Y  A N A L Y S I S

The direct use of frequency-dependent shear or bulk moduli, as described in 
Frequency Domain Analysis and Damping, leads to a nonlinear eigenvalue problem. 

G0 G Gm

m 1=

N

+=

d real s̃dejt =

d real d
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N
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---------------------------+= G'' G1

1
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---------------------------=
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˜ =
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COMSOL Multiphysics solves such nonlinear problems by expanding all nonlinear 
expressions with quadratic polynomials around a frequency linearization point which 
you can specify in the Eigenvalue Solver node. The linearized eigenvalue problem then 
reads

where L is the angular frequency at the linearization point. Thus, the solution of the 
linearized system of equations depends on the choice of the linearization frequency L.

Selecting the linearization frequency closer to one of the eigenfrequencies will produce 
a better result for that particular frequency, but not for all eigenfrequencies in the 
study. Hence, the eigenfrequencies need to be computed one by one using a certain 
iterative process that updates the linearization frequency L. This iterative procedure 
is needed when fractional derivatives are used, and also for the User Defined 
viscoelasticity model.

In order to avoid solving a nonlinear eigenvalue problem for the built-in viscoelasticity 
models, the same procedure as for time-dependent analysis is used, that is, each 
viscoelastic branch is represented by additional variables. For instance, for the The 
Generalized Maxwell Model in a eigenfrequency analysis, Equation 3-31 reads

The viscoelastic strain variables, m, are treated as additional degrees of freedom 
(DOFs), and contribute to the damping and stiffness matrices of the coupled system 
of equations.

This procedure results in a damped linear eigenvalue problem that can be solved using 
the default eigenfrequency solver in a single run, for any specified number of 
eigenfrequencies.

K L  2M– u 0=

jmm m+ =

For more information see the Eigenfrequency section in the Studies and 
Solvers chapter in the COMSOL Multiphysics Reference Manual.

An example of a nonlinear eigenvalue problem is shown in Eigenmodes of 
a Viscoelastic Structural Damper: Application Library path 
Structural_Mechanics_Module/Dynamics_and_Vibration/

viscoelastic_damper_eigenmodes
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L O C A L  T I M E  I N T E G R A T I O N

For the The Generalized Maxwell Model and the Standard Linear Solid Model it is 
possible to use a local time integration algorithm for time-dependent analysis. By using 
this algorithm, the degrees-of-freedom related to viscoelasticity are treated as internal 
state variables, which makes the overall solution more efficient and also leaner in terms 
of memory usage. The implemented algorithm is based on the method originally 
suggested in Ref. 27, and it is schematically described in the following.

Each branch in the Generalized Maxwell model is characterized by an ODE on the 
following form

 (3-36)

where m is the viscoelastic strain in the branch. The exact solution to Equation 3-36 is

 (3-37)

By assuming that the strain (t) varies linearly within each time increment, the integral 
in Equation 3-37 is analytically computed, so the viscoelastic strain at increment n  1 
reads

 (3-38)

All variables in Equation 3-38 evaluated at increment n are stored as internal state 
variables, and the equation can be applied to each branch of the Generalized Maxwell 
model. The same implementation is also used for the single branch in the Standard 
Linear Solid model.

Large Strain Viscoelasticity

The implementation for large strain viscoelasticity follows the derivation by Holzapfel 
(Ref. 1).

mꞏm m+  t =

m
n 1+ t

m
-------– 

  m
nexp 1

m
------- tn 1+ –

m
---------------------–

 
 
 

   dexp

tn

tn 1+

+=

m
n 1+ n 1+ t

m
-------– 

  n m
n

– exp–

1 t
m
-------– 

 exp–

t
m
-------

----------------------------------- n 1+ n
– –=

See also the description of Viscoelasticity in the Solid Mechanics interface 
documentation.
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The generalized Maxwell model is based on the splitting of the strain energy density 
into volumetric, isochoric, and the contribution from the viscoelastic branches

The strain energy in the main hyperelastic branch is normally denoted with the 
superscript  to denote the long-term equilibrium (as t ).

The second Piola–Kirchhoff stress is computed from

where the auxiliary second Piola–Kirchhoff stress tensors Qm are defined as

The time evolution of the auxiliary stress tensor Qm in each viscoelastic branch is given 
by the rate

here, Siso,m is the isochoric second Piola–Kirchhoff stress tensor in the branch m. 
These tensors are derived from the strain energy density in the main hyperelastic 
branch and the energy factors m as

so the time evolution of the auxiliary stress tensor Qm is given by

This equation is not well suited for modeling prestressed bodies. Applying the change 
of variables

Ws Wiso Wvol m

m 1=

N

+ +=

S 2
C

Ws Siso Svol Qm

m 1=

N

+ += =

Qm 2
C

m=

Qꞏm
1
m
-------Qm+ Sꞏ iso,m=

Siso m 2
C

Wiso m 2m C
Wiso mSiso= = =

Qꞏm
1
m
-------Qm+ mSꞏ iso=

qm mSiso Qm–=
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the time evolution of the auxiliary stress tensor qm reads

For the The Generalized Maxwell Model, it is possible to write the Prony series in 
terms of weights wm with respect to the instantaneous stiffness G0

Here, w is the ratio between the long term and instantaneous stiffness, w  GG0, 
and the weight wm relates the branch stiffness to the instantaneous stiffness through 
wm  GmG0. The weights are bounded by

Use this expression to relate the instantaneous stiffness in the small strain regime to the 
large strain formulation. The instantaneous response for the second Piola–Kirchhoff 
stress is computed from

In this expression, the isochoric response represents the long term stiffness, and the 
sum of the energy factors the contribution to the overall stiffness from the Maxwell 
branches.

The weights in the Generalized Maxwell model for the small strain formulation are 
related to the energy factors in the large strain formulation by

mqꞏm qm+ mSiso=

 t  G0 w wm
t
m
-------– 

 exp

m 1=

N

+
 
 
 
 

=

w wm

m 1=

N

+ 1=

S Siso Svol mSiso

m 1=

N

+ +=

m wm
G0
G
--------

Gm
G
---------= =
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equivalently, the energy factors represent the ratio between the branch stiffness and the 
long term stiffness in the main branch.

T E M P E R A T U R E  E F F E C T S

The same options for defining Temperature Effects as described for Linear 
Viscoelasticity are available for large strain viscoelasticity.

Hyperelastic Materials

A hyperelastic material is defined by its elastic strain energy density Ws, which is a 
function of the elastic strain state. It is often referred to as the energy density. The 
hyperelastic formulation normally gives a nonlinear relation between stress and strain, 
as opposed to Hooke’s law in linear elasticity.

Most of the time, the right Cauchy–Green deformation tensor C is used to describe 
the current state of strain (although one could use the left Cauchy–Green tensor B, 
the deformation gradient tensor F, and so forth), so the strain energy density is written 
as Ws(C).

For isotropic hyperelastic materials, any state of strain can be described in terms of 
three independent variables — common choices are the invariants of the right 
Cauchy–Green tensor C, the invariants of the Green–Lagrange strain tensor, or the 
principal stretches.

Once the strain energy density is defined, the second Piola–Kirchhoff stress is 
computed as

In the general case, the expression for the energy Ws is symbolically evaluated down to 
the components of C using the invariants definitions prior to the calculations of the 

The volumetric contribution from the auxiliary stress tensor qm is 
removed before adding these to the viscoelastic stresses per branch 
Qm  mSiso  qm, so the stresses Qm are isochoric.

S 2
C

Ws=
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components of the second Piola–Kirchhoff stress tensor. The differentiation is 
performed in components on the local coordinate system.

For hyperelastic materials, the decomposition between elastic and inelastic 
deformation is made using a multiplicative decomposition of the deformation gradient

Here, the inelastic deformation tensor Fin depends on the inelastic process, such as 
thermal expansion, hygroscopic swelling, or plasticity.

In this case, the strain energy density depends on the elastic deformation only, Ws(Cel), 
and the second Piola-Kirchoff stress can be written in terms of its elastic counterpart

where Jin  det(Fin) and 

T H E R M A L  E X P A N S I O N

If thermal expansion is present, a stress-free volume change occurs. This is a pure 
volumetric change, so the multiplicative decomposition of the deformation gradient 
tensor in Equation 3-4 implies

In Equation View, the definitions of the stress components are shown as 
solid.Sl11 = 2*d(solid.Ws,solid.Cl11),
solid.Sl12 = d(solid.Ws,solid.Cl12), and so on
The factor 2 in front of the differentiation operator for the shear stresses 
is omitted, since the symmetry in the Cauchy–Green tensor will cause two 
equal contributions.

Modeling Geometric Nonlinearity

Fel FFin
 1–

=

S Jin
 Fin

 1– SelFin
 T–

=

Sel 2
Cel

Ws=

Jel
det F 

det Fth 
--------------------- J

Jth
--------= =
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Here, the thermal volume ratio, Jth, depends on the thermal stretch th, which for 
linear thermal expansion in isotropic materials can be written in terms of the isotropic 
coefficient of thermal expansion, iso, and the absolute change in temperature

 and 

Here, the term isoTTrefis the thermal strain. The isotropic thermal gradient is 
therefore a diagonal tensor defined as

When the coefficient of thermal expansion  is anisotropic, the thermal strain is 
computed from

and the anisotropic thermal gradient is defined as

H Y G R O S C O P I C  S W E L L I N G

Hygroscopic swelling is an internal strain caused by changes in moisture content. This 
strain depends linearly on the moisture content

where h is the coefficient of hygroscopic swelling, cmo is the moisture concentration, 
and cmo,ref is the strain-free reference concentration. The coefficient of hygroscopic 
swelling can represent isotropic or anisotropic swelling. The anisotropic hygroscopic 
gradient is defined as

H Y P E R E L A S T I C I T Y  W I T H  P L A S T I C I T Y

It is possible to combine the hyperelastic material models with plasticity, viscoplasticity 
and creep. Since these models are primarily used for large strain applications, only the 
large strain formulation is available. The decomposition between elastic and plastic 

Jth th
3= th 1 iso T Tref– +=

Fth thI=

th  T Tref– =

Fth I th+=

The internal variables for the thermal stretch and the thermal volume 
ratio are named solid.stchth and solid.Jth.

hs h cmo cmo,ref– =

Fhs I hs+=
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deformation is made using a multiplicative decomposition of the deformation gradient 
tensor,

Here, the plastic deformation tensor Fpl depends on the plastic flow rule, yield 
function, and plastic potential.

I S O C H O R I C  E L A S T I C  D E F O R M A T I O N

For some classes of hyperelastic materials it is convenient to split the strain energy 
density into volumetric (also called dilatational) and isochoric (also called 
distortional or volume-preserving) contributions. The elastic deformation tensor is 
then multiplicatively decomposed into the volumetric and isochoric components

with Fel,vol as the volumetric elastic deformation (a diagonal tensor) and  the 
isochoric elastic deformation gradient. Isochoric deformation means that the volume 
ratio is kept constant during deformation, so the isochoric elastic deformation is 
computed by scaling it by the elastic volume ratio. The elastic volume ratio is defined 
by

and the volumetric deformation as

By using Jel it is possible to define the isochoric-elastic deformation gradient

the isochoric-elastic right Cauchy–Green tensor

Fel FFpl
 1–

=

• Multiplicative Decomposition

• Plastic Flow for Large Strains

• Creep and Viscoplasticity for Large Strains

Fel Fel,volFel=

Fel

Jel det Fel  det Fel,vol = =

Fel,vol Jel
1 3 I=

Fel Jel
 1/3– Fel=

Cel Fel
T

Fel Jel
 2/3– Cel= =
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and the isochoric-elastic Green–Lagrange strain tensor

This scaling changes the eigenvalues of the tensor, but not its principal directions, so 
the original and isochoric tensors remain coaxial to each other.

Some authors call  and  the modified tensors. Note that

The other two invariants normally used together with Jel are the first and second 
invariant of the isochoric-elastic right Cauchy–Green deformation tensor

 and 

In these equations:

Since , the third invariant is never explicitly used.

The invariants of the isochoric (modified) elastic Green–Lagrange strain tensor are 
related to the invariants of the isochoric-elastic right Cauchy–Green deformation 
tensor

el
1
2
--- Cel I– =

Fel Cel

det Fel  det Cel = 1=

The internal variables for the isochoric-elastic Cauchy–Green 
deformation tensor in local coordinate system are named solid.CIel11, 
solid.CIel12, and so on.

I1 Cel  I2 Cel 

I1 Cel  trace Cel  Jel
2/3– I1 Cel = =

I2 Cel  1
2
--- I1

2 Cel  trace Cel
2

 –  Jel
4/3– I2 Cel = =

I3 Cel  det Cel  1= =

The internal variables for the invariants Jel, , and  are 
named solid.Jel, solid.I1CIel, and solid.I2CIel.

I1 Cel  I2 Cel 

I1 el  trace el  1
2
--- I1 Cel  3– = =
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C O U P L E D  A N D  U N C O U P L E D  R E S P O N S E S

The isochoric and volumetric responses of most materials are coupled (Ref. 11), in this 
case, the strain energy density is written as a function of the elastic deformation

however, in many situations it is possible to assume that the pressure and deviatoric 
stress are uncoupled, and therefore for numerous hyperelastic materials it is possible to 
define the strain energy density as the sum of isochoric and volumetric counterparts

here,  is the isochoric elastic right Cauchy–Green deformation tensor, and Jel is 
the elastic volume ratio.

V O L U M E T R I C  R E S P O N S E

The volumetric strain energy density, Wvol, is defined as an expression of the elastic 
volumetric deformation Jel and the bulk modulus .

The Quadratic volumetric strain energy density is defined as:

 (3-39)

The Logarithmic volumetric strain energy density (Ref. 11) is defined as:

 (3-40)

The Hartmann–Neff volumetric strain energy density (Ref. 12) is defined as:

I2 el  1
2
--- I1

2 el  trace el
2 –  1

4
--- I2 Cel  2I1 Cel – 3+ = =

I3 el  det el  1
8
--- I1 Cel  I2 Cel – = =

The internal variables for the invariants of the isochoric elastic Green–
Lagrange strain tensor are named solid.I1eIel, solid.I2eIel, and 
solid.I3eIel.

Ws Ws Cel =

Ws Wiso Cel  Wvol Jel +=

Cel

Wvol Jel  
2
--- Jel 1– 2=

Wvol Jel  
2
--- Jln el=
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 (3-41)

The Miehe volumetric strain energy density (Ref. 14) is defined as:

 (3-42)

and the Simo–Taylor volumetric strain energy density (Ref. 15) is defined as:

 (3-43)

For a given volumetric strain energy density, the volumetric stress (pressure) is 
calculated as

 (3-44)

When the quadratic expression in Equation 3-39 is used, the pressure becomes linearly 
related to the volume change:

but for other volumetric representations the pressure becomes a nonlinear function of 
the volume change. For instance, if the expression in Equation 3-41 is used instead of 
the quadratic function, the pressure reads

T H E  L O C K I N G  P R O B L E M

A numerical scheme is said to exhibit locking if the accuracy of the approximation 
deteriorates as a parameter tends to a limiting value (Ref. 16). Finite elements in solid 
mechanics are said to “lock” when exhibiting an unphysical response to deformation 
(Ref. 17). Locking can occur for many different reasons. For linear elastic materials, 
this typically happens as Poisson’s ratio tends to 0.5, or the bulk modulus is much 
larger than the shear modulus. Numerical errors arise because the shape functions are 
unable to properly describe the volume preserving deformation.

To avoid the locking problem in computations, the mixed formulation replaces pm in 
Equation 3-44 with a corresponding interpolated pressure help variable pw, which 
adds an extra degree of freedom to the ones defined by the displacement vector u.

Wvol Jel  
50
------ Jel

5 Jel
5– 2–+ =

Wvol Jel   Jel Jln el– 1– =

Wvol Jel  
4
--- Jel

2 2 Jln el– 1– =

pm
Wvol
Jel

--------------–=

pm  Jel 1– –=

pm
1
10
------ Jel

4 Jel
6–

– –=
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The general procedure is the same as described in Mixed Formulation for Linear 
Elastic materials.

I N C O M P R E S S I B L E  H Y P E R E L A S T I C  M A T E R I A L S

For incompressible hyperelastic materials, the volumetric strain energy density Wvol is 
not defined at all, and the strain energy density Ws consists only of the isochoric 
contribution and the incompressibility constraint 

Instead of deriving the pressure from the volumetric strain energy, a weak constraint is 
added to account for the incompressibility condition

The auxiliary pressure variable, pw, acts as Lagrange multiplier to enforce the 
constraint Jel  1. This variable, positive in compression, is then used as the pressure 
when computing stresses.

The contribution to the virtual work is

The second Piola–Kirchhoff stress is then given by

 (3-45)

and the Cauchy stress tensor by

 (3-46)

N E A R L Y  I N C O M P R E S S I B L E  H Y P E R E L A S T I C  M A T E R I A L S

For nearly incompressible hyperelastic materials, the strain energy density Ws is 
decoupled into isochoric and volumetric counterparts:

here, Wiso is the isochoric strain energy density and Wvol is the volumetric strain energy 
density.

Ws u pw  Wiso Jel 1– – pw=

Jel 1=

W S: dv  Jel 1– pw dv
V+

V–=

S 2
Wiso

C
-------------- pwJC 1–

–=

 J 1– FSFT 2J 1– F
Wiso

C
--------------FT p– wI= =

Ws Wiso Wvol+=
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The isochoric strain energy density depends on the material model, and it can be an 
expression involving the following:

• Components of the isochoric elastic right Cauchy–Green tensor  in the local 
coordinate system.

• Principal invariants of the isochoric elastic right Cauchy–Green tensor .

• Principal invariants of the isochoric elastic Green–Lagrange strain .

• For User Defined hyperelastic materials, it is also possible to define the strain energy 
density in terms of components of the isochoric elastic deformation gradient .

The volumetric strain energy density can be any of the expression described in 
Volumetric Response. The default value for the bulk modulus is set to 100 times the 
equivalent shear modulus at infinitesimal deformation, which gives an initial Poisson’s 
ratio of approximately   0.495.

An auxiliary variable, pw, is added to map the pressure pm derived from the volumetric 
strain energy density as described in Equation 3-44.

Then the variational problem is computed by the so-called perturbed Lagrangian 
method (Ref. 18), so the contribution to the virtual work reads

The second Piola–Kirchhoff stress is then defined as

 (3-47)

where the extra pressure variable satisfies the weak constraint

 where 

the Cauchy stress tensor then reads

Cel

Cel

el

Fel

W S: dv 1

--- pw pm– pw dv

V+
V–=

S 2
Wiso

C
-------------- pwJC 1–

–=

pw pm= pm
Wvol
Jel

--------------–=

 J 1– FSFT 2J 1– F
Wiso

C
--------------FT p– wI= =

Using the Quadratic volumetric strain energy density results in the only 
mixed formulation that returns a symmetric coupled stiffness matrix.
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P R E D E F I N E D  H Y P E R E L A S T I C  M A T E R I A L  M O D E L S

Different hyperelastic material models are constructed by specifying different elastic 
strain energy expressions. There are several predefined material models, as well as the 
option to enter user defined expressions for the isochoric and volumetric strain energy 
densities.

N E O - H O O K E A N

The strain energy density for the Compressible, coupled version of the Neo-Hookean 
material is written in terms of the elastic volume ratio Jel and the first invariant of the 
elastic right Cauchy–Green deformation tensor I1Cel (Ref. 10, 13)

Here,  and  are the Lamé parameters (SI unit: Pa).

In Ref. 8 the coupled strain energy density is defined from Lamé parameters

 with 

The Compressible, uncoupled and Nearly incompressible versions use the isochoric 
invariant  to define the isochoric strain energy density

where the volumetric strain energy Wvol can use any of the expressions described in 
Volumetric Response. See Nearly Incompressible Hyperelastic Materials for details. 

The Incompressible option uses the same isochoric strain energy, but an extra variable 
is added to enforce the incompressibility condition Jel  1, see Incompressible 
Hyperelastic Materials.

Ws
1
2
--- I 1 3–   Jel ln–

1
2
--- Jel ln 2

+=

Ws
1
2
--- I 1 3–  


--- Jel

– 1– –=  

--- 2

1 2–
----------------= =

I1 Cel 

Ws Wiso Wvol+
1
2
--- I1 3–  Wvol+= =

It is possible to define the isotropic hyperelastic material from other pair 
of elastic moduli, see the conversion from one set of elastic moduli to 
Lamé parameters in Table 3-1.

See also the description of the Neo-Hookean material model in the Solid 
Mechanics interface documentation.
 3 :  S T R U C T U R A L  M E C H A N I C S  T H E O R Y



S T  V E N A N T – K I R C H H O F F

One of the simplest hyperelastic material models is the St Venant–Kirchhoff material, 
which is an extension of a linear elastic material into the hyperelastic regime.

For the Compressible, coupled response, the elastic strain energy density is written with 
two parameters and two invariants of the elastic Green–Lagrange strain tensor, I1el 
and I2el

Here,  and  are Lamé parameters (SI unit: Pa). The bulk modulus  is calculated 
from     23

The Compressible, uncoupled and the Nearly incompressible versions use the isochoric 
invariants  and  to define the isochoric strain energy density

The elastic volume ratio Jel and the bulk modulus  are used to define the volumetric 
strain energy density Wvol, see Volumetric Response and Nearly Incompressible 
Hyperelastic Materials.

M O O N E Y – R I V L I N ,  T W O  P A R A M E T E R S

For the Compressible, uncoupled and Nearly incompressible versions, the isochoric strain 
energy density is written in terms of the two isochoric invariants of the elastic right 
Cauchy–Green deformation tensors  and 

The material parameters C10 and C01 (SI unit: Pa) are related to the Lamé parameter 
(shear modulus)   C10  C01

Ws
1
2
---  2+ I1

2 2I2–=

I1 el  I2 el 

Wiso
1
2
---  2+ I1

2 2I2–=

It is possible to define the isotropic hyperelastic material from other pair 
of elastic moduli, see the conversion from one set of elastic moduli to 
Lamé parameters in Table 3-1.

See also the description of the St Venant–Kirchhoff material model in the 
Solid Mechanics interface documentation.

I1 Cel  I2 Cel 

Wiso C10 I1 3–  C01 I2 3– +=
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The elastic volume ratio Jel and the bulk modulus are used to define the volumetric 
strain energy density Wvol, see Volumetric Response and Nearly Incompressible 
Hyperelastic Materials. 

The Incompressible option uses the same isochoric strain energy, but an extra variable 
is added to enforce the incompressibility condition Jel  1, see Incompressible 
Hyperelastic Materials

M O O N E Y – R I V L I N ,  F I V E  P A R A M E T E R S

Rivlin and Saunders (Ref. 2) proposed a phenomenological model for small 
deformations in rubber-based materials on a polynomial expansion of the first two 
invariants of the elastic right Cauchy–Green deformation, so the strain energy density 
is written as an infinite series

with C00  . This material model is sometimes also called polynomial hyperelastic 
material.

In the first-order approximation, the material model recovers the Mooney–Rivlin 
strain energy density

while the second-order approximation incorporates second-order terms

The Compressible, uncoupled and the Nearly incompressible versions use the isochoric 
invariants of the elastic right Cauchy–Green deformation tensors  and  
to define the isochoric strain energy density

See also the description of the Mooney–Rivlin, Two Parameters material 
model in the Solid Mechanics interface documentation.

Ws Cmn I1 3– m I2 3– n

n 0=




m 0=



=

Ws C10 I1 3–  C01 I2 3– +=

Ws C10 I1 3–  C01 I2 3–  C20 I1 3– 2 C02 I2 3– 2 C11 I1 3–  I2 3– + + + +=

I1 Cel  I2 Cel 

Wiso Cmn I1 3– m I2 3– n

n 0=

2


m 0=

2

=
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The elastic volume ratio Jel and the bulk modulus are used to define the volumetric 
strain energy density Wvol, see Volumetric Response and Nearly Incompressible 
Hyperelastic Materials. 

The incompressible option uses the same isochoric strain energy, but an extra variable 
is added to enforce the incompressibility condition Jel  1, see Incompressible 
Hyperelastic Materials.

M O O N E Y – R I V L I N ,  N I N E  P A R A M E T E R S

The Mooney–Rivlin, nine parameters material model is an extension of the polynomial 
expression to third order terms and the strain energy density is written as

where  and  are the isochoric invariants of the elastic right Cauchy–
Green deformation tensors. 

The elastic volume ratio Jel and the bulk modulus  are used to define the volumetric 
strain energy density Wvol, see Volumetric Response and Nearly Incompressible 
Hyperelastic Materials. 

The Incompressible option uses the same isochoric strain energy, but an extra variable 
is added to enforce the incompressibility condition Jel  , see Volumetric Response 
and Incompressible Hyperelastic Materials.

Y E O H

Yeoh proposed (Ref. 1) a phenomenological model in order to fit experimental data of 
filled rubbers, where Mooney–Rivlin and Neo-Hookean models were to simple to 
describe the stiffening effect in the large strain regime. The strain energy was fitted to 
experimental data by means of three parameters (SI unit: Pa), and the first invariant of 
the elastic right Cauchy–Green deformation tensors I1Cel

See also the description of the Mooney–Rivlin, Five Parameters material 
model in the Solid Mechanics interface documentation.

Wiso Cmn I1 3– m I2 3– n

n 0=

3


m 0=

3

=

I1 Cel  I2 Cel 

See also the description of the Mooney–Rivlin, Nine Parameters material 
model in the Solid Mechanics interface documentation.
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The shear modulus depends on the deformation, and it is calculated as

This imposes a restriction on the coefficients c1, c2, c3, since   0.

The Compressible, uncoupled and the Nearly incompressible versions use the isochoric 
invariant of the elastic right Cauchy–Green deformation tensor  to define the 
isochoric strain energy density

The elastic volume ratio Jel and the bulk modulus are used to define the volumetric 
strain energy density Wvol, see Volumetric Response and Nearly Incompressible 
Hyperelastic Materials. 

The Incompressible option uses the same isochoric strain energy, but an extra variable 
is added to enforce the incompressibility condition Jel  1, see Incompressible 
Hyperelastic Materials.

O G D E N

The Neo-Hookean material model usually fits well to experimental data at moderate 
strains but fails to model hyperelastic deformations at high strains. In order to model 
rubber-like materials at high strains, Ogden adapted (Ref. 1) the energy of a 
Neo-Hookean material to

Here p (SI unit: Pa) and p (dimensionless) are material parameters, and el1, el2, 
and el3 are the principal elastic stretches such as Jel  el1el2el3.

Ws c1 I1 3–  c2 I1 3– 2 c3 I1 3– 3+ +=

 2
I1

Ws
I2

Ws+
 
 
 

2c1 4c2 I1 3–  6c3 I1 3– 2+ += =

I1 Cel 

Wiso c1 I1 3–  c2 I1 3– 2 c3 I1 3– 3+ +=

See also the description of the Yeoh material model in the Solid 
Mechanics interface documentation.

Ws
p
p
------ el1

p el2
p el3

p 3–+ + 

p 1=

N

=
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The Ogden model is empirical, in the sense that it does not relate the material 
parameters p and p to physical phenomena. The parameters p and p are obtained 
by curve-fitting measured data, which can be difficult for N  2. The most common 
implementation of Ogden material is with N  2, so four parameters are needed.

The Compressible, uncoupled and the Nearly incompressible versions use the isochoric 
elastic stretches

so the isochoric strain energy density is defined as

The isochoric elastic stretches define a volume preserving deformation, since

The shear modulus at infinitesimal deformation is then defined from

The elastic volume ratio Jel and the bulk modulus are used to define the volumetric 
strain energy density Wvol, see Volumetric Response and Nearly Incompressible 
Hyperelastic Materials. 

The Incompressible option uses the same isochoric strain energy, but an extra variable 
is added to enforce the incompressibility condition Jel  , see Incompressible 
Hyperelastic Materials.

eli eli Jel
1 3=

Wiso
p
p
------ el1

p el2
p el3

p 3–+ + 

p 1=

N

=

el1el2el3 el1el2el3 Jel 1= =

 1
2
--- pp

p 1=

N

=

Sometimes a slightly different definition of the strain energy function for 
the Ogden material is used. If you have given material data for an Ogden 
material, be careful that the definitions used are the same. If not, you will 
need to rescale the p coefficients.
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S T O R A K E R S

The Storakers material (Ref. 17 and Ref. 24) is used to model highly compressible 
foams. The strain energy density is written in a similar fashion as in Ogden material:

The initial shear and bulk moduli are computed from the parameters k (SI unit: Pa) 
and k (dimensionless) as

 and 

for constantparameters k  , the initial bulk modulus becomes     , so a 
stable material requires    and   . In this case, the Poisson's ratio is given by 
    , which means that for a Poisson’s ratio larger than   is 
needed.

V A R G A

The Varga material model (Ref. 1) describes the strain energy in terms of the elastic 
stretches as

The Compressible, uncoupled and Nearly incompressible versions use the isochoric elastic 
stretches defined as

to define the isochoric strain energy density:

See also the description of the Ogden material model in the Solid 
Mechanics interface documentation.

Ws
2k

k
2

--------- el1
k el2

k el3
k 3–

1
k
----- Jel

k– k 1– + + + 
 

k 1=

N

=

 k

k 1=

N

=  2k k
1
3
---+ 

 

k 1=

N

=

See also the description of the Storakers material model in the Solid 
Mechanics interface documentation.

Ws c1 el1 el2 el3 3–+ +  c2 el1el2 el2el3 el1el3 3–+ + +=

eli eli Jel
1 3=
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The simplest Varga model is obtained by setting c1   and c2  

The elastic volume ratio Jel and the bulk modulus are used to define the volumetric 
strain energy density Wvol, see Volumetric Response and Nearly Incompressible 
Hyperelastic Materials. 

The Incompressible option uses the same isochoric strain energy, but an extra variable 
is added to enforce the incompressibility condition Jel  , see Incompressible 
Hyperelastic Materials.

A R R U D A – B O Y C E

The other hyperelastic materials described are phenomenological models in the sense 
that they do not relate the different material parameters (normally obtained by 
curve-fitting experimental data) to physical phenomena.

Arruda and Boyce (Ref. 3) derived a material model based on Langevin statistics of 
polymer chains. The strain energy density is defined by

Here, 0 is the initial macroscopic shear modulus, I1Cel is the first invariant of the 
elastic right Cauchy–Green deformation tensor, and the coefficients cp are obtained by 
series expansion of the inverse Langevin function.

Arruda and Boyce truncated the series and used only the first five terms of the series. 
The coefficients cp (dimensionless) are listed in Table 3-2:

Wiso c1 el1 el2 el3 3–+ +  c2 el1el2 el2el3 el1el3 3–+ + +=

Wiso  el1 el2 el3 3–+ + =

See also the description of the Varga material model in the Solid 
Mechanics interface documentation.

TABLE 3-2:  FIRST FIVE COEFFICIENTS OF ARRUDA–BOYCE MATERIAL MODEL

C1 C2 C3 C4 C5

1/2 1/20 N 11/1050 N2 19/7000 N3 519/673750 N4

Ws 0 cp I1
p 3p

– 

p 1=



=
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Other authors (Ref. 1) use only the first three coefficients of the series. The number of 
segments in the polymeric chain is specified by the parameter N so the material model 
is described by only two parameters, 0 (SI unit: Pa) and N. This material model is 
sometimes also called the eight-chain model.

The Compressible, uncoupled and Nearly incompressible versions use the isochoric 
invariant  to define the isochoric strain energy density

The elastic volume ratio Jel and the bulk modulus are used to define the volumetric 
strain energy density Wvol, see Volumetric Response and Nearly Incompressible 
Hyperelastic Materials. 

The Incompressible option uses the same isochoric strain energy, but an extra variable 
is added to enforce the incompressibility condition Jel  , see Incompressible 
Hyperelastic Materials.

G E N T

Many hyperelastic material models are difficult to fit to experimental data. Gent 
material (Ref. 19 and Ref. 20) is a simple phenomenological constitutive model based 
on only two parameters,  and jm, which defines the strain energy density as:

Here,  (SI unit: Pa) is the shear modulus and jm (dimensionless) is a limiting value 
for I1 3, which takes care of the limiting polymeric chain extensibility of the material.

Since the strain energy density does not depend on the second invariant I2, Gent 
model is often classified as a generalized Neo-Hookean material. The strain energy 
density tends to be the one of incompressible Neo-Hookean material as . Gent 
material is the simplest model of the limiting chain extensibility family.

I1 I1 Cel =

Wiso 0 cp I1
p

3p
– 

p 1=

5

=

See also the description of the Arruda–Boyce material model in the Solid 
Mechanics interface documentation.

Ws

2
---– jm 1

I1 3–

jm
--------------–

 
 
 

log=

jm 
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The Compressible, uncoupled and Nearly incompressible formulations use the isochoric 
invariants  to define the isochoric strain energy density

The elastic volume ratio Jel and the bulk modulus are used to define the volumetric 
strain energy density Wvol, see Volumetric Response and Nearly Incompressible 
Hyperelastic Materials. 

The Incompressible option uses the same isochoric strain energy, but an extra variable 
is added to enforce the incompressibility condition Jel  , see Incompressible 
Hyperelastic Materials.

V A N  D E R  W A A L S

Kilian and co-workers formulated a van der Waals equation of state for real networks 
of polymer chains from the analogy of an ideal gas (Ref. 21–23). The constitutive 
model is based on four parameters which define the averaged invariant

the variable 

and the function

in order to define the isochoric strain energy density

I1 Cel 

Wiso

2
---– jm 1

I1 3–

jm
--------------–

 
 
 

log=

See also the description of the Gent material model in the Solid 
Mechanics interface documentation.

I I1 1 – I2+=

 I 3–

m
2 3–

----------------=

f   1 –  –log–=

Wiso  m
2 3– f   2

3
------- I 3–

2
----------- 
 

3
2
---

–
 
 
 
 

=
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Here,  (SI unit: Pa) is the shear modulus. The maximum chain stretch m 
(dimensionless) represents a limiting value for the averaged invariant , which 
accounts for the maximum chain extensibility in networks with finite chain lengths. 
The dimensionless parameter  phenomenologically averages the two isochoric 
invariants  and , and the parameter  (dimensionless) represents the global 
interaction between polymer chains.

The Compressible, uncoupled and Nearly incompressible formulations use the elastic 
volume ratio Jel and the bulk modulus to define the volumetric strain energy density 
Wvol, see Volumetric Response and Nearly Incompressible Hyperelastic Materials. 

The Incompressible option uses the same isochoric strain energy, but an extra variable 
is added to enforce the incompressibility condition Jel  , see Incompressible 
Hyperelastic Materials

B L A T Z – K O

The Blatz–Ko material model was developed for foamed elastomers and polyurethane 
rubbers, and it is used to model compressible isotropic hyperelastic materials (Ref. 1, 
25).

The elastic strain energy density is written with three parameters and the three 
invariants of the elastic right Cauchy–Green deformation tensor, I1Cel, I2Cel, and 
I3Cel  Jel

2

Here,  is an interpolation parameter bounded to 0    1, the parameter  (SI unit: 
Pa) is the shear modulus, and  is an expression of Poisson’s ratio,   /1-2, or Lamé 
parameters,   /2.

When the parameter , or equivalently, the Poisson’s ratio tends to 0.5; the strain 
energy simplifies to a similar form of the Mooney–Rivlin, Two Parameters model

I

I1 I2

See also the description of the van der Waals material model in the Solid 
Mechanics interface documentation.

Ws 
2
--- I1 3–  1


--- I3

– 1– + 
  1 – 

2
---

I2
I3
----- 3– 
  1


--- I3

 1– + 
 +=

 

Ws 
2
--- I1 3–  1 – 

2
---

I2
I3
----- 3– 
 +=
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In the special case of   1, the strain energy reduces to a compressible Neo-Hookean 
model (use   /  /1-2), 

This expression is also equivalent to the compressible Storakers model consisting in 
one term, and the material parameter defined as 1  

G A O

Gao proposed (Ref. 26) a simple compressible hyperelastic material where the strain 
energy density is defined by two parameters, a (SI unit: Pa) and n, and two invariants 
of the elastic right Cauchy–Green deformation tensors Cel:

Here, the invariant I-1Celis calculated as in the Blatz–Ko model:

Gao proposed that the material is unconditionally stable when the parameters are 
bounded to   n   and   a, and related these parameters under small strain to the 
Young’s modulus and Poisson’s ratio by:

 and

Since n   and it is bounded to   n  , this material is stable for an initial 
Poisson’s ratio in the range of     

Ws

2
--- I1 3–  

2
------ J 2– 1– +=

See also the description of the Blatz–Ko material model in the Solid 
Mechanics interface documentation.

Ws a I1
n I 1–

n
+ =

I 1– trace Cel
1– 

I2 Cel 
I3 Cel 
------------------= =

E 3nn28a
2n 1+

--------------------=  n 1–
2n 1+
-----------------=

See also the description of the Gao material model in the Solid Mechanics 
interface documentation.
M A T E R I A L  M O D E L S  |  503



504 |  C H A P T E R
M U R N A G H A N

The Murnaghan strain energy density is used in nonlinear acoustoelasticity. Most 
conveniently, it is expressed in terms of the three invariants of the elastic Green–
Lagrange strain tensor, I1el, I2el, and I3el:

Here, l, m, and n (SI unit: Pa) are the Murnaghan third-order elastic moduli, which 
can be found experimentally for many commonly encountered materials such as steel 
and aluminum, and  and  are the Lamé parameters. Setting the Murnaghan moduli 
to zero, l  m  n  , recovers a compressible St Venant–Kirchhoff material.

D E L F I N O

Delfino proposed a simple hyperelastic material for modeling carotid arteries (Ref. 28). 
The strain energy density is defined by two parameters, a (SI unit: Pa) and b 
(dimensionless), and the first invariant of the isochoric elastic right Cauchy–Green 
deformation tensors :

The parameter a plays the role of shear modulus at the small strain limit.

The Compressible, uncoupled and Nearly incompressible formulations use the elastic 
volume ratio Jel and the bulk modulus to define the volumetric strain energy density 
Wvol, see Volumetric Response and Nearly Incompressible Hyperelastic Materials.

The Incompressible option uses the isochoric strain energy, and an extra variable is 
added to enforce the incompressibility condition Jel  , see Incompressible 
Hyperelastic Materials.

F U N G

Fung (Ref. 28) proposed one of the most popular strain energy functions to describe 
the deformation in soft biological tissues and arteries. For this compressible 
hyperelastic material, the strain energy density reads

Ws
1
2
---  2+ I1

2 2I2–
1
3
--- l 2m+ I1

3 2mI1I2– nI3+ +=

See also the description of the Murnaghan material model in the Solid 
Mechanics interface documentation.

I1 Cel 

Wiso
a
b
--- e

b
2
--- I1 3– 

1–
 
 
 

=
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the parameter c (SI unit: Pa) scales the global stiffness, and the quadratic form Q 
(dimensionless) depends on the Green–Lagrange strain

here, A is a six by six symmetric matrix (dimensionless), and E is a vector which 
contains the elements of the elastic Green–Lagrange strain tensor sorted in either 
standard or Voigt order, see Orthotropic and Anisotropic Materials.

For modeling the deformation in arteries, Fung proposed that the principal directions 
of the strain tensor coincide with the radial, circumferential and axial directions of the 
artery, so the coefficient matrix A is described by nine independent parameters 
(Ref. 28), see Orthotropic Material to see the structure of such matrix.

The Compressible, uncoupled and Nearly incompressible formulations use the 
components of the isochoric elastic Green–Lagrange strain  to define the isochoric 
strain energy density

where

also, these formulations use the elastic volume ratio Jel and the bulk modulus to 
define the volumetric strain energy density Wvol, see Volumetric Response and Nearly 
Incompressible Hyperelastic Materials.

The Incompressible option uses the same isochoric strain energy, but an extra variable 
is added to enforce the incompressibility condition Jel  , see Incompressible 
Hyperelastic Materials.

E X T E N D E D  T U B E

The extended tube model is a micro-mechanics inspired material model that considers 
the network constraints from molecular chains and the limited chain extensibility 
(Ref. 30-32). The isochoric strain energy density of the model consists of two terms

Ws
c
2
--- eQ 1– =

Q ET A E =

Eel

Wiso
c
2
--- eQ 1– =

Q E
T

A E =

Wiso Wc We+=
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The term Wc represents the energy from the cross-linking of the network, and We 
represents the energy from confining tube constrains. These are written as

and

Here, Gc and Ge are material parameters (SI unit: Pa),  is the first 
invariant of the elastic right Cauchy–Green deformation tensor,  are the isochoric 
principal stretches, and and  are dimensionless coefficients.

The parameters Gc and Ge plays the role of shear modulus at the small strain limit, 
G0  Gc  Ge. The parameter  corresponds to the maximum finite chain extensibility, 
as the strain energy Wc is singular for stretch values such as .

The Compressible, uncoupled and Nearly incompressible formulations use the elastic 
volume ratio Jel and the bulk modulus to define the volumetric strain energy density 
Wvol, see Volumetric Response and Nearly Incompressible Hyperelastic Materials.

The Incompressible option uses the isochoric strain energy, and it adds an extra variable 
to enforce the incompressibility condition Jel  , see Incompressible Hyperelastic 
Materials. 

Note that the material might be unstable for certain combinations of material 
parameters, see Ref. 30-31 for a valid range of parameter values.

U S E R  D E F I N E D

It is possible to define the strain energy density for compressible, nearly incompressible 
or incompressible hyperelastic materials when selecting the user defined option.

For Compressible hyperelastic materials, enter an expression for the elastic strain energy 
Ws, which can include any expressions involving the following:

• Components of Cel, the elastic right Cauchy–Green deformation tensor in the local 
material coordinate system.

• Principal invariants of Cel

Wc
Gc
2

------
1 –  I1 3– 

1  I1 3– –
------------------------------------- 1  I1 3– – log+
 
 
 

=

We
2Ge

2
---------- el1

–
el2

–
el3

–
3–+ + =

I1 I1 Cel =

el

I1 3– 1 =

I1 Cel  trace Cel =
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• Components of the elastic Green–Lagrange strain tensor elin the local coordinate 
system.

• Principal elastic stretches el1, el2, and el3, which are the square-root of the 
eigenvalues of the elastic right Cauchy–Green deformation tensor Cel.

• Invariants of the elastic Green–Lagrange strain tensor. Since

the invariants of el are written in terms of the invariants of Cel:

I2 Cel  1
2
--- I1

2 Cel  trace Cel
2 – =

I3 Cel  det Cel =

The internal variables for these invariants are named solid.I1Cel, 
solid.I2Cel, and solid.I3Cel.

The internal variables for the principal elastic stretches are named 
solid.stchelp1, solid.stchelp2, and solid.stchelp3.

el
1
2
--- Cel I– =

I1 el  trace el  1
2
--- I1 Cel  3– = =

I2 el  1
2
--- I1

2 el  trace el
2 –  1

4
--- I2 Cel  2I– 1 Cel  3+ = =

I3 el  det el  1
8
--- I3 Cel  I– 2 Cel  I+

1
Cel  1– = =

The internal variables for these invariants are named solid.I1eel, 
solid.I2eel, and solid.I3eel.
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When the Nearly incompressible option is selected, the elastic strain energy is decoupled 
into the volumetric and isochoric components:

• The volumetric strain energy Wvol, which can be an expression involving the elastic 
volume ratio 

• The isochoric strain energy, Wiso, as an expression involving the invariants of the 
isochoric elastic right Cauchy–Green tensor  and ; the invariants of 
the isochoric elastic Green–Lagrange strain , , and ; or the 
principal isochoric elastic stretches defined as .

When the Nearly incompressible option is selected, an extra variable is added to map the 
pressure, see The Locking Problem and Nearly Incompressible Hyperelastic Materials 
for details.

When the Incompressible option is selected, enter an expression for the isochoric elastic 
strain energy Wiso, as done for the Nearly incompressible option. An extra variable is 
added to enforce the incompressibility condition Jel  , see Incompressible 
Hyperelastic Materials and Mixed Formulation.

Jel det Fel =

I1 Cel  I2 Cel 
I1 el  I2 el  I3 el 
eli eli Jel

1 3=

The internal variables for Jel, , and  are named 
solid.Jel, solid.I1CIel, and solid.I2CIel.

The internal variables for , , and  are named 
solid.I1eIel, solid.I2eIel, and solid.I3eIel.

I1 Cel  I2 Cel 

I1 el  I2 el  I3 el 

The strain energy density must not contain any other expressions 
involving displacement or their derivatives. Examples of such expressions 
are components of the displacement gradient u and deformation 
gradient F  u  I tensors, their transpose, inversions, as well as the 
global material system components of C and . If they occur, such 
variables are treated as constants during symbolic differentiations.
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M U L L I N S  E F F E C T

Some nonlinear effects observed in rubbers, such as hysteresis in stress-stretch curves, 
residual strains, and stress softening effects, are not accounted in the formulation of 
common hyperelastic materials. The Mullins effect (Ref. 37-39) describes the 
stress-softening phenomenon observed under cyclic loading in elastomers and 
biological materials.

Ogden and Roxburgh (Ref. 40) used an additional state variable to model the Mullins 
effect. The state variable is introduced to memorize the microstructural damage on 
reinforced rubber after repeated loading-unloading cycles. The modified isochoric 
strain energy density reads

here, Wiso is the isochoric strain energy of the undamaged material, and is 
referred as the damage function. The choice of the damage function is 
completely arbitrary as long as some constrains are fulfilled. The authors (Ref. 40) 
proposed a state function based on the error function, which defined how the state 
variable  varies as a function of the isochoric strain energy

here, erfis the error function, r and m are positive parameters, and Wmax is the 
maximum attained value of the isochoric strain energy density on the loading path.

The associated microstructural damage is computed from

Select the Use elastic deformation gradient check box to define the elastic 
strain energy density Ws, the isochoric strain energy density, Wiso, and the 
volumetric strain energy, Wvol, in terms of the components the elastic 
deformation gradient Fel. 

Then, the second Piola-Kirchhoff stress is defined from 

.

See also the description of the User Defined material model in the Solid 
Mechanics interface documentation.

S F 1– Ws
F

----------=

Wiso Wiso   +=

  
  

 1 1
r
---erf

Wmax Wiso–

m
-------------------------------- 
 –=
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and the isochoric strain energy modified by the Mullins effect reads

Over the years others authors (Ref. 41-42) have proposed different flavors of Ogden–
Roxburgh model, the version implemented in COMSOL Multiphysics uses by default 
the hyperbolic tangent function, and a parameter to define the maximum allowed 
damage d=1/r. The microstructural damage is then computed from

Here, d, , and Wsat are positive parameters. It is also possible to use the error 
function as in the original formulation (Ref. 40), in which case the microstructural 
damage is computed from

Miehe (Ref. 43) proposed an exponential expression for the damage variable in order 
to model the Mullins effect

where Wsat and d are positive parameters.

Distributed Fiber Models

Composite materials are made out of an isotropic matrix reinforced with fibers. In 
these reinforced materials, the fibers act as the main load carrier, while the surrounding 
matrix supports the fibers and transfer loads to them. These materials are either 
manufactured, or have a natural origin such as biological tissue, leafs or wood.

In COMSOL Multiphysics it is possible to add fibers to Linear Elastic or Nonlinear 
Elastic materials, as well as to any of the built-in Hyperelastic material models. The 
fibers are arranged in a specified orientation inside the matrix material. By subsequently 
adding Fiber nodes as needed it is possible to include fibers in many directions, thus 
recreating complex anisotropic structures.

d 1 –
1
r
---erf

Wmax Wiso–

m
-------------------------------- 
 = =

Wiso 1 d– Wiso=

d dtanh
Wmax Wiso–

Wsat Wmax+
------------------------------------- 
 =

d derf 
Wmax Wiso–

Wsat Wmax+
------------------------------------- 
 =

d d 1 e
Wmax– Wsat

– =
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F I B E R S  F O R  L I N E A R  A N D  N O N L I N E A R  E L A S T I C  M A T E R I A L S

For Linear Elastic or Nonlinear Elastic materials, each Fiber node adds a contribution 
to the stress tensor of the type

Here, Efib E is the difference between the stiffness of the isotropic matrix E and the 
fibers’ stiffness Efib, vfib is the fiber volume fraction, a is the direction vector for the 
fiber orientation in the undeformed geometry, and  is the elastic strain 
in the fiber direction a.

For a Linear Elastic Material, Hooke’s law (Equation 3-18) is augmented as

For Nonlinear Elastic Materials, the same contribution to the stress tensor is added, 
although the stress-strain relation in the isotropic matrix could be nonlinear.

F I B E R S  F O R  H Y P E R E L A S T I C  M A T E R I A L S

For Hyperelastic Materials, the fibers are represented by additional contributions to 
the strain energy density (Ref. 28 and Ref. 29).

The Holzapfel–Gasser–Ogden constitutive model captures the anisotropic mechanical 
response observed in arteries. The model combines a nearly incompressible material 
for the isotropic matrix, with additional terms for two fiber families

Here, Wiso is the strain energy density of the isotropic hyperelastic material. In Ref. 28 
Wiso is represented by a nearly incompressible Neo-Hookean material; in COMSOL 
Multiphysics it is possible to select any of the built-in hyperelastic material models.

The second and third terms, Wfib,1 and Wfib,2 are anisotropic additions that describe 
the mechanical contribution of collagen fiber networks. These terms contribute with a 
strain energy density of the type

 where

where the parameter k1 represents the fiber stiffness (SI unit: Pa), k2 is a dimensionless 
tuning parameter, and k3 is the fiber dispersion (dimensionless). A value of k3  0 
recovers the formulation in Ref. 28, where all the fibers are perfectly oriented in the a 

fib vfib Efib E– aa a=

a a el a =

 ex Cel fib+ +=

Wani Wiso Wfib,1 Wfib,2+ +=

Wfib
k1

2k2
--------- eQ 1– = Q k2 k3 I1 3–  1 3k3–  Ia 1– + 

2
=
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direction. Setting k3  1/3 means that the fibers are completely dispersed, thus 
recovering a similar formulation as given in the Delfino material model.

The formulation in Ref. 28 and Ref. 29 is based on the Isochoric Elastic Deformation, 
where the invariants are defined as

The invariant  represents the squared value of the isochoric elastic stretch in 
the fiber direction a. A common modeling assumption for biological tissues is that 
fibers cannot sustain compression, so the fiber stiffness is added only for tensile 
stretches such as .

In general, the anisotropic strain energy density for a hyperelastic material containing 
N fiber families reads

The second Piola–Kirchhoff stress tensor is then computed from

where the stress contribution from each fiber family is given by

The anisotropic strain energy density for the fiber family Wfib can also be specified as 
a user-defined expression of the strain invariants , , , , , and , where

,

, , and

I1 trace Cel =

Ia a Cel a =

Ia a
2

=

a 1

Wani Wiso Wfib m

m 1=

N

+=

S Siso Sfib m

m 1=

N

+=

Sfib m 2
Wfib m

C
--------------------=

Ia Ib Ic Iab Iac Ibc

Ib b Cel b = Ic c Cel c =

Iab a Cel b = Iac a Cel c = Ibc b Cel c =
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and b and c are orthogonal directions to the main fiber direction a.

T H E R M A L  E X P A N S I O N  I N  F I B E R S

Not only the stiffness in the fibers might differ by orders of magnitude to the matrix 
stiffness, but also the thermal properties, so it is possible to model thermal expansion 
in fibers independently from the thermal expansion in the surrounding material. The 
two basic assumptions are that the volume occupied by the fibers is small as compared 
to the base material, and that thermal expansion (or contraction) occurs in the fiber 
direction only (there is zero transverse thermal expansion in the fibers).

For Linear Elastic and Nonlinear Elastic materials, the fibers add a contribution to the 
stress tensor of the type

where Efib E is the difference between the stiffness of the isotropic matrix E and the 
fibers’ stiffness Efib, vfib is the fiber volume fraction, a is the direction vector for the 
fiber orientation in the undeformed geometry, and  is the elastic strain 
in the fiber direction a. When considering the thermal expansion, the stress reads

where th,fib is the thermal strain in the fibers.

For a Linear Elastic Material, Hooke’s law (Equation 3-18) is then augmented as

For Nonlinear Elastic Materials, the same contribution to the stress tensor is added, 
although the stress-strain relation in the isotropic matrix could be nonlinear.

The thermal strain in the fibers, th,fib, can be specified by different means. When the 
secant coefficient of thermal expansion is used, it reads

The internal variables , , , , , and  are named 
item.IaCIe, item.IbCIe, item.IcCIe, item.IabCIe, item.IacCIe, 
and item.IbcCIe. Here, item is the name of the Fiber node, for 
instance solid.hmm1.fib1.

Ia Ib Ic Iab Iac Ibc

fib vfib Efib E– aa a=

a a el a =

fib vfib Efib E–  a th,fib– a a=

 ex Cel fib+ +=

th,fib s Tfib Tref– =
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Here, the secant coefficient of thermal expansion s can be temperature-dependent. 
The reference temperature Tref is the temperature at which there are no thermal strains 
in the fibers, and Tfib is the current fiber temperature.

When the tangent coefficient of thermal expansion is used, t, the thermal strain is 
given by

It is also possible to explicitly enter the thermal strain, dL, as a function of the fiber’s 
temperature

The coefficient of the thermal expansion or the thermal strain are considered in the 
fiber direction a, since thermal expansion is assumed to occur in the fiber direction 
only.

In all cases, the contribution to the thermal strain tensor is defined from the fiber 
volume fraction vfib, the thermal strain in the fibers th,fib, and the fiber direction a

Elastoplastic Materials

In this section:

• Plasticity

• Defining the Yield Criterion

• Isotropic Plasticity

th,fib t   d
Tref

Tfib

 
 
 

exp 1–=

th,fib dL Tfib =

th vfibth,fiba a=

See also the description of the Fiber node in the Solid Mechanics interface 
documentation.

• An example of an isotropic hyperelastic material reinforced with fibers 
is shown in Arterial Wall Mechanics: Application Library path 
Nonlinear_Structural_Materials_Module/Hyperelasticity/

arterial_wall_mechanics
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• Yield Function

• Orthotropic Plasticity

• Soil Plasticity

• Porous Plasticity

• Isotropic Hardening

• Kinematic Hardening

• Introduction to Small and Large Plastic Strains

• Plastic Flow for Small Strains

• Plastic Flow for Large Strains

• Numerical Solution of the Elastoplastic Conditions

• Energy Dissipation

• Nonlocal Plasticity

P L A S T I C I T Y

Many materials have a distinct elastic regime, in which the deformations are 
recoverable and path independent. When the stresses exceed a certain level, the yield 
limit, permanent plastic strains will appear.

The elastic part of the constitutive relation can be described by either a Linear Elastic 
Material, Nonlinear Elastic Materials, or by Hyperelastic Materials.

Elastoplastic material models are common, both when modeling metals and soils.

In geotechnical applications it is common to define compressive stresses as having 
positive signs. In COMSOL Multiphysics, the convention is however to always use 
positive signs for tensile stresses.

D E F I N I N G  T H E  Y I E L D  C R I T E R I O N

A yield criterion serves to define the stress condition under which plastic deformation 
occurs. Stress paths inside the yield surface result in purely recoverable deformations 
(elastic behavior), while paths intersecting the yield surface produces both recoverable 
and permanent deformations (plastic strains).

In general, the yield surface can be described as

See also Sign Conventions.
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where fc can be a constant value (for perfectly plastic materials), or a variable for 
strain-hardening materials. The yield surface F is a surface in the space of principal 
stresses, in which the elastic regime (F  0) is enclosed.

For brittle materials, the yield surface represents a failure surface, which is a stress 
level at which the material collapses instead of deforms plastically.

I S O T R O P I C  P L A S T I C I T Y

For isotropic plasticity, the plastic potential Qp is written in terms of at most three 
invariants of Cauchy’s stress tensor

where the invariants of the stress tensor are

so that the increment of the plastic strain tensor  can be decomposed into

The increment in the plastic strain tensor  includes in a general case both deviatoric 
and volumetric parts. The tensor  is symmetric given the following properties

F f   fc– 0= =

Some authors define the yield criterion as f () =  fc, while the yield 
surface is an isosurface in the space of principal stresses F = 0, which can 
be chosen for numerical purposes as .F f  2= fc

2
– 0=

Qp   Qp I1   J2   J3    =

I1   trace  =

J2   1
2
---dev  :dev  =

J3   det dev    =

ꞏp

ꞏp 
Qp


---------- 
Qp
I1
----------

I1

--------

Qp
J2
----------

J2

---------

Qp
J3
----------

J3

---------+ + 

 = =

ꞏp

ꞏp
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 (3-48)

The trace of the incremental plastic strain tensor, which is called the volumetric plastic 
strain rate , is only a result of dependence of the plastic potential on the first 
invariant I1(), sinceJ2/ and J3/ are deviatoric tensors

A common measure of inelastic deformation is the equivalent plastic strain rate, 
which is defined from the plastic shear components

 (3-49)

For metal plasticity under the von Mises or Tresca criteria, the volumetric plastic strain 
rate  is always zero because the plastic potential is independent of the invariant 
I1. This is known as J2 plasticity.

Incompressible plastic deformation is experimentally observed in metals, but this is not 
the case for most materials used in geotechnical applications. For instance, a nonzero 
volumetric plastic strain is explicitly used in Porous Plasticity and Elastoplastic Soil 
Models.

Y I E L D  F U N C T I O N

When an associated flow rule is applied, the yield function must be smooth, that is, 
continuously differentiable with respect to the stress. In COMSOL Multiphysics, the 
following form is used:

I1

-------- I=

J2

--------- dev  =

J3

--------- dev  dev   2

3
---J2I–=

ꞏpvol

ꞏpvol trace ꞏp   trace
Qp


---------- 
  3

Qp
I1
----------= = =

ꞏpe
2
3
---dev ꞏp :dev ꞏp =

ꞏpvol

• The equivalent plastic strain and the volumetric plastic strain are 
available in the variables solid.epe and solid.epvol.

• In a time-dependent analysis, rates of plastic strains can be computed 
with expressions like d(solid.epe,TIME).
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where ys is the yield stress. The scalar function  is called equivalent stress. The 
default form of the equivalent stress is the von Mises stress, which is often used in metal 
plasticity:

Other expressions can be defined, such as Tresca stress, Hill equivalent stress, or a user 
defined expression.

The Tresca equivalent stress is calculated from the difference between the largest and 
the smallest principal stress

A user defined yield function can by expressed in terms of invariants of the stress tensor 
such as the pressure (volumetric stress), p  I1, the equivalent von Mises stress 
mises, or other invariants, principal stresses, or stress tensor components.

The von Mises Criterion
The von Mises criterion suggests that the yielding of the material begins when the 
second deviatoric stress invariant J2 reaches a critical value. This criterion can be 
written in terms of the elements of Cauchy’s stress tensor (Ref. 1)

The von Mises criterion is implemented with the yield surface

where ys is the yield stress level (yield stress in uniaxial tension) and  
is the equivalent von Mises stress.

The Tresca Criterion
The Tresca yield surface is normally expressed in terms of the principal stress 
components

Fy    ys–=

  

mises 3J2   3
2
---dev  :dev  = =

tresca p1 p2–=

J2
1
6
--- 11 22– 2 22 33– 2 33 11– 2+ +  12

2 23
2 13

2
+ + + k2= =

F 3J2 ys– 0= =

3J2 mises=

The equivalent von Mises stress  is available in the variable 
solid.mises, where solid is the name of the physics interface node.

mises
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The Tresca criterion is a hexagonal prism with its axis equally inclined to the three 
principal stress axes. When the principal stresses are sorted as 1  2  3, this 
criterion is written as

By using the representation of principal stresses in term of the invariants J2 and the 
Lode angle 0    3, Tresca criterion can alternatively be written as

or equivalently

The maximum shear stress is reached at the meridians ( = 0 or  = ). The Tresca 
criterion can be circumscribed by setting the Lode angle  = 0, or equivalently, by a 
von Mises criterion

The minimum shear is reached at = , so the Tresca criterion can be inscribed by 
setting a von Mises criterion

When dealing with soils, the parameter k is also called undrained shear strength.

The Tresca criterion can be used with either an associated or nonassociated flow rule, 
in which case von Mises stress is applied in order to get better numerical performance.

1
2
---max 1 2– 1 3– 2 3–   k=

1
2
--- 1 3–  k=

1
2
---

4J2
3

----------    2
3

------+ 
 cos–cos 

  J2  
3
---+ 

 sin k= =

J2  
6
---– 

 cos k=

mises 3J2 2k= =

J2 k=

The Tresca equivalent stress, tresca = 1  3 is implemented in the 
variable solid.tresca, where solid is the name of the physics interface 
node.
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Figure 3-14: The upper and lower limits of the Tresca criterion.

Figure 3-15: Classical yield criteria for metals. The Tresca criterion (left) and the 
von Mises criterion (right).

The von Mises and Tresca criteria are independent of the first stress invariant I1 and 
are mainly used for the analysis of plastic deformation in metals and ductile materials, 
though some researchers also use these criteria for describing fully saturated cohesive 
soils under undrained conditions. The von Mises and Tresca criteria belong to what 
researchers call volume preserving or J2 plasticity, as the plastic flow is independent 
on the mean pressure.

Tresca criterion

upper limit

lower limit




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O R T H O T R O P I C  P L A S T I C I T Y

Hill (Ref. 6, Ref. 7) proposed a quadratic yield function (and associated plastic 
potential) in a local coordinate system given by the principal axes of orthotropy ai

 (3-50)

The six parameters F, G, H, L, M, and N are related to the state of anisotropy. As with 
isotropic plasticity, the elastic region Qp  0 is bounded by the yield surface Qp  0.

Hill demonstrated that this type of anisotropic plasticity is volume preserving, this is, 
given the associated flow rule

the trace of the plastic strain rate tensor is zero, which follows from the expressions for 
the diagonal elements of

so the plastic volumetric strain rate is zero

Expressions for the Coefficients F, G, H, L, M, N
Hill noticed that the parameters L, M, and N are related to the yield stress in shear with 
respect to the axes of orthotropy ai, thus they are positive parameters

Qp F 22 33– 2 G 33 11– 2 H 11 22– 2+ + +=

2L23
2 2M31

2 2N12
2 1–+ +

ꞏp 
Qp


----------=

ꞏp

ꞏp11 
Qp
11
------------ 2 G– 33 11–  H 11 22– + = =

ꞏp22 
Qp
22
------------ 2 F 22 33–  H– 11 22–  = =

ꞏp33 
Qp
33
------------ 2 F– 22 33–  G 33 11– + = =

ꞏpvol trace ꞏp  ꞏp11 ꞏp22 ꞏp33+ + 0= = =

Hill plasticity is an extension of J2 (von Mises) plasticity, in the sense that 
it is volume preserving. Due to this assumption, six parameters are needed 
to define orthotropic plasticity, as opposed to orthotropic elasticity, where 
nine elastic coefficients are needed.
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, ,

Here, ysij represents the yield stress in shear on the plane ij.

The material parameters ys1, ys2, and ys3 represent the tensile yield stress in the 
direction, a1, a2, and a3, and they are related to Hill’s parameters F, G, and H as

or equivalently

Note that at most one of the three coefficients F, G, and H can be negative.

In order to define a yield function and plastic potential suitable for isotropic or 
kinematic hardening, the average initial yield stress ys0 is calculated from the Hill’s 
parameters F, G, and H (this is equivalent to the initial yield stress ys0 in von Mises 
plasticity)

 (3-51)

L 1

2ys23
2

----------------= M 1

2ys31
2

----------------= N 1

2ys12
2

----------------=

1

ys1
2

---------- G H+=

1

ys2
2

---------- H F+=

1

ys3
2

---------- F G+=

2F 1

ys2
2

---------- 1

ys3
2

---------- 1

ys1
2

----------–+=

2G 1

ys3
2

---------- 1

ys1
2

---------- 1

ys2
2

----------–+=

2H 1

ys1
2

---------- 1

ys2
2

---------- 1

ys3
2

----------–+=

In case of hardening, these coefficients (either Hill’s coefficients or the 
shear and tensile yield stresses) are renamed with the “initial” prefix.

1

ys0
2

-----------
2
3
--- F G H+ +  1

3
--- 1

ys1
2

---------- 1

ys2
2

---------- 1

ys3
2

----------+ +
 
 
 

= =
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Defining Hill’s equivalent stress as (Ref. 7)

makes it possible to write the plastic potential in a similar way to von Mises plasticity.

Isotropic hardening is then applied on the average yield stress variable ys0, by using 
the plastic potential

Here, the average yield stress

now depends on the initial yield stress ys0, the hardening function h, and the 
equivalent plastic strain pe.

S O I L  P L A S T I C I T Y

The Mohr–Coulomb Criterion
The Mohr–Coulomb criterion is the most popular criterion in soil mechanics. It was 
developed by Coulomb before the Tresca and von Mises criteria for metals, and it was 
the first criterion to account for the hydrostatic pressure. The criterion states that 
failure occurs when the shear stress and the normal stress acting on any element in the 
material satisfy the equation

here, is the shear stress, c the cohesion, and  denotes the angle of internal friction.

With the help of Mohr’s circle, this criterion can be written as

The Mohr–Coulomb criterion defines an irregular hexagonal pyramid in the space of 
principal stresses, which generates singularities in the derivatives of the yield function.

hill
2 ys0

2 F 22 33– 2 G 33 11– 2 H 11 22– 2+ +=

2+ L23
2 M31

2 N12
2

+ +  

Qp hill ys–=

ys ys0 h pe +=

  tan c–+ 0=

1
2
--- 1 3–  1

2
--- 1 3+   c– cossin+ 0=
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Figure 3-16: The Mohr–Coulomb criterion. The cone opens toward the compressive axis.

The Mohr–Coulomb criterion can be written in terms of the invariants I1 and J2 and 
the Lode angle 0    3 (Ref. 1, Ref. 11) when the principal stresses are sorted as 
1  2  3. The yield function then reads

The tensile meridian is defined when  = and the compressive meridian when  = .

Rearranging terms, the Mohr–Coulomb criterion reads

where

, , 

and

In the special case of frictionless material, ( = 0,  = 0, k = c), the Mohr–Coulomb 
criterion reduces to a Tresca’s maximum shear stress criterion, 1  3 = 2k or 
equivalently

Te
ns

ile
 m

er
id

ian

Compre
ssiv

e m
eri

dia
n

Fy
1
3
---I1 

J2
3

------ 1 sin+   1 sin–   2
3

------+ 
 cos–cos 

  c cos–+sin 0= =

Fy J2m   I1 k–+ 0= =

m   1
3
--- 1 sin+   1 sin–   2

3
------+ 

 cos–cos 
 =   3sin=

k c cos=
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The Drucker–Prager Criterion
The Mohr–Coulomb criterion causes numerical difficulties when treating the plastic 
flow at the corners of the yield surface. The Drucker–Prager model (Ref. 1, Ref. 2) 
neglects the influence of the invariant J3 (introduced by the Lode angle) on the 
cross-sectional shape of the yield surface. It can be considered as the first attempt to 
approximate the Mohr–Coulomb criterion by a smooth function based on the 
invariants I1 and J2 together with two material constants (which can be related to 
Mohr–Coulomb’s coefficients)

The criterion is sometimes also called the extended von Mises criterion, since it is 
equivalent to the von Mises criterion for metals when setting  = 

Figure 3-17: The Drucker–Prager criterion. The cone opens toward the compressive axis.

The coefficients in the Drucker–Prager model are related to the cohesion c and angle 
of internal friction  in the Mohr–Coulomb criterion by the relation

Fy J2  
6
---– 

 cos k– 0= =

See also the description of the Mohr–Coulomb material model in the 
Solid Mechanics interface documentation.

Fy J2 I1 k–+ 0= =




k
--- tan

3c
-------------=
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The coefficients in the Drucker–Prager model can be matched to the coefficients in the 
Mohr–Coulomb criterion by (Ref. 1)

 and

The symbol ± is related to either matching the tensile meridian (positive sign) or the 
compressive meridian (negative sign) of Mohr–Coulomb’s pyramid.

The matching at the tensile meridian ( = ) comes from setting

in the Mohr–Coulomb criterion, and the matching at the compressive meridian ( = 
3) from setting

Figure 3-18: The Drucker–Prager criterion showing the tensile and compressive meridians 
(inner and outer circles), and the Lode angle compared to the cross section of the Mohr–
Coulomb criterion in the -plane.

In the special case of frictionless material, ( = 0,  = 0, ), the Drucker–
Prager criterion reduces to the von Mises criterion

 2
3

------- sin
3 sin 

--------------------------= k 2 3c cos
3 sin 

---------------------------=

m 0  3 sin+  2 3 =

m  3  3 sin–  2 3 =

compressive meridian tensile meridian



k 2c 3=

J2 2c 3=
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When the Drucker–Prager criterion is matched to the Mohr–Coulomb criterion in 2D 
plane-strain applications, the parameters are

 and

when matching the criterion in 2D generalized plane-strain, the matching parameters 
are:

 and

and when matching the criterion in 2D plane-stress, the matching parameters are:

 and

Dilatation Angle
The Mohr–Coulomb criterion is sometimes used with a nonassociated plastic 
potential. This plastic potential could be either a Drucker–Prager criterion, or the same 
Mohr–Coulomb yield function but with a different slope with respect to the 
hydrostatic axis, in which case the angle of internal friction is replaced by the dilatation 
angle, which is normally smaller (Ref. 7).

Also, when using a Drucker–Prager criterion matched to the Mohr–Coulomb 
criterion, the plastic potential could also be nonassociated, in which case the difference 
between the dilatation angle and the angle of internal friction results in a yield surface 
and plastic potential portrayed by two cones with different angles with respect to the 
hydrostatic angle.

Elliptic Cap
The Mohr–Coulomb and Drucker–Prager criteria portray a conic yield surface which 
opens in the hydrostatic axis direction. Normally, these soil models are not accurate 
above a given limit pressure because real-life materials cannot bear infinite loads and 
still behave elastically. A simple way to overcome this problem is to add an elliptical end 
cap on the compressive side to these models.

The elliptic cap is an elliptic yield surface of semi-axes as shown in Figure 3-19. The 
initial pressure pa (SI units: Pa) denotes the pressure at which the elastic range 
circumscribed by either a Mohr–Coulomb pyramid or a Drucker–Prager cone is not 

 = tan

9 12 2tan+
------------------------------------ k = 3c

9 12 2tan+
------------------------------------

 = 2 sin
3 3 sin– 

---------------------------------- k = 2 3
3 sin–
--------------------- c cos

 = 1
3

------- sin k = 2
3

------- c cos
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valid any longer, so a cap surface is added. The limit pressure pb gives the curvature of 
the ellipse, and denotes the maximum admissible hydrostatic pressure for which the 
material starts deforming plastically. Pressures higher than pb are not allowed.

Figure 3-19: Elliptic cap model in Haigh–Westergaard coordinate system.

The sign convention for the pressure is taken from the Structural Mechanics Module: 
positive sign under compression, so pa and pb are positive parameters. Figure 3-19 
shows the cap in terms of the variables p and q

 and

In terms of these variables, the equation for the elliptic cap reads

the point (pa, qa) in the Haigh–Westergaard coordinate system is where the elliptic cap 
intersects either the Mohr–Coulomb or the Drucker–Prager cone.

When the Mohr–Coulomb or the Drucker–Prager equations are represented in 
 I1 plane, the equation for the elliptic cap reads

where , , and Ja is the ellipse semiaxis in the  I1 plane, 
given by the intersection with the Drucker–Prager criterion

ppbpa

q

q 3J2  = p I– 1   3=

p pa–

pb pa–
------------------ 
 

2 q
qa
----- 
  2

+ 1=

J2

I1 Ia–

Ib Ia–
---------------- 
 

2 J2
Ja

----------
 
 
 

2

+ 1=

Ia 3pa–= Ib 3pb–= J2
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This makes it easier to compute the ellipse’s semiaxis Ja in terms of Drucker–Prager 
parameters and k.

Elliptic Cap With Hardening
It is also possible to add isotropic hardening to the cap surface. In this case, the center 
of the ellipse is shifted as the volumetric plastic strain increases, also, the size of the 
ellipse’s semi-axes grow as hardening evolves. The intersection of the elliptic cap with 
the pressure axis is given by

here, pb0 is the initial value for the limit pressure pb, Kiso is the isotropic hardening 
modulus, pvol the volumetric plastic strain, and pvol,max the maximum volumetric 
plastic strain. The volumetric plastic strain pvol is negative in compression, so the limit 
pressure pb is increased from pb0 as hardening evolves.

Instead of providing the value for the initial pressure pa (SI units: Pa), the ellipse’s 
aspect ratio R is entered. The ellipse aspect ratio R is given by

 where

The ellipse semiaxis in the  I1 plane is given by the aspect ratio R

In order to have a smooth transition, the cap intersects the failure surface at the point 
of tangency (Ref. 3). The intersection coordinates (Ic, Jc) are given by

 and

Ja k Ia–=

pb pb0 Kiso 1
pvol

pvol,max
--------------------+ 

 log–=

R
Ia Ib–

Ja
---------------- 3 3

pb pa–

qa
------------------= = qa 3Ja=

J2

Ja
k Ia–

R 1 2R2
++

-------------------------------------------=

Ic
Ja

 1 2R2
+

-------------------------------- k

---–= Jc

Ja
2

1 2R2
+

-----------------------=

See also the description of the Drucker–Prager material model in the 
Solid Mechanics interface documentation.
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The Matsuoka–Nakai Criterion
Matsuoka and Nakai (Ref. 5) discovered that the sliding of soil particles occurs in the 
plane in which the ratio of shear stress to normal stress has its maximum value, which 
they called the mobilized plane. They defined the yield surface as

where the parameter  = /nSTP equals the maximum ratio between shear stress 
and normal stress in the spatially mobilized plane (STP-plane), and the invariants are 
applied over the effective stress tensor (this is the stress tensor minus the fluid pore 
pressure).

The Matsuoka–Nakai criterion circumscribes the Mohr–Coulomb criterion in dry 
soils, when

and  denotes the angle of internal friction in the Mohr–Coulomb criterion.

Figure 3-20: The Matsuoka–Nakai and Mohr–Coulomb criteria in the principal stress 
space.

The Lade–Duncan Criterion
The Lade–Duncan criterion was originally developed to model a large volume of 
laboratory sample test data of cohesionless soils. This criterion is defined as

Fy 9 92+ I3 I1I2– 0= =

 2 2
3

----------- tan=



See also the description of the Matsuoka–Nakai material model in the 
Solid Mechanics interface documentation.
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where I1 and I3 are the first and third stress invariants, respectively, and k is a parameter 
related to the direction of the plastic strain increment in the triaxial plane. The 
parameter k can vary from 27 for hydrostatic stress conditions (1 = 2 = 3), up to a 
critical value kc at failure. In terms of the invariants I1, J2,and J3, this criterion can be 
written as

The Lade–Duncan criterion can be fitted to the compressive meridian of the Mohr–
Coulomb surface by choosing

with  as the angle of internal friction in the Mohr–Coulomb criterion.

Figure 3-21: Comparing the Mohr–Coulomb, Matsuoka–Nakai, and Lade–Duncan 
criteria when matching the tensile meridian.

Fy kI3 I1
3

– 0= =

Fy J3
1
3
---I1J2– 1

27
------ 1

k
---– 

  I1
3

+ 0= =

k 3 sin– 3/ 2 1 sin– cos =



Lade-Duncan Matsuoka-Nakai

Mohr-Coulomb

The Lade–Duncan criterion does not match the Mohr–Coulomb 
criterion (nor the Matsuoka–Nakai criterion) at the tensile meridian.

See also the description of the Lade–Duncan material model in the Solid 
Mechanics interface documentation.
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Tension Cutoff
It appears that the Mohr–Coulomb and Drucker–Prager criteria predict tensile 
strengths larger than the experimental measurements on soil samples. This discordance 
can be mended by the introduction of a tension cutoff criterion.

The Rankine criterion states that a material stops deforming elastically when the largest 
principal stress 1 reaches a maximum tensile stress, also called tension cutoff limit t.

In terms of the principal stress, the Rankine criterion reads

For soils and clays, the maximum tensile stress can be estimated from the material 
parameters, such as the cohesion c and the friction angle .For instance, the tip of the 
cone in Mohr–Coulomb criterion is reached when

therefore, the tension cutoff should be chosen such as

The Mohr–Coulomb criterion together with a tension cutoff is sometimes called the 
modified Mohr–Coulomb criterion (Ref. 21).

There might be numerical problems when implementing Rankine cutoff criterion, as 
the intersection of the cone in Mohr–Coulomb criterion with the tensile plane 
produces sharp edges in the stress space. A better approach is to use the mean stress 
instead of the principal stress, then the mean stress cutoff reads

here, m is the maximum mean stress and p = -I13 is the pressure, which is negative 
in tension.

F 1 t– 0= =



1 c cos
sin

------------=

t c cos
sin

------------

F p m+ 0= =

The Rankine tension cutoff criterion is also available with Concrete and 
Rocks material models.
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The modeling of plastic deformation in soils, porous metals and aggregates has a main 
difference with respect to traditional metal plasticity; the yield function and plastic 
potential are not only defined in terms of the deviatoric stress tensor (or the deviatoric 
stress invariant J2), but also include dependencies on the hydrostatic pressure.

A key concept for porous plasticity models is the evolution of the relative density, 
which is the solid volume fraction in a porous mixture. The relative density is related 
to the porosity (or void volume fraction)  by

When compacting a mixture of metal particles, the porosity tends to zero and the 
relative density tends to one. There are different porous plasticity models to account 
for the mechanism of compaction and void growth.

The Shima–Oyane Criterion
Shima and Oyane (Ref. 8) proposed a yield surface for modeling the compaction of 
porous metallic structures fabricated by sintering. The criterion can be applied for 
powder compaction at both low and high temperatures. The yield function and 
associated plastic potential is defined by an ellipsoid in the stress space. The plastic 
potential Qp is written in terms of both von Mises equivalent stress and mean pressure, 
and it also considers isotropic hardening due to changes in porosity. The plastic 
potential is defined by

here, e is the equivalent stress, ys0 is the initial yield stress, pm is the pressure, and 
rel is the relative density. The material parameters , , and m are obtained from curve 
fitting experimental data. Typical material parameter values for copper aggregates are 
 = ,  = , and m = 

The Gurson Criterion
The Gurson criterion (Ref. 9) consists in a pressure dependent yield function to 
describe the constitutive response of porous metals, this yield function is derived from 
the analytical expression of an isolated void immersed in a continuum medium. The 
void volume fraction, or porosity , is chosen as main variable. The yield function and 
associated plastic potential is not an ellipse in the stress space, as in The Shima–Oyane 
Criterion, but it is defined in terms of the hyperbolic cosine function. The plastic 
potential for the Gurson criterion reads

rel 1 – =

Qp  
e
ys0
---------- 
 

2
 1 rel– 

pm
ys0
---------- 
 

2
rel

m–+=
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here, e is the equivalent stress, ys0 is the initial yield stress, pm is the pressure, and  
is the porosity.

The Gurson–Tvergaard–Needleman Criterion
Tvergaard and Needleman modified The Gurson Criterion for porous plasticity to 
include parameters to better fit experimental data (Ref. 10-11). The resulting criterion 
is called the Gurson–Tvergaard–Needleman (GTN) criterion in the literature. The 
plastic potential for the GTN criterion reads

here, e is the equivalent stress, ys0 is the initial yield stress, pm is the pressure, and 
e is the effective void volume fraction (effective porosity). Typical correction 
parameter values are q1 = , q2 = , and q3 = q1

2.

The effective void value fraction (or effective porosity)e used in the plastic potential 
is a function of the current porosity  and other material parameters. It is often given 
using a bilinear definition

where c is the critical void volume fraction (critical porosity) at which void coalescence 
begins, and f is the void volume fraction at failure. When the porosity increases up to 
the value of failure, the effective porosity takes a maximum value of m and the porous 
material loses the capacity to carry stresses. The maximum porosity value is derived 
from other parameters

Since typical values for the parameters are q3 = q1
2, the maximum porosity value is 

given by m = 1/q1.

Qp  
e
ys0
---------- 
 

2
2

3pm
2ys0
------------- 
 cosh 1 2

+ –+=

Qp  
e
ys0
---------- 
 

2
2q1e

3q2pm
2ys0

-----------------
 
 
 

cosh 1 q3e
2

+ –+=

e

 if  c

c
m c–

f c–
------------------  c– + if c  f 

m if  f







=

m
q1 q1

2 q3–+

q3
-----------------------------------=
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A similar definition for e that gives a smoother response as the material reaches failure 
can was suggested in Ref. 13. It is based on a modification such that the effective void 
volume fraction reaches its maxim value asymptotically

where i = 0.75(f - c) + c, and

The Fleck–Kuhn–McMeeking Criterion
The Fleck–Kuhn–McMeeking criterion (Ref. 14), also called the FKM criterion, was 
developed to model the plastic yielding of metal aggregates of high porosity. The yield 
function and associated plastic potential is derived from expressions for randomly 
distributed particles. The criterion is considered relevant for aggregates with porosity 
between 10% and 35%. The plastic potential for the FKM criterion reads

here, e is the equivalent stress and pm is the pressure. The flow strength of the 
material under hydrostatic loading, pf, is computed from

here, ys0 is the initial yield stress, and  is the void volume fraction (porosity). The 
maximum void volume fraction m typically takes the value of 36%, the limit of dense 
random packing of sintered powder.

The FKM–GTN Criterion
The FKM–GTN criterion is a combination of The Fleck–Kuhn–McMeeking Criterion 
and The Gurson–Tvergaard–Needleman Criterion, intended to cover a wider range of 
porosities (Ref. 15-16). The GTN model is used for low void volume fractions 
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(porosity lower than 10%), and for void volume fractions higher than 25%, the FKM 
criterion is used. In the transition zone, a linear combination of both criteria is used.

Capped Drucker–Prager
See the sections The Drucker–Prager Criterion and Elliptic Cap for details.

Void Growth
For the porous plasticity criteria, the change in relative density is by default computed 
from the change in plastic volumetric strain

Since the relative density is related to the porosity  by rel =   , the change in 
porosity is also controlled by the change in plastic volumetric strain

and the change in volumetric plastic strain  is given by the porous plasticity 
model.

Nucleation and shear growth are other mechanism that can trigger an increase of 
porosity. The increment in porosity based on growth nucleation is given by

 for

here, N is the mean strain for nucleation, fN is the void volume fraction for nucleating 
particles, and sN is the standard deviation. Typical values for these parameters are 
N = , sN = , and fN = . It is assumed that nucleation appears only in tension, 
and that there is no nucleation in compression.

The other possible mechanism to change the porosity is the so-called void growth in 
shear

here, kw is a material parameter,  is the current porosity, nD is a deviatoric tensor 
coaxial to the stress tensor, and  is the plastic strain rate, which depends on the 
porous plasticity model. The weight w is computed from stress invariants as

ꞏ rel – rel
ꞏ
p,vol=

ꞏ 1 – ꞏp,vol=
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sN 2
------------------e

1
2
--- pm N–

sN

------------------- 
 

2

–
ꞏpm= p 0

ꞏ shear kwwnD:ꞏpl=

ꞏpl
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where  is the Lode angle. The weight variable has a value of w = at the compressive 
and tensile meridians ( =  and  = 3), and it attains its maximum w =  for  = 6.

Isotropic Hardening
Porous plasticity implements different kinds of isotropic hardening models to describe 
the hardening of the porous matrix. When applying isotropic hardening, the average 
flow stress

now depends on the initial yield stress ys0, the hardening function h, and the 
equivalent plastic strain in the porous matrix pm.

Different isotropic hardening models are implemented for porous plasticity models, 
which are described for elastoplastic materials:

• Perfect Plasticity (no isotropic hardening)

• Linear Isotropic Hardening

• Ludwik

• Hardening Function

• Exponential Hardening (Elliptic Cap With Hardening)

It is also possible to include a power law relation between the equivalent plastic strain 
in the porous matrix pm, and the flow stress (yield level) fm. For uniaxial loading, the 
strain stress relation is written as (ref. Ref. 11)

 for

where ys0 is the initial yield stress, n is the hardening exponent, and the Young’s 
modulus E is taken from the elastic material properties. By writing the onset of 
plasticity as 0 = ys0/E, and noting that  = 0 + pm for fm > ys0, this reads

 for

which is equivalent to Swift isotropic hardening

w 1 27
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0 pm+ 0
fm
ys0
----------- 
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There are several different kinds of isotropic hardening models for elastoplastic and 
viscoplastic materials:

• Perfect Plasticity (no isotropic hardening)

• Linear Isotropic Hardening

• Ludwik

• Johnson–Cook

• Swift

• Voce

• Hockett–Sherby

• Hardening Function

Perfect Plasticity
For perfect (or ideal) elastoplastic materials, the yield surface is fixed in the space of 
principal stresses, and therefore, plastic deformations occur only when the stress path 
moves on the yield surface (the regime inside the yield surface is elastic, and stress paths 
beyond the yield surface are not allowed).

In this case the plasticity algorithm solves either the associated or nonassociated flow 
rule for the plastic potential Qp

with the yield function

In the settings for plasticity you specify the equivalent stress () for the yield function 
from von Mises stress, Tresca stress, Hill equivalent stress, or a user defined expression; 
and ys0 is the initial yield stress that defines the onset of plastic deformation.

fm pm  ys0 1
pm
0

---------+ 
  1 n/

=

ꞏp 
Qp


----------=

Fy    ys0–=

When Large plastic strain is selected as the plasticity model for the 
Plasticity node, either the associate or nonassociated flow rule is applied 
as written in Equation 3-58.
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Linear Isotropic Hardening
In this case the plasticity algorithm solves either the associated or nonassociated flow 
rule for the plastic potential Qp

with the yield function

where the yield stress yspe now depends on the equivalent plastic strain pe.

The yield stress yspe is then a function of the equivalent plastic strain and the 
initial yield stress ys0

here, the isotropic hardening modulus Eiso is calculated from

For linear isotropic hardening, the isotropic tangent modulus ETiso is defined as 
(stress increment / total strain increment). A value for ETiso is entered in the isotropic 
tangent modulus section for the Plasticity node. The Young’s modulus E is taken from 
the parent material (Linear Elastic, Nonlinear Elastic or Hyperelastic material model). 
For orthotropic and anisotropic elastic materials, E represents an equivalent Young’s 
modulus.

Ludwik
In the Ludwik model for nonlinear isotropic hardening, the yield stress yspe is 
defined by a nonlinear function of the equivalent plastic strain. The Ludwik equation 
(also called the Ludwik–Hollomon equation) for isotropic hardening is given by the 
power law

Here, k is the strength coefficient and n is the hardening exponent. Setting n = 1 
would result in linear isotropic hardening.

ꞏp 
Qp


----------=

Fy    ys pe –=

ys pe  ys0 Eisope+=

1
Eiso
----------- 1

ETiso
-------------- 1

E
----–=

ys pe  ys0 kpe
n
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Johnson–Cook
Similar to the Ludwik hardening model, the yield stress yspe in the Johnson–Cook 
model is defined as a nonlinear function of the equivalent plastic strain pe given by a 
power law. The difference is that effects of the strain rate are included in the model. 
The yield stress and hardening function is given by

 (3-52)

The Johnson–Cook model also adds the possibility to include thermal softening by 
including a function which depends on the normalized homologous temperature Th. 
It is a function of the current temperature T, the melting temperature of the metal Tm, 
and a reference temperature Tref

As a default, this dependency follows a power law, . The softening 
function f(Th) should have the properties f(Th<0) = 0 and f(Th>1) = 1.

The strain rate strength coefficient C and the reference strain rate  in the Johnson–
Cook model are obtained from experimental data. The flow curve properties are 
normally investigated by conducting uniaxial tension tests in a temperature range 
around half the melting temperature Tm, and subjected to different strain rates like 
0.1/s, 1/s, and 10/s.

It should be noted that the intent of the strain rate dependent term in Equation 3-52 
is to capture the hardening at high strain rates. If extrapolated to very low strain rates, 
a low or even negative yield stress will be predicted. Low strain rates can however be 
expected in some regions in a general finite element model. To resolve this, the 
material model as implemented, never evaluates the logarithmic term to a value smaller 
than zero. This means that the reference strain rate  must be considered the 
quasistatic limit. Below this strain rate, the hardening function will be a strain rate 
independent, but temperature dependent, Ludwik law:

ys pe  ys0 kpe
n

+  1 C
ꞏpe

ꞏ0
--------
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 

log+
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 
 

1 f Th – =

Th
T Tref–

Tm Tref–
-------------------------=

f Th  Th
m

=

The natural logarithm is used in Equation 3-52. If material data have been 
determined using a base 10 logarithm, the value of C must be adjusted 
accordingly.

ꞏ0

ꞏ0
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Swift
For nonsaturating materials, the Swift power-law equation relates the initial yield stress 
ys0 and the isotropic hardening h, to the equivalent plastic strain as

here, k is the strength coefficient, n is the hardening exponent, and 0 is a reference 
strain. Noting that at zero plastic strain the initial yield stress is related to the strength 
coefficient and hardening exponent as

the yield stress is written as

 for

Voce
The Voce rule for nonlinear isotropic hardening is intended for materials that exhibit 
a saturating evolution of hardening. The isotropic hardening h is exponentially 
related to the equivalent plastic strain as

The yield stress yspe is then defined as

The value of the saturation exponent parameter determines the saturation rate of 
the hysteresis loop for cyclic loading. The saturation flow stress sat characterizes the 
maximum distance by which the yield surface can expand in the stress space. For values 
pe  , the yield stress saturates to
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Hockett–Sherby
The Hockett–Sherby rule for nonlinear isotropic hardening is also intended for 
materials which yield stress saturates as equivalent plastic strain increases. It is similar 
to Voce rule, but it includes an exponential dependency of the form

where  is the steady-state flow stress, m the saturation coefficient and n the 
saturation exponent. For values mpe

n   the yield stress saturates to

Hardening Function
The yield stress versus the equivalent plastic strain can be specified with the help of a 
hardening curve that could also depend on other variables, such as temperature.

In this case, define the (usually nonlinear) hardening function hpe such that the 
yields stress reads

K I N E M A T I C  H A R D E N I N G

There are few options for computing either linear or nonlinear kinematic hardening 
for plasticity:

• No kinematic hardening (default)

• Linear kinematic hardening

• Armstrong–Frederick

• Chaboche

ys pe  ys0  ys0–  1 e
mpe

n–
– 

 +=

ys 

ys pe  ys0 h pe +=

The internal variable for the equivalent plastic strain is named solid.epe. 
The equivalent plastic strain evaluated at Gauss points is named 
solid.epeGp.

When Large plastic strain is selected as the plasticity model for the 
Plasticity node, either the associate or nonassociated flow rule is applied 
as written in Equation 3-58.
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For any of the kinematic hardening models, the algorithm solves either the associated 
or nonassociated flow rule for the plastic potential Qp

with the yield function defined as

Here, ys is the yield stress (which may include a linear or nonlinear isotropic 
hardening model), and the equivalent stress () is either the von Mises, Tresca, or Hill 
stress; or a user defined expression. The stress tensor used in the yield function is 
shifted by what is usually called the back stress, back.

Linear Kinematic Hardening
The back stress is generally not only a function of the current plastic strain but also of 
its history. In the case of linear kinematic hardening, the back stress back is a linear 
function of the plastic strain tensor p, this is also known as Prager’s hardening rule.

The implementation of linear kinematic hardening assumes a linear evolution of the 
back stress tensor with respect to the plastic strain tensor:

where the kinematic hardening modulus Ck is calculated from

The value for Ek is entered in the kinematic tangent modulus section and the Young’s 
modulus E is taken from the linear or nonlinear elastic material model. For orthotropic 

ꞏp 
Qp


----------=

Fy   back–  ys–=

back
2
3
---Ckp=

1
Ck
------- 1

Ek
------- 1

E
----–=
M A T E R I A L  M O D E L S  |  543



544 |  C H A P T E R
and anisotropic elastic materials, E represents an averaged Young’s modulus. Note that 
some authors define the kinematic hardening modulus as Hk = 2/3Ck.

Armstrong–Frederick Hardening Model
Armstrong and Frederick (Ref. 1) added memory to Prager’s linear kinematic 
hardening model. This nonlinear kinematic hardening model makes it possible to 
capture the Bauschinger effect and nonlinear behavior by nonsymmetric 
tension-compression loading.

The nonlinear evolution of the back stressback is governed by the rate

here, Ck is the kinematic hardening modulus,k is a kinematic hardening parameter, 
andpe the equivalent plastic strain. Setting k = 0 recovers Prager’s rule for linear 
kinematic hardening.

To solve this rate, internal degrees of freedom are added to account for the back stress 
components. In order to have the same units as used for the plastic strain, the 
algorithm solves for the back strain back as proposed in (Ref. 2), which is related to 
the back stress as

The nonlinear evolution for the back strain reads

Chaboche Hardening Model
Chaboche (Ref. 2) proposed a nonlinear kinematic hardening model based on the 
superposition of N back stress tensors

When kinematic hardening is added, both the plastic potential and the 
yield surface are calculated with effective invariants, that is, the invariants 
of the tensor defined by the difference between the stress tensor minus 
the back-stress, eff =  - back. The invariant of effective deviatoric 
tensor is named solid.II2sEff, which is used when a von Mises, Tresca 
or Hill orthotropic plasticity is computed together with kinematic 
hardening.

ꞏ back
2
3
---Ck

ꞏ
p k

ꞏ
peback–=

back
2
3
---Ckback=

ꞏback ꞏp k
ꞏ
peback–=
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each of these back stress tensorsback,i follows a nonlinear Frederick–Armstrong 
kinematic hardening rule

Practitioners would normally select k = 0 for one of the back stress equations, thus 
recovering Prager’s linear rule for that branch

The back stress tensorback is then defined by the superposition of N back stress 
tensors

As done for Armstrong–Frederick kinematic hardening, the algorithm solves for the 
back strain tensors back,i instead of the back stress tensors. The change of variables is

and the nonlinear evolution for the back strain tensors reads

I N T R O D U C T I O N  T O  S M A L L  A N D  L A R G E  P L A S T I C  S T R A I N S

There are two implementations of plasticity available in COMSOL Multiphysics. One 
is based on the additive decomposition of strains, which is the most suitable approach 
in the case of small strains, and the other one is based on the multiplicative 
decomposition of the deformation gradient, which is more suitable when large plastic 
strains occurs. The additive and multiplicative decomposition of strains is described in 
Inelastic Strain Contributions.

When small plastic strain is selected as the plasticity model, an additive 
decomposition is used. If the elastic or plastic strains are large, the additive 

back back,i

i

N

=

ꞏ back,i
2
3
---Ci

ꞏ
p i

ꞏ
peback,i–=

back,0
2
3
---C0p=

back
2
3
---C0p back,i

i 1=

N

+=

back,i
2
3
---Ciback,i=

ꞏback,i ꞏp i
ꞏ
peback,i–=
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decomposition might produce incorrect results. As an example, the volume 
preservation, which is an important assumption in metal plasticity, will no longer be 
respected. The additive decomposition of strains is however widely used both for metal 
and soil plasticity.

When Large strains is selected as the plasticity model, the total deformation gradient 
tensor is multiplicatively decomposed into an elastic deformation gradient and a plastic 
deformation gradient.

P L A S T I C  F L O W  F O R  S M A L L  S T R A I N S

The flow rule defines the relationship between the increment of the plastic strain 
tensor  and the current state of stress, for a yielded material subject to further 
loading. When Small strains is selected as the plasticity model for the Plasticity node, 
the direction of the plastic strain increment is defined by

Here, is a positive multiplier (also called the consistency parameter or plastic 
multiplier), which depends on the current state of stress and the load history, and Qp 
is the plastic potential.

The direction of the plastic strain increment  is perpendicular to the surface (in the 
hyperspace spanned by the stress tensor components) defined by the plastic potential 
Qp.

When Small strains is selected as the plasticity model for the Plasticity 
node, and the Include geometric nonlinearity check box is selected on the 
study Settings window, a Cauchy stress tensor is used to evaluate the yield 
function and plastic potential. The components of this stress tensor are 
oriented along the material directions, so it can be viewed as a scaled 
second Piola–Kirchhoff stress tensor. The additive decomposition of 
strains is understood as the summation of Green–Lagrange strains.

ꞏp

ꞏp 
Qp


----------=

The “dot” (for ) means the rate at which the plastic strain tensor 
changes with respect to Qp/. It does not represent a true time 
derivative. Some authors call this formulation rate independent 
plasticity.

ꞏp

ꞏp
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The plastic multiplier  is determined by the complementarity or Kuhn–Tucker 
conditions

,  and  (3-53)

where Fy is the yield function. The yield surface encloses the elastic region defined by 
Fy < 0. Plastic flow occurs when Fy = 0.

If the plastic potential and the yield surface coincide with each other Qp = Fy, the 
flow rule is called associated, and the rate in Equation 3-54 is solved together with the 
conditions in Equation 3-53.

 (3-54)

For a nonassociated flow rule, the yield function does not coincide with the plastic 
potential, and together with the conditions in Equation 3-53, the rate in 
Equation 3-55 is solved for the plastic potential Qp (often, a smoothed version of Fy).

 (3-55)

The evolution of the plastic strain tensor (with either Equation 3-54 or 
Equation 3-55, plus the conditions in Equation 3-53) is implemented at Gauss points 
in the plastic element elplastic.

P L A S T I C  F L O W  F O R  L A R G E  S T R A I N S

When the Large strains formulation is selected in the Plasticity node, a multiplicative 
decomposition of deformation (Ref. 3, Ref. 4, and Ref. 5) is used, and the associated 
plastic flow rule can be written as the Lie derivative of the elastic left Cauchy–Green 
deformation tensor Bel:

 (3-56)

The plastic multiplier  and the yield function  (written in terms of the Kirchhoff 
stress tensor ) satisfy the Kuhn–Tucker condition, as done for infinitesimal strain 
plasticity

 0 Fy 0 Fy 0=

ꞏp 
Fy

---------=

ꞏp 
Qp


----------=

ꞏp

1
2
---– L Bel  


-------Bel=
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,  and

The Lie derivative of Bel is then written in terms of the plastic right Cauchy–Green rate

 (3-57)

By using Equation 3-56 and Equation 3-57the either associated or nonassociated 
plastic flow rule for large strains is written as (Ref. 4)

 (3-58)

together with the Kuhn–Tucker conditions for the plastic multiplier  and the yield 
function Fy

,  and  (3-59)

For the associated flow rule, the plastic potential and the yield surface coincide with 
each other (Qp = Fy), and for the nonassociated case, the yield function does not 
coincide with the plastic potential.

In COMSOL Multiphysics, the elastic left Cauchy–Green tensor is written in terms of 
the deformation gradient and the right Cauchy–Green tensor, so Bel = FCp

1FT. The 
flow rule then reads

 (3-60)

The plastic flow rule is then solved at Gauss points in the plastic element elplastic 
for the inverse of the plastic deformation gradient Fp

1, so that the variables in 
Equation 3-60 are replaced by

,  and

After integrating the flow rule in Equation 3-60, the plastic Green–Lagrange strain 
tensor is computed from the plastic deformation tensor

 0  0  0=

The yield function in Ref. 3 and Ref. 4 was written in terms of 
Kirchhoff stress and not Cauchy stress because the authors defined the 
plastic dissipation with the conjugate energy pair  and d, where d is the 
rate of strain tensor.

L Bel  FCp
1–ꞏ FT=

1
2
---– FCp

1–ꞏ FT 
Qp


----------Bel=

 0 Fy 0 Fy 0=

Cp
1–ꞏ 2– F 1–

Qp


----------FCp
1–=

Cp
1– Fp

1– Fp
T–= Cp

1–ꞏ Fp
1–ꞏ Fp

T– Fp
1– Fp

T–ꞏ+= Bel FFp
1– Fp

T– FT=
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and the elastic Green–Lagrange strain tensor is computed from the elastic deformation 
gradient tensor Fel = FFp

1

N U M E R I C A L  S O L U T I O N  O F  T H E  E L A S T O P L A S T I C  C O N D I T I O N S

A backward Euler discretization of the pseudo-time derivative is used in the plastic flow 
rule. For small plastic strains, this gives

where “old” denotes the previous time step and   t, where t is the pseudo-time 
step length.

For large plastic strains, Equation 3-60 is numerically solved with the so-called 
exponential mapping technique

where  and .

For each Gauss point, the plastic state variables (p or Fp
1, depending on whether 

small strain or large strain plasticity is selected) and the plastic multiplier, , are 
computed by solving either of the above time-discretized flow rules together with the 
complementarity conditions

p
1
2
--- Fp

TFp I– =

el
1
2
--- Fel

T Fel I– =

When Large strains is selected in the Plasticity node, the equivalent plastic 
strain variable is computed as the true equivalent plastic strain (also called 
Hencky or logarithmic plastic strain).

When either Large strains or Small strains is selected in the Plasticity node, 
the out-of-plane shear strain components are not computed in 2D, 
neither for plane stress nor plane strain assumption.

p p, old– 
Qp


----------=

Cp
1– F 1– 2–

Qp


---------- 
 FCp, old

1–exp=

Cp
1– Fp

1– Fp
T–= Cp, old

1– Fp, old
1– Fp, old

T–=

 0, Fy 0, Fy 0=
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This is done as follows (Ref. 3):

1 Elastic-predictor: Try the elastic solution p  p,old (or ) and   0. 
If this satisfies Fy   it is done.

2 Plastic-corrector: If the elastic solution does not work (this is Fy  ), solve the 
nonlinear system consisting of the flow rule and the equation Fy   using a damped 
Newton method.

It is possible to specify the maximum number of iterations and the relative tolerance 
used to solve the plastic flow rule. Under the Advanced section enter the following 
settings:

• Maximum number of local iterations. To determine the maximum number of iteration 
when solving the local plasticity equations. The default value is 25 iterations.

• Relative tolerance. To check the convergence of the local plasticity equations based 
on the step size. The final tolerance is computed based on the current solution of 
the local variable and the entered value. The default value is 1e-6.

To display the Advanced section, click the Show More Options button ( ) and select 
Advanced Physics Options in the Show More Options dialog box.

E N E R G Y  D I S S I P A T I O N

Since plasticity is an inelastic process, the dissipated energy density can be calculated 
by integrating the pseudo-rate given by

As plasticity is rate independent, the plastic dissipation density Wp is obtained after 
integrating an extra variable in the plastic flow rule.

Fp
1– Fp, old

1–=

The numerical tolerance to fulfill the condition Fy   is given in SI units 
of Pascals, and it depends on the initial yield stress (in case of plasticity and 
porous plasticity) or it is defined in terms of other material parameter (for 
soil plasticity).

Wꞏ p :ꞏp :
Qp


----------= =
 3 :  S T R U C T U R A L  M E C H A N I C S  T H E O R Y



The total energy dissipated by plasticity in a given volume can be calculated by a 
volume integration of the plastic dissipation density Wp.

N O N L O C A L  P L A S T I C I T Y

The nonlocal plasticity model implemented in COMSOL Multiphysics is based on the 
so-called implicit gradient method suggested in Ref. 22, and it incorporates some of 
the generalizations introduced by the micromorphic theory (Ref. 23). The theory 
assumes that the free energy of the elastoplastic material not only depends on the 
macroscopic displacement u and macro state variables, such as the equivalent plastic 
strain pe, but also on some micro motion  and its gradient. If the micro motion 
variable is identified as a nonlocal version of the equivalent plastic strain, pe,nl, the free 
energy potential is written as

 (3-61)

here Ws is the elastic free energy, Hnl is a model parameter that determines the strength 
of the coupling between the macro and micro motions, and lint is the length scale that 
determines the influence radius of the interaction. For simplicity, Equation 3-61 
assumes linear isotropic hardening, but the same concept is applicable for more general 
isotropic hardening laws and can for example also be extended with kinematic 
hardening.

Taking the variation of Equation 3-61 with respect to state variables pe, pe,nl, and 
 leads to the following set of equations related to the plasticity model:

here,  is the domain of the elastoplastic problem. Variation of Equation 3-61 with 
respect to the remaining state variables leads to the standard elasticity equations. In the 
nonlocal (or regularized) plasticity problem, pe,nl is an additional dependent variable 

When the Calculate dissipated energy check box is selected, the plastic 
dissipation density is available under the variable solid.Wp and the total 
plastic dissipation under the variable solid.Wp_tot.

 u u p pe pe,nl pe,nl      Ws u u p   1
2
---Eiso pe 2

1
2
---Hnl pe pe,nl– 2 1

2
---Hnl lint 2 pe,nl pe,nl

+ +

+

=

pe,nl

pe,nl Hnl lint 22pe,nl– pe= in 

pe,nl n 0= on

ys pe pe,nl  ys0 E+ isope Hnl pe pe,nl– +=
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that is solved as part of the global problem. The structure of the local plasticity 
problem is not changed and the numerical solution remains the same as discussed 
above, but the hardening law now depends on pe,nl.

For porous plasticity, the same equation applies, but pe and pe,nl are replaced by the 
equivalent plastic strains in the matrix material, pm and pm,nl. It is also possible to 
add nonlocal effects to the void volume fraction .The porous plasticity model is then 
extended with the following set of equations

where  is the nonlocal void volume fraction. In contrast to the equivalent plastic 
strain, it is assumed that there is a perfect coupling between  and , and that the 
nonlocal void volume fraction  directly replaces its local counterpart in the model 
equations.

Failure Criteria for Concrete, Rocks, and Other Brittle Materials

In this section:

• The Bresler–Pister Yield Criterion

• The Willam–Warnke Criterion

• The Ottosen Criterion

• The Original Hoek–Brown Criterion

• The Generalized Hoek–Brown Criterion

T H E  B R E S L E R – P I S T E R  Y I E L D  C R I T E R I O N

The Bresler–Pister yield criterion (Ref. 4, Ref. 19) was originally devised to predict the 
strength of concrete under multiaxial stresses. This failure criterion is an extension of 
The Drucker–Prager Criterion to brittle materials, and it can be expressed in terms of 
the stress invariants as

 (3-62)

here, k1, k2, and k3 are parameters obtained from the uniaxial compressive strength 
cs, the uniaxial tensile strength ts, and the biaxial compressive strength bc



nl lint,f 22nl– = in 

nl n 0= on

nl
 nl

nl

Fy J2 k1I1
2 k2I1 k3+ + +=
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All the strengths are considered with a positive sign. Note that for typical strength 
values, the parameters k1 and k2 are positive while k3 is negative.

T H E  W I L L A M – W A R N K E  C R I T E R I O N

The Willam–Warnke criterion (Ref. 12) is used to predict failure in concrete and other 
cohesive-frictional materials such as rock, soil, and ceramics. Just as The Bresler–Pister 
Yield Criterion, it depends only on three parameters. It was developed to describe 
initial concrete failure under triaxial conditions. The failure surface is convex, 
continuously differentiable, and it is fitted to test data in the low compression range.

The original “three-parameter” Willam–Warnke failure criterion was defined as

 (3-63)

where cs is the uniaxial compressive strength, ts is uniaxial tensile strength, and bc 
is the biaxial compressive strength (all parameters are positive). The octahedral normal 
and shear stresses are defined as usual; see Other Stress Invariants

, and

so the criterion in Equation 3-63 can be written in term of stress invariants as

The dimensionless function r( describes the segment of an ellipse on the octahedral 
plane as a function of the Lode angle 

k1
bccs 2csts 3bcts–+

3 cs ts+  2bc cs–  2bc ts+ 
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Here, the tensile and compressive meridian rt and rc are defined in terms of the 
strengths cs, bc, and ts:

The function r( can be interpreted as the friction angle which depends on the Lode 
angle (Ref. 12).

Figure 3-22: The deviatoric section of the Willam–Warnke failure criterion.

T H E  O T T O S E N  C R I T E R I O N

The Ottosen criterion is a four-parameter failure criterion proposed for short-time 
loading of concrete. It corresponds to a smooth convex failure surface with curved 
meridians, which is open in the negative (compressive) direction of the hydrostatic 
axis. The curve in the pi-plane changes from almost triangular to a more circular shape 
with increasing hydrostatic pressure. The criterion agrees with experimental results 
over a wide range of stress states, including both triaxial tests along the tensile and the 
compressive meridian and biaxial tests (Ref. 20).

The Ottosen criterion is commonly written as (Ref. 19, Ref. 20):

rt =
6
5
---  1

cs
-------

bcts
2bc ts+
-------------------------

rc =
6
5
---  

bcts
3bcts + bccs tscs–
---------------------------------------------------------------

rc

rt
r 


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Here, cs is the uniaxial compressive strength of concrete, and a > 0 and b > 0 are 
dimensionless parameters. The dimensionless function depends on the Lode angle 
and two dimensionless parameters k1 > 0 and k2 > 0.

The parameter k1 is called the size factor. The parameter k2 (also called shape factor) 
is positive and bounded to 0  k2  1(Ref. 19, Ref. 20).

Typical values for these parameters are obtained by curve-fitting the uniaxial 
compressive strength cs, uniaxial tensile strength ts, and from the biaxial and triaxial 
data (for instance, a typical biaxial compressive strength of concrete is 16% higher than 
the uniaxial compressive strength). The parameters cs, bc, and ts are positive.

The compressive and tensile meridians (as defined in The Willam–Warnke Criterion) 
are

 and

The ratio rt/rc = c/t normally lies between 0.54~0.58 for concrete.

TABLE 3-3:  TYPICAL PARAMETER VALUES FOR OTTOSEN FAILURE CRITERION (Ref. 20).

ts/ cs a b k1 k2 t  c

0.08 1.808 4.096 14.486 0.991 14.472 7.783

0.10 1.276 3.196 11.736 0.980 11.711 6.531

0.12 0.922 2.597 9.911 0.965 9.872 5.698

Fy
a
cs
-------J2    J2 bI1 cs–+ +=

  

k1
1
3
--- k2 3 cos acos 
               J3 0cos

 

k1

3
--- 1

3
---– k– 2 3 cos acos 

         J3 0.cos










=

rc = 1
c
----- = 1

 /3 
------------------- rt = 1

t
----- = 1

 0 
-----------

The Ottosen criterion is equivalent to the Drucker–Prager criterion when 
a = 0 and independent of the Lode angle.
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T H E  O R I G I N A L  H O E K – B R O W N  C R I T E R I O N

The Hoek–Brown criterion is an empirical type of model which is commonly used 
when dealing with rock masses of variable quality. The Hoek–Brown criterion is widely 
used within civil engineering and is popular because the material parameters can be 
estimated based on simple field observations together with knowledge of the uniaxial 
compressive strength of the intact rock material. The Hoek–Brown criterion is one of 
the few nonlinear criteria widely accepted and used by engineers to estimate the yield 
and failure of rock masses. The original Hoek–Brown failure criterion states (Ref. 7)

where 1  2  3  0 are the principal stresses at failure (as defined in geotechnical 
engineering; that is, an absolute value), cs is the uniaxial compressive strength of the 
intact rock, and m and s are positive material parameters.

If the expression is converted into to the sign convention for principal stresses in the 
Structural Mechanics Module, it becomes

with cs, m, and s positive material parameters. (In this case, note that 1   scs/m).

As developed originally, there is no relation between the parameters m and s and the 
physical characteristics of a rock mass measured in laboratory tests. However, for intact 
rock, s  1 and m  mi, which is measured in a triaxial test.

For jointed rock masses, 0  s  1 and m  mi. The parameter m usually lies in the 
range 5  m  30 (Ref. 9).

The Hoek–Brown criterion can be written in terms of the invariants I1 and J2 and the 
Lode angle 0    3, so

TABLE 3-4:  CHARACTERISTIC VALUES FOR DIFFERENT ROCK TYPES

m ROCK TYPE

5 Carbonate rocks, dolomite, limestone

10 Consolidated rocks, mudstone, shale

15 Sandstone

20 Fine-grained rocks

25 Coarse grained rocks

1 3 mcs3 scs
2++=

1 3 mcs1– scs
2++=
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T H E  G E N E R A L I Z E D  H O E K – B R O W N  C R I T E R I O N

The generalized Hoek–Brown criterion was developed in order to fit the Geological 
Strength Index (GSI) classification of isotropic rock masses (Ref. 8). A new 
relationship between GSI, m, s and the newly introduced parameter a was developed, 
to give a smoother transition between very poor quality rock masses (GSI < 25) and 
stronger rocks

where cs is the compressive strength of the intact rock. In terms of the invariants J2 
and the Lode angle  this equals

where 1  2  3 are the principal stresses (using the Structural Mechanics Module 
conventions) of the effective stress tensor (this is, the stress tensor minus the fluid pore 
pressure).

The positive parameter mb is a reduced value of the material constant mi:

s and a are positive parameters for the rock mass given by the following relationships:

Fy 2 J2  
3
---+ 

  cs s m
1
c
------– 0=–sin=

1 3– cs s mb
1
cs
--------– 

 a
=

0   3 

Fy 2 J2  
3
---+ 

  cs s mb
1
cs
--------– 

 a
–sin 0= =

mb miexp GSI 100–
28 14D–
-------------------------- 
 =

s = exp GSI 100–
9 3D–

-------------------------- 
                         

a = 1
2
--- 1

6
--- exp GSI–

15
------------- 
  exp 20–

3
--------- 
 – 

 +
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The disturbance factor D was introduced to account for the effects of stress relaxation 
and blast damage, and it varies from 0 for undisturbed in situ rock masses to 1 for very 
damaged rock masses.

Elastoplastic Soil Models

In this section:

• The Modified Cam-Clay Soil Model

• The Modified Structured Cam-Clay Soil Model

• The Extended Barcelona Basic Soil Model

• The Hardening Soil Model

T H E  M O D I F I E D  C A M - C L A Y  S O I L  M O D E L

The Cam-clay material model was developed in the 1970s at the University of 
Cambridge, and since then it has experienced many modifications. The modified 
Cam-clay model (MCC) is the most commonly used model due to its smooth yield 
surface, and it is the one implemented in the Geomechanics Module.

The modified Cam-clay model is a so-called critical state model, where the loading and 
unloading of the material follow different trajectories in stress space. The model also 
features hardening and softening of clays. Different formulations can be found in 
textbooks, see for instance Ref. 15, Ref. 16, and Ref. 17.

The yield function is written in terms of the stress invariants

Following the Structural Mechanics Module sign convention (the pressure is positive 
in compression), the yield function reads:

TABLE 3-5:  DISTURBANCE FACTOR IN ROCK MASSES

D DESCRIPTION OF ROCK MASS

0 Undisturbed rock mass

0~0.5 Poor quality rock mass

0.8 Damaged rock mass

1.0 Severely damaged rock mass

q 3J2  =

p I– 1   3=
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This is an ellipse in the pq-plane, with a cross section independent of the Lode angle. 
Note that p, q, and pc are positive variables.

The parameter M  0 defines the slope of the critical state line in the pq-plane. This 
parameter can be matched to the angle of internal friction  in the Mohr–Coulomb 
criterion as

 (3-64)

Figure 3-23: Modified Cam-Clay ellipse in the pq-plane. The ellipse circumscribes a 
nonlinear elastic region.

Fy q2 M2 p pc– p+ 0= =



M 6  sin
3  sin–
--------------------------=

pc/2 pc p

softening hardening

critical state line
q=Mp

 nonlinear elastic region

q

The slope of the critical state line M can either be a material property or 
it can be matched to Mohr–Coulomb criterion and derived from the angle 
of internal friction . It can also be matched to Matsuoka–Nakai 
criterion; see Equation 3-73.


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The soil response to isotropic compression is described by the curve of the void ratio 
(or specific volume or volumetric strain) versus the logarithm of pressure as shown in 
Figure 3-24.

.

Figure 3-24: Slopes of the virgin isotropic consolidation line and swelling line in the e 
versus  plane.

The compression index  is the slope of the virgin isotropic consolidation line, and 
the swelling index  is the slope of the swelling line (also called unloading-reloading 
line) in the e versus ln(p) plane. The reference void ratio eref is measured at the 
reference pressure pref and initial void ratio e0 is measured at the initial mean stress pi. 
The starting value of initial mean stress pi is the reference pressure pref. The equation 
for the virgin isotropic consolidation line is written as

The void ratio at the initial consolidation pressure pc0 is given by

The equation for the swelling line is

The void ratio e is the ratio between the pore space and solid volume. It 
can be written in terms of the porosity  as e = /(1).

pref  pi pc0

e0

eref





ln(p)

e

virgin consolidation line

swelling line

p ln

e eref  p
pref
---------- 
 ln–=

ec0 eref 
pc0
pref
---------- 
 ln–=
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where e0 is the initial void ratio calculated as

Assuming small deformations and adopting the sign convention of Structural 
Mechanics, the volumetric strain is related to the void ratio as

For elastic response, the incremental volumetric elastic strain is written as

 (3-65)

Integrating Equation 3-65, the equation is reformulated as

Then the nonlinear relation between pressure and volumetric strain is obtained by

 (3-66)

where

e e0  p
pi
----- 
 ln–=

e0 ec0 
pc0
pi

-------- 
 ln+=

The initial void ratio e0 can be directly entered as user input. In this case, 
the void ratio at initial consolidation pressure, ec0, is not needed as 
intermediate variable.

vol
V V0–

V0
-----------------

e e0–

1 e0+
---------------= =

del,vol
de

1 e0+
--------------- dp

p
-------–= =

1 e0+ el,vol  p
pi
----- 
 ln–=

p pie
Belel ,vol–

=
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At zero volumetric elastic strain and with zero contribution from Initial Stress and 

Strain or External Stress features the initial mean stress is nonzero and equal to the 
reference pressure pref. The reference pressure acts as an in situ stress.

 (3-67)

The tangent bulk modulus Kt is written as

The secant bulk modulus Ks (or bulk modulus K) is written as

The total volumetric strain increment in written as

The evolution of void ratio is then written as

 or  (3-68)

 (3-69)

Bel
1 e0+


---------------=

The contribution to initial mean stress pi also comes from the first 
invariant of the initial or external stress tensor of Initial Stress and Strain or 
External Stress feature. The reference pressure is generally a unit pressure 
in the used unit system, in the literature the value varies from 1 kPa to 
100 kPa. In COMSOL Multiphysics the default value is 100 kPa.

pi pref=

Kt
1 e0+


---------------p=

Ks
pi p–

el,vol
----------------=

When a constant Poisson’s ratio is specified in the Modified Cam-clay 
model, the shear modulus is calculated from the secant bulk modulus and 
Poisson’s ratio, which in turn gives a variable shear modulus.

dvol
de

1 e0+
---------------


1 e0+
---------------dp

p
-------–

 –
1 e0+
---------------

dpc
pc

---------–= =

e 1 e0+ vol e0+=

e eref  p
pi
----- 
 ln 

pc
pref
-------- 
  

pc
pi
----- 
 ln+ln––=
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Equation 3-68 is used to compute the void ratio which matches exactly with 
Equation 3-69 which may be used for verification purposes.

In the modified Cam-clay model, hardening is controlled by the consolidation 
pressure pc, which depends on the volumetric plastic strain p,vol as

 (3-70)

The evolution of the consolidation pressure depends on the values for the initial void 
ratio e0, the swelling index , and the compression index , which are positive 
parameters that fulfill

 and

Volumetric Elastic Deformation
The stress-strain relation beyond the elastic range is of great importance in soil 
mechanics. For additive decomposition of strains, Cauchy’s stress tensor is written as

with

Here,  is the stress tensor,  is the total strain tensor, el is the elastic strain tensor, 0
is the initial or external stress tensor, and G is the shear modulus.

At zero volumetric strain, and with zero contribution from Initial Stress and Strain or 
External Stress features, the pressure in the MCC model is equal to the reference 

pꞏ c
1 e0+

 –
---------------– pc

ꞏ
p,vol=

The elastic and plastic volumetric strains are available in the variable 
solid.eelvol and solid.epvol, respectively. The consolidation 
pressure is available in the variable item.pc.

0    eref 0

If an Initial Stress and Strain node is added to the Cam-clay material, the 
initial consolidation pressure pc0 must be equal or larger than one third 
of minus the trace of the initial stress tensor, otherwise the initial stress 
state is outside the Cam-clay ellipse.

 dev 0  pi+ e
Belel ,vol–

2Gdev el +=

Bel
1 e0+


---------------=
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pressure (see Equation 3-66 and Equation 3-67). This is needed as the MCC model 
do not have stiffness at zero stress. The reference pressure appears as an additional term 
in the variational formulation (weak equation).

As opposed to the Linear Elastic Material, the MCC model introduces a nonlinear 
relation for the hydrostatic pressure as a function of the volumetric elastic strain given 
by Equation 3-66.

Hardening and Softening
The yield surface for the modified Cam-clay model reads

The yield surface and the associated flow rule (Qp = Fy) give the rate equation for the 
plastic strains. The plastic strain tensor p is calculated from the plastic multiplier p 
and the derivatives of the plastic potential Qp with respect to the stress tensor 

The plastic strain rate tensor  includes both deviatoric and isotropic parts. Note that

and

These relations can be used for writing the plastic flow as

since the associated flow rule implies a plastic potential such as

the plastic flow rule simplifies to

Fy q2 M2 p pc– p+=

ꞏp p
Qp


---------- p
Qp
I1
----------

I1

--------

Qp
J2
----------

J2

---------+ 

 = =

Here, p stands for the plastic multiplier, see Plastic Flow for Small Strains 
and Isotropic Hardening.

ꞏp

I1  I=

J2  dev  =

ꞏp p
1
3
---
Qp
p

----------– I
Qp
q

---------- 3
2q
-------dev  + 

 =

Qp Fy q2 M2 p pc– p+= =
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The trace of the plastic strain rate tensor (the volumetric plastic strain rate ) 
then reads

This relation explains why there is isotropic hardening when the pressure is p > pc/2 
and isotropic softening when p < pc/2. As opposed to what happens in J2 plasticity, 
in the modified Cam-Clay soil model the volumetric plastic strain can either increase 
or decrease as plastic deformation occurs.

In the MCC model, hardening is controlled by the consolidation pressure pc as a 
function of volumetric plastic strain, as described in Equation 3-70.

Hardening introduces changes in the shape of the Cam-Clay ellipse, since its major 
semiaxis depends on the value of the consolidation pressure pc. The initial 
consolidation pressure pc0 defines the size of the ellipse before plastic deformation 
occurs.

Including Pore Pressure
When an external pore pressure pf is added to the MCC material, the yield function is 
shifted along the p axis, and the yield function reads:

The quantity p  pf is normally regarded as the effective pressure, or effective stress, 
which should not be confused with the equivalent von Mises stress. To add the effect 
of a fluid pressure in the pores pf to the Modified Cam-Clay material, add an External 
Stress feature.

T H E  M O D I F I E D  S T R U C T U R E D  C A M - C L A Y  S O I L  M O D E L

The structured Cam-Clay model (SCC) was developed (Ref. 22, Ref. 23) to 
circumvent the limitations of the Cam-Clay model when applied to structured soils and 
clays. The SCC model, however, does not consider the influence of the soil structure 

ꞏp p
1
3
---M2 2p pc– I– 3dev  + 

 =

ꞏpvol

ꞏpvol trace ꞏp  pM2 pc 2p– = =

Fy q2 M2 p pf– pc–  p pf– +=

See also the description of the Elastoplastic Soil Material materials in the 
Solid Mechanics interface documentation.
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neither on strength characteristics (especially cohesion) nor in the softening behavior, 
and it is also not suitable to model cemented clays.

The modified structured Cam-clay model (MSCC) was further developed to model 
destructured, naturally structured and artificially structured clays (Ref. 22), and it is 
the one implemented in the Geomechanics Module.

In the MSCC model, the reduction of mean effective stress due to structure 
degradation, pb, depends on the shear plastic strain p,dev. The destructuring 
mechanism is the process of reducing structure strength due to the degradation and 
crushing of the structure. The structure degradation is given by

 (3-71)

Here, pbi is the initial structural strength, pbf the failure structural strength, p,devc is 
the equivalent plastic strain at failure, and ds is the destructuring index due to shear 
deformation.

Structured clays show a higher void ratio than destructured clays at the same effective 
mean stress. The virgin compression behavior during the destructuring process is 
expressed by

where is e void ratio of the structured clay, e is additional void ratio, e* is void ratio 
of the destructured clay at the same stress state. The void ratio can be found by using 
Equation 3-69. Further, ei is the additional void ratio at consolidation pressure, and 
dv is the destructuring index due to volumetric deformation.

The yield surface for the modified structured Cam-clay model reads

pb

pbie
p,dev–                  if  p,dev p,deve

pbfe
ds p,dev p,deve– –

             otherwise  
=

The equivalent deviatoric plastic strain at which the crushing of the 
structure begins, p,devc, has a typical value between 0.15 and 0.3 for 
most clays.

e e e+=

e ei pc0 pc 
dv=

Fy q2 M2 p pb+  p pc– +=
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The nonassociated plastic potential reads

Here,  is a parameter to smooth the shape of the plastic potential. The slope of the 
critical state line, M can be found by using Equation 3-64.

In the modified structured Cam-clay soil model, hardening is controlled by the 
consolidation pressure pc as a function of volumetric plastic strain, and is described as

Here, * is the compression index for destructured clay,  is the swelling index, and  
is ratio of shear stress to mean stress.

The relationship between hydrostatic pressure and volumetric elastic strain is the same 
as the one outlined in The Modified Cam-Clay Soil Model,

 with  (3-72)

The stress tensor is then computed from

At zero volumetric strain, and with zero contribution from Initial Stress and Strain or 
External Stress features, the pressure in the MSCC model is equal to the reference 
pressure (see Equation 3-72 and Equation 3-67). This is needed as the MSCC model 
do not have stiffness at zero stress. The reference pressure appears as an additional term 
in the variational formulation (weak equation).

Qp q2 M2

 1–
----------- p pb+ 2

p pb+

pc pb+
------------------ 
 –

2 
pc pb+ 2 

 +=

pꞏ c

1 e0+

 – dv e M
M –
--------------- 
 +

--------------------------------------------------------– pc
ꞏ
p,vol                if   M

1 e0+

 – dv e+
-----------------------------------– pc

ꞏ
p,vol                          otherwise

=

The MSCC and MCC models are equivalent when  ei = 0,  = 2, and 
pb = 0.

p pie
Belel ,vol–

= Bel
1 e0+


---------------=

 dev 0  pi+ e
Belel ,vol–

2Gdev el +=
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T H E  E X T E N D E D  B A R C E L O N A  B A S I C  S O I L  M O D E L

The Barcelona Basic model (BBM) was developed to simulate the loading of 
unsaturated and partially saturated soils, by incorporating an extra state variable for the 
pore suction. The suction value depends on the amount of water in the soil, and it 
affects the flow in porous soils as well as the deformation and stress distribution.

The BBM model uses the concepts of plasticity theory, incorporating the critical state 
model (Ref. 24). This soil model matches the results obtained with the Modified 
Cam-Clay Model in fully saturated soils.

The so-called Extended Barcelona Basic model (BBMx) was further developed to 
overcome numerical limitations of the original BBM model (Ref. 25). The model 
implemented in COMSOL Multiphysics follows Ref. 25 with certain modifications 
described in this section.

The BBMx model implemented in the Geomechanics Module presents a smooth yield 
surface with respect to both stress and suction

Here, p and q are stress invariants as defined in The Modified Cam-Clay Soil Model, 
pcs is the consolidation pressure at current suction, ps is the tensile strength due to 
current suction, s is the current suction, b is a dimensionless smoothing parameter, sy 
is the yield value at current suction, and pref is the reference pressure at which the 
reference void ratio eref was measured.

The tensile strength due to current suction, ps, is linearly related to the suction level 
as ps = ks, where k is the tension to suction ratio.

The consolidation pressure at current suction pcs is calculated from

where sis the compression index at current suction, 0 is the compression index at 
saturation, and  is the swelling index. The compression index at current suction, s, 
is given by

Fy q2 M2 p pcs–  p ps+  pref
2 e

b s sy– 
pref

---------------------

e

bsy–
pref
-----------

–
 
 
 

+ +=

pcs pref
pc

pref
--------- 
 

0 –
 s  –
-------------------- 
 

=

 s  0 1 w– e s m– w+ =
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where w and m are weighting and soil stiffness parameters.

The slope of the critical state line M can be computed from the Matsuoka-Nakai 
criterion, in which case it depends on both the Lode angle  and the angle of internal 
friction

 (3-73)

where

At the tensile or compressive meridians, where the Lode angle is =  or  = , the 
slope of the critical state line achieves the same expression as when matched to 
Mohr-Coulomb criterion, see Equation 3-64

The associated plastic potential for the BBMx model reads

The plastic strain increments are computed from the derivatives of the plastic potential 
with respect to stress only.

As in The Modified Cam-Clay Soil Model, hardening is controlled by the evolution of 
the consolidation pressure pc, which depends on the volumetric plastic strain p,vol.

 (3-74)

The initial void ratio e0, the swelling index , and the compression index at saturation 
0, are positive parameters.

The evolution of the yield value at current suction, sy, is also governed by the 
volumetric plastic strain pl,vol as

 (3-75)



M 6  sin
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 
 
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 3  sin–
3  sin+
--------------------------- 
  4

=
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--------------------------=

Qp Fy=
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1 e0+

0 –
---------------– pc

ꞏ
p,vol=

sꞏy
1 e0+

s s–
-----------------– sy p+ atm ꞏp,vol=
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Here, s is the compression index for changes in suction, s is the swelling index for 
changes in suction, and patm is the atmospheric pressure, all positive parameters. Note 
that Equation 3-74 and Equation 3-75 are normally given with opposite sign. Here, 
however, the structural mechanics convention is used, so the increments in 
consolidation pressure and suction are positive in compression.

The evolution of void ratio is then written as

 or

where

In the BBMx model, the total volumetric elastic response is combination of elastic 
response by pressure and suction,

where

Here K is the bulk modulus, and Kcs the stiffness to suction. Note that the pressure p 
in compression and suction s is positive variables, but the elastic volumetric strain
el,vol is negative in compression. The volumetric elastic response due to suction is 
given by

Here, s0 is the initial suction. The volumetric elastic response due to suction is 
accounted in the total strain tensor for BBMx model, so any changes in suction with 
keeping pressure constant can cause volumetric strains.

The relationship between hydrostatic pressure and volumetric elastic strain is the same 
as the one outlined in The Modified Cam-Clay Soil Model

e 1 e0+ vol e0+=

e es ref  s 
pcs
pref
--------- 
  

pcs
pi

-------- 
   p

pi
----- 
 ln–ln+ln–=

es ref eref s s p+ atm  patm ln–=

el,vol el,vol s
el,vol+ dp

K
-------– ds

Kcs
--------–= =

Kcs 1 e0+  s p+ atm  s=

s
el,vol

s
1 e0+
---------------

s p+ atm
s0 p+ atm
------------------------
 
 
 

ln–=
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 with  (3-76)

The stress tensor is then computed from

At zero volumetric strain, and with zero contribution from Initial Stress and Strain or 
External Stress features, the pressure in the BBMx model is equal to the reference 
pressure (see Equation 3-76 and Equation 3-67). This is needed as the BBMx model 
does not have stiffness at zero stress. The reference pressure appears as an additional 
term in the variational formulation (weak equation form).

T H E  H A R D E N I N G  S O I L  M O D E L

The Hardening Soil model is an elastoplastic material model with a stress and stress 
path dependent stiffness. It is a so-called double stiffness model, meaning that its 
stiffness is different during the primary loading and unloading/reloading cases 
(Ref. 26). The yield surface for the Hardening Soil model is a combination of a conical 
surface and an elliptic cap surface in stress space. Failure in shear occurs according to 
a Mohr–Coulomb criterion.

The stiffness moduli for primary loading, denoted by E50, and for unloading/
reloading, denoted by Eur, are given by

and

p pie
Belel ,vol–

= Bel
1 e0+


---------------=

 dev 0  pi+ e
Belel ,vol–

2Gdev el +=

Note that the material property 0 is the compression index at saturation, 
which does not depend on the suction. The variable (s), which is a 
function of the current suction, is the compression index (slope) in the 
void ratio versus logarithm of the mean stress plot. The material property 
s is the compression index (slope) in the void ratio versus logarithm of 
the matrix suction plot, which does not depend on the mean stress.

E50 E50
ref c   1–cot

c   pref+ cot
---------------------------------------- 
 

m
=

Eur Eur
ref c   1–cot

c   pref+cot
----------------------------------- 
 

m
=
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Here  and  are reference stiffness for primary loading and for unloading and 
reloading at reference pressure, c is the cohesion,  is the angle of internal friction, 
and m is the stress exponent. The ultimate deviatoric stress qf and the stress to failure 
qa are derived from the Mohr–Coulomb criterion

 and

where Rf is the failure ratio. Consider the stress invariants  and 
, the yield function and plastic potential for the shear hardening cone are 

given by

where p is the accumulated plastic shear strain and m is the mobilized dilatancy 
angle.

The yield function for the elliptic cap, and the associated plastic potential, are also 
defined in terms of stress invariants, and given by

Here, Rc is the ellipse aspect ratio, and it can directly entered, or given as the inverse 
of the coefficient of earth pressure at rest

The coefficient of earth pressure at rest  is computed from the angle of internal 
friction

E50
ref Eur

ref



qf
2c   21  sin–cos

1  sin–
---------------------------------------------------------= qa

qf
Rf
------=

q 3J2=

p I– 1 3=

Fy qa
qaq

E50 qa q– 
----------------------------- 2q

Eur
---------– p– 

 =

Qp
q
2
--- p q

6
---+ 

 – m sin=

The definition of the shear strain measure p in the original Hardening 
Soil model is not compatible with pure volumetric loading as it does not 
vanish during pure volumetric straining. Therefore, the shear strain 
measure p is defined as , see Nonlinear Elastic Materials.p 2 J2 pl =

Fy Qp
Rcq 2

pc
------------------ p2

pc
------ pc–+= =

k0
nc

Rc
1

k0
nc

--------=

k0
nc


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The special deviatoric stress  is defined as

where

The internal variables pc and p depend on the volumetric plastic strain pl,vol and the 
plastic strain invariant J2 pl, and their evolution is defined as

where H is the hardening modulus which depends on the bulk modulus in 
compression Kc and the bulk modulus in swelling Ks

 where

The dilatancy cutoff is implemented by setting the mobilized dilatancy angle m equal 
to zero when the void ratio reaches the critical void ratio emax.

Cauchy’s stress tensor is then written as

where C is a function of the stiffness modulus Eur and Poisson’s ratio .

k0
nc 1  sin–=

q
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---------------------------=
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----- 1

Kc
------ 1

Ks
------–= Ks

Eur
ref

3 1 2ur– 
-----------------------------=

 0– C:  inel– =
M A T E R I A L  M O D E L S  |  573



574 |  C H A P T E R
Creep and Viscoplasticity

In this section:

• Creep

- Creep Material Models

- Creep Rate Function

- Equivalent Stress, Creep Flow and Hardening Rule

- Hardening Function

- Thermal Function

- Combining Creep Models

- Time Integration

- Converting Between Different Creep Data Representations

• Viscoplasticity

- Anand Model

- Chaboche Model

- Perzyna Model

- Bingham Model

- Peric Model

• Creep and Viscoplasticity for Large Strains

• Energy Dissipation

C R E E P

Creep is an inelastic time-dependent deformation that occurs when a material is 
subjected to stress (typically much less than the plastic yield stress) at sufficiently high 
temperatures.

The creep strain rate depends in a general case on stress, temperature, and time, usually 
in a nonlinear manner:

In the literature, the terms viscoplasticity and creep are often used 
interchangeably to refer to the class of problems related to 
rate-dependent plasticity. A distinction is sometimes made so that creep 
refers to models without a yield surface.
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It is often possible to separate these effects multiplicatively:

Experimental data shows three different types of behavior for the creep strain rate at 
constant stress as function of time. Researchers normally subdivide the creep curve into 
these three regimes, based on the fact that many different materials show similar 
responses:

• In the initial primary creep regime (also called transient creep) the creep strain rate 
decreases with time to a minimum steady-state value.

• In the secondary creep regime the creep strain rate is almost constant. This is also 
called steady-state creep.

• In the tertiary creep regime the creep strain increases with time until a failure 
occurs.

When this distinction is assumed, the total creep rate can be additively split into 
primary, secondary, and tertiary creep rates

In most cases, Fcr1 and Fcr3 depend on stress, temperature and time, while secondary 
creep, Fcr2, depends only on stress level and temperature. Normally, secondary creep 

ꞏcr Fcr  T t  =

ꞏcr  t T   f  g T h t =

ꞏcr Fcr1 Fcr2 Fcr3+ +=
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is the dominant process. Tertiary creep is seldom important because it only accounts 
for a small fraction of the total lifetime of a structure or mechanical component.

Figure 3-25: Uniaxial creep as a function of logarithmic time.

Creep Material Models
The mathematical description of a general creep model can be summarized by a set of 
equations given in a similar format as the flow theory of plasticity. The creep strain is 
given by a flow rule that defines the relationship between the rate of the creep strain 
tensor cr and the current state of stress. This flow rule can be written as

where cris the creep multiplier, Qcr is the creep potential, and  is the stress tensor. 
The creep multiplier is an explicit function of stress , temperature T, time t, and the 
equivalent creep strain ce, and can be given on a general format as

where the generic functions f, g, and h that define the creep rate and can be combined 
to construct different types of creep models. The hardening rule, h(ce, t), defines the 
relationship between the creep strain tensor cr and the equivalent creep strain ce. The 
equivalent stress e is a scalar representation of the Cauchy stress tensor, and given 
associative creep flow, it also defines the creep potential so that

cr

1 >2

1

2

log time

secondary creep

tertiary creep

primary creep

ꞏcr cr
Qcr


-----------=

cr f e g T h ce t =
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Creep Rate Function
The creep rate function f is typically a function of the equivalent stress e or any other 
scalar measure of the current stress state. In COMSOL Multiphysics, there are several 
built-in creep rate functions:

• Norton (Power law)

• Garofalo (Hyperbolic sine law)

• Nabarro–Herring (Diffusional Creep)

• Coble (Diffusional Creep)

• Weertman (Dislocation Creep)

It is also possible to define an arbitrary expression for f so that, in principle, any creep 
model can be implemented. The expressions used for the built-in creep rate functions 
are described in the following sections.

The Norton model is the most common secondary creep model, where the creep rate 
is assumed proportional to a power law of the equivalent stress e such that

 (3-77)

where A is the creep rate coefficient, n is the stress exponent, ref is a reference stress 
level.

At very high stress levels the creep rate is proportional to the exponential of e. 
Garofalo showed (Ref. 8, Ref. 9) that the power-law and exponential creep are limiting 
cases for the general empirical expression

This equation reduces to a power-law (the Norton model) when e  0.8 and 
approaches exponential creep for e  1.2, where 1 is a reference equivalent stress 
level. The Garofalo (Hyperbolic sine law) creep model implemented in COMSOL 
Multiphysics is given as

Qcr e=

f e  A
e
ref
--------- 
 

n
=

ꞏcr e sinh n

f e  A
e
ref
--------- 
 sinh 

 
n

=
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For metals at low stress levels and high temperatures, Nabarro and Herring (Ref. 6, 
Ref. 7) independently derived an expression for the creep rate as a function of atomic 
diffusion, so called diffusional creep. The Nabarro-Herring model implemented in 
COMSOL Multiphysics is given as

where d is the grain diameter, Dv is the volume diffusivity through the grain interior, 
b is the Burgers vector, kB is the Boltzmann’s constant, T is the absolute temperature.

Another model for diffusional creep is the Coble creep model (Ref. 6, Ref. 7), which 
is closely related to Nabarro–Herring creep, but takes into account the grain boundary 
diffusivity through the parameter Dgb. The Coble creep model implemented in 
COMSOL Multiphysics is given as

For metals at intermediate to high stress levels and temperatures close to the melting 
temperature of the solid, the creep mechanism can be assumed to be 
diffusion-controlled movements of dislocations in the crystal lattices (Ref. 7). This 
type of creep deformation can be described by the Weertman model, which is given as

Generally, the stress exponent n in the Weertman model takes a value between 3 and 
5 when modeling dislocational creep.

Equivalent Stress, Creep Flow and Hardening Rule
For metals and alloys, creep is in most cases deviatoric (volume preserving), and can 
often be described by a von Mises equivalent stress

f e 
7Dvb3

kBTd2
------------------e=

f e 
50Dgbb4

kBTd3
-----------------------e=

f e  Db
kBT
-----------ref

e
ref
--------- 
 

n
=

Coble creep is more sensitive to grain diameter than Nabarro–Herring 
creep.

e 3J2   3
2
---dev  :dev  = =
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where J2 is the second invariant of the stress deviator. If creep is orthotropic, the Hill 
orthotropic equivalent stress can be used, which is given by

 (3-78)

where F, G, H, L, M, and N are Hill’s coefficients that relate the anisotropy to the local 
coordinates. In the above equation it is assumed that an average equivalent stress can 
be computed from F, G, and H using a von Mises like expression; this assumption leads 
to the first term on the right-hand-side of Equation 3-78.

For soils and other geological materials, creep is often volumetric and can be described 
by a Pressure equivalent stress

where p is the pressure.

It is also possible to specify a user defined equivalent stress in terms of the stress tensor 
and its invariants.

Assuming associative creep flow, the creep flow rule is given as function of the 
equivalent stress

The hardening rule is also assumed to be associative.

The dimensionless tensor N, which gives the direction of the creep flow, is computed 
from the creep potential Qcr as

When von Mises equivalent stress is used, the potential equals Qcr  mises, and the 
deviatoric tensor Ndev is defined as done for J2 plasticity (see Isotropic Plasticity)

e
2 3

2F H G+ +
------------------------------ F 22 33– 2 G 33 11– 2+=

+ H 11 22– 2 2 L23
2 M31

2 N12
2

+ + + 

e p 1
3
--- tr  = =

For more information and the background on the equivalent stress 
definitions, see Elastoplastic Materials.

ꞏcr 
Qcr


----------- 
e

---------= =

N
Qcr


-----------=
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the creep flow rule is then written as

Given the property , the evolution of the equivalent creep strain 
reads

 (3-79)

The same hardening rule is also used when the Hill orthotropic equivalent stress is 
selected.

For the Pressure equivalent stress, the flow direction is volumetric

the volumetric creep flow rule is given as

and the hardening rule reads

When a user-defined equivalent stress is used, a von Mises like hardening rule is used 
according to Equation 3-79.

Hardening Function
The creep hardening function h is typically a function of time t and the equivalent 
creep strain ce. In COMSOL Multiphysics, there are two built-in hardening 
functions, Strain hardening and Time hardening, and it is also possible to specify a 
user defined expression. Also, it is possible to add hardening to any of the built-in creep 
models.

A common model for modeling primary and secondary creep together is the so-called 
Norton–Bailey (or Bailey–Norton) model. Here, the creep strain is proportional to a 
power of the equivalent stress (Norton law) and a power of time (Bailey law)

Ndev
3
2
---dev  

e
-----------------=

ꞏcr 
Qcr


----------- Ndev= =

Ndev:Ndev 3 2=

ꞏce
2
3
---ꞏcr:

ꞏ
cr = =

Nvol
Qcr


-----------
1
3
---I= =

ꞏcr 
Qcr


----------- Nvol= =

ꞏce tr ꞏcr  ꞏcr,vol = = =
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by taking the time derivative of this generic expression at constant stress, it is found 
that the creep strain rate and stress are related by the time hardening function

where the time hardening function is given by the power law

here, tshift is a time shift, tref is a reference time, and m is the hardening exponent.

Similarly, the strain hardening function is given by the power law

where shift is the equivalent creep strain shift, tref is a reference time, and m is the 
hardening exponent.

The strain shift shift and the time shift tshift in the hardening functions serve two 
purposes:

• To initialize a study where hardening has already taken place.

• To remove singularities. The strain rate expressions actually predict an infinite creep 
rate at t = 0, unless a shift is used. This singularity is weak in the sense that the time 
integral is well defined, but it will cause numerical problems. Adding a small shift 
overcomes this problem.

Thermal Function
The temperature shift function g typically depends on the absolute temperature T. In 
COMSOL Multiphysics, an Arrhenius temperature function is built-in, but it is also 
possible to specify a user defined expression.

cr e
ntm

ꞏcr me
ntm 1– e

nh t =

h t  m
t t+ shift

tref
------------------- 
 

m 1–
=

h ce  m
ce + shift

treff e g T 
----------------------------------
 
 
 

m 1–
m

--------------

=

Both the strain hardening function h(ce) and the time hardening 
function h(t) return a dimensionless expression, but for elastoplastic 
material models with Isotropic Hardening, the Hardening Function 
returns an expression in units of stress (SI unit: Pa).
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The Arrhenius temperature function is given as

where Q is the activation energy (J/mol), R is the gas constant, T is the absolute 
temperature, and Tref is a reference temperature.

Combining Creep Models
Using a combination of f, g, and h together with the definition of the equivalent stress 
e makes it possible to construct sophisticate creep models. For example, the often 
used temperature-dependent isotropic Norton creep model is obtained by the 
following settings:

• Creep model: Norton

• Equivalent stress: von Mises

• Thermal effects: Arrhenius

The resulting creep model is then given by the following equations:

Furthermore, selecting a time hardening function results in the Norton–Bailey creep 
model:

Several creep rate contributions can be added to the total creep rate to construct more 
elaborate models. This is done by adding one or more Additional Creep subnodes to an 
existing Creep node. There are no restrictions on how to combine models; for example, 

g T  exp Q
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--------- 
 

n
exp Q

R
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T
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 –  Ndev= =

ꞏcr 
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----------- A
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ref
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n
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T
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Tref
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a von Mises based creep flow contribution can be combined with a Pressure based 
creep flow contribution.

Time Integration
The rate equations given by the creep flow and hardening rules have to be integrated 
in time to compute the value of the creep strain tensor cr and the equivalent creep 
strain ce at each time step. This can be done using any of the following methods:

• Backward Euler

• Forward Euler

• Domain ODEs

For an arbitrary number of contributions to the creep deformation, the general 
equations to be solved can be formulated as

 (3-80)

 (3-81)

where Ncr and Nce are tensors that describe the direction of cr and ce, respectively.

The Backward Euler method is used to discretize these equations as

 (3-82)

• In the example Combining Creep Material Models:
Application Library path Nonlinear_Structural_Materials_Module/Creep/

combined_creep

a Norton–Bailey model for primary creep is combined with a Norton 
model for secondary creep. Both creep models are 
temperature-dependent. The resulting creep rate equation becomes
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 (3-83)

where n+1 indicates that the variable is evaluated at the current time step, and t is the 
time step. The creep strain tensor  and equivalent creep strain  at the previous 
time step are stored as internal state variables. Equation 3-82 and Equation 3-83 
define a system of nonlinear equations that is solved locally at each Gauss point for 

 and  using Newton’s method.

The Forward Euler method is used to discretize Equation 3-80 and Equation 3-81 as

 (3-84)

 (3-85)

such that all quantities on the right-hand-side are evaluated at the previous time step. 
This means that Equation 3-84 and Equation 3-85 define an explicit update of  
and  given only known quantities from the previous time step. The forward 
Euler method is only conditionally stable, and the time step of the global time 
marching scheme has to be constrained to preserve stability and accuracy of the 
method. In COMSOL Multiphysics the limit for a stable time step is estimated as

where el is the elastic strain tensor. This estimate in principle restricts the creep 
increment to be smaller than the current state of stress, and 1/4 is a constant to make 
the estimate conservative. The final value is computed as the minimum value over all 
Gauss points in the domain where the creep feature is active.

For Domain ODEs, Equation 3-80 and Equation 3-81 are converted to weak-form 
and solved as part of the general initial-boundary value problem. The components of 
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el

Nce i
n

i

----------------------------

 
 
 
 
 
 

=
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the creep strain tensor cr and the equivalent creep strain ce are then treated as 
degrees-of-freedom.

Converting Between Different Creep Data Representations
The equations described in the previous sections about the different creep models 
differ from the forms most commonly found in the literature. The main difference lies 
in the introduction of normalizing reference values such as the reference stress ref and 
reference time tref. These values are in a sense superfluous and can in principle be 
chosen arbitrarily. The choice of reference values, however, affects the numerical values 
to be entered for the material data. This system has two advantages:

• It is possible to use the built-in unit management system in COMSOL Multiphysics.

• There is not any need to perform any difficult unit conversions when creep data are 
available in units other than the units in the model. Since many creep models 
contain the stress or time raised to a noninteger power, such conversions are error 
prone.

Norton Law

Material data for a Norton law is often available as the parameters AN and n in the 
equation

The coefficient AN has a physical dimension that depends on the value of n, and the 
unit has an implicit dependence on the stress and time units. Converting the data to 
the format used in COMSOL Multiphysics (for example, Equation 3-77) requires the 
introduction of the reference stress ref. It is convenient here to use the implicit stress 
unit for which AN is given as the reference stress. The creep rate coefficient A will then 
have the same numerical value as AN, and you do not need to do any conversions.

The physical dimension of A is, however, (time)1, whereas the physical dimension of 
AN is (stress)n(time)1.

Another popular way of representing creep data is to supply the stress giving a certain 
creep rate. As an example, c7 is the stress at which the creep strain rate is 107/h. Data 

For more information see the Modeling with ODEs and DAEs and The 
ODE and DAE Interfaces chapters in the COMSOL Multiphysics 
Reference Manual.

ꞏcr ANe
n

=
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on this form is also easy to enter: You set the reference stress ref to the value of c7 
and enter the creep rate coefficient A as 1e-7[1/h].

Example

Assume that a carbon steel has the following two equivalent descriptions of its creep 
properties at a certain temperature:

• c7 = 70 MPa, and stress exponent n = 4.5.

• AN  = 4.98·10-16 with respect to units MPa and hours, and stress exponent n = 4.5.

In the first case, enter:

• ref as 70[MPa]

• n as 4.5

• A as 1e-7[1/h].

In the second case, enter:

• ref as 1[MPa]

• n as 4.5

• A as 4.98e-16[1/h]

These two sets of data describe the same material.

Garofalo Law

Since the stress inside in the Garofalo law appears as an argument to a sinh() function, 
it must necessarily be dimensionless. Most commonly this is however written as

Comparing with the expression in COMSOL Multiphysics,

it is evident that the reference stress should be chosen as

In this case, there is no arbitrariness in the choice of ref, since  is an actual material 
parameter.

ꞏcr e sinh n

ꞏcr
e
ref
--------- 
 sinh 

 
n



ref
1

---=
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V I S C O P L A S T I C I T Y

Viscoplasticity, as well as Creep, is an inelastic time-dependent deformation that occurs 
when the material is subjected to stress (typically much less than the yield stress). The 
growth of unrecoverable strains depend on the rate at which loads are applied, effect 
that is normally enhanced by high temperatures.

The viscoplastic strain vp is computed by a flow rule that defines the relationship 
between the rate of vp and the current state of stress and temperature.

When an associative flow and von Mises equivalent stress e are used, so Qvp  e, the 
rate of vp is coaxial to the stress deviator and the viscoplastic flow rule is written as

where Qvp is the viscoplastic potential,  is the stress tensor, and Ndev  Qvp   is 
the flow direction.

The viscoplastic multiplier vp depicts a different expression for different viscoplastic 
models (Anand, Chaboche, and so on), and it is equal to the equivalent viscoplastic 
strain rate 

given the property .

Setting different measures for the equivalent stress e (von Mises, Tresca, Hill) allows 
to define different viscoplastic multiplier and flow directions, see Equivalent Stress, 
Creep Flow and Hardening Rule for details.

Anand Model
Anand viscoplasticity (Ref. 9) is a deviatoric viscoplastic model suitable for isotropic 
viscoplastic deformations. As for the models described in Creep, the Anand model has 
no yield surface.

The rate of vp is determined by the viscoplastic multiplier vp which is a function of 
stress  and temperature T, and it is given by

ꞏvp vp
Qvp


------------ vp
3
2
---dev  

e
------------------- vpNdev= = =

ꞏvpe

ꞏvpe
2
3
---ꞏvp:ꞏvp

2
3
---vp

2 Ndev:Ndev vp= = =

Ndev:Ndev 3 2=

vp Ae Q– RT 
e
sa
----- 

 sinh

1
m
-----

=
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here, A is the viscoplastic rate coefficient, Q is the activation energy (J/mol),  is the 
stress multiplier, m is the stress sensitivity, and R is the gas constant.

The deformation resistance, sa (SI unit: Pa), controls the hardening behavior of the 
Anand model. In COMSOL Multiphysics it is derived for the normalized resistance 
factor, sf, and the deformation resistance saturation coefficient, ssat, such that 
sa = ssat sf. The resistance factor sf is an dimensionless internal variable that is 
computed by the evolution equation

with the initial condition sf(0)  sinit / ssat. The evolution of the resistance factor sf is 
controlled by the dimensionless hardening function

were h0 (SI unit: Pa) represents a constant rate of athermal hardening in the curve 
stress versus strain (Ref. 9). The use of the sign function and the absolute value in the 
hardening function permits the modeling of either strain hardening or strain softening, 
depending on whether sf is greater or smaller than the saturation value sf*.

The saturation value sf* is calculated from the expression

where n is the deformation resistance sensitivity exponent.

The Anand model computes the equivalent viscoplastic strain rate using the evolution 
equation for the internal variable

Chaboche Model
The equivalent viscoplastic strain rate (viscoplastic multiplier) is given by

 for

and the viscoplastic strain rate tensor is given by

sꞏf hvp=

h
h0
ssat
--------- 1

sf

sf
*

-----–
a
sign 1

sf

sf
*

-----–
 
 
  h0

ssat
--------- 1

sf

sf
*

-----–
a 1–

1
sf

sf
*

-----–
 
 
 

= =

sf
* vp

A
--------eQ RT
 
 

n
=

ꞏvpe vp Ae Q– RT 
e
sa
----- 

 sinh

1
m
-----

= =

vp ꞏvpe A
e – ys
ref

------------------- 
n

= = F 0
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Here, A is the viscoplastic rate coefficient (SI unit: 1/s), n is the stress exponent 
(dimensionless), and ref is a reference stress level (SI unit: Pa).

The Macaulay brackets   are applied on the yield function, which is defined as done 
for plasticity

The equivalent stress e is either the von Mises, Tresca, or Hill orthotropic stress, or a 
user defined expression; and ys is the yield stress (which may include an Isotropic 
Hardening model). The stress tensor used in the equivalent stress e is shifted by what 
is usually called the back stress, back when Kinematic Hardening is included.

The deviatoric tensor Ndev is computed from the viscoplastic potential Qvp

When von Mises equivalent stress is used, the associated flow rule reads Qvp  F, and 
the deviatoric tensor Ndev is defined as done for deviatoric creep.

Perzyna Model
The Perzyna model defines the equivalent viscoplastic strain rate (viscoplastic 
multiplier) by

 for

and the viscoplastic strain rate tensor is given by

As described for Chaboche Model, the equivalent stress e can be either von Mises 
(default), Tresca, Hill orthotropic stress, or a user defined expression. The flow 
direction Ndev  Qvp   is computed from the viscoplastic potential Qvp, which can 
be associated or non associated.

Bingham Model
Bingham model is equivalent to Chaboche Model when setting the exponent n  1, 
and denoting the viscosity as the quotient   ref/A. The equivalent viscoplastic 
strain rate (viscoplastic multiplier) is given by

ꞏvp vpNdev=

F e ys–=

Ndev
Qvp


------------=

vp ꞏvpe A
e
ys
------- 1– 

n
= = F e – ys 0=

ꞏvp vpNdev=
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 for

and the viscoplastic strain rate tensor is given by

As described for Chaboche Model, the equivalent stress e can be either von Mises 
(default), Tresca, Hill orthotropic stress, or a user defined expression. The flow 
direction Ndev  Qvp   is computed from the viscoplastic potential Qvp, which can 
be associated or non associated.

Peric Model
The Peric model defines the equivalent viscoplastic strain rate (viscoplastic multiplier) 
by

 for

and the viscoplastic strain rate tensor is given by

As described for Chaboche Model, the equivalent stress e can be either von Mises 
(default), Tresca, Hill orthotropic stress, or a user defined expression. The flow 
direction Ndev  Qvp   is computed from the viscoplastic potential Qvp, which can 
be associated or non associated.

User Defined
It is possible to freely define the viscoplastic rate vp

 for

The conditional evaluation  is handled automatically.

By default, an associative flow and von Mises equivalent stress e are used, so Qvp  F, 
the rate of vp is coaxial to the stress deviator, and the viscoplastic flow rule is written as

vp ꞏvpe
1

--- e – ys = = F e – ys 0=

ꞏvp vpNdev=

vp ꞏvpe A
e
ys
------- 
 

n
1– = = F e – ys 0=

ꞏvp vpNdev=

vp ꞏvpe= F e – ys 0=

F 0

ꞏvp vp
Qvp


------------ vp
3
2
---dev  

e
------------------- vpNdev= = =
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Thermal Effects
The temperature shift function g typically depends on the absolute temperature T. In 
COMSOL Multiphysics, an Arrhenius temperature function is built-in, but it is also 
possible to specify a user defined expression.

The Arrhenius temperature function is given as

where Q is the activation energy (J/mol), R is the gas constant, T is the absolute 
temperature, and Tref is a reference temperature.

Time Stepping
The rate equations given by the viscoplastic flow rule and evolution equations for the 
two internal variables are integrated in time to compute the value of the viscoplastic 
strain tensor vp, the equivalent creep strain vpe, and other possible internal variables 
(for instance, the resistance factor sf in Anand model) at each time step. This can be 
done using any of the following methods:

• Backward Euler

• Domain ODEs

The Backward Euler method is used to discretize these equations as

 (3-86)

 (3-87)

where Nvp and Nvpe are tensors that describe the direction of vp and vpe, 
respectively, n+1 indicates that the variable is evaluated at the current time step, and 
t is the time step.

For Anand Model an extra equation is solved for the resistance factor, sf,

 (3-88)

The viscoplastic strain tensor , equivalent viscoplastic strain  and the resistance 
factor n  at the previous time step are stored as internal state variables. 

g T  exp Q
R
---- 1

T
---- 1

Tref
---------– 

 –=

See also the description of Viscoplasticity in the physics interface 
documentation.

vp
n 1+ vp

n– tvp
n 1+ Nvp

n 1+=

vpe
n 1+ vpe

n– tvp
n 1+ Nvpe

n 1+=

sf
n 1+ sf

n– tvp
n 1+ hn 1+=

vp
n vpe

n

sf
n

M A T E R I A L  M O D E L S  |  591



592 |  C H A P T E R
Equation 3-86 to Equation 3-88 define a system of nonlinear equations that is solved 
locally at each Gauss point for ,  and  using Newton’s method.

For Domain ODEs, the evolution equations of the viscoplastic model are converted 
to weak-form and solved as part of the general initial-boundary value problem. The 
components of vp, vpe and sf are then treated as degrees-of-freedom.

C R E E P  A N D  V I S C O P L A S T I C I T Y  F O R  L A R G E  S T R A I N S

When the Large strains formulation is selected in the Creep or Viscoplasticity nodes, a 
Multiplicative Decomposition of deformation gradients is used

here, F is the deformation gradient, Fel is the elastic deformation, and Fin is inelastic 
deformation due to creep or viscoplasticity.

The velocity gradient then reads (see Strain Rate and Spin for details)

The velocity gradient can then be split into the elastic and inelastic parts, L = Lel + Lin. 
The inelastic velocity gradient

is energy conjugate to the stress tensor, and it is coaxial to it for maximum dissipation. 
Neglecting the inelastic spin, so the inelastic deformation gradient is symmetric, the 
formulation for large strain viscoplasticity or creep is similar to the formulation 
described in the Plastic Flow for Large Strains section. The time-derivative of the 
inverse inelastic deformation gradient is given by the rate

 (3-89)

where in is the equivalent creep or viscoplastic strain rate, and Qin is the creep or 
viscoplastic potential. For creep and viscoplasticity in metals (so-called J2 plasticity) 

vp
n 1+ vp

n 1+ sf
n 1+

For more information see the Modeling with ODEs and DAEs and The 
ODE and DAE Interfaces chapters in the COMSOL Multiphysics 
Reference Manual.

F FelFin=

L FꞏF 1– Fꞏ elFin FelF
ꞏ

in+ F 1– Fꞏ elFel FFin
1– Fꞏ inF 1–+= = =

Lin FFin
1– Fꞏ inF 1–=

Fꞏ in
1– in– F 1–

Qin


------------FFin
1–=
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the viscoplastic potential depends on the deviatoric stress, Qin  QinJ2 , and the 
flow direction is deviatoric, Ndev  Qin  .

For large strains, Equation 3-89 is numerically solved with the so-called exponential 
mapping technique, as described in Numerical Solution of the Elastoplastic 
Conditions, and the elastic deformation gradient then obtained from

E N E R G Y  D I S S I P A T I O N

Since creep and viscoplasticity are inelastic processes, the dissipated energy density can 
be calculated by integrating the creep dissipation rate density or viscoplastic 
dissipation rate density given by

in time. The total energy dissipated in a given volume can be calculated by a volume 
integration of the dissipated creep energy density Wcr or dissipated viscoplastic energy 
density Wvp.

Inelastic Strain Rate

The inelastic behavior of materials is often described by the rate of the inelastic 
quantity, especially if the behavior is time dependent and nonlinear. For example, 
Elastoplastic Materials, Linear Viscoelasticity, Creep and Viscoplasticity all describe 
material models that are implemented in dedicated features. The Inelastic Strain Rate 
node provides functionality to specify a general expression for the rate of inelastic 
deformation, entered either as strain tensor ie; deformation gradient Fie; deformation 

Fel FFin
1–=

Wꞏ cr :ꞏcr=

Wꞏ vp :ꞏvp=

When the Calculate dissipated energy check box is selected, the dissipation 
rate density due to creep is available under the variable solid.Wcdr and 
the dissipation rate density due to viscoplasticity is available under the 
variable solid.Wvpdr. The dissipated energy density due to creep is 
available under the variable solid.Wc and due to viscoplasticity under the 
variable solid.Wvp. Here solid denotes the name of the physics 
interface node.
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gradient inverse ; or stretch ie. The user defined expression can be a function of 
any variable in the model.

Given a generic inelastic quantity Uie, the feature sets up and solves the following type 
of distributed ODE

 (3-90)

where t is the time, u is the displacement, and f(t, u, Uie,...) is a user defined 
expression. Equation 3-90 is also subjected to the initial condition

where  is a user defined input.

Time Integration
The distributed ODE in Equation 3-90 is integrated in time to compute the value of 
the inelastic quantity Uie at each time step. This can be done using any of the following 
methods:

• Backward Euler

• Domain ODEs

The Backward Euler method is used to discretize Equation 3-90 as

 (3-91)

where n+1 indicates the current time step, and t is the time step. The inelastic 
quantity at the previous time step  is stored as internal state variables, their initial 
value is given by . Equation 3-91 defines a system of nonlinear equations that is 
solved locally at each Gauss point for  using Newton’s method.

For Domain ODEs, Equation 3-90 is converted to weak-form and solved as part of 
the general initial-boundary value problem. The components of the inelastic quantity 
Uie are here treated as a degrees-of-freedom of the model.

Fie
1–

dUie
dt

------------- f t u Uie    =

Uie t0  Uie
init=

Uie
init

Uie
n 1+ Uie

n–

t
-------------------------------  f tn 1+ un 1+ Uie

n 1+    =

Uie
n

Uie
init

Uie
n 1+

For more information see the Modeling with ODEs and DAEs and The 
ODE and DAE Interfaces chapters in the COMSOL Multiphysics 
Reference Manual.
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Shape Memory Alloy

The term shape memory alloy (SMA) normally refers to alloys that can undergo large 
strains, effect called superelasticity or pseudoelasticity; and also to materials that after 
undergoing large deformations can remember their original shape when heated above 
a certain temperature.

These alloys are mixtures of metals such as copper, aluminum, nickel, titanium and 
other. Nickel-titanium (NiTi) alloys have applications in many industries due to their 
thermal and mechanical properties. Most of the industrial applications of NiTi alloys 
take advantage of the different mechanical properties of the two crystalline structures 
found around room temperature: austenite and martensite.

Hot NiTi alloys are composed by a pure austenite phase. The martensite phase 
develops upon cooling the alloy below the martensite start temperature, Ms. The 
martensite volume fraction M will increase until the cooling temperature reaches the 
martensite finish temperature, Mf, below which the alloy microstructure will be pure 
martensite.

The reverse process has different transition temperatures: A pure martensite alloy will 
develop an austenite microstructure if it is heated above the austenite start 
temperature, As. The austenite phase will increase upon heating the material to the 
austenite finish temperature, Af, above which the alloy microstructure becomes 100% 
austenite.

Many industrial applications take advantage of this hysteresis loop, as the transition 
temperatures are not the same in a heating-cooling cycle.

There are two shape memory alloy models available with the Nonlinear Structural 
Material Module: the Souza–Auricchio model and the Lagoudas model. These 
material models differ in the expression for the free energy density.

S O U Z A – A U R I C C H I O  M O D E L

For the Souza–Auricchio model, Helmholtz free energy density depends on two state 
variables: the total strain tensor  and the temperature T. An additional internal variable 
is used to compute the transformation strain tensor tr (Ref. 33-34)

here, c is the heat capacity at constant pressure, K and G are the bulk and shear moduli, 
vol is the volumetric strain, Hk is the hardening modulus, and I(tr) is the indicator 

  T tr   cT 1 ln T –  K
2
----vol

2 G  tr– 2
Hk
2

------- tr 2 f T  tr I tr + + + + +=
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function for the strain limit constraint. The equivalent transformation strain tre is 
used as a measure of the transformation strain tensor

The indicator function is defined by

The term ch  fTtr is denoted as the chemical energy density due to the thermally 
induced martensite transformation. The function f(T) corresponds to the 
temperature-dependent martensite to austenite equilibrium stress, defined from the 
slope of the limit curve and the reference temperature T*

Here, the operator   denotes the Macaulay brackets.

The conjugated thermodynamic stress tr associated to the transformation strain 
variable is

The evolution of the transformation strain tr is given by the so-called limit function, 
which takes the same form as the yield function for metal plasticity.

The evolution equation for the transformation straintr is computed from the flow 
rule

where the plastic multiplierp is solved with the Kuhn–Tucker conditions, as done for 
plasticity, see Plastic Flow for Small Strains.

L A G O U D A S  M O D E L

For Lagoudas model, Gibbs free energy density depends on two state variables: the 
total stress tensor  and the temperature field T. Additional internal variables are used 

tre tr
2
3
---tr:tr= =

I tr 
0 for tr tr, max

           otherwise



=

f T   T T*
– =

tr

tr
--------- dev   Htr– f T 

 tr
tr
------------– I

tr
---------–= =

F tr ys0–=

ꞏ tr p
F
tr
----------=
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to compute the transformation strain tensor tr and the martensite volume fraction  
(Ref. 35)

Here, c is the heat capacity at constant pressure, s0 is the specific entropy at reference 
state, S is the compliance matrix,th is the thermal strain tensor,tr is the 
transformation strain tensor, u0 is the specific internal energy at reference state, and 
f() is the transformation hardening function. The compliance matrix S, is obtained 
by a volume average of the elastic properties of martensite and austenite

where S  SM  SA. Also, other material parameters are averaged this way.

As opposed to Souza–Auricchio model, the evolution equation for the transformation 
straintr is computed from the flow rule

where the normalized transformation tensor  changes principal directions 
depending on the direction of the martensitic transformation.

The maximum transformation strain in Lagoudas model can be considered constant, 
or stress-dependent as described in Ref. 36. A stress-dependent maximum 
transformation strain can be used at low stress levels, where the martensite turns into 
detwinned structures.

The variable for the direction of the martensitic transformation, , is calculated from 
the previous state to determine the expected increment or decrement of the 
transformation strain tensor tr. This calculation is computational expensive and it can 
lead to convergence issues. Since in many applications the transformation direction  
is known a priori (for instance, mechanical loading or unloading, or temperature 
increment/decrement) a user input enables to set the transformation direction 
manually to 1 or -1, thus speeding up the computational time.

For Lagoudas model, it is possible to choose from different transformation hardening 
functions f()

• Quadratic

• Cosine

• Smooth

• User defined

G  T tr     c T T0–  Tln T
T0
------– 

  s0T 1
2
------–– :S: 1


---: th tr– – u0

1

---f  + +=

S   SM 1 – SA+ SA S+= =

ꞏ tr ꞏ=

ꞏ

ꞏ
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The quadratic hardening function is defined as

where the parameters bM and bA are computed from

 and ,

and the parameters 1 and 2 from

 and

The smooth hardening function is defined with four smoothing parameters n1, n2, n3, 
and n4:

E Q U I V A L E N T  M A T E R I A L  P R O P E R T I E S

In Lagoudas model, the phase transformation is described by six parameters: the 
transition temperatures Ms, Mf, As, Af, and the two slopes of austenite and martensite 
limit curves CA and CM.

When the experimental data consists of a uniaxial stress-strain curve taken at constant 
temperature, it is handy to enter the transition stress levels instead of the transition 
temperatures.

Consider a NiTi alloys at constant temperature composed by 100% of austenite volume 
fraction. Upon loading, the slope in the stress-strain curve would be the Young’s 
modulus of austenite, EA. The martensite phase starts to develop when the axial stress 
reaches the martensite start stress, Ms. If the alloy is further loaded, the slope 
reduces, entering a region called loading plateau. Above the martensite finish stress, 
Mf, the microstructure becomes 100% martensite. This process is commonly called 
the forward transformation.

f  

1
2
---bM2 1 2+     for ꞏ 0+

1
2
---bA

2 1 2–     for ꞏ 0+





=

bM s0 Mf Ms– = bA s0 Af As– =

1
1
2
---s0 Ms Af+  u0–= 2

1
4
---s0 As Af– Mf– Ms+ =

f  

1
2
---bM  

n1 1+

n1 1+
---------------- 1 – 

n2 1+

n2 1+
-----------------------------+ +

 
 
 

   for ꞏ 0

1
2
---bA  

n3 1+

n3 1+
---------------- 1 – 

n4 1+

n4 1+
-----------------------------+ +

 
 
 

   for ꞏ 0











=
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The reverse process has different transition stresses: If the 100% martensite alloy is 
unloaded, the slope follows the martensite Young’s modulus EM. When the axial stress 
reaches the austenite start stress, As, the austenite volume fraction A starts to 
develop until the axial stress falls below the austenite finish stress, Af, at which level 
the alloy microstructure is 100% austenite. This process is commonly called the reverse 
transformation. Figure 3-26 illustrates this process.

.

Figure 3-26: Uniaxial stress-strain curve at constant temperature.

The relations between the start and finish temperatures and stresses are

,

,

here, T is the constant temperature at which the stress-strain curve was measured.

D I S S I P A T I O N

Since phase transformation is an inelastic process, the dissipated energy density can be 
calculated by integrating the pseudo-rate given by

For Souza-Auricchio model the dissipated energy density rate is then defined by

Mf

axial strain

100% martensite

unloading plateau

loading plateau

Ms

As

Af

axial stress

100% austenite

M
A

Ms CM T Ms– = Mf CM T Mf– =

As CA T As– = Af CA T Af– =

Wꞏ tr :ꞏtr=
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For Lagoudas model it is defined by

As plasticity is rate independent, the transformation dissipation density Wtr is obtained 
after integrating an extra variable in the plastic flow rule.

The total energy dissipated by plasticity in a given volume can be calculated by the 
volume integration of the plastic dissipation density Wtr.

Piezoelectricity

The piezoelectric effect manifests itself as a transfer of electric to mechanical energy 
and vice versa. It is present in many crystalline materials, while some materials such as 
quartz, Rochelle salt, and lead titanate zirconate ceramics display the phenomenon 
strongly enough for it to be of practical use.

The direct  piezoelectric effect consists of an electric polarization in a fixed direction 
when the piezoelectric crystal is deformed. The polarization is proportional to the 
deformation and causes an electric potential difference over the crystal.

The inverse piezoelectric effect, on the other hand, constitutes the opposite of the 
direct effect. This means that an applied potential difference induces a deformation of 
the crystal.

P I E Z O E L E C T R I C  C O N S T I T U T I V E  R E L A T I O N S

It is possible to express the relation between the stress, strain, electric field, and electric 
displacement field in either a stress-charge form or strain-charge form:

Wꞏ tr p: F
tr
----------=

Wꞏ tr ꞏ:=

When the Calculate dissipated energy check box is selected, the 
transformation dissipation density is available under the variable 
solid.Wtr and the total transformation dissipation under the variable 
solid.Wtr_tot.
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Stress-Charge

Strain-Charge

In the above relations, the naming convention used in piezoelectricity theory is 
assumed, so that the structural strain is denoted by S, and the stress is denoted by T. 
Thus, the naming convention differs in piezoelectricity theory compared to structural 
mechanics theory.

The constitutive relation using COMSOL Multiphysics symbols for the different 
constitutive forms are thus:

S T R E S S - C H A R G E

 (3-92)

The stress-charge form is always used in the variational formulation (weak equation 
form) which COMSOL Multiphysics uses for discretization and computation.

S T R A I N - C H A R G E

 (3-93)

Most material data appear in the strain-charge form, and it can be easily transformed 
into the stress-charge form. In COMSOL Multiphysics both constitutive forms can be 
used; simply select one, and the software makes any necessary transformations. The 
following equations transform strain-charge material data to stress-charge data:

T cES eTE–=

D eS 0rSE+=

S sET dTE+=

D dT 0rTE+=

The Piezoelectric Material uses the structural mechanics nomenclature. 
The strain is named  (instead of S) and the stresses are denoted by either 
 or S (instead of T). This makes the names consistent with those used in 
the other structural mechanics interfaces.

 cE eTE–=

D e 0 vac rSE+=

 sE dTE+=

D d 0 vac rTE+=
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 (3-94)

All the necessary material data inputs are placed within the Piezoelectric Material 
feature under the Solid Mechanics interface, which are added automatically when 
adding a predefined Piezoelectricity multiphysics interface. Such node can be also 
added manually under any Solid Mechanics interface similar to all other material model 
features. The piezoelectric material uses the Voigt notation for the anisotropic material 
data, as customary in this field. More details about the data ordering can be found in 
Orthotropic and Anisotropic Materials section.

G O V E R N I N G  E Q U A T I O N S

The equations of Piezoelectricity combine the momentum equation Equation 3-148 
with the charge conservation equation of Electrostatics,

 (3-95)

where the V is the electric charge concentration. The electric field is computed from 
the electric potential V as

In both Equation 3-95 and Equation 3-148, the constitutive relations Equation 3-92 
are used, which makes the resulting system of equations closed. The dependent 
variables are the structural displacement vector u and the electric potential V.

W A V E  P R O P A G A T I O N  I N  P I E Z O E L E C T R I C  M E D I A

In case of geometric linearity, the governing equations for a linear piezoelectric 
medium of any anisotropy can be written in terms of the structural displacement vector 
u and electric potential V as:

 (3-96)

The following symmetries hold for the constitutive tensor coefficients:

cE sE
1–

=

e d sE
1–

=

rS rT d sE
1– dT 0 vac–=

 D V=

E V–=


t2

2



 u  Cu V e+ =

 eu 0r V–  0=
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.

The constitutive relations in tensor notations can be derived using a thermodynamic 
potential called the electrical enthalpy:

Thus,

Since the relations in Equation 3-96 are linear, they possess the following 
time-harmonic wave solutions:

where k = kn is the wave number vector, n is the direction vector that defines the 
wavefront propagation direction. The wavefront is an imaginary line connecting solid 
particles of the same phase. The velocity of such wavefront in the direction normal to 
it is given by the phase velocity c  k.

A generalization of Christoffel’s equation (Equation 3-25) can then be done:

C
ijkl

C
jikl

C
klij     eikl eilk     r

kl r
lk

= = = =

Piezoelectric material data inputs in COMSOL Multiphysics are based on 
the matrix representation of higher-order tensors using Voigt notations. 
Thus, to obtain coefficients of 6-by-3 coupling matrix , the first index 
of the coupling tensor components  remains the same, while the last 
two indices should be replaced by a single index obtained using special 
rules. Similarly, for the stiffness tensor, the first pair and the second pair 
of indices must be replaced by a single index used instead of each pair. See 
Orthotropic and Anisotropic Materials for the index transformation rules.

eim

eikl

He u V  1
2
---uCu V e u 1

2
---0V r V –+=


u

He Cu V e+= =

D
V

He eu 0r V–= =

u une
it ik r–

=

V une
it ik r–

=
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where the generalized Christoffel’s tensor is defined as

and

The generalized Christoffel’s equation can be considered as an eigenvalue problem. 
Thus, to have a nontrivial solution, the phase velocity must satisfy:

which is called the dispersion relation. This is in general case a cubic polynomial in 
terms of c2, which has three roots . Thus, for an arbitrary anisotropic 
medium, three waves with different phase velocities can propagate in each given 
direction.

However, most piezoelectric materials exhibit only moderate degree of anisotropy. The 
material data is usually given in a coordinate system, in which it is ether orthotropic or 
even transversely isotropic so that only one direction (poling direction) differs from the 
two others. In this case, the expressions for the phase velocity can be computed 
analytically for waves of certain types, polarizations, and directions of propagations.

For example, the pressure wave propagating in the X-axis direction is a particular 
solution, for which

The corresponding phase velocity is given by

c2un n un=

un en un n=

n n C n en en n+=

en n e n =

n 0n  r n=

det n  c2I–  0=

c2 cj
2 n  =

u û i– kX X cXt–  exp=

v 0=

w 0=

V V̂ i– kX X cXt–  exp=
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Here, the material data coefficients are given in the same matrix form notation that is 
used in COMSOL Multiphysics for data input.

The shear wave propagation in the X-axis direction and with XY-plane polarization is 
a solution such that

and the corresponding phase velocity is computed as

If the wave propagation is initiated by a small perturbation that is initially localized in 
space, the solution can be found using Fourier and Laplace transforms, and it will 
represent a so-called wave packet. The wave packet will propagate with the group 
velocity given by:

where un,j is the wave polarization vector that is the eigenvector corresponding to the 
eigenvalue solution  of the Christoffel’s equation.

COMSOL Multiphysics provides predefined variables for the phase and group 
velocities for waves of different types propagating in any chosen direction. These 
variables do not affect the solution as such, but are available during result presentation 
if the Wave Speeds node has been added to the material.

cpX
1

--- cE 11

eX1
2

0rS XX
-----------------------+

 
 
 

1 2

=

u 0=

v v̂ i– kX X cXt–  exp=

w 0=

V V̂ i– kX X cXt–  exp=

csXY
1

--- cE 66

eX6
2

0rS XX
-----------------------+

 
 
 

1 2

=

k
j 1

2cj
-----------

n
 un j n un j       j 1 2 3 = =

cj
2 n  

The wave speed variables can be found in the Wave speeds folder under 
Solid Mechanics in the Replace Expression tree.
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P I E Z O E L E C T R I C  D I S S I P A T I O N

In order to define dissipation in the piezoelectric material for a time-harmonic analysis, 
all material properties in the constitutive relations can be complex-valued matrices, 
where the imaginary part defines the dissipative function of the material.

Complex-valued data can be defined directly in the fields for the material properties, 
or a real-valued material X and a set of loss factors X can be defined, which together 
form the complex-valued material data

The sign in the complex damping terms are defined as

In the four first expressions, the choice of sign is a result of the single physics 
observations that

• Strain lags behind stress.

• Electric displacement (or polarization) lags behind the electric field.

For these cases, it is thus necessary that X is positive in order for the material to be 
thermodynamically stable with the chosen signs.

The sign of the coupling losses requires more considerations, and the chosen sign must 
be considered as a definition. All values of e and d does not necessarily have to be 
positive. For some simple theoretical cases with isotropic loss factors, it can however 
be shown that the definition above is reasonable:

• Consider a material which in strain-charge form only has mechanical damping. 
Thus, d is real, and the second transformation law in Equation 3-94 shows that e 
must have a positive loss factor.

• Consider a material with only coupling loss. Then the second transformation law in 
Equation 3-94 shows that d and e must have the same loss factor multiplier. From 

X̃ X 1 jX =

c̃E 1 icE+ = cE

s̃E 1 isE– = sE

̃rS 1 iS– = rS

̃rT 1 iT– = rT

ẽ 1 ie+ = e

d̃ 1 id+ = d
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the third transformation law it can be inferred that e and d in this case must be 
positive in order for the material to have an appropriate phase lag between D and E.

In a real material, all types of losses occur simultaneously. Then, the criteria for 
allowable values of the loss factors become complicated, particularly if they are not 
isotropic.

It is also possible to define the electrical conductivity of the piezoelectric material,  
Electrical conductivity appears as an additional term in the variational formulation 
(weak equation form). The conductivity does not change during transformation 
between the formulations.

The energy dissipation modeling is also available in time domain. The options are: 
dielectric dispersion for the electrical part, and Rayleigh damping for the mechanical 
and coupling parts of the problem. The total dissipated energy can be computed as a 
function of time.

I N I T I A L  S T R E S S ,  S T R A I N ,  A N D  E L E C T R I C  D I S P L A C E M E N T

Using the functionality available under the Piezoelectric Material feature and Solid 
Mechanics interface, one can define initial stress (S0), initial strain (0), and remanent 
electric displacement (Dr) for models. In the constitutive relation for piezoelectric 
material these additions appear in the stress-charge formulation:

M U L T I P L I C A T I V E  F O R M U L A T I O N  F O R  P I E Z O E L E C T R I C I T Y

The total deformation gradient is computed from the structural displacement field as

and the right Cauchy–Green is defined as .

The decomposition between elastic and inelastic deformation is made using a 
multiplicative decomposition of the deformation gradient

Piezoelectric Losses

 cE  0–  eTE– 0+=

D e  0–  0 vac rSE Dr+ +=

F u I+=

C FTF=

Fel FFin
 1–

=
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where the inelastic deformation tensor depends on the inelastic process, such as 
piezoelectric effect and thermal expansion .

The elastic right Cauchy–Green deformation tensor is then computed from Fel

and the elastic Green–Lagrange strain tensor is computed as:

Note that .

The strain tensor C, the electric field E, and the temperature T are used as the state 
variables. The free energy density in the undeformed configuration is defined as

where  and .

For structurally linear material,

where c is the elasticity tensor.

The free space contribution is computed as

where Es and E are the electric fields in the deformed (spatial) and undeformed 
configuration, respectively.

The second Piola-Kirchoff stress is computed as

The Maxwell stress SM is related to the polarization of the free space occupied by the 
deformed body, and it is computed as

Fin Fin E T =

Cel Fel
T Fel Fin

 T– CFin
 1–

= =

el
1
2
--- Cel I– =

Cel Cel C E T  =

W C E T   JinWel Cel  Win E T  JWvac Es + +=

J det F = Jin det Fin =

Wel
1
2
---elcel=

Wvac Es  1
2
---0 vac Es Es –

1
2
---0 vac C 1– E E –= =

S 2
C

W 2
C
 JinWel  SM+= =

SM 2
C
 JWvac  0 vac J C 1– E E  1

2
--- C 1– E  E I– 

 C 1–
= =
 3 :  S T R U C T U R A L  M E C H A N I C S  T H E O R Y



The inelastic deformation gradient is further decomposed into a thermal and 
piezoelectric parts as

The piezoelectric strain tensor is introduced as , where d is the 
piezoelectric coupling tensor. The piezoelectric deformation gradient is modeled as

Introduce

which are the strain and stress tensors in the intermediate configuration, where the 
thermal expansion part have been removed. These quantities are independent of the 
electric field E.

Then, 

and 

where

The stress is computed then as 

The electric displacement (in the undeformed configuration) is computed as

Fin Fth T Fpze E =

pze E d=

Fpze I pze O pze
2 + +=

Ctel Fth
 T– CFth

 1–
=

tel
1
2
--- Ctel I– =

Stel ctel=

el tel Ctelpze– O pze
2 +=

Jin
 Wel

1
2
---J

th

 
telStel Jth

 Wpze O pze
2 + +=

Wpze
1
2
---tr pze tel Ctelpze– 
  Stel=

S Jth
 Fth

 1– Stel
Wpze
tel

-----------------+ 
 Fth

 T– SM O pze
2 + +=
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where the material polarization is given by

For electrically and thermally linear material, it is computed as

where r is the relative electric permittivity, p is the pyroelectric coefficient, and 
 is the temperature variation.

Magnetomechanics

The theory for The Magnetomechanics Interface and The Magnetomechanics, No 
Currents Interface is given in this section.

T H E  E L E C T R O M A G N E T I C  S T R E S S  T E N S O R

Within a vacuum or other medium, forces between magnetized bodies can be 
computed on the assumption that a fictitious state of stress exists within the field. 
Historically, the consistency of this approach led 19th-century physicists to postulate 
the existence of the ether, a ubiquitous medium through which electromagnetic forces 
propagate. While these ideas have been superseded by the development of particle 
physics, the use of an electromagnetic stress tensor (also known as the Maxwell stress 
tensor) remains an accurate and convenient technique to compute electromagnetic 
forces.

Maxwell stresses exist in all materials, including air and even free space. However, the 
force magnitude is rather small, and usually it can only cause significant deformations 
at small dimension.

The electromagnetic stress tensor in a vacuum (in the absence of electric fields) is given 
by (Ref. 1):

 (3-97)

Where H is the magnetic field, I is the identity tensor, 0is the magnetic permeability 
of free space, and

D
E

W– 0 vac JC 1– E P Jth
 Wpze

E
----------------- O pze

2 + + += =

P
Win
E

-------------–=

P 0 vac r I– E p+=

 T Tref–=

EM V, 0H H 1
2
---0 H H I–=
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Within an isotropic linear magnetic solid under small deformations, the magnetic flux 
density vector is related to the magnetic field as (Ref. 2):

where the magnetic susceptibility  can be a function of the mechanical strain in the 
material

where 0 is the magnetic susceptibility of the material without deformation, and T is 
the small strain tensor given by

The corresponding electromagnetic tress tensor takes the following form:

 (3-98)

where the relative magnetic permeability is introduced as . It can be written 
equivalently as

where the two terms represent the contributions from the underlying free space and 
the material magnetization, respectively.

H H ij HiHj=

B 0H 0H+=

 0 I 2T– tr T I+ =

T 1
2
--- u u T

+ =

EM 0rH H 1
2
---0r H H I–=

r 1 +=

EM EM V, 0 H H 1
2
--- H H I–+=

The Magnetomechanical Forces and Magnetic Forces coupling features 
apply the material and underlying free space contributions to the stress as 
body load. In weak form: -EM:test(T).
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The electromagnetic stress tensor can be used to compute the forces acting on a solid 
body.

The balance of forces at the surface of the solid (material 1) in vacuum or air (material 
2) implies:

where the total stress tensors in media 1 and 2 are, respectively:

where mech is a mechanical component of the total stress in the material, and p2 is the 
pressure in the surrounding air (or other medium). Using Equation 3-97:

where the magnetic field H is computed in material 2.

L A R G E  D E F O R M A T I O N S

For finite deformations, the expressions for the electromagnetic stress and material 
magnetization can be derived using the following thermodynamic potential called 
magnetic enthalpy:

Material 1

Material 2

n

2 1– n 0=

1 EM mech+=

2 EM V, p2I–=

1n p2n–
1
2
---0 H H n– 0 n H H+=

The Magnetomechanical Forces and Magnetic Forces coupling features 
apply the above defined traction as a boundary load on the boundaries 
which are external for the coupling feature selection but internal for the 
corresponding magnetic fields interface.

COMSOL Multiphysics does not explicitly include the ambient pressure 
definition on the coupling features. However, it is possible to add an 
additional surface force to the corresponding Solid Mechanics interface if 
the pressure is known or computed by another physics interface.
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where the subscript m indicates that the vector components must be taken on the 
material frame, and the right Cauchy–Green deformation tensor is

with

and J = det(F). The mechanical energy function Ws(C) depends on the solid model 
used.

The total second Piola–Kirchhoff stress tensor is given by

and the magnetic flux density vector can be calculated as

A B O U T  D I F F E R E N T  S T R E S S  F O R M S

There exists a long-lasting controversy in scientific literature about the definition of 
electromagnetic forces acting on solids. An extensive review can be found in Ref. 3. 
Many classic textbooks (for example, Ref. 1 and Ref. 2) operate with the so-called 
Minkowski magnetic stress tensor that is usually written as:

The corresponding electromagnetic body force can be written as

which sometimes is referred to as the Korteweg-Helmholtz magnetic force. For 
homogeneous materials without deformation, one has   0. Hence, in the absence 
of electric currents (J  0), the body force becomes zero. Thus, the whole 

WEM Ws C  1
2
--- 0rJC 1– : Hm Hm –=

C FTF=

F u I+=

S 2
C

WEM=

Bm Hm
WEM–=

EM B H 1
2
--- B H I–=

f  EM J B 1
2
--- H H : –= =
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magnetomechanical load on the solid is due to the Maxwell stress jump at the 
boundaries between domains with different material properties.

There exists two most often used alternatives. The first one is called the Einstein–Laub 
stress tensor:

This form is widely accepted in modern magnetoelasticity and material science, see 
Ref. 4. The corresponding body force can be written as:

which is also called the Kelvin magnetic force. Note that it is nonzero as soon as there 
are magnetic field variation and magnetization within the material

The other alternative is the Chu stress tensor:

and the corresponding magnetic body force is given by

so that variations of both the magnetic susceptibility and magnetic field can contribute.

Magnetostriction and Piezomagnetism

Magnetostriction describes the change in dimensions of a material due to a change in 
its magnetization. This phenomenon is a manifestation of magnetoelastic coupling, 
which is exhibited by all magnetic materials to some extent. The effects related to 

EM B H 1
2
---0 H H I–=

f  EM J B 0 M  H+= =

M H=

EM 0H H 1
2
---0 H H I–=

f  EM J B 0  M H–= =

COMSOL Multiphysics provides a choice of the electromagnetic stress 
form only in the Magnetic Forces coupling feature. Any of the above 
presented three options can be selected; the default choice is the 
Minkowski stress tensor.

Magnetomechanical Forces coupling feature always operates with 
Minkowski stress tensor form.
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magnetoelastic coupling are described by various names. The Joule effect describes the 
change in length due to a change in the magnetization state of the material. This 
magnetostrictive effect is used in transducers for applications in sonars, acoustic 
devices, active vibration control, position control, and fuel injection systems.

The inverse effect accounts for the change in magnetization due to mechanical stress 
in the material. This effect is also known Villari effect. This effect is mostly useful in 
sensors.

Magnetostriction has a quantum-mechanical origin. The magneto-mechanical 
coupling takes place at the atomic level due to spin-orbit coupling. From a system level, 
the material can be assumed to consist of a number of tiny ellipsoidal magnets which 
rotate due to the torque produced by the externally applied magnetic field. The 
rotation of these elemental magnets produces a dimensional change leading to free 
strain in the material.

P I E Z O M A G N E T I S M

The magnetostriction has a nonlinear dependence on the magnetic field and the 
mechanical stress in the material. However, the effect can be modeled using linear 
coupled constitutive equations if the response of the material consists of small 
deviations around an operating point (bias point). This type of coupling is reffed to as 
Piezomagnetic Effect.

It is possible to express the relation between the stress S, strain , magnetic field H, 
and magnetic flux density B in either a stress-magnetization form or 
strain-magnetization form:
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Stress-Magnetization

Strain-Magnetization

where 0 is the magnetic permeability of free space; cH and sH are the stiffness and 
compliance matrices measured at constant magnetic field, respectively; and rS and rT 
are the relative magnetic permeabilities measured at constant strain and constant stress, 
respectively. The matrices dHT and eHS are called piezomagnetic coupling matrices.

In COMSOL Multiphysics, both constitutive forms can be used; simply select one, and 
the software makes all necessary transformations. The following equations transform 
strain-magnetization material data to stress-magnetization data:

One can rewrite the system of constitutive relations in the following equivalent form:

where the magnetostrictive strain is introduced as

and the material magnetization due to the applied field is given by

Hence, the stress in material is proportional to the elastic strain

and it contributes to the material magnetization.

S cH eHS
T H–=

B eHS 0rSH+=

 sHS dHT
T H+=

B dHTS 0rTH+=

cH sH
1–

=

eHS dHTsH
1–

=

rS rT
1
0
------dHTsE

1– dHT
T

–=

S cH  me– =

B 0H 0 M 0
1– dHTS+ +=

me dHT
T H=

M rT I– H=

el  me–=
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All the necessary material data inputs are placed within the Piezomagnetic Material 
node under the Solid Mechanics interface, which are added automatically when adding 
a predefined Piezomagnetism multiphysics interface. Such a node can be also added 
manually under any Solid Mechanics interface similar to all other material model 
features. The Piezomagnetic Material uses Voigt notation for the anisotropic material 
data. More details about the data ordering can be found in the Orthotropic and 
Anisotropic Materials section.

For a crystalline material with tetragonal symmetry, the strain-magnetization form of 
the constitutive relations is the following:

The following material data corresponds to Terfenol-D at 100 kA/m bias and 30 MPa 
prestress (Ref. 6):

11

22

33

223

213

212

s11 s12 s13 0 0 0

s12 s11 s13 0 0 0

s13 s13 s33 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 2 s11 s12– 

S11

S22

S33

S23

S13

S12

0 0 1
2
---d

33
–

0 0 1
2
---d

33
–

0 0 d33

0 d15 0

d15 0 0

0 0 0

H1

H2

H3

+=

B1

B2

B3

0 0 0 0 d15 0

0 0 0 d15 0 0

1
2
---d

33
–

1
2
---d

33
– d33 0 0 0

S11

S22

S33

S23

S13

S12

0

11 0 0

0 11 0

0 0 33

H1

H2

H3

+=

sH 10 11–

4.4 1.1– 1.65– 0 0 0
1.1– 4.4 1.65– 0 0 0
1.65– 1.65– 3.8 0 0 0
0 0 0 24 0 0
0 0 0 0 24 0
0 0 0 0 0 11

1 Pa =
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M U L T I P L I C A T I V E  F O R M U L A T I O N  F O R  P I E Z O M A G N E T I S M

The total deformation gradient is computed from the structural displacement field as

and the right Cauchy–Green is defined as .

The decomposition between elastic and inelastic deformation is made using a 
multiplicative decomposition of the deformation gradient

where the inelastic deformation tensor depends on the inelastic process, such as 
piezomagnetic effect and thermal expansion .

The elastic right Cauchy–Green deformation tensor is then computed from Fel

and the elastic Green–Lagrange strain tensor is computed as:

Note that .

The strain tensor C, the magnetic field H, and the temperature T are used as the state 
variables. The free energy density in the undeformed configuration is defined as

where  and .

For structurally linear material,

where c is the elasticity tensor.

dHT 10 9–
0 0 0 0 16.5 0
0 0 0 16.5 0 0
4.3– 4.3– 8.6 0 0 0

m A = rT

8.1 0 0
0 8.1 0
0 0 3

=

F u I+=

C FTF=

Fel FFin
 1–

=

Fin Fin H T =

Cel Fel
T Fel Fin

 T– CFin
 1–

= =

el
1
2
--- Cel I– =

Cel Cel C H T  =

W C H T   JinWel Cel  Win H T  JWvac Hs + +=

J det F = Jin det Fin =

Wel
1
2
---elcel=
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The free space contribution is computed as

where Hs and H are the magnetic fields in the deformed (spatial) and undeformed 
configuration, respectively.

The second Piola-Kirchoff stress is computed as

The Maxwell stress SM is related to the magnetization of the free space occupied by 
the deformed body, and it is computed as

The inelastic deformation gradient is further decomposed into a thermal and 
piezomagnetic parts as

The piezomagnetic strain tensor is introduced as , where d is the 
piezomagnetic coupling tensor. The piezomagnetic deformation gradient is modeled 
as

Introduce

which are the strain and stress tensors in the intermediate configuration, where the 
thermal expansion part have been removed. These quantities are independent of the 
magnetic field H.

Then, 

Wvac Hs  1
2
---0 vac Hs Hs –

1
2
---0 vac C 1– H H –= =

S 2
C

W 2
C
 JinWel  SM+= =

SM 2
C
 JWvac  0 vac J C 1– H H  1

2
--- C 1– H  H I– 

 C 1–
= =

Fin Fth T Fpzm H =

pzm H d=

Fpzm I pzm O pzm
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Ctel Fth
 T– CFth

 1–
=

tel
1
2
--- Ctel I– =

Stel ctel=
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and 

where

The stress is computed then as

The magnetic flux density (in the undeformed configuration) is computed as

where the material magnetization is given by

For a magnetically linear material, it is computed as

where r is the relative magnetic permeability.

N O N L I N E A R  M A G N E T O S T R I C T I O N

A commonly accepted micromagnetic description of the magnetostriction is as follows 
(Ref. 2):

All domains have magnetization of the same magnitude |M|  Ms, but the 
magnetization can have different orientations characterized by the corresponding 

el tel Ctelpzm– O pzm
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direction vector m  MMs for each domain. The applied magnetic field changes the 
domain orientation.

For a single crystal with cubic symmetry, the magnetostrictive strain tensor can be 
written as the following quadratic form using tensor notation:

 (3-99)

where . Note that the magnetostrictive strain is represented by a 
deviatoric tensor, thus trme  0. This is because the deformation is related to the 
magnetic domain rotation, and such process should not change the material volume.

The strain in any direction given by the directional cosines i can be written as

Using Equation 3-99, one gets

 (3-100)

When both magnetization and measurement direction are parallel to the same crystal 
direction [100], one has m1  1  1 and all other components are zero, so that

In this section, the term domain refers to a small part of magnetic 
material. This is typical for micromagnetics literature, and it should not 
be mistaken with the concept of domain as part of the model geometry, 
the latter is often used in COMSOL Multiphysics documentation.

me
3
2
--- 100 m m 1

3
---I– 

  111 100–  mimj ei ej 
i j
+=

m m ij mimj=

 l
l

------ ijij

i j
= =

The notation lambda is used for strain in this section, which is typical for 
micromagnetics literature. This should not be mistaken with the same 
notation used for stretch in other parts of the theory in COMSOL 
Multiphysics documentation.

 3
2
---

100
m1

21
2 m2

22
2 m3

23
2 1

3
---–+ + 

 = +
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In a similar way for the [111] direction, one has for all components 
 and   111.

If the strain is measured in [100] direction, while all the magnetization vectors are 
aligned perpendicular to it, one has only the following two nonzero components: 
m2  1  1 and consequently:

In many applications, such alignment of the domains is achieved by applying a 
compressive prestress. Thus, the maximum usable magnetostriction is achieved via a 
90-degree rotation of the domains

For an isotropic material, 100  111  s, and Equation 3-99 becomes

For a polycrystalline material without preferred orientation, the following 
approximation can be used (Ref. 1):

In COMSOL Multiphysics, this description of the magnetostriction is modeled using 
the following equation for the magnetostrictive strain:

 (3-101)

The strain field is deviatoric, and Equation 3-101 exhibits the same properties as 
Equation 3-99 at saturation, that is, when |M|  Ms. Equation 3-100 is replaced by
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Note that the strain vanishes when |M|  0, which makes the model applicable in the 
whole range from full demagnetization to saturation.

For isotropic materials, the magnetostrictive strain is modeled as the following 
quadratic isotropic form of the magnetization field using tensor notation (Ref. 3):

 (3-102)

If the stress and strain tensors are represented by 6-component vectors using Voigt 
notation, the stress in the magnetostrictive material is modeled as

where cH is a 6-by-6 stiffness matrix. For isotropic materials, the matrix can be 
represented in terms of two parameters, for example, using the Young’s modulus and 
Poisson’s ratio. Cubic materials possess only three independent components: c11, c12, 
and c44.

One can derive a linear response around a given bias state characterized by a 
premagnetization vector M0. Thus,

where M1 is a perturbation.

Using Equation 3-102,one finds

If one assumes a unidirectional state, for example

it will further simplify into
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M A G N E T I Z A T I O N

The magnetization in the magnetostrictive material is found from the following 
nonlinear implicit relation (Ref. 4 and Ref. 5):

 (3-103)

where L is the Langevin function

with 0 being the magnetic susceptibility in the initial linear region.

Other possible choices of the L function are a hyperbolic tangent, which is sometimes 
referred to as the Ising model

and a linear function

The latter option will make it possible to find an explicit expression for the 
magnetization. However, such model does not have a proper saturation behavior, and 
thus it should be used only in the operating range far from saturation. Both the 
Langevin function and hyperbolic tangent models requires the magnetization vector 
components to be treated as extra dependent variables.

For cubic crystals, the effective field in the material is given by
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 (3-104)

where H is the applied magnetic field. The second term in Equation 3-104 represents 
the mechanical stress contribution to the effective magnetic field, and thus to the 
material magnetization, which is called the Villari effect. The deviatoric stress tensor 
is related to the strain as

For isotropic materials, the effective magnetic field expression simplifies into

 (3-105)

In addition, the magnetization and magnetic field are related to each other and to the 
magnetic flux density (also called the B-field) by

COMSOL Multiphysics solves for the magnetic vector potential A whose curl yields 
the vector B-field. The H-field is then obtained as a function of the B-field and 
magnetization

The effective tangent piezomagnetic coupling coefficients can be computed as

For an isotropic material, the derivative can be evaluated to give

where
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is the tangent magnetic susceptibility. The corresponding expression in case of cubic 
material is more complicated, but it has a similar structure involving products of the 
magnetization and tangent susceptibility components. An important observation from 
the above formulas is that the piezomagnetic coefficients should reach their maximum 
(or minimum) at certain strength of the applied bias field if the saturation effect is 
taken into account. This is because M is zero at zero applied field, while mwill tends 
to zero at large applied field magnitudes because of saturation.

The piezomagnetic coupling tensor d is a third order tensor. Due to the symmetry, it 
can be conventionally represented by a 3-by-6 matrix dHT with only few nonzero 
components.

H Y S T E R E S I S  M O D E L I N G

The Jiles–Atherton hysteresis model for magnetostrictive materials is available 
COMSOL Multiphysics. The model assumes that the total magnetization can be 
represented as a sum of hysteretic and anhysteretic parts, the latter one is given by 
Equation 3-103, thus

Compared to Equation 3-104 and Equation 3-105, the effective magnetic field Heff 
gets one more term M, where  is the interdomain coupling parameter.

The change in the total magnetization caused by the change on the effective magnetic 
field is represented as

 (3-106)

where cr is the reversibility parameter, and kp is the pining loss parameter.

Equation 3-106 can be solved using either a time-dependent analysis or a stationary 
parametric sweep.

Man MsL Heff 
Heff
Heff
--------------=

dM crdMan max  dHeff 0  +=

 kp
1– Man M– =

For more details, see The Jiles–Atherton Hysteresis Model in the AC/
DC Module User’s Guide.
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Electrostriction

Electrostriction is an interaction in solid dielectric materials, where an electric field 
applied on the material generates the deformation of the material (direct effect), and a 
mechanics stress applied on it changes the material polarization (inverse effect).

The direct electrostrictive effect for a material of arbitrary symmetry can be 
represented as the following additive contribution to the strain (Ref. 3):

which is quadratic in polarization P in contrast to linear piezoelectricity.

The fourth order tensor Q can be effectively represented by a 6-by-6 coupling matrix. 
Further simplification due to material symmetry is possible in most cases. For example, 
for piezoelectric ceramics, the coupling matrix can be characterized by three 
independent components: Q11, Q12, and Q44.

If the polarization in the material is linear with the applied electric field, the 
electrostrictive strain can be written equivalently in terms of the electric field:

where

where 0,vac is the electric permittivity of free space, and  is the linear electric 
susceptibility tensor (measured at zero mechanical deformation).

The total polarization in the material can then be written as

 (3-107)

where the mechanical stress in the material is computed assuming a mechanically linear 
material as

where C is the fourth order elasticity tensor, and the strain tensor is given by

The last term in Equation 3-107 represents the inverse electrostrictive effect.

em Q P P =

em QM E E =

M 0 vac
2 Q   =

P 0 vac E 2 MS E+=

S C  em– =

 1
2
--- u u T

+ =
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The fourth order tensor Q can be effectively represented by a 6-by-6 coupling matrix. 
Further simplification due to material symmetry is possible in most cases. Thus, for 
cubic crystal material, the coupling matrix can be characterized by three independent 
components: Q11, Q12, and Q44.

For an isotropic material, only two independent coefficients Q11 and Q12 are needed 
since . Two corresponding M-constants can be computed as

where 0 denotes the only independent component of the electric susceptibility tensor.

For isotropic materials, the fourth order elasticity tensor C has only two independent 
components. The most common choice to represent those are by specifying the 
Young’s modulus EYM and Poisson’s ratio .

The following alternative electrostrictive parameters are defined in Ref. 1 for a linear 
isotropic material:

One more commonly used alternative definition is that introduced in Ref. 2. Using a1' 
and a2' for the constants used in Ref. 2, one has a1'  a1  a2 and a2'  a2.

The SI units for different electrostrictive parameters are summarized in Table 3-6.

Ferroelectroelasticity

The ferroelectroelasticity and ferroelectricity phenomena are related to phase 
transitions in materials. In its ferroelectric phase, the material exhibits spontaneous 
polarization, so that it is constituted of domains with nonzero polarization even at zero 
applied field. Electrostriction in ferroelectroelastic materials can be related to the 
domain rotation. Thus, the applied electric field can both rearrange the domains 

TABLE 3-6:  UNITS FOR ELECTROSTRICTIVE CONSTANTS.

MATERIAL PARAMETER UNIT (SI)

Q m2 / V2

M m4 / C2

a F / m

Q44 0.5 Q11 Q12– =

Mij 0 vac 0 2Qij=

a1 2 0 vac  2EYM
1 – Q11 2Q12+

1 +  1 2– 
---------------------------------------------------=

a2 2 0 vac  2EYM
Q11 Q12+

1 +  1 2– 
---------------------------------------=
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resulting into the net polarization and rotate the domains mechanically. Thus, the 
material extends in the direction of the electric field and contracts in the direction 
perpendicular to the field. The domain rotation can be affected by an applied 
mechanical stress, which also results into the effective polarization. At very large 
electric fields, the electrostrictive effect saturates, as all ferroelectric domains in the 
material are aligned along the direction of the applied field. Domain wall interactions 
can also lead to a significant hysteresis in the polarization and strain.

The direct electrostrictive effect for a material of arbitrary symmetry can be 
represented as the following additive contribution to the strain (Ref. 1):

which is quadratic in polarization P. Due to the symmetry, the fourth order tensor Q 
can be effectively represented by a 6-by-6 coupling matrix. The number of 
independent components in the matrix depends on the material symmetry. For 
example, for piezoelectric ceramics, the matrix can be characterized by three 
independent components: Q11, Q12 and Q44.

For ferroelectroelastic materials, the polarization vector is nonlinear function of the 
electric field and possible mechanical stress in the material.

If hysteresis in the material can be neglected, the polarization is computed from the 
implicit relation

where the anhysteretic polarization function is assumed to have the following special 
form:

 (3-108)

where Ps is the saturation polarization.

The polarization shape is characterized by the function L with the following 
properties:

For weak effective fields, the polarization is nearly linear

and can be characterized by the initial electric susceptibility matrix 0.

em Q P P =

P Pan E P =

Pan PsL Eeff 
Eeff
Eeff
-------------=

P 0Eeff
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For strong fields, the polarization magnitude approaches the saturation value

Two possible choices are the Langevin function

and a hyperbolic tangent (Ising spin model):

The effective electric field is given by

 (3-109)

where E is the applied electric field,  is a material parameter called the inter-domain 
coupling, and the mechanics stress is computed assuming mechanically linear material 
as

where C is the fourth order elasticity tensor. The last term in Equation 3-109 
represents the inverse electrostrictive effect.

The effective tangent piezoelectric coupling tensor can be computed as

where 0,vac is the electric permittivity of free space, and

is the tangent electric susceptibility matrix. The piezoelectric coupling tensor d is a 
third order tensor. Due to the symmetry, it can be conventionally represented by a 
3-by-6 matrix with only few nonzero components. An important observation from the 
above formula is that the piezoelectric coefficients should reach their maximum (or 
minimum) at certain strength of the applied bias field. This is because P is zero at zero 

P Ps
Eeff
Eeff
-------------

L
30 Eeff

Ps
------------------------ 
 coth

Ps
30 Eeff
------------------------–=

L
0 Heff

Ps
--------------------- 
 tanh=

Eeff E P 2 SQ P+ +=

S C  em– =

d
em
E

-------------= 20 vac Q P e =

e
1

0 vac
---------------P

E
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applied field, while etends to zero at large applied field magnitudes because of 
saturation.

If the mechanical deformation due to the electrostriction is assumed to be volume 
preserving, the following form can be used for the electrostrictive strain in case of 
isotropic material:

where s is the saturation electrostriction, and the deviatoric part can be computed for 
any matrix A as

The stress in Equation 3-109 is replaced then by

and tangent piezoelectric coupling tensor becomes

H Y S T E R E S I S  M O D E L I N G

The Jiles–Atherton model for ferroelectric hysteresis assumes that the total 
polarization can be represented as a sum of reversible and irreversible parts. The 
polarization change is computed from the following incremental equation:

 (3-110)

where the anhysteretic polarization is found using Equation 3-108, and the irreversible 
polarization change is computed as

where the pinning loss is characterized by the parameter kp.

em
3
2
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------dev P P =
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3
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Sd dev C  em–  =

d 3
0 vac s

Ms
2
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 =

dP crdPan I cr– dPirr+=

dPirr max  dEeff 0  

-----=

 kp
1– Pan Pirr– =
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Equation 3-110 can be solved using either a time-dependent analysis or a stationary 
parametric sweep.

Rigid Material

A rigid domain, or a rigid body, is an idealization of a body in which the deformation 
is neglected. In other words, the distance between any two given points of a rigid body 
remains constant in time regardless of any external forces acting on it. An object can 
be assumed to be perfectly rigid if its flexibility can be neglected in comparison with 
other flexibilities in the system, and when there is no need to compute the stress in the 
object. To model a rigid domain, you use the Rigid Material material model.

The Rigid Material is a material model, which is mutually exclusive to all other material 
models. The only material property needed is the mass density.

R I G I D  D O M A I N  K I N E M A T I C S

When a body is rigid, it is sufficient to describe the motion of at least three not collinear 
particles. It is then possible to reconstruct the motion of all other particles in the body. 
Usually, a mathematically more convenient, but equivalent, approach is used. The 
motion of the whole body is represented by:

• The linear motion of the body. The motion of one of the particles of the body, 
chosen as a reference point (often coinciding with the center of mass).

• The angular motion (also known as orientation or attitude) of the body.

Rigid Material is available as a material model in the Solid Mechanics, Shell, 
Beam, and Multibody Dynamics interfaces. This theory section applies to 
all interfaces. There are some minor differences between the versions of 
the Rigid Material which will be described as they appear.

In the following, when talking about rigid domains, the geometrical 
object can be a domain, a boundary, or an edge, depending on physics 
interface and spatial dimension.

A rigid domain can consist of a selection of several geometrical domains. 
These domains will act as a single rigid object, irrespective of whether 
they are geometrically connected or not.

Adjacent geometrical objects selected in different Rigid Material nodes are 
independent, and can even penetrate each other.
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The degrees of freedom needed to represent the linear and angular motion are known 
as rigid body translation and rigid body rotation degrees of freedom.

In 2D, this is represented by two in-plane translations and the scalar rotation around 
the z-axis.

In 3D the situation is more complex. Six degrees of freedom are necessary. They are 
usually selected as three translations and three parameters for the rotation. For finite 
rotations, any choice of three rotation parameters is will give a singularity at some 
specific set of angles. For this reason, a four-parameter quaternion representation is 
used for the rotations in COMSOL Multiphysics. Thus, each rigid domain in 3D 
actually has seven degrees of freedom: three for the translation, and four for the 
rotation. The quaternion parameters are called a, b, c, and d. These four parameters 
are not independent, so an extra equation stating that

is added.

The connection between the quaternion parameters and the rotation matrix R is:

For the geometrically linear case, the quaternion constraint and the rotation matrix 
definition are reduced to:

In 2D axisymmetric interfaces, a rigid domain has only a single degree of 
freedom: translation along the Z axis. The following theory sections only 
describe the more general cases. The axisymmetric formulation is a trivial 
specialization where all rotational parts of expressions are dropped.

a2 b2 c2 d2
+ + + 1=

R
a2 b2 c2

– d2
–+ 2bc 2– ad 2ac 2bd+

2ad 2bc+ a2 b2
– c2 d2

–+ 2cd 2ab–

2bd 2– ac 2ab 2cd+ a2 b2
– c2

– d2
+

=

R
1 2d– 2c

2d 1 2b–

2c– 2b 1

=

a 1=
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In 2D, the rotational degree of freedom is the angle of rotation about the z-axis , 
and its relation with the rotation matrix R is:

For the geometrically linear case, the 2D rotation matrix is reduced to:

Under translation and rotation of a rigid domain, the complete expression for the 
displacement of any point on the rigid body is given by:

where X are the material coordinates of any point in the rigid domain, XM is the center 
of mass of the rigid domain, u is the translation vector at the center of mass, and I is 
the identity matrix.

The rigid body displacement at the center of mass (u) are degrees of freedom. Thus, 
the rigid body translational velocity and acceleration can be evaluated by directly taking 
the time derivatives of u. In the time domain it can be expressed as:

In the frequency domain, they can be expressed in terms of frequency ():

The same is true for the rotation in 2D since the rigid body rotation  is the degree 
of freedom. The rigid body angular velocity and acceleration can be evaluated by 
directly taking the time derivatives of .

In 3D, the situation is different and the total rotation of the rigid domain can be 
presented as a function of quaternion:



R
cos sin– 0
sin cos 0

0 0 1

=

R
1 – 0
 1 0
0 0 1

=

ud u R I– + X XM– =
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uꞏ i u= uꞏꞏ i uꞏ 2u–= =
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
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The parameter a can be considered as measuring the rotation, while b, c, and d can be 
interpreted as the orientation of the rotation vector. For small rotations, this relation 
simplifies to:

The angular velocity of the rigid domain is computed as:

Here  is the conjugate of q, and  denotes quaternion multiplication.

The angular acceleration of the rigid domain can be evaluated by taking the time 
derivative of the angular velocity.

R I G I D  D O M A I N  D Y N A M I C S

The governing equation for a rigid domain can be written as a balance between the 
inertial (internal) forces and applied external forces. A rigid domain has only one 
internal force, the inertial force. This means that only the mass density of a domain is 
required to define the rigid domain material model.

The inertial forces and inertial moments about the center of mass are:

where  and  are the linear and angular accelerations of a rigid domain.

The inertial properties mass (m) and moment of inertia tensor (I) of a rigid domain 
are computed as:



2 b2 c2 d2
+ +
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where E3 and XM are the identity matrix and the center of mass of a rigid domain, 
respectively. The special case for the Shell interface is described in Rigid Domain for 
Shells.

In 2D, the expressions for inertial forces, inertial moments, and moment of inertia 
reduce to:

where the volume integration has been replaced by an area integration multiplied by 
the out-of-plane thickness h.

The equations of motion for the rigid domain are:

and

Here, the subscripts I and ext denote inertial and external forces, respectively, and R 
is the current rotation matrix. The inertial forces are contributions from Mass and 
Moment of Inertia nodes.

In 2D, the moment equations are simplified to the scalar equation

m  Vd=

XM
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I N I T I A L  V A L U E

The Rigid Material is a separate material model, and it overrides the default Linear Elastic 

Material node and the default Initial Values node in the physics interface. The initial 
values are given in a separate Initial Values subnode for each Rigid Material.

The initial values for the rigid body translation, rigid body rotation, and the first time 
derivatives can be prescribed about any point—a center of rotation—in a selected 
coordinate system. The center of rotation can be defined using

• The center of mass of the rigid domain

• Global coordinates of the center of rotation

• The centroid of a set of selected entities (boundaries, edges, or points)

Given the initial values of translation (u), rotation ( ), translational velocity ( ) and 
angular velocity () about a center of rotation (Xc), the rigid body displacement and 
quaternion degrees of freedom are initialized as:

In the Multibody Dynamics interface version of Rigid Material, it is also 
possible to get initial values for all domains from the interface level Initial 

Values section. This is the default option. The Initial Values subnode is 
only present under Rigid Material if Locally defined has been selected.

If many rigid domains are present in a system and they have the same 
initial values, then it is often better to define initial values at the interface 
level once and to reference these in all features.


t

u
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In 2D, the expressions for the initial values reduce to:

The variable ur is the translation at the center of mass due to a rotation around the 
center of rotation, and is thus zero when the two points coincide. In the case that you 
are entering the data using a separate center of rotation, you must pay special attention 
to how the initial displacement and velocity are composed if initial rotations and 
rotational velocities are present.

u0 u ur+=

ur r– 
ˆ

ˆ

r +  1 cos–  
ˆ

r  sin+=

r XM Xc–=

t
u






0
 r ur+  

t
u+=

a
b 0


2
---cos


2
---

ˆ
sin

=

t
a

t
b

0

1
2
--- 0


a
b 0


 
 
 

=

u0 u ur+=

ur r– 1 cos–  ez r  sin+=

r XM Xc–=

t
u






0
ez r ur+  

t


t
u+=

0 =

t

 
 

0 t
=
 3 :  S T R U C T U R A L  M E C H A N I C S  T H E O R Y



Figure 3-27: Initial displacement of a rigid body

M A S S  A N D  M O M E N T  O F  I N E R T I A

Sometimes a rigid domain needs the added effect of an associated abstract rigid object, 
which is physically not modeled and where the inertial properties are known. You can 
model this using Mass and Moment of Inertia, where the inertial properties of this 
abstract domain (center of mass, mass, and moment of inertia tensor) can be directly 
entered.

The formulation for an abstract rigid object is similar to the physical rigid domain with 
these exceptions:

• The inertial properties of the abstract rigid object are input by the user instead of 
being computed from a physical domain.

• No extra degrees of freedom are created. The inertial forces generated by this 
feature will be computed based on the distance from the center of gravity of the rigid 
domain to which it belongs, and the values of the degrees of freedom there.

The inertial force contributions are

where Xmc is the vector from the center of mass of the rigid domain (XM) to the center 
of mass of this contribution (Xm),

The inertial moment contributions are

FI m
t2

2

d

d u R E3– Xmc+ =

Xmc Xm XM–=
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In 2D, there is only a scalar moment contribution:

C O N S T R A I N T S

The constraints for a rigid domain are different in nature than those applied to flexible 
domains. In a flexible domain, a constraint can be applied at various entity levels: 
domains, boundaries, edges, or points. Since the degrees of freedom of the rigid 
domain are global and present only at the center of mass, boundary conditions are used 
to constrain these global degrees of freedom, which is why a global selection is needed.

The Prescribed Displacement/Rotation node can be used to:

• Prescribe the displacement components in arbitrary directions at a given point.

• Constrain rotations in arbitrary directions.

• Prescribe a nonzero rotation around an arbitrary axis.

The displacement and rotation can be prescribed in a selected coordinate system about 
an arbitrary center of rotation. The center of rotation can be defined using

• The center of mass of the rigid domain.

• Global coordinates of the center of rotation.

• The centroid of a set of selected entities (boundaries, edges, or points).

The displacement at the center of rotation is computed as:

 (3-111)

The components of this displacement vector are prescribed individually in the selected 
coordinate system. Through Equation 3-111, a constraint on a translation will impose 

MI RIRT
ꞏꞏ


ꞏ

RIRT
ꞏ

  Xmc FI+ +=

MI Iz
ꞏꞏ Xmc FI  ez+=

The constraints used for a flexible domain, for example Fixed Constraint, 
Prescribed Displacement, Rigid Connector, or Attachment, are not applicable 
to a rigid domain.

In a rigid domain the Prescribed Displacement/Rotation or Fixed Constraint 
subnode is used instead to constrain its degrees of freedom.

uc u R I– + Xc XM– =
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a relation between translational and rotational degrees of freedom if the center of 
rotation differs from the center of mass.

To prescribe the rotation in 3D, the imaginary part of the quaternion is prescribed as:

where  and  are the axis of rotation and angle of rotation, respectively.

In 2D, the out-of-plane rotation angle is directly constrained to the prescribed value 
of the rotation.

L O A D S

The loads available for a flexible domain can also be used for a rigid domain. In 
addition to these boundary conditions, a rigid domain also has global subnodes for 
applying forces and moments. If you use Applied Force, a force and its location can be 
prescribed in a selected coordinate system. A force implicitly also contributes to the 
moment unless it is applied at the center of mass of a rigid domain. If an Applied 

Moment node is used, a moment can be prescribed in a selected coordinate system.

C O N N E C T I N G  T O  O T H E R  B O D I E S

When a rigid domain and a flexible domain share a boundary (Shell: edge, Beam: 
point), the connection is automatic. All displacements on the flexible domain are 
controlled by the degrees of freedom of the rigid domain, so that

where X is a coordinate on the boundary. If rotational degrees of freedom are present, 
which is the case in the Shell and Beam interfaces, the rotations are set equal to those 
of the rigid domain.

b 
ˆ 0

2
-----sin=


ˆ 0

uflex R I–  X XM–  u+=

In the Multibody Dynamics interface, a rigid domain can be also be 
connected to another rigid or flexible domain using joints. A rigid 
component can be directly selected in the joints to establish a connection. 
This stands in contrast to a flexible component, which needs an 
attachment.

Adjacent domains selected in different Rigid Material nodes are 
independent objects.
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Damage Models

The deformation of quasi-brittle materials under mechanical loads is characterized by 
an initial elastic deformation. If a critical level of stress or strain is exceeded, a nonlinear 
fracture phase will follow the elastic phase.

As this critical value is reached, cracks grow and spread until the material fractures. The 
occurrence and growth of the cracks play an important role in the failure of brittle 
materials, and there are a number of theories to describe such behavior.

In the continuum damage mechanics formalism, a damage variable represents the 
amount of deterioration due to crack growth. This damage variable controls the 
weakening of the material’s stiffness, and it produces a nonlinear relation between 
stress and strain.

For a linear elastic material, Hooke’s law relates the undamaged stress tensorun to 
the elastic strain tensor:

 (3-112)

here,  is the fourth order elasticity tensor, “:” stands for the double-dot tensor 
product (or double contraction). The elastic strain el is the difference between the 
total strain  and inelastic strains inel. There may also be an external stress contribution 
ex, with contributions from initial, viscoelastic, or other inelastic stresses. For a 
hyperelastic material, the undamaged stress tensor follows from the definition of the 
second Piola-Kirchhoff stress in Hyperelastic Materials. 

For the scalar damage models, the damaged stress tensord is computed from the 
undamaged stress as

 (3-113)

This damaged stress is then used in the weak formulation. There are different ways to 
compute the scalar damage variable d that controls the material weakening. These are 
listed in the following sections. When a large strain formulation is used, un and d 
should be interpreted as the second Piola-Kirchoff stress.

un ex Cel+ ex C  inel– += =

C

d 1 d– un=

The undamaged stress tensor un is used when combining the Damage 
feature with Elastoplastic Materials, Elastoplastic Soil Models, Creep and 
Viscoplasticity, or Linear Viscoelasticity.
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S T R A I N - B A S E D  D A M A G E  M O D E L S

The strain-based formulation for the Scalar damage and the Mazars damage for concrete 
models is based on the loading function f such as

 (3-114)

here, eq is the equivalent strain, a scalar measure of the elastic strain; and is a state 
variable. The evolution of the state variable follows the Kuhn–Tucker loading/
unloading conditions

, , and

In this formulation,  is the maximum value of eq in the load history. The damage 
variable d is then computed as a function of the state variable  and other parameters.

Equivalent Strain
Different damage models use different definitions for the equivalent strain eq. The 
Rankine, stress damage model defines the equivalent strain from the largest undamaged 
principal stress p1 as

 (3-115)

here, the symbol “<>” represents the Macaulay brackets, and E is Young’s modulus. 
The Macaulay brackets are used since in this formulation only tensile (positive) stresses 
cause damage.

Similarly, the Rankine, strain damage model defines the equivalent strain from the 
largest principal elastic strain elp1 as

 (3-116)

The Smooth Rankine, stress damage model defines the equivalent strain from the three 
undamaged principal stresses

 (3-117)

In the same way, the Smooth Rankine, strain damage model defines the equivalent strain 
from the three elastic principal strains

 (3-118)

f eq  0–=

f 0 ꞏ 0 ꞏ f 0=

eq
p1 
E

--------------=

eq elp1 =

eq
p1 2 p2 2 p3 2+ +

E
---------------------------------------------------------------------=

eq elp1 2 elp2 2 elp3 2+ +=
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By default, only the principal stresses in tension contribute to the damage evolution, 
for both the Rankine and the Smooth Rankine damage models; but it is also possible 
to include damage in compression by incorporating the compressive stresses in the 
computation of the damaged stress tensord.

The Euclidean Norm of the elastic strain tensor can also be used as a measure for the 
equivalent strain

 (3-119)

The Euclidean norm considers both tensile and compressive strains.

For the Mazars damage for concrete model, it is also possible to select from Mazars or 
Modified Mazars equivalent strain. Mazars equivalent strain is defined as

 (3-120)

In the modified Mazars equivalent strain (Ref. 2 and Ref. 3), a correction factor  is 
added to improve the approximation of the failure surface of concrete in multiaxial 
compression.

 (3-121)

It is also possible to apply a User defined expression for defining the equivalent strain 
as a function of undamaged stress, stress components or strains.

Damage Evolution
A key component in a scalar damage model is the definition of the damage evolution 
law. The Linear strain softening law defines the damage variable from

,  (3-122)

Here,0 denotes the onset of damage, computed from the tensile strength ts and 
Young’s modulus E, so that 0  ts/E. The parameter f is derived from other 
material parameters such as the tensile strength, the characteristic element size hcb and 
the fracture energy per unit area Gf, or the fracture energy per unit volume gf.

 (3-123)

eq el:el=

eq el  : el =

eq  el  : el =

d   1
0

-----– 

  f
f 0–
--------------- 
 =      0

d   0=      0

f
2Gf
tshcb
----------------

0
2
-----+=
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The Exponential strain softening law defines the damage evolution from

 (3-124)

where

 (3-125)

The Polynomial strain softening law defines the damage evolutions from

 (3-126)

with f according to Equation 3-123.

The Multilinear strain softening law defines the damage evolutions from

 (3-127)

with f according to Equation 3-123 and

 (3-128)

where is an input parameter that defines the shape of the curve.

Mazars Damage for Concrete
The Mazars damage for concrete utilizes two different damage evolution laws, one for 
tensile damage and another for compressive damage. These two damage functions are 
combined as

 (3-129)

d   1
0

-----– exp

 0–

f 0–
---------------– 
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d   0=      0

f
Gf

tshcb
----------------

0
2
-----+=

d   1
0

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 0–

f 0–
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 

2
2
 0–

f 0–
--------------- 3– 
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2
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 +=

d   t
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here, t and c are weight functions depending on the current stress state, and  is the 
so-called shear exponent which determines the response in shear, that is, the evolution 
of the combined damage function in states where both damage functions are active.

To define the tensile damage evolution law dt(Ref. 3), it is possible to use either 
Linear strain softening, Exponential strain softening, described in Damage Evolution 
section; or Mazars damage evolution function. A tensile Mazars damage evolution 
function is obtained by a combination of linear and exponential strain softening

 (3-130)

Here, At and Bt are tensile damage evolution parameters, and 0t is the tensile strain 
threshold.

The compressive Mazars damage evolution function dcis obtained by

 (3-131)

Here, Ac and Bc are compressive damage evolution parameters, and 0c is the 
compressive strain threshold. Both the tensile and compressive damage evolution laws 
can also be specified by User defined expressions.

Spatial Regularization
The most common application for the damage models is to describe strain localization, 
due to cracking in quasi-brittle materials. In a damage model without regularization, 
the deformation during strain softening will always localize in the narrowest possible 
band, following the principle of least action. This means that large strains will develop 
in a narrow band of elements (or even Gauss points). As a consequence, the amount 
of energy dissipated during softening will decrease upon mesh refinement. The results 
of a damage model without regularization will therefore be mesh dependent and 
possibly unstable; hence the need for these models to be regularized for the solution 
to maintain its mesh objectivity.

The simplest regularization method is to modify the stress-strain relation to account 
for the mesh size. More advanced regularization techniques introduce length scales in 
the constitutive equation, and additional equations and variables acting as localization 

dt   1 1 At– 
0t


-------– Atexp Bt  0t– – –=      0t

dt   0=      0t

dc   1 1 Ac– 
0c


-------– Acexp Bc  0c– – –=      0c

dc   0=      0c
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limiters. The following sections describe the two methods for damage regularization 
available in COMSOL Multiphysics.

The Crack Band Method
This simplest regularization technique is based on stress-strain curves (damage 
evolution laws) that depend on the mesh and element characteristics. The method is 
often called the Crack Band method (Ref. 4, Ref. 5). The method regularizes the 
solution from a global viewpoint, which dissipates the correct amount of energy during 
strain localization. The main difficulty when using the crack band method is to find the 
correct width of the crack band, hcb; which can depend on the element size and shape, 
as well as the order of the interpolation and the current stress state (that is, the 
inclination of the crack with respect to the mesh).

The length scale used in the crack band method is computed by using the volume to 
area ratio in the mesh elements. By using the element volume v in 3D or the area a in 
2D, the crack bandwidth hcb is defined as:

• , for 2D triangles

• , for 2D rectangles

• , for 3D tetrahedra

• , for 3D pyramids

• , for 3D wedges

• , for 3D hexahedra

The crack band width hcb is then used to modify the Damage Evolution law in which 
the damage variable d is computed. Note that the damage evolution laws 
(Equation 3-130 and Equation 3-131) are unaffected by the crack band method.

hcb

hcb

hcb 2a=

hcb a=

hcb 6 2v3=

hcb 6v 23=

hcb 2v3=

hcb v3=
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The Implicit Gradient Method
The Implicit Gradient method (Ref. 6) enforces a predefined width of the damage 
zone through a localization limiter. This is achieved by adding a nonlocal strain 
variable, the nonlocal equivalent strain nl, through an additional PDE where the 
equivalent strain eq acts as source term. This PDE is solved simultaneously with the 
displacement field:

 (3-132)

Here, the parameter c controls the width of the localization band. This parameter is 
defined from the internal length scale, lint, and the geometry dimension n (two or 
three dimension)

 (3-133)

If the fracture energy per unit area is used to define the softening behavior, the size of 
the damage zone is also needed as input. This parameter does not necessarily have the 
same value as lint.

The strain-based formulation for the damage model (Equation 3-114) is then 
redefined by the nonlocal equivalent strainnl instead of the equivalent strain eq

 (3-134)

Viscous Regularization
A rate dependency can be introduced to the damage model by using the Delayed 

damage viscous regularization method available for time-dependent studies. The 
method can be used to model a real rate-dependent fracture problem, as well as for 
stabilizing a rate-independent problem. In both cases, a viscous damage variable dv is 
introduced. This variable is defined through the following ODE

 (3-135)

where  is the characteristic relaxation time. For the case when the viscous 
regularization is used to stabilize a rate-independent fracture problem, should be 
significantly smaller than the time step used by the solver in order not to modify the 
properties of the problem too much. The viscous damage variable dv is then used in 
Equation 3-113 to define the damaged stress tensor.

nl c2nl– eq=

c
lint
2

2n
-------=

f nl  0–=


t

dv dv+ d  =
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The Phase field damage model is closely related to the Strain-based Damage Models, 
but it is derived from a different starting point. Following a similar derivation as 
reported in Ref. 7, the model is based on the regularization of a variational formulation 
of the classical theory by Griffith for brittle fracture; where the geometric crack 
discontinuity is regularized by a second-order phase field. Including a viscous 
regularization of the crack phase field , the energy functional governing the crack 
propagation takes the following form:

 (3-136)

where d is the damage function, Ws0 is the elastic strain energy density,  is the 
viscosity, Gc is the critical energy release rate, and lint is the internal length scale that 
appears form the regularization of the discrete fracture.

Given the two dependent variables, u and the main contributions to the coupled 
initial boundary value problem (including inertial terms), are:

 (3-137)

where the characteristic time  and the state variable Hd have been introduced. The 
state variable Hd is a function of the crack driving force Dd, and it satisfies the 
Kuhn-Tucker conditions so that:

 (3-138)

The momentum balance in Equation 3-137 is included for completeness but is not 
implemented directly as part of the phase field damage model. However, the equation 
gives an indication that the damaged stress, as defined by Equation 3-113, is used for 
the mechanical equilibrium.

E x t u u        1 d  – Ws0 x 
t

 xd

+d


=

Gc
1

2lint
------------2 lint

2
---------  2

+ 
  xd


+


2u
t2
----------  d FV+= on 


t

 d  
t

---------------Hd  lint
2 2––= on 

0 – n= on 









Hd t u  max 0 t  Dd  u =
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Crack Driving Force
The crack driving force, Dd, can be either a function of the elastic strain energy density, 
or it can also include dissipation processes.

By selecting the Elastic strain energy density, the crack driving force is derived from

 (3-139)

where Ws0
+ is the tensile part of the undamaged elastic strain energy density. The 

strain energy threshold Gc0 is an ad hoc variable introduced to establish an elastic 
threshold before damage occurs. By setting Gc0 equal to zero recovers the model 
reported in Ref. 7.

By selecting Total strain energy density, additional contributions from dissipative 
material features, such as creep, plasticity and viscoelasticity, are added. Select the 
Calculate energy dissipation check box in the parent material model to compute these 
variables.

An alternative definition for the crack driving force based on stress measures is 
suggested in Ref. 9. By selecting the Principal stress criterion, the crack driving force is 
defined as

 (3-140)

where c is the critical fracture stress, pi are the undamaged principal stresses, and 
 is a dimensionless parameter which determines the post peak slope.

It is also possible to enter a User defined expression for the crack driving force Dd.

Damage Evolution for Phase Field Damage
The damage variable d is in the phase field damage model a function of the crack phase 
field By selecting Power law, the damage evolution function is defined as

 (3-141)

where the exponent m is a user input. Often a quadratic function is used so that m  2. 
An alternative damage function was suggested in Ref. 10. By selecting Cubic, Borden, 
the damage evolution function d reads

 (3-142)

Dd
lint

Gc Gc0–
---------------------- Ws0

+ Gc0
lint
---------– =

Dd 
pi
c
-------- 
 

2

i 1=

3

 =

d   1 1 – m–=

d   1 s 1 – 3 1 – 2– – 3 1 – 2– 2 1 – 3+=
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where the model parameter s controls the shape of the damage evolution function. 
The Cubic, Borden option is only available when the crack driving force is defined 
through the strain energy density.

It is also possible to enter a User defined expression for the damage evolution d as a 
function of the phase field variable .

Strain Energy Split
Typically, phase field damage models use a decomposition of the undamaged strain 
energy density Ws0 into a tensile and compressive parts. Only the tensile part Ws0

+ 
affects the phase field, and consequently the damage growth and fracture. Several 
alternative definitions of Ws0

+ are available in COMSOL Multiphysics.

The simplest alternative is to set Ws0
+ equal to the complete strain energy density Ws0, 

which means that no split is made into tensile and compressive counterparts. Select No 

split in the Exclude compressive energy list to achieve this. This option has the advantage 
that it greatly simplifies the structure of the equations, although that comes at the cost 
of physical correctness, especially for shear and cyclic loading.

A more accurate method is to use the volumetric-deviatoric split by selecting 
Volumetric only in the Exclude compressive energy list. Here, only the positive part of 
the volumetric stress is considered while the entire undamaged deviatoric stress 
dev  dev(un) is included in Ws0

+. The definition of Ws0
+ then reads

 (3-143)

where I1  trace(un) is the first invariant of the undamaged stress tensor defined in 
Equation 3-112 (see Invariants of the Stress Tensor); and el,vol and el,dev are the 
volumetric and deviatoric parts of the elastic strain tensor, respectively (see Invariants 
of Strain). For hyperelastic materials, Equation 3-143 is replaced by

where Wiso is the isochoric strain energy density, Wvol is the volumetric strain energy 
density, and Jel is the elastic volume ratio. The split is only available if the parent 
hyperelastic model permits a clear split of Ws into two parts.

Another alternative is to define Ws0
+ by performing a spectral decomposition of the 

stress tensor such that

Ws0
+ 1

2
---

I1 
3

----------el,vol dev:el,dev+ 
 =

Ws0
+ Wiso Wvol+ if  Jel 1

Wiso if  Jel 1






=
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 (3-144)

where pi are the principal values of the undamaged stress tensor un, and el,pi are the 
principal values of the elastic strain tensorel (see Principal Strains).

Similarly, a spectral decomposition can be made directly on the elastic strain tensor as 
suggested in Ref. 7. The tensile part of the elastic strain tensor is then

 (3-145)

and the tensile part of the undamaged stress tensor is defined as

 (3-146)

Using these two tensors, the tensile part of the elastic strain energy density is

 (3-147)

Both the Spectral decomposition, stress and Spectral decomposition, strain options 
involve computing the principal values and principal vectors. Such operations are 
comparatively expensive and typically increase the computational cost of the phase field 
damage method, however, these are the most physically correct formulations to use.

The choice of how to split the elastic strain energy density also affects how the 
damaged stress tensor is constructed form the tensile part of the undamaged stress 
tensor.

Safety Factor Evaluation

There are many theories available in the literature for predicting material failure, these 
can predict, for instance whether a ductile material will yield or not, or if a brittle 
material will crack under a given set of loads.

Tsai and Wu (Ref. 7, Ref. 17) proposed a stress-dependent criterion intended at 
modeling failure in composites. Under the Tsai–Wu criterion, failure occurs when a 
given quadratic function of stress is greater than zero. The failure criterion is given by

Ws0
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2
--- pi  el pi

i 1=

3

=

el
+ el pi ni ni

i 1=

3

=

+
Cel

+
=

Ws0
+ 1

2
---+:el

+
=

g   : F  f: 1–+=
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where,  is the stress tensor, F a fourth rank tensor (SI unit: 1/Pa2) and f is a second 
rank tensor (SI unit: 1/Pa). For the Tsai–Wu criterion, failure occurs when g()  

Due to the symmetry of these tensors, the fourth rank tensor can be represented by a 
symmetric 6-by-6 matrix, and the second rank tensor by a 6-by-1 vector (see Voigt 
order in the section Tensor vs. Matrix Formulations).

Certain constraints ensure that the failure surface g() =  forms a closed ellipsoid in 
the stress space. Also, thermodynamic considerations restrict the value of some 
components of the fourth rank tensor to be positive. These restrictions are summarized 
as (no summation of the indices)

 and

The failure index is computed from the failure criterion as

so failure is predicted for a failure index greater than one, fi  

The damage index is given by a Boolean expression based on the failure criterion

here di =  means damage, and di =  represents a healthy material.

The safety factor, also called reserve factor or strength ratio, is computed by scaling 
the stress tensor such as the failure criterion is equal to zero

For a quadratic failure criterion, as the Tsai–Wu criterion, this means solving a 
quadratic equation for the safety factor variable sf

the safety factor is then obtained from the smallest positive root.

For an isotropic criterion, such as the von Mises criterion, g() = misests  , and 
the safety factor is given by sf = tsmises.

The margin of safety (Ref. 17) is then computed from the safety factor

Fii 0 FiiFjj Fij
2

fi g   1+=

di
1 g   0
0 otherwise

=

g sf  0=

sf
2 : F   sf f:  1–+ 0=

ms sf 1–=
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Following the Tsai–Wu formalism, different orthotropic criteria can be defined by 
setting appropriate values for the coefficients in F and f tensors.

Use the Safety subnode to set up variables which can be used to check the risk of failure 
according to various criteria. It can be used in combination with Linear Elastic 
Material, Layered Linear Elastic Material, or Nonlinear Elastic Materials.

T H E  A N I S O T R O P I C  T S A I – W U  C R I T E R I O N

For this anisotropic criterion, enter 21 coefficients to define the 6-by-6 matrix F, and 
six coefficients to define the vector f. The failure criterion is evaluated from the 
expression

here, ij are the stress tensor components given in the local coordinate system of the 
parent node.

T H E  O R T H O T R O P I C  T S A I – W U  C R I T E R I O N

For this orthotropic criterion, enter nine coefficients corresponding to the tensile 
strengths tsi, compressive strengths csi, and shear strengths ssij given in the local 
coordinate system of the parent node. The Tsai–Wu coefficients are then computed 
from
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all the other coefficients in F and f are set to zero.

In the plane stress version of Tsai-Wu orthotropic criterion, the only nonzero 
coefficients are

, , ,

,

T H E  T S A I – H I L L  C R I T E R I O N

For this orthotropic criterion, enter six coefficients corresponding to the tensile 
strengths tsi and shear strengths ssij given in the local coordinate system of the 
parent node. The equivalent coefficients for The Anisotropic Tsai–Wu Criterion are 
then computed from

, or

, or

, or

, , ,

, 

,

all the other coefficients in F and f tensors are set to zero. See also Orthotropic 
Plasticity.

In the plane stress version of Tsai-Hill criterion, some terms become zero

and the F12 term is modified as follows
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For this orthotropic criterion, enter nine coefficients corresponding to the tensile 
strengths tsi, compressive strengths csi, and shear strengths ssij given in the local 
coordinate system of the parent node. The equivalent coefficients for The Anisotropic 
Tsai–Wu Criterion are then computed from

, , ,

, , ,

, 

,

, ,

all the other coefficients are set to zero.

T H E  J E N K I N S  C R I T E R I O N

For Jenkins orthotropic criterion, enter nine coefficients corresponding to the tensile 
strengths tsi, compressive strengths csi, and shear strengths ssij given in the local 
coordinate system of the parent node. The failure criterion is then computed from

here, si is either the tensile strength or the compressive strength depending whether 
the stress in the i direction, i, is positive or negative. The absolute value of the shear 
stress ij in the ij-plane is compared to the corresponding shear strength ssij.
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T H E  W A D D O U P S  C R I T E R I O N

The Waddoups orthotropic criterion is similar to the Jenkins criterion, but the failure 
criterion is given in terms of strains, not strengths. For this criterion, enter nine 
coefficients corresponding to the ultimate tensile strains tsi, ultimate compressive 
strains csi, and ultimate shear strains ssij given in the local coordinate system of the 
parent node. The failure criterion is then computed from

here, si is either the ultimate tensile strain or the ultimate compressive strain 
depending whether the strain in the i direction, i, is positive or negative. The absolute 
value of the shear strain ij in the ij-plane is compared to the corresponding ultimate 
shear strain ssij.

T H E  A Z Z I – T S A I – H I L L  C R I T E R I O N

This criterion is derived from the Tsai–Wu theory for two-dimensional plane stress 
problems. It is available in 2D for the Plate interface, for the Solid Mechanics interface 
in plane stress, and for the Shell interface in 3D. Enter the coefficients corresponding 
to the tensile strengths tsi, compressive strengths csi, and shear strengths ssij given 
in the local coordinate system of the parent node. The failure criterion is then 
computed from the in-plane stresses

The Tsai–Wu coefficients are then computed from

, or

, or

 or

all the other coefficients are set to zero.
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This criterion is derived from the Tsai–Wu theory for two-dimensional plane stress 
problems. It is available in 2D for the Plate interface and the Solid Mechanics interface 
in plane stress, and for the Shell interface in 3D. Enter the coefficients corresponding 
to the tensile strengths tsi, compressive strengths csi, and shear strengths ssij given 
in the local coordinate system of the parent node. The failure criterion is then 
computed from the in-plane stresses

The Tsai–Wu coefficients are then computed from

, or

, or

all the other coefficients are set to zero.

T H E  V O N  M I S E S  C R I T E R I O N

The von Mises criterion is one of the simplest isotropic criteria to predict yielding in 
metals and other ductile materials. The failure criterion is computed from the isotropic 
tensile strength ts

The equivalent von Mises stress mises is defined from the deviatoric stress tensor, see 
the section about plasticity and The von Mises Criterion. For ductile materials the 
tensile strength corresponds to the yield stress, while for brittle materials it corresponds 
to the failure strength.
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T H E  T R E S C A  C R I T E R I O N

Tresca criterion is similar to the von Mises criterion. For this isotropic criterion, the 
failure criterion is computed from the isotropic tensile strength ts

Here, the Tresca equivalent stress is defined in terms of principal stresses, 
tresca = 1  3; see The Tresca Criterion. For ductile materials the tensile strength 
corresponds to the yield stress, while for brittle materials it corresponds to the failure 
strength.

T H E  R A N K I N E  C R I T E R I O N

The Rankine criterion is similar to the Tresca criterion, as the failure criterion is given 
in terms of principal stresses. For this isotropic criterion, enter the tensile strength ts, 
and the compressive strength cs. The failure criterion is then computed from

here, s is either the tensile strength or the compressive strength depending whether 
the principal stress, pi, is positive or negative. For ductile materials the tensile strength 
corresponds to the yield stress, while for brittle materials it corresponds to the failure 
strength.

T H E  S T .  V E N A N T  C R I T E R I O N

The St. Venant criterion is similar to the Waddoups criterion, as the failure criterion is 
given in terms of strains, not strengths. For this isotropic criterion, enter the ultimate 
tensile strains ts, and the ultimate compressive strains cs. The failure criterion is then 
computed from

here, s is either the ultimate tensile strain or the ultimate compressive strain 
depending whether the principal strain, pi, is positive or negative. For ductile materials 
the ultimate tensile strain corresponds to the strain at yielding, while for brittle 
materials it corresponds to the strain at failure.
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The Mohr–Coulomb criterion is similar to the Tresca criterion, as the failure criterion 
is given in terms of principal stresses, see The Mohr–Coulomb Criterion for soil 
plasticity. For this isotropic criterion, enter the cohesion c, and the angle of internal 
friction . The failure criterion is then computed from

and the failure index from

where

, , 

and

The cohesion and the angle of internal friction are related to the tensile and 
compressive strengths by the expressions

 and

T H E  D R U C K E R – P R A G E R  C R I T E R I O N

The Drucker–-Prager criterion approximates the Mohr–Coulomb criterion by a 
smooth function (a cone in the stress space), see The Drucker–Prager Criterion for soil 
plasticity. The failure isotropic criterion is computed from the stress invariants I1 and 
J2, and two material parameters,  and k,

The material parameters  and k are related to the cohesion c and angle of internal 
friction  in the Mohr–Coulomb criterion, see The Drucker–Prager Criterion for 
details. Also, the cohesion and the angle of internal friction can be related to the tensile 
and compressive strengths, see The Mohr–Coulomb Criterion for details. The failure 
index is computed from
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T H E  B R E S L E R – P I S T E R  C R I T E R I O N

The Bresler–Pister criterion was originally devised to predict the strength of concrete 
under multiaxial stresses. This isotropic failure criterion is an extension of The 
Drucker–Prager Criterion to brittle materials. The failure criterion is computed from 
the stress invariants I1 and J2, and three parameters, k1k2and k3,

The parameters k1, k2, and k3 are computed from the uniaxial compressive strength 
c, the uniaxial tensile strength t, and the biaxial compression strength b, see The 
Bresler–Pister Yield Criterion for details. The failure index is computed from

T H E  W I L L A M – W A R N K E  C R I T E R I O N

The Willam–Warnke isotropic criterion is used to predict failure in concrete and other 
cohesive-frictional materials such as rock, soil, and concrete. Just as The Bresler–Pister 
Criterion, failure is computed from the stress invariants I1 and J2, and the Lode angle 
, and three material parameters

here, c is the uniaxial compressive strength, t is uniaxial tensile strength, and b is 
the biaxial compressive strength. The function r( describes the segment of an ellipse 
on the octahedral plane, see The Willam–Warnke Criterion for details. The failure 
index is computed from
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The Ottosen criterion is a five-parameter failure isotropic criterion developed to model 
short-time loading of concrete. It corresponds to a smooth convex failure surface with 
curved meridians

In this formulation, the parameters a and b are positive and dimensionless, and c is 
the uniaxial compressive strength for concrete (also with a positive sign). The 
dimensionless function ( depends on the Lode angle  and two positive parameters 
k1 and k2, see The Ottosen Criterion for details. The failure index is computed from

U S E R  D E F I N E D

This option allows to explicitly write how the failure criterion and the safety factor 
depend on stress and/or strain. These could be analytic functions of stress or strain 
tensor components, principal stresses, principal strains, stress or strain invariants, or 
data interpolated from tables.

Add any number of Safety nodes to a single material model; the contents of these 
features will not affect the analysis results as such, since they do not account for 
post-failure analysis. Add Safety nodes after having performed an analysis and just do 
an Update Solution in order to access to the new variables for result evaluation.

F I B E R  C O M P O S I T E  S P E C I F I C  F A I L U R E  C R I T E R I A

There are certain advanced composite specific criteria that account for multi-axial state 
of stress, and different failure modes for tensile and compressive loading. For example, 
in fiber composites, failure can happen due to fiber rupture in tension or fiber buckling 
in compression; matrix failure in tension or matrix failure in compression, and so on.
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Figure 3-28: The fiber and matrix failure modes and respective failure planes in a 
unidirectional composite.

The basic types of failure modes in unidirectional composites are (Figure 3-29)

• Fiber rupture in tension

• Fiber buckling in compression

• Matrix failure in tension

• Matrix failure in compression

• Matrix failure for out-of-plane shear

• Matrix failure for in-plane shear

• Interlaminar failure in tension

• Interlaminar failure in compression
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Figure 3-29: Different fiber failure (FF) modes and interfiber failure (IFF) modes of a 
unidirectional composite under different loading conditions. The plane where the brittle 
fracture occurs is also shown.

The list of fiber composite specific failure criteria includes:

• Zinoviev Criterion

• The Hashin–Rotem Criterion

• The Hashin Criterion

• Puck Criterion

• LARC-03 Criterion
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Table 3-7 shows failure criterion and considered failure modes by that criterion. 

TABLE 3-7:  COMPOSITE FAILURE CRITERIA AND FAILURE MODES

FAILURE CRITERION CONSIDERED FAILURE MODE

Zenoviev Fiber rupture in tension

Fiber buckling in compression

Matrix failure in tension

Matrix failure in compression

Matrix failure in-plane shear

Hashin–Rotem Fiber rupture in tension

Fiber buckling in compression

Matrix failure in tension and in-plane shear

Matrix failure in compression and in-plane shear

Hashin Fiber rupture in tension and shear

Fiber buckling in compression

Matrix failure in tension and shear

Matrix failure in compression and shear

Interlaminar failure in tension

Interlaminar failure in compression

Puck Fiber rupture in tension

Fiber buckling in compression

Matrix failure in tension and in-plane shear (Interfiber 
failure: Mode A)

Matrix failure in compression and in-plane shear (Interfiber 
failure: Mode B)

Matrix failure in compression and in-plane shear (Interfiber 
failure: Mode C

LaRC03 Fiber rupture in tension (Mode LaRC03-3)

Fiber buckling in compression with matrix compression 
(Mode LaRC03-5)

Fiber buckling in compression with matrix tension (Mode 
LaRC03-4)

Matrix failure in compression and in-plane shear (Mode 
LaRC03-1)

Matrix failure in tension and in-plane shear (Mode 
LaRC03-2)

Matrix failure in biaxial compression (Mode LaRC03-6)
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This criterion was developed from a maximum stress failure theory to a well-structured 
set of noninteracting criteria to identify failure modes. The theory, in general, gives 
reasonably good failure envelopes for unidirectional laminates and a good fit to the 
experimental final failure envelopes for multidirectional laminates (Ref. 20). The 
approach is one of the most used due to its simplicity. The failure criteria for different 
failure modes are defined as follows.

The longitudinal failure criterion in tension is

 for

The longitudinal failure criterion in compression is

 for

The transverse failure criterion in tension is

 for

The transverse failure criterion in compression is

 for

The in-plane shear failure criterion is

The failure criterion for the composite is then computed by selecting the most critical 
failure mode

T H E  H A S H I N – R O T E M  C R I T E R I O N

This criterion is based on the first ply failure theory and designed for unidirectional 
laminates. The Hashin–Rotem failure theory considers tensile and compressive stresses 
while predicting the failure of fiber or matrix, however it does not distinguish whether 
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the failure occurs at the fiber-matrix interface or inside the matrix. This criterion 
involves four failure modes associated with fiber failure and the matrix failure, 
distinguishing between tension and compression.

The fiber failure criterion in tension is defined by

 for

The fiber failure criterion in compression is defined by

 for

The matrix failure criterion in tension is defined by

 for

The matrix failure criterion in compression is defined by

 for

The failure criterion for the composite is then computed by selecting the most critical 
failure mode

T H E  H A S H I N  C R I T E R I O N

The Hashin failure theory is an extension of Hashin–Rotem failure theory, as it 
includes six failure modes for fiber failure, matrix failure and interlaminar failure 
(Ref. 19). Stress interactions are considered for the determination of the tensile fiber 
failure mode, tensile matrix failure mode and compressive matrix failure mode.

The fiber failure criterion in tension is defined by

 for

The fiber failure criterion in compression is defined by
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 for

The matrix failure criterion in tension is defined by

 for

The matrix failure criterion in compression is defined by

for

The interlaminar failure criterion in tension is defined by

 for

The interlaminar failure criterion in compression is defined by

 for

The failure criterion for the composite is then computed by selecting the most critical 
failure mode

The plane stress version of Hashin criterion is obtained by setting 13 = 23 =33  = 0, 
however, the interlaminar failure cannot be predicted.

P U C K  C R I T E R I O N

The Puck criterion is based on 3-D phenomenological models, where the experimental 
results are matched with theoretical formulation. Based on fracture mechanics and 
experimental observation, three different failure criteria called as modes A, B and C for 
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matrix failure are considered. Mode A corresponds to tensile loading, while mode B 
and mode C correspond to compressive and shear loading.

Figure 3-30: Interfiber failure (IFF) mode using Puck criterion.

The Puck criterion is mainly used for predicting strength of unidirectional laminate 
and for predicting the initial strength of multidirectional laminates, for which the other 
methods do not predict the failure correctly (Ref. 20). This criterion is also 
recommended by World Wide Failure Exercise. It is distinguishing and treating 
separately failure criteria the fiber failure (FF) and interfiber failure (IFF).

The fiber failure criterion in tension is

 for

where Ef1 is the Young’s modulus of the fiber in the longitudinal direction, f12 is the 
in-plane Poisson’s ratio of the fiber, and mf is the mean stress magnification factor.

The fiber failure criterion in compression is

 for

The failure criterion for interfiber failure mode A is

 for

gfT    1
ts1
-------- 11

f12
Ef1
----------mf22+ 

  1–= 11 0

gfC    1
cs1
--------- 11

f12
Ef1
----------mf22+ 

  1012 2 1–+= 11 0

gmA  
12
ss12
------------- 
 

2
1

ts2ptl
ss12

------------------– 
  2 22

ts2
----------- 
 

2
+

22ptl
ss12
-----------------

11
1D
---------- 1–+ += 22 0
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where ptl is the slope of the in-plane fracture envelope in tension, and 1D is the linear 
degradation stress.

The failure criterion for interfiber failure mode B is

for  and

where pcl is the slope of the in-plane fracture envelope in compression, RA
tt is the 

fracture resistance against transverse shear loading, and c
ss12 is the modified shear 

strength.

The failure criterion for interfiber failure mode C is

for  and

where pct is the slope of the transverse fracture envelope in compression.

The failure criterion for the composite is then computed by selecting the most critical 
failure mode

L A R C - 0 3  C R I T E R I O N

This criterion is used for accurate predicting the failure of unidirectional FRP laminates 
with in-plane stress state. The criterion is composed of six phenomenological failure 
modes describing matrix and fiber failure accurately without the use of curve-fitting 
parameters (Ref. 21), and it assumes a fragile fracture for the matrix failure in 
compression. This criterion implements the action plane concept according to the 
Mohr–Coulomb theory. This failure theory considers failure modes based on the fiber 
kinking due to misalignment and on the tensile matrix cracking associated with 
interlaminar crack propagation.

The matrix failure criterion under transverse compression (LaRC03-1) is

gmB   1
ss12
------------- 12

2 22pcl 2+ 22pcl+ 
11
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22 0 0
22
12
---------

Rtt
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ss12
c

-------------- 
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– 22

------------
12

2 1 pct+ ss12
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 
 
  2 22

cs2
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 

2
+

 
 
  11

1D
---------- 1–+=

22 0 0
12
22
---------

ss12
c

Rtt
A

-------------- 

g   max gfT gfC gmA gmB gmC    =
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 for

where eff,t and eff,l are effective shear stresses in transverse and longitudinal 
directions, respectively, andi

ss12 is longitudinal in situ shear strength. The effective 
shear stresses are functions of the fracture plane angle which is found out by 
maximizing the Mohr–Coulomb effective stresses.

The matrix failure criterion under transverse tension (LaRC03-2) is

 for

where i
ts2 is in situ tensile strength, and r is a material constant based on fracture 

toughness.

The fiber failure criterion under longitudinal compression (LaRC03-3) is

 for

The fiber failure criteria with matrix tension (LaRC03-4) is

 for

The fiber failure criteria with matrix compression (LaRC03-5) is

 for

where m
ij are the ply stresses transformed in the misalignment coordinate frame, and 

l is a nondimensional parameter based on the failure strength and fracture plane angle 
under uniaxial transverse compression.

The matrix failure criterion under biaxial compression (LaRC03-6) is

 for  and
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where the effective shear stresses in transverse and longitudinal directions, meff,t and 
meff,l, are calculated from stresses in the misalignment coordinate frame.

The failure criterion for the composite is then computed by selecting the most critical 
failure mode

g   max gmC gmT gfT gfCmT gfCmC g mB    =
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Fo rmu l a t i o n  o f  t h e  Equ i l i b r i um 
Equa t i o n s

• Equation Implementation

Equation Implementation

The equilibrium equations for solid mechanics are given by Newton’s second law. It is 
usually written using a spatial formulation in terms of the Cauchy stress tensor :

Here fV is a body force per unit deformed volume, and  is the current mass density. 
For the material frame formulation used in COMSOL Multiphysics, it is more 
appropriate to use a Lagrangian version if the equation:

Now that the first Piola–Kirchhoff stress tensor, P, is used. FV is a body force with 
components in the current configuration but given with respect to the undeformed 
volume, and 0 is the initial mass density. Note the gradient operators are not the same: 
in the first case the gradient is taken with respect to the spatial coordinates, and in the 
second case with respect to the material coordinates. Using the more common second 
Piola–Kirchhoff stress tensor, S, the same equation reads

 (3-148)

where F is the deformation gradient. The COMSOL Multiphysics implementation of 
the equations in the Solid Mechanics interface is however not based on the equation 
of motion directly, but rather on the principle of virtual work.

The principle of virtual work states that the sum of the internal virtual work and the 
external virtual work are equal. The internal virtual work is the work done by the 
current stress state on a kinematically admissible variation in strains. The external 


t2

2



 u  fV+x=

0
t2

2



 u PT FV+X=

0
t2

2



 u FS  FV+X=
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virtual work is the work done by all forces (acting on domains, boundaries, edges, or 
points) when multiplied with the variation in displacements corresponding to the 
variation in strains. The virtual displacements u are in the finite element formulation 
represented by the test() operator in COMSOL Multiphysics. For a stationary case, 
the virtual work W is written as

The strains are computed from the gradients of the displacements, and the stresses are 
given by the constitutive relation.

In a dynamic analysis, the inertial forces are included in the volume forces, according 
to d’Alembert’s principle.

 (3-149)

Since the equations are formulated on the material frame, all integrals are taken over 
the undeformed geometry. The stress and strain contributions must be interpreted 
differently depending on whether the formulation is geometrically nonlinear or not.

• If the study step is geometrically linear, the strain  is the engineering strain. The 
stress  could in principle be any of the stress measures, as they all converge to the 
same engineering stress in this case.

• If the study step is geometrically nonlinear, the variation of strain  is taken from 
the displacement gradient, and the stress conjugate  is the first Piola–Kirchhoff 
stress. The integration  is done in the undeformed configuration.

The Solid Mechanics interface supports Stationary (static), Eigenfrequency, Time 
Dependent (transient), Frequency Domain, and Modal solver study types as well as 
linear buckling.

W –  u FV dv+
V +=

u FS  sd
S
 u FL  ld

L
 u Fp  

p
+ +

W –  u FV u utt– dv+
V
 +=

u FS  sd
S
 u FL  ld

L
 u Fp 

p
+ +

dv
V
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S t u d y  T yp e s

In this section:

• Frequency-Domain Studies

• Eigenfrequency Studies

• Random Vibration Theory

• Response Spectrum Analysis Theory

• Linear Buckling

Frequency-Domain Studies

In the frequency domain, the frequency response is studied when applying harmonic 
loads. Harmonic loads are specified using two components:

• The amplitude value in direction m, Fm

• The corresponding phase,

To derive the equations for the linear response from harmonic excitation loads

Assume a harmonic response with the same angular frequency as the excitation load

The relationship can also be described using complex notation with

m

Fm freq Fm f  t m+ cos=

Ffreq

Fx freq

Fy freq

Fz freq

=

u uamp t u+ cos=

u
u
v
w

=

u Re uampe
juejt  Re ũejt   where ũ uampe

ju= = =
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and

The primary results, such as displacements, velocities, accelerations, and stress and 
strain components are all complex valued.

C Y C L E  M A X I M U M

Quantities that are nonlinear with respect to the degrees of freedom will in general not 
have a harmonic variation. In some cases, it is however possible to derive maximum 
values for a cycle. The norm of a vector is defined as

The components of the vector can have different phases, so that the temporal variation 
is

where aj is the amplitude, and j is the phase angle. Then,

The square of the norm is thus a harmonic function with double the excitation 
frequency. The harmonic term can, using standard trigonometric expressions be 
rewritten as

where

u Re ũejt =

Fm freq Re Fm  ejmejt  Re Fm
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Fy
˜

Fz
˜
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2
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The maximum value of the vector norm during the cycle is thus

The expressions above can be generalized to any quadratic form of the type

In particular, the von Mises equivalent stress is of this form, with

Using the same development as above,

a aj
2ak
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

This expression can be split into a constant (period average) term, and a periodic term, 
so that

where

and

The maximum value of the norm is thus

Since, for the von Mises stress, the matrix c is symmetric and have many zero elements, 
the number of terms in the sums that actually contribute are far less than the nominal 
number.

When computing the cycle maximum of the von Mises stress, there is an alternative, 
simpler approach. The von Mises stress can be written as

where s is the deviatoric stress defined as

Note that on this form, there are no cross product between different components of 
the tensor. By defining

cjkvj t vk t 
k
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2
--- b a 2t + cos+ =

b cjkajak j k– cos
k


j
=

a cjkclmajakalam j k l m––+ cos
m


l


k


j
=

1
2
--- b a+  =

cjkajak j k– cos
k


j
 cjkclmajakalam j k l m––+cos

m


l


k


j
+

vM
3
2
---s:s=

s  1
3
---trace( I–=
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the expression for the maximum of a vector norm can be used directly to compute the 
maximum von Mises stress.

Eigenfrequency Studies

The eigenfrequency equations are derived by assuming a harmonic displacement field, 
similar as for the frequency response formulation. The difference is that this study type 
uses a new variable j explicitly expressed in the eigenvalue j  The 
eigenfrequency f is then derived from j as

Damped eigenfrequencies can also be studied, so  is not necessarily a purely imaginary 
number. Any damping included in the problem will automatically cause the 
eigenfrequencies to become complex valued.

In addition to the eigenfrequency, the quality factor, Q, and decay factor, for the 
model can be examined:

M O D A L  P A R T I C I P A T I O N  F A C T O R S

It is common to present modal participation factors in terms of the discretized system 
of equations, that is on matrix form. For a discretized system, the modal mass for the 
i-th mode can be defined as:

v

3
2
---s

xx

3
2
---s

yy

3
2
---s

zz

3sxy

3sxz

3syz

=

f 
2j
---------–=

Q Im  
2Re  
-------------------=

 Re  =
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where Mnm is the mass matrix, and  is the eigenmode in terms of a vector of degrees 
of freedom. The modal participation factors are defined as

where  represent the unit rigid-body modes for translation and rotation.

The effective mass in direction j for mode i can then be computed as

For physics interfaces with only displacements as dependent variables (for example 
Solid Mechanics), each eigenmode is given by the solution vector . The 
rigid body modes  can be represented as columns of the following matrix:

where L represents a unit length.

The translational and rotational participation factors can be computed as, respectively:

and

where the normalization factor is computed as

mi i
nMnmi

m

n m
=

i

ij
1

mi
------- i

nMnmj
m

n m
=

j
m

mij
eff miij

2
=

u u v w=

TX TY TZ RX RY RZ

L 0 0 0 Z Z0– Y Y0– –

0 L 0 Z Z0– – 0 X X0–

0 0 L Y Y0– X X0– – 0

T TX TY TZ
L

mF
-------- u md= =

R RX RY RZ
1

mF
-------- r r0–  u md= =

mF uT u  md=
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The integration involves the entire selection of the corresponding physics interface. 
The definition of dm in the above formulas depends on the dimensions. For example, 
one has dm  dV for solid domains in 3D. Contributions to the structural mass come 
not only from the mass density of the domains, but also from features like Rigid 

Connector, Added Mass, Point Mass, and so on. Thus, integrations are in general 
performed over all selected domains, boundaries, and edges. Contributions from 
points are also added.

If the mass matrix normalization was selected when computing the eigenmodes, then 
mF  1.

Note that the rotational participation factor computed with respect to a certain 
reference point r0 can be expressed in terms of the participation factors computed with 
respect to the origin as:

For structural elements (and features) that also use rotational degrees of freedom as 
dependent variables, there is also a direct contribution from these degrees of freedom. 
In this case, the corresponding expressions are:

with

where matrix J presents the moment of inertia, and  are rotation 
angles with respect to the corresponding axes. The angles can be computed at given 
local position as certain functions of the actual rotational degrees of freedom which can 
be different for different structural element types.

An alternative definition of the participation factors is:

where M denotes a unit mass. The advantage of such definition is independence of the 
normalization type selected when computing the eigenmodes.

The effective modal mass for X-translation and rotation are defined, respectively, as

R r0  R 0  T r0+=

R
1

mF
-------- r u J+  md=

mF uT u TJ+  md=

 X Y Z=

norm 
mF

ML2
------------=
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 and

Similar definitions are used for other components.

Random Vibration Theory

Random vibration analysis is applicable in a situation where the loading has a random 
variation which can be statistically described by its power spectral density (PSD). The 
duration of the loading must be such that the situation can be considered as a steady 
state. The key assumptions are:

• The system is linear and can be represented by a superposition of a limited number 
if eigenmodes.

• The process is ergodic, meaning that its statistical properties do not change over 
time.

S T A T I S T I C S  P R E L I M I N A R I E S

Assume a random process x(t). In the following, T denotes a time span which is ‘long’ 
compared to any frequencies of interest.

The mean value is defined using the expectancy value operator E[] as

mTX
eff mF

L2
--------TX

2 M TX
norm 

2
= = mRX

eff mFXR
2

=

Only structural mechanics physics interfaces contribute to the mass and 
participation factor variables as described in this section. In a multiphysics 
context, there can be also other contributions to the total mass matrix. 
This would for example be the case when coupling acoustics and 
structural mechanics. Such contributions are not taken into account.

The meaning of a ‘long’ time T in this context is that any vibration mode 
will experience a large number of cycles. If the lowest frequency of 
interest is fl, then its corresponding period is Tl = 1/fl. It is then 
reasonable to require that T > kTl, where k is at least 1000, but probably 
more.

E x  1
T
----

T 
lim x t  td

0

T

 m= =
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In vibration problems most quantities have zero mean values. Nonlinear quantities, 
like an equivalent stress, will however have nonzero mean values. Also, if the total 
effect of a static preload and the vibration is considered, the total result will in general 
have a nonzero mean value.

The variance (the square of the standard deviation) is defined as

The standard deviation is in this context usually called the root mean square (RMS) 
value of the signal, xrms.

A representation of the “degree of similarity over time” of a signal is given by the 
autocorrelation function

It can be seen from the definition that the autocorrelation is an even function of the 
time difference . An interpretation of the autocorrelation is that it compares how 
similar the signal is to itself after a certain time has elapsed.

Also, it can be seen from the definitions above that

For two different processes x(t) and y(t), the cross-correlation is similarly defined as

The power spectral density (PSD) of a signal x is defined through the Fourier 
transform (denoted by F[]) of the autocorrelation,

The term PSD comes from the fact that the physical dimension of Gx is 
(input signal)2 / frequency. Thus, Gx(f)f represents the power of the signal 
contained in the small frequency interval f.

E x m– 2  E x2  m2
–=

Rx   E x t x t +   1
T
----

T 
lim x t x t +  td

0

T

= =

xrms
2 Rx 0 =

Rxy   E x t y t +   1
T
----

T 
lim x t y t +  td

0

T

= =

Gx f  2F Rx    2 Rx  e 2i– f d

–



= =
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The inverse relation is

Since the autocorrelation is a real-valued and even function of , Gx is also real-valued. 
Because of this property, Gx can also be written as

The RMS value can be derived from the PSD by integrating the PSD over all 
frequencies.

It is possible to compute the mean square of x (the power) for only a certain frequency 
range

This can be interpreted as the energy content of the signal between the two 
frequencies.

In the same way as for the PSD, the cross spectral density for two signals is defined as

The cross spectral density is in general a complex-valued function, and Gyx is the 
complex conjugate of Gxy.

It is often more convenient to work with the angular frequency  = 2f, and define 
the PSD as

so that

Rx   1
2
---F 1– Gx f   1

2
--- Gx f e2if fd

–



= =

Gx f  4 Rx   2f cos d

0



=

xrms
2 Rx 0  1

2
--- Gx f  fd

–



 Gx f  fd

0



= = =

E x2  f1 f2( , ) Gx f  fd

f1

f2

=

Gxy f  2F Rxy   =

Sx   1
2
------Gx f =
 3 :  S T R U C T U R A L  M E C H A N I C S  T H E O R Y



and

There are some other scalar statistical properties that can be used to characterize the 
properties of the spectrum. Define the k:th moment of the spectrum as

The moments can be used to compute the following properties:

• RMS

• Number of (upward) zero crossings per unit time, also called apparent frequency

• Number of peaks per unit time

• Irregularity factor

T R A N S F E R  F U N C T I O N

For a linear system, the response in the frequency domain for a single variable u to the 
input x can be written

Sx
2

--- Rx    cos d

0



=

xrms
2 Sx   d

0



=

mk fkG f  fd

0



=

xrms m0=

n0
m2
m0
--------=

np
m4
m2
--------=


n0
np
------=

u   H  x  =
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where H is the complex-valued transfer function. It can then be shown that the 
corresponding spectral densities have the relation

Here, the superscript ‘*’ denotes complex conjugate. When generalizing to matrices, 
it denotes the Hermitian conjugate (that is transpose and conjugation).

This type of relation is true not only for the degrees of freedom, but for any quantity 
that is linearly related to the input. This includes components of stress and engineering 
strain, but not quantities as equivalent or principal stresses.

When there are multiple input signals (loads), the situation is more complicated. If the 
inputs are uncorrelated (all cross correlations between them are zero), then the 
resulting output spectrum can be obtained as a pure superposition of the input spectra 
weighted by the transfer functions

When the input signals are correlated, the loading must be described by a complete 
matrix of cross correlation spectra, where the diagonal consists of the individual PSD. 
Placing the transfer functions from all inputs (N) to all outputs (M) into a rectangular 
matrix H of size MxN, the operation of computing the output spectral densities and 
cross correlation spectra can formally be written as

Su   Hux   2Sx   H*
ux  Hux  Sx  = =

Su Huxk
  2Sxk

k
=

SU H  SX  H*  =
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SX is a square matrix having the size of number of inputs, N, while the size of the 
square matrix SU is the number of outputs, M.

M O D A L  R E P R E S E N T A T I O N

The random vibration analysis is implemented based on a mode superposition, 
encapsulated in a reduced-order model. This approach imposes some limitations:

• The material data cannot be frequency dependent.

• There are no inhomogeneous Dirichlet conditions. The common case when there 
is a fully correlated base excitation can however be handled by shifting the base 
acceleration into an equivalent inertial load. The Base Excitation feature is used for 
this.

In the modal representation, the assumption that the displacements can be described as

where the vector yk contains eigenmode k, and the mode matrix Y has the eigenmodes 
yk as columns. The modal coordinates (amplitudes of each mode) are collected in the 
vector q.

Using the common notation that M is the mass matrix, C is the damping matrix and 
K is the stiffness matrix, the full set equations of motion is

Projecting to the modal base, the corresponding equations are

In practice, large sets of output cross-correlation data are uncommon. 
The most common cases are:

• Only the diagonal of SU is important. It represents the response of a 
certain quantity without information about correlation to other 
quantities. If you are designing a structure, you are interested in the 
size of the stress, not its covariation with the stress somewhere else.

• A small set of full correlations are sought. This is the case where the 
current analysis provides input for another analysis, so that a full 
spectral input is needed for a number of attachment points.

u t  ykqk t 
k
 Yq t = =

Muꞏꞏ Cuꞏ Ku+ + L=
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Lowercase matrices are used to indicate a quantity in the modal space.

The projections for the matrices are

In frequency domain, any quantity a can be written using a complex notation as

where â is a complex-valued amplitude. With an assumption about harmonic 
excitation,

In terms of a transfer function, this can be written as

where

If the applied load is given in terms of its cross-correlation spectra, SL(), then it can 
be shown that the corresponding cross correlation for the modal loads, Sl(), is 
obtained by a similar projection into modal space,

Since the number of modes used typically is rather small, the projected 
cross-correlation matrix is of a manageable size.

It is now possible to compute the cross-correlation spectrum for the modal degrees of 
freedom as

mqꞏꞏ cqꞏ kq+ + l=

m YTMY=

c YTCY=

k YTKY=

l YTL=

a âeit
=

2m– ic k+ + q̂ l̂=

q̂ h   l̂=

h   2m– ic k+ + 
1–

=

sl   YTSL  Y=

sq   h  sl  h*  =
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The cross-correlation spectrum in the physical space is

The spectral distribution of all quantities linearly related to the degrees of freedom can 
be computed from the modal cross-correlation. Assume that two quantities y(t) and 
z(t) are linear functions of the degrees of freedom u, so that

Then, by using the definitions above and the linearity of the Fourier transform,

Response Spectrum Analysis Theory

Response spectrum analysis is used for computing an approximation of the structural 
response to transient, nondeterministic events, such as earthquakes or shocks. The idea 
is that the event is characterized by the peak response that it would give a single degree 
of freedom (SDOF) oscillator having a certain natural frequency and damping ratio. 
This response value is provided as a function of the natural frequency of the oscillator. 
The actual load history of the event is not known explicitly.

This theory section contains:

• Single Degree of Freedom System

• Definition of a Response Spectrum

• Solution Using Response Spectrum

SU   Ysq  YT
=

y t  aTu t =

z t  bTu t =

Syz   1

---F Rxy    1


---F aTRuu  b  aTSU  b aTYsq  YTb= = = =
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• Mode Summation

- Partitioning into Periodic and Rigid Modes

- The Gupta Method

- The Lindley–Yow Method

- Combining Periodic and Rigid Modes

- Summing the Periodic Modes

- SRSS Method

- Grouping Method

- Ten Percent Method

- Double Sum Method

- Der Kiureghian Correlation Coefficient (CQC)

- Absolute Value Sum

- Summing the Rigid Modes

- Rigid Mode Combination Method A

- Rigid Mode Combination Method B

- Missing Mass Correction

- The Static ZPA Method

• Summation Over Spatial Directions

- SRSS Method

- 100-40-40 Method (Percent Method)

- CQC3 Method

- SRSS3 Method

S I N G L E  D E G R E E  O F  F R E E D O M  S Y S T E M

Response spectrum analysis is based on the response of a set of single degree of 
freedom (SDOF) systems.

Consider a mass-spring-damper system, attached to a moving base. The base 
movement is b(t).
 3 :  S T R U C T U R A L  M E C H A N I C S  T H E O R Y



The equation of motion for the mass can, if there are no external loads, be written as

Dividing by the mass, and using customary notation,

Here, the undamped natural (angular) frequency is

and the damping ratio is

It can be seen that the support movement acts as a forcing term, and that the solution 
depends only on two parameters 0and , and not on the individual values of m, c, 
and k.

Instead of using the absolute displacement as DOF, one can use the relative 
displacement between the mass and the base,

The equation of motion can then be stated as

 (3-150)

In practice, such approach means a frame transformation, where the support 
movement appears as a gravity-like load.

D E F I N I T I O N  O F  A  R E S P O N S E  S P E C T R U M

For given values of 0, , and b(t), it is a trivial task to solve Equation 3-150 for the 
whole duration of the event plus some extra time to allow for the response to reach a 
possible maximum. The acceleration, velocity, and displacement response spectra are 
defined as

muꞏꞏ c uꞏ bꞏ–  k u b– + + 0=

uꞏꞏ 20uꞏ 0
2u+ + 20bꞏ 0

2b+=

0
k
m
-----=

 c
2 km
----------------=

ur u b–=

ur
ꞏꞏ 20ur

ꞏ 0
2ur+ + bꞏꞏ–=
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These are absolute spectra. One can do a similar definition of the relative spectra by 
using instead the relative displacement ur. It is clear from the definition that there is 
not a one-to-one relation between the response spectrum and the base acceleration 
history. The response spectrum gives information about the peak value, but not about 
when it occurs.

The velocity and acceleration response spectra often are approximated by

Such spectra are called the pseudovelocity spectrum and the pseudoacceleration 
spectrum, respectively. The expressions contain an assumption about harmonic 
motion, so that the response is dominated by the homogeneous solution to the 
equation of motion.

S O L U T I O N  U S I N G  R E S P O N S E  S P E C T R U M

Assume that one has a structure discretized by FEM, so that the equations of motion 
on matrix form are

 (3-151)

Now, let the structure be connected to a common “ground” at a number of points. 
These points then have a base motion given by

Sa 0  b t    max uꞏꞏ t 0   =

Sv 0  b t    max uꞏ t 0   =

Sd 0  b t    max u t 0   =

Sv 0Sd

Sa 0
2Sd

Muꞏꞏ Cuꞏ Ku+ + f t =

bx t 

by t 

bz t 
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Let b(t) be a vector that has the same size as the displacement vector u (the total 
number of DOF), but it contains only three different values: bx(t) in all x-translation 
DOFs, by(t) in all y-translation DOF, and bz(t) in all z-translation DOF. The relative 
displacement is now ur  u  b. With no external load, Equation 3-151 can be written 
as

or

Then, the fact that a rigid body motion does not give any elastic or viscous forces has 
been used, so that

By solving the undamped eigenvalue problem

with the grounded nodes being fixed, a set of eigenmodes that can represent the 
relative displacements is obtained. Since the mode displacements are zero at the 
support points, it is however clear that the modes cannot represent the absolute 
displacements, for which the support points are moving.

By standard operations for mode superposition (and assuming mass matrix 
normalization and a diagonalizable damping matrix) the decoupled modal equations 
are

M ur
ꞏꞏ bꞏꞏ+  Cur

ꞏ Kur+ + 0=

Mur
ꞏꞏ Cur

ꞏ Kur+ + Mbꞏꞏ–=

Kb 0=

Cbꞏ 0=

K 2M–  0=
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 (3-152)

The equation is similar to the standard SDOF system in Equation 3-150.

In Equation 3-152, qj is the modal coordinate for mode j, so that the relative 
displacement can be written as a superposition of the eigenmodes .

The support motion can be written as

 (3-153)

The notation 1x mean a vector that has the value 1 in all DOF representing 
x-translation, and the value 0 in all other DOF. Inserting Equation 3-153 in 
Equation 3-152 gives

The multipliers kj are the modal participation factors defined as

Thus, the maximum amplitude of mode j, when loaded by a base motion described by 
a response spectrum in direction k, is

or, using the pseudoacceleration spectrum

In practice, several modes will have natural frequencies in the frequency range covered 
by the Design Response Spectrum. This means that a superposition is needed. There 

qj
ꞏꞏ 20qj

ꞏ 0
2qj+ + j

TMbꞏꞏ–=

The assumption about mass matrix normalization is not essential, but 
some expressions are simplified. In COMSOL Multiphysics, the 
computed modal participation factors are consistent with the chosen mass 
matrix normalization. See also Modal Participation Factors.

j

ur jqj

j
 q= =

b t  bx t 1x by t 1y bz t 1z+ +=

qj
ꞏꞏ 20qj

ꞏ 0
2qj+ + xjb

ꞏꞏ
x t – yjb

ꞏꞏ
y t  zjb

ꞏꞏ
z t ––=

kj j
TM1k=

q̂kj Sd j j bk t   kj Sd,kkj= =

q̂kj
Sa j j bk t   kj

j
2

--------------------------------------------------
Sa,kkj

j
2

--------------------= =
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are several rules for how this superposition can be done, as will be described in detail 
below.

M O D E  S U M M A T I O N

The summation rules are nonlinear. Thus, all result quantities must be summed based 
on its own modal response. For example, stress components are computed using the 
modal stresses and cannot be recovered from the response spectrum superposition of 
displacements.

The general approach is to consider the excitation in three directions, I, (I = 1,2,3) 
separately. First all modal responses are summed for each direction, and then the results 
for the three directions are summed. Some methods, however, do both combinations 
in one sweep.

In a high frequency mode, the mass of the SDOF oscillator will mainly be translated 
in phase with the support. Such modes constitute the rigid modes. Their responses are 
synchronous with each other (and with the base motion). This means that for rigid 
modes, a pure summation should be used, since they are fully correlated.

Modes with a significant dynamic response constitute the periodic modes. The 
maximum value for such modes will be more or less randomly distributed in time since 
their periods differ. For this reason, the periodic part of the response requires more 
sophisticated summation techniques. A plain summation of the maximum values will 
in general significantly overestimate the true response.

Modes which are in a transition region will partially contribute to the periodic modes, 
and partially to the rigid ones.

In addition, it is sometimes necessary to add some static load cases, containing a 
missing mass correction. The reason is that when only a limited set of eigenmodes is 
used in the superposition, those modes do not represent the total mass of the structure.

In the following, RI denotes any result quantity caused by excitation in direction I. RI 
can be for example be displacement, velocity, acceleration, strain component, stress 
component, equivalent stress, or a beam section force. The periodic part of RI is 
denoted RpI, and the rigid part is denoted RrI. Similarly, RpI,j and RrI,j denote the 
results from an individual eigenmode j.

Not all analyses require a separation into periodic and rigid modes. In such case, all 
modes are treated as periodic.
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Partitioning into Periodic and Rigid Modes

Figure 3-31: A schematic tripartite plot of a design response spectrum. Both axes have 
logarithmic scales.

There are two different methods in use, by which the partitioning can be done. In 
either case, for mode j,

This definition has the property that

The difference between the two methods lies in how the coefficients j are 
determined. For low frequencies, it should approach the value 0 (fully periodic 
modes). And for high frequencies, the value is 1 (fully correlated rigid modes).

The Gupta Method
In the Gupta method, j is a linear function of the logarithm of the natural frequency.

RrI ,j jRI j=

RpI ,j 1 j
2

– RI j=

RI ,j
2 RpI j

2 RrI j
2

+=
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where f1 and f2 are two key frequencies. Thus, for eigenfrequencies below f1, the 
modes are considered as purely periodic, and above f2 as purely rigid. In the original 
Gupta method, the lower key frequency is given by

where Sa,max and Sv,max are the maximum values of the acceleration and velocity 
spectra, respectively. In the idealized spectrum shown in Figure 3-31, this exactly 
matches the point D.

The second key frequency should be chosen so that the modes above this frequency 
behave as rigid modes. The frequency can be taken as the one where response spectra 
for different damping ratios converge to each other.

The Lindley–Yow Method
In the Lindley–Yow method, the coefficient j depends directly on the response 
spectrum values, and not only on the frequency. As a consequence, it is possible that a 
certain mode can be considered as having a different degree of rigidness for different 
excitation directions

The so-called zero period acceleration (ZPA) is the maximum ground acceleration 
during the event

This is the high frequency asymptotic value of the absolute acceleration (or 
pseudoacceleration). It also corresponds to the F-G part of the spectrum in 
Figure 3-31.

Thus,

j 0=     fj f1

j
fj f1 log
f2 f1 log

---------------------------=     f1 fj f2 

j 1=     fj f2

f1
Sa,max

2Sv,max
-----------------------=

RpI ,j
Sa,I

2 fj  SZPA,I
2

–

Sa,I fj 
------------------------------------------------RI,j=

SZPA,I maxt bI
ꞏꞏ t =
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The value of j must be in the range from 0 to 1, and it must increase with frequency. 
For this reason, NRC RG 1.92 requires that j must be set to zero for any eigenmodes 
below point C in Figure 3-31. For a general spectrum, this is implemented as a strict 
requirement that j has a monotonous decrease with decreasing frequency from fZPA. 
As soon as an increase in j is found, the value is set to zero for all lower frequencies.

Combining Periodic and Rigid Modes
Once the periodic and rigid responses have been summed up separately, they are 
combined as

Summing the Periodic Modes
All summation rules for periodic modes except Absolute Value Sum can be 
summarized by the following expression:

Here, RpI is the total periodic response of some result quantity R with respect to 
excitation in direction I (I=1,2,3). RpI,j is the result from an individual eigenmode j, 
and N modes are used in the summation. The interaction between the modes is 
determined by the coefficient Cij ( ). The different evaluation methods vary 
only in the definition of Cij.

Since Cij is symmetric and Cij = 1 when i = j, it is more efficient to use the expression

The result quantity R is computed using the ordinary definitions of how a variable is 
obtained from the DOF fields. This can be expressed as R = g(u). The operator g is 
however applied to the mode shape, multiplied by a scalar (spectrum value times 
participation factor)

j,I
SZPA,I
Sa,I fj 
-------------------=

RI RpI
2 RrI

2
+=

RpI
2 CijRpI,iRpI,j

j 1=

N


i 1=

N

=

0 Cij 1 

RpI
2 RpI ,i

2

i 1=

N

 2 CijRpI,iRpI,j

j i 1+=

N


i 1=

N

+=

RI j g Sd,IIjj =
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Next, the different evaluation methods are presented.

SRSS Method
In the SRSS method, it is assumed that the modes are statistically independent, so that

Grouping Method
The modes are grouped according to the following rule:

1     Start a new group m, by inserting the lowest, not yet grouped eigenmode k.

2     Step up through the eigenfrequencies from k.

3     As long as , add mode i to the group.

4     When 3 is not fulfilled any longer, go back to 1.

There are now a number of groups (where some could contain just a single 
eigenmode), and the coupling coefficient are defined as

The use of the sign function indicates that the term is always added with a positive sign, 
that is a cross term can never decrease the total sum. There is also an option to allow 
signed contributions, so that

Ten Percent Method
The ten percent method is similar to the grouping method, and has the following 
definition:

As can be seen, the ten percent method will always give a higher value than the 
grouping method, since all pairs that are inside a group will also fulfill the criterion for 

Cij 1=     i j=

Cij 0=     i j

fi 1.1fk

Cij RpI ,iRpI ,j sgn=     when the modes are in the same group

Cij 0=     when the modes are not in the same group

Cij 1=     when the modes are in the same group

Cij 0=     when the modes are not in the same group

Cij RpI,iRpI,j sgn=     fi 1.1fj

Cij 0=     else
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including the cross term. As in the previous method, there is also an option to use 
summation with signs, in which case

Double Sum Method
In the double sum method, the correlation between two modes depends on three 
factors:

• The frequency spacing between the two modes

• The damping

• The duration of the event

Note that there exist two distinct versions of this method. In NRC Regulatory Guide 
1.92 revision 1, the mode correlation coefficient is given by

whereas in revision 2 and later version of the same Regulatory Guide the expression is

The latter expression should be considered as more correct and in line with the original 
theory.

The modified frequency, , is defined as

where i is the modal damping. In the implementation in COMSOL Multiphysics, all 
modes are assumed to have the same damping.

The modified damping, , is defined as

where td is a separate input, called the time of duration. The value of  differs between 
modes, even though the damping is constant.

Cij 1=     fi 1.1fj

Cij 0=     else

Cij RpI,iRpI,j  1
fi' fj'–

i'fi j'fj+
-------------------------- 
 

2
+

1–
sgn=

Cij 1
fi' fj'–

i'fi j'fj+
-------------------------- 
 

2
+

1–
=

fi'

fi' fi 1 i
2

–=

i

i' i
1

tdfi
------------+=

i
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Der Kiureghian Correlation Coefficient (CQC)
This method, which is often called complete quadratic combination (CQC), is similar 
to the previous double sum method. The general expression contains modal damping 
values. Given that a single damping value is used here, the mode correlation expression 
can be simplified to

 (3-154)

Absolute Value Sum
This is the most conservative method, where the peak responses for all modes are 
summed

This would happen only if all modes reached their peaks simultaneously.

Summing the Rigid Modes
There are two possible combination methods for summing the rigid modes. The 
method is chosen implicitly, depending on other settings.

Rigid Mode Combination Method A
This is the more common method. The rigid modes are summed algebraically as

where Rmm,I is the term for the missing mass correction, if used.

Rigid Mode Combination Method B
This method is only used when the Lindley–Yow method is used together with the 
Static ZPA missing mass correction. In this case, the whole rigid mode contribution 
comes from the static load case, so that

Missing Mass Correction
In general, a mode superposition using a limited number of modes will miss some 
mass. With the assumption that the higher order modes do not have any dynamic 

Cij
82 fifj fi fj+ fifj

fi
2 fj

2
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42fifj fi fj+ 2+

---------------------------------------------------------------------=

RpI RpI,i
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=
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 Rmm I+=
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amplification, it is possible to device a correction by solving some extra static load 
cases, containing the acceleration excitation acting on the 'lost' mass. So-called static 
correction can be used for mode superposition in general. For the case of response 
spectrum analysis, the expressions are somewhat simplified.

In terms of the assembled finite element equations, the static correction load fc can be 
written as

Here, f is the original load vector, M is the mass matrix, and rk are the modal loads, 
given by the projection of the load vector on the eigenmodes ,

In the base excitation context when response spectrum analysis is used,

so the modal load is

Thus, the missing mass load is

For the rigid body modes, the maximum ground acceleration during the event is equal 
to the ZPA. The static load is thus

 (3-155)

The extra displacement correcting for the missing mass is then given by the standard 
stationary problem

To actually compute the load in Equation 3-155, the participation factors from a 
corresponding eigenfrequency study step are needed. The structure of the load is 

fc f rk Mk 
k
–=



rk k
Tf=

fI MbꞏꞏI t 1I–=

rk I IkbꞏꞏI t –=

fc I MbꞏꞏI1I– IkbꞏꞏI Mk 
k
+=

fc I SZPAM 1I– Ikk

k
+

 
 
 

=

Kurc I fc I=
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similar to that of a gravity load, but with the acceleration of gravity replaced by the 
space-dependent field

 (3-156)

The load is implemented by using Gravity nodes in the Structural Mechanics interface. 
The sum of the products between participation factors and mode shapes is performed 
in a Combined Solutions study step.

The Static ZPA Method
In this method, there is no need to deduce the actual missing mass. It can only be used 
together with the Lindley–Yow method. According to the Lindley–Yow method, all 
rigid modes have acceleration SZPA. This acceleration is given to the whole structure. 
The static load cases are thus just pure gravity loads, but scaled by SZPA instead of the 
acceleration of gravity.

S U M M A T I O N  O V E R  S P A T I A L  D I R E C T I O N S

The three orthogonal directions in which the design response spectrum is applied 
cannot, in general, be chosen arbitrarily. The structure may be more susceptible to 
excitation in a certain direction.

For earthquakes, it is usually assumed that the excitations in the three orthogonal 
directions are statistically independent. In most cases, there is no reason to assume that 
the excitations in the two horizontal directions have different spectral properties. 
Thus, a single design response spectrum is used in the two horizontal directions, and 
a different one is used in the third vertical (Z) direction.

Often, it is reasonable to assume that the excitations in the two horizontal directions 
have different amplitudes, even though they share the same spectral properties. The 
spectrum in the local Y direction is then a scaled version of the spectrum in the local 
X direction.

The X direction is not a property of the geographical location, but should be chosen 
as the one giving the worst case for a certain structure. The loading direction which 
causes the highest response may however not be the same for different result 
quantities, or for different locations in the structure. For some structures, there is an 

Ikk

k
 1I–

SY SX    0  1=
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obvious “weak” direction which can then be chosen as X direction. More often, this is 
not the case. There are then three possible approaches:

• Use the same spectrum in both horizontal directions — that is,  = 1. This will be a 
conservative approach.

• Run a number of separate analyses where the X direction is rotated to different 
orientations. If 15 degrees can be considered as a small enough rotation increment, 
then seven analyses are needed.

• Use a combination rule (CQC3), which takes the possible rotation into account.

SRSS Method
In the SRSS (square root of sum of squares) method, the total resultant is computed as

This expression contains an assumption of a statistical independence between the peak 
responses in three directions.

100-40-40 Method (Percent Method)
In this method, the contribution from the worst direction is taken at full value, whereas 
the two other contributions are reduced. There are two variants in commonly in use, 
the 40% (100-40-40) method and the 30% (100-30-30) method. The interpretation 
is clear: at the time when the peak values is reached in the worst direction, the values 
in the other direction are not higher than 40% (or 30%) of their individual peak values.

Let the response for the three directions be reordered so that

The total response for the 40% method is then computed as

In some formulations of this rule, the renumbering is not done, and the expression is 
written instead as

R RI
2

I 1=

3

=

R1 R2 R3 

R R1 0.4 R2 0.4 R3+ +=
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In practice, the same result is obtained as long as signs are properly taken into account 
when summing the results for multiple responses.

The 40% method is mostly slightly conservative when compared to the SRSS 
summation. The 30% method is significantly less conservative, and it will often give 
lower predictions than the SRSS method.

The percent methods are not spatially isotropic. For a symmetric structure, members 
which for symmetry reason should have the same level of loading will not experience 
that. The orientation of the reference axes for the acceleration orientation will matter.

CQC3 Method
The CQC3 method extends the CQC principles also to the spatial combination. In the 
CQC3 method, the modal and spatial combination are performed simultaneously. It 
is however only formally applicable if only the periodic modes are taken into account.

As in the standard CQC method, the modal response for each loading direction is 
summed as

where the Der Kiureghian expression Equation 3-154 for Cij is used.

In addition, a similar expression giving the cross coupling between the responses to the 
spectra in the two horizontal directions is formed:

It is now conceptually assumed that the response spectra are instead applied in a local 
coordinate system X'-Y' which is rotated an angle  with respect to the X-Y 
orientations. It can then be shown that

R

RX 0.4RY 0.4RZ , or

RY 0.4RZ 0.4RX , or

RZ 0.4RX 0.4RY 








=

RpI
2 CijRpI ,iRpI,j

j 1=

N


i 1=

N

=

RpXY
2 CijRpX,iRpY,j

j 1=

N


i 1=

N

=
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Also, if the relation between the two spectra in the horizontal plane is such that

the same ratio  will apply to the responses. The peak response as function of the 
rotation angle is obtained by an SRSS type summation

It can be seen that for  = 1, the standard SRSS expression is retrieved.

The angle max giving the maximum response R(max) turns out to be independent 
of , and it has the value

There are two roots for max, both of which must be checked.

The attractiveness of the CQC3 method is that the same spectrum can be applied to 
an arbitrary pair of orthogonal axes. The scaling of the secondary spectrum, as well as 
the orientation of the worst direction, is taken care of by the method.

Extending to Rigid Modes
As mentioned above, the original CQC3 method only deals with the periodic part of 
the solution, so it is limited to cases dominated by such modes. It is however possible 
to make an extension taking also the rigid (high frequency) modes.

Studying how the rigid modes enter the problem when using CQC (or any of the 
similar combination rules) together with SRSS spatial combination gives some insight:

RpX',i RpX,i cos RpY,i sin+=
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Thus, the rigid responses enter the final results as an extra mode, not coupled to the 
periodic modes. Define a cross term also for the rigid response

Now, it is possible to have the rigid modes too in a CQC3 context. Another way of 
expressing this is that the rigid response is treated as mode N + 1, the summation in 
the CQC3 rule is extended to N + 1, and

In the GUI, this extension is selected by checking the Augment with rigid response 
check box.

SRSS3 Method
The SRSS3 method is a special case of the CQC3 rule, in which the mode correlation 
is ignored, that is

It retains the property of selecting the worst orientation, through the search for max. 
The extension to rigid modes is the same as for CQC3.

Linear Buckling

The most common linear buckling analysis consists of two steps. First, a stationary 
problem is solved using a unit load of arbitrary size. The critical load is then obtained 
by solving an eigenvalue problem, where the eigenvalue  is the multiplier to the 
original load that would cause buckling.

RrXY
2 RrXRrY=

CN 1N 1+ + 1=

CiN 1+ 0   when  i N 1+=




Cij 1=     i j=

Cij 0=     i j

For information about how to perform a response spectrum analysis, see 
Response Spectrum Analysis Study

For a general introduction, see Linearized Buckling Analysis
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The formulation in terms of virtual work is

 (3-157)

Here,  is the engineering strain, GL is the Green–Lagrange strain. In terms of stiffness 
matrices, this corresponds to

where KL is the linear stiffness matrix, and KNL is the nonlinear contribution to the 
full stiffness matrix. The symbolic linearization point u0 is the displacement vector 
caused by the unit load.

Strictly speaking, this formulation assumes that geometric nonlinearity is not used in 
the eigenvalue step. The Green–Lagrange tensor is inserted explicitly in the second 
term of Equation 3-157, while the first term uses the linear (engineering) strain tensor.

If, however, geometric nonlinearity is selected in the linear buckling study step, 
Equation 3-157 is replaced by

By using the term (-1), the effect of using the Green–Lagrange strain tensor in the 
first term is to a large extent removed. Unless the unit load is significantly larger than 
the buckling load, the result will be the same as the intended, even if geometric 
nonlinearity was inadvertently selected in the eigenvalue study step.

W –   GL – –  dV
V 0= =

KL KNL u0 + u 0=

W GL–   1–  GL – –  dV
V 0= =
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Damp i n g

For dynamic problems, the damping of the structure is usually an important property.

In this section:

• Rayleigh Damping

• Loss Factor Damping

• Viscous Damping

• Maximum Loss Factor

• Wave Attenuation

Rayleigh Damping

Rayleigh damping is described by two coefficients: the mass damping coefficient dM 
and the stiffness damping coefficient dK. Rayleigh damping will give the following 
contribution to the virtual work

Here P is the first Piola–Kirchhoff stress tensor.

Since Rayleigh damping is added directly to the virtual work equation, it does not 
affect the constitutive relation. As a consequence, the stresses and strains will for a 
linear elastic material still be in phase. This stands in contrast to the other damping 
models.

W  u – dK
P
t

------ dMu u
t

-------– 
dv



V
=
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Rayleigh damping can be used both in the time domain and in the frequency domain.

Loss Factor Damping

Loss factor damping is only applicable in frequency domain. When using loss factor 
damping, a complex constitutive matrix is used. With an isotropic loss factor s, this 
means that

where D is the constitutive matrix computed from the material data, and Dc is the 
complex constitutive matrix used when computing the stresses. For a linear elastic 
material, this would be equivalent to multiplying Young’s modulus by the factor 
1  js. For a nonlinear elastic material, this applies to the tangential stiffness.

It is also possible to give individual loss factors for each entry in the constitutive matrix, 
so that

In the case of an orthotropic material, yet another option is available, where each 
individual component of Young’s modulus and shear modulus can be given an 
individual loss coefficient:

Rayleigh damping is not directly related to any physical property. 
Historically, it was introduced since it was numerically attractive to have 
a damping matrix which was a linear combination of the mass and stiffness 
matrices

This operation is usually implied to be done at the global assembled 
matrix level. Such an interpretation is however only meaningful for pure 
structural mechanics problems, but not in a general multiphysics context. 
For this reason, Rayleigh damping in COMSOL Multiphysics is a material 
property, rather than a global property of the system of equations. Enter 
the same Rayleigh damping parameters for all materials, and solve a pure 
structural mechanics problem to retrieve the classical definition.

C M K+=

Dc 1 js+ D=

Dmn
c 1 js mn+ Dmn=
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The complex moduli are then used to form the constitutive matrix.

For hyperelastic materials, the loss information appears as a contribution to the second 
Piola–Kirchhoff stress:

For loss factor damping, the following definition is used for the elastic part of the 
entropy:

note that Selast here denotes the entropy contribution and not any stress.

This is because the entropy is a function of state and thus independent of the strain 
rate, while the damping represents the rate-dependent effects in the material (for 
example, viscous or viscoelastic effects). The internal work of such inelastic forces 
averaged over the time period 2 can be computed as:

Qh can be used as a heat source for modeling of the heat generation in vibrating 
structures, when coupled with the frequency-domain analysis for the stresses and 
strains.

Viscous Damping

Viscous damping can be added to the material models. It will cause an extra stress 
proportional to the rate of elastic strain in the material,

where b and v are the bulk and shear viscosity coefficients, respectively.

Viscous damping can be used in both frequency and time domain analyses.

Em
c 1 jE m+ Em=

Gm
c 1 jG m+ Gm=

m 1 2 3 =

Sq js
Ws
E

----------=
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1
2
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ꞏ
el vol, 2v

ꞏ
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In case of geometric nonlinearity, the viscous stress is treated as being a Cauchy stress 
acting in the actual configuration (spatial frame). The resulting contribution to the 
second Piola–Kirchhoff stress is calculated as

where  is the elastic Cauchy–Green tensor,  is the rate of the elastic Green–
Lagrange strain, and Jel is the elastic volume ratio.

Maximum Loss Factor

Maximum Loss Factor is a special damping model which can be used in frequency as 
well as in time domain studies. The model approximates a target loss factor, max, 
when the material is loaded at a given reference frequency, fref. The formulation of this 
damping model is very similar to the Standard Linear Solid (SLS) viscoelastic model 
with both deviatoric and viscoelastic strains. The SLS model is often represented with 
a spring-dashpot analogy where an additional branch consisting of a spring and a 
dashpot are coupled in parallel to the parent material model (for instance a Linear 
Elastic Material). The loss factor is defined as

where G'' and K'' are the shear and bulk loss moduli, and G' and K' are the shear and 
bulk storage moduli, respectively. The parallel coupled SLS branch adds an inelastic 
stress, Sq.

Here, the auxiliary viscous strain, v, in the SLS branch follows the relation

The shear and bulk viscoelastic moduli and the relaxation time are derived from the 
target maximum loss factor, max, and the reference frequency, fref

 and

Sq b
2
3
---v– 
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1– 2vJelCel

T– Eꞏ elCel
1–

+=

Cel Eꞏ el

 G''
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K'
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Sq Kvtr(el v I– 2Gvdev(el v –+=
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 where

Here G and K are the equivalent shear and bulk moduli of the parent material model, 
for instance a Linear Elastic Material. The loss factor is then defined from the 
frequency-dependent expression

The loss factor equals the target maximum loss factor when the material is loaded with 
an harmonic load at the reference frequency

Wave Attenuation

For linear elastic isotropic material, the effective bulk and shear viscosity coefficients 
can be computed based on the spatial attenuation for elastic pressure and shear waves.

Without loss of generality, consider waves propagating along the x-axis. The waves are 
linear, so that small strains are assumed.

The pressure waves are solutions of the form: . The corresponding 
momentum balance equation is

where the stress component can be represented as

where K and G are the bulk and shear moduli, respectively; and b and v are the bulk 
and shear viscosity coefficients, respectively.

The shear waves are solutions of the form: , where the y-polarization 
is assumed, again without loss of generality. The corresponding momentum balance 
equation is

v
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where

Consider the following generic form of the momentum balance as a representation of 
either case, pressure or shear waves:

In an infinite domain, the solution can be expressed for any specified angular frequency 
 in the following complex-values form:

where U+ and U- are constant amplitudes, and

are two solutions of the dispersion relation

Separation of the real and imaginary parts of the above equation gives

Note that for most materials,  even for very large values of .

The phase velocity is given by
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The solution takes the form

which can be seen as a superposition of two plane waves propagating in the opposite 
directions; both waves are spatially attenuated in the corresponding direction of 
propagation.

For each wave, the spatial attenuation is characterized by () which is often called the 
attenuation coefficient. It has a SI unit (1/m), but is often given using neper per meter 
(Np/m). Alternatively, the value can be given in decibel per meter (dB/m). Both Np 
and dB are relative units (dimensionless). Values given in Np or Np/m can be used 
directly in any formula using SI units. The conversion formula needs to be applied for 
values using dB:

(value in Np) = (value in dB) ln(10)/20 = 0.1151 (value in dB)

The wave attenuation can be also specified as attenuation per wavelength , which is 
defined as

which allows to find the viscosity as

The above formula can be directly applied to the cases of pressure and shear waves. 
Using given values of the attenuation per wavelength p and s measured in Np at the 
corresponding references frequencies fp,ref and fs,ref, the shear and bulk viscosity are 
found as
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where  and . If the values are given in dB per 
wavelength, the conversion factor ln(10)/20 needs to be inserted.

For given values of attenuation coefficients p and s measured in Np/m at the 
corresponding references frequencies fp,ref and fs,ref the approximate formulas for the 
viscosity coefficients are

where the approximate phase velocity for the pressure and shear waves are given by

 and . If the values of p and s are given in dB/
m, the conversion factor ln(10)/20 needs to be inserted.
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b

2 K 4
3
---G+ 

 

p ref,
----------------------------

p
2
------ 1

p
2
------ 
 

2
– 

 
1– 4

3
---v–=

p ref, 2fp ref,= s ref, 2fs ref,=

v
2Gcs

s ref,
2

---------------s=

b

2 K 4
3
---G+ 

  cp

p ref,
2

----------------------------------s
4
3
---v––=

cp K 4G 3+  = cs G =
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L o ad s  and Con s t r a i n t s

In this section:

• Distributed Loads

• Gravity and Base Excitation

• Frame Acceleration Forces

• Spring Foundation and Thin Elastic Layer

• Added Mass

• Rigid Motion Suppression

• Limited Displacement

• Low-Reflecting Boundary Condition

• Cyclic Symmetry and Floquet Periodic Conditions

• Symmetry Condition with Translation

• Roller Boundary Condition

• Thermal Expansion of Constraints

• Fluid-Structure Interaction

• Periodic Cell Theory

• Rigid Connector

• Continuity Condition

Distributed Loads

The direction of an explicitly applied distributed load must be given with reference to 
a local or global coordinate system in the spatial frame, but its magnitude must be with 
reference to the undeformed reference (or material) area. That is, the relation between 
the true force f acting on the current area da and the specified distributed load F 
acting on the material area dA is f da= FdA.

When the solid is subjected to an external pressure, p, the true force on a surface 
element acts with magnitude p in the current area da in the normal direction n:

Therefore, the pressure load type specifies the distributed load as

f pnda=
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where both the normal n and area element da are functions of the current 
displacement field.

Another view of how to interpret the load, is to express it in the first Piola–Kirchhoff 
stress tensor P via the following formula:

where the normal n0 corresponds to the undeformed surface element. Such a force 
vector is often referred to as the nominal traction.

Plane Stress
In a plane stress condition, the out-of-plane deformation causes the thickness to 
change, and this area effect is included explicitly.

The equation transforms to

where l and L are the current and original in-plane lengths of the boundary.

Axial Symmetry
To account for the radial deformation changing the circumference and therefore the 
area element, the distributed load is applied as

Gravity and Base Excitation

Gravity is a global feature that applies forces to all features in the physics interface 
having a density, mass, or mass distribution. The gravitational force acts in a fixed 
spatial direction eg. Consider a domain feature having a density of , the gravitational 
force is

where g is the acceleration of gravity. The default value of g is the earth’s standard 
acceleration of gravity, having the value of g_const = 9.8066 m/s2.

F pn da
dA
--------=

F P n0=

F pn dl
dL
-------- 1

z
w+ 

 =

F pn da
dA
-------- R u+ 

R
-------------------=

g geg=
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Base excitation is similar to gravity, but has two distinct properties: The sign is reversed 
(the acceleration of the foundation is given) and it defines variables for the global, 
room fixed, accelerations.

Frame Acceleration Forces

Add Rotating Frame and Linearly Accelerated Frame nodes to create the loads caused by 
the frame acceleration. This gives load contributions from all nodes in the physics 
interface that have a density or mass, such as Linear Elastic Material, Rigid Material, Added 

Mass, or Point Mass.

In the following, the mass density  should be considered as generalized. It can 
represent mass per unit volume, mass per unit area, mass per unit length, or even mass, 
depending on the dimensionality of the object giving the contribution.

L I N E A R L Y  A C C E L E R A T E D  F R A M E  

The force acts in a fixed spatial direction and is computed as

where af is a specified linear frame acceleration vector. Alternatively, the effective 
acceleration in the accelerated frame can be augmented to include the frame 
acceleration effect:

R O T A T I N G  F R A M E

Centrifugal, Coriolis and Euler forces are fictitious forces that need to be introduced 
in a rotating frame of reference, since it is not an inertial system. They can be added as 
loads. Alternatively, the effective acceleration in the rotating frame can be augmented 
to include the frame rotation effects:

Only features which have a geometrical selection contribute to the mass 
forces. The Mass and Moment of Inertia nodes are global features and will 
not get any contribution from Rotating Frame and Linearly Accelerated 

Frame nodes.

f a– f=

atot uꞏꞏ af+=

atot uꞏꞏ af+=
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where the rotating frame acceleration is computed as

C E N T R I F U G A L  F O R C E

A centrifugal force acts radially outward from the axis of rotation defined by the axial 
direction vector eax. The rotation is represented by the angular velocity vector:

where is the angular velocity. In vector form, the acceleration contribution and the 
loads are:

where rp is the rotation position vector that contains the coordinates with respect to 
any point on the axis of rotation. The point is given by its radius vector in the global 
coordinate system rbp.

S P I N - S O F T E N I N G  E F F E C T

The structural displacement can be accounted for when computing the rotation 
position, so that

This results in a contribution from the extra acceleration terms caused by the 
deformation into the system’s stiffness matrix. The effect is often called spin-softening.

C O R I O L I S  F O R C E

For a Coriolis force to appear, the object studied must have a velocity relative to the 
rotating frame. The acceleration contribution and the load are:

This gives a damping contribution since it is proportional to the velocity.

af acen acor aeul+ +=

 eax=

acen   rp =

Fcen acen–=

rp X u rbp–+=

acor 2
t

u=

Fcor acor–=
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E U L E R  F O R C E

The Euler force occurs when the rate of rotation is not constant in time. The force acts 
in the plane of rotation perpendicular to the centrifugal force. The acceleration 
contribution and the load are:

Spring Foundation and Thin Elastic Layer

In this section, the equations for the spring type physics nodes are developed using 
boundaries, but the generalizations to geometrical objects of other dimensions are 
obvious. Also, for cases where rotational springs are present, the relations between 
moments and rotations are analogous to the relations between forces and 
displacements described below.

S P R I N G  F O U N D A T I O N

A spring gives a force that depends on the displacement and acts in the opposite 
direction. In the case of a force that is proportional to the displacement, this is called 
Hooke’s law. In a suitable coordinate system, a spring condition can be represented as

where fs is a force/unit area, u is the displacement deforming the spring, and K is a 
stiffness matrix. u0 is an optional deformation offset, which describes the stress-free 
state of the spring.

If the spring stiffness is not constant, then it is in general easier to directly describe the 
force as a function of the displacement, so that

In the same way, a viscous damping can be described as a force proportional to the 
velocity

where D is a matrix representing the viscosity.

aeul t
 rp=

Feul aeul–=

fs K u u0– –=

fs f u u0– =

fv D uꞏ uꞏ 0– –=
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Structural (“loss factor”) damping is only relevant for frequency domain analysis and 
is defined as

where  is the loss factor and i is the imaginary unit. It is also possible to give individual 
loss factors for each component in the stiffness matrix K.

If the elastic part of the spring definition is given as a force versus displacement 
relation, the stiffness K is taken as the stiffness at the linearization point at which the 
frequency response analysis is performed. Since the loss factor force is proportional to 
the elastic force, the equation can be written as

The contribution to the virtual work is

T H I N  E L A S T I C  L A Y E R  B E T W E E N  T W O  P A R T S

A spring or damper can also act between two boundaries of an identity pair. The spring 
force then depends on the difference in displacement between the two boundaries.

The uppercase indices refer to “source” and “destination”. When a force versus 
displacement description is used,

The viscous and structural damping forces have analogous properties,

or

fl iK u u0– –=

fl ifs=

W fs fl fv+ +  u Ad
A
=

fsD fsS– K uD uS u0–– –= =

fsD fsS– f u u0– = =

u uD uS–=

fvD fvS– D uꞏD uꞏ S uꞏ 0–– –= =

flD flS– iK uD uS u0–– –= =

flD ifsD=
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The virtual work expression is formulated on the destination side of the pair as

Here the displacements from the source side are obtained using the src2dst operator 
of the identity pair. Select the side with the finer mesh as destination if there is a 
difference in mesh density on the two sides of the pair.

T H I N  E L A S T I C  L A Y E R  O N  I N T E R I O R  B O U N D A R I E S

On an interior boundary, the Thin Elastic Layer decouples the displacements between 
two sides of the boundary. The two boundaries are then connected by elastic and 
viscous forces with equal size but opposite directions, proportional to the relative 
displacements and velocities.

The spring force can be written as

or

The viscous force is

and the structural damping force is

or

W fsD flD fvD+ +   uD uS–  ADd
AD

=

If an interface which is active on boundaries (Shell or Membrane in 3D 
for example) is added on the same interior boundary as a Thin Elastic 

Layer, then the virtual slit between the two sides of the boundary may be 
closed again. This happens if the domain interface and the boundary 
interface share the same displacement degrees of freedom.

fsu fsd– K uu ud u0–– –= =

fsu fsd– f u u0– = =

u uu ud–=

fvu fvd– D uꞏ u uꞏ d uꞏ 0–– –= =

flu fld– iK uu ud u0–– –= =
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The subscripts u and d denote the “upside” and “downside” of the interior boundary, 
respectively.

The virtual work expression is formulated as

S T I F F N E S S  F R O M  M A T E R I A L  D A T A

When the stiffness is given in terms of actual material data and layer thickness ds, the 
stiffness in the normal direction is computed based on a state of plane strain, so that

The assumption of plane strain conditions is relevant when the material in the elastic 
layer is softer than its surroundings, and this is normally the case.

The shear stiffness is isotropic in the tangential plane, having the value

Since the layer thickness is known in this case, it is also possible to compute a strain in 
the elastic layer. The strain tensor has the is stored in a variable with a name like 
<interface>.<feature>.etelij, for example solid.tel1.etelxx for the normal 
strain. The two shear strains are stored in the xy and xz components of the tensor. In 
3D, the orientation of the two local directions y and z used for the two shear strain 
directions is obtained using the following scheme:

1 Choose an auxiliary direction. Unless the normal to the layer is very close to the 
global X direction, use . If the X direction cannot be used, the 
Y direction is instead used as the auxiliary direction, .

2 The local y direction is obtained from the part of the auxiliary direction which is 
orthogonal to the normal direction n:

3 The local z direction is orthogonal to the normal and the local y direction:

flu ifsu=

W fsd fld fvd+ +   uu ud–  Aud
Au

=

kn
E 1 – 

ds 1 +  1 2– 
---------------------------------------------=

kt
G
ds
------ E

2ds 1 + 
---------------------------= =

eaux eX=

eaux eY=

ey
eaux eaux n n–

eaux eaux n n–
---------------------------------------------------=
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Spring-Damper Theory

The Spring-Damper node is used to define elastic and dissipative forces between a source 
and a destination attachment. Two different spring types are available. When using the 
directional spring (Figure 3-32), all forces act in the direction of the spring extension. 
With the matrix spring formulation, more general dependencies between the 
displacements and forces can be defined.

Figure 3-32: Conceptual sketch of a Spring-Damper.

• Connection Points and Spring Extension

• Deactivation

• Spring and Damping Forces

• Spring and Damping Energies

C O N N E C T I O N  P O I N T S  A N D  S P R I N G  E X T E N S I O N

The current position of the source and destination points, xs and xd, can be written as

ez n ey=

Springs and Dampers in the Structural Mechanics Modeling chapter.

xs Xs us+=

xd Xd ud+=
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where Xs and Xd are the original positions of the two points, and us and ud are their 
respective displacements. For the special case where the source point is selected as a 
fixed point,

The relative displacements between the source and destination points determines the 
forces in the spring-damper. Depending on the chosen spring type (directional or 
matrix), the relative displacement is defined by different quantities.

Directional
For the directional spring, the extension is given in terms of a scalar spring length. The 
initial spring length, l0, is

The current spring length, l, is

In the case of a geometrically linear analysis, the current spring length is linearized to

Specify an initial spring extension l0 in addition to the initial geometrical distance 
between the two points, so that the free length of the spring is

It is also possible to specify the free length of the spring explicitly. The spring extension 
l is then computed as the difference between the current spring length and the free 
length lf,

Matrix
When choosing the matrix spring type, the spring-damper forces are instead computed 
based on the relative displacement and the relative rotation vectors. If the study is 
geometrically linear, the relative rotation vector is

xs Xs=

l0 Xd Xs– Xd Xs–  Xd Xs– = =

l xd xs–=

l
xd xs–  Xd Xs– 

l0
----------------------------------------------------=

lf l0 l0–=

l l lf–=

 d s–=
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where s and d are the rotations of the source and destination attachments, 
respectively. In case of geometrically nonlinear studies, the relative rotation vector is 
instead computed from the quaternion multiplication,

where qs and qd are the source and destination rotations represented by unit 
quaternions, and q is a quaternion representing the differential rotation, which can 
be converted to an axis-angle representation defining the relative rotation vector.

By default, the relative displacement vector is simply defined as

If the check box Include rotational contribution in displacement in the Spring-Damper 
section is selected, an additional term is included in the relative displacement vector 
which can be interpreted as the displacement at the tip of a bar element which connects 
the source and destination due to the rotation at the destination point. In a 
geometrically linear study, the relative displacement is then defined as

In a geometrically nonlinear study, the cross product is replaced with the rotation 
matrix.

D E A C T I V A T I O N

The spring-damper can be deactivated under certain conditions. In terms of the 
implementation, this means that many expressions are multiplied by an activation 
indicator, iac. The activation indicator has the value 1 when the component is active, 
and 0 when deactivated.

S P R I N G  A N D  D A M P I N G  F O R C E S

Spring and damper forces are computed differently for the directional and the matrix 
spring types.

Directional
When the directional spring is chosen, the spring force is proportional to the spring 
constant k:

qd q qs=

 f q =

u ud us–=

u ud us– d Xd Xs– –=

u ud us– R d  I–  Xd Xs– –=
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If k depends on the extension, so that the spring is nonlinear, it should be interpreted 
as a secant stiffness, that is

Specify the spring force as function of extension explicitly as

To create the expression for the function, use the built-in variable for the spring 
extension. It has the form <physicsTag>.<SpringNodeTag>.dl (for example, 
solid.spd1.dl).

In a dynamic analysis, the viscous damping force is computed as

where c is the viscous damping coefficient.

The magnitude of the total force is

The total forces in the global coordinate system, acting on the destination and source 
points are

In a geometrically linear case, the orientation of the force is kept fixed, so that

The contribution to the virtual work is

Matrix
When choosing the matrix formulation, the spring and the damper forces are 
computed from the relative displacements and rotations. In the most general case, the 
spring-damper force, F, and the spring-damper moment, M, are

Fs kl=

Fs k l  l=

Fs Fs l =

Fd c
td

d l =

F Fs Fd+=

Fdst F– src F–
xd xs– 

l
-----------------------= =

Fdst F– src F–
Xd Xs– 

l
------------------------= =

Fdst u d u s– 
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where the subscripts s and d refer to the spring and damper, respectively; the different 
k and c represent sub-matrices of size 3x3, describing the elastic and the dissipative 
forces and moments. In 2D, some of the matrices related to the rotation and to the 
translational-rotational coupling have components which are zero by definition.

S P R I N G  A N D  D A M P I N G  E N E R G I E S

In stationary and time-dependent analysis, the elastic energy in the spring is computed.

Directional
With the directional spring formulation, the energy is

In a time-dependent analysis, the energy dissipated in the damper, Wd, is computed 
using an extra degree of freedom. The following equation is added:

In a frequency domain analysis, the elastic energy in the spring and the energy 
dissipated in the damper are computed as

These energy quantities represent the cycle average, and only the perturbation terms 
are included.

Matrix
If instead the matrix formulation is used, the elastic energy in the spring is

F
M

Fs

Ms

Fd

Md

ku ku

ku k

= u


cu cu

cu c

uꞏ


ꞏ+ +=

Ws iac Fs l d

0

l

=

Wdd
td

------------ iacFd
l d
td

--------------=

Ws iac
1
4
---Re lindev Fs  conj lindev l   =

Wd iac
1
4
---Re lindev Fd  conj lindev l   =

Ws iac
1
2
--- Fs u Ms+ =
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In a time-dependent analysis, the energy dissipated in the damper, Wd, is computed 
using an extra degree of freedom. The following equation is added:

In a frequency domain analysis, the elastic energy in the spring and the energy 
dissipated in the damper are computed as

Added Mass

The Added Mass node can be used for supplying inertia that is not part of the material 
itself. Such inertia does not need to be isotropic, in the sense that the inertial effects 
are not the same in all directions. This is, for example, the case when a structure 
immersed in a fluid vibrates. The fluid is added to the inertia for acceleration in the 
direction normal to the boundary, but not tangential to it.

Other uses for added mass are when sheets or strips of a material that is heavy, but 
having a comparatively low stiffness, are added to a structure. The data for the base 
material can then be kept unaltered, while the added material is represented purely as 
added mass.

The value of an added mass can also be negative. Use such a negative value for 
adjusting the mass when a part imported from a CAD system does not get exactly the 
correct total mass due to simplifications of the geometry.

Added mass can exist on domains, boundaries, and edges. The inertial forces from 
added mass can be written as

where M is a diagonal mass distribution matrix. For added mass on a boundary (and 
for objects of other dimensions), the contribution to the virtual work is:

Wdd
td

------------ iac Fs uꞏ Ms
ꞏ

+ =

Ws iac
1
4
--- R e lindev Fs  conj lindev u    +=

Re lindev Ms  conj lindev     

Wd iac
1
4
--- R elindev Fd  conj lindev u   = +

Re lindev Md  conj lindev     

fm M
t2

2



 u
–=
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Rigid Motion Suppression

The Rigid Motion Suppression feature is a convenient way to automatically create a set 
of constraints which are sufficient to inhibit rigid body modes. The constraints are 
selected so that no reaction forces are introduced as long as the external loads are in 
equilibrium.

Consider that the undeformed and deformed positions of a body are measured in the 
same coordinate system, see Lagrangian Formulation for details. These are related by 
the displacement vector as

where x is the spatial coordinate, X is the material coordinate, and u is the 
displacement.

An average displacement of the body can be obtained by a volume average, which 
requires a domain integration. However, a computationally leaner operation is to only 
consider the domain boundaries or geometrical points when averaging the 
displacement. When defining the rigid motion constraints, it is sufficient to only 
consider the geometric points of the body.

Constraining the average displacement to zero is equivalent to having the same average 
position (barycenter or centroid) in the undeformed and deformed body. Since the 
average displacement can be written as

The constraint 

is imposed, so the average centroid is the same for the deformed and undeformed 
body. This is enforced by adding three displacement constraints in 3D or two 
constraints in 2D.

The averaging is done by considering all the geometrical points in the domain, but it 
is also possible to consider a subset of points.

W fm u Ad
A
=

x X u X t +=

x X u+=

u X t  0=
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Three additional constraints in 3D, or one additional constraint in 2D are required to 
constrain the rotation with respect to the average centroid position 

Limited Displacement

In some physics interfaces, displacements can be prescribed not only to a certain value, 
but also to move freely within given limits. This is specified using the Limited option 
in the Prescribed Displacement or Prescribed Displacement/Rotation nodes.

The limit conditions are implemented as a weak inequality constraint. For each 
displacement component ui, a gap distance is computed as

 (3-158)

where u0i,max and u0i,min are the maximum and minimum limits. Given 
Equation 3-158, the weak inequality constraint is formulated as

 (3-159)

and is subjected to the Kuhn-Tucker conditions

where fi is the constraint force (or contact reaction force).

Using the penalty method to regularize the constraint, the contact reaction force is 
defined as

where kp is the penalty factor. With the above definition of fi, Equation 3-159 is added 
as a weak contribution to the model to implement the constraint.

The augmented Lagrangian implementation of the inequality constraint is based on 
the following augmentation of Equation 3-159

 (3-160)

X

X X–  u

gi min u– i u0i,max, ui u0i,min–+ =

0 figi Xd=

gi 0,    fi 0,   figi 0=

fi max kpgi,  0– =

0 figi Xd=

0 1
kp
------– fi flm,i– flm,i Xd=
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where flm,i is a Lagrange multiplier that is added as an extra degree of freedom to the 
model. The penalized contact reaction force fi is for the augmented Lagrangian 
method defined as

and the constraint is implemented by adding the weak contributions defined in 
Equation 3-160 to the model.

Low-Reflecting Boundary Condition

The low-reflecting boundary condition is mainly intended for letting waves pass out 
from the model domain without reflection in time-dependent analyses. It is also 
available in the frequency domain, but then adding a perfectly matched layer (PML) is 
usually a better option.

As a default, the low-reflecting boundary condition takes the material data from the 
adjacent domain in an attempt to create a perfect impedance match for both pressure 
waves and shear waves, so that

where n and t are the unit normal and tangential vectors at the boundary, respectively, 
and cp and cs are the speeds of the pressure and shear waves in the material. This 
approach works best when the wave direction in close to the normal at the wall.

In the general case use

where the mechanical impedance dim is a diagonal matrix available as the user input, 
and by default it is set to

fi max kpgi flm,i+ , 0– =

 n cp t
u n 
 n– cs t

u t 
  t–=

 n dim  cp cs  
t

u
–=

dim 
cp cs+

2
----------------I=

More information about modeling using low-reflecting boundary 
conditions can be found in Ref. 1.
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Cyclic Symmetry and Floquet Periodic Conditions

These boundary conditions are based on the Floquet theory which can be applied to 
the problem of small-amplitude vibrations of spatially periodic structures.

If the problem is to determine the frequency response to a small-amplitude 
time-periodic excitation that also possesses spatial periodicity, the theory states that the 
solution can be sought in the form of a product of two functions. One follows the 
periodicity of the structure, while the other one follows the periodicity of the 
excitation. The problem can be solved on a unit cell of periodicity by applying the 
corresponding periodicity conditions to each of the two components in the product.

The problem can be modeled using the full solution without applying the above 
described multiplicative decomposition. For such a solution, the Floquet periodicity 
conditions at the corresponding boundaries of the periodicity cell are expressed as

where u is a vector of dependent variables, r is the position, and the vector kF 
represents the spatial periodicity of the excitation.

The cyclic symmetry boundary condition presents a special but important case of 
Floquet periodicity, for which the unit periodicity cell is a sector of a structure that 
consists of a number of identical sectors. The frequency response problem can then be 
solved in one sector of periodicity by applying the periodicity condition. The situation 
is often referred to as dynamic cyclic symmetry.

For an eigenfrequency study, all the eigenmodes of the full problem can be found by 
performing the analysis on one sector of symmetry only and imposing the cyclic 
symmetry of the eigenmodes with an angle of periodicity , where the cyclic 
symmetry mode number m can vary from 0 to N, with N being the total number of 
sectors so that   2N.

The Floquet periodicity conditions at the sides of the sector of symmetry can be 
expressed as

This section describes the theory for solids in 3D, but is equally applicable 
to shells. In the case of shells, the periodicity condition is applied to edges, 
and the rotational degrees of freedom (displacements of the normal 
vector) are treated in the same way as the translational displacements.

udestination ikF rdestination rsource– – exp usource=

 m=
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where the u represents the displacement vectors with the components given in the 
default Cartesian coordinates. Multiplication by the rotation matrix given by

makes the corresponding displacement components in the cylindrical coordinate 
system differ by the factor  only. For scalar dependent variables, a similar 
condition applies, for which the rotation matrix is replaced by a unit matrix.

The angle  represents either the periodicity of the eigenmode for an eigenfrequency 
analysis or the periodicity of the excitation signal in case of a frequency-response 
analysis. In the latter case, the excitation is typically given as a load vector

when modeled using the Cartesian coordinates. The parameter m is often referred to 
as the azimuthal wave number.

Symmetry Condition with Translation

A standard symmetry condition prohibits translation in the symmetry direction.

The normal to the symmetry plane, ns, is either computed from the geometry, or given 
as a user input.

When allowing translation of the symmetry plane, the constraint is modified to

Here, un is a single scalar displacement offset which is the same for all locations where 
the symmetry constraint is applied.

udestination e i– Rusource
T

=

R

 cos  sin– 0
 sin  cos 0

0 0 1

=

i– exp



F F0 im Y X atan– exp–=

Ref. 2 contains more information about cyclic symmetry conditions.

u ns 0=

u ns un– 0=
L O A D S  A N D  C O N S T R A I N T S  |  735



736 |  C H A P T E R
If the selected normal direction condition is Prescribed displacement, then un is the 
given value.

If the selected normal direction condition is Free displacement or Prescribed force, then 
un is added as a degree of freedom to be determined during the solution.

The weak contribution for this equation is

where Fn is the prescribed force. Note that in the Free displacement case, the force is 
zero, so no weak contribution is added. This corresponds to a solution with zero 
reaction force.

Roller Boundary Condition

The Roller boundary condition is similar to a Symmetry boundary condition, since it 
constrains the displacement in a direction normal to the boundary. A Roller is however 
intended to be used also on curved boundaries. The constraint can be formulated as

where the normal nr is computed using different methods depending on the selection 
in the Roller Constraint section.

When Normal orientation is set to Automatic, the normal orientation is computed from 
the mesh, or its underlying geometry. Consider for example a roller condition on a 
planar surface. Theoretically, the normal at all mesh nodes should be parallel. But if 
there are inaccuracies in the node locations, the computed normals may not be exactly 
the same everywhere. They can differ not only between nodes, but also between 
neighboring elements connected to the same node. Thus, there may be constraints 
acting in somewhat different directions. Such constraints can make the boundary 
appear as fixed, rather than sliding. This potential problem can be reduced if you select 
Nodal as Constraint method in the Constraint Setting section.

Fntest un 

u nr 0=

In the COMSOL Multiphysics Reference Manual:

• Constraint Settings

In the modeling section of the Structural Mechanics User’s Guide:

• Elemental and Nodal Constraints
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If you select one of the explicit shapes (Plane, Cylinder, or Sphere) as Normal orientation, 
then the orientation of the normal nr is instead a user input, so there will be no 
problem with numerical inaccuracies.

If you select Plane, you give the direction explicitly as a constant vector.

If you select Cylinder, the normal is computed as being perpendicular to the cylinder 
axis at each mesh node. The input defining the cylinder is a Point on axis, Xc, and the 
vector along the cylinder axis, es. For a node located at an original coordinate X, the 
normal orientation is computed as

Here it is not necessary to normalize nr. It is actually the radial vector from the cylinder 
axis to the location X.

In the case of geometric nonlinearity, the orientation of the normal would change. This 
is implemented as a nonlinear constraint, where the node is forced to maintain its 
distance from the cylinder axis, while allowed to move freely in the axial and 
circumferential directions. Thus, the normal orientation is not explicitly computed.

The constraint expression is

where

The radius of the cylinder is not given explicitly, so each node will maintain its own 
original distance from the cylinder axis.

If you select Sphere, the normal is computed as the direction from the center of the 
sphere to each mesh node. The only input is a Center of sphere, Xc. For a node located 
at an original coordinate X, the normal (actually, the radial vector) is computed as

X' X Xc–=

nr X' X' es es–=

x'
2 x' es 2–  X'

2 X' es 2– – 0=

X' X Xc–=

x' x Xc–=

nr X Xc–=
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In the case of geometric nonlinearity, the orientation of the normal would change. This 
is implemented as a nonlinear constraint, where the node is forced to maintain its 
distance from the center of the sphere, while allowed to move freely in the two 
directions on the sphere surface. Thus, the normal orientation is not explicitly 
computed. The constraint is written as

The radius of the sphere is not given explicitly, so each node will maintain its own 
original distance from the center.

Thermal Expansion of Constraints

Constraints like Fixed Constraint and Prescribed Displacement will in general cause 
stresses near the constrained boundaries when the structure undergoes temperature 
changes. The same is true also for rigid objects like Rigid Material, Rigid Connector, and 
Attachment. By adding a Thermal Expansion subnode to these features, you can allow 
the constrained boundaries to have a thermal expansion displacement.

The thermal strains will in general have a spatial distribution given by

Note that this is the thermal expansion of the virtual surroundings of the structure 
being analyzed, so it is unrelated to the thermal strains of the structure itself.

The strain field must be converted into a displacement field u(X) such that

If the strain field fulfills the general compatibility relations, it is in principle possible to 
integrate the above relation. The procedure is outlined in Ref. 3, giving

Summation over double indices is implied. The rigid body rotation term given in 
Ref. 3 is omitted, since it cannot be derived from the strain field. The reference point 
is chosen so that the displacement (caused by the strain field) is zero, so that the uix0 
term can be omitted. The integral is path independent when the compatibility is 
fulfilled. Because the constrained region is a virtual object, the integration path does 

x Xc–
2 X Xc–

2
– 0=

 X   X T  T Tref– =

ij
1
2
---

ui
Xj

--------
uj
xi

--------+ 
 =

ui X  ui X0  il Xk X'k– 
il
Xk

----------
kl
Xi

----------– 
 + 

  X'ld
X0

X
+=
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not have to be inside a domain. For simplicity, a straight line from X0 to X is used for 
the integration. Let p be the vector between the two points,

The distance along the integration path can then be parameterized by a parameter s 
running from 0 to 1as

giving

 (3-161)

This integral can be computed using the built-in integrate() operator as long as the 
strain field is an explicit function of the material frame coordinates X.

For the physics interfaces which have rotational degrees of freedom (Beam, Shell and 
Plate), not only the displacement, but also the rotation of the constraint is needed. For 
a given displacement field u(X), the infinitesimal rotation vector  is given by

Applying the rotation operator to Equation 3-161 gives

where mni is the permutation tensor.

Note that the general compatibility requirements will not be fulfilled for arbitrary 
expressions for the thermal strain distribution. In such cases, the stresses caused by the 
constraints cannot completely be removed, but they will be significantly decreased. 
The results will then depend on the choice of reference point.

p X X0–=

X' X0 sp+=

ui X  il 1 s– pk
il
Xk

----------
kl
Xi

----------– 
 + 

 pl sd
0

1

=

 1
2
--- u=

m X  1
2
---mni 3 2s– 

il
Xn

---------- 1 s– pk Xk Xn

2


 il+

 
 
 

pl sd
0

1

=

Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.
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Fluid-Structure Interaction

Fluid-Structure Interaction multiphysics coupling combines fluid flow with structural 
mechanics to capture the interaction between the fluid and the solid structure. A 
structural mechanics interface (Solid Mechanics, Shell, Membrane, or Multibody 
Dynamics) and a Single-Phase Flow interface model the solid and the fluid, 
respectively. The Fluid-Structure Interaction (FSI) couplings appear on the boundaries 
between the fluid and the solid. The physics interface uses an arbitrary 
Lagrangian-Eulerian (ALE) method to combine the fluid flow formulated using an 
Eulerian description and a spatial frame with solid mechanics formulated using a 
Lagrangian description and a material (reference) frame.

The fluid flow is described by the Navier-Stokes equations, which provide a solution 
for the velocity field ufluid. The total force exerted on the solid boundary by the fluid 
is the negative of the reaction force on the fluid,

 (3-162)

where p denotes pressure,  the dynamic viscosity for the fluid, n the outward normal 
to the boundary, and I the identity matrix. Because the Navier-Stokes equations are 
solved in the spatial (deformed) frame while the structural mechanics interfaces are 
defined in the material (undeformed) frame, a transformation of the force is necessary. 
This is done according to

where dv and dV are the mesh element scale factors for the spatial frame and the 
material (reference) frame, respectively.

The coupling in the other direction consists of the structural velocity

(the rate of change for the displacement of the structure), which acts as a moving wall 
for the fluid domain.

The structural mechanics formulations support geometric nonlinearity (large 
deformations). The spatial frame also deforms with a mesh deformation that is equal 
to the displacements ustruct of the solid within the solid domains. The mesh is free to 

f n pI–  ufluid ufluid T+  2
3
---  ufluid I– 

 +
 
 
 
=

F f dv
dV
--------=

t
ustruct
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move inside the fluid domains, and it adjusts to the motion of the solid walls. This 
geometric change of the fluid domain is automatically accounted for in COMSOL 
Multiphysics by the ALE method.

O N E - W A Y  F L U I D - S T R U C T U R E  I N T E R A C T I O N

For small values of the structural displacement and its rate of change, the 
Fluid-Structure Interaction interface includes one-way model formulations. The 
one-way models sequentially solve for the fluid flow, compute the load from 
Equation 3-162, and then apply it in the solution for the solid displacement. Since 
these methods are unidirectional, the mesh deformation is excluded from the solution. 
When applicable, the one-way versions offer computationally cheaper alternatives to a 
fully coupled counterpart.

Stationary and Time Dependent one-way studies are available for selection from the 
Preset Studies branch when adding a study. These studies include a Fluid study step and 
a Solid study step. When an additional physics interface is added to the model, it is by 
default added to both study steps.

In this case the one-way study steps display under Preset Studies for Some Physics 

Interfaces branch since the Fluid study step does not solve for the solid displacement 
and vice versa. When using a turbulence model requiring the distance to the closest 
wall, the Preset Studies includes a Wall Distance Initialization study step.

When solving a transient one-way FSI model, besides saving the solution from the 
Fluid study step with adequate frequency, it is advisable to save the solution from the 
Solid study step at the same times as the fluid solution. This way, all the information 
from the Fluid study step is used in the Solid study step.

Periodic Cell Theory

The heterogeneous properties of a material in the microscopic scale are often 
unfeasible to use directly on a macroscopic scale, in which a structure is typically 
analyzed. There one needs to use a homogeneous material model, but with 
appropriately averaged properties.

Studies and Solvers in the COMSOL Multiphysics Reference Manual
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The Cell Periodicity feature facilitates the evaluation of such average properties. It is 
based on the idea of a representative volume element (RVE). The RVE is a domain 
that is representative for the material on a microscopic scale.

An RVE is typically identified as the smallest possible unit cell of a material. If the 
material has a random distribution of for example porosity, it should be large enough 
to be representative for the average properties of the material on a macroscopic scale.

The only requirement on the shape of the RVE is that it should be possible to fill space 
with a repetitive pattern of RVEs. This means that there are a set of matching boundary 
pairs, each of them having the same geometry, but offset by a given distance.

To model an RVE, you add a Cell Periodicity node, and select the domains representing 
the unit cell. For each pair of matching boundaries, add a Boundary Pair subnode, and 
select the boundaries.

In principle, there are no limitations on the physics features you can use for modeling 
the RVE, as long as the basic assumptions about periodicity are not violated. You 
should however not add any displacement constraints, since the possible rigid body 
motions are automatically constrained by the Cell Periodicity node.

H O M O G E N I Z A T I O N  M E T H O D

The homogenization method introduces two scales: a macro scale and a micro scale. 
The macro scale usually refers to the homogenized continuous media, and the micro 
scale to the heterogeneous unit cell, that is, the RVE. The macro stress tensor  and 
the macro strain tensor  are derived by averaging the stresses and strains in the 
periodic cell

 and  (3-163)

where V is the volume of the cell. The macroscopic elasticity tensor of the 
homogenized continuum is then defined by

 (3-164)

D I S P L A C E M E N T  C O N T I N U I T Y

For a periodic structure that consists of an array of repeated unit cells, the displacement 
field is written as




 1
V
----  Vd

V
=  1

V
----  Vd

V
=

 C:=

u X u+=
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where  is global average strain tensor, and u* is a function that is periodic from one 
unit cell to another. As the array of cells is a continuous structure, displacement 
continuity must be satisfied across the boundaries between the cells. The boundaries 
in a Boundary Pair subnode must always appear in parallel pairs. One of them is labeled 
as source and the other as destination. The displacements on a pair of parallel and 
opposite boundary surfaces can be written as

 and

Hence, the displacement continuity is established by

 (3-165)

Together with displacement continuity, the traction continuity should be satisfied for 
the RVE, which is done implicitly in the displacement based finite element method. 
There are different options available to enforce the displacement continuity constraint:

• Free Expansion

• Prescribed Average Strain

• Prescribed Average Stress

• Mixed

F R E E  E X P A N S I O N

In order to determine the homogeneous coefficient of thermal expansion of a 
heterogeneous material, the material is subjected to unit rise in temperature, while it 
is allowed to expand freely. To model this behavior, the global average strain tensor  
in Equation 3-165 is considered as a global degree of freedom that varies freely. The 
averaged coefficient of thermal expansion  is computed as

Similarly, to determine the homogeneous coefficient of hygroscopic swelling, the 
material is subjected to a unit rise in concentration. The averaged coefficient of 
hygroscopic swelling  is then computed as



udst Xdst u+= usrc Xsrc u+=

udst usrc–  Xdst Xsrc– =



 1
V
---- 

T
------- Vd

V
=

 1
V
---- 

C
-------- Vd

V
=
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If no averaged properties are computed, the free expansion option only computes the 
average stress and strain tensors by enforcing Equation 3-165 as a constraint.

P R E S C R I B E D  A V E R A G E  S T R A I N

In order to determine the homogeneous elasticity tensor of a heterogeneous material, 
the material is subjected to a unit strain in each direction, one-by-one, while keeping 
the other strain components equal to zero. To model this behavior, the global average 
strain tensor  in Equation 3-165 is a user input. The average stress is computed from 
Equation 3-163, and the elasticity tensor is obtained from Equation 3-164.

P R E S C R I B E D  A V E R A G E  S T R E S S

In order to determine the homogeneous compliance tensor of a heterogeneous 
material, the material is subjected to a unit stress in each direction, one-by-one, while 
keeping the other stress components equal to zero. The average stress is a user input, 
and the global average strain tensor  in Equation 3-165 is a global degree of freedom, 
which is defined by a global weak equation

 (3-166)

The compliance tensor is then obtained from the following equation

M I X E D

This option studies the response of the unit cell when subjected to a combination of 
prescribed stress and strain. You can choose which components of the average stress 
and strain tensors to enter as user inputs; the remaining components are computed 
from Equation 3-163 and Equation 3-166 by enforcing Equation 3-165 as a 
constraint.

Rigid Connector

The rigid connector is a special kinematic constraint, which can be attached to one or 
several boundaries, edges, or points. The effect is that all connected entities behave as 
if they were connected by a common rigid body.

There are two different formulations of the rigid connector, rigid and flexible. In the 
flexible form, the rigid motion is prescribed only in an average sense, and instead an 
assumption about linearly distributed traction fields is used.





:V

 C
1–
:=
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The only degrees of freedom needed to represent this assembly are the ones needed to 
represent the movement of a rigid body. In 2D this is simply two in-plane translations, 
and the rotation around the z-axis.

In 3D the situation is more complex. Six degrees of freedom, usually selected as three 
translations and three parameters for the rotation, are necessary. For finite rotations, 
however, any choice of three rotation parameters is singular at some specific set of 
angles. For this reason, a four-parameter quaternion representation is used for the 
rotations in COMSOL Multiphysics. Thus, each rigid connector in 3D actually has 
seven degrees of freedom, three for the translation and four for the rotation. The 
quaternion parameters are called a, b, c, and d. These four parameters are not 
independent, so an extra equation stating that the following relation is added:

The connection between the quaternion parameters and a rotation matrix R is

Under pure rotation, a vector from the center of rotation (Xc) of the rigid connector 
to a point X on the undeformed object is rotated into

where x is the new position of the point originally at X. The displacement is by 
definition

where I is the unit matrix.

When the center of rotation of the rigid connector also has a translation uc, then the 
complete expression for the rigid body displacements is

 (3-167)

The total rotation of the rigid connector can be also presented as a rotation vector. Its 
definition is

a2 b2 c2 d2
+ + + 1=

R
a2 b2 c2

– d2
–+ 2bc 2– ad 2ac 2bd+

2ad 2bc+ a2 b2
– c2 d2

–+ 2cd 2ab–

2bd 2– ac 2ab 2cd+ a2 b2
– c2

– d2
+

=

x Xc– R X Xc– =

u x X– R I–  X Xc– = =

ur R I–  X Xc–  uc+=
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The parameter a can be considered as measuring the rotation, while b, c, and d can be 
interpreted as the orientation of the rotation vector. For small rotations, this relation 
simplifies to

The rotation vector is available as the variables thx_tag, thy_tag, and thz_tag. Here 
tag is the tag of the Rigid Connector node in the Model Builder tree.

It is possible to apply forces and moments directly to a rigid connector. A force 
implicitly contributes also to the moment if it is not applied at the center of rotation 
of the rigid connector. The directions of the forces and moments can either be in space 
and or follow the rotation of the rigid connector.

W E A K  F O R M U L A T I O N

Instead of enforcing the rigid body constraint on the selected boundaries in the 
pointwise form, it is possible to use a weak form of the constraint. This is invoked by 
selecting Use weak constraints for rigid-flexible connection in the Constraint Settings 
section for a rigid connector. The weak form is implemented as

 (3-168)

Here u is the displacement field on the boundaries, ur is the rigid body displacement 
as given by Equation 3-167, and Frs is the reaction force field (Lagrange multiplier).

The weak formulation cannot be combined with the flexible formulation described 
below.

F L E X I B L E  F O R M U L A T I O N

The flexible formulation of the rigid connector is based on the weak expression of the 
constraint, Equation 3-168. In the original weak form, however, the reaction force 
field can have any distribution, in order to enforce the rigid body motion.



2 b2 c2 d2
+ +

a
-----------------------------------
 
 
 

atan

b2 c2 d2
+ +

----------------------------------------------------------
b
c
d

=

 2
b
c
d

=

u ur–  test Frs  Frs test u ur– + 0=
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In the flexible formulation, it is assumed that the reaction force field has a linear 
distribution, given by

 (3-169)

Here Fc (unit: N) and Fd (unit: N/m) are two global vectors, each having three 
degrees of freedom in 3D. Fc can be directly interpreted as the reaction force at the 
center of rotation. Fd can be considered as a representation of the gradient of the 
reaction force field.

In the case of geometric nonlinearity, Equation 3-169 is replaced by

 (3-170)

where R is the rotation matrix. In 2D, Fc is a vector with two components, whereas 
Fd is a scalar.

If the boundaries selected in the rigid connector are not contiguous, then each set of 
connected boundaries will have its own set of Fc and Fd degrees of freedom. The 
center of rotation, Xc, is then taken as the center of gravity for each individual group 
of boundaries.

Continuity Condition

The Continuity node is a way to connect disconnected parts of an assembly by adding 
constraints or equations on a shared boundary. Consider a problem with two domains 
src and dst with a fully or partially shared boundary int such that 

, as is schematically shown in Figure 3-33. 

Frs Fc Fd X Xc– +=

Frs Fc Fd R X Xc–  +=

When using the flexible formulation, the reaction force degrees of 
freedom are named 
<physics>.<rigid_tag>.F<c|d><boundary_group><DOF>, and so 
on. Examples are solid.rig1.Fc1x or solid.rig2.Fd5z.

int src dst=
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Figure 3-33: Schematic illustration of a continuity interface between two disconnected 
parts of an assembly.

To enforce continuity between the two domains, the following conditions has to hold 
on the shared boundary

 (3-171)

 (3-172)

where Pi is the fist Piola-Kirchoff stress tensor, Ti is the nominal traction, and Ni is 
the normal vector in the material frame for the respective sides of the interface. The 
first condition represents the continuity of displacements and the second follows from 
the Newton’s third law. If the Classical constraints method in the Continuity node is 
used, pointwise constraints are set up on dst to enforce the continuity of 
displacements given by Equation 3-171. This is accomplished with the help of the 
mapping operator map(E, x) that is set up by the Identity pair, where E is some 
generic quantity to be mapped and x is the point to which E is mapped. Using this 
operator, the constraint equation is written as

where it is here implied that the mapping is made using material coordinates X, and 
that the mapping is made from src to dst. The above pointwise constraint implicitly 
enforces the condition given by Equation 3-172. The above constraint equation can 
also be implemented as weak constraints by introducing Lagrange multipliers.

Another alternative is to use the Nitsche method, which was originally suggested by 
J. Nitsche in 1971 to weakly impose Dirichlet conditions without having to add 
Lagrange multipliers. To implement the continuity condition by the Nitsche method, 

dst

Nsrc

dst

Ndst

src

src

usrc udst– 0    on int=

PsrcNsrc PdstNdst+ Tsrc Tdst+ 0=     on int=

map u Xdst  u– 0    on dst=
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one can, following for example Ref. 4, start from the weak form of a generic boundary 
condition

 (3-173)

where A(u) is a flux-like operator and B(u) is a trace-like operator that can be seen as 
a conjugate pair, and  represents the test function. The next step is to reformulate 
these operators as 

where c is a known quantity such as a prescribed displacement, is a stabilization 
factor, and is a parameter used to control the symmetry of the formulation. Inserting 
these reformulations of A(u) and B(u) into Equation 3-173, after simplification, leads 
to the following weak contribution for implementing the Nitsche method for a generic 
boundary condition

To implement the continuity condition the unknowns A(u), B(u), and c has to be 
identified. Considering the continuity of displacements in Equation 3-171, the 
displacement jump across the interface is defined as

By also using the average traction defined as

0  A u  B u  Ad

+=

A u  A u   B u  c– – =

B u  1

--- A u  B u – –



---A u +=

0   B u  A u  Ad

 A u  B u  Ad


  B u  B u  Ad


–+ +=

c A u  B u –  Ad

–

ud
u map u Xds –     on dst

u map u Xsrc     on src–






=

Tavg
0.5 T map T Xdst –     on dst

0.5 T map T Xsrc –     on src






=
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the action-reaction principle in Equation 3-172 can be weakly imposed as

From the above and Equation 3-173, it can identify that 

and one can also realize that for continuity, c = 0. The Nitsche formulation of the 
continuity conditions then follows as

From the above weak equation several variants of the Nitsche formulation can then be 
set up. Firstly, it is possible to parameterize the integrals on both sides of the interface, 
or alternatively on either src or dst only. The first option is less sensitive to the mesh 
on either side, but can be more expensive since it involves more mapping operations 
to evaluate. Secondly, the parameter makes it possible to set up formulations with 
different properties and stability:

• Setting  = 1 results in a symmetric formulation that maintains the symmetry of the 
overall system of equations. The main drawback of this setting is that is requires a 
suitable choice for to maintain accuracy and stability.

• Setting  = -1 results in a skew-symmetric formulation. This formulation is much 
less sensitive to the choice of  but makes the overall system of equations 
nonsymmetric.

• Setting  = 0 results in a nonsymmetric formulation. This formulation is less 
sensitive to the choice of  than the symmetric one, but not as robust as the 
skew-symmetric. However, this choice causes the term Tavg to cancel out. For 
large deformations and nonlinear materials in particular, this term can be expensive 
to evaluate, making the nonsymmetric formulation an attractive choice.

0  Tavg ud Ad

+=

A u  Tavg=

B u  ud=

0   ud Tavg Ad

 Tavg ud Ad


  u ud Ad


–+ +=
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Con t a c t  Ana l y s i s  T h e o r y

In this section:

• Contact Search and Kinematics

• Definition of Contact Tractions

• Normal Contact

• Tangential Contact with Friction

• Unbiased Formulation and Self-Contact

• Adhesion

• Decohesion

• Wear

In COMSOL Multiphysics you can model contact between a group of boundaries in 
1D, 2D or 3D. There are three classes of algorithms available: the penalty method, the 
augmented Lagrangian method, and the Nitsche method.

Contact Search and Kinematics

A prerequisite for setting up the mechanical contact problem is to define the contact 
search between the source boundary and the destination boundary. The purpose of the 
search is to detect points on the contacting boundaries that are in contact or may come 
in contact, and also to map quantities between such points. This part of the contact 
problem is defined in the Contact Pair that sets up relevant variables and operators to 
map quantities between the selected source and destination boundaries. In COMSOL 
Multiphysics, the contact search is made using a ray-tracing strategy as depicted in 
Figure 3-34. For mechanical contact, most variables and equations are formulated on 
the destination boundary. Hence, the typical mapping of interest here is from the 

• Contact Modeling

• Documentation of the Contact, Friction, Slip Velocity, Adhesion, 
Decohesion, and Wear features

• Identity and Contact Pairs in the COMSOL Multiphysics Reference 
Manual
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source boundary to the destination boundary, however, it is possible to map quantities 
in the opposite direction as well.

Figure 3-34: Schematic illustration of the contact search and mapping between a source 
and destination boundary.

For each point xdst in the spatial frame on the destination boundary dst, the closest 
point xsrc in the spatial frame on the source boundary src in the direction of the 
destination spatial normal ndst is sought. Such a mapping can be described through an 
operator map(E, x), where E is some generic quantity or expression, and x is the point 
to which E is mapped. Using this mapping operator, the coordinates of the mapped 
point on src is

where x is the spatial coordinates that parameterize src. For brevity, the second 
argument of the mapping operator is omitted in the following and it should be 
understood that the mapping occurs to a point xdst on dst if nothing else is specified.

An important quantity for contact mechanics is the gap function ggeom(x) defined as 
the geometric distance between the source and the destination boundary. Note that 
ggeom(x) is not necessarily the closest distance between the two boundaries. Using the 
mapping operator, the gap distance at xdst is defined as

Destination

Source

dst

src

xdst

xsrc

nsrc

ndst

xsrc map x xdst =

ggeom xdst  ndst– xdst map x – =
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With the above definitions, a positive gap infers that there is a geometrical separation 
between the points, while a negative gap that there is an overclosure. Apart from the 
mapping operator, the Contact Pair also defines a dedicated variable for the gap 
function with the name geomgap_dst_<pair_tag>.

For the mechanical contact problem, it is additionally possible to define a physical 
offset from the geometric source and destination boundary. This means that the 
physical gap function gn(x) and geometrical gap function do not necessarily coincide. 
The physical gap distance including offsets at xdst is defined as

 (3-174)

where doffset,s and doffset,d is the offset from the source and destination boundary, 
respectively. Each offset variable can vary along the geometry, and may also vary in 
time (or by the parameter value when using the continuation solver). The correction 
of the source side offset is necessary since the normal of xsrc, nsrc = map(n), is not 
necessarily pointing towards xdst as illustrated in Figure 3-34. When the geometric 
surfaces are in contact, the normals will be exactly opposite such that nsrc = -ndst.

In some cases, the discretization of the geometry, especially at curved boundaries, will 
give small irregularities in the gap function. You can then choose to adjust the physical 
gap by removing the geometric gap computed in the initial configuration, ginit, smaller 
than the tolerance gap. In this case, the physical gap function at xdst is

• A Contact Pair sets up mapping operators that can be used in any 
expression to map quantities from the source to the destination 
boundary with the syntax src2dst_<pair_tag>(expr).

• An operator is also defined for mapping quantities from the destination 
to the source boundary with the syntax dst2src_<pair_tag>(expr). 
Similarly, a gap variable is defined with the name 
geomgap_src_<pair_tag>.

• The mapping by default uses the spatial frame normal. If the Mapping 

method in the Contact Pair is changed to Initial configuration, the 
mapping is instead performed in the direction of the material frame 
normal. This means that the direction of the mapping is constant and 
not affected by how the contacting boundaries deform.

gn xdst  ggeom doffset d,–
map doffset s, 
 n map n  –

--------------------------------------–=
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For problems including friction or adhesion, it is also necessary to know the tangential 
movement, or slip, between the source and destination boundary. The rate of the 
relative slip vector gt between the two boundaries at xdst is defined as

 (3-175)

where X is the material coordinates, and F is the deformation gradient that contains 
information about the local rotation and stretch. Note that the mapping is made 
between points in the spatial frame as clarified in the equation. Both quantities are 
mapped from the source to the destination boundary. Constitutive models for the 
mechanical problem are typically formulated on an incremental form. COMSOL 
Multiphysics applies a backward Euler approximation to Equation 3-175 so that the 
incremental slip at xdst is

where Xsrc,old is the mapped material coordinates at the previous increment.

When a Contact node is added to a Shell, Layered Shell, or Membrane interface, the 
material and spatial frames used in the contact mapping are adjusted to account for the 
thickness of the structural element by considering the physical position of its top and 
bottom surface relative to the geometric boundary. This also applies to boundaries that 
intersect the selection of a Thin Layer node in the Solid Mechanics interface. For 
example, the contact material coordinates Xcnt and the spatial coordinates xcnt in a 
Contact node added in the Shell interface are defined as

where z is the offset from the geometric boundary to the considered contact boundary. 
The definition of the geometric gap is then accordingly adjusted and given as

gn xdst 
ggeom doffset d,–

map doffset s, 
 n map n  –

--------------------------------------–  if ginit gap

ggeom ginit– doffset d,–
map doffset s, 
 n map n  –

--------------------------------------–  else








=

t
 gt xdst  map F xdst map

t
X xdst 
 =

gt xdst  map F  map X  Xsrc, old– =

Xcnt X zN+=

xcnt x zn+=

ggeom xdst
cnt  ndst– xdst

cnt map xcnt xdst
cnt – =
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where ndst is to be interpreted as the normal of the contact boundary. For the Shell 
interface, the direction of ndst coincides with the normal of the geometric boundary, 
but so is not always the case. This applies to nsrc as well. Note also the that mapping 
is made between the modified spatial coordinates. Similar corrections are also made for 
other quantities such as the incremental slip gt where the Xcnt is used instead of X. 
The same concept is used for other cases where the contact boundary does not 
coincide with the geometric boundary, but the definition of Xcnt and xcnt may differ.

Definition of Contact Tractions

Since contact enforces geometric nonlinearity, contact tractions (for example the 
contact pressure and friction forces) are represented as nominal tractions. They are 
thus to be viewed as a density with components in the current configuration (that is, 
on the spatial frame) but related to the undeformed area of the corresponding surface 
element.

Normal Contact

The contact constraint in the normal direction to the contacting boundaries can be 
represented by the nonpenetration condition. On the destination boundary dst, the 
normal contact condition can in a weak sense be written as (the contribution of normal 
contact to the virtual work)

 (3-176)

where Tn is the contact pressure, assumed positive in compression. To complete the 
contact condition, Equation 3-176 is subjected to the Kuhn–Tucker conditions

 (3-177)

where the first inequality represents the nonpenetration condition. Equation 3-176 
and Equation 3-177 together represents a unilateral constraint that require special 
techniques to implement. Several different techniques for doing so are available in 
COMSOL Multiphysics, which can be divided into two main classes: the penalty 
method, the augmented Lagrangian method, and the Nitsche method.

0 Tngn Ad
dst

=

gn 0

Tn 0

Tn gn= 0
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An alternative way of expressing the contact condition is to view the contact pressure 
as a force acting on both source and destination described as a distributed load. 
Making use of Newton’s second law, an alternative to Equation 3-176 can then be 
formulated as

 (3-178)

In principle, Equation 3-176 and Equation 3-178 describes the same contribution to 
the virtual work. However, when the system of equations are linearized they will 
produce different results. The main difference originates from the variation gn with 
respect to u that, for the ray-tracing mapping strategy used by COMSOL Multiphysics, 
includes several terms that can be difficult and expensive to evaluate. These are not 
present if Equation 3-178 is used, which can increase the robustness of the solution. 
What formulation that is used can be controlled by the Jacobian contribution setting in 
the Contact node. When set to Symmetric or Legacy, Equation 3-176 is used. For 
Symmetric, some terms of gn are omitted to improve the robustness, whereas Legacy 
uses the full variation of gn. When the Nonsymmetric option is selected, 
Equation 3-178 is used.

The Penalty Method
For the penalty method, the contact pressure in Equation 3-176 is represented using 
a penalization of the physical gap so that

 (3-179)

where pn is the penalty factor, and p0 is the pressure at zero gap. This leads to an 
approximative solution of the nonpenetration condition. The penalty method as 
defined by Equation 3-179 is conceptually based on the insertion of a nonlinear spring 
between the contacting points. The penalty factor can be interpreted as the stiffness of 
that spring. A high value of the stiffness enforces the contact conditions more strictly, 
but if it is too high, it makes the problem ill-conditioned and unstable.

The pressure at zero gap, p0, can be used to reduce the overclosure between the 
contacting boundaries if an estimate to the contact pressure is known. In the default 
case, when p0  0, there must always be some overclosure in order for a contact 
pressure to develop.

0 Tnndst u map u –  Ad
dst

–=

Tn
pn gn– p0+  if gn p0 pn

0  else



=
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In addition to Equation 3-179, COMSOL Multiphysics also provides an alternative 
penalization based on a viscous formulation intended for transient simulations, 
referred to as the Penalty, dynamic method. This formulation is based on the additional 
persistency condition

In this case, the nonpenetration and persistency conditions are enforced by penalizing 
the rate of the physical gap distance such that the contact pressure is defined by

 (3-180)

where gn,old is the physical gap distance at the previous increment, and <> is the 
positive parts operator. With the definition in Equation 3-180, Tn is only nonzero if 
the physical gap is negative during the entire increment, which is important for energy 
conservation during the initial contact event. However, there will always be some 
initial penetration before the gap rate is penalized. Hence the observed overclosure will 
be dependent on the size of the increment when two points come into contact. Note 
that this definition of the contact pressure implies that pressure contact is dissipative.

It is possible to use the definitions of Tn in Equation 3-179 and Equation 3-180 
simultaneously. In such a case, they are additive and conceptually represent a parallel 
coupling of a spring and a dashpot.

The weak contribution added for normal contact when using the penalty method is

or

Tn t
gn= 0

Tn
pn t

gn–   if gn old, 0

0  else





=

0  Tngn Ad
dst

+=

0  Tnndst u map u –  Ad
dst

–=
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T H E  A U G M E N T E D  L A G R A N G I A N  M E T H O D

The augmented Lagrangian method can be seen as a compromise between using the 
penalty method and enforcing the nonpenetration condition using weak constraints 
and Lagrange multipliers. The augmented Lagrangian formulation for normal contact 
in COMSOL Multiphysics is based on an integral formulation that in a weak sense 
enforces the nonpenetration condition exactly over the contacting boundaries. It is 
based on the following augmentation of Equation 3-176

 (3-181)

where Tnp is the penalized (or augmented) contact pressure, and Tn is a Lagrange 
multiplier that can be identified as a contact pressure. Alternatively, Equation 3-178 
can be augmented, giving the following result

 (3-182)

The Lagrange multiplier Tn is defined as a dependent variable of the contact problem 
and is typically discretized using Lagrange shape functions. There are two methods for 
solving the above coupled system of equations, and this choice affects the definition of 
Tnp.

The first solution method is referred to as a Segregated method and corresponds to the 
so-called Uzawa algorithm. Here, the system of equations is decoupled, and the 
displacement field u and the Lagrange multiplier Tn are solved in a segregated way. 
This leads to two levels of iterations in the solver, where Tn is held constant when 
solving for u, and vice versa when updating Tn. For this solution method, the 
penalized contact pressure Tnp is defined with a smooth transition to stabilize the 
problem when transitioning between contact states. The definition for Tnp for outer 
iteration j+1 is defined by

0  Tnpgn Ad
dst

 1
pn
------ Tnp Tn– Tn Ad

  dst

–+=

0  Tnpndst u map u –  Ad
dst

–=

1
pn
------ Tnp Tn– Tn Ad

  dst

–
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The segregated method can then for increment n+1 schematically be described as

1 Initialize increment n+1 by setting the outer iteration counter j=0, and the initial 
values for dependent variables  and

2 Compute the displacement uj+1 by solving for example

3 Compute the Lagrange multiplier Tn,j+1 by solving

4 If convergence, continue to the next increment, else return to step 2

The appropriate solver sequence is automatically set up by COMSOL Multiphysics for 
the Segregated solution method when adding a new solver, or resetting to the default 
solver.

The alternative is to use a Fully Coupled solution method, which, as the name implies, 
amounts to solving the coupled system in Equation 3-181 or Equation 3-182 for the 
two dependent variables u and Tn (and any other variables included in the multiphysics 
model). When using this method, the penalized contact pressure is defined by

The Fully Coupled method can be convenient as it enforces the nonpenetration 
condition exactly over the contacting boundaries, while it puts no restriction on how 
to set up the solver sequence. This flexibility can be especially advantageous when 
working with multiphysics problems, compared to the segregated approach. However, 
one should be aware that the method comes with some of the drawbacks of a pure 
Lagrange multiplier approach, albeit to a lesser extent. One drawback is that the 
solution typically is a saddle point, and convergence can be sensitive to how Newton 
iterations are made when solving the nonlinear problem.

Tnp j 1+

Tn j   pngn–  if gn 0

Tn j  e
 
pngng

Tn

---------------–

 else








=

uj
 n 1+ un

= Tn j
n 1+ Tn

n
=

0  Tnp j 1+ gn j 1+ Ad
dst

+=

0 Tnp j 1+ Tn j 1+– Tn Ad
  dst

=

Tnp j 1+
Tn j   pngn–  if gn 0

0  else



=
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In the limit, the Segregated and the Fully Coupled solution methods converge to the 
same solution, but they can have different convergence properties.

In addition to the standard augmented Lagrangian method outlined above, an 
Augmented Lagrangian, dynamic method is available for transient simulations. As 
discussed for the penalty method, this formulation is based on the addition of the 
persistency condition. A segregated solution method is recommended for this method, 
and the main difference compared to the standard method lies in the definition of the 
penalized contact pressure. Both the nonpenetration and persistency conditions are 
enforced by penalizing the rate of the physical gap distance so that

 (3-183)

where gn,old is the physical gap distance at the previous increment, and <> is the 
positive parts operator. The same segregated solution strategy as described above is 
applied also when the dynamic method is used.

T H E  N I T S C H E ’ S  M E T H O D

The Nitsche’s method for contact is an extension of the general method suggested by 
J. Nitsche in 1971 to impose Dirichlet conditions in a weak sense without having to 
add Lagrange multipliers. A general derivation of the method for such applications is 
presented in Continuity Condition. Here the method is applied to large deformation 
contact using Equation 3-178 as a starting point, and following similar steps as in 
Ref. 1 to derive the final equations. The first step is to reformulate the contact pressure 
from Equation 3-179 as

where P is the first Piola-Kirchoff stress, N is the material normal, n is the spatial 
normal, and Ta is the nominal traction vector. The positive parts operator is used above 
to indicate that Tn is strictly positive. The term from Equation 3-178 in brackets 
including u is also reformulated as

where is a parameter used to control the symmetry of the formulation. Using the 
above definitions, Equation 3-178 can, after some manipulation and simplification, be 

Tnp j 1+
Tn j p– n t

gn   if gn old, 0

0  else





=

Tn P N n pn gn––  Ta n pn gn–– = =

u map u –
1
pn
------ pnu pnmap u – Ta– –


pn
------Ta+=
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rewritten to obtain the weak contribution added by the Nitsche method for normal 
contact

 (3-184)

From the above weak equation several variants of Nitsche’s formulation for contact can 
be set up using different values for the parameter :

• Setting  = 1 results in a symmetric formulation. The formulation is requires a 
suitable choice for pnto maintain accuracy and stability. However, it is the most 
variationally consistent formulation.

• Setting  = -1 results in a skew-symmetric formulation. This formulation is less 
sensitive to the choice of pn.

• Setting  = 0 results in a nonsymmetric formulation. This formulation is less 
sensitive to the choice of pn than the symmetric one, but not as robust as the 
skew-symmetric. However, this choice causes the term P to cancel out. For 
nonlinear materials in particular, this term can be expensive to evaluate, making the 
nonsymmetric formulation an attractive choice.

Note that since the derivation Equation 3-184 started from Equation 3-178, all of the 
above choices of  will cause a nonsymmetric stiffness matrix when setting of the global 
system of equations. Also, the penalty factor pn for the Nitsche’s method can be 
considered as a stabilization factor, not directly as a spring stiffness as in the penalty 
method.

D I S S I P A T I O N

The Penalty, dynamic and Augmented Lagrange, dynamic methods are based on a viscous 
type formulation, and dissipate energy when the contact is active. The accumulated 
dissipated energy Wcntv can be computed by solving a distributed ODE on the 
destination boundary:

0  1
pn
------ Tnndst u map u –  Ad

dst

–=


pn
------ Ta Tnndst+  P N  Ad

dst

+

t
 Wcntv Tn 

t
gn=
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Tangential Contact with Friction

The tangential behavior of a contact interface, due to friction, can be divided into two 
states, the stick state and the slip state. The stick state is simply defined by the 
constraint that there can be no tangential movement between the two contacting 
boundaries. When the contact enters the slip state, the tangential condition enforces 
the direction of the relative tangential motion between points xdst and xsrc on the 
respective side of the interface. On the destination boundary dst, the tangential 
contact condition can be written as a weak equation (the contribution of tangential 
contact to the virtual work)

 (3-185)

where Tt is the friction force. The stick and slip conditions are then enforced by the 
constitutive model used to define Tt.

Using the same concepts as for the normal contact, and alternative to Equation 3-185 
is to use the following weak equation

 (3-186)

C O N S T I T U T I V E  M O D E L  F O R  F R I C T I O N

The constitutive model for friction, including stick and slip, is based on the Coulomb 
law. In a general framework similar to plasticity theory, the model can be expressed as

 (3-187)

where Fslip is the slip function (analogue to the yield function in plasticity theory), and 
 is friction multiplier. The critical friction force Tt,crit determines when slip occurs, 
and is defined as

0 Tt gt Ad
dst

=

0 Tt u map u –  Ad
dst

=

Fslip Tt Tt crit,– 0

t
gt = 

Tt
Tt

-----------

 0
 Fslip = 0

Tt crit, min Tcohe Tn Tt max,+ =
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where Tcohe is the cohesion, and Tt,max defines the maximum friction force that is 
admissible. The friction coefficient  can either be defined as an arbitrary constant 
expression or through an exponential decay model in time-dependent studies. The 
latter model is defined as

where stat is the static friction coefficient, dyn is the dynamic friction coefficient, vs 
is the slip velocity, and dcf is a decay coefficient.

It is possible to also define the critical friction force through an arbitrary expression. 
In principle, Tt,crit, or any variable described above, may be defined as a function of 
any other variable or field. However, the implementation described in the following is 
only valid as long as it does not dependent on Tt. In other words, the implementation 
of the friction constitutive model does not allow for hardening behavior of the friction 
force.

T H E  P E N A L T Y  M E T H O D

In COMSOL Multiphysics, implementation of Equation 3-187 is made using a 
backward Euler integration. Together with a penalty regularization, this results in the 
following set of algebraic equations to solve at increment n+1:

where Tt,n is the friction force at the previous increment. The set of algebraic 
equations is solved for unknowns Tt,n+1 and  by introducing a trial state and a return 
mapping. In doing so, it is assumed that Tt,crit, n+1 is independent of Tt, n+1, which 
leads to an explicit set of equations for finding Tt, n+1. The trial state is first computed 
as

and the return mapping gives the current value of the friction force

 dyn stat dyn–  dcf vs– exp+=

Fslip n 1+ Tt i 1+ Tt crit n 1+,– 0

Tt n 1+  = Tt n pt gt 
Tt n 1+
Tt n 1+

-----------------------– 
 +

 0
Fslip n 1+  = 0

Tt n 1+
trial  = Tt n ptgt–
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 (3-188)

The weak contribution added for tangential contact when using the penalty method 
follows from Equation 3-185, and is given by

or from Equation 3-186 as

T H E  A U G M E N T E D  L A G R A N G I A N  M E T H O D

The augmented Lagrangian formulation for tangential contact in COMSOL 
Multiphysics is based on an integral formulation that in a weak sense enforces the stick 
and slip conditions exactly over the contacting boundaries. It is based on the following 
augmentation of Equation 3-185

 (3-189)

where Ttp is the penalized (or augmented) friction, and Tt is a Lagrange multiplier that 
can be identified as a traction. Alternatively, Equation 3-186 can be augmented, giving 
the following result

 (3-190)

The Lagrange multiplier Tt is defined as the dependent variable of the contact problem 
and is typically discretized using Lagrange shape functions. There are two methods for 

Tt n 1+

Tt n 1+
trial if Fslip n 1+ 0

Tt crit n 1+,
Tt n 1+

trial

Tt n 1+
trial

----------------------- if Fslip n 1+ 0








=

0  Tt n 1+ map F   map X   Ad
dst

+=

0  Tt n 1+ u map u –  Ad
dst

+=

0  Ttp gt Ad
dst

 1
pt
----- Ttp Tt–  Tt Ad

  dst

+ +=

0  Ttp u map u –  Ad
dst

+=

+ 1
pt
----- Ttp Tt–  Tt Ad

  dst


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solving the above coupled system of equations, Segregated and Fully coupled, as selected 
in the parent Contact node.

As for the penalty method, Equation 3-187 is implemented using backward Euler 
integration of the evolution equations, and a trial state and return mapping to solve 
the nonlinear algebraic equations.

When the Segregated solution method is selected in the parent Contact node, the trial 
state for outer iteration j+1 is computed as

and the return mapping gives the current value of the penalized friction force

This scheme then fits in to the algorithmic format described for normal contact where 
the displacement field u and the Lagrange multipliers associated with contact are 
solved in a segregated way. Including friction, this algorithm is schematically described 
as

1 Initialize increment n+1 by setting the outer iteration counter j=0, and the initial 
values for dependent variables , , and

2 Compute the displacement uj+1 by solving for example

3 Compute the Lagrange multipliers Tn,j+1 and Tt,j+1by solving

4 If convergence, continue to the next increment, else return to step 2

The segregated algorithm is also used when friction is used together with the 
Augmented Lagrangian, dynamic formulation.

When the Fully coupled solution method is selected in the parent Contact node, the trial 
friction force for iteration i+1 is computed as

Tt j 1+
trial  = Tt j ptgt–

Ttp j 1+

Tt j 1+
trial if Fslip j 1+ 0

Tt crit j 1+,
Tt i 1+

trial

Tt j 1+
trial

---------------------- if Fslip j 1+ 0








=

uj
 n 1+ un

= Tn j
n 1+ Tn

n
= Tt j

n 1+ Tt
n

=

0  Tnp j 1+ gn Ad
dst

 Ttp j 1+ map F   map X   Ad
dst

+ +=

0 Tnp j 1+ Tn j 1+– Tn Ad
  dst

 Ttp j 1+ Tt j 1+– Tn Ad
  dst

+=
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The important difference here lies in that for the coupled method, the trial state is 
computed as the change from the previous nonlinear iteration every time the coupled 
problem is solved. Knowing the trial state, the return mapping is performed similar to 
the other methods.

The weak contribution added for tangential contact when using the Fully coupled 
solution method follows from Equation 3-189, and is

or similarly from the alternative augmentation in Equation 3-190.

T H E  N I T S C H E ’ S  M E T H O D

The derivation of Nitsche’s formulation for tangential contact with friction follows 
similar steps as for the normal contact in The Nitsche’s Method. Replacing the contact 
pressure vector -Tnn in Equation 3-184 with the friction force Tt, the weak 
contribution becomes

The definition of Tt is done in a similar way as for the penalty method following 
Equation 3-188. However, for Nitsche’s formulation of frictional contact, the trial 
friction force is given as

where Tat is the tangential part of the nominal traction vector. Note that the same 
penalty factor, pn, is always used for the normal and tangential parts of the contact 
problem when using the Nitsche method.

P R E S C R I B E D  S L I P  V E L O C I T Y

In the Slip Velocity subnode to Contact, it is assumed the tangential contact is in a slip 
state when in contact, and that the relative motion between the source and destination 
boundaries is known beforehand. That is

Tt i 1+
trial  = Tt i ptgt–

0  Tt map F   map X   Ad
dst

 1
pt
----- Ttp Tt– Tt Ad

  dst

+ +=

0  1
pn
------ Tt u map u –  A 

pn
------ Ta Tt–  P N  Ad

dst

+d
dst

+=

Tt n 1+
trial  = P N P N n pngt–– Tat pngt–=
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where vslip is the prescribed velocity on the destination boundary relative to the source 
boundary. Given that the rate of the slip is known, the constitutive model for friction 
in Equation 3-187 is simplified, and it follows that

since the slip velocity and friction force are co-linear. The weak contribution added for 
tangential contact by the slip velocity follows from Equation 3-185 and is given by

or from Equation 3-186 as

D I S S I P A T I O N

Friction is a dissipative process and the accumulated dissipated energy Wfric can be 
computed by solving a distributed ODE on the destination boundary:

Unbiased Formulation and Self-Contact

The standard formulation for contact in COMSOL Multiphysics as described in 
Normal Contact and Tangential Contact with Friction can be viewed as a biased (or 
unsymmetric) formulation in the sense the contact forces are added on one side of a 
contact pair only, the destination boundary. Often this is a preferred formulation since 
it involves the fewest possible evaluation points where equations and contact mappings 
have to be evaluated, making it attractive from a performance point of view. However, 
it puts requirements on, for example, the relative mesh density between source and 
destination to be accurate. In some situations it might also be difficult to a priori split 

t
gt vslip=

Tt Tt crit,
v– slip
vslip

-----------------=

0  Tt map F   map X   Ad
dst

+=

0  Tt u map u –  Ad
dst

+=

t
 Wfric T– t t

gt=
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a set of boundaries in a source and destination as, for example, when objects are 
self-intersecting. This situation is typically referred to as self-contact. 

For such cases, it is also possible to set up an unbiased (or symmetric) formulation for 
contact by using the same selection as source and destination in a Contact Pair. That is, 
src = dst in the schematic problem description in Figure 3-34 and one can instead 
refer to a single contact boundary cnt. Since contact forces will then be added on both 
sides of a pair of mapped points, the added equations needs to be modified in order to 
be consistent. To accomplish this, Equation 3-176 is instead written as

when it is detected that src = dst. Similarly Equation 3-178 is formulated as

The specialized versions of these equations for the penalty method, the augmented 
Lagrangian method, and the Nitsche method as well as those for tangential contact 
then follows similarly.

Adhesion

You can model a situation where two boundaries stick together once they get into 
contact by adding an Adhesion subnode to Contact. Adhesion can only be modeled 
when the penalty contact method is used. The adhesion formulation can be viewed as 
if a thin elastic layer is placed between the source and destination boundaries when 
adhesion is activated.

The adhesion starts acting when the adhesion criterion is met in the previous time or 
parameter step. An internal degree of freedom located at Gauss points is used as an 
indicator of whether the adhesion criterion has been met or not.

Using the effective gap distance gn and the slip gt, the adhesion formulation defines 
an incremental displacement jump vector u in the local boundary system as

0 1
2
--- Tngn Ad
cnt

=

0 1
2
--- Tnndst u map u –  Ad
cnt

–=

u 0 0 gn { , } Tb
T– gt+=
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where Tb
-T contains the transform from the global system to the boundary system. In 

the above expression, the Macaulay brackets indicate the positive parts operator such 
that

Using the displacement jump vector, the adhesive stress vector f is defined as

where k is the adhesive stiffness. For negative values of gn, the normal component of 
f is zero, and the contact condition is resolved by the penalty contact formulation. 
Notice that a different sign convention is used for the normal stress in the adhesion 
and contact contributions, where Tn is positive in compression.

The adhesive stiffness k can be defined using three different options: From contact 

penalty factor, User defined, and Use material data. For the first option, the normal 
stiffness is set equal to the contact pressure penalty factor pn. The two tangential 
stiffness components are then assumed to be related to the normal stiffness, so that the 
stiffness vector equals

where n is a coefficient with the default value 0.17. This coefficient can either be input 
explicitly, or be computed from a Poisson’s ratio. A plane strain assumption is used for 
this conversion, giving

For the Use material data option, k is calculated from the elastic constants of a fictive 
layer with a thickness equal to ds.

The adhesive contribution to the virtual work on the destination boundary is

x  x,  if  x 0
0,  if  x 0




=

f ku=

k npn npn pn{ , }=

n
1 2–

2 1 – 
---------------------=

f u  Ad
dst

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Decohesion

When adhesion is active, it is possible to break the bond between the source and 
destination boundaries by adding a Decohesion subnode to Contact. Decohesion 
modifies the stress vector f defined by Adhesion, but does not explicitly add any new 
contribution to the to the virtual work on the destination boundary. It thus requires 
an active Adhesion node.

Decohesion is implemented using a Cohesive Zone Model (CZM) based on interface 
damage mechanics. In essence, a CZM can be viewed as a regularization of linear 
elastic fracture mechanics, where the energy release rate is distributed over a process 
zone resulting in the progressive fracture of the interface. Here damage is assumed to 
be a scalar variable that affects both the normal and tangential components of the stress 
vector. Crack opening in the normal direction is called mode I fracture, while shear is 
called mode II (or mode III) fracture.

For a general CZM, the stress vector is defined as

 (3-191)

where d is the damage variable. During crack opening (or shearing), the damage 
variable grows, resulting in a softening behavior of the interface until it eventually 
breaks when d = 1, see Figure 3-36. If the interface is unloaded, the material follows 
the linear secant stiffness as defined by the current state of damage. No permanent 
deformations remain at complete unloading.

The Decohesion subnode implements the second term on the right-hand side of 
Equation 3-191, while the first term is implemented in Adhesion. Notice that in the 
normal direction, damage only applies to separation of the boundaries, hence the 
normal contact is unaffected by decohesion.

Two different CZM are available, providing different alternatives on how to define the 
evolution of damage during decohesion.

D I S P L A C E M E N T - B A S E D  D A M A G E

In the displacement-based damage models, the damage variable d is defined using a 
damage evolution function written in terms of a displacement quantity. Since, in 
general, the fracture is a combination of mode I and mode II fracture, the model 
introduces a mixed mode displacement um as the norm of the displacement jump 
vector.

f 1 d– ku ku dku–= =

um u=
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To keep track of the current state of damage, the maximum value of um over the 
loading history is defined as

where  is and internal degree of freedom that takes the value of um,max at the 
previous converged solution. The damage variable is then defined as a function of 
um,max of the form

where F-1 is called the damage evolution function and u0m defines the onset of 
damage. Conceptually, the damage evolution function is the inverse of the softening 
branch of the traction separation law F. Four different definitions of F-1 are available 
in the Traction separation law list. These damage evolution functions are summarized 
in Figure 3-35, and the resulting traction separations laws in Figure 3-36.

Figure 3-35: Damage evolution functions available with the displacement-based damage 
model.

um max, max um um max,
old =

um max,
old

d
0 if um max, u0m

min F 1– um max,  1  else






=
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Figure 3-36: Traction separation laws available with the displacement-based damage 
model.

The Linear option specifies a damage evolution function that gives a bilinear traction 
separation law as seen in Figure 3-36. It is defined as

where u0m and ufm define the mixed mode initiation of damage and point of complete 
fracture, respectively. For the initiation of damage, a linear mixed mode criterion gives

 (3-192)

where uI and uII are the mode I and mode II displacements, respectively. These are 
obtained from the displacement jump vector u. The constants u0t and u0s are 
calculated as

 (3-193)

where t is the tensile strength and s is the shear strength of the adhesive layer. The 
normal stiffness kn and the equivalent tangential stiffness kt are obtained from the 

F 1– um max, 
ufm

um max,
--------------------

um max, u0m–

ufm u0m–
------------------------------------- 
 =

u0m u0tu0s

um
2

uI 2u0s
2 uII

2 u0t
2

+
-----------------------------------------------=

u0t
t
kn
------=  and  u0s

s
kt
------=
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adhesive stiffness vector k. The mixed mode failure displacement ufm depends on the 
selected Mixed mode criterion. The Power Law criterion is defined as

and the Benzeggagh-Kenane criterion is defined as

where Gct, Gcs and Gcm are the tensile, shear, and total energy release rates, 
respectively. The exponent  is called the mode mixity exponent. From these relations, 
the mixed mode failure displacement can be calculated. For the power law criterion, 
the expression is

 (3-194)

with . For the Benzeggagh–Kenane criterion, the corresponding 
expression is

 (3-195)

The Exponential option specifies a damage evolution function that gives a traction 
separation law which is linear up to the interface strength, and thereafter softens with 
an exponential curve that reaches zero asymptotically as seen in Figure 3-36.

GI
Gct
--------- 
 

 GII
Gcs
--------- 
 


+ 1=

Gct Gcs Gct– 
GII

GI GII+
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 


+ Gcm=
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2 1 2
+ 

u0m
------------------------

kn
Gct
--------- 
 

 2kt
Gcs
-----------
 
 
 



+

1–

------

if uI 0

2Gcs
s

------------- if uI 0










=

 uII uI=
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2um
2
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+ 

------------------------------------------------- Gct Gcs Gct– 
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uI
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 
 
 
 
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------------- if uI 0


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



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

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u0m

um max,
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The mixed mode damage initiation displacement u0m is defined by Equation 3-192 
and Equation 3-193. The mixed mode failure displacement ufm is for the power law 
again given by

and for the Benzeggagh–Kenane criterion by

The Polynomial option specifies a damage evolution function that gives a traction 
separation law that is linear up to the interface strength. and thereafter softens with a 
cubic polynomial curve as seen in Figure 3-36.

The mixed mode damage initiation displacement u0m is defined by Equation 3-192 
and Equation 3-193, and the mixed mode failure displacement ufm by 
Equation 3-194 or Equation 3-195.

The Multilinear option specifies a damage evolution function that gives a traction 
separation law that is linear up to the interface strength. Thereafter a region of constant 
stress is introduced before the interface softens linearly as seen in Figure 3-36.

ufm
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 
 
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 
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Gcs
s

--------- if uI 0










=

ufm

um
2

u0m knuI
2 ktuII

2
+ 

------------------------------------------------- Gct Gcs Gct– 

kt
kn
------u

II

2

uI
2 kt

kn
------u

II

2
+

---------------------------

 
 
 
 
 
  

+ if uI 0

Gcs
s

--------- if uI 0












=

F 1– um max,  1
u0m

um max,
-------------------- 1

um max, u0m–

ufm u0m–
------------------------------------- 
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The mixed mode damage initiation displacement u0m is defined by Equation 3-192 
and Equation 3-193. The new constant upm defines the end of the region of constant 
stress and requires the introduction of the shape factor . The shape factor defines the 
ratio between the constant stress part of Gct and the total “inelastic” part of Gct:

Note that the shape factor is similarly defined for shear and is assumed to be equal for 
both components. Setting  = 0 corresponds to the linear separation law. Using the 
above expression, the stress plateau displacement upi for the respective component can 
be expressed as

and the failure displacement ufi as

where index i indicates either tension or shear. For the multilinear option, the mixed 
mode criterion is always linear ( = 1). Hence the mixed mode stress plateau 
displacement and failure displacements are given as

E N E R G Y - B A S E D  D A M A G E

The energy-based damage models provide an alternative formulation that relates the 
growth of damage to the dissipated mechanical energy of the interface. The 
formulation is based on the work presented in Ref. 5 and Ref. 6. The derivation starts 
from a stored energy function


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2
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From (u, d), the stress vector f and damage energy release rate Ydm are obtained as

To keep track of the current state of damage, the maximum value of Yd over the 
loading history is defined as

where  is and internal degree of freedom that takes the value of Ydm,max at the 
previous converged solution. The energy dissipated during the decohesion process is

where Gcm is the critical energy release rate in the sense of fracture mechanics. The 
overall behavior of the cohesive zone model is then summarized by

where Yd0m defines the damage threshold and F is a monotonically increasing function 
of the damage variable. From the above, an expression for the damage variable is 
obtained as

 u d  1
2
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=
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Three different definitions of F-1 are available under the Traction separation law list for 
the energy-based damage model. These damage evolution functions are summarized 
in Figure 3-37, and the resulting traction separations laws in Figure 3-38.

Figure 3-37: Damage evolution functions available with the energy-based damage model. 
Note that the initial damage threshold is 10 times lower for the Exponential and 
Polynomial laws.

Figure 3-38: Traction separation laws available with the energy-based damage model. 
Note that the initial damage threshold is 10 times lower for the Exponential and 
Polynomial laws.
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The Linear option specifies a damage evolution function that gives a bilinear traction 
separation law as seen in Figure 3-38.

For the linear law, the equation constant Ydfm = Gcm. The Exponential option specifies 
a more general damage evolution function of the following form

where N is a smoothening parameter with a default value equal to 1. The effect of N 
on the traction separation curve can be seen in Figure 3-38. For the exponential law, 
Ydfm is defined as

where () is the gamma function. A similar damage evolution function is obtained by 
the Polynomial option. It gives a generalized version of the traction separation law 
proposed in Ref. 6 of the form

where

Left to determine are the two variables Yd0m and Gcm. Their definitions require the 
introduction of a few new concepts related to the mixed mode loading. First, a mixed 
mode ratio is introduced

where uI and uII are the mode I and mode II displacements, respectively. These are 
obtained from the displacement jump vector u. The energy release rates of the 
respective modes are then given by

F 1– Yd max, 
Ydfm

Yd0m Ydfm–
---------------------------------

Yd0m
Yd max,
------------------- 1–

 
 
 

=

F 1– Yd max,  1
Yd max, Yd0m–

Ydfm Yd0m–
--------------------------------------- 
 

1
N
----

exp–=

Ydfm Yd0m
Gcm Yd0m–

 1 N+ 
-------------------------------+=

F 1– Yd max, 
Yd max, Yd0m–

Ydfm Yd0m–
--------------------------------------- 
 

1
N
----

=

Ydfm N 1
N
---- 1+ 
 Gcm Yd0m–=


kt
kn
------

uII
uI
-------- 
 =
 3 :  S T R U C T U R A L  M E C H A N I C S  T H E O R Y



Next, two mode mixture rules are formulated, one for the initiation of damage and one 
for the critical energy release rates. A power law criterion is assumed for both, such that 
for the onset of damage

where G0t and G0s define the damage threshold in tension and shear, respectively. The 
corresponding criterion for the fracture toughness is

where Gct and Gcs are the critical energy release rates for tension and shear, 
respectively. The variables 0 and c are called mode mixity exponents. Using these 
mode mixture rules results in

R E G U L A R I Z A T I O N

Due to the release of energy during decohesion and the softening behavior of the 
damage models, models may suffer from unwanted mesh dependency. The CZM can 
suffer from instability leading to nonconverging solutions, or bifurcation causing 
different solutions for different meshes. Such deficiencies may be alleviated by 
introducing some additional form of regularization. Under the Regularization list, it is 
possible to add the Delayed damage regularization. This option adds a viscous delay to 
the damage growth, and is available with time-dependent studies. The formulation 
introduces a viscous damage variable dv, and redefines Equation 3-191 so that
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The variation of the viscous damage variable is defined as

 (3-196)

where d is the damage variable obtained from any of the available CZM, and  is the 
characteristic time that defines the delay of the decohesion. If the viscous damage is 
used to stabilize a rate-independent decohesion problem, the value of must be chosen 
with care. As a rule of thumb,  should at least be one or two orders of magnitude 
smaller than the expected time step. Too large values of can introduce significant 
amounts of extra fracture energy to the model, and the actual energy dissipated due to 
damage can exceed the defined critical energy release rates by orders of magnitude.

The current value of the viscous damage variable  is obtained from numerical 
integration of Equation 3-196, such that

where t is the current time step taken by the time-dependent solver. The value of the 
viscous damage at the previously converged step  is stored as an internal degree of 
freedom.

D A M A G E  D I S S I P A T I O N

The dissipation due to damage is given as

The energy dissipated due to damage at the current step is approximated by

where the required values at the previously converged step n are stored as internal 
degrees of freedom.
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Wear

By adding a Wear subnode to a Contact node, it is possible to model adhesive or 
abrasive wear of the material when the contacting boundaries are sliding along each 
other. Since wear involves solving evolution equations, the Wear node only adds a 
contribution for time-dependent studies.

In the Solid Mechanics and the Multibody Dynamics interfaces, the removal of 
material during the wear process can be modeled with two fundamentally different 
techniques. The most general technique is to model the removal using the deformed 
geometry concept. With this approach, the material frame X of the domains adjacent 
to the contacting boundaries is updated according to the computed wear depth hwear. 
This means that there is an actual removal of material during the simulation which 
affects, for example, the contact search, mapping and conditions. When selecting the 
Deformed geometry formulation, the wear feature adds a (hidden) Deforming Domain 
feature that controls the material frame through an adaptive mesh smoothing. The 
removal of material is made through a (hidden) Prescribed Normal Mesh 
Displacement boundary condition controlled by hwear on the selected contact 
boundaries. By adding the deformed geometry, an extra dependent variable is added, 
the material mesh displacement material.disp. This adds a set of extra degrees of 
freedom to the model that needs to be solved for.

Alternatively, the removal of material can be modeled using an offset-based approach. 
This formulation offers a simplified approach that is computationally less expensive, 
but mainly suitable when the amount of worn-off material is small. When selecting the 
Offset-based formulation, hwear is subtracted from the offset variables doffset,s and 
doffset,d in Equation 3-174. Hence, the material is considered removed only in the 
definition of the physical gap, while the contact search and mapping are unaffected. 
The latter follows from the fact that the actual coordinates and normals of the 
contacting boundaries essentially remain constant with respect to the wear; they, 
however, can change due to the deformation induced by the wear and changing 
contact conditions.

In the Shell and Membrane interfaces, wear is modeled by simultaneously changing the 
thickness variable and the offset from the midsurface to the meshed boundary. With 
this approach wear can also be modeled on the top side, the bottom side, or on both 
sides at the same time.

The accumulated wear is computed from an evolution equation of the following 
general format
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where the rate of the wear depth is given by some source term f that is typically a 
function of the slip velocity vslip, the contact pressure Tn, and the temperature T. The 
surface and material properties also play an important role, and are represented by the 
generic quantity  in the above equation.

In COMSOL Multiphysics, the wear depth can be computed using a Generalized 

Archard law for which the wear rate is

 (3-197)

Here kwear is a dimensionless wear constant and the exponent n controls the 
dependence of the wear rate on the contact pressure. The reference contact pressure, 
Tn,ref, can be chosen arbitrarily, and is used only to obtain consistent units. The 
classical Archard wear equation is retrieved from Equation 3-197 by setting n = 1 and 
Tn,ref = 1 Pa. In addition, it is also possible to enter an arbitrary expression for the 
source term f that defines the wear rate.

It is possible to account for wear on both the source and destination boundaries. 
However, it is generally more accurate to model wear on the destination side. This 
follows from the fact that most relevant quantities, such as Tn and vslip, are defined 
only on the destination boundary in the Contact node and by, for example, the Friction 
node. Hence, when modeling wear on the source boundary, these quantities are 
mapped from the destination to the source. For example, when applied to the source 
side, Equation 3-197 actually reads

The definition of the wear rate thus includes multiple mappings form source to 
destination, and form destination to source. As described in Contact Search and 
Kinematics, these mappings are not necessarily one-to-one, which can lead to 
accumulating errors. The offset-based wear formulation can be especially sensitive to 
such errors.

t
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map vslip xsrc =
 3 :  S T R U C T U R A L  M E C H A N I C S  T H E O R Y



Bo l t  Mode l i n g  Th eo r y

Tightening Torque

When the bolt preload is given in terms of the tightening torque, a detailed mechanical 
analysis of the bolt mechanics is needed for the conversion.

The total required torque, MT, is to a large extent determined by frictional losses. It 
can, however, be shown that it is directly proportional to the axial force in the bolt, F.

The torque consists of a sum of two parts, the torque in the thread, Mt, and the torque 
caused by friction under the head, Mh,

The moment around the bolt axis caused by rotating the bolt head can be expressed as

Here, h is the coefficient of friction under the bolt head (or nut, whichever is 
rotating), and re is an effective radius at which the circumferential force can be 
considered as acting. If the contact pressure under the bolt head is assumed to be 
constant, then the effective radius can be computed as

Here, r is the distance from the bolt axis, and the integrals are taken over the contact 
area under the bolt head.

For a circular bolt head, this gives

MT Mt Mh+=

Mh hFre=

re

r Ad
Ad

--------------=
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3
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do
3 dh
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do
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where do is the outer diameter of the bolt head, and dh is the bolt hole diameter.

For a hexagonal bolt head, the expression for the effective radius is

Here, H is the width (spanner size) of the bolt.

To compute the bolt thread moment, a detailed analysis of the thread geometry is 
necessary. Omitting the details,

Here, dp is the mean diameter of the bolt thread.

The lead angle of the bolt, , is given by

To a first order approximation, the effective radius is

re
do dh+

4
-------------------

re

1
3
--- 3 ln

4
--------------+ 

 H3 
6
---d

h

3
–

3H
3 

2
---d

h

2
–

-------------------------------------------------------=

For a wide range of bolt configurations, it is reasonable to do the 
following approximations in terms of the nominal bolt diameter, d:

giving

 for a circular bolt head

 for a hexagonal bolt head

dh 1.1d

do H= 1.6d

re 0.68d

re 0.71d

Mt
Fdp  + tan

2
--------------------------------------=

For a wide range of bolt sizes, the bolt thread diameter can be 
approximated by .dp 0.9d


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where l is the lead (expressed in the same units as dp). This term, which is purely 
geometrical, gives the relation between torque and bolt force under ideal (frictionless) 
conditions.

The friction angle  is defined as

Here, t is the coefficient of friction in the thread, while  is half the thread angle.

Since all terms in the torque are proportional to the bolt force, the axial force in the 
bolt can now be computed from the torque as

 tan l
dp
----------=

 tan
t

   coscos
-----------------------------------=

F
MT

hre
dp  + tan

2
----------------------------------+

----------------------------------------------------=

For many threads, for example in the ISO and UTS standards,  = 30°. 
Since the lead angle  is small (about 3°), a good approximation is 

.

The sum of tangents formula gives

Using the estimates above,

Thus, for ordinary values of the friction, 80 – 90% of the applied torque 
is consumed by the friction losses.


 tan 1.15t

 + tan  tan  tan+
1    tantan–
---------------------------------------------  tan  tan+=

F
MT

d 0.7h 0.03 0.5t+ + 
--------------------------------------------------------------
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S t r e s s  L i n e a r i z a t i o n

Stress linearization is a procedure in which the stress distribution along a line through 
the thickness in a solid is approximated with an equivalent linear stress distribution, 
similar to what would be the result of an analysis using shell theory. The line is 
commonly referred to as a stress classification line, SCL.

First, the computed stresses are transformed into a local orthonormal coordinate 
system x1-x2-x3, where the x1 direction is oriented along the SCL. In 3D, you must 
specify the x2 direction, and thus implicitly the x3 direction. In 2D and 2D axial 
symmetry, the x3 direction is in the out-of-plane direction — that is, the Z and 
azimuthal directions, respectively.

The length of the SCL, which is assumed to be straight, start on one boundary, and 
end on the opposite boundary, is denoted L.

The membrane stress tensor is the average of each local stress component along the 
SCL:

Each component of the bending stress tensor is assumed to have a linear variation along 
the SCL, with the value being zero at the midpoint.

The maximum bending stress is defined so that the linear stress distribution has the 
same moment as the true stress distribution.

The linearized stress distribution is the sum of the membrane and bending stresses,
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Finally, the peak stress tensor is defined at the two endpoints of the SCL. It is the 
difference between the actual stress tensor, and the linearized stress representation.

The stress intensity, also known as the Tresca equivalent stress, is often the ultimate 
goal of a stress linearization. It is computed as a worst case of the equivalent stress at 
the two ends of the SCL. The stress intensity is computed from the principal stresses as

When computing the principal stresses at the endpoints of the SCL, it is customary to 
ignore the bending part of the through-thickness oriented stresses. The principal 
stresses and the stress intensity variables are the endpoints are thus computed using the 
following stress tensor:

Section forces, similar to what would be computed in a shell or plate analysis, are 
another type of result quantities available for each SCL. The in-plane forces are 
computed from the membrane stresses as

The bending moments are computed from the bending stresses as
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The out-of-plane shear forces are computed from the membrane stresses as

Q2

Q3

L
m 12

m 13

=
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J - I n t e g r a l  T h e o r y

The J-integral is a path independent integral, used for characterizing the severity of the 
loading at a crack tip. It can be used both in an elastic and an elastoplastic analysis. In 
the case of elasticity, the value of the J-integral can be shown to be identical to the 
strain energy release rate G, and also to be related to the stress intensity factor K.

In 2D, the J-integral is defined as

 (3-198)

where Ws is the strain energy density,  is a stress tensor, and m is the outward normal 
of the integration contour . In Equation 3-198, the crack is assumed to extend in the 
positive x direction, and integration is made over , which can be any 
closed path around crack tip, see Figure 3-39. However, if there is no loading on the 
crack face, the contribution to J on face is zero, and it is sufficient to only perform 
the integration over .

Figure 3-39: Circular J-integral around a notch in two dimensions.

For a general crack extension direction p, Equation 3-198 can be generalized to

J Wsdy  m  u
x

------- ds–

tot

=

tot  face=

m



x

y

face
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In 3D, the path integral can be taken around an arbitrary point of the crack front, and 
tot can be any closed path around the point in the normal plane to the crack front. It 
then turns out that there is also an additional term, to be integrated over the area 
enclosed by tot. The expression is then further extended to

where t is the tangent to the crack front. In practice, this is also the normal to the plane 
of the integration contour.

In 2D axisymmetry, m and p are located in the rz-plane, and t is oriented in the 
azimuthal direction. The surface integral can then be simplified, so that

where er is the base vector of the global r direction.

L O A D S  O N  C R A C K  F A C E S

When a boundary load FA is applied on the crack face, it contributes with an additional 
term to the J-integral since the contour integrals on the crack face become nonzero. 
This additional contribution, Jface, is defined by

where face is schematically defined in Figure 3-39.
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S T R E S S  I N T E N S I T Y  F A C T O R S

From the J-integral, it is possible to compute the stress intensity factor K for the three 
modes of fracture:

• Crack opening, or mode I, is described by stress intensity factor KI

• Crack sliding, or mode II, is described by stress intensity factor KII

• Tearing, or mode III, is described by stress intensity factor KIII

Computation of the stress intensity factors is done by utilizing the following 
decomposition of the J-integral

 (3-199)

where Eeff is an effective Young’s modulus that accounts for the stress state at the crack 
front. Assuming that KII = KI and KIII = KI / (1 + ), where  and  are coefficients 
that account for the mode mixture, it follows from Equation 3-199 that the stress 
intensity factors are

 (3-200)

The mode mixture coefficients are defined by

J JI JII+= JIII+
1

Eeff
---------- KI

2 KII
2 1

1 –
------------K

III

2
+ + 

 =

KI
Eeff

1 2 1
1 +
------------2

+ +
----------------------------------------J=

KII
Eeff

1 1

2
------

1
1 +
------------ 

2

2
------+ +

------------------------------------------J=

KIII
Eeff

1 +  1 1 +

2
------------ 1 + 2

2
------------------------+ +

-----------------------------------------------------------------------------J=


uII
uI
------------=


uIII
uI

--------------=
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where uI, uII, and uIII are the components of the displacement vector across the 
crack, u, defined in the coordinate system corresponding to the three modes of 
fracture.

In 2D, mode III is not relevant, and Equation 3-200 simplifies to

The definition of the effective Young’s modulus depends on the stress state at the crack 
tip

Hence, in 2D it depends on the 2D approximation used in the physics interface, while 
in 3D it is assumed that the stress state is approximately plane strain.

KI
Eeff

1 2
+

---------------J=

KII
Eeff

1 1

2
------+

----------------J=

Eeff

E

1 2
–

---------------   if plane strain

E   if plane stress





=
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Embedded E l emen t s

The Embedded Reinforcement multiphysics coupling provides a generic method to 
couple lower dimension structural elements to a solid domain. Mesh elements from the 
Truss, Beam, or Membrane interfaces within or adjacent to a solid domain can be 
connected by adding this multiphysics coupling. Two different formulations are 
available for connecting the interfaces: Rigid or Spring connection. The rigid 
connection is based on a pointwise constraint formulation, while the spring connection 
is based on a penalty regularization of the constraint. When using the spring 
connection, a nonlinear behavior can be included by adding a bond slip model.

To facilitate the connection between the solid domain and the embedded structure, a 
nonlocal coupling is set up between the two interfaces. This coupling is made through 
a General Extrusion operator that maps an expression defined on the source to an 
expression that can be evaluated on the destination geometry. Here, the source is 
always the solid domain, and the destination is the embedded thin structure. The latter 
can be either a Truss, Beam, or Membrane interface. Mathematically, the mapping of 
a generic expression E from a source domain src to a point Xdst on the destination 
boundary (or edge) dst can be described by

 (3-201)

The mapping is such that for each point Xdst, it finds the closest point Xsrc in src at 
which to evaluate E. From Equation 3-201 it is inferred that the mapping is made in 
the material frame, that is, the mapping is constant even for a geometrically nonlinear 
case. Moreover, the mapping is only valid for the part of dst that lies within src.

With the definition in Equation 3-201, the rigid connection type is described by 
adding a constraint on dst such that the displacement field u equals

The penalty connection is set up by first defining a relative displacement vector u 
between the mapped source and the destination

From the relative displacement vector u, the spring force f of the penalty formulation 
is defined by Hooke’s law

Esrc map E Xsrc  Xdst   on dst src=

u map u Xsrc  Xdst  on dst src=

u map u Xsrc  Xdst  u Xdst   on dst src–=
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where K is the spring stiffness matrix, which has nonzero components on the diagonal 
only. The spring stiffness matrix K is most naturally described in the local coordinate 
system of the thin structure, dst, such that the spring force fl in local coordinates is 
defined by

where T is the transformation matrix form local to global coordinates and Kl is the 
spring stiffness matrix in the local coordinate system. The local coordinate system is 
either defined by the destination physics interface, or automatically by the multiphysics 
coupling. Finally, the following weak contribution is added

When a Bond slip model is added to the spring connection, an additive decomposition 
of u into elastic and plastic counterparts is assumed so that, in the local coordinate 
system

where ul,e is the elastic displacement, and ul,p is the plastic displacement (or slip) on 
the destination. The definitions of the spring force and the weak contribution are 
unaffected.

The slip vector ul,p is defined through a local constitutive model based on the flow 
theory of plasticity. When the destination physics is either a Truss or a Beam interface, 
slip can only occur in the direction of the local edge tangent, which means that the slip 
vector is defined by a single scalar value, that is, ul,p = {0,0,upn}. The constitutive 
model is then summarized by

 (3-202)

f Ku  on dst src=

fl Kl T u  Klul= =

0 f– u Sd
dst

=

ul e, ul ul p,   on dst src–=

F fn c– 0

uꞏpn =  F
fn
--------

uꞏ pe = 

F 0,  0, F=0
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where fn and upn is the spring force and slip in the direction of the local edge tangent, 
respectively. The cohesion c determines the sliding resistance, and it can depend on any 
variable or field present in the model. The plasticity model is defined by the yield 
function F, the plastic multiplier , and the accumulated slip upe. The last row of 
Equation 3-202 are the Kuhn-Tucker conditions.

When the destination physics is a Membrane interface, sliding can only occur in the 
direction of the local tangents of the plane given by the normal of the boundary, that 
is, ul,p = {ut1,ut2,0}. The constitutive model then takes a slightly different form, and 
it can be summarized by

 (3-203)

where ft is a vector containing the two tangent components of the local spring force fl.

The rate equations in the constitutive models given by Equation 3-202 and 
Equation 3-203 are implemented through a backward Euler discretization. The 
resulting set of nonlinear algebraic equations is solved using Newtons method to find 
upe, and ul,p. Optionally, it is also possible to compute the dissipated energy due to 
friction, Wp, by also solving the following rate equation

F ft c– 0

uꞏ t1 p, , uꞏ t2 p, , 0
 
 
 

 = F
ft
-------

uꞏpe = 

F 0,  0, F=0

Wꞏ p F
fl
------- fl=
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When the Embedded structure is a Beam interface, there is an option to 
suppress rotation around the beam axis. This option adds a constraint for 
the rotation xl around the beam axis. The constraint is implemented 
using a penalty regularization, which adds the following weak 
contribution to the model

where GJ is the torsional stiffness of the beam and A is the area of the 
beam. This functionality is intended to suppress unwanted rigid body 
rotations that can lead to nonconvergence of the solver.

0 GJ
1000A
-----------------lxlx Sd

dst

=
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Th eo r y  f o r  T h i n  L a y e r s

Sometimes, there are thin layers between larger domains that cannot be ignored in a 
structural analysis. The reasons are either because they have significant flexibility or 
damping properties, or that they may fail. Examples of such layers are glue layers, 
O-rings, and gaskets. 

When the layer is thin compared to other dimensions of the structure, it is difficult to 
produce a mesh with acceptable quality and without compromising the numerical 
conditioning of the stiffness matrix.

The Thin Layer boundary feature allows to overcome this problem, through 
simplifications in the definition of the Deformation Measures, thus avoiding meshing 
in the through-thickness direction.

There are three different formulations available for modeling thin layers:

• Solid Approximation

• Membrane Approximation 

• Spring Approximation

Deformation Gradient

The deformation gradient F is defined as the gradient of the current coordinates with 
respect to the original coordinates:

See the Lagrangian Formulation section for details.

For thin layers, the deformation gradient is approximated as

Here, tu is the displacement gradient computed using the tangential gradient on the 
reference surface, and N is the normal vector to the undeformed surface. The term 

 is the so-called normal gradient, that can be approximated by 
different approaches.

F x
X

------- I u
X

-------+= =

F I u u N  N+t+=

un u N  N=
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Solid Approximation

For the Solid approximation on interior thin layers, the displacements between the two 
sides of the boundary are decoupled. The two boundaries are then connected by elastic 
and viscous forces proportional to the relative displacements and the corresponding 
material model.

By using the notation u1 = down(u) and u2 = up(u), so u1 represents the 
displacement of the downside (bottom), and u2 is the displacement of the upside (top) 
of the thin layer. The average displacement of the midsurface reads

and the extension of the thin layer reads

With this notation, the normal vector N points from the downside (bottom) towards 
the upside (top).

The gradient through the normal direction is approximated as

where d is the thickness of the thin layer, and the quantity ue/d represents the strain 
in the layer.

The deformation gradient in the layer is then approximated as

The tangential deformation gradient on the midsurface is calculated as

and the normal deformation gradient as

The normal deformation gradient contains both normal as well as transverse shear 
information, and it is constant through the thickness of the layer. The tangential 

ua
1
2
--- u1 u2+ =

ue u2 u1–=

un u N  N 1
d
---ue N=

F I ua
1
d
---ue N+t+=

Ft I N N uat+–=

Fn N N 1
d
---ue N+=
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deformation gradient, Ft, contains information about the stretching in the midsurface, 
the so-called membrane deformation.

When Layered is selected in the Thin layer type list, the gradient through the normal 
direction is approximated as

where z is the extra dimension coordinate, that varies between 0 and the layer thickness 
d.

The deformation gradient in the layered thin structure is then approximated as

The weak contributions are scaled by a correcting factor that accounts for the 
curvature of the thin layer.

The layered formulation can handle composites and laminates, see the Theory for the 
Layered Shell Interface section for details.

Membrane Approximation

For the Membrane approximation, there is no slit between the two sides of the thin 
layer. The tangential deformation gradient is computed on the surface as

The tangential deformation gradient is augmented to include the normal deformation

and the transverse shear deformation

Here, n is the transverse (normal) stretch, and 1 and 2 are the transverse shears. The 
vectors n, t1 and t2 are the normal and tangent unit vectors on the deformed surface.

See the Theory for the Membrane Interface section for details.

un u N  N u
z
------- N=

F I u u
z
------- N+t+=

Ft I N N ut+–=

Fn nn N=

Fs 1t1 2t2+  N=
T H E O R Y  F O R  T H I N  L A Y E R S  |  799



800 |  C H A P T E R
Spring Approximation

For the Spring approximation, the membrane deformation is neglected, and the 
deformation gradient reads

Here, the thin layer extension ue contains information about the normal as well as the 
transverse shear deformation, but no membrane deformation is taken into account.

Material Models in Thin Layers

After selecting the approximation, Solid, Membrane, or Spring, the strain tensor in a 
geometrically linear analysis is computed from 

and for a geometrically nonlinear analysis from

Then the material models are defined by the corresponding strain tensor. 

See the Linear Elastic Material, Nonlinear Elastic Materials, and Hyperelastic Materials 
sections for details.

For anisotropic data, the coefficients are given with respect to the boundary system. 
See the Boundary System section for details.

F I 1
d
---ue N+=

 1
2
--- FT F+  I–=

 1
2
--- FTF I– =
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You can incorporate inelastic effects by adding the following subnodes to a Linear 

Elastic Material or Nonlinear Elastic Material nodes in thin layers:

The following subnodes are available for a Hyperelastic Material:

Spring Material

When the Spring approximation is chosen, it is possible to specify a Spring material 
for the thin layer.

In the geometrically linear case, the spring force fs per unit area is computed as

where KA is the spring constant. The spring constant can be a scalar or a matrix which 
components are the spring constants given with respect to the boundary system. When 
using the boundary system to specify the spring constants, this matrix reads. 

• Thermal Expansion

• Hygroscopic Swelling

• Initial Stresses and Strains

• External Stress

• External Strain

• Inelastic Strain Rate

• Damping

• Linear Viscoelasticity

• Plasticity

• Creep

• Viscoplasticity

• Damage Models (Linear Elastic Materials)

• Safety Factor Evaluation

• Thermal Expansion

• Hygroscopic Swelling

• External Stress

• External Strain

• Inelastic Strain Rate

• Damping

• Large Strain Viscoelasticity

• Plasticity

• Mullins Effect

fs KAue–=

KA

kt1 kt1t2 kt1n

kt1t2 kt2 kt2n

kt1n kt2n kn

=
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See the Boundary System section for details.

For the geometric nonlinear case, the spring force reads

L O S S  F A C T O R  D A M P I N G

When the Spring approximation is chosen, it is possible to add Loss factor damping or 
Viscous damping to the Spring material.

When using loss factor damping, a complex spring matrix is used to define the spring 
force. With an isotropic loss factor s, this means that

where KA is the constitutive matrix computed from the spring constants, and Kc is the 
complex constitutive matrix used when computing the spring force.

For a linear elastic material, this would be equivalent to multiplying Young’s modulus 
by the factor 1  js.

It is also possible to give individual loss factors for each entry in the constitutive spring 
matrix, so that

Loss factor damping is only applicable in frequency domain.

V I S C O U S  D A M P I N G

Viscous damping causes a viscous stress proportional to the rate of strain in the 
material,

where b and v are the normal and shear viscosity coefficients, respectively.

For the Spring approximation, only normal extension causes volume changes in the 
thin layer. The volumetric (normal) strain in the geometric linear case is computed 
from

fs KA ue
ue

2

2d
------------N+ 

 –=

Kc 1 js+ KA=

Kmn
c 1 js mn+ Kmn=

sq b
ꞏ
vol 2v

ꞏ
dev+=

vol
1
d
---ue N 
 N N=
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and for the geometric nonlinear case from

In both cases, the deviatoric (transverse shear) strain reads

The viscous force is then computed for the geometric linear case from 

and for the geometric nonlinear case from

Viscous damping can be used in both frequency and time domain analyses.

vol
1
d
---ue N 1

2d2
----------ue ue+ 

 N N=

dev
1

2d
-------ue N 1

2d
-------N ue

1
d
---ue N 
 N N–+=

fq – b
1
d
--- uꞏ e N N v–

1
d
--- uꞏ e uꞏ e N N– =

fq – b
1
d
--- uꞏ e N 1

d
---ue uꞏ e+ 

 N v–
1
d
--- uꞏ e uꞏ e N N– =
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Redu c ed I n t e g r a t i o n  and Hou r g l a s s  
S t a b i l i z a t i o n

COMSOL Multiphysics uses by default a full and consistent quadrature order when 
numerically evaluating integrals such as the virtual work. However, a full quadrature 
order does not necessarily lead to an optimal formulation of the resulting finite element 
matrices in structural mechanics, where higher order terms can introduce locking and 
other detrimental effects. A remedy can be to reduce the quadrature order for selected 
parts of the virtual work, typically the strain energy density. When full integration is 
used, the quadrature order is twice the shape order of the displacement field. And 
when a reduced integration scheme is used, the quadrature order is reduced by half.

Using a reduced integration scheme not only affects the numerical integration of the 
weak contribution related to the displacement field, but for consistency it also change 
the shape order of auxiliary dependent variables such as the out-of-plane strain in plane 
stress, the auxiliary pressure in a mixed formulation, and other auxiliary dependent 
variables added by nonlinear material models. This also applies to state variables used 
in material models such as plasticity, damage, and viscoelasticity. Lowering the order 
of auxiliary dependent variables and state variables significantly reduces the 
computation time due to the reduced assembly time.

Using reduced integration only affects the stationary part of the virtual work; a full 
quadrature order is always applied to inertial term contributions. Furthermore, 
reduced integration is only applied to weak contributions added by material models. 
Other contributions to the virtual work such as body loads and other boundary 
conditions use a full quadrature scheme.

H O U R G L A S S  S T A B I L I Z A T I O N

The hourglass stabilization method adds a stabilization terms Wstb to the strain energy 
density and to the principle of virtual work. When using reduced integration and 
hourglass stabilization, the stationary part of the virtual work is written as

The additional terms that include Wstb are integrated using different quadrature 
orders. The first and second integrals are evaluated using reduced integration, while 

W –  dv
V Wstbdv – Wstbdv

V+
V+=
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the third integral is evaluated using full integration. The second and third integrals will 
cancel each other for an accurate reduced integration scheme.

The exact formulation of Wstb differs from case to case, but it is in general set up so 
that it is inexpensive to evaluate. For example, the expression never includes evaluation 
of nonlinear materials such as plasticity.

See also Using Reduced Integration in the Structural Mechanics 
Modeling chapter.
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A v e r a g e  Ro t a t i o n

The Average Rotation node is used for computing average rotations and displacements 
of a virtual rigid body, which is represented by a number of points in the structure. The 
corresponding velocities and accelerations are also computed.

In the general case, the number of points can be larger than what is needed to define 
a rigid body movement (3 in 3D and 2 in 2D). Unless the points are attached to a rigid 
object, it is only possible to determine the rotation in an average sense.

If a certain reference point has a given translation up and a rotation p, then the 
displacement of any other point i can under rigid body assumptions be computed as

where ri is the distance vector from the reference point to point i. The equation in this 
form is valid under the assumption of small rotations. In case of large rotations, the 
displacement due to rotation is instead described by a rotation matrix R:

Here, I is the identity matrix. The rotation matrix is described with a quaternion 
formulation where parameters a, b, c, and d are components of a unit quaternion.

An extra constraint must be added to enforce a unit quaternion.

In 2D, points can only rotate about the z-axis. The rotation matrix requires only one 
dependent variable, the rotation angle :

ũi up p ri+=

ũi up R p  I– ri+=

R
a2 b2 c2

– d2
–+ 2bc 2– ad 2ac 2bd+

2ad 2bc+ a2 b2
– c2 d2

–+ 2cd 2ab–

2bd 2– ac 2ab 2cd+ a2 b2
– c2

– d2
+

=

a2 b2 c2 d2
+ + + 1=



R
cos sin– 0
sin cos 0

0 0 1

=
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The average rotation and displacement for the set of points is determined using the 
method of least squares. The square of the difference between the actual displacements 
and the assumed rigid-body displacement is minimized,

Here, the up and p are replaced with the sought-after average displacement uavg and 
average rotation avg respectively. The vector avg is the axis-angle representation of 
the rotation. The magnitude, avg, is the rotation angle.

The average velocity and acceleration of the set of points are given as the first and 
second derivative with respect to time.

;

Analogous, the average angular velocity and accelerations are defined as

;

R2 ui ũi–  ui ũi– 
i
=

t
 uavg uꞏ avg=

t
 uꞏ avg uꞏꞏavg=

t
 avg 

ꞏ
avg=

t
 
ꞏ

avg 
ꞏꞏ

avg=
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Ene r g y  Quan t i t i e s

There are several energy quantities computed in the Structural Mechanics interfaces. 
This section is a summary of these quantities and how to compute in different 
situations.

In this section:

• Elastic Energy

• Kinetic Energy

• Dissipated Energy

• Mechanical Energy Flux

• Energy Variables

Elastic Energy

L I N E A R  E L A S T I C  M A T E R I A L S

The elastic energy is defined as the recoverable energy stored in an elastic material or 
spring. The elastic strain energy density in an elastic material is defined as

 (3-204)

If the linear elasticity is assumed, then

where i is the initial stress. The integration can then be carried out analytically and 
the result is

This expression is used for the Linear Elastic Material model in a Stationary or Time 
Dependent analysis. An implication is that if you modify the linear elastic model in a 
way that violates the assumption about stress-strain linearity above, then the computed 
strain energy density may be wrong, for example, using a strain dependent Young’s 
modulus or a nonconstant initial stress.

Ws : eld

0

el

=

 i C:el+=

Ws i:el
1
2
--- C:el :el+

1
2
--- i + :el= =
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In the case of Frequency Domain analysis, only the harmonic part is considered. That 
is, a constant prestress does not contribute to the strain energy density. To emphasize 
this, the concept of stored energy is used. The stored energy is the cycle average of the 
elastic energy; that is,

The harmonic stress and strain components are generally not in phase with each other, 
so the cycle average of the stored energy is computed as

where the stress and strain are considered as complex quantities, and the overline 
denotes a complex conjugate.

H Y P E R E L A S T I C  M A T E R I A L S

For a Hyperelastic material, the strain energy density function is the fundamental 
quantity from which stresses are derived. The form of the strain energy density 
function is determined by the hyperelastic model used.

Nonlinear Elastic Materials
For a Nonlinear Elastic Material, the strain energy density is computed in different 
ways depending on the material model selected. If the integration in Equation 3-204 
can be performed analytically, then a closed form expression is used, similar to what is 
done in the linear elastic material. If not, then the integral is actually computed using 
the integrate() operator.

Structural Elements
For structural elements, the strain energy density is split into membrane, bending and 
shear parts, which are then summed into a total strain energy density.

The strain energy density for all elastic domains are integrated to give a total elastic 
strain energy, which contains all elastic energy stored in a certain physics interface.

Elastic boundary conditions, such as Spring Foundation, Thin Elastic Layer, and 
Springs in joints in the Multibody Dynamics interface, also contribute to the total 

Wh
1
T
---- 1

2
--- t : t  td

0

T

=

Wh
1
4
--- : real=
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elastic strain energy variable. In these cases, linearity is assumed, so if you enter 
nonlinear data, you will probably need to adjust the strain energy expressions.

Kinetic Energy

For all materials, a kinetic energy density is computed. For a time-dependent study, it 
is defined as

where  is the mass density, and v is the velocity.

In Frequency Domain, the velocity is related to the displacement as , and the 
kinetic energy is defined as

which represents the cycle average.

Dissipated Energy

There are many possible mechanisms for energy dissipation in a structure:

• Material damping (loss factor, Rayleigh damping, or viscous damping)

• Viscoelasticity

• Dissipation by plasticity or creep

• Viscous damping in boundary conditions, springs and joints

• Friction in mechanical contact

The general form of dissipation loss is

The treatment of dissipated energy is fundamentally different depending on whether 
the analysis is in frequency domain or not. For stationary or time-dependent cases, the 
dissipated energy must be accumulated over parameter ranges or time, which means 

The Multibody Dynamics interface is available with the Multibody 
Dynamics Module.

Wk
1
2
---v2

=

v iu=

Wk
1
4
---2u2

=

Qh :ꞏ=
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extra degrees of freedom must be added. For this reason, you must explicitly select to 
compute the mechanical dissipation in these cases. This is done in the Energy 

Dissipation section of the material model.

In frequency domain, the dissipated energy per cycle is computed using a closed form 
expression. It is always available as postprocessing variables. The expression used is

In the case of Rayleigh damping, the stresses are not directly affected by the damping, 
since it is not part of the stress-strain relation. In a problem which is linear elastic 
except for the Rayleigh damping, the stresses and strains are in phase with each other, 
and does thus not give any damping contribution. This is handled by explicitly adding 
an extra contribution to dissipation.

Mechanical Energy Flux

The mechanical energy flux is a vector formed by the multiplication of the stress tensor 
and the velocity vector

The reason for the minus sign in the definition is that if you put a pressure on an 
external boundary, and it moves in the direction of the load, then a positive power 
input in the direction of the load is obtained.

In the time domain, the expression above is used. In frequency domain, two versions 
are supplied. The complex mechanical energy flux is the complex vector formed by 
multiplying the stress tensor by the complex conjugate of the velocity:

The mechanical energy flux is in the frequency domain defined as a real quantity, the 
cycle average of the complex mechanical energy flux.

Qh
1
2
--- : i  real=

I  v–=

I  ṽ–=

I 1
2
---  ṽ– real=
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Energy Variables

The energy variables used in the Structural Mechanics interfaces are summarized in 
Table 3-8.

TABLE 3-8:  ENERGY VARIABLES USED IN STRUCTURAL MECHANICS

VARIABLE DESCRIPTION SI UNIT PHYSICS 
INTERFACE

1 COMMENT

phys.Ws Elastic strain 
energy density

J/m3 solid, mbd, shell, 
plate, mbrn, 
beam, truss

phys.WsM Membrane strain 
energy density

J/m2 shell, plate Contributes to 
phys.Ws

phys.WsB Bending strain 
energy

J/m2 shell, plate Contributes to 
phys.Ws

phys.WsS Shear strain 
energy

J/m2 shell, plate Contributes to 
phys.Ws

phys.WsM Membrane strain 
energy density

J/m beam Contributes to 
beam.WsL

phys.WsB Bending strain 
energy

J/m beam Contributes to 
beam.WsL

phys.WsS Shear strain 
energy

J/m beam Contributes to 
beam.WsL

beam.WsT Torsional strain 
energy

J/m beam Contributes to 
beam.WsL

phys.WsL Strain energy 
density per unit 
length

J/m beam, truss phys.Ws = 
phys.WsL/area

phys.Ws_tot Total elastic strain 
energy

J solid, mbd, shell, 
plate, mbrn, 
beam, truss

Global variable 
containing 
integration and 
summation of all 
phys.Ws 
contributions in a 
physics interface.

phys.Wk Kinetic energy 
density

J/m3 solid, mbd, shell, 
plate, mbrn, 
beam, truss
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phys.Wk_tot Total kinetic 
energy

J solid, mbd, shell, 
plate, mbrn, 
beam, truss

Global variable 
containing 
integration and 
summation of all 
phys.Wk 
contributions in a 
physics interface.

phys.Wp Plastic dissipation 
density

J/m3 solid Energy density 
dissipated by 
plasticity

phys.Wp_tot Total plastic 
dissipation

J solid Global variable 
containing 
integration and 
summation of all 
phys.Wp 
contributions in a 
physics interface.

phys.Wc Creep dissipation 
density

J/m3 solid Energy density 
dissipated by creep.

phys.Wc_tot Total creep 
dissipation

J solid Global variable 
containing 
integration and 
summation of all 
phys.Wp 
contributions in a 
physics interface.

phys.Wv Viscoelastic 
dissipation density

J/m3 solid Energy density 
dissipated by 
viscosity.

phys.Wv_tot Total viscoelastic 
dissipation

J solid Global variable 
containing 
integration and 
summation of all 
phys.Wv 
contributions in a 
physics interface.

phys.Wed Dielectric 
dissipation density

J/m3 solid Piezoelectric 
electrical damping

TABLE 3-8:  ENERGY VARIABLES USED IN STRUCTURAL MECHANICS

VARIABLE DESCRIPTION SI UNIT PHYSICS 
INTERFACE

1 COMMENT
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phys.Wed_tot Total dielectric 
dissipation

J solid Global variable 
containing 
integration and 
summation of all 
phys.Wed 
contributions in a 
physics interface.

phys.Wmd Damping 
dissipation density

J/m3 solid Piezoelectric 
mechanical damping

phys.Wmd_tot Total damping 
dissipation

J solid Global variable 
containing 
integration and 
summation of all 
phys.Wmd 
contributions in a 
physics interface.

phys.I* Mechanical 
energy flux, * 
coordinate

W/m2 solid, mbd

phys.Icomplex* Complex 
mechanical 
energy flux, 
*coordinate

W/m2 solid, mbd Frequency domain 
only

1The availability of physics interfaces is based on the license for a module.

TABLE 3-8:  ENERGY VARIABLES USED IN STRUCTURAL MECHANICS

VARIABLE DESCRIPTION SI UNIT PHYSICS 
INTERFACE

1 COMMENT
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S o l i d  M e c h a n i c s
This chapter describes the Solid Mechanics interface, which is found under the 
Structural Mechanics branch ( ) when adding a physics interface.
 827
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Th e  S o l i d  Me chan i c s  I n t e r f a c e

The Solid Mechanics (solid) interface ( ), found under the Structural Mechanics 
branch ( ) when adding a physics interface, is intended for general structural 
analysis of 3D, 2D, 1D, or axisymmetric bodies. In 2D, 1D, and 1D axisymmetry, 
plane stress, plane strain, or generalized plane strain assumptions can be used. The 
Solid Mechanics interface is based on solving the equations of motion together with a 
constitutive model for a solid material. Results such as displacements, stresses, and 
strains are computed.

The functionality provided by the Solid Mechanics interface depends on the products 
you are using. The Acoustics Module, MEMS Module, and Structural Mechanics 
Module add several features, for example geometric nonlinearity and advanced 
boundary conditions such as contact, follower loads, and nonreflecting boundaries.

The default material is a Linear Elastic Material. With either the Nonlinear Structural 
Materials Module or the Geomechanics Module, the physics interface is extended with 
more materials, for example, material models for plasticity, hyperelasticity, creep, and 
concrete. You can also add your own material models using an External Stress-Strain 
Relation

When this physics interface is added, thee following default nodes are also added to the 
Model Builder: Linear Elastic Material, Free (a boundary condition where boundaries are 
free, with no loads or constraints), and Initial Values. For axisymmetric models, an Axial 

Symmetry node is also added.

Then, from the Physics toolbar, you can add other nodes that implement, for example, 
solid mechanics material models, boundary conditions, and loads. You can also 
right-click Solid Mechanics to select physics features from the context menu.

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 

For a detailed overview of the functionality available in each product, visit 
https://www.comsol.com/products/specifications/
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different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is solid.
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2 D  A P P R O X I M A T I O N

From the 2D approximation list, select Plane strain, Plane stress, or 
Generalized plane strain.

Plane strain is relevant when the 2D model can be considered as a cut 
through an object that is infinitely long in the out-of-plane direction or as 
a soft object confined between rigid walls. The strain in the out-of-plane 
direction is assumed to be zero.

Plane stress is relevant for structures that are thin in the out-of-plane 
direction, such as a thin plate. When using plane stress, the Solid 
Mechanics interface solves for the out-of-plane strain displacement 
derivative, , in addition to the displacement field u, in order to fulfill 
the condition that there is no stress in the thickness direction.

The generalized plane strain condition is similar to plane strain, but allows 
for a nonzero out-of-plane strain. It is representative for the central parts 
of a long object, which is stress free at the ends. In this case, you can 
choose between two assumptions: a uniform out-of-plane strain, or a full 
linear distribution of the out-of-plane strain. The latter assumption 
corresponds to bending in the out-of-plane direction, and is used when 
the Enable out-of-plane bending check box is selected.

For more information see the theory section.

When combining Solid Mechanics with other types of physics, there is 
often an assumption that the out-of-plane extension is infinitely long. This 
is the case in, for example, Acoustic-Structure interaction problems. In 
these cases, Plane strain is usually the correct choice.

Select Out-of-plane mode extension (time-harmonic) to prescribe an 
out-of-plane wave number to be used in mode analysis, eigenfrequency, 
and frequency domain studies. When selected, enter the Out-of-plane wave 

number kz. The input value will only be taken into account in 
eigenfrequency and frequency domain studies. For mode analysis, the 
out-of-plane wave number is computed as an eigenvalue.

For more information, see Out-of-Plane Waves in the Structural 
Mechanics Theory chapter.

w
Z

-------
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A X I A L  S Y M M E T R Y  A P P R O X I M A T I O N

Select Include circumferential displacement to add a dependent variable to 
account for the out-of-plane displacement. This can be used to model 
axial deformation with rotation around the axis of symmetry.

Select Circumferential mode extension to prescribe a circumferential wave 
number to be used in eigenfrequency or frequency domain studies. When 
selected, enter the Azimuthal mode number m.

For more information, see Circumferential Displacement and 
Out-of-Plane Waves in the Structural Mechanics Theory chapter.

This section is only available with certain COMSOL products (see https:/
/www.comsol.com/products/specifications/).

Eigenfrequency Analysis of a Free Cylinder: Application Library path 
Structural_Mechanics_Module/Verification_Examples/free_cylinder.
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1 D  A P P R O X I M A T I O N

From the y direction and z direction lists, select Plane strain, Plane stress, 
or Generalized plane strain.

Plane strain is relevant when the model can be considered as a cut through 
an object that is infinitely long in the corresponding out-of-plane 
direction (y or z), or as a soft object confined between rigid walls. The 
strain in the out-of-plane direction is assumed to be zero.

Plane stress is relevant for structures that are thin in the corresponding 
out-of-plane direction, such as a thin plate. When using plane stress, the 
Solid Mechanics interface solves for the out-of-plane strain displacement 
derivatives,  or , in addition to the displacement field u, in order to 
fulfill the condition that there is no stress in the thickness direction.

The generalized plane strain condition is similar to plane strain, but allows 
for a constant nonzero out-of-plane strain. It is representative for the 
central parts of a long object, which is stress free at the ends.

For more information see the theory section.

When combining Solid Mechanics with other types of physics, there is 
often an assumption that the out-of-plane extension is infinitely long. This 
is the case in, for example, Acoustic-Structure interaction problems. In 
these cases, Plane strain is usually the correct choice.

v
Y

------- w
Z

-------
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1 D  A X I S Y M M E T R I C  A P P R O X I M A T I O N

From the z direction list, select Plane strain, Plane stress, or Generalized 

plane strain.

Plane strain is relevant when the model can be considered as a cut through 
a cylinder, which is infinitely long in the z direction, or as a soft object 
confined between rigid walls. The strain in the z direction is assumed to 
be zero.

Plane stress is relevant for thin discs. When using plane stress, the Solid 
Mechanics interface solves for the displacement derivative in the 
z direction, , in addition to the displacement field u, in order to fulfill 
the condition that there is no stress in the thickness direction.

The generalized plane strain condition is similar to plane strain, but allows 
for a nonzero strain in z direction. It is representative for the central parts 
of a long cylinder, which is stress free at the ends.

For more information see the theory section.

When combining Solid Mechanics with other types of physics, there is 
often an assumption that the out-of-plane extension is infinitely long. This 
is the case in, for example, Acoustic-Structure interaction problems. In 
these cases, Plane strain is usually the correct choice.

w
Z

-------
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T H I C K N E S S

C R O S S - S E C T I O N A L  A R E A

S T R U C T U R A L  T R A N S I E N T  B E H A V I O R

From the Structural transient behavior list, select Include inertial terms or Quasistatic. 
Use Quasistatic to treat the dynamic behavior as quasistatic (with no mass effects; that 
is, no second-order time derivatives). Selecting this option gives a more efficient 
solution for problems where the variation in time is slow when compared to the natural 

For 2D and 1D axisymmetric components, enter a value or expression for 
the thickness d. The default value of 1 m is suitable for plane strain 
models, where it represents a unit-thickness slice, for example. For plane 
stress models, consider entering the actual thickness.

When manually combining Solid Mechanics with other physics interfaces, 
you must make sure that the same thickness assumption is used 
everywhere. In most cases, the default settings will be correct since 
interfaces that do not have an explicit thickness property will implicitly 
assume unit thickness. When using other unit systems than the default SI 
system, you need to pay special attention to the values of this property.

Use a Change Thickness node to change thickness in parts of the 
geometry if necessary.

For 1D components, enter a value or expression for the cross-section area 
Ac. The default value is 1 m2, which is suitable for models where plane 
strain assumptions are used in both transverse directions. For plane stress 
models, consider entering actual cross-section data.

When combining Solid Mechanics with other physics interfaces, you must 
make sure that the same cross-section assumption is used everywhere. In 
most cases, the default settings will be correct. When using other unit 
systems than the default SI system, you need to pay special attention to 
the values of this property.

Use a Change Cross Section node to change thickness in parts of the 
geometry if necessary.
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frequencies of the system. The default solver for the time stepping is changed from 
Generalized alpha to BDF when Quasistatic is selected.

For problems with creep, and sometimes viscoelasticity, the problem can be considered 
as quasistatic. This is also the case when the time dependence exists only in some other 
physics, like a transient heat transfer problem causing thermal strains.

T R A N S I E N T  S O L V E R  S E T T I N G S

In this section, you can add instructions used when generating the solver sequence for 
a wave-propagation transient problem. Select the Maximum frequency to resolve check 
box to activate this functionality.

Enter the Maximum frequency to resolve in the model, fmax,sol.

Select the Time stepping (method) as Fixed (preferred) or Free. The Free option is in 
general not recommended for wave problems.

The generated solver will be adequate in most situations if the computational mesh also 
resolves the frequency content in the model. Note that any changes made to these 
settings (after the model is solved the first time) will only be reflected in the solver if 
Show Default Solver or Reset Solver to Defaults is selected in the study.

For highly nonlinear problems with user-defined terms, manual tuning of the solver 
may be necessary. In nonlinear models, the maximum frequency to resolve should be 
selected based on the number of harmonics to be resolved.

T Y P I C A L  W A V E  S P E E D  F O R  P E R F E C T L Y  M A T C H E D  L A Y E R S

The typical wave speed cref is a parameter for the perfectly matched layers (PMLs) if 
used in a solid wave propagation model. The default value is solid.cp, the 
pressure-wave speed. To use another wave speed, enter a value or expression in the 
Typical wave speed for perfectly matched layers field.

This section is only available with COMSOL products that include PMLs (see https:/
/www.comsol.com/products/specifications/).

P O R T  S W E E P  S E T T I N G S

Select to enable the Activate port sweep option. This option is used to compute the full 
scattering matrix when Port conditions are used. For more details see The Port Sweep 
Functionality subsection. The section only exists for 3D geometries.
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A U T O M A T E D  M O D E L  S E T U P

This section will only be displayed if a mesh on NASTRAN® format, containing RBE2 
elements, has been imported in an Import node under Mesh. The purpose is to 
automatically create rigid connectors from RBE2 elements in the NASTRAN file.

An RBE2 element represents a rigid connection between a set of mesh nodes. This 
means that it can, and often does, connect elements from different physics interfaces.

In the drop-down menu in the section title, you can select Create Rigid Connectors from 

RBE2. The effect is that one rigid connector will be created for each RBE2 element in 
the imported file. This will happen for all physics interfaces in the Interfaces list. 
Supported interfaces are: Solid Mechanics, Shell, Beam, and Multibody Dynamics. If 
there are RBE2 elements spanning more than one physics interface, they will be 
automatically connected.

The created rigid connectors will have point, edge, and boundary selections as inferred 
from the nodes in the RBE2 element and the mesh connectivity. The ‘independent 
node’ of the RBE2 element is used as center of rotation for the rigid connector.

The Automated Model Setup section is present in the Solid Mechanics, Shell, and Beam 
interfaces. In a model that contains several physics interfaces, you should use the 
automated model setup from only one of them, and make sure that all the involved 
interfaces are selected in the Interfaces list.

A D V A N C E D  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. Normally these settings do not 
need to be changed.

You can chose how to group in the solver nodes the extra ODE variables added by 
some features.

Select the Rigid connectors check box to group in the solver node the variables added 
by the Rigid Connector feature.

Select the Attachments check box to group in the solver node the variables added by 
the Attachment feature.

The selection made in the Advanced Settings section can be overridden by the settings 
in the Advanced section of the Rigid Connector or Attachment features.
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D I S C R E T I Z A T I O N

In the Solid Mechanics interface, you can choose not only the order of the 
discretization, but also the type of shape functions: Lagrange or serendipity. For 
highly distorted elements, Lagrange shape functions provide better accuracy than 
serendipity shape functions of the same order. The serendipity shape functions will 
however give significant reductions of the model size for a given mesh containing 
hexahedral, prism, or quadrilateral elements. In 1D components there is no difference 
between Lagrange and serendipity shape functions.

The default is to use Quadratic serendipity shape functions for the Displacement field. 
Using Linear shape functions will give what is sometimes called constant stress 
elements. Such a formulation will for many problems make the model overly stiff, and 
many elements may be needed for an accurate resolution of the stresses.

To display other settings for this section, click the Show More Options button ( ) and 
select Advanced Physics Options in the Show More Options dialog box.

D E P E N D E N T  V A R I A B L E S

The physics interface uses the global spatial components of the Displacement field u as 
dependent variables. The default names for the components are (u, v, w) in 3D. In 2D 
the component names are (u, v), and in 2D axisymmetry they are (u, w). In 1D and 
1D axisymmetry the default component name is (u). You can however not use the 
‘missing’ component names in 2D or 1D as a parameter or variable name, since they 
are used internally.

You can change both the field name and the individual component names. If a new 
field name coincides with the name of another displacement field, the two fields (and 
the interfaces that define them) share degrees of freedom and dependent variable 
component names. You can use this behavior to connect a Solid Mechanics interface 
to a Shell directly attached to the boundaries of the solid domain or to another Solid 
Mechanics interface sharing a common boundary.

A new field name must not coincide with the name of a field of another type (that is, 
it must contain a displacement field), or with a component name belonging to some 

See Table 2-4 for links to common sections and Table 2-5 for common 
feature nodes. You can also search for information: press F1 to open the 
Help window or Ctrl+F1 to open the Documentation window.
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  837



838 |  C H A P T E R
other field. Component names must be unique within a model except when two 
interfaces share a common field name.

Domain, Boundary, Edge, Point, and Pair Nodes for Solid Mechanics

The Solid Mechanics Interface has these domain, boundary, edge, point, and pair 
nodes and subnodes (listed in alphabetical order), which are available from the Physics 
ribbon toolbar (Windows users), Physics context menu (Mac or Linux users), or 
right-click to access the context menu (all users).

F E A T U R E S  A V A I L A B L E  F R O M  S U B M E N U S

Many features for the Solid Mechanics interface are added from submenus in the 
Physics toolbar groups or context menu (when you right-click the node). The 
submenu name is the same in both cases.

The submenus at the Domain level are Material Models, Volume Forces, Mass, Spring, and 

Damper, Domain Constraints, and More.

In the COMSOL Multiphysics Reference Manual see Table 2-4 for links 
to common sections and Table 2-5 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.

• Domain, Boundary, Edge, Point, and Pair Nodes for Solid Mechanics

• Solid Mechanics Theory

• Selecting Discretization

• Stresses in a Pulley: Application Library path COMSOL_Multiphysics/

Structural_Mechanics/stresses_in_pulley

• Eigenvalue Analysis of a Crankshaft: Application Library path 
COMSOL_Multiphysics/Structural_Mechanics/crankshaft

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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The submenus at the Boundary level are Connections, Mass, Spring, and Damper, More 

Constraints, Pairs, and More.

There are also the Edges and Points submenus.

Note: Some submenus are only present with certain COMSOL products.
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• Added Mass

• Antisymmetry

• Attachment

• Base Excitation

• Body Load

• Bolt Pretension

• Bolt Selection

• Bolt Thread Contact

• Boundary Load

• Boundary Pair

• Cell Periodicity

• Change Thickness

• Change Cross Section

• Contact

• Continuity

• Crack

• Edge Load

• Elastic Predeformation

• Elastoplastic Soil Material

• External Strain

• External Stress

• External Stress-Strain Relation

• Fixed Constraint

• Fixed Joint

• Free

• Gravity

• Hyperelastic Material

• Initial Values

• Linear Elastic Material

• Linearly Accelerated Frame

• Local System Results

• Low-Reflecting Boundary

• Nonlinear Elastic Material

• Piezoelectric Material

• Periodic Condition

• Piezomagnetic Material

• Point Load

• Point Load, Free

• Point Load (on Axis)

• Port

• Prescribed Acceleration

• Prescribed Displacement

• Prescribed Displacement/Rotation

• Prescribed Velocity

• Reduced Flexible Components

• Rigid Motion Suppression

• Rigid Connector

• Rigid Material

• Ring Load

• Ring Load, Free

• Roller

• Rotating Frame

• Section Forces

• Shape Memory Alloy

• Spring Foundation

• Spring-Damper
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Below is a list of subnodes available from main parent nodes as indicated in the 
documentation:

• Stress Linearization

• Symmetry

• Test Material

• Thin Elastic Layer

• Thin Layer

• Wave Speeds

In the COMSOL Multiphysics Reference Manual, see Table 2-4 for links 
to common sections and Table 2-5 for common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  841



842 |  C H A P T E R
• Activation

• Adhesion

• Applied Force (Rigid Connector)

• Applied Force (Rigid Material)

• Applied Moment (Rigid 
Connector)

• Applied Moment (Rigid Material)

• Boundary Load (Thin Layer)

• Center of Mass Nodes (Boundary, 
Edge, Point)

• Center of Rotation Nodes 
(Boundary, Edge, Point)

• Component Definition

• Conduction Loss 
(Time-Harmonic)

• Concrete

• Creep

• Damage

• Damping

• Decohesion

• Destination Filter

• Destination Point (for 
Spring-Damper)

• Dielectric Loss

• Elastic Predeformation

• External Stress

• Face Load (Crack)

• Face Load (Thin Layer)

• Fiber

• Fixed Constraint (Rigid Material)

• Fixed Constraint (Thin Layer)

• Friction

• Hygroscopic Swelling

• Initial Stress and Strain

• Initial Values (Rigid Material)

• Intercalation Strain

• J-Integral

• Location Nodes (Boundary, Edge, 
Point)

• Mass and Moment of Inertia (Rigid 
Connector)

• Mass and Moment of Inertia (Rigid 
Material)

• Mechanical Damping

• Phase

• Plasticity

• Porous Plasticity

• Prescribed Displacement (Thin 
Layer)

• Prescribed Displacement/Rotation

• Predeformation

• Roller (Thin Layer)

• Rocks

• Safety

• Set Variables

• Slip Velocity

• Soil Plasticity

• Source Filter

• Source Point (for Spring-Damper)
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Initial Values

The Initial Values node adds initial values for the displacement field and structural 
velocity field that can serve as an initial condition for a transient simulation or as an 
initial guess for a nonlinear analysis. In addition to the default Initial Values node always 
present in the interface, you can add more Initial Values nodes if needed.

S H E L L  P R O P E R T I E S

I N I T I A L  V A L U E S

Enter values or expressions for the initial values of the Displacement field u (the 
displacement components u, v, and w in 3D), and the Structural velocity field ut.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>More>Initial Values

Layered Shell>More>Initial Values

Membrane>More>Initial Values

Truss>More>Initial Values

Wire>More>Initial Values

• Spring Foundation (Rigid 
Connector)

• Spring Foundation (Rigid Material)

• Spring Material

• Thermal Expansion (for 
Constraints)

• Thermal Expansion (for Materials)

• Thermal Expansion (Attachment)

• Thermal Expansion (Rigid 
Connector)

• Viscoelasticity

• Viscoplasticity

• Wear

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Initial Values node.
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Ribbon
Physics tab with Solid Mechanics selected:

Domains>More>Initial Values

Physics tab with Layered Shell or Membrane selected:

Boundaries>More>Initial Values

Physics tab with Truss or Wire selected:

Edges>More>Initial Values

Change Thickness

Use the Change Thickness node to model domains with a thickness other than the 
overall thickness defined in the physics interface’s Thickness section. The Change 

Thickness node is only available in 2D, and 1D axisymmetry.

C H A N G E  T H I C K N E S S

Enter a value for the Thickness d. This value replaces the overall thickness for the 
selected domains.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>More>Change Thickness

Multibody Dynamics>More>Change Thickness

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:

Domains>More>Change Thickness

Change Cross Section

Use the Change Cross Section node to model domains with a cross section other than 
the overall cross section defined in the physics interface’s Cross-Sectional Area section. 
The Change Cross Section node is only available in 1D.

C H A N G E  C R O S S  S E C T I O N

Enter a value for the cross section area Ac. This value replaces the overall cross section 
area for the selected domains.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>More>Change Cross Section

Ribbon
Physics tab with Solid Mechanics selected:

Domains>More>Change Cross Section

Linear Elastic Material

The Linear Elastic Material node adds the equations for a linear elastic solid and an 
interface for defining the elastic material properties.

By adding the following subnodes to the Linear Elastic Material node you can 
incorporate many other effects:

Note: Some options are only available with certain COMSOL products (see https://
www.comsol.com/products/specifications/). Also, the available options depend on 
the physics interface in which the Linear Elastic Material is used.

• Thermal Expansion (for Materials)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress

• External Strain

• Damping

• Viscoelasticity

• Plasticity

• Creep

• Viscoplasticity

• Porous Plasticity

• Soil Plasticity

• Concrete

• Rocks

• Damage

• Activation

• Safety
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S H E L L  P R O P E R T I E S

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
all applicable coordinate systems in the component. The coordinate system is used for 
interpreting directions of orthotropic and anisotropic material data and when stresses 
or strains are presented in a local system. The coordinate system must have 
orthonormal coordinate axes, and be defined in the material frame. Many of the 
possible subnodes inherit the coordinate system settings.

L I N E A R  E L A S T I C  M A T E R I A L

Define the Material symmetry and the linear elastic material properties.

Material Symmetry
Select the Material symmetry — Isotropic, Orthotropic, Anisotropic, or Crystal. Select:

• Isotropic for a material that has the same properties in all directions.

• Orthotropic for a material that has different material properties in orthogonal 
directions. It is also possible to define Transversely isotropic material properties.

• Anisotropic for a material that has different material properties in different 
directions.

• Crystal for a material that has certain crystal symmetry.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Linear Elastic Material node. 
The way the Linear Elastic Material node interacts with material definitions 
differ significantly between the Layered Shell interface and the other 
physics interfaces.

This section is not present in the in the Layered Shell interface.
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Note: The Orthotropic, Anisotropic, and Crystal options are only available with certain 
COMSOL products (see https://www.comsol.com/products/specifications/)

Density
The default Density  uses values From material. For User defined enter another value or 
expression.

If any material in the model has a temperature dependent mass density, and From 

material is selected, the Volume reference temperature list will appear in the Model Input 
section. As a default, the value of Tref is obtained from a Common model input. You can 
also select User defined to enter a value or expression for the reference temperature 
locally.

In the Layered Shell interface, the chosen material symmetry applies to all 
selected layers, irrespective of whether the material data is entered 
explicitly as User defined in the Linear Elastic Material node, or is obtained 
from a Layered Material node using the default From material option.

• Material Models

• Linear Elastic Material

• Orthotropic and Anisotropic Materials

• Crystal Symmetry

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).

See also

• Mass Density and Volume Reference Temperature.

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.
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Specification of Elastic Properties for Isotropic Materials
For an Isotropic material, from the Specify list select a pair of elastic properties for an 
isotropic material — Young’s modulus and Poisson’s ratio, Young’s modulus and shear 

modulus, Bulk modulus and shear modulus, Lamé parameters, or Pressure-wave and 

shear-wave speeds. For each pair of properties, select from the applicable list to use the 
value From material or enter a User defined value or expression.

Each of these pairs define the elastic properties and it is possible to convert from one 
set of properties to another according to Table 4-1.

The individual property parameters are:

• Young’s modulus (elastic modulus) E.

• Poisson’s ratio .

• Shear modulus G.

• Bulk modulus K.

• Lamé parameter  and Lamé parameter .

TABLE 4-1:  EXPRESSIONS FOR THE ELASTIC MODULI.

DESCRIPTION VARIABLE DE DEG DKG D

Young’s 
modulus

E = E E

Poisson’s 
ratio

 = 

Bulk 
modulus

K = K

Shear 
modulus

G = G G 

Lamé 
parameter 

 = 

Lamé 
parameter 

 = G G 

Pressure-
wave speed

cp =

Shear-wave 
speed

cs =

9KG
3K G+
------------------- 3 2+

 +
--------------------

E
2G
-------- 1– 1

2
--- 1 3G

3K G+
-------------------– 

  
2  + 
---------------------

E
3 1 2– 
------------------------ EG

3 3G E– 
---------------------------  2

3
-------+

E
2 1 + 
---------------------

E
1 +  1 2– 

--------------------------------------- G E 2G– 
3G E–

---------------------------- K 2G
3

--------–

E
2 1 + 
---------------------

E 1 – 
 1 +  1 2– 
------------------------------------------ G 4G E– 

 3G E– 
---------------------------- K 4G 3+


--------------------------  2+


----------------

E
2 1 + 
------------------------- G  G   
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• Pressure-wave speed (longitudinal wave speed) cp.

• Shear-wave speed (transverse wave speed) cs. This is the wave speed for a solid 
continuum. In plane stress, for example, the actual speed with which a longitudinal 
wave travels is lower than the value given.

Specification of Elastic Properties for Orthotropic Materials
When Orthotropic is selected from the Material symmetry list, the material properties 
are different in orthogonal directions (principal directions) given by the axes of the 
selected coordinate system. The Material data ordering can be specified in either 
Standard or Voigt notation. When User defined is selected, enter three values in the fields 
for Young’s modulus E, Poisson’s ratio , and the Shear modulus G. The latter defines 
the relationship between engineering shear strain and shear stress. It is applicable only 
to an orthotropic material and follows the equation

You can set an orthotropic material to be Transversely isotropic. Then, one principal 
direction in the material is different from two others that are equivalent. This special 
direction is assumed to be the first axis of the selected coordinate system. Because of 
the symmetry, the following relations hold:

Thus, only five elasticity moduli need to be entered when the User defined option is 
selected.

Specification of Elastic Properties for Anisotropic Materials
When Anisotropic is selected from the Material symmetry list, the material properties 
vary in all directions. They can be specified using either the Elasticity matrix, D or the 

ij
ij

Gij
--------=

ij is defined differently depending on the application field. It is easy to 
transform among definitions, but check which one the material uses.

E3 E2=

13 12=

G23
E2

2 1 23+ 
--------------------------=

G12 G13=
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  849



850 |  C H A P T E R
Compliance matrix, D-1. Both matrices are symmetric. The Material data ordering can 
be specified in either Standard or Voigt notation. When User defined is selected, a 6-by-6 
symmetric matrix is displayed.

In 1D and 1D axisymmetry, the elasticity matrix is assumed to represent either 
isotropic or orthotropic material. Entering components in the elasticity matrix that 
couple extension and shear, for instance, should be avoided.

Specification of Elastic Properties for Crystals
Because of the material symmetry, only certain components of the elasticity matrix 
need to be specified. The actual components to enter depend on the selected Crystal 

system — Cubic (3 constants), Hexagonal (5 constants), Trigonal (6 constants), Trigonal (7 

constants), Tetragonal (6 constants), Tetragonal (7 constants), or Orthorhombic (9 

constants).

Mixed Formulation
For a material with a very low compressibility, using only displacements as degrees of 
freedom may lead to a numerically ill-posed problem. You can then use a mixed 
formulation, which adds an extra dependent variable for either the pressure or for the 
volumetric strain. For details, see the Mixed Formulation section in the Structural 
Mechanics Theory chapter.

From the Use mixed formulation list, select None, Pressure formulation, or Strain 

formulation.

G E O M E T R I C  N O N L I N E A R I T Y

The settings in this section affect the behavior of the selected domains in a 
geometrically nonlinear analysis.

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. Select the Geometrically linear formulation check box to 
always use a small strain formulation, irrespective of the setting in the study step.

When a geometrically nonlinear formulation is used, the elastic deformations used for 
computing the stresses can be obtained in two different ways if inelastic deformations 
are present: additive decomposition and multiplicative decomposition. The default is 
to use multiplicative decomposition. Select Additive strain decomposition to change to 
an assumption of additivity.
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Note: This section is only available with COMSOL products that support 
geometrically nonlinear analysis (see https://www.comsol.com/products/
specifications/).

E N E R G Y  D I S S I P A T I O N

You can select to compute and store various energy dissipation variables in a 
time-dependent analysis. Doing so will add extra degrees of freedom to the model.

Select the Calculate dissipated energy check box as needed to compute the energy 
dissipated by for example creep, plasticity, viscoplasticity, viscoelasticity, or damping.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

•  There are some cases when a small strain formulation could be useful 
for a certain domain, even though the study step is geometrically 
nonlinear. One such case is in contact analysis, where the study is always 
geometrically nonlinear, but it is possible that a geometrically linear 
formulation is sufficient in the material.

• When a multiplicative decomposition is used, the order of the 
subnodes to Linear Elastic Material matters. The inelastic deformations 
are assumed to have occurred in the same order as the subnodes appear 
in the model tree.

• In versions prior to 5.3, only the additive strain decomposition method 
was available. If you want to revert to the previous behavior, select 
Additive strain decomposition. If the results then differ significantly, 
probably the assumption of additivity is questionable, however.

• Modeling Geometric Nonlinearity

• Inelastic Strain Contributions

• Studies and Solvers in the COMSOL Multiphysics Reference Manual.

• Dissipated Energy

• Energy Variables
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D I S C R E T I Z A T I O N

If Pressure formulation is used, select the discretization for the Auxiliary pressure — 
Automatic, Discontinuous Lagrange, Continuous, Linear, or Constant. If Strain formulation 
is used, select the discretization for the Auxiliary volumetric strain — Automatic, 
Discontinuous Lagrange, Continuous, Linear, or Constant.

Q U A D R A T U R E  S E T T I N G S

Select the Reduced integration check box to reduce the integration points for the weak 
contribution of the feature. Select a method for Hourglass stabilization — Automatic, 
Manual, or None to use in combination with the reduced integration scheme. The 
default Automatic stabilization technique is based on the shape function and shape 
order of the displacement field.

Control the hourglass stabilization scheme by using the Manual option. Select Shear 

stabilization (default) or Volumetric stabilization.

When Shear stabilization is selected, enter a stabilization shear modulus, Gstb. The 
value should be in the order of magnitude of the equivalent shear modulus.

When Volumetric stabilization is selected, enter a stabilization bulk modulus, Kstb. The 
value should be in the order of magnitude of the equivalent bulk modulus.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>Linear Elastic Material

Layered Shell>Material Models>Linear Elastic Material

Multibody Dynamics>Linear Elastic Material

Ribbon
Physics tab with Solid Mechanics selected:

The Discretization section is available when Pressure formulation or Strain 

formulation is selected from the Use mixed formulation list. To display the 
section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

• Using Reduced Integration

• Reduced Integration and Hourglass Stabilization
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Domains>Material Models>Linear Elastic Material

Physics tab with Layered Shell selected:

Boundaries>Material Models>Linear Elastic Material

Physics tab with Multibody Dynamics selected:

Domains>Multibody Dynamics>Linear Elastic Material

Nonlinear Elastic Material

The Nonlinear Elastic Material feature is used to model stress-strain relationships which 
are nonlinear even at infinitesimal strains. It is available in the Solid Mechanics and 
Membrane interfaces. This material model requires either the Nonlinear Structural 
Materials Module or the Geomechanics Module. Nonlinear Elastic Material is available 
for 3D, 2D, and 2D axisymmetry.

By adding the following subnodes to the Nonlinear Elastic Material node you can 
incorporate many other effects:

Note: Some options are only available with certain COMSOL products (see https://
www.comsol.com/products/specifications/)

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes (except boundary 
coordinate systems). The coordinate system is used when stresses or strains are 
presented in a local system. The coordinate system must have orthonormal coordinate 

• Thermal Expansion (for Materials)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress

• External Strain

• Damping

• Viscoelasticity

• Plasticity

• Creep

• Viscoplasticity

• Porous Plasticity

• Soil Plasticity

• Concrete

• Rocks

• Safety
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axes, and be defined in the material frame. Many of the possible subnodes inherit the 
coordinate system settings.

N O N L I N E A R  E L A S T I C  M A T E R I A L

The available material models depend on the COMSOL products you are using.

Nonlinear Structural Materials Module: Select a Material model: Ramberg-Osgood, 
Power law, Uniaxial data, Shear data, Bilinear elastic, or User defined.

Geomechanics Module: Select a Material model: Ramberg-Osgood, Hyperbolic law, 
Hardin-Drnevich, Duncan-Chang, Duncan-Selig, or User defined.

Density
All nonlinear elastic material models have density as an input. The default Density  
uses values From material. For User defined enter another value or expression.

If any material in the model has a temperature dependent mass density, and From 

material is selected, the Volume reference temperature list will appear in the Model Input 
section. As a default, the value of Tref is obtained from a Common model input. You can 
also select User defined to enter a value or expression for the reference temperature 
locally.

Mixed Formulation
For a material with a very low compressibility, using only displacements as degrees of 
freedom may lead to a numerically ill-posed problem. You can then use a mixed 
formulation, which adds an extra dependent variable for either the pressure or for the 
volumetric strain, see the Mixed Formulation section in the Structural Mechanics 
Theory chapter.

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).

See also

• Mass Density and Volume Reference Temperature

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.
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From the Use mixed formulation list, select None, Pressure formulation, or Strain 

formulation.

Ramberg–Osgood, Power Law, Hyperbolic Law, Hardin–Drnevich, Duncan–Chang, or 
Duncan–Selig
Select from the applicable list to use the value From material or enter a User defined 
value or expression.

From the Specify list select a pair of elastic properties for an isotropic material — 
Young’s modulus and Poisson’s ratio (the default for Ramberg–Osgood, Power law, 
Duncan–Chang, and Duncan–Selig) or Bulk modulus and shear modulus (the default 
for Hyperbolic law and Hardin–Drnevich).

Then depending on the selections, define the applicable parameters:

• Young’s modulus E.

• Poisson’s ratio .

• Shear modulus G.

• Bulk modulus K.

• For Ramberg-Osgood:

- Reference stress ref.

- Reference strain ref.

- Stress exponent n.

• For Power law and Hyperbolic law:

- Reference shear strain ref.

- Strain exponent n.

• For Hardin-Drnevich, define the Reference shear strain ref.

• For Duncan-Chang, define the Ultimate deviatoric stress qult.

• For Duncan-Selig:

- Ultimate deviatoric stress qult.

- Ultimate strain ult.

Uniaxial Data
For Uniaxial data the Uniaxial stress function ax uses the value From material (if it exists) 
or User defined. If User defined is selected from the list, the default expression for ax 
is the linear function 210[GPa]*<physics>.eax, which corresponds to a linear elastic 
material with a Young’s modulus of 210 GPa. The variable <physics>.eax 
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corresponds to the elastic uniaxial strain in pure axial loading, and is named using the 
scheme <physics>.eax, for example, solid.eax.

From the Specify list select how to specify the second elastic property for the material 
— Bulk modulus or Poisson’s ratio. Then, depending on the selection, enter a value or 
select from the applicable list to use the value From material or enter a User defined 
value or expression:

• Bulk modulus K.

• Poisson’s ratio .

When you select Bulk modulus, the Young’s modulus is computed from the tensile part 
of the Uniaxial stress function ax. When you select Poisson’s ratio, you can either use 
the tensile part (default), or use the full tensile-compressive curve by selecting the 
check box Use nonsymmetric stress-strain data.

Shear Data
For Shear data the Shear stress function  uses the value From material (if it exists) or 
User defined. If User defined is selected from the list, the default expression for  is the 
linear function 80[GPa]*<physics>.esh, which corresponds to a linear elastic 
material with a shear modulus of 80 GPa. The variable <physics>.esh corresponds 
to the elastic shear strain in pure shear loading, and it is named using the scheme 
<physics>.esh, for example, solid.esh.

The default Bulk modulus K uses values From material. For User defined enter another 
value or expression.

Bilinear Elastic
For Bilinear elastic enter a value or select from the applicable list to use the value From 

material or enter a User defined value or expression.

• Bulk modulus in tension Kt.

• Bulk modulus in compression Kc.

• Shear modulus G.

User Defined
In the User defined material model, you specify the bulk modulus implicitly by entering 
the relation between pressure and volumetric elastic strain. Enter a value or select from 
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the applicable list to use the value From material or enter a User defined value or 
expression.

• Pressure p. The default expression is (-160[GPa])*solid.eelvol, which 
corresponds to a linear elastic material with a bulk modulus of 160 GPa.

• Shear modulus G.

G E O M E T R I C  N O N L I N E A R I T Y

The settings in this section affect the behavior of the selected domains in a 
geometrically nonlinear analysis.

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. Select the Geometrically linear formulation check box to 
always use a small strain formulation, irrespective of the setting in the study step.

When a geometrically nonlinear formulation is used, the elastic deformations used for 
computing the stresses can be obtained in two different ways if inelastic deformations 
are present: additive decomposition and multiplicative decomposition. The default is 
to use multiplicative decomposition. Select Additive strain decomposition to change to 
an assumption of additivity.

•  There are some cases when a small strain formulation could be useful 
for a certain domain, even though the study step is geometrically 
nonlinear. One such case is in contact analysis, where the study is always 
geometrically nonlinear, but it is possible that a geometrically linear 
formulation is sufficient in the material.

• When a multiplicative decomposition is used, the order of the 
subnodes to Nonlinear Elastic Material matters. The inelastic 
deformations are assumed to have occurred in the same order as the 
subnodes appear in the model tree.

• In versions prior to 5.3, only the additive strain decomposition method 
was available. If you want to revert to the previous behavior, select 
Additive strain decomposition. If the results then differ significantly, 
probably the assumption of additivity is questionable, however.
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E N E R G Y  D I S S I P A T I O N

Select the Calculate dissipated energy check box as needed to compute the energy 
dissipated by Creep, Plasticity, Viscoplasticity, or Viscoelasticity.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

D I S C R E T I Z A T I O N

If Pressure formulation is used, select the discretization for the Auxiliary pressure — 
Automatic, Discontinuous Lagrange, Continuous, Linear, or Constant. If Strain formulation 
is used, select the discretization for the Auxiliary volumetric strain — Automatic, 
Discontinuous Lagrange, Continuous, Linear, or Constant.

Q U A D R A T U R E  S E T T I N G S

Select the Reduced integration check box to reduce the integration points for the weak 
contribution of the feature. Select a method for Hourglass stabilization — Automatic, 
Manual, or None to use in combination with the reduced integration scheme. The 
default Automatic stabilization technique is based on the shape function and shape 
order of the displacement field.

Control the hourglass stabilization scheme by using the Manual option. Select Shear 

stabilization (default) or Volumetric stabilization.

When Shear stabilization is selected, enter a stabilization shear modulus, Gstb. The 
value should be in the order of magnitude of the equivalent shear modulus.

• Modeling Geometric Nonlinearity

• Inelastic Strain Contributions

• Studies and Solvers in the COMSOL Multiphysics Reference Manual.

The Discretization section is available when Pressure formulation or Strain 

formulation is selected from the Use mixed formulation list. To display the 
section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.
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When Volumetric stabilization is selected, enter a stabilization bulk modulus, Kstb. The 
value should be in the order of magnitude of the equivalent bulk modulus.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>Nonlinear Elastic Material

Membrane>Material Models>Nonlinear Elastic Material

Ribbon
Physics tab with Solid Mechanics selected:

Domains>Material Models>Nonlinear Elastic Material

Physics tab with Membrane selected:

Boundaries>Material Models>Nonlinear Elastic Material

Elastoplastic Soil Material

The Elastoplastic Soil Material feature is used to model stress-strain relationships that 
are nonlinear even at infinitesimal strains. It is available in the Solid Mechanics 
interface. This material model requires a Geomechanics Module license (see https://
www.comsol.com/products/specifications/). Elastoplastic Soil Material is available for 
3D, 2D, and 2D axisymmetry.

By adding the following subnodes to the Elastoplastic Soil Material node you can 
incorporate other effects:

See also Reduced Integration and Hourglass Stabilization in the 
Structural Mechanics Theory chapter.

• Thermal Expansion (for Materials)

• Initial Stress and Strain

• External Stress

• Damping

• Safety
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Add an External Stress node in case you need to define a pore pressure in a porous soil. 
The Pore pressure pA is user-defined by default. The default value is 1 atm, but you can 
change it to another value or expression for the pore fluid pressure. If there are other 
physics interfaces (like Darcy’s Law) in the model that make a pressure variable 
available, such variables will be available in the list.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes (except boundary 
coordinate systems). The coordinate system is used when stresses or strains are 
presented in a local system. The coordinate system must have orthonormal coordinate 
axes, and be defined in the material frame. Many of the possible subnodes inherit the 
coordinate system settings.

E L A S T O P L A S T I C  S O I L  M A T E R I A L

Select a Material model from the list: Modified Cam-Clay, Modified Structured Cam-Clay, 
Extended Barcelona Basic, or Hardening Soil.

Density
All elastoplastic soil models have density as an input. The default Density  uses values 
From material. For User defined enter another value or expression.

If any material in the model has a temperature dependent mass density, and From 

material is selected, the Volume reference temperature list will appear in the Model Input 
section. As a default, the value of Tref is obtained from a Common model input. You can 
also select User defined to enter a value or expression for the reference temperature 
locally.

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).
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Modified Cam-Clay
The Modified Cam-Clay options adds the equations and interface for defining the 
material properties for the modified Cam-Clay soil model.

From the Specify list, define the elastic properties either in terms of Poisson’s ratio or 
Shear modulus.

The defaults for the Poisson’s ratio or the Shear modulus G, Density, Slope of critical 

state line M, Swelling index , Compression index , Initial void ratio e0 , and Void ratio 

at reference pressure eref are taken From material. For User defined enter other values or 
expressions

Enter a value or expression for the Reference pressure pref, and the Initial consolidation 

pressure pc0.

See also

• Mass Density and Volume Reference Temperature

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.

See also The Modified Cam-Clay Soil Model in the Structural Mechanics 
Theory chapter.

For the Slope of critical state line you can alternatively select Match to 

Mohr-Coulomb criterion or Match to Matsuoka-Nakai criterion, which then 
matches the slope of the virgin consolidation line to the angle of internal 
friction. Then select the Angle of internal friction  as From material or 
User defined.

For the Initial void ratio, you can alternatively select From void ratio at 

reference pressure, which then computes the initial void ratio from the 
reference pressure, the void ratio at reference pressure, the initial 
consolidation pressure, and the swelling and compression indexes. Then 
select the Void ratio at reference pressure eref as From material or User 

defined. See also The Modified Cam-Clay Soil Model in the Structural 
Mechanics Theory chapter.


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Modified Structured Cam-Clay
From the Specify list, define the elastic properties either in terms of Poisson’s ratio or 
Shear modulus.

The defaults for the Poisson’s ratio or the Shear modulus G, Density , Slope of critical 

state line M, Swelling index for structured clay s, Compression index for destructured 

clay d, Angle of internal friction , Initial structure strength pbi, Destructuring index for 

volumetric deformation dv, Destructuring index for shear deformation ds, Plastic potential 

shape parameter , Initial void ratio e0, Void ratio at reference pressure for destructured 

clay erefd, Additional void ratio at initial yielding ei, and Critical equivalent deviatoric 

plastic strain edc
p are taken From material. For User defined enter other values or 

expressions.

Enter a value or expression for the Reference pressure pref, and the Initial consolidation 

pressure pc0.

Extended Barcelona Basic
The defaults for the Poisson’s ratio or the Shear modulus G, Density , Slope of critical 

state line M, Swelling index , Swelling index for changes in suction s, Compression index 

at saturation 0, Compression index for changes in suction s, Angle of internal friction , 

Isotropic Compression with Modified Cam-Clay Material Model: 
Application Library path Geomechanics_Module/Verification_Examples/

isotropic_compression



For the Slope of critical state line you can alternatively select Match to 

Mohr-Coulomb criterion or Match to Matsuoka-Nakai criterion, which then 
matches the slope of the virgin consolidation line to the angle of internal 
friction. Then select the Angle of internal friction  as From material or 
User defined.

For the Initial void ratio, you can alternatively select From void ratio at 

reference pressure for destructured clay, which then computes the initial 
void ratio from the reference pressure, the void ratio at reference pressure 
for destructured clay, the initial consolidation pressure, and the swelling 
and compression indexes. Then select the Void ratio at reference pressure 

for destructured clay erefd as From material or User defined. See also The 
Modified Structured Cam-Clay Soil Model in the Structural Mechanics 
Theory chapter.




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Weight parameter w, Soil stiffness parameter m, Plastic potential shape parameter bs, 
Tension to suction ratio k, Initial void ratio e0, Void ratio at reference pressure and 

saturation eref0, and Initial yield value for suction sy0 are taken From material. For User 

defined enter other values or expressions.

Enter a value or expression for the Initial suction s0, Suction s, the Reference pressure 
pref, and the Initial consolidation pressure pc0.

Hardening Soil
The defaults for the Reference stiffness for primary loading E50

ref, Reference stiffness for 

unloading and reloading Eur
ref, Elastoplastic compression modulus Kc, Poisson’s ratio 

Density , Stress exponent m, Cohesion c, Angle of internal friction , Dilatation angle , 
Ellipse aspect ratio R, and Initial void ratio e0 are taken From material. For User defined 
enter other values or expressions. The Ellipse aspect ratio R can also be defined from 
the Coefficient of earth pressure at rest k0

nc.

Enter a value or expression for the Failure ratio Rf, the Reference pressure pref, and the 
Initial consolidation pressure pc0.

Select the Include dilatancy cutoff check box if needed. The defaults for the Maximum 

void ratio emax is taken From material. For User defined enter other value or expression. 
Enter a value or expression for the Initial volumetric strain vol0.

For the Slope of critical state line you can alternatively select Match to 

Mohr-Coulomb criterion or Match to Matsuoka-Nakai criterion, which then 
matches the slope of the virgin consolidation line to the angle of internal 
friction. Then select the Angle of internal friction  as From material or 
User defined.

For the Initial void ratio, you can alternatively select From void ratio at 

reference pressure and saturation, which then computes the initial void 
ratio from the reference pressure, the void ratio at reference pressure and 
saturation, the initial consolidation pressure, and the swelling and 
compression indexes. Then select the Void ratio at reference pressure and 

saturation eref0 as From material or User defined. See also The Extended 
Barcelona Basic Soil Model in the Structural Mechanics Theory chapter.





See also The Hardening Soil Model in the Structural Mechanics Theory 
chapter.
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N O N L O C A L  P L A S T I C I T Y  M O D E L

The default is None. Select Implicit Gradient to add nonlocal regularization to the 
equivalent plastic strain. Enter a value for the:

• Length scale, lint. The length scale should not exceed the maximum element size of 
the mesh.

• Nonlocal coupling modulus, Hnl. This stiffness is the penalization of the difference 
between the local and nonlocal variables. A larger value enforces the equivalent 
plastic strain pe to be closer to the nonlocal equivalent plastic strain pe,nl.

G E O M E T R I C  N O N L I N E A R I T Y

The settings in this section affect the behavior of the selected domains in a 
geometrically nonlinear analysis.

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. Select the Geometrically linear formulation check box to 
always use a small strain formulation, irrespective of the setting in the study step.

When a geometrically nonlinear formulation is used, the elastic deformations used for 
computing the stresses can be obtained in two different ways if inelastic deformations 
are present: additive decomposition and multiplicative decomposition. The default is 
to use multiplicative decomposition. Select Additive strain decomposition to change to 
an assumption of additivity.

See also Nonlocal Plasticity in the Structural Mechanics Theory chapter.

•  There are some cases when a small strain formulation could be useful 
for a certain domain, even though the study step is geometrically 
nonlinear. One such case is in contact analysis, where the study is always 
geometrically nonlinear, but it is possible that a geometrically linear 
formulation is sufficient in the material.

• When a multiplicative decomposition is used, the order of the 
subnodes to Elastoplastic Soil Material matters. The inelastic 
deformations are assumed to have occurred in the same order as the 
subnodes appear in the model tree.
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E N E R G Y  D I S S I P A T I O N

Select the Calculate dissipated energy check box as needed to compute the energy 
dissipated by Creep, Plasticity, Viscoplasticity, or Viscoelasticity.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

D I S C R E T I Z A T I O N

This section is available with the Implicit gradient nonlocal plasticity model. Select the 
shape function for the Nonlocal equivalent plastic strain pe,nl— Automatic, Linear, 
Quadratic Lagrange, Quadratic serendipity, Cubic Lagrange, Cubic serendipity, Quartic 

Lagrange, Quartic serendipity, or Quintic Lagrange. The available options depend on the 
order of the displacement field.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

Q U A D R A T U R E  S E T T I N G S

Select the Reduced integration check box to reduce the integration points for the weak 
contribution of the feature. Select a method for Hourglass stabilization — Automatic, 
Manual, or None to use in combination with the reduced integration scheme. The 
default Automatic stabilization technique is based on the shape function and shape 
order of the displacement field.

Control the hourglass stabilization scheme by using the Manual option. Select Shear 

stabilization (default) or Volumetric stabilization.

When Shear stabilization is selected, enter a stabilization shear modulus, Gstb. The 
value should be in the order of magnitude of the equivalent shear modulus.

When Volumetric stabilization is selected, enter a stabilization bulk modulus, Kstb. The 
value should be in the order of magnitude of the equivalent bulk modulus.

• Modeling Geometric Nonlinearity

• Inelastic Strain Contributions

• Studies and Solvers in the COMSOL Multiphysics Reference Manual.

See also Reduced Integration and Hourglass Stabilization in the 
Structural Mechanics Theory chapter.
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A D V A N C E D

It is possible to specify the maximum number of iterations and the relative tolerance 
used to solve the plastic flow rule. Enter the following settings:

• Maximum number of local iterations. To determine the maximum number of iteration 
in the Newton loop when solving the local plasticity equations. The default value is 
25 iterations.

• Relative tolerance. To check the convergence of the local plasticity equations based 
on the step size in the Newton loop. The final tolerance is computed based on the 
current solution of the local variable and the entered value. The default value is 1e-6.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>Elastoplastic Soil Material

Ribbon
Physics tab with Solid Mechanics selected:

Domains>Material Models>Elastoplastic Soil Material

Hyperelastic Material

The Hyperelastic Material subnode adds the equations for hyperelasticity at large strains. 
Hyperelastic materials can be suitable for modeling rubber and other polymers, 
biological tissue, and also for applications in acoustoelasticity. The Hyperelastic Material 
is available in the Solid Mechanics, Layered Shell, Shell, and Membrane interfaces. 
Hyperelastic Material is available for 3D, 2D, and 2D axisymmetry.

When a hyperelastic material is included in your model, all studies are geometrically 
nonlinear. The Include geometric nonlinearity check box in the study settings is selected 
and cannot be cleared.

See also Numerical Solution of the Elastoplastic Conditions in the 
Structural Mechanics Theory chapter.
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By adding the following subnodes to the Hyperelastic Material node you can 
incorporate many other effects:

The Hyperelastic Material node is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

S H E L L  P R O P E R T I E S

H Y P E R E L A S T I C  M A T E R I A L

Select a hyperelastic Material model from the list and then go to the applicable section 
for more information.

Compressibility
Hyperelastic materials can use a mixed formulation by adding the negative mean 
pressure as an extra dependent variable or a weak constraint to enforce the 
incompressibility condition. Depending on the hyperelastic material model, select 
from the Compressibility list:

• Compressible material

• Nearly incompressible material, quadratic volumetric strain energy

• Thermal Expansion (for Materials)

• Hygroscopic Swelling

• External Stress

• External Strain

• Inelastic Strain Rate

• Damping

• Viscoelasticity

• Plasticity

• Creep

• Viscoplasticity

• Fiber

• Mullins Effect

See also Hyperelastic Materials in the Structural Mechanics Theory 
chapter.

This section is only present when Hyperelastic Material is used in the 
Layered Shell interface. See the documentation for the Hyperelastic 
Material node in the Layered Shell chapter.
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• Nearly incompressible material, Hartmann-Neff volumetric strain energy

• Incompressible material

Density
All hyperelastic material models have density as an input. The default Density  uses 
values From material. For User defined enter another value or expression.

If any material in the model has a temperature dependent mass density, and From 

material is selected, the Volume reference temperature list will appear in the Model Input 
section. As a default, the value of Tref is obtained from a Common model input. You can 
also select User defined to enter a value or expression for the reference temperature 
locally.

Mixed Formulation
For a material with a very low compressibility, using only displacements as degrees of 
freedom may lead to a numerically ill-posed problem. You can then use a mixed 
formulation, which adds an extra dependent variable for either the pressure or for the 
Lagrange multiplier to enforce incompressibility, see the Nearly Incompressible 
Hyperelastic Materials and Incompressible Hyperelastic Materials sections in the 
Structural Mechanics Theory chapter.

From the Use mixed formulation list, select None or Pressure formulation.

See also Nearly Incompressible Hyperelastic Materials and 
Incompressible Hyperelastic Materials in the Structural Mechanics 
Theory chapter.

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).

See also

• Mass Density and Volume Reference Temperature.

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.
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Neo-Hookean
From the Compressibility list select how the material is specified in terms of the strain 
energy density — Compressible, coupled, Compressible, uncoupled, Nearly incompressible, 
or Incompressible.

• If the Compressible, coupled option is selected, specify the Volumetric strain energy 

density — Simo-Pister or Miehe. 

• If the Compressible, uncoupled option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined.

• If the Nearly incompressible option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The pressure formulation is selected from the Use mixed formulation list, and the 
default value for the Bulk modulus  is 100 times the equivalent shear modulus.

• If the Incompressible option is selected, an extra variable and weak constraint is 
added to enforce the incompressibility condition Jel  .

From the Specify list select a pair of elastic properties for the isotropic hyperelastic 
material — Young’s modulus and Poisson’s ratio, Young’s modulus and shear modulus, 
Bulk modulus and shear modulus, Lamé parameters, or Pressure-wave and shear-wave 

speeds. Each of these pairs define the Lamé parameters at infinitesimal deformation as 
it is possible to convert from one set of properties to another, see Specification of 
Elastic Properties for Isotropic Materials. For each property, select from the applicable 
list to either use the value From material or enter a User defined value or expression. 

• Neo-Hookean

• St Venant–Kirchhoff

• Mooney–Rivlin, Two Parameters

• Mooney–Rivlin, Five Parameters

• Mooney–Rivlin, Nine Parameters

• Yeoh

• Ogden

• Storakers

• Varga

• Arruda–Boyce

• Gent

• van der Waals

• Blatz–Ko

• Gao

• Murnaghan

• Delfino

• Fung

• Extended tube

• User Defined
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  869



870 |  C H A P T E R
St Venant–Kirchhoff
From the Compressibility list select how the material is specified in terms of the strain 
energy density — Compressible, coupled, Compressible, uncoupled, or Nearly 

incompressible.

• If the Compressible, uncoupled option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined.

• If the Nearly incompressible option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The pressure formulation is selected from the Use mixed formulation list, and the 
default value for the Bulk modulus  is 100 times the equivalent shear modulus.

From the Specify list select a pair of elastic properties for the isotropic hyperelastic 
material — Young’s modulus and Poisson’s ratio, Young’s modulus and shear modulus, 
Bulk modulus and shear modulus, Lamé parameters, or Pressure-wave and shear-wave 

speeds. For each pair of properties, select from the applicable list to either use the value 
From material or enter a User defined value or expression. Each of these pairs define the 
Lamé parameters at infinitesimal deformation as it is possible to convert from one set 
of properties to another, see Specification of Elastic Properties for Isotropic Materials.

Mooney–Rivlin, Two Parameters
From the Compressibility list select how the material is specified in terms of the strain 
energy density — Compressible, uncoupled, Nearly incompressible, or Incompressible.

The Model parameters C10 and C01 use values From material.

• If the Compressible, uncoupled option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The Bulk modulus K uses values From material. 

• If the Nearly incompressible option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The pressure formulation is selected from the Use mixed formulation list, and the 
default value for the Bulk modulus  is 100 times the equivalent shear modulus.

• If the Incompressible option is selected, an extra variable and weak constraint is 
added to enforce the incompressibility condition Jel  .

Mooney–Rivlin, Five Parameters
From the Compressibility list select how the material is specified in terms of the strain 
energy density — Compressible, uncoupled, Nearly incompressible, or Incompressible.
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The Model parameters C10, C01, C20, C02, and C11 all use values From material. 

• If the Compressible, uncoupled option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The Bulk modulus K uses values From material.

• If the Nearly incompressible option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The pressure formulation is selected from the Use mixed formulation list, and the 
default value for the Bulk modulus  is 100 times the equivalent shear modulus.

• If the Incompressible option is selected, an extra variable and weak constraint is 
added to enforce the incompressibility condition Jel  .

Mooney–Rivlin, Nine Parameters
From the Compressibility list select how the material is specified in terms of the strain 
energy density — Compressible, uncoupled, Nearly incompressible, or Incompressible.

The Model parameters C10, C01, C20, C02, C11, C30, C03, C21, and C12 all use values 
From material.

• If the Compressible, uncoupled option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The Bulk modulus K uses values From material.

• If the Nearly incompressible option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The pressure formulation is selected from the Use mixed formulation list, and the 
default value for the Bulk modulus  is 100 times the equivalent shear modulus.

• If the Incompressible option is selected, an extra variable and weak constraint is 
added to enforce the incompressibility condition Jel  .

Yeoh
From the Compressibility list select how the material is specified in terms of the strain 
energy density — Compressible, uncoupled, Nearly incompressible, or Incompressible.

The Model parameters c1, c2, and c3 all use values From material.

• If the Compressible, uncoupled option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The Bulk modulus K uses values From material.

• If the Nearly incompressible option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
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The pressure formulation is selected from the Use mixed formulation list, and the 
default value for the Bulk modulus  is 100 times the equivalent shear modulus.

• If the Incompressible option is selected, an extra variable and weak constraint is 
added to enforce the incompressibility condition Jel  .

Ogden
From the Compressibility list select how the material is specified in terms of the strain 
energy density — Compressible, uncoupled, Nearly incompressible, or Incompressible.

• If the Compressible, uncoupled option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The Bulk modulus K uses values From material.

• If the Nearly incompressible option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The pressure formulation is selected from the Use mixed formulation list, and the 
default value for the Bulk modulus  is 100 times the equivalent shear modulus.

• If the Incompressible option is selected, an extra variable and weak constraint is 
added to enforce the incompressibility condition Jel  .

In the table for the Ogden parameters, enter values or expressions in each column: Shear 

modulus (Pa) and Alpha parameter.

Storakers
For Storakers, in the table for the Storakers parameters, enter values or expressions in 
each column: Shear modulus (Pa), Alpha parameter, and Beta parameter.

Varga
From the Compressibility list select how the material is specified in terms of the strain 
energy density — Compressible, uncoupled, Nearly incompressible, or Incompressible.

The Model parameters c1, c2, and c3 all use values From material. 

• If the Compressible, uncoupled option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The Bulk modulus K uses values From material.

• If the Nearly incompressible option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The pressure formulation is selected from the Use mixed formulation list, and the 
default value for the Bulk modulus  is 100 times the equivalent shear modulus.

• If the Incompressible option is selected, an extra variable and weak constraint is 
added to enforce the incompressibility condition Jel  .
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Arruda–Boyce
From the Compressibility list select how the material is specified in terms of the strain 
energy density — Compressible, uncoupled, Nearly incompressible, or Incompressible.

The default values for the Macroscopic shear modulus 0 and the Number of segments N 
use values From material.

• If the Compressible, uncoupled option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The Bulk modulus K uses values From material.

• If the Nearly incompressible option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The pressure formulation is selected from the Use mixed formulation list, and the 
default value for the Bulk modulus  is 100 times the equivalent shear modulus.

• If the Incompressible option is selected, an extra variable and weak constraint is 
added to enforce the incompressibility condition Jel  .

Gent
From the Compressibility list select how the material is specified in terms of the strain 
energy density — Compressible, uncoupled, Nearly incompressible, or Incompressible.

The default values for the Macroscopic shear modulus  and the model parameter jm use 
values From material.

• If the Compressible, uncoupled option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The Bulk modulus K uses values From material.

• If the Nearly incompressible option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The pressure formulation is selected from the Use mixed formulation list, and the 
default value for the Bulk modulus  is 100 times the equivalent shear modulus.

• If the Incompressible option is selected, an extra variable and weak constraint is 
added to enforce the incompressibility condition Jel  .

van der Waals
From the Compressibility list select how the material is specified in terms of the strain 
energy density — Compressible, uncoupled, Nearly incompressible, or Incompressible.
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The default values for the Shear modulus , the Maximum chain stretch m, the Chain 

network interaction , and the Weight  use values From material. 

• If the Compressible, uncoupled option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The Bulk modulus K uses values From material.

• If the Nearly incompressible option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The pressure formulation is selected from the Use mixed formulation list, and the 
default value for the Bulk modulus  is 100 times the equivalent shear modulus.

• If the Incompressible option is selected, an extra variable and weak constraint is 
added to enforce the incompressibility condition Jel  .

Blatz–Ko
For Blatz-Ko the Shear modulus and the Model parameters  and  all use values From 

material.

Gao
For Gao the Model parameters a and n use values From material.

Murnaghan
For Murnaghan the Murnaghan third-order elastic moduli constants l, m, and n and the 
Lamé parameters  and  use values From material.

Delfino
From the Compressibility list select how the material is specified in terms of the strain 
energy density — Compressible, uncoupled, Nearly incompressible, or Incompressible.

The Model parameters a and b use values From material. 

• If the Compressible, uncoupled option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The Bulk modulus K uses values From material.

• If the Nearly incompressible option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The pressure formulation is selected from the Use mixed formulation list, and the 
default value for the Bulk modulus  is 100 times the equivalent shear modulus.

• If the Incompressible option is selected, an extra variable and weak constraint is 
added to enforce the incompressibility condition Jel  .
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Fung
The Coefficient matrix A and Fung parameter c use values From material.

The Coefficient matrix A provides the anisotropic material properties in the directions 
given by the Coordinate system list. The Material data ordering can be specified in either 
Standard or Voigt notation. When User defined is selected, a 6-by-6 symmetric matrix is 
displayed to enter the coefficients of A.

From the Compressibility list select how the material is specified in terms of the strain 
energy density — Compressible, coupled, Compressible, uncoupled, Nearly incompressible, 
or Incompressible.

• If the Compressible, uncoupled option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The Bulk modulus K uses values From material.

• If the Nearly incompressible option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The pressure formulation is selected from the Use mixed formulation list, and the 
default value for the Bulk modulus  is 100 times the equivalent shear modulus.

• If the Incompressible option is selected, an extra variable and weak constraint is 
added to enforce the incompressibility condition Jel  .

Extended tube
From the Compressibility list select how the material is specified in terms of the strain 
energy density — Compressible, uncoupled, Nearly incompressible, or Incompressible.

The Model parameters Gc, Ge, , and  use values From material.

• If the Compressible, uncoupled option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The Bulk modulus K uses values From material.

• If the Nearly incompressible option is selected, specify the Volumetric strain energy 

density — Quadratic, Logarithmic, Hartmann-Neff, Miehe, Simo-Taylor, or User defined. 
The pressure formulation is selected from the Use mixed formulation list, and the 
default value for the Bulk modulus  is 100 times the equivalent shear modulus.

• If the Incompressible option is selected, an extra variable and weak constraint is 
added to enforce the incompressibility condition Jel  .

User Defined
If a Compressible material is selected from the Compressibility list, enter an expression 
for the Elastic strain energy density Ws.
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You can also use a mixed formulation by adding the mean pressure as an extra 
dependent variable. In this case, select either Nearly incompressible or Incompressible 
from the Compressibility list.

If Nearly incompressible is selected, enter the Isochoric strain energy density Wsiso and 
the Volumetric strain energy density Wvol.

If Incompressible is selected, enter the Isochoric strain energy density Wsiso only. An 
extra weak constraint is added to enforce the incompressibility condition Jel  .

Select the Use elastic deformation gradient check box to compute the strain energy 
densities based on components of the elastic deformation gradient Fel. The check box 
is not selected by default, so it is assumed that Ws, Wsiso, and Wvol are expressions of 
the components or invariants of the elastic right Cauchy–Green tensor Cel.

E N E R G Y  D I S S I P A T I O N

Select the Calculate dissipated energy check box to compute the energy dissipated by 
Plasticity.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

D I S C R E T I Z A T I O N

If the hyperelastic material is nearly incompressible or incompressible, select the 
discretization for the Auxiliary pressure — Automatic, Discontinuous Lagrange, 
Continuous, Linear or Constant.

For examples of:

• Mooney-Rivlin, two-parameters and Ogden, see Inflation of a Spherical 
Rubber Balloon. Application Library path 
Nonlinear_Structural_Materials_Module/Hyperelasticity/balloon_inflation.

• Murnaghan, see Elasto-Acoustic Effect in Rail Steel. Application 
Library path Nonlinear_Structural_Materials_Module/Hyperelasticity/

rail_steel.

The Discretization section is available when you use mixed formulation. 
To display the section, click the Show More Options button ( ) and select 
Advanced Physics Options in the Show More Options dialog box.
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Q U A D R A T U R E  S E T T I N G S

Select the Reduced integration check box to reduce the integration points for the weak 
contribution of the feature. Select a method for Hourglass stabilization — Automatic, 
Manual, or None to use in combination with the reduced integration scheme. The 
default Automatic stabilization technique is based on the shape function and shape 
order of the displacement field.

Control the hourglass stabilization scheme by using the Manual option. Select Shear 

stabilization (default) or Volumetric stabilization.

When Shear stabilization is selected, enter a stabilization shear modulus, Gstb. The 
value should be in the order of magnitude of the equivalent shear modulus.

When Volumetric stabilization is selected, enter a stabilization bulk modulus, Kstb. The 
value should be in the order of magnitude of the equivalent bulk modulus.

A D V A N C E D

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

Enter the Equivalent Young’s modulus Eeq and the Equivalent shear modulus Geq. The 
defaults are 1 GPa and Eeq/3, respectively. The equivalent moduli are defined by most 
hyperelastic material models, but not in the User defined option. The characteristic 
stiffness is needed in expressions for the default penalty factors in contact methods, and 
it should be representative for the stiffness of the destination domain material in a 
direction normal to the boundary.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>Hyperelastic Material

Layered Shell>Material Models>Hyperelastic Material

Shell>Material Models>Layered Hyperelastic Material

Membrane>Material Models>Hyperelastic Material

Ribbon
Physics tab with Solid Mechanics selected:

See also Reduced Integration and Hourglass Stabilization in the 
Structural Mechanics Theory chapter.
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Domains>Material Models>Hyperelastic Material

Physics tab with Shell, Layered Shell or Membrane selected:

Boundaries>Material Models>Hyperelastic Material

Shape Memory Alloy

The Shape Memory Alloy feature is used to model stress-strain relationships that are 
nonlinear even at infinitesimal strains. This material model requires the Nonlinear 
Structural Materials Module. Shape Memory Alloy is available for 3D, 2D, and 2D 
axisymmetry.

By adding the following subnodes to the Shape Memory Alloy node you can incorporate 
other effects:

Note: Some options are only available with certain COMSOL products (see https://
www.comsol.com/products/specifications/)

M O D E L  I N P U T S

From the Temperature T list, select an existing temperature variable from a heat transfer 
interface (for example, Temperature (ht)), if any temperature variables exist, or select 
User defined to enter a value or expression for the temperature.

If any material in the model has a temperature dependent mass density, and From 

material is selected for the density, the Volume reference temperature list will appear in 

• Phase Transformation Direction

• Thermal Expansion (for Materials)

• Initial Stress and Strain

• External Stress

• External Strain

• Damping

See also Shape Memory Alloy in the Structural Mechanics Theory 
chapter.
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the Model Input section. You can also select User defined to enter a value or expression 
for the reference temperature locally.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes (except boundary 
coordinate systems). The coordinate system is used when stresses or strains are 
presented in a local system. The coordinate system must have orthonormal coordinate 
axes, and be defined in the material frame. Many of the possible subnodes inherit the 
coordinate system settings.

S H A P E  M E M O R Y  A L L O Y

Select a Shape memory alloy model from the list: Lagoudas or Souza-Auricchio.

Lagoudas
For Lagoudas, the Shape memory alloy reference temperature T0, the Poisson’s ratio 
and the Density are taken From material. For User defined enter other values or 
expressions.

For Austenite, select a material from the list. The Young’s modulus EA and the Heat 

capacity at constant pressure Cp,A are taken from the selected material. For Martensite, 
select a material from the list. The Young’s modulus EM and the Heat capacity at 

constant pressure Cp,M are taken from the selected material. For User defined enter 
other values or expressions.

Under Phase transformation parameters, select which Transformation parameters will 
describe the phase transitions: Temperature or Stress.

• When Temperature is selected from the Transformation parameters list, enter the 
Martensite start temperature Ms, the Martensite finish temperature Mf, the Slope of 

See also

• Mass Density and Volume Reference Temperature.

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.
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martensite limit curve CM, the Austenite start temperature As, the Austenite finish 

temperature Af, and the Slope of austenite limit curve CA.

• When Stress is selected from the Transformation parameters list, enter the Martensite 

start stress Ms, the Martensite finish stress Mf, the Slope of martensite limit curve 

CM, the Austenite start stress As, the Austenite finish stress Af, the Slope of 

austenite limit curve CA, and the Measurement temperature T.

Under the Maximum transformation strain list select Constant to directly enter the 
Maximum transformation strain tr,max, or Exponential law to specify a stress-dependent 
maximum transformation strain. Under Exponential law, enter the Initial maximum 

transformation strain tr,min, the Ultimate transformation strain tr,sat, the Critical stress 

crit, and the Saturation exponent k. Enter the Calibration stress level *.

Under Phase transformation kinetics, select the Transformation function from the list: 
Quadratic, Cosine, Smooth or User defined.

For Smooth, enter the smoothing parameters 1, 2, 3, and 4.

For User defined enter the Yield stress ys, the Forward transformation law, and the 
Reverse transformation law.

When Lagoudas model is selected, a Phase Transformation Direction subnode is added to 
the Shape memory alloy node. Select a Transformation direction from the list: Automatic 
(default) or User defined.

Souza–Auricchio
For Souza-Auricchio the defaults for the Poisson’s ratio and Density, are taken From 

material. For User defined enter other values or expressions.

For Austenite, select a material from the list. The Young’s modulus EA is taken from the 
selected material. For Martensite, select a material from the list. The Young’s modulus 
EM is taken from the selected material. For User defined enter other values or 
expressions.

Under Phase transformation parameters, enter the Reference temperature T*, the Slope 

of limit curve , the Maximum transformation strain tr,max, the Elastic domain radius 

0, the Hardening modulus Hk, and the Indicator function coefficient 

Initial Transformation State
For Lagoudas model, enter the Initial martensite volume fraction, the Initial 

transformation strain tensor, the Initial martensite volume fraction at reverse point, and 
the Initial transformation strain tensor at reverse point.
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For the Souza-Auricchio model, enter the Initial transformation strain tensor.

G E O M E T R I C  N O N L I N E A R I T Y

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. There are, however, some cases when the use of a small 
strain formulation for a certain domain is needed. In those cases, select the 
Geometrically linear formulation check box. When selected, a small strain formulation is 
always used, independently of the setting in the study step. The check box is not 
selected by default to conserve the properties of the model.

When a geometrically nonlinear formulation is used, the elastic deformations used for 
computing the stresses can be obtained in two different ways if inelastic deformations 
are present: additive decomposition and multiplicative decomposition. The default is 
to use multiplicative decomposition. Select Additive strain decomposition to change to 
an assumption of additivity.

E N E R G Y  D I S S I P A T I O N

You can select to compute and store various energy dissipation variables in a 
time-dependent analysis. Doing so will add extra degrees of freedom to the model.

Select the Calculate dissipated energy check box as needed to compute the energy 
dissipation.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

Q U A D R A T U R E  S E T T I N G S

Select the Reduced integration check box to reduce the integration points for the weak 
contribution of the feature. Select a method for Hourglass stabilization — Automatic, 
Manual, or None to use in combination with the reduced integration scheme. The 
default Automatic stabilization technique is based on the shape function and shape 
order of the displacement field.

Control the hourglass stabilization scheme by using the Manual option. Select Shear 

stabilization (default) or Volumetric stabilization.

When Shear stabilization is selected, enter a stabilization shear modulus, Gstb. The 
value should be in the order of magnitude of the equivalent shear modulus.
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When Volumetric stabilization is selected, enter a stabilization bulk modulus, Kstb. The 
value should be in the order of magnitude of the equivalent bulk modulus.

A D V A N C E D

It is possible to specify the maximum number of iterations and the relative tolerance 
used to solve the plastic flow rule. Enter the following settings:

• Maximum number of local iterations. To determine the maximum number of iteration 
in the Newton loop when solving the local plasticity equations. The default value is 
25 iterations.

• Relative tolerance. To check the convergence of the local plasticity equations based 
on the step size in the Newton loop. The final tolerance is computed based on the 
current solution of the local variable and the entered value. The default value is 1e-6.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>Shape Memory Alloy

Truss>Material Models>Shape Memory Alloy

Ribbon
Physics tab with Solid Mechanics selected:

Domains>Material Models>Shape Memory Alloy

Physics tab with Truss selected:

Edges>Material Models>Shape Memory Alloy

See also Reduced Integration and Hourglass Stabilization in the 
Structural Mechanics Theory chapter.

See also Numerical Solution of the Elastoplastic Conditions in the 
Structural Mechanics Theory chapter.
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Phase Transformation Direction

When Lagoudas is selected from the Shape memory alloy model list, the Phase 

Transformation Direction node is automatically added to the Shape Memory Alloy node. 
Since in many applications the transformation direction  is known a priori (for 
instance, mechanical loading or unloading, or temperature increment/decrement) a 
user input enables to set the transformation direction manually to 1 or -1, thus 
speeding up the computational time.

P H A S E  T R A N S F O R M A T I O N  D I R E C T I O N

Select a Transformation Direction — Automatic or User Defined.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Shape Memory Alloy>Phase Transformation Direction

Truss>Shape Memory Alloy>Phase Transformation Direction

Ribbon
Physics tab with Shape Memory Alloy node selected in the model tree:

Attributes>Phase Transformation Direction

Piezoelectric Material

The Piezoelectric Material node defines the piezoelectric material properties either in 
stress-charge form using the elasticity matrix and the coupling matrix, or in 
strain-charge form using the compliance matrix and the coupling matrix. It is normally 
used together with a Piezoelectric Effect multiphysics coupling node and a 
corresponding Charge Conservation, Piezoelectric node in the Electrostatics interface. 
This node is added by default to the Solid Mechanics interface when adding a 
Piezoelectricity interface. Piezoelectric Material available for 3D, 2D, and 2D 
axisymmetry.

This material model requires the Structural Mechanics Module, or MEMS Module, or 
Acoustics Module.

By adding the following subnodes to the Piezoelectric Material node you can 
incorporate many other effects:

• Initial Stress and Strain

• Thermal Expansion (for Materials)

ꞏ
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• Mechanical Damping

• Coupling Loss

• Dielectric Loss

• Conduction Loss (Time-Harmonic)

The Piezoelectric Material node is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

P I E Z O E L E C T R I C  M A T E R I A L  P R O P E R T I E S

Select a Constitutive relation — Stress-charge form or Strain-charge form. For each of the 
following, the default uses values From material. For User defined enter other values in 
the matrix or field as needed.

• For Stress-charge form, select an Elasticity matrix, Voigt notation (cE).

• For a Strain-charge form, select a Compliance matrix, Voigt notation (sE).

• Select a Coupling matrix, Voigt notation (eES or dET).

• Select a Relative permittivity (rS or rT).

• Enter values for the Remanent electric displacement (Dr).

• Select a Density ().

When the Piezoelectric Material node is added to the Solid Mechanics 
interface in the absence of an active Piezoelectric Effect multiphysics 
coupling node, the material behaves similarly to a Linear Elastic Material 
node. The elastic properties correspond to the elasticity or compliance 
matrix entered (see below). The piezoelectric effect is then not included 
in the equation system.

See also Piezoelectricity in the Structural Mechanics Theory chapter.

For entering these matrices, use the following order (Voigt notation), 
which is the common convention for piezoelectric materials: xx, yy, zz, yz, 
xz, zy.
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Check the Use multiplicative formulation check box to use a formulation based on the 
multiplicative decomposition of elastic and inelastic (piezoelectric) strains.

Density
If any material in the model has a temperature dependent mass density, and From 

material is selected, the Volume reference temperature list will appear in the Model Input 
section. As a default, the value of Tref is obtained from a Common model input. You can 
also select User defined to enter a value or expression for the reference temperature 
locally.

G E O M E T R I C  N O N L I N E A R I T Y

This section is only available when the check box Use multiplicative formulation is not 
selected.

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. There are, however, some cases when the use of a small 
strain formulation for a certain domain is needed. In those cases, select the 

When the Use multiplicative formulation check box is selected, all studies 
in the model become geometrically nonlinear. The Include geometric 

nonlinearity check box on the study step Settings window is selected and 
cannot be cleared.

See also Multiplicative Formulation for Piezoelectricity in the Structural 
Mechanics Theory chapter.

The density is needed for dynamic analysis and when computing mass 
forces for gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).

See also

• Mass Density and Volume Reference Temperature.

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.
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Geometrically linear formulation check box. When selected, a small strain formulation is 
always used, independently of the setting in the study step. The check box is not 
selected by default to conserve the properties of the model.

E N E R G Y  D I S S I P A T I O N

You can select to compute and store various energy dissipation variables in a 
time-dependent analysis. Doing so will add extra degrees of freedom to the model.

Select the Calculate dissipated energy check box as needed to compute the energy 
dissipation.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

Q U A D R A T U R E  S E T T I N G S

Select the Reduced integration check box to reduce the integration points for the weak 
contribution of the feature. Select a method for Hourglass stabilization — Automatic, 
Manual, or None to use in combination with the reduced integration scheme. The 
default Automatic stabilization technique is based on the shape function and shape 
order of the displacement field.

Control the hourglass stabilization scheme by using the Manual option. Select Shear 

stabilization (default) or Volumetric stabilization.

When Shear stabilization is selected, enter a stabilization shear modulus, Gstb. The 
value should be in the order of magnitude of the equivalent shear modulus.

When Volumetric stabilization is selected, enter a stabilization bulk modulus, Kstb. The 
value should be in the order of magnitude of the equivalent bulk modulus.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>Piezoelectric Material

• Modeling Piezoelectric Problems

• Modeling Geometric Nonlinearity

See also Reduced Integration and Hourglass Stabilization in the 
Structural Mechanics Theory chapter.
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Ribbon
Physics tab with Solid Mechanics selected:

Domains>Material Models>Piezoelectric Material

Piezomagnetic Material

The Piezomagnetic Material node defines the linear magnetoelastic material properties. 
The material data can be entered either in the strain-magnetization form using the 
elasticity matrix and the coupling matrix, or in stress-magnetization form using the 
compliance matrix and the coupling matrix. It is normally used as part of 
Piezomagnetic Effect multiphysics interface together with a Piezomagnetic Effect 
multiphysics coupling node and Ampère’s Law, Piezomagnetic node in the 
corresponding Magnetic Fields interface. Piezomagnetic Material node is added by 
default to the Solid Mechanics interface when adding a Piezomagnetism multiphysics 
interface. This material model available for 3D, 2D, and 2D axisymmetry.

By adding the following subnodes to the Piezomagnetic Material node you can 
incorporate other effects:

• Initial Stress and Strain

• Thermal Expansion (for Materials)

• Mechanical Damping

The Piezomagnetic node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

When the Piezomagnetic Material node is added to the Structural 
Mechanics interface in the absence of an active Piezomagnetic Effect 

multiphysics coupling node, the material behaves similarly to a Linear 
Elastic Material node with some limitations on the format for the elastic 
material data input. All the magnetic material data and coupling data will 
have no effect. The piezomagnetic effect is then not included in the 
corresponding equation system.

See also Magnetostriction and Piezomagnetism in the Structural 
Mechanics Theory chapter.
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M A G N E T O E L A S T I C  P R O P E R T I E S

Select a Constitutive relation — Strain-magnetization form or Stress-magnetization form. 
For each of the following, the default uses values From material. For User defined, enter 
other values in the matrix or field as needed.

• For Strain-magnetization form, select a Compliance matrix, Voigt notation (sH).

• For a Stress-magnetization form, select an Elasticity matrix, Voigt notation (cH).

• Select a Piezomagnetic coupling matrix, Voigt notation (dHT or eHS).

• Select a Relative permeability (rT or rS).

• Select a Density (p).

Check the Use multiplicative formulation check box to use a formulation based on the 
multiplicative decomposition of elastic and inelastic (piezomagnetic) strains.

Density
If any material in the model has a temperature dependent mass density, and From 

material is selected, the Volume reference temperature list will appear in the Model Input 
section. As a default, the value of Tref is obtained from a Common model input. You can 

For entering these matrices, use the following order (Voigt notation), 
which is the common convention for piezomagnetic materials: xx, yy, zz, 
yz, xz, zy.

When the Use multiplicative formulation check box is selected, all studies 
in the model become geometrically nonlinear. The Include geometric 

nonlinearity check box on the study step Settings window is selected and 
cannot be cleared.

See also Multiplicative Formulation for Piezomagnetism in the 
Structural Mechanics Theory chapter.
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also select User defined to enter a value or expression for the reference temperature 
locally.

G E O M E T R I C  N O N L I N E A R I T Y

This section is only available when the check box Use multiplicative formulation is not 
selected.

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. There are, however, some cases when the use of a small 
strain formulation for a certain domain is needed. In those cases, select the 
Geometrically linear formulation check box. When selected, a small strain formulation is 
always used, independently of the setting in the study step. The check box is not 
selected by default to conserve the properties of the model.

E N E R G Y  D I S S I P A T I O N

You can select to compute and store various energy dissipation variables in a 
time-dependent analysis. Doing so will add extra degrees of freedom to the model.

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).

See also

• Mass Density and Volume Reference Temperature.

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.

• Piezomagnetic Effect

• Modeling Magnetostrictive Materials

• Modeling Geometric Nonlinearity

• Ampère’s Law, Piezomagnetic

• The Magnetic Fields Interface in the COMSOL Multiphysics 
Reference Manual.
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Select the Calculate dissipated energy check box as needed to compute the energy 
dissipation.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

Q U A D R A T U R E  S E T T I N G S

Select the Reduced integration check box to reduce the integration points for the weak 
contribution of the feature. Select a method for Hourglass stabilization — Automatic, 
Manual, or None to use in combination with the reduced integration scheme. The 
default Automatic stabilization technique is based on the shape function and shape 
order of the displacement field.

Control the hourglass stabilization scheme by using the Manual option. Select Shear 

stabilization (default) or Volumetric stabilization.

When Shear stabilization is selected, enter a stabilization shear modulus, Gstb. The 
value should be in the order of magnitude of the equivalent shear modulus.

When Volumetric stabilization is selected, enter a stabilization bulk modulus, Kstb. The 
value should be in the order of magnitude of the equivalent bulk modulus.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>Piezomagnetic Material

Ribbon
Physics tab with Solid Mechanics selected:

Domains>Material Models>Piezomagnetic Material

See also Reduced Integration and Hourglass Stabilization in the 
Structural Mechanics Theory chapter.
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Magnetostrictive Material

Viscoelasticity

Use the Viscoelasticity subnode to add viscous stress contributions to an elastic material 
model. This material model is available in the Solid Mechanics, Shell, Layered Shell, 
and Membrane interfaces, and can be used together with Linear Elastic Material, 
Nonlinear Elastic Material, Hyperelastic Material, Layered Linear Elastic Material, and 
Layered Hyperelastic Material.

Note: Some options described below are only available with certain COMSOL 
products (see https://www.comsol.com/products/specifications/).

S H E L L  P R O P E R T I E S

The Magnetostrictive Material node is obsolete and will be removed in 
future versions. It cannot be added in version 6.1 and later, but may be 
present in models created by earlier versions of the software.

You are advised to update your model to use one of the new multiphysics 
interfaces instead, either The Nonlinear Magnetostriction Interface or 
The Piezomagnetism Interface (for modeling linear magnetostrictive 
effects).

See also Linear Viscoelasticity and Large Strain Viscoelasticity in the 
Structural Mechanics Theory chapter.

This section is only present when Viscoelasticity is used as a subnode to:

• A material model in the Layered Shell interface. See the documentation 
for the Viscoelasticity node in the Layered Shell chapter.

• Layered Linear Elastic Material or Layered Hyperelastic Elastic Material in 
the Shell interface. See the documentation for the Viscoelasticity node 
in the Shell and Plate chapter.

• Layered Linear Elastic Material in the Membrane interface. See the 
documentation for the Viscoelasticity node in the Membrane chapter.
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S K E T C H

Viscoelastic models are often conceptually viewed as rheological networks consisting 
of spring and damper elements. The sketch section shows the arrangement of springs 
and dampers for the chosen viscoelastic material model. If fractional derivatives are 
enabled, the dampers are replaced by so-called spring-pot elements. Relevant input 
parameters are shown next to the spring, damper, and spring-pot elements. The elastic 
stiffness contribution of the parent material model is indicated by a light gray spring 
symbol representing the bulk and shear moduli, K and G, respectively.

T H E R M A L  E F F E C T S

Viscoelastic properties have a strong dependence on the temperature. For 
thermorheologically simple materials, a change in the temperature can be transformed 
directly into a change in the time scale. Thus, the relaxation time is modified to 
aTTm, where aT(T) is a shift function.

Select a Shift function — None, Williams-Landel-Ferry, Arrhenius, 
Tool-Narayanaswamy-Moynihan, or User defined.

• When the default, None, is kept, the shift function aTT is set to unity and the 
relaxation time is not modified.

• For Williams-Landel-Ferry enter values or expressions for these properties:

- Reference temperature Tref The default is 293.15 K.

- WLF constant 1 C1WLF. The default is 17.44.

- WLF constant 2 C2WLF. The default is 51.6 K.

• For Arrhenius enter values or expressions for these properties:

- Reference temperature Tref. The default is 293.15 K.

- Activation energy Q.

• For Tool-Narayanaswamy-Moynihan enter values or expressions for these properties:

- Reference temperature Tref. The default is 293.15 K.

- Activation energy Q.

- Activation energy fraction  (0<<1).

- Structural relaxation times 0.

- Fictive temperature weights w.

• For User defined enter a value or an expression for the shift function aT.
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V I S C O E L A S T I C I T Y  M O D E L

Select a Material model — Generalized Maxwell, Generalized Kelvin-Voigt, Maxwell, 
Kelvin-Voigt, Standard linear solid, Burgers, or User defined. Then, enter the settings for 
each option that follows.

From the Viscoelastic strains list select Volumetric, Deviatoric, or Volumetric and 

deviatoric. Select Volumetric when the viscoelastic behavior applies only to the 
volumetric deformation. The Deviatoric option (default) applies the viscoelastic 
relaxation to the shear deformation only. With Volumetric and deviatoric the viscoelastic 
strain is full.

For some material models, you can select the stiffness to use when solving a stationary 
problem. Select the Stiffness used in stationary studies — Long-term or Instantaneous. 
With Long-term all dampers are assumed to be fully relaxed, whereas with Instantaneous 
all dampers are assumed to be rigid.

Generalized Maxwell
For Generalized Maxwell enter the values for the parameters that describe the 
viscoelastic behavior as a series of spring-dashpot pairs.

Depending on the selection done in the Viscoelastic strains list, for each Branch row 
enter the stiffness of the spring Km in the Bulk modulus (Pa) column and/or Gm in the 
Shear modulus (Pa) column, and the relaxation time constant m in the Relaxation 

time (s) column for the spring-dashpot pair in branch m.

When the Use fractional derivatives check box is selected, enter the fractional order m 
in the Fractional order (1) column for each spring-spring-pot branch.

For large strain viscoelasticity, in each Branch row enter the energy factor of the branch, 
vm, in the Energy factor (1) column and the relaxation time constant m in the 
Relaxation time (s) column for the spring-dashpot pair.

• Use the Add button ( ) to add a row to the table, the Delete button ( ) to delete 
a row in the table, or the Clear Table button ( ) to clear the whole table.

• Use the Load from file button ( ) and the Save to file button ( ) to load and 
store data for the branches in a text file with space-separated columns.

When the Prune viscoelastic branches check box is selected, enter the Cutoff frequencies 

flower and fupper. The relaxation times m are frozen and cannot be changed when the 
check box is selected. In order to change these settings again, clear the check box 
because pruning is only performed at the time when the check box is selected. It is also 
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required that the relaxation times for each branch have constant values when Prune 

viscoelastic branches is selected.

From the Stiffness used in stationary studies list, select either Long-term or 
Instantaneous. With Long-term, all dampers are assumed to be relaxed; hence the 
branches do not contribute to the stress. The material stiffness is therefore given by the 
stiffness in the parent material model (for example, Linear Elastic Material, Nonlinear 
Elastic Material or Hyperelastic Material). With Instantaneous, all dampers are assumed 
to be rigid, and the material stiffness is given by springs arranged in parallel.

Generalized Kelvin–Voigt
For Generalized Kelvin-Voigt enter the values for the parameters that describe the 
viscoelastic behavior of multiple Kelvin–Voigt elements arranged in series.

Depending on the selection done in the Viscoelastic strains list, for each Branch row 
enter the stiffness of the spring Km in the column labeled Bulk modulus (Pa) and/or 
Gm in the column labeled Shear modulus (Pa), and the relaxation time m in the column 
labeled Relaxation time (s) for the spring-dashpot pair in the element m.

When the Use fractional derivatives check box is selected, enter the fractional order m 
in the Fractional order (1) column for each spring-spring-pot branch.

• Use the Add button ( ) to add a row to the table, the Delete button ( ) to delete 
a row in the table, or the Clear Table button ( ) to clear the whole table.

• Use the Load from file button ( ) and the Save to file button ( ) to load and 
store data for the elements in a text file with space-separated columns.

Select the Stiffness used in stationary studies, either Long-term or Instantaneous. With 
Long-term, all dampers are assumed to be relaxed. The material stiffness is therefore 
given by springs arranged in series. With Instantaneous, all dampers are assumed to be 
rigid; hence the viscoelastic branches do not contribution to the strain, and the 
instantaneous stiffness is determined by the parent material only (for example, Linear 
Elastic Material, Nonlinear Elastic Material or Hyperelastic Material).

Maxwell
For Maxwell enter the parameters that describes the viscous behavior of a single dashpot 
connected in series with a spring.

Depending on the selection done in the Viscoelastic strains list, the relaxation time or 
viscosity is applied to the volumetric, deviatoric, or both volumetric and deviatoric 
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deformation. Select an option from the Relaxation data list and edit the default as 
needed:

• Relaxation time v. The default is 3000 s.

• Viscosity v of the dashpot. The default is 6·1013 Pas.

When the Use fractional derivatives check box is selected, enter the fractional order v 
of the spring-pot. The default is 0.5 (dimensionless).

Note that the instantaneous stiffness is given by the parent material model (for 
example, Linear Elastic Material, Nonlinear Elastic Material or Hyperelastic Material).

Kelvin–Voigt
For Kelvin-Voigt enter the values for the parameter that describes the viscous behavior 
of the single dashpot in parallel with a spring.

Depending on the selection done in the Viscoelastic strains list, the relaxation time or 
viscosity is applied to the volumetric, deviatoric, or both volumetric and deviatoric 
deformation. Select an option from the Relaxation data list and edit the default as 
needed:

• Relaxation time v of the dashpot. The default is 3000 s.

• Viscosity v of the dashpot. The default is 6·1013 Pas.

For large strain viscoelasticity, enter the Relaxation time v. The default is 3000 s.

When the Use fractional derivatives check box is selected, enter the fractional order v 
of the spring-pot. The default is 0.5 (dimensionless).

Note that the instantaneous stiffness is given by the parent material model (for 
example, Linear Elastic Material, Nonlinear Elastic Material or Hyperelastic Material).

Standard Linear Solid
For Standard linear solid enter the values for the parameters that describe the 
viscoelastic behavior of the single spring-dashpot branch.

Depending on the selection done in the Viscoelastic strains list, enter the Bulk modulus 

and/or the Shear modulus of the spring in the Kv and Gv fields. The default values are 
20 GPa.

For linear viscoelasticity, select an option from the Relaxation data list and edit the 
default as needed:

• Relaxation time v of the dashpot. The default is 3000 s.
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• Viscosity v of the dashpot. The default is 6·1013 Pas.

For large strain viscoelasticity, enter the Relaxation time v, which default value is 
3000 s, and the Energy factor v of the dashpot. The default is 0.2.

When the Use fractional derivatives check box is selected, enter the fractional order v 
of the spring-pot. The default is 0.5 (dimensionless).

Note that the long-term stiffness is given by the parent material model (for example, 
Linear Elastic Material, Nonlinear Elastic Material or Hyperelastic Material).

Burgers
For Burgers enter the values for the parameter that describes the viscous behavior of 
the spring dashpot in series with a second spring-dashpot pair.

Depending on the selection done in the Viscoelastic strains list, enter the Bulk modulus 

and/or the Shear modulus of the second spring in the Kv2 and Gv2 fields. The default 
values are 20 GPa.

For linear viscoelasticity, select an option from the Relaxation data list and edit the 
default as needed:

• Relaxation time. The default is 3000 s for both dashpots v1 and v2.

• Viscosity. Enter the viscosity of the dashpots. The default is 6·1013 Pas for both v1 
and v2.

When the Use fractional derivatives check box is selected, enter the fractional orders, 
v1 and v2, of the spring-pot pairs. The default is 0.5 (dimensionless) for each 
spring-pot.

Note that the instantaneous stiffness is given by the parent material model (for 
example, Linear Elastic Material, Nonlinear Elastic Material or Hyperelastic Material).

User Defined
When Volumetric is selected from the Viscoelastic strains list, specify the Storage and loss 

moduli K' and K'', the Storage and loss compliances Q' and Q'', or the Loss factorv that 
defines the complex–valued bulk modulus.

When Deviatoric is selected from the Viscoelastic strains list, specify the Storage and loss 

moduli G' and G'', the Storage and loss compliances J' and J'', or the Loss factorv that 
defines the complex–valued shear modulus.

When Volumetric and deviatoric is selected from the Viscoelastic strains list, specify the 
Storage and loss moduli K', K'', G' and G'', the Storage and loss compliances Q', Q'', J' 
and J'', or the Loss factorv that defines the complex–valued bulk and shear moduli.
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These expressions can be entered as functions taken directly from interpolated data, or 
can be analytical expressions of the frequency variable.

D I S C R E T I Z A T I O N

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

The Use local time integration check box is selected by default. Clear it in case you want 
to use the global time integration scheme. The check box is only available for the 
Generalized Maxwell and Standard Linear Solid models. For all other viscoelasticity 
models, the global time integration is used.

Clear the Use local time integration check box to select the Shape function type — 
Discontinuous Lagrange (default) or Gauss point data for the components of the auxiliary 
viscoelastic tensor. When the discontinuous Lagrange discretization is used, the shape 
function order is set as one order lower than the order used for the displacement field. 
This results fewer degrees of freedom being added to the model than when using 
Gauss point data. The accuracy does in general not differ much. If you want to enforce 
that the constitutive law is fulfilled at the integration points, select Gauss point data.

The User defined viscoelastic models are applicable in Frequency Domain 
and Eigenfrequency study steps only.

The internal variables for the frequencyf and angular frequency  are 
named phys.freq and phys.omega, respectively. Here, phys is the tag of 
the parent physics (for instance, solid).

To compute the energy dissipation caused by viscoelasticity, enable the 
Calculate dissipated energy check box in the Energy Dissipation section of 
the parent material node.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Viscoelasticity

Solid Mechanics>Nonlinear Elastic Material>Viscoelasticity

Solid Mechanics>Hyperelastic Material>Viscoelasticity

Shell>Layered Linear Elastic Material>Viscoelasticity

Shell>Layered Hyperelastic Material>Viscoelasticity

Layered Shell>Linear Elastic Material>Viscoelasticity

Layered Shell>Hyperelastic Material>Viscoelasticity

Membrane>Linear Elastic Material>Viscoelasticity

Membrane>Layered Linear Elastic Material>Viscoelasticity

Membrane>Nonlinear Elastic Material>Viscoelasticity

Membrane>Hyperelastic Material>Viscoelasticity

Ribbon
Physics tab with Linear Elastic Material, Nonlinear Elastic Material, Hyperelastic Material, 
Layered Linear Elastic Material, Layered Hyperelastic Material node selected in the model 
tree:

Attributes>Viscoelasticity

Mullins Effect

Use the Mullins effect subnode to define the properties for modeling the 
stress-softening phenomenon under cyclic loading. The Mullins effect can be used 
together with Hyperelastic Material.

• Viscoelastic Structural Damper: Application Library path 
Structural_Mechanics_Module/Dynamics_and_Vibration/

viscoelastic_damper_frequency

• Eigenmodes of a Viscoelastic Structural Damper: Application Library 
path Structural_Mechanics_Module/Dynamics_and_Vibration/

viscoelastic_damper_eigenmodes

• Viscoelastic Structural Damper — Transient Analysis: Application 
Library path Structural_Mechanics_Module/Dynamics_and_Vibration/

viscoelastic_damper_transient
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S H E L L  P R O P E R T I E S

M U L L I N S  E F F E C T

The Damage function defines the model for Mullins effect. Select Ogden-Roxburgh or 
Miehe.

For Ogden-Roxburgh enter the following settings:

• Maximum damage d. The default is 1.

• Damage saturation Wsat. The default is 1 MJ/m3.

• Deformation dependence coefficient The default is 0.

• Select Use error function check box to define the damage evolution with error 
function instead of the hyperbolic function (default).

For Miehe enter the following settings:

• Maximum damage d. The default is 1.

• Damage saturation Wsat. The default is 1 MJ/m3.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Hyperelastic Material>Mullins Effect

Shell>Layered Hyperelastic Material>Mullins Effect

Layered Shell>Hyperelastic Material>Mullins Effect

Membrane>Hyperelastic Material>Mullins Effect

Ribbon
Physics tab with Hyperelastic Material or Layered Hyperelastic Material node selected in 
the model tree:

Attributes>Mullins Effect

Plasticity

Use the Plasticity subnode to define the properties for modeling elastoplastic materials. 
This material model is available in the Solid Mechanics, Shell, Layered Shell, 

This section is only present when Mullins effect is used as a subnode to 
Hyperelastic Material is used in the Layered Shell interface. See the 
documentation for the Mullins Effect node in the Layered Shell chapter.
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Membrane and Truss interfaces, and can be used together with Linear Elastic Material, 
Nonlinear Elastic Material, and Hyperelastic Material.

The Nonlinear Structural Materials Module or the Geomechanics Module are required 
for this material model, and the available options depend on the used products. For 
details, see https://www.comsol.com/products/specifications/.

S H E L L  P R O P E R T I E S

P L A S T I C I T Y  M O D E L

Use this section to define the plastic properties of the material.

Formulation
Select Small strains or Large strains to apply either an additive or multiplicative 
decomposition between elastic and plastic strains.

• When using plasticity together with a hyperelastic material, only the option Large 
strains is available.

• When using plasticity in the Shell, Membrane and Truss interfaces, only the option 
Small strains is available.

Equivalent Stress
The Yield function F defines the limit of the elastic regime, Fe ys  0, and sets the 
onset for plastic deformation. Changing the equivalent stress measure allows to specify 
different yield criteria. See Defining the Yield Criterion for details.

See also Elastoplastic Materials in the Structural Mechanics Theory 
chapter.

This section is only present when Plasticity is used as a subnode to:

• Linear Elastic Material in the Layered Shell interface. See the 
documentation for the Plasticity node in the Layered Shell chapter.

• Layered Linear Elastic Material in the Shell interface. See the 
documentation for the Plasticity node in the Shell and Plate chapter.

• Layered Linear Elastic Material in the Membrane interface. See the 
documentation for the Plasticity node in the Membrane chapter.
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Select the Equivalent stress — von Mises, Tresca, Hill orthotropic, or User defined to 
define the yield criterion.

• The default is von Mises criterion with associate plastic potential.

• Select Tresca to use Tresca yield criterion. The plastic potential can be an Associated 
or non associated flow rule with the von Mises stress as plastic potential.

• Select Hill orthotropic to use Hill’s criterion. From the Specify list select either the 
Initial tensile and shear yield stresses ys0ij or Hill’s coefficients F, G, H, L, M, and 
N. The default for either selection uses values From material (if it exists) or User 

defined. The principal directions of orthotropy are inherited from the coordinate 
system selection in the parent node. See Expressions for the Coefficients F, G, H, 
L, M, N for details.

• For User defined enter a value or expression for the equivalent stress. Write any 
expression in terms of the stress tensor components or its invariants in the field.

Initial Yield Stress
For all yield criteria, the default Initial yield stress ys0 uses values From material and 

represents the stress level where plastic deformation starts.

Plastic Potential
Select the Plastic potential Qp related to the flow rule — Associated, von Mises, or User 

defined (non associated). Enter a User defined value in the Qp field as needed.

Isotropic Hardening Model
For all yield criteria, select the type of linear or nonlinear isotropic hardening model 
from the Isotropic hardening model list. See Isotropic Hardening for details.

• Select Perfectly plastic (ideal plasticity) if the material can undergo plastic 
deformation without any increase in yield stress.

• For Linear the default Isotropic tangent modulus ETiso uses values From material (if 
it exists) or User defined. The yield level ys is modified as hardening occurs, and it 
is related to the equivalent plastic strain pe as

 with

For the linear isotropic hardening model, the yield stress increases proportionally to 
the equivalent plastic strain pe. The Young’s modulus E is taken from the elastic 
material properties.

• Select Ludwik from the list to model nonlinear isotropic hardening. The yield level 
ys is modified by the power-law

ys ys0 Eisope+= 1
Eiso
----------- 1

ETiso
-------------- 1

E
----–=
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The Strength coefficient k and the Hardening exponent n use values From material (if 
it exists) or User defined.

• Select Johnson-Cook from the list to model strain rate dependent hardening. The 
Strength coefficient k, Hardening exponent n, Reference strain rate , and Strain rate 

strength coefficient C use values From material (if it exists) or User defined.

Select a Thermal softening model — No thermal softening, Power law, or User defined.

- For Power law, enter the Reference temperature Tref, the Melting temperature Tm, 
and the Temperature exponent, m.

- For User defined, enter the Thermal Softening function f(Th), the Reference 

temperature Tref, and the Melting temperature Tm. The softening function f(Th) 
typically depends on the built-in variable for the normalized homologous 
temperature Th and have the properties f(0) = 0 and f(1) = 1. The variable is 
named using the scheme <physics>.<elasticTag>.<plasticTag>.Th, for 
example, solid.lemm1.plsty1.Th.

The yield stress and hardening function for the Johnson–Cook model is given by

In the case of power law softening, .

• For Swift nonlinear isotropic hardening, the Reference strain 0 and the Hardening 

exponent n use values From material (if it exists) or User defined. The yield level ys 
is modified by the power-law

Typically, the reference strain equals the onset of plasticity, 0  ys0/E.

• Select Voce from the list to model nonlinear isotropic hardening. The yield level ys 
is modified by the exponential law

ys pe  ys0 kpe
n

+=

ꞏ0

ys pe  ys0 kpe
n

+  1 C
ꞏpe

ꞏ0
--------
 
 
 

log+
 
 
 

1 f Th – =

Th
T Tref–

Tm Tref–
-------------------------=

f Th  Th
m

=

ys pe  ys0 1
pe
0
--------+ 

 n
=
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The Saturation flow stress sat and the Saturation exponent  use values From 

material (if it exists) or User defined.

• For Hockett-Sherby nonlinear isotropic hardening, the Steady-state flow stress , 
the Saturation coefficient m, and the Saturation exponent n use values From material 
(if it exists) or User defined. The yield level ys is increased by the exponential law

• For Hardening function, the isotropic Hardening functionh(pe) uses values From 

material or User defined. The yield level ys is modified as

- This definition implies that the hardening function h(pe) in the Material node 
must be zero at zero plastic strain. In other words, ys  ys0 whenpe  0. With 
this option it is possible to enter any nonlinear isotropic hardening curve. The 
hardening function can depend on more variables than the equivalent plastic 
strain, for example the temperature. Select User defined to enter any function of 
the equivalent plastic strain pe. The variable is named using the scheme 
<physics>.epe, for example, solid.epe.

Kinematic Hardening Model
For all yield criteria, select the type of kinematic hardening model (not available for 
hyperelastic materials) from the Kinematic hardening model list. See Kinematic 
Hardening for details.

• Select No kinematic hardening (when either ideal plasticity or an isotropic hardening 
model is selected as isotropic hardening model) if it is a material that can undergo 
plastic deformation without a shift in the yield surface.

• If Linear is selected as the Kinematic hardening model, the default Kinematic tangent 

modulus Ek uses values From material. This parameter is used to calculate the back 
stress b as plasticity occurs:

 with

This is Prager’s linear kinematic hardening model, so the back stress b is 
collinear to the plastic strain tensor p.

ys pe  ys0 sat 1 e
pe–

– 
 +=

ys pe  ys0  ys0–  1 e
mpe

n–
– 

 +=

ys ys0 h pe +=

b Ck
2
3
---p= 1

Ck
------- 1

Ek
------- 1

E
----–=
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• If Armstrong-Frederick is selected from the list, the default Kinematic hardening 

modulus Ck and Kinematic hardening parameter k use values From material. These 
parameters are used to calculate the back stress b from the rate equation

This is Armstrong–Frederick nonlinear kinematic hardening model. Replacing the 
variable for the back strain instead of the back stress

gives the rate for the back strain

• When Chaboche is selected from the Kinematic hardening model list, the default 
Kinematic hardening modulus C0 uses values From material. Add branches as needed 
to solve N rate equations for the back stresses:

or equivalently, solve N rate equations for the back strain such as

The total back stress b is then computed from the sum of the branches

For each Branch row, enter Ci (the hardening modulus of the branch i) in the 
Hardening modulus (Pa) column and i (the hardening parameter of the branch i) in 
the Hardening parameter (1) column.

Use the Add button ( ) and the Delete button ( ) to add or delete a row in the 
table. Use the Load from file button ( ) and the Save to file button ( ) to load 
and store data for the branches in a text file with three space-separated columns 

ꞏ b
2
3
---Ck

ꞏ
p k

ꞏ
peb–=

b Ck
2
3
---b=

ꞏb ꞏp k
ꞏ
peb–=

ꞏ b,i
2
3
---Ci

ꞏ
p i

ꞏ
peb,i–=

b,i Ci
2
3
---b,i=

ꞏb,i ꞏp i
ꞏ
peb,i–=

b
2
3
---C0p

2
3
--- Cib,i

i 1=

N

+=
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(from left to right): the branch number, the hardening modulus for that branch, and 
the hardening parameter for that branch.

N O N L O C A L  P L A S T I C I T Y  M O D E L

The default is None. Select Implicit Gradient to add nonlocal regularization to the 
equivalent plastic strain. Enter a value for the:

• Length scale, lint. The length scale should not exceed the maximum element size of 
the mesh.

• Nonlocal coupling modulus, Hnl. This stiffness is the penalization of the difference 
between the local and nonlocal variables. A larger value enforces the equivalent 
plastic strain pe to be closer to the nonlocal equivalent plastic strain pe,nl.

D I S C R E T I Z A T I O N

This section is available with the Implicit gradient nonlocal plasticity model. Select the 
shape function for the Nonlocal equivalent plastic strain pe,nl— Automatic, Linear, 
Quadratic Lagrange, Quadratic serendipity, Cubic Lagrange, Cubic serendipity, Quartic 

Lagrange, Quartic serendipity, or Quintic Lagrange. The available options depend on the 
order of the displacement field.

To compute the energy dissipation caused by plasticity, enable the 
Calculate dissipated energy check box in the Energy Dissipation section of 
the parent material node.

See also Nonlocal Plasticity in the Structural Mechanics Theory chapter.
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To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

A D V A N C E D

It is possible to specify the maximum number of iterations and the relative tolerance 
used to solve the plastic flow rule. Enter the following settings:

• Maximum number of local iterations. To determine the maximum number of iteration 
in the Newton loop when solving the local plasticity equations. The default value is 
25 iterations.

• Relative tolerance. To check the convergence of the local plasticity equations based 
on the step size in the Newton loop. The final tolerance is computed based on the 
current solution of the local variable and the entered value. The default value is 1e-6.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Plasticity

Solid Mechanics>Nonlinear Elastic Material>Plasticity

Solid Mechanics>Hyperelastic Material>Plasticity

Shell>Layered Linear Elastic Material>Plasticity

Layered Shell>Linear Elastic Material>Plasticity

• Sheet Metal Forming: Application Library path 
Nonlinear_Structural_Materials_Module/Plasticity/sheet_metal_forming

• For an example of Large strains, see Necking of an Elastoplastic Metal 
Bar: Application Library path Nonlinear_Structural_Materials_Module/

Plasticity/bar_necking.

• For an example of strain rate dependent plasticity, see Tensile Test with 
Strain Rate Dependent Plasticity: Application Library path 
Nonlinear_Structural_Materials_Module/Plasticity/

strain_rate_dependent_plasticity

See also Numerical Solution of the Elastoplastic Conditions in the 
Structural Mechanics Theory chapter.
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Layered Shell>Hyperelastic Material>Plasticity

Membrane>Linear Elastic Material>Plasticity

Membrane>Layered Linear Elastic Material>Plasticity

Membrane>Nonlinear Elastic Material>Plasticity

Truss>Linear Elastic Material>Plasticity

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, Nonlinear Elastic 

Material, or Hyperelastic Material node selected in the model tree:

Attributes>Plasticity

Set Variables

Use the Set Variables subnode to Plasticity, Porous Plasticity, Soil Plasticity, Concrete, 
Rocks, or Elastoplastic Soil Material, in order to reset plasticity variables according to 
a Setting condition that you define. When the Setting condition is satisfied, the plasticity 
variables are reset to the specified values.

S E T  V A R I A B L E S

Enter the Setting condition. This is a Boolean expression that will determine when the 
plastic variables are reset.

From the Equivalent plastic strain list, select Do not set or User defined. The default User 

defined value is zero. Depending on the type of plasticity model, set additional 
plasticity variables.

Plasticity
• When Small strains is selected in the Formulation list, specify the values for the 

components of the Plastic strain tensor. From the Plastic strain tensor list, select Do 

not set or User defined. The default User defined values are zero for all components 
of the Plastic strain tensor.

• When Large strains is selected in the Formulation list, specify the values for the 
components of the Plastic deformation gradient inverse. From the Plastic deformation 

gradient inverse list, select Do not set or User defined. The default User defined value 
is the identity tensor.

• If Armstrong-Frederick or Chaboche is selected from the Kinematic Hardening Model 
list, specify the values for the components of the Back strain tensor. From the Back 

strain tensor list, select Do not set or User defined. The default User defined values are 
zero for all components of the Back strain tensor.
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Porous Plasticity
• When Small strains is selected in the Formulation list, specify the values for the 

components of the Plastic strain tensor. From the Plastic strain tensor list, select Do 

not set or User defined. The default User defined values are zero for all components 
of the Plastic strain tensor.

• When Large strains is selected in the Formulation list, specify the values for the 
components of the Plastic deformation gradient inverse. From the Plastic deformation 

gradient inverse list, select Do not set or User defined. The default User defined value 
is the identity tensor.

• From the Equivalent plastic strain in the matrix material list, select Do not set or User 

defined. The default User defined value is zero.

• From the Porosity rate list, select Do not set or User defined. The default User defined 

value is zero.

Soil Plasticity, Concrete and Rocks
• From the Plastic strain tensor list, select Do not set or User defined. The default User 

defined values are zero for all components of the Plastic strain tensor.

Elastoplastic Soil Material
• From the Plastic strain tensor list, select Do not set or User defined. The default User 

defined values are zero for all components of the Plastic strain tensor.

• From the Consolidation pressure rate list, select Do not set or User defined. The 
default User defined value is zero.

• When Extended Barcelona Basic is selected from the Material model list, specify the 
value for the Suction rate. From the Suction rate list, select Do not set or User defined. 
The default User defined value is zero.

• When Hardening Soil is selected from the Material model list, specify the value for 
the Plastic shear strain. From the Plastic shear strain list, select Do not set or User 

defined. The default User defined value is zero.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Plasticity>Set Variables

Solid Mechanics>Linear Elastic Material>Porous Plasticity>Set Variables

Solid Mechanics>Linear Elastic Material>Soil Plasticity>Set Variables

Solid Mechanics>Linear Elastic Material>Concrete>Set Variables

Solid Mechanics>Linear Elastic Material>Rocks>Set Variables
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Solid Mechanics>Nonlinear Elastic Material>Plasticity>Set Variables

Solid Mechanics>Nonlinear Elastic Material>Porous Plasticity>Set Variables

Solid Mechanics>Nonlinear Elastic Material>Soil Plasticity>Set Variables

Solid Mechanics>Nonlinear Elastic Material>Concrete>Set Variables

Solid Mechanics>Nonlinear Elastic Material>Rocks>Set Variables

Solid Mechanics>Hyperelastic Material>Plasticity>Set Variables

Solid Mechanics>Elastoplastic Soil Material>Set Variables

Shell>Layered Linear Elastic Material>Plasticity>Set Variables

Layered Shell>Linear Elastic Material>Plasticity>Set Variables

Layered Shell>Hyperelastic Material>Plasticity>Set Variables

Membrane>Linear Elastic Material>Plasticity>Set Variables

Membrane>Layered Linear Elastic Material>Plasticity>Set Variables

Membrane>Nonlinear Elastic Material>Plasticity>Set Variables

Truss>Linear Elastic Material>Plasticity>Set Variables

Ribbon
Physics tab with Plasticity, Porous Plasticity, Soil Plasticity, Concrete, Rocks, or 
Elastoplastic Soil Material node selected in the model tree:

Attributes>Set Variables

Creep

Use the Creep subnode to define the creep properties of the material. This material 
model is available in the Solid Mechanics, Shell, Layered Shell, and Membrane 
interfaces, and can be used together with Linear Elastic Material, Layered Linear Elastic 

Material, Nonlinear Elastic Material, and Hyperelastic Material.

The Nonlinear Structural Materials Module or the Geomechanics Module are 
required, the available options depend on the used products. For details, see https://
www.comsol.com/products/specifications/.

See also Creep and Viscoplasticity in the Structural Mechanics Theory 
chapter.
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S H E L L  P R O P E R T I E S

C R E E P  M O D E L

Select the Formulation — Small strains or Large strains to apply either an additive or 
multiplicative decomposition between elastic and inelastic strains.

• When using creep together with a hyperelastic material, only the option Large strains 
is available.

• When using creep in the Shell, Membrane and Truss interfaces, only the option 
Small strains is available.

Select a Material model — Norton, Garofalo (hyperbolic sine), Nabarro-Herring, Coble, 
Weertman, or User defined.

Norton
For Norton, enter the following settings:

• Creep rate coefficient A.

• Reference stress ref. The default is 1 MPa.

• Stress exponent n.

Garofalo (Hyperbolic Sine)
For Garofalo (hyperbolic sine), enter the following settings:

• Creep rate coefficient A.

• Reference stress ref. The default is 1 MPa.

• Stress exponent n.

Nabarro–Herring
For Nabarro-Herring, enter the following settings:

• Volume diffusivity Dv.

This section is only present when Creep is used as a subnode to:

• Linear Elastic Material in the Layered Shell interface. See the 
documentation for the Creep node in the Layered Shell chapter.

• Layered Linear Elastic Material in the Shell interface. See the 
documentation for the Creep node in the Shell and Plate chapter.

• Layered Linear Elastic Material in the Membrane interface. See the 
documentation for the Creep node in the Membrane chapter.
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• Burgers vector b.

• Grain diameter d.

Coble
For Coble enter the following settings:

• Grain boundary diffusivity Dgb.

• Burgers vector b.

• Grain diameter d.

Weertman
For Weertman, enter the following settings:

• Diffusivity D.

• Burgers vector b.

• Stress exponent n.

• Reference stress ref. The default is 1 MPa.

User Defined
For User defined, enter an expression for the creep rate f as a function of the equivalent 
stress e. The default expression is <item>.sequ/1[Pa*s], where <item> is the name 
of the creep node.

For Norton, Garofalo (hyperbolic sine), Nabarro-Herring, Coble, Weertman, or User 

defined, select a Equivalent stress — von Mises (the default), Hill orthotropic, pressure, 
or User defined.

I S O T R O P I C  H A R D E N I N G  M O D E L

Select the isotropic hardening function h — None, Strain hardening, Time hardening, or 
User defined.

Strain hardening
For Strain hardening, enter the following settings:

• Hardening exponent m. The default is 0.

• Equivalent creep strain shift shift. The default is 1e-5.

• Reference time tref. The default is 1 h.

Time hardening
For Time hardening, enter the following settings:

• Hardening exponent m. The default is 0.
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• Time shift tshift. The default is 0 s.

• Reference time tref. The default is 1 h.

User defined
For User defined, enter an expression for the hardening function h as a function of 
equivalent creep strain ce, time t or any other variable in the model.

T H E R M A L  E F F E C T S

Select a thermal creep function — None, Arrhenius, or User defined.

Arrhenius
For Arrhenius, enter the following setting:

• Reference temperature Tref. The default value, Inf, corresponds to omitting the 
term with Tref in the Arrhenius expression.

• Creep activation energy Q. The default is 0 J/mol.

User defined
For User defined, enter an expression for the thermal creep function g as a function of 
temperature T or any other variable in the model.

T I M E  S T E P P I N G

Select a Method — Automatic, Backward Euler, Forward Euler, or Domain ODEs.

• The Backward Euler method is not available with the Layered Shell interface nor with 
the Layered Linear Elastic Material in the Shell and Membrane interfaces.

Automatic
The Automatic method corresponds to the backward Euler method except for the 
Layered Shell interface or when the Layered Linear Elastic Material is used. Domain 
ODEs are solved in these cases.

Backward Euler
For the Backward Euler method, enter the following settings:

• Maximum number of local iterations. To determine the maximum number of iteration 
in the Newton loop when solving the local creep equations.

• Absolute tolerance. To check the convergence of the local creep equations based on 
the step size in the Newton loop.
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• Relative tolerance. To check the convergence of the local creep equations based on 
the step size in the Newton loop. The final tolerance is computed based on the 
current solution of the local variable and the entered value.

• Residual tolerance. To check the convergence of the local creep equations based on 
the residual of each equation.

If both a step size and residual convergence check is requested, it is sufficient that one 
of the conditions is fulfilled. Setting either the Absolute tolerance and Relative tolerance 
or the Residual tolerance to zero ignores the corresponding convergence check. An 
error is returned if all are set to zero.

Forward Euler
For the Forward Euler method, enter the Maximum creep strain increment.

It is recommend to reset the solver settings to its default values when selecting the 
forward Euler method, since the method is only conditionally stable. This will add a 
Maximum step constraint to the Time-Dependent Solver based on an estimate of the 
stability limit used to update the creep equations. The value entered in the Maximum 

creep strain increment field is taken in to account, which can be used to improve the 
accuracy of the method. If the solver sequence cannot be reset, the stability limit can 
be entered manually in the Time-Dependent Solver settings by using the variable 
<item>.tmax, where <item> is the name of the creep node.

Domain ODEs
No settings are needed for the Domain ODEs method. However, this method adds 
degrees-of-freedom that are solved as part of the general solver sequence. The scaling 
of these fields can affect the convergence of the overall solution.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Creep

Solid Mechanics>Nonlinear Elastic Material>Creep

Shell>Layered Linear Elastic Material>Creep

Layered Shell>Linear Elastic Material>Creep

Membrane>Linear Elastic Material>Creep

To compute the energy dissipation caused by creep, enable the Calculate 

dissipated energy check box in the Energy Dissipation section of the parent 
material node (Linear Elastic Material or Nonlinear Elastic Material).
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Membrane>Layered Linear Elastic Material>Creep

Membrane>Nonlinear Elastic Material>Creep

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, or Nonlinear 

Elastic Material node selected in the model tree:

Attributes>Creep

Additional Creep

Use the Additional Creep subnode to define additional contributions to the creep model 
defined by the parent Creep node, such as primary or tertiary creep behavior. A Creep 
node can have any number of Additional Creep subnodes with different settings to 
model advanced creep mechanisms. Note that the time-integrated creep strain cr is 
computed for the sum of all creep rate contributions only; the same applies for the 
equivalent creep strain ce.

The Nonlinear Structural Materials Module or the Geomechanics Module are required 
for this feature, and the available options depend on the used products. For details, see 
https://www.comsol.com/products/specifications/.

S H E L L  P R O P E R T I E S

See also Creep and Viscoplasticity in the Structural Mechanics Theory 
chapter.

This section is only present when parent Creep node is used as a subnode 
to:

• Linear Elastic Material in the Layered Shell interface. See the 
documentation for the Additional Creep node in the Layered Shell 
chapter.

• Layered Linear Elastic Material in the Shell interface. See the 
documentation for the Additional Creep node in the Shell and Plate 
chapter.

• Layered Linear Elastic Material in the Membrane interface. See the 
documentation for the Additional Creep node in the Membrane 
chapter.
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C R E E P  M O D E L

The available settings in this section are the same as for the Creep node. The Equivalent 

stress setting has an additional option — From parent, which is default. When selected, 
the Additional Creep subnode will use the same equivalent stress e as in the parent 
Creep node.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Creep>Additional Creep

Solid Mechanics>Nonlinear Elastic Material>Creep>Additional Creep

Membrane>Linear Elastic Material>Creep>Additional Creep

Membrane>Nonlinear Elastic Material>Creep>Additional Creep

Ribbon
Physics tab with Creep node selected in the model tree:

Attributes>Additional Creep

Viscoplasticity

Use the Viscoplasticity subnode to define the viscoplastic properties of the material 
model. This material model is available in the Solid Mechanics, Layered Shell, Shell, 
and Membrane interfaces, and can be used together with Linear Elastic Material, Layered 

Linear Elastic Material, Nonlinear Elastic Material, and Hyperelastic Material.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.

See also Creep and Viscoplasticity in the Structural Mechanics Theory 
chapter.
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S H E L L  P R O P E R T I E S

V I S C O P L A S T I C I T Y  M O D E L

Select the Formulation — Small strains or Large strains to apply either an additive or 
multiplicative decomposition between elastic and viscoplastic strains.

• When using viscoplasticity together with a hyperelastic material, only the option 
Large strains is available.

• When using viscoplasticity in the Shell, Membrane and Truss interfaces, only the 
option Small strains is available.

Select a Material model — Anand, Bingham, Chaboche, Peric, Perzyna, or User defined. 
Then follow the instructions as below.

Anand
For Anand enter the following data:

• Viscoplastic rate coefficient A.

• Activation energy Q.

• Stress multiplier .

• Stress sensitivity m.

• Deformation resistance saturation coefficient ssat.

• Deformation resistance initial value sinit.

• Hardening coefficient h0.

• Hardening sensitivity a.

• Deformation resistance sensitivity n.

This section is only present when Viscoplasticity is used as a subnode to:

• Linear Elastic Material in the Layered Shell interface. See the 
documentation for the Viscoplasticity node in the Layered Shell 
chapter.

• Layered Linear Elastic Material in the Shell interface. See the 
documentation for the Viscoplasticity node in the Shell and Plate 
chapter.

• Layered Linear Elastic Material in the Membrane interface. See the 
documentation for the Viscoplasticity node in the Membrane chapter.
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Each of the material properties can either be defined obtained From material, or as User 

defined. In the latter case, enter a value or an expression.

Bingham
Enter the Viscosity . The default is 1 Pa s.

Chaboche
For Chaboche enter the following settings:

• Viscoplastic rate coefficient A.

• Reference stress ref. The default is 1 MPa.

• Stress exponent n.

Peric
For Peric enter the following settings:

• Viscoplastic rate coefficient A.

• Stress exponent n.

Perzyna
For Perzyna enter the following settings:

• Viscoplastic rate coefficient A.

• Reference stress ref. The default is 1 MPa.

For Bingham, Chaboche, Peric, Perzyna, or User defined viscoplasticity models, define the 
Plasticity Model, the Isotropic Hardening Model, and the Kinematic Hardening 
Model as needed.

Plasticity Model
The yield function defines the limit of the elastic regime, Fe ys  0, and sets the 
onset for viscoplastic deformation. Changing the equivalent stress measure allows to 
specify different criteria. See Defining the Yield Criterion for details.

Select the Equivalent stress — von Mises, Tresca, Hill orthotropic, or User defined to 
define the yield criterion.

• The default is von Mises criterion with associate plastic potential.

Viscoplastic Creep in Solder Joints: Application Library path 
Nonlinear_Structural_Materials_Module/Viscoplasticity/

viscoplastic_solder_joints
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• Select Tresca to use Tresca yield criterion. The plastic potential can be an Associated 
or non associated flow rule with the von Mises stress as plastic potential.

• Select Hill orthotropic to use Hill’s criterion. From the Specify list select either the 
Initial tensile and shear yield stresses ys0ij or Hill’s coefficients F, G, H, L, M, and 
N. The default for either selection uses values From material (if it exists) or User 

defined. The principal directions of orthotropy are inherited from the coordinate 
system selection in the parent node. See Expressions for the Coefficients F, G, H, 
L, M, N for details.

• For User defined enter a value or expression for the equivalent stress. Write any 
expression in terms of stress tensor components or its invariants in the efield.

For all viscoplastic models, the default Initial yield stress ys0 uses values From material 

and represents the stress level where viscoplastic deformation starts.

Select the Plastic potential Qvp related to the flow rule — Associated, von Mises, or User 

defined (non associated). Enter a User defined value in the Qvp field as needed.

Isotropic Hardening Model
Select the type of linear or nonlinear isotropic hardening model from the Isotropic 

hardening model list. See Isotropic Hardening for details.

• Select Perfectly plastic (ideal viscoplasticity) if the material can undergo viscoplastic 
deformation without any increase in yield stress.

• For Linear the default Isotropic tangent modulus ETiso uses values From material (if 
it exists) or User defined. The yield level ys is modified as hardening occurs, and it 
is related to the equivalent viscoplastic strain vpe as

 with

For the linear isotropic hardening model, the yield stress increases proportionally to 
the equivalent viscoplastic strain vpe. The Young’s modulus E is taken from the 
elastic material properties.

• Select Ludwik from the list to model nonlinear isotropic hardening. The yield level 
ys is modified by the power-law

the Strength coefficient k and the Hardening exponent n use values From material (if 
it exists) or User defined.

ys ys0 Eisovpe+= 1
Eiso
----------- 1

ETiso
-------------- 1

E
----–=

ys ys0 kvpe
n

+=
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• Select Johnson-Cook from the list to model strain rate dependent hardening. The 
Strength coefficient k, Hardening exponent n, Reference strain rate , and Strain rate 

strength coefficient C use values From material (if it exists) or User defined.

Select a Thermal softening model — No thermal softening, Power law, or User defined.

- For Power law, enter the Reference temperature Tref, the Melting temperature Tm, 
and the Temperature exponent, m.

- For User defined, enter the Thermal Softening function f(Th), the Reference 

temperature Tref, and the Melting temperature Tm. The softening function f(Th) 
typically depends on the built-in variable for the normalized homologous 
temperature Th, and has the properties f(0) = 0 and f(1) = 1. The variable is 
named using the scheme <physics>.<elasticTag>.<viscoplasticTag>.Th 
(for example solid.lemm1.vpl1.Th).

The yield stress and hardening function for the Johnson–Cook model is given by

In the case of power law softening, .

• For Swift nonlinear isotropic hardening, the Reference strain 0 and the Hardening 

exponent n use values From material (if it exists) or User defined. The yield level ys 
is modified by the power-law

• Select Voce from the list to model nonlinear isotropic hardening. The yield level ys 
is modified by the exponential law

the Saturation flow stress sat and the Saturation exponent  use values From material 
(if it exists) or User defined.

• For Hockett-Sherby nonlinear isotropic hardening, the Steady-state flow stress , 
the Saturation coefficient m, and the Saturation exponent n use values From material 
(if it exists) or User defined. The yield level ys is increased by the exponential law

ꞏ0

ys vpe  ys0 kvpe
n

+  1 C
ꞏvpe

ꞏ0
----------
 
 
 

log+
 
 
 

1 f Th – =

Th
T Tref–

Tm Tref–
-------------------------=

f Th  Th
m

=

ys ys0 1
vpe
0

----------+ 
 n

=

ys ys0 sat 1 e
vpe–

– 
 +=
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  919



920 |  C H A P T E R
• For Hardening function, the isotropic Hardening functionh(vpe) uses values From 

material or User defined. The yield level ys is modified as

This definition implies that the hardening function h(vpe) in the Material node 
must be zero at zero viscoplastic strain. In other words, ys  ys0 whenvpe  0. 
With this option it is possible to enter any nonlinear isotropic hardening curve. The 
hardening function can depend on more variables than the equivalent viscoplastic 
strain, for example the temperature. Select User defined to enter any function of the 
equivalent viscoplastic strain vpe. The variable is named using the scheme 
<physics>.evpe, for example, solid.evpe.

Kinematic Hardening Model
Select the type of kinematic hardening model from the Kinematic hardening model list. 
See Kinematic Hardening for details.

• Select No kinematic hardening when the material can undergo viscoplastic 
deformation without a shift in the yield surface.

• If Linear is selected as the Kinematic hardening model, the default Kinematic tangent 

modulus Ek uses values From material. This parameter is used to calculate the back 
stress b as:

 with

This is Prager’s linear kinematic hardening model, so the back stress b is 
collinear to the viscoplastic strain tensor vp.

• If Armstrong-Frederick is selected from the list, the default Kinematic hardening 

modulus Ck and Kinematic hardening parameter k use values From material. These 
parameters are used to calculate the back stress b from the rate equation

This is Armstrong–Frederick nonlinear kinematic hardening model.

• When Chaboche is selected from the Kinematic hardening model list, the default 
Kinematic hardening modulus C0 uses values From material. Add branches as needed 
to solve N rate equations for the back stresses:

ys ys0  ys0–  1 e
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For each Branch row, enter Ci (the hardening modulus of the branch i) in the 
Hardening modulus (Pa) column and i (the hardening parameter of the branch i) in 
the Hardening parameter (1) column.

Use the Add button ( ) and the Delete button ( ) to add or delete a row in the 
table. Use the Load from file button ( ) and the Save to file button ( ) to load 
and store data for the branches in a text file with three space-separated columns 
(from left to right): the branch number, the hardening modulus for that branch, and 
the hardening parameter for that branch.

The total back stress b is then computed from the sum

T H E R M A L  E F F E C T S

Select a thermal function g(T) — None, Arrhenius, or User defined, which acts as a 
multiplier for the viscoplastic rate.

Arrhenius
For Arrhenius, enter the following setting:

• Reference temperature Tref. The default value is 293.15 K.

• Activation energy Q. The default is 0 J/mol.

User defined
For User defined, enter an expression for g(T) as a function of temperature T or other 
variables in the model.

ꞏ b,i
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ꞏ
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T I M E  S T E P P I N G

Select a Method — Automatic, Backward Euler, or Domain ODEs.

Automatic
The Automatic method corresponds to the backward Euler method with predefined 
settings for the Newton loop used to solve the local equations.

Backward Euler
For the Backward Euler method, enter the following settings:

• Maximum number of local iterations. To determine the maximum number of iteration 
in the Newton loop when solving the local creep equations.

• Absolute tolerance. To check the convergence of the local creep equations based on 
the step size in the Newton loop.

• Relative tolerance. To check the convergence of the local creep equations based on 
the step size in the Newton loop. The final tolerance is computed based on the 
current solution of the local variable and the entered value.

• Residual tolerance. To check the convergence of the local creep equations based on 
the residual of each equation.

If both a step size and residual convergence check is requested, it is sufficient that 
either of the conditions are fulfilled. Setting either the Absolute tolerance and Relative 

tolerance or the Residual tolerance to zero ignores the corresponding convergence 
check. An error is returned if all are set to zero.

This section is not present when Viscoplasticity is used with:

• The Layered Shell interface.

• The Layered Linear Elastic Material or the Layered Hyperelastic Material 

in the Shell interface.

• The Layered Linear Elastic Material in the Membrane interface.

In the above cases, the Domain ODEs method is always used.
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Domain ODEs
No settings are needed for the Domain ODEs method. However, this method adds 
degrees-of-freedom that are solved as part of the general solver sequence. The scaling 
of these fields can affect the convergence of the overall solution.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Viscoplasticity

Solid Mechanics>Nonlinear Elastic Material>Viscoplasticity

Shell>Layered Linear Elastic Material>Viscoplasticity

Layered Shell>Linear Elastic Material>Viscoplasticity

Membrane>Linear Elastic Material>Viscoplasticity

Membrane>Layered Linear Elastic Material>Viscoplasticity

Membrane>Nonlinear Elastic Material>Viscoplasticity

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, or Nonlinear 

Elastic Material node selected in the model tree:

Attributes>Viscoplasticity

Porous Plasticity

Use the Porous Plasticity subnode to define the properties of a plasticity model for a 
porous material.

The Porous Plasticity node is only available with some COMSOL products (see https:/
/www.comsol.com/products/specifications/). The material model is available for 
3D, 2D, and 2D axisymmetry.

P O R O U S  P L A S T I C I T Y  M O D E L

Use this section to define the plastic properties of the porous material.

To compute the energy dissipation caused by viscoplasticity, enable the 
Calculate dissipated energy check box in the Energy Dissipation section of 
the parent material node (Linear Elastic Material or Nonlinear Elastic 

Material).
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Formulation
Select the Formulation — Small strains or Large strains to apply either an additive or 
multiplicative decomposition between elastic and plastic strains.

Material Model
Select the Material model for the porous plasticity criterion — Shima-Oyane, Gurson, 
Gurson-Tvergaard-Needleman, Fleck-Kuhn-McMeeking, FKM-GTN, or Capped 

Drucker-Prager.

Shima–Oyane
For Shima-Oyane enter the following data:

• Initial yield stress ys0.

• Shima-Oyane parameter .

• Shima-Oyane parameter .

• Shima-Oyane parameter m.

• Initial void volume fraction f0.

Gurson
For Gurson enter the following data:

• Initial yield stress ys0.

• Initial void volume fraction f0.

Gurson–Tvergaard–Needleman
For Gurson-Tvergaard-Needleman enter the following data:

• Initial yield stress ys0.

• Tvergaard correction coefficient q1.

• Tvergaard correction coefficient q2.

• Tvergaard correction coefficient q3.

• Initial void volume fraction f0.

• Select an Effective void volume fraction — Bilinear, Asymptotic, or User defined.

For Bilinear and Asymptotic, enter the following data:

• Critical void volume fraction fc.

• Failure void volume fraction ff.

For User defined, enter the effective void volume fraction as a function of for example 
the void volume fraction, variable <phys>.f.
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Fleck–Kuhn–McMeeking
For Fleck-Kuhn-McMeeking enter the following data:

• Initial yield stress ys0.

• Initial void volume fraction f0.

• Maximum void volume fraction fmax.

FKM–GTN
For FKM-GTN enter the following data:

• Initial yield stress ys0.

• Tvergaard correction coefficient q1.

• Tvergaard correction coefficient q2.

• Tvergaard correction coefficient q3.

• Initial void volume fraction f0.

• Maximum void volume fraction fmax.

• Void volume fraction cutoff for GTN model fGTN.

• Void volume fraction cutoff for FKM model fFKM.

Capped Drucker–Prager
For Capped Drucker-Prager enter the following data:

• Drucker-Prager alpha coefficient .

• Drucker-Prager k coefficient k.

• Initial void volume fraction f0.

The material properties use values From material (default) or User defined.

Void Growth
It is possible to Include void nucleation in tension or Include void growth in shear by 
selecting the corresponding check box. See the section Void Growth for details.

When Include void nucleation in tension is selected, enter the Void volume fraction of 

nucleating voids, the Standard deviation for void nucleation, and the Mean strain for void 

nucleation. For each property use the value From material or enter a User defined value 
or expression.

See also Porous Plasticity, Elliptic Cap, and Elliptic Cap With Hardening 
in the Structural Mechanics Theory chapter.
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When Include void growth in shear is selected, enter the Void growth rate parameter. Use 
the value From material or enter a User defined value or expression.

Isotropic Hardening Model
Select the type of linear or nonlinear isotropic hardening model from the Isotropic 

hardening model list.

• Select Perfectly plastic (ideal plasticity) if the material can undergo plastic 
deformation without any increase in yield stress. When Capped Drucker-Prager is 
selected, enter values or expressions to define the semi-axes of the cap under Elliptic 

cap parameter pa and Elliptic cap parameter pb.

• For Linear the default Isotropic tangent modulus ETiso uses values From material (if 
it exists) or User defined. The flow stress (yield level) fm is modified as hardening 
occurs, and it is related to the equivalent plastic strain in the porous matrix pm as

 with

For the linear isotropic hardening model, the flow stress (yield stress) increases 
proportionally to the equivalent plastic strain in the porous matrix pm. The Young’s 
modulus E is taken from the elastic material properties.

• Select Ludwik from the list to model nonlinear isotropic hardening. The flow stress 
(yield level) fm is modified by the power-law

The Strength coefficient k and the Hardening exponent n use values From material (if 
it exists) or User defined.

• For Power law isotropic hardening, the Hardening exponent n uses the value From 

material (if it exists) or User defined. The flow stress (yield level) fm is modified by 
the power-law

 for

The Young’s modulus E is taken from the elastic material properties.

• For Hardening function, the isotropic Hardening functionh(pm) uses values From 

material or User defined. The flow stress (yield level) fm is modified as

fm ys0 Eisopm+= 1
Eiso
----------- 1

ETiso
-------------- 1

E
----–=

fm ys0 kpm
n

+=


ys0

E
-----------

fm
ys0
----------- 
 

n
= fm ys0
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- This definition implies that the hardening function h(pm) in the Material node 
must be zero at zero plastic strain. In other words, fm  ys0 whenpm  0. 
With this option it is possible to enter any nonlinear isotropic hardening curve. 
The hardening function can depend on more variables than the equivalent plastic 
strain in the porous matrix, for example the temperature. Select User defined to 
enter any function of the equivalent plastic strain pm. The variable is named 
using the scheme <physics>.<elasticTag>.<plasticTag>.epm, for example, 
solid.lemm1.popl1.epm.

• For Exponential hardening, the cap in the Capped Drucker-Prager model evolves with 
the volumetric strain. Since the volumetric plastic strain pvol is negative in 
compression, the limit pressure pb in the cap increases from pb0 as hardening evolves

The Isotropic hardening modulus Kiso, the Maximum plastic volumetric strain
pvol,max and the Ellipse aspect ratio R use values From material (if it exists) or User 

defined. Enter a value or expression to define the initial semi-axis of the ellipse under 
the Initial location of the cap pb0

N O N L O C A L  P L A S T I C I T Y  M O D E L

In this section, nonlocal regularization can be added to the porous plasticity model. 
Select None, or Implicit Gradient. By selecting Implicit Gradient, regularization can 
added the equivalent matrix plastic strain and the void volume fraction. These two 
hardening variables describe different mechanisms and therefore often require 
different model parameters.

If Equivalent matrix plastic strain is selected, enter values for the:

• Length scale, matrix plastic strain, lint,m.

• Nonlocal coupling modulus, Hnl, which can be seen as a penalization of the difference 
between the local and nonlocal equivalent matrix plastic strains. A larger value will 
force the local equivalent matrix plastic strain to be closer to the nonlocal variable.

If Void volume fraction is selected, enter a value for the Length scale, void volume 

fraction, lint,f.

fm ys0 h pm +=

pb pb0 Kiso 1
pvol

pvol,max
--------------------+ 

 log+=
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The two length scales lint,m and lint,f can be chosen independent of each other, but 
should not exceed the mesh size. It is also not recommended to define them as 
functions of the mesh size.

D I S C R E T I Z A T I O N

This section is available with the Implicit gradient nonlocal plasticity model. Select the 
shape function for the Nonlocal equivalent matrix plastic strain pm,nl and the Nonlocal 

void volume fraction fnl — Automatic, Linear, Quadratic Lagrange, Quadratic serendipity, 
Cubic Lagrange, Cubic serendipity, Quartic Lagrange, Quartic serendipity, or Quintic 

Lagrange. The options available depends on the chosen order of the displacement field.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

A D V A N C E D

Enter the Maximum damage, which defines the residual stiffness of the model. The 
default value is 0.995.

It is possible to specify the maximum number of iterations and the relative tolerance 
used to solve the plastic flow rule. Enter the following settings:

• Maximum number of local iterations. To determine the maximum number of iteration 
in the Newton loop when solving the local plasticity equations. The default value is 
25 iterations.

• Relative tolerance. To check the convergence of the local plasticity equations based 
on the step size in the Newton loop. The final tolerance is computed based on the 
current solution of the local variable and the entered value. The default value is 1e-6.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

See also Nonlocal Plasticity in the Structural Mechanics Theory chapter.

See also Numerical Solution of the Elastoplastic Conditions in the 
Structural Mechanics Theory chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Porous Plasticity

Solid Mechanics>Nonlinear Elastic Material>Porous Plasticity

Membrane>Linear Elastic Material>Porous Plasticity

Membrane>Nonlinear Elastic Material>Porous Plasticity

Ribbon
Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the 
model tree:

Attributes>Porous Plasticity

Soil Plasticity

In the Soil Plasticity subnode you define the properties for modeling materials 
exhibiting soil plasticity. Soil Plasticity can be used together with Linear Elastic Material 
and Nonlinear Elastic Material. It is available with the Geomechanics Module. Soil 

Plasticity is available for 3D, 2D, and 2D axisymmetry.

The yield criteria are described in the theory section:

• The Drucker–Prager Criterion

• The Mohr–Coulomb Criterion

• The Matsuoka–Nakai Criterion

• The Lade–Duncan Criterion

S O I L  P L A S T I C I T Y

Select the Material model — Drucker-Prager, Mohr-Coulomb, Matsuoka-Nakai, or 
Lade-Duncan. Most values are taken From material. For User defined choices, enter other 
values or expressions.

To compute the energy dissipation caused by porous compaction, enable 
the Calculate dissipated energy check box in the Energy Dissipation section 
of the parent material node (Linear Elastic Material or Nonlinear Elastic 

Material).
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Drucker–Prager
In the standard Drucker–Prager formulation, the material parameters are given in 
terms of the  and k coefficients. Often material data is expressed in the parameters c 
and  used in the Mohr–Coulomb model. You can then choose to use there parameters 
instead. If so, select the Match to Mohr-Coulomb criterion check box (see The Mohr–
Coulomb Criterion). If this check box is selected, the default values for Cohesion c and 
the Angle of internal friction are taken From material.

If required, select the Use dilatation angle in plastic potential check box. If this check 
box is selected, then enter a value or expression for the Dilatation angle . Alternatively, 
select From material. The dilatation angle replaces the angle of internal friction when 
defining the plastic potential.

If the Match to Mohr-Coulomb criterion check box is not selected, then the default 
Drucker-Prager alpha coefficient and Drucker-Prager k coefficient are taken From material.

If required, select the Include elliptic cap check box. Select from the list the hardening 
model. When Perfectly plastic (no hardening) is selected, enter values or expressions to 
define the semi-axes of the ellipse under Elliptic cap parameter pa and Elliptic cap 

parameter pb. When Isotropic hardening is selected from the list, the default Isotropic 

hardening modulus Kiso, the Maximum plastic volumetric strain pvol,max, and the Ellipse 

aspect ratio R are taken From material (see Elliptic Cap With Hardening). Enter a value 
or expression to define the initial semi-axis of the ellipse under the Initial location of the 

cap pb0.

Mohr–Coulomb
The default Angle of internal friction  and Cohesion c are taken From material.

If required, select the Use dilatation angle in plastic potential check box. If this check 
box is selected, then enter a value or expression for the Dilatation angle . Alternatively, 
select From material. The dilatation angle replaces the angle of internal friction when 
defining the plastic potential.

Under Plastic potential select either Drucker-Prager matched at compressive meridian, 
Drucker-Prager matched at tensile meridian, or Associated.

If required, select the Include elliptic cap check box. Select from the list the hardening 
model. When Perfectly plastic (no hardening) is selected, enter values or expressions to 
define the semi-axes of the ellipse under Elliptic cap parameter pa and Elliptic cap 

parameter pb. When Isotropic hardening is selected from the list, the default Isotropic 

hardening modulus Kiso, the Maximum plastic volumetric strain pvol,max, and the Ellipse 

aspect ratio R are taken From material (see Elliptic Cap With Hardening). Enter a value 




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or expression to define the initial semi-axis of the ellipse under the Initial location of the 

cap pb0.

Matsuoka–Nakai
If required, select the Match to Mohr-Coulomb criterion check box. If this check box is 
selected, the default Angle of internal friction  is taken From material.

If the Match to Mohr-Coulomb criterion check box is not selected, then the default 
Matsuoka-Nakai mu coefficient  is taken From material.

Lade–Duncan
If required, select the Match to Mohr-Coulomb criterion check box. If this check box is 
selected, then enter a value or expression for the Angle of internal friction . 
Alternatively, select From material.

If the Match to Mohr-Coulomb criterion check box is not selected, then the default 
Lade-Duncan k coefficient k is taken From material.

T E N S I O N  C U T O F F

This section is only available with the Drucker-Prager and Mohr-Coulomb models

If required, select either None, Mean stress cutoff, or Principal stress cutoff.

When Mean stress cutoff is selected from the list, enter a value or expression for the 
Maximum mean stress m. Use this to constrain the soil plasticity model with an extra 
yield surface which limits the maximum pressure in tension.

When Principal stress cutoff is selected from the list, enter a value or expression for the 
Maximum tensile stress t. Use this to constrain the soil plasticity model with an extra 
yield surface, which limits the maximum principal tensile stress.





See also Soil Plasticity in the Structural Mechanics Theory chapter.

See also Tension Cutoff in the Structural Mechanics Theory chapter.
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N O N L O C A L  P L A S T I C I T Y  M O D E L

The default is None. Select Implicit Gradient to add nonlocal regularization to the 
equivalent plastic strain. Enter a value for the:

• Length scale, lint. The length scale should not exceed the maximum element size of 
the mesh.

• Nonlocal coupling modulus, Hnl. This stiffness is the penalization of the difference 
between the local and nonlocal variables. A larger value enforces the equivalent 
plastic strain pe to be closer to the nonlocal equivalent plastic strain pe,nl.

D I S C R E T I Z A T I O N

This section is available with the Implicit gradient nonlocal plasticity model. Select the 
shape function for the Nonlocal equivalent plastic strain pe,nl— Automatic, Linear, 
Quadratic Lagrange, Quadratic serendipity, Cubic Lagrange, Cubic serendipity, Quartic 

Lagrange, Quartic serendipity, or Quintic Lagrange. The available options depend on the 
order of the displacement field.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

A D V A N C E D

It is possible to specify the maximum number of iterations and the relative tolerance 
used to solve the plastic flow rule. Enter the following settings:

• Maximum number of local iterations. To determine the maximum number of iteration 
in the Newton loop when solving the local plasticity equations. The default value is 
25 iterations.

• Relative tolerance. To check the convergence of the local plasticity equations based 
on the step size in the Newton loop. The final tolerance is computed based on the 
current solution of the local variable and the entered value. The default value is 1e-6.

See also Nonlocal Plasticity in the Structural Mechanics Theory chapter.

• Deep Excavation: Application Library path Geomechanics_Module/Soil/

deep_excavation

• Flexible and Smooth Strip Footing on a Stratum of Clay: Application 
Library path Geomechanics_Module/Soil/flexible_footing
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To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Soil Plasticity

Solid Mechanics>Nonlinear Elastic Material>Soil Plasticity

Ribbon
Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the 
model tree:

Attributes>Soil plasticity

Concrete

In the Concrete subnode you define the properties for modeling materials with failure 
criteria representative of concrete. This material model can be used together with 
Linear Elastic Material and Nonlinear Elastic Material. It is available with the 
Geomechanics Module. Concrete is available for 3D, 2D, and 2D axisymmetry.

The failure criteria are described in the theory section:

• The Bresler–Pister Yield Criterion

• The Willam–Warnke Criterion

• The Ottosen Criterion

C O N C R E T E  M O D E L

Select the Material model— Bresler-Pister, Willam-Warnke, or Ottosen. The default 
values for the material parameters are taken From material. For User defined choices, 
enter other values or expressions.

Bresler–Pister
The defaults for the Tensile strength ts, Compressive strength cs, and Biaxial 

compressive strength bc are taken From material.

See also Numerical Solution of the Elastoplastic Conditions in the 
Structural Mechanics Theory chapter.
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Willam–Warnke
The defaults for the Tensile strength ts, Compressive strengthcs, and Biaxial 

compressive strength bc are taken From material.

Ottosen
The defaults for the Compressive strengthcs, Ottosen parameters a and b, Size factor 
k1, and Shape factor k2 are taken From material.

T E N S I O N  C U T O F F

If required, select either None or Principal stress cutoff.

When Principal stress cutoff is selected from the list, enter a value or expression for the 
Maximum tensile stress t. Use this to constrain the concrete model with an extra yield 
surface, which limits the maximum principal tensile stress.

A D V A N C E D

It is possible to specify the maximum number of iterations and the relative tolerance 
used to solve the plastic flow rule. Enter the following settings:

• Maximum number of local iterations. To determine the maximum number of iteration 
in the Newton loop when solving the local plasticity equations. The default value is 
25 iterations.

• Relative tolerance. To check the convergence of the local plasticity equations based 
on the step size in the Newton loop. The final tolerance is computed based on the 
current solution of the local variable and the entered value. The default value is 1e-6.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Concrete

See also Tension Cutoff in the Structural Mechanics Theory chapter.

See also Numerical Solution of the Elastoplastic Conditions in the 
Structural Mechanics Theory chapter.
 4 :  S O L I D  M E C H A N I C S



Solid Mechanics>Nonlinear Elastic Material>Concrete

Ribbon
Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the 
model tree:

Attributes>Concrete

Rocks

In the Rocks subnode you define the properties for modeling materials with failure 
criteria representative of rocks. This material model can be used together with Linear 
Elastic Material and Nonlinear Elastic Material. It is available with the Geomechanics 
Module. The Rocks subnode is available for 3D, 2D, and 2D axisymmetry.

The failure criteria are described in the theory section:

• The Original Hoek–Brown Criterion

• The Generalized Hoek–Brown Criterion

R O C K  M O D E L

Select the Material model — Original Hoek-Brown or Generalized Hoek-Brown. The 
default values for the material parameters are taken From material. For User defined 

choices, enter other values or expressions.

Original Hoek–Brown
The defaults for the Compressive strengthcs, Hoek-Brown parameter m, and 
Hoek-Brown parameter s are taken From material.

Generalized Hoek–Brown
The defaults for the Compressive strengthcs, Geological strength index GSI, 
Disturbance factor D, and Intact rock parameter mi are taken From material.

T E N S I O N  C U T O F F

If required, select either None or Principal stress cutoff.
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When Principal stress cutoff is selected from the list, enter a value or expression for the 
Maximum tensile stress t. Use this to constrain the rock model with an extra yield 
surface, which limits the maximum principal tensile stress.

A D V A N C E D

It is possible to specify the maximum number of iterations and the relative tolerance 
used to solve the plastic flow rule. Enter the following settings:

• Maximum number of local iterations. To determine the maximum number of iteration 
in the Newton loop when solving the local plasticity equations. The default value is 
25 iterations.

• Relative tolerance. To check the convergence of the local plasticity equations based 
on the step size in the Newton loop. The final tolerance is computed based on the 
current solution of the local variable and the entered value. The default value is 1e-6.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Rocks

Solid Mechanics>Nonlinear Elastic Material>Rocks

Ribbon
Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the 
model tree:

Attributes>Rocks

See also Tension Cutoff in the Structural Mechanics Theory chapter.

See also Numerical Solution of the Elastoplastic Conditions in the 
Structural Mechanics Theory chapter.
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Fiber

Add one or more Fiber nodes to add stiffness in specified directions to a solid material. 
The Fiber feature can be used together with Linear Elastic, Nonlinear Elastic or 
Hyperelastic materials. The assumption is that the volume of fibers is small when 
compared to the base material.

The Fiber node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/). The Fiber subnode is available for 3D, 
2D, and 2D axisymmetry.

F I B E R  M O D E L

From the Material list, select the Domain material (the default) or any other material to 
define the fiber’s properties. In most cases, you would use the domain material for the 
base material, and additional Material nodes without domain selection as the fiber 
material.

Linear Elastic Material or Nonlinear Elastic Material
Enter Young’s modulus Efiber and Density fiber. The defaults are taken From material. 
Select User defined to enter other values or expressions.

Enter the fiber Volume fraction vfiber. To be consistent with the underlying 
assumptions, it should not exceed a few percent.

Hyperelastic Material
Select a Material Model — Holzapfel-Gasser-Ogden, Linear elastic, or User defined. The 
default values of the required model parameters are taken From material.

• The Holzapfel-Gasser-Ogden model defines an exponential strain energy density 
Wfiber. The values for the Fiber stiffness k1, Model parameter k2, and Fiber dispersion 

k3 are as a default taken From material. Select User defined to enter other values or 
expressions.

• Select Linear elastic to use a linear elastic material to describe the fiber stiffness. Enter 
Young’s modulus Efiber and Density fiber. The defaults are taken From material. 
Select User defined to enter other values or expressions.

Enter the fiber Volume fraction vfiber. To be consistent with the underlying 
assumptions, it should not exceed a few percent.
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• If User defined is selected from the list, select a Material symmetry — Isotropic, 
Transversely isotropic, or Anisotropic.

Depending on the choice, different stretch invariants are available to define the Fiber 

strain energy density Wfiber. The default expression for Wfiber is the function 
0[Pa]*(item.IaCIe-1), where the variable <item>.IaCIe is the stretch invariant 
in the fiber direction, and <item> corresponds to the tags of the Fiber node, for 
example solid.hmm1.fib1. See Fibers for Hyperelastic Materials in the Structural 
Mechanics Theory chapter for details and more options.

Select the Stiffness in tension only check box in order to make the fibers contribute to 
the total stiffness only when the strain in the fibers is tensile.

Select the Contribute to total stress check box if the stress in the fibers should be added 
to the stress tensor of the parent material in an average sense. Usually, you do not want 
this, since the fiber stress would then affect other material options in the matrix 
material, such as plasticity.

O R I E N T A T I O N

Select a Fiber orientation from the list. The available choices are the axis directions of 
the coordinate system selected in the Coordinate System Selection section, or User 

defined. For User defined, enter a Direction. The direction vector a is interpreted in the 
selected coordinate system.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Fiber

Solid Mechanics>Nonlinear Elastic Material>Fiber

Solid Mechanics>Hyperelastic Material>Fiber

Ribbon
Physics tab with Linear Elastic Material, Nonlinear Elastic Material or Hyperelastic Material 
node selected in the model tree:

Attributes>Fiber

See also Distributed Fiber Models in the Structural Mechanics Theory 
chapter.
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Thermal Expansion (for Fibers)

When used together with Linear Elastic or Nonlinear Elastic materials, it is possible to 
model thermal expansion in the fibers when these have different thermal properties 
than the surrounding matrix. The assumption is that the volume of fibers is small when 
compared to the base material, and that thermal expansion (or contraction) occurs in 
the fiber direction only.

M O D E L  I N P U T S

The Volume reference temperature Tref is the temperature at which there are no thermal 
strains in the fibers. As a default, the value is obtained from a Common model input. You 
can also select User defined to enter a value or expression for the temperature locally.

The fiber Temperature T is by default obtained from a Common model input. You can 
also select an existing temperature variable from a heat transfer interface, if any 
temperature variables exist, or manually enter a value or expression by selecting User 

defined.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Select an Input type to specify how the thermal strains in the fibers should be modeled. 
The default is Secant coefficient of thermal expansion, in which case the thermal strain 
in the fibers is given by

Here, the secant coefficient of thermal expansion  can be temperature-dependent.

When Input type is Tangent coefficient of thermal expansion, the thermal strain in the 
fibers is given by

where t is the tangential coefficient of thermal expansion.

When Input type is Thermal strain, enter explicitly the thermal strain in the fibers dL as 
function of temperature.

In all three cases, the default is to take values From material. When entering data as 
User defined, enter the coefficient of the thermal expansion or the thermal strain in the 
fiber direction a, since thermal expansion is considered in the fiber direction only.

th,fib  T Tref– =

th,fib t   d
Tref

T

 
 
 

exp 1–=
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In all cases, the contribution to the thermal strain tensor is defined from the fiber 
Volume fraction vfiber, the thermal strain in the fibers th,fib, and the fiber direction a

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Fiber>Thermal Expansion

Solid Mechanics>Nonlinear Elastic Material>Fiber>Thermal Expansion

Ribbon
Physics tab with Fiber node selected in the model tree:

Attributes>Thermal Expansion

Thermal Expansion (for Materials)

Use the Thermal Expansion subnode to add an internal thermal strain caused by changes 
in temperature.

The Thermal Expansion subnode is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

S H E L L  P R O P E R T I E S

th vfiberth,fiba a=

See also Thermal Expansion in Fibers in the Structural Mechanics Theory 
chapter.

This section is only present when Thermal Expansion is used as a subnode 
to:

• Linear Elastic Material in the Layered Shell interface. See the 
documentation for the Thermal Expansion (for Materials) node in the 
Layered Shell chapter.

• Layered Linear Elastic Material in the Membrane interface. See the 
documentation for the Thermal Expansion (for Materials) node in the 
Membrane chapter.
 4 :  S O L I D  M E C H A N I C S

https://www.comsol.com/products/specifications/


This section is only present in the in the Layered Shell interface, where it is described 
in the documentation for the Thermal Expansion (for Materials) node.

M O D E L  I N P U T S

The Volume reference temperature Tref is the temperature at which there are no thermal 
strains. As a default, the value is obtained from a Common model input. You can also 
select User defined to enter a value or expression for the temperature locally.

The Temperature T is by default obtained from a Common model input. You can also 
select an existing temperature variable from a heat transfer interface (for example, 
Temperature (ht/sol1)), if any temperature variables exist, or manually enter a value or 
expression by selecting User defined.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Select an Input type to specify how the thermal strain is entered. The default is Secant 

coefficient of thermal expansion, in which case the thermal strain is given by

here, the secant coefficient of thermal expansion  can be temperature dependent.

Thermal strains are proportional to the temperature, while structural 
strains are computed from the gradient of the displacement field. It is a 
good practice to match the discretization order of thermal and structural 
strains.

When adding a Thermal Expansion subnode in a Layered Shell or 
Membrane interface, and the temperature field is computed by another 
physics interface (often the Heat Transfer in Shells interface); use a 
discretization one order lower for the temperature field than what is used 
for the displacement field.

A consistent strain discretization is automatically set up for the Solid 
Mechanics interface.

See also

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.

th  T Tref– =
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When Input type is Tangent coefficient of thermal expansion, the thermal strain is given 
by

where t is the tangential coefficient of thermal expansion.

When Input type is Thermal strain, enter the thermal strain dL as function of 
temperature explicitly.

In all three cases, the default is to take values From material. When entering data as 
User defined, select Isotropic, Diagonal, or Symmetric to enter one or more components 
for a general coefficient of the thermal expansion tensor or the thermal strain tensor. 
When a nonisotropic input is used, the axis orientations are given by the coordinate 
system selection in the parent node.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Thermal Expansion

Solid Mechanics>Nonlinear Elastic Material>Thermal Expansion

Solid Mechanics>Elastoplastic Soil Material>Thermal Expansion

Solid Mechanics>Hyperelastic Material>Thermal Expansion

th t   d
Tref

T

 
 
 

exp 1–=

A heat source term will be created by this node. It can be accessed from 
a Thermoelastic Damping node in a heat transfer interface in order to 
incorporate the reversed effect that heat is produced by changes in stress. 
The heat source term is only present when Structural Transient Behavior 
is set to Include inertial terms.

• Temperature-Dependent Material Data

• Thermoelastic Damping

• Entropy and Thermoelasticity

Thermal Stresses in a Layered Plate: Application Library path
Structural_Mechanics_Module/Thermal-Structure_Interaction/layered_plate

MEMS_Module/Actuators/layered_plate
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Solid Mechanics>Piezoelectric Material>Thermal Expansion

Solid Mechanics>Piezomagnetic Material>Thermal Expansion

Layered Shell>Linear Elastic Material>Thermal Expansion

Layered Shell>Hyperelastic Material>Thermal Expansion

Layered Shell>Piezoelectric Material>Thermal Expansion

Membrane>Linear Elastic Material>Thermal Expansion

Membrane>Layered Linear Elastic Material>Thermal Expansion

Membrane>Nonlinear Elastic Material>Thermal Expansion

Membrane>Hyperelastic Material>Thermal Expansion

Multibody Dynamics>Linear Elastic Material>Thermal Expansion

Ribbon
Physics tab with Linear Elastic Material, Hyperelastic Material, Nonlinear Elastic Material, 
Elastoplastic Soil Material, Piezoelectric Material, or Piezomagnetic Material node selected 
in the model tree:

Attributes>Thermal Expansion

Hygroscopic Swelling

Hygroscopic swelling is an internal strain caused by changes in moisture content. This 
strain can be written as

where h is the coefficient of hygroscopic swelling,Mm is the molar mass, cmo is the 
moisture concentration, and cmo,ref is the strain-free reference concentration.

The Hygroscopic Swelling subnode is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

hs hMm cmo cmo,ref– =
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S H E L L  P R O P E R T I E S

M O D E L  I N P U T S

From the Concentration c list, select an existing concentration variable from another 
physics interface, if any concentration variables exist. For User defined enter a value or 
expression for the concentration. The unit for the input depends on the setting of 
Concentration type in the Hygroscopic Swelling Properties section. Only concentration 
variables having the chosen physical dimension are available in the Concentration list.

H Y G R O S C O P I C  S W E L L I N G  P R O P E R T I E S

In the Concentration type list, select Molar concentration or Mass concentration, 
depending on the units used for the concentration.

Enter a Strain reference concentration cref . This is the concentration at which there are 
no strains due to hygroscopic swelling.

This section is only present when Hygroscopic Swelling is used as a subnode 
to:

• Linear Elastic Material in the Layered Shell interface. See the 
documentation for the Hygroscopic Swelling node in the Layered Shell 
chapter.

• Layered Linear Elastic Material in the Membrane interface. See the 
documentation for the Hygroscopic Swelling node in the Membrane 
chapter.

Hygroscopic strains are proportional to the concentration, while 
structural strains are computed from the gradient of the displacement 
field. It is a good practice to match the discretization order of hygroscopic 
and structural strains.

When adding a Hygroscopic swelling subnode in a Layered Shell or 
Membrane interface, and the concentration field is computed by another 
physics interface; use a discretization one order lower for the 
concentration field than what is used for the displacement field.

A consistent strain discretization is automatically set up for the Solid 
Mechanics interface.
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If Molar concentration is selected as the Concentration type, enter also the Molar mass of 
the fluid, Mm. The default value is 0.018 kg/mol, which is the molar mass of water.

The default Coefficient of hygroscopic swelling h uses values From material. For 
User defined, select Isotropic, Diagonal, or Symmetric from the list to enter one or more 
components for a general coefficient of hygroscopic swelling tensor h. The default 
value for the User defined case is 1.5e-4 m3/kg. When a nonisotropic coefficient of 
hygroscopic swelling is used, the axis orientations are given by the coordinate system 
selection in the parent node.

The Include moisture as added mass check box is selected by default. When selected, 
the mass of the fluid is included in a dynamic analysis, and when using mass 
proportional loads. It will also contribute when computing mass properties.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Hygroscopic Swelling

Solid Mechanics>Nonlinear Elastic Material>Hygroscopic Swelling

Solid Mechanics>Hyperelastic Material>Hygroscopic Swelling

Layered Shell>Linear Elastic Material>Hygroscopic Swelling

Layered Shell>Hyperelastic Material>Hygroscopic Swelling

Membrane>Linear Elastic Material>Hygroscopic Swelling

Membrane>Layered Linear Elastic Material>Hygroscopic Swelling

Membrane>Nonlinear Elastic Material>Hygroscopic Swelling

Membrane>Hyperelastic Material>Hygroscopic Swelling

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, Nonlinear Elastic 

Material, or Hyperelastic Material node selected in the model tree:

Attributes>Hygroscopic Swelling

Intercalation Strain

Intercalation strain is an internal volumetric strain that occurs as a result of the 
insertion of species (atoms) into interstitial sites of a host electrode material, for 
instance intercalation of lithium atoms in graphite in lithium-ion battery electrodes.

The volumetric strain due to intercalation reads
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where V is the change in volume due to intercalation, and V0 is the reference volume.

For small strains, the intercalation strain tensor is

where I is the identity tensor. In a geometrically nonlinear context, the intercalation 
strain is represented by a deformation gradient,

The Intercalation Strain subnode is only available with the Battery Design Module, see 
https://www.comsol.com/products/specifications/).

I N T E R C A L A T I O N  S T R A I N

Select how to define the Volumetric strain, V/V0, — From material or User defined.

When From material is selected, the material property Volumetric strain is used. The 
dependency on the concentration is then passed to the material using the input in the 
Model Input section.

For User defined, enter an expression for the volumetric strain as function of a 
concentration variable. As the strain is given explicitly, such an expression should be a 
function of a concentration variable.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Intercalation Strain

Solid Mechanics>Nonlinear Elastic Material>Intercalation Strain

Ribbon
Physics tab with Linear Elastic Material or Nonlinear Elastic Material node selected in the 
model tree:

Attributes>Intercalation Strain

ic, vol
V
V0
--------=

ic
1
3
---ic, volI=

Fic 1 V
V0
--------+ 

 
1
3
---

I=
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Initial Stress and Strain

You can add the Initial Stress and Strain subnode to several material models, in order 
to specify the stress or strain state in the structure before applying any constraint or 
load. The values given are not initial values in the mathematical sense, but rather a 
contribution to the constitutive relation.

The Initial Stress and Strain subnode is only available with some COMSOL products 
(see https://www.comsol.com/products/specifications/).

S H E L L  P R O P E R T I E S

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes. The given initial stresses 
and strains are interpreted in this system.

I N I T I A L  S T R E S S  A N D  S T R A I N

Enter values or expressions for the Initial stress S0 and Initial strain 0. For both, enter 
the diagonal and off-diagonal components (based on space dimension):

• For a 3D Initial stress model, diagonal components S0x, S0y, and S0z and 
off-diagonal components S0xy, S0yz, and S0xz, for example.

• For a 3D Initial strain model, diagonal components 0x, 0y, and 0z and off-diagonal 
components 0xy, 0yz, and 0xz, for example.

In many cases Initial Stress and Strain and External Stress are 
interchangeable when prescribing stresses, but you can find some more 
options in the latter.

This section is only present when Initial Stress and Strain is used in the 
Layered Shell interface. See the documentation for the Initial Stress and 
Strain node in the Layered Shell chapter.
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In a geometrically nonlinear analysis, the stresses should be interpreted as Second 
Piola–Kirchhoff stresses, and the strains should be interpreted as Green–Lagrange 
strains.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Initial Stress and Strain

Solid Mechanics>Nonlinear Elastic Material>Initial Stress and Strain

Solid Mechanics>Elastoplastic Soil Material>Initial Stress and Strain

Solid Mechanics>Piezoelectric Material>Initial Stress and Strain

Solid Mechanics>Piezomagnetic Material>Initial Stress and Strain

Solid Mechanics>Shape Memory Alloy>Initial Stress and Strain

Layered Shell>Linear Elastic Material>Initial Stress and Strain

Multibody Dynamics>Linear Elastic Material>Initial Stress and Strain

Ribbon
Physics tab with Linear Elastic Material, Nonlinear Elastic Material, Elastoplastic Soil 

Material, Piezoelectric Material, Piezomagnetic Material, or Shape Memory Alloy node 
selected in the model tree:

Attributes>Initial Stress and Strain

External Stress

You can add the External Stress subnode to several material models, in order to specify 
an additional stress contribution which is not part of the constitutive relation. The 
external stress can be added to the total stress tensor, or act only as an extra load 
contribution.

• For details about initial stresses and strains, see Inelastic Strain 
Contributions and Initial Stresses and Strains.

• For details about the different strain measures, see Deformation 
Measures.

• For details about the different stress measures, see Defining Stress.

For an example of adding initial stresses, see Prestressed Micromirror: 
Application Library path MEMS_Module/Actuators/micromirror
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The External Stress subnode is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

S H E L L  P R O P E R T I E S

E X T E R N A L  S T R E S S

Select a Stress input — Stress tensor (Material), Stress tensor (Spatial), Stress tensor 

(Nominal), Pore pressure, or In situ stress.

• When Stress tensor (Material) is selected, you enter the external stress in the form of 
a second Piola–Kirchhoff stress tensor. The External stress tensor list will contain all 
stress tensors announced by any physics interface, and also the entry User defined. 
When User defined is selected, you can enter the data for the External stress tensor 
Sext as Isotropic, Diagonal, or Symmetric depending on the properties of the tensor. 
The tensor components are interpreted in the selected coordinate system. If a stress 
tensor announced by a physics interface is selected, the coordinate system setting is 
ignored — the orientation is handled internally. Choose a Contribution type — Add 

to stress tensor, Load contribution only, or Residual stress — to determine the effect 
of the contribution.

• When Stress tensor (Spatial) is selected, you enter the external stress in the form of 
first Cauchy stress tensor. The components are interpreted in the selected 
coordinate system. Depending on the properties of the tensor, you can enter the 
data for the External stress tensor ext as Isotropic, Diagonal, or Symmetric. Choose a 
Contribution type — Add to stress tensor, Load contribution only, or Residual stress — 
to determine the effect of the contribution.

• When Stress tensor (Nominal) is selected, you enter the external stress in the form of 
first Piola–Kirchhoff stress tensor. The components are interpreted in the selected 
coordinate system. You can enter the data for the External stress tensor Pext as a full 

In many cases External Stress and Initial Stress and Strain are 
interchangeable when prescribing stresses. In Initial Stress and Strain, the 
given stress is however always added to the stress tensor.

This section is only present when External Stress is used in the Layered 
Shell interface. See the documentation for the External Stress node in the 
Layered Shell chapter.
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tensor that represents current force per undeformed area. The contribution acts as 
external load.

• When Pore pressure is selected, the Absolute pressure drop down menu will always 
contain the entry User defined, in which case you manually enter a value or an 
expression for the absolute pressure pA. If there are other physics interfaces (like 
Darcy’s Law) that compute and announce a pressure variable, such variables are also 
present in the list. You can also enter a Reference pressure level pref, which is the 
pressure level at which the pore pressure does not give any stress contribution. Enter 
the Biot-Willis coefficient aB to specify the fraction of the pore pressure to use. As a 
default, its value is taken From material. Choose User defined to enter another value 
or expression. When using Pore pressure, there is no contribution to the stress 
tensor, the only effect of the pressure is as a load.

• When In situ stress is selected, you enter the external stress in the form of Cauchy 
stress tensor. The tensor components are interpreted in the selected coordinate 
system. You can enter the data for the External stress tensor ext as Isotropic, 
Diagonal, or Symmetric. When using In situ stress, there are both contributions to 
the stress tensor, as well as a body load.

• Selecting a stress tensor announced by the same physics interface as 
where the External Stress node is added, will result in an error 
(‘Circular variable dependency detected’). This operation 
would imply that the computed stress depends on itself.

• You can use a stress tensor from the same physics interface, but a 
previous solution step. Select the User defined input type and enter 
expressions where the withsol operator is used to point to the intended 
solution.

• Since all stress tensor representations coincide in a geometrically linear 
analysis, Stress tensor (Spatial) is needed only in the case of a 
geometrically nonlinear analysis. The stress tensor is entered using a 
Cauchy stress tensor representation, and is internally transformed to a 
Second Piola–Kirchhoff stress tensor.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>External Stress

Solid Mechanics>Nonlinear Elastic Material>External Stress

Solid Mechanics>Elastoplastic Soil Material>External Stress

Solid Mechanics>Hyperelastic Material>External Stress

Solid Mechanics>Shape Memory Alloy>External Stress

Layered Shell>Linear Elastic Material>External Stress

Layered Shell>Hyperelastic Material>External Stress

Membrane>Linear Elastic Material>External Stress

Membrane>Nonlinear Elastic Material>External Stress

Membrane>Layered Elastic Material>External Stress

Membrane>Hyperelastic Material>External Stress

Ribbon
Physics tab with Linear Elastic Material, Nonlinear Elastic Material, Elastoplastic Soil 

Material, Hyperelastic Material, or Shape Memory Alloy node selected in the model tree:

Attributes>External Stress

The External stress subnode can be used to account for the effect of pore 
pressure in a porous material in a Layered Shell interface.

When the pore pressure distribution is computed by another physics 
interface (often the Layered Darcy’s Law interface), use a discretization 
for the fluid pressure that is one order lower than what is used for the 
displacement field. The discretization order of stresses in the structural 
problem will then be consistent with that of the added pressure.

A consistent strain discretization is automatically set up for the Solid 
Mechanics interface.

• For theory, see External Stress.

• For details about the different stress measures, see Defining Stress.

For an example of how the External Stress node is used to describe in situ 
stresses, see Deep Excavation: Application Library path
Geomechanics_Module/Soil/deep_excavation
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External Strain

The External Strain subnode allows you to provide inelastic strain contributions to the 
material models Linear Elastic Material, Nonlinear Elastic Material, and Hyperelastic 
Material on a variety of formats, including using external coded functions.

The External Strain subnode is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

S H E L L  P R O P E R T I E S

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a Coordinate system. All inputs that you give below are interpreted in the given 
coordinate system. This also implies that external code should assume that strains are 
passed with its local orientations. Deformation gradients are rotated by the local 
system in both indices.

E X T E R N A L  S T R A I N

Select the type of Strain input — External material, Strain tensor, Deformation gradient, 
Deformation gradient, inverse, or Stretches.

• The option Strain tensor is not available for a Hyperelastic Material.

• The option External material is not available in the Layered Shell interface.

External Material
For External material, the computation of an additional inelastic strain contribution is 
delegated to external code that has been compiled into a shared library. External 
libraries must first be imported into an External Material node under Global 

Definitions>Materials.

Select an External material from the list of compatible external materials added under 
Global Definitions>Materials.

For a material to be compatible with this External Strain subnode, its Interface type 
must be set to a type whose required input quantities are all defined in this node. 
Allowed required inputs include Green–Lagrange strains, the deformation gradient, 
second Piola–Kirchhoff stress as well as all standard model inputs. Select Inelastic 

This section is only present when External Strain is used in the Layered 
Shell interface. See the documentation for the External Strain node in the 
Layered Shell chapter.
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residual quantity — Strain or Deformation gradient to define the type of quantity by 
which you want communicate with the external code.

• If the Interface type in the External material node is Inelastic residual strain, then 
select Strain.

• If the Interface type in the External material node is Inelastic residual deformation, 
then select Deformation gradient. This is the only option for a hyperelastic material.

Strain Tensor
For Strain tensor, enter an inelastic strain contribution ext. From the Strain tensor list, 
you can choose User defined or any strain tensor that is announced by another physics 
interface. If you select User defined, enter values or expressions for the upper diagonal 
part of the symmetric strain tensor.

Deformation Gradient
For Deformation gradient, enter an inelastic deformation gradient contribution Fext. 
From the External deformation gradient list, you can choose User defined or any 
deformation gradient tensor that is announced by another physics interface. If you 
select User defined, enter values or expressions for the components of the deformation 
gradient tensor.

Deformation Gradient, Inverse
For Deformation gradient, inverse, enter an inelastic inverse deformation gradient 
contribution . From the External deformation gradient inverse list, you can choose 
User defined or any inverse deformation gradient tensor that is announced by another 
physics interface. If you select User defined, enter values or expressions for the 
components of the inverse deformation gradient tensor.

Stretches
For Stretches, enter values or expressions for the three principal stretches. Entering 
data on this form is convenient for some simple geometries and strain states, but in 
general it is difficult to provide suitable a coordinate system for the principal 
orientations.

Fext
1–
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The External Strain node is only available with some COMSOL products (see https:/
/www.comsol.com/products/specifications/).

• Selecting a tensor announced by the same physics interface as where 
the External Strain node is added, may result in an error (‘Circular 
variable dependency detected’). This operation is usually 
meaningless.

• You can use a tensor from the same physics interface, but from a 
previous solution step. Select the User defined input type and enter 
expressions where the withsol operator is used to point to the intended 
solution.

• If you select Deformation gradient form the Strain input list, and the 
Additive strain decomposition check box is selected in the parent 
material node during a geometrically nonlinear study step, the Green–
Lagrange strain tensor is computed from

• If you select Deformation gradient form the Strain input list when 
engineering strains are expected, the engineering strain tensor is 
computed from

This is the case if the study step is geometrically linear, or when the 
Geometrically linear formulation check box is selected in the parent 
material node.

• If you select Strain tensor from the Strain input list, and the parent 
material node operates with multiplicative strain decomposition, the 
external strain is converted into a deformation gradient using the 
infinitesimal strain assumption

ext
1
2
--- Fext

T Fext I– =

ext
1
2
--- Fext Fext

T
+  I–=

Fext I ext+=
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>External Strain

Solid Mechanics>Nonlinear Elastic Material>External Strain

Solid Mechanics>Hyperelastic Material>External Strain

Solid Mechanics>Shape Memory Alloy>External Strain

Shell>Layered Hyperelastic Material>External Strain

Layered Shell>Linear Elastic Material>External Strain

Layered Shell>Hyperelastic Material>External Strain

Ribbon
Physics tab with Linear Elastic Material, Nonlinear Elastic Material, Hyperelastic Material, 
or Shape Memory Alloy node selected in the model builder tree:

Attributes>External Strain

Inelastic Strain Rate

The Inelastic Strain Rate node allows to enter inelastic strain contributions to the Linear 

Elastic Material, Nonlinear Elastic Material, and Hyperelastic Material models on a variety 
of formats. As opposed to the External Strain feature, the inelastic contribution is given 
as a strain rate, and the inelastic contribution is added after integrating this rate in time.

The Inelastic Strain Rate node is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/). The node is available for 3D, 
2D, and 2D axisymmetry.

See also

• Using External Materials

• External Material and Working with External Materials in the 
COMSOL Multiphysics Reference Manual.
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  955

https://www.comsol.com/products/specifications/


956 |  C H A P T E R
S H E L L  P R O P E R T I E S

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a Coordinate system. All inputs are interpreted in the given coordinate system. 
This also implies that external code should assume that strains are passed with its local 
orientations. Deformation gradients are rotated by the local system in both indices.

I N E L A S T I C  S T R A I N

Select the type of Strain input — Strain tensor, Deformation gradient, Deformation 

gradient, inverse, or Stretches.

• The option Strain tensor is not available for a Hyperelastic Material or Layered 

Hyperelastic.

• The options Deformation gradient, Deformation gradient, inverse, and Stretches are 
not available with the Layered Linear Elastic Material in the Shell interface.

I N I T I A L  V A L U E

Enter an initial value for the inelastic quantity as specified by the Strain input setting.

This section is only present when Inelastic Strain Rate is used as a subnode 
to:

• Linear Elastic Material in the Layered Shell interface. See the 
documentation for the Inelastic Strain Rate node in the Layered Shell 
chapter.

• Layered Linear Elastic Material and Layered Hyperelastic Material in the 
Shell interface. See the documentation for the Inelastic Strain Rate 
node in the Shell and Plate chapter.

• Layered Linear Elastic Material in the Membrane interface. See the 
documentation for the Inelastic Strain Rate node in the Membrane 
chapter.
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T I M E  S T E P P I N G

Select a Method — Automatic, Backward Euler, or Domain ODEs.

Automatic
The Automatic option corresponds to the backward Euler method except with 
predefined settings for the Newton loop used to solve the local equations.

Backward Euler
For the Backward Euler method, enter the following settings:

• Maximum number of local iterations. To determine the maximum number of 
iterations in the Newton loop when solving the local time-dependent equations.

• Absolute tolerance. To check the convergence of the local equations based on the 
step size in the Newton loop.

• Relative tolerance. To check the convergence of the local equations based on the step 
size in the Newton loop. The final tolerance is computed based on the current 
solution of the local variable and the entered value.

• Residual tolerance. To check the convergence of the local equations based on the 
residual of each equation.

If both a step size and residual convergence check is requested, it is sufficient that 
either of the conditions are fulfilled. Setting either the Absolute tolerance and Relative 

tolerance or the Residual tolerance to zero ignores the corresponding convergence 
check. An error is returned if all are set to zero.

This section is not present when Inelastic Strain Rate is used with:

• The Layered Shell interface.

• The Layered Linear Elastic Material and Layered Hyperelastic Material in 
the Shell interface.

• The Layered Linear Elastic Material in the Membrane interface.

In the above cases, the domain ODEs method is always used.
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  957



958 |  C H A P T E R
Domain ODEs
No settings are needed for the Domain ODEs method. However, this method adds 
degrees-of-freedom that are solved as part of the general solver sequence. The scaling 
of these fields can affect the convergence of the overall solution

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Inelastic Strain Rate

Solid Mechanics>Nonlinear Elastic Material>Inelastic Strain Rate

Solid Mechanics>Hyperelastic Material>Inelastic Strain Rate

Shell>Layered Linear Elastic Material>Inelastic Strain Rate

Shell>Layered Hyperelastic Material>Inelastic Strain Rate

Layered Shell>Linear Elastic Material>Inelastic Strain Rate

Layered Shell>Hyperelastic Material>Inelastic Strain Rate

Membrane>Linear Elastic Material>Inelastic Strain Rate

Membrane>Layered Linear Elastic Material>Inelastic Strain Rate

Membrane>Hyperelastic Material>Inelastic Strain Rate

Membrane>Nonlinear Elastic Material>Inelastic Strain Rate

Ribbon
Physics tab with Linear Elastic Material, Nonlinear Elastic Material, Hyperelastic Material, 
Layered Linear Elastic Material or Layered Hyperelastic Material node selected in the 
model builder tree:

Attributes>Inelastic Strain Rate

Damage

Use the Damage subnode to model damage and cracking in brittle materials according 
to various criteria. It is available with the Linear Elastic Material in the Solid Mechanics 
and Layered Shell interfaces, and with the Layered Linear Elastic Material in the Shell 
interface. Phase field damage is also available for Hyperelastic Material in the Solid 
Mechanics interface.

See also Inelastic Strain Rate in the Structural Mechanics Theory chapter.
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The Damage subnode is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/). Damage is available for 3D, 2D, and 2D 
axisymmetry.

S H E L L  P R O P E R T I E S

D A M A G E

Select the type of Damage model — Scalar damage, Mazars damage for concrete, or Phase 

field damage. Then follow the instructions below.

Scalar Damage
Select the type of Equivalent strain — Rankine, stress; Rankine, strain; Smooth Rankine, 

stress; Smooth Rankine, strain; Norm of elastic strain tensor; or User defined. See 
Strain-based Damage Models for details.

The Activate damage in compression check box is available for the Rankine, stress; 
Rankine, strain; Smooth Rankine, stress; Smooth Rankine, strain; or User defined 
equivalent strain definitions, and it is not selected by default. When selected, the 
damage evolution law is applied on the total undamaged stress tensor.

Select the type of Damage evolution — Linear strain softening, Exponential strain 

softening, Polynomial strain softening, Multilinear strain softening, or User defined. See 
Damage Evolution for details.

• For Linear strain softening, Polynomial strain softening, Multilinear strain softening or 
Exponential strain softening enter the Tensile strength ts, the default is to take the 
value From material. Change to User defined to enter other value or expression.

• For Linear strain softening or Exponential strain softening select the type of Strain 

softening input and enter the Fracture energy per area Gf, the Fracture energy per 

volume gf, or the Strain softening parameterf accordingly. The default is to take the 
value From material. Change to User defined to enter other value or expression. The 
available options depend on the spatial regularization method selected.

• For Multilinear strain softening, enter the Shape factor . The default value is 0.5.

This section is only present when Damage is used as a subnode to:

• Linear Elastic Material in the Layered Shell interface. See the 
documentation for the Damage node in the Layered Shell chapter.

• Layered Linear Elastic Material in the Shell interface. See the 
documentation for the Damage node in the Shell and Plate chapter.
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• For User defined, enter an expression for the Damage evolution function d.

Select the type of Spatial regularization method — None, Crack band, or Implicit gradient. 
See Spatial Regularization for details.

• For the Crack band method select the type of Crack band calculation — Element 

volume/area, or Element size. Note that when the Crack band method is selected, 
only the Fracture energy per area is available as Strain softening input.

• For the Implicit gradient method enter the Internal length scale lint. If the Fracture 

energy per area was selected as Strain softening input, enter also the Characteristic size 

of the damage dissipation zone hdmg. The Implicit gradient method is available in the 
Solid Mechanics and Layered Shell interfaces.

Select the type of Viscous regularization method — None or Delayed Damage.

For the Delayed damage method, enter the Characteristic time . The Delayed damage 
method is intended for time-dependent studies, and adds no contributions for other 
study types. See Viscous Regularization for details.

Mazars Damage for Concrete
Select the type of Equivalent strain — Mazars, Modified Mazars, or User defined. See 
Mazars Damage for Concrete for details.

Enter the Shear exponent , the default is set to 1.06.

Select the Tensile damage evolution — Linear strain softening, Exponential strain 

softening, Mazars damage evolution function, or User defined.

• For Linear strain softening or Exponential strain softening enter the Tensile strength 
ts, the default is to take the value From material. Also select the type of Tensile strain 

softening and enter the Fracture energy per area Gft, the Fracture energy per volume 
gft, or the Strain softening parameterft accordingly. The default is to take the value 
From material. Change to User defined to enter other value or expression.

• For Mazars damage evolution function, enter the Tensile strain threshold 0t, and the 
Tensile damage evolution parameters At and Bt.

• For User defined, enter an expression for the Tensile damage evolution function dt.

Select the Compressive damage evolution — Mazars damage evolution function or User 

defined.
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• For Mazars damage evolution function, enter the Compressive strain threshold 0c, and 
the Compressive damage evolution parameters Ac and Bc.

• For User defined, enter an expression for the Compressive damage evolution function 
dc.

Select the type of Spatial regularization method — None, Crack band, or Implicit gradient. 
See Spatial Regularization for details.

• For the Crack band method select the type of Crack band calculation — Element 

volume/area, or Element size. Note that when the Crack band method is selected, 
only the Fracture energy per area is available as Strain softening input.

• For the Implicit gradient method enter the Length scale lint. If the Fracture energy 

per area was selected as Strain softening input, enter also the Characteristic size of the 

damage dissipation zone hdmg. The Implicit gradient method is available in the Solid 
Mechanics and Layered Shell interfaces.

Select the type of Viscous regularization method — None or Delayed Damage.

For the Delayed damage method, enter the Characteristic time . The Delayed damage 
method is intended for time-dependent studies, and adds no contributions for other 
study types. See Viscous Regularization for details.

Phase Field Damage
The Phase field damage model is available with the Linear Elastic Material or the 
Hyperelastic Material in the Solid Mechanics interface. See Phase Field Damage Models 
for details.

Select the type of Crack driving force — Elastic strain energy density, Total strain energy 

density, Principal stress criterion, or User defined. See Crack Driving Force for details.

• For Elastic strain energy density and Total strain energy density, enter a value for the 
Critical energy release rate Gc, and the Strain energy threshold Gc0. The default for 
the Critical energy release rate is to take the value From material. Change to User 

defined to enter other value or expression.

• For Principal stress criterion, enter a value for the Critical fracture stress c, and the 
Post-peak slope parameter . The default for the Critical fracture stress is to take the 
value From material. Change to User defined to enter other value or expression.

• For User defined, enter an expression for the dimensionless crack driving force.

For all options, enter a value for the Length scale lint.
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Select the Damage evolution function to use — Power law; Cubic, Borden; or User defined. 
See Damage Evolution for Phase Field Damage for details.

• For Power law, enter a value for the Exponent m. The default is to use a quadratic 
function so that m  2.

• For Cubic, Borden, enter a value for the Model parameter s. This option is available 
when Crack driving force is set to Elastic strain energy density or Total strain energy 

density.

• For User defined, enter an expression for the Damage evolution function d.

Select an option for Exclude compressive energy — Volumetric only; Spectral 

decomposition, stress; Spectral decomposition, strain; or No split. For Hyperelastic 

Material, only some options are available from the list. See Strain Energy Split for 
details.

The Viscous regularization check box is not selected by default. When selected, a viscous 
term is added to the evolution of the crack phase field in time-dependent studies. Enter 
a value for the Characteristic time . See Viscous Regularization for details.

D I S C R E T I Z A T I O N

This section is available with the Implicit gradient regularization method and the Phase 

field damage model. Select the shape function for the Nonlocal equivalent strain eq, or 
the Crack phase field — Automatic, Linear, Quadratic Lagrange, Quadratic serendipity, 
Cubic Lagrange, Cubic serendipity, Quartic Lagrange, Quartic serendipity, or Quintic 

Lagrange. The options available depends on the chosen order of the displacement field.

A D V A N C E D

Enter the Maximum damage. The default value is 0.99999.

When a Mixed Formulation is selected in the parent Linear Elastic Material, 
the damage model can give spurious results. The Implicit gradient 
regularization method is more stable in this respect, and it is 
recommended when using the mixed formulation.

See also

• Modeling Damage in the Structural Mechanics Modeling chapter.

• Damage Models in the Structural Mechanics Theory chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Damage

Solid Mechanics>Hyperelastic Material>Damage

Shell>Layered Linear Elastic Material>Damage

Layered Shell>Linear Elastic Material>Damage

Ribbon
Physics tab with Linear Elastic Material, Hyperelastic Material, or Layered Linear Elastic 

Material, node selected in the model tree:

Attributes>Damage

Activation

Use the Activation subnode to activate or deactivate parts of a domain according to an 
Activation expression that you define. The Activation subnode uses a scale factor that 
reduces the elastic stiffness and density of the material, to emulate that material is not 
present. When the Activation expression is satisfied, the material is activated in a state 
of zero stress.

When the material is not active, the following is done to emulate that the material is 
not present:

• The elasticity matrix is multiplied by the Activation scale factor.

• The density is multiplied by the square of the Activation scale factor.

When the material is activated, the following is done to ensure that the activation is 
stress-free:

• Elastic strains at the instant of activation are removed from the total strains.

• Initial stresses are always removed, regardless of the Activation expression.

The Activation subnode can be used in combination with Linear Elastic Material, and in 
the Wire interface with Elastic Wire.

A C T I V A T I O N

Enter the Activation expression. This is the expression that will determine whether 
material is active or inactive.

Enter the Activation scale factor. The default value is 105.
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The Activation subnode is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/)

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Activation

Layered Shell>Linear Elastic Material>Activation

Membrane>Linear Elastic Material>Activation

Truss>Linear Elastic Material>Activation

Wire> Elastic Wire>Activation

Ribbon
Physics tab with Linear Elastic Material or Elastic Wire node selected in the model tree:

Attributes>Activation

Safety

Use the Safety subnode to set up variables that can be used to check the risk of failure 
according to various criteria. It can be used in combination with Linear Elastic Material, 
Nonlinear Elastic Material, and Layered Linear Elastic Material. Four different variables 
describing the failure risk are defined, as described in Table 4-2.

You can add any number of Safety nodes to a single material model. The contents of 
this feature do not affect the analysis results as such, so you can add Safety nodes after 
having performed an analysis, and just do an Update Solution ( ) in order to access 
to the new variables for result evaluation.

See also Activating and Deactivating Material in the Structural 
Mechanics Modeling chapter.

TABLE 4-2:  VARIABLES FOR SAFETY FACTOR EVALUATION

VARIABLE DESCRIPTION CRITERION 
FULFILLED

CRITERION 
VIOLATED

Failure index, FI For a linear criterion, this is the ratio 
between the computed value and the 
given limit.

FI<1 FI>1

Damage index, DI A binary value, indicating whether 
failure is predicted or not. DI is based 
on the value of FI.

DI=0 DI=1
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For orthotropic and anisotropic failure criteria, the directions are given by the 
coordinate system selection in the parent node.

The Safety node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/)

S H E L L  P R O P E R T I E S

F A I L U R E  M O D E L

Select a Failure Criterion. The available choices depend on the physics interface, as 
indicated in Table 4-3.

Safety factor, SF For a linear criterion, this is 1/FI. SF>1 SF<1

Margin of safety, MoS SF-1 MoS>0 MoS<0

TABLE 4-2:  VARIABLES FOR SAFETY FACTOR EVALUATION

VARIABLE DESCRIPTION CRITERION 
FULFILLED

CRITERION 
VIOLATED

When you add a Safety node in one of the Shell, Layered Shell, or 
Membrane interfaces, a default plot with the failure index is generated. 
Such plots are placed in a group named Failure Indices. The label of these 
plots is derived from the label of the corresponding Safety node.

This section is only present when Safety is used as a subnode to:

• Linear Elastic Material in the Layered Shell interface. See the 
documentation for the Safety node in the Layered Shell chapter.

• Layered Linear Elastic Material in the Shell interface. See the 
documentation for the Safety node in the Shell and Plate chapter.

• Layered Linear Elastic Material in the Membrane interface. See the 
documentation for the Safety node in the Membrane chapter.

TABLE 4-3:  AVAILABLE FAILURE CRITERIA BY PHYSICS INTERFACE

CRITERION SOLID 
MECHANICS

SHELL, 
PLATE

LAYERED 
SHELL

MEMBRANE BEAM, PIPE 
MECHANICS

TRUSS

von Mises X X X X X X

Tresca X X X X X X
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• When Failure Criterion is von Mises, enter Tensile strength ts.

• When Failure Criterion is Tresca, enter Tensile strength ts.

• When Failure Criterion is Rankine, enter Tensile strength ts and Compressive strength 
cs.

• When Failure Criterion is St. Venant, enter Ultimate tensile strain ts and Ultimate 

compressive strain cs.

Rankine X X X X X X

St. Venant X X X X X X

Mohr-Coulomb X – – – – –

Drucker-Prager X – – – – –

Bresler-Pister X X – – – –

Willam-Warnke X X – – – –

Ottosen X X – – – –

Jenkins X X X X – –

Waddoups X X X X – –

Azzi-Tsai-Hill Plane 
stress

X X X – –

Norris Plane 
stress

X X X – –

Tsai-Hill X X X X – –

Hoffman X X X X – –

Tsai-Wu 
Orthotropic

X X X X – –

Zinoviev1 – X X – – –

Hashin-Rotem1 – X X – – –

Hashin1 – X X – – –

Puck1 – X X – – –

LaRC031 – X X – – –

Tsai-Wu 
Anisotropic

X X X X – –

User defined X X X X X X

1) Requires the Composite Materials Module

TABLE 4-3:  AVAILABLE FAILURE CRITERIA BY PHYSICS INTERFACE

CRITERION SOLID 
MECHANICS

SHELL, 
PLATE

LAYERED 
SHELL

MEMBRANE BEAM, PIPE 
MECHANICS

TRUSS
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• When Failure Criterion is Mohr-Coulomb, select Material parameters — Cohesion and 

angle of friction or Tensile and compressive strengths to determine the type of input 
data.

When Cohesion and angle of friction is used, enter Cohesion c and Angle of internal 

friction .

When Tensile and compressive strengths is used, enter Tensile strength ts and 
Compressive strength cs.

In either case, you can select Include elliptic cap to limit the allowed compressive 
stress. When selected, enter the Elliptic cap parameters pa and pb.

• When Failure Criterion is Drucker-Prager, select Material parameters — Drucker-Prager 

parameters, Tensile and compressive strengths, or Mohr-Coulomb parameters to 
determine the type of input data.

When Drucker-Prager parameters is used, enter Drucker-Prager alpha coefficient  and 
Drucker-Prager k coefficient k.

When Tensile and compressive strengths is used, enter Tensile strength ts and 
Compressive strength cs.

When Mohr-Coulomb parameters is used, enter Cohesion c and Angle of internal friction 

.

In either case, you can select Include elliptic cap to limit the allowed compressive 
stress. When selected, enter the Elliptic cap parameters pa and pb.

• When Failure Criterion is Bresler-Pister, enter Tensile strength ts, Compressive 

strength cs, and Biaxial compressive strength bc.

• When Failure Criterion is Willam-Warnke, enter Tensile strength ts, Compressive 

strength cs, and Biaxial compressive strength bc.

• When Failure Criterion is Ottosen, enter the Compressive strength cs, Ottosen 

parameters a and b, the Size factor k1, and the Shape factor k2.

• When Failure Criterion is Jenkins, enter Tensile strengths ts, Compressive strengths 
cs, and Shear strengths ss. All entries have three components, related to the 
principal axes of orthotropy.

• When Failure Criterion is Waddoups, enter Ultimate tensile strains ts, Ultimate 

compressive strains cs, and Ultimate shear strains ss. All entries have three 
components, related to the principal axes of orthotropy.

• When Failure Criterion is Azzi-Tsai-Hill, enter Tensile strengths ts, Compressive 

strengths cs, and Shear strengths ss. All entries have three components, related to 
the principal axes of orthotropy.




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• When Failure Criterion is Norris, enter Tensile strengths ts, Compressive strengths cs, 
and Shear strengths ss. All entries have three components, related to the principal 
axes of orthotropy.

• When Failure Criterion is Tsai-Hill, enter Tensile strengths ts, Compressive strengths 
cs, and Shear strengths ss. All entries have three components, related to the 
principal axes of orthotropy. Select the Use plane stress formulation check box to 
assume plane stress conditions, see The Tsai–Hill Criterion.

• When Failure Criterion is Hoffman, enter Tensile strengths ts, Compressive strengths 
cs, and Shear strengths ss. All entries have three components, related to the 
principal axes of orthotropy.

• When Failure Criterion is Tsai-Wu Orthotropic, enter Tensile strengths ts, Compressive 

strengths cs, and Shear strengths ss. All entries have three components, related to 
the principal axes of orthotropy. Select the Use plane stress formulation check box to 
assume plane stress conditions, see The Orthotropic Tsai–Wu Criterion.

• When Failure Criterion is Zinoviev, enter Tensile strengths ts, Compressive strengths 
cs, and Shear strengths ss. All entries have three components, related to the 
principal axes of orthotropy.

• When Failure Criterion is Hashin-Rotem, enter Tensile strengths ts, Compressive 

strengths cs, and Shear strengths ss. All entries have three components, related to 
the principal axes of orthotropy.

• When Failure Criterion is Hashin, enter Tensile strengths ts, Compressive strengths 
cs, and Shear strengths ss. All entries have three components, related to the 
principal axes of orthotropy. Select the Use plane stress formulation check box to 
assume plane stress conditions, see The Hashin Criterion.

• When Failure Criterion is Puck:

- Enter Tensile strengths ts, Compressive strengths cs, and Shear strengths ss. All 
entries have three components, related to the principal axes of orthotropy.

- Enter the Fiber failure data: Ultimate tensile strain in longitudinal direction, ts1, 
and Ultimate compressive strain in longitudinal direction, cs1. Also, enter the fiber 
material properties Young’s modulus of fiber in longitudinal direction, Ef1, and 
In-plane Poisson’s ratio of fiber, f12. Enter a Mean stress magnification factor, mf. 
The default value is 1.3, a value commonly assumed for GFRP. For CFRP, the 
value 1.1 has been suggested.

- Enter the Interfiber failure data: Linear degradation stress, 1D. Also, enter the 
Slope of in-plane fracture envelope, tension, ptl, and the Slope of in-plane fracture 

envelope, compression, pcl. The default values are 0.3 and 0.25, respectively. These 
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values are common for GFRP. For CFRP, the values 0.35 and 0.3 have been 
suggested.

• When Failure Criterion is LaRC03:

- Enter Tensile strengths ts, Compressive strengths cs, and Shear strengths ss. All 
entries have three components, related to the principal axes of orthotropy. Also, 
enter the Ultimate tensile strain in longitudinal direction, tsl.

- Enter the In situ transverse tensile strength, , and In situ in-plane shear 

strength, . For both parameters, the default is to compute the value from 
the data given above, as indicated by the selections From transverse tensile 

strength and From in-plane shear strength respectively. You can also take the values 
From material, or select User defined to enter own expressions.

- Enter Young’s modulus in longitudinal direction, E1, Young’s modulus in transverse 

direction, E2, In-plane Poisson’s ratio, 12, and In-plane shear modulus, G12. For all 
four parameters, the default selection is From parent, indicating that the values are 
taken from the linear elastic properties in the parent node. You can also take the 
values From material, or select User defined to enter own expressions.

- Enter the Fracture plane angle under transverse compression, 0. The default value 
is 53°. Also enter the Fracture plane search angle, . The default value is 3°. 
Under combined loading, the fracture plane angle will differ from 0, and a 
numerical search for the critical angle is performed in the range 0 <  < 0. The 
step in the search is .

• When Failure Criterion is Tsai-Wu Anisotropic, enter Second rank tensor, Voigt notation 
f, and Fourth rank tensor F. Enter the components of the tensors with respect to the 
directions of the coordinate system in the parent node, see The Anisotropic Tsai–
Wu Criterion.

• When Failure Criterion is User defined, you enter two expressions describing the 
Failure criterion g(S), used in the failure index, and the Safety factor sf(S). As an 
example, if you would like to replicate the von Mises Isotropic criterion with tensile 
strength 350 MPa, you could enter g(S) as solid.mises/350[MPa]-1 and sf(S) as 
350[MPa]/(solid.mises+eps).

ts2
i

ss12
i
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For all input fields, the default is to take the value From material. Change to User 

defined to enter other values or expressions.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Variables>Safety

Solid Mechanics>Nonlinear Elastic Material>Variables>Safety

Shell>Linear Elastic Material>Variables>Safety

Shell>Layered Linear Elastic Material>Variables>Safety

Layered Shell>Linear Elastic Material>Variables>Safety

Plate>Linear Elastic Material>Variables>Safety

Membrane>Layered Linear Elastic Material>Variables>Safety

Membrane>Linear Elastic Material>Variables>Safety

Membrane>Nonlinear Elastic Material>Variables>Safety

Beam>Linear Elastic Material>Variables>Safety

Truss>Linear Elastic Material>Variables>Safety

Pipe Mechanics>Fluid and Pipe Materials>Variables>Safety

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, Nonlinear Elastic 

Material, or Fluid and Pipe Materials node selected in the model builder tree:

Attributes>Variables>Safety

Damping

Use the Damping subnode to add several types of damping to the material model. 
Damping can be used in Time Dependent, Eigenfrequency, and Frequency Domain 
studies; for other study types the settings in the Damping subnode are ignored.

The following types of damping are available:

• Rayleigh Damping

• Isotropic Loss Factor

• For a detailed description of the various criteria, see Safety Factor 
Evaluation in the Structural Mechanics Theory chapter.

• Updating a Solution in the COMSOL Multiphysics Reference 
Manual.
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• Anisotropic Loss Factor

• Viscous Damping

• Loss Factor

• Maximum Loss Factor

• Wave Attenuation

The available damping models differs between various COMSOL products (see 
https://www.comsol.com/products/specifications/).

The applicability of the different damping models is summarized in Table 4-4.

For a detailed description of the various damping models, see Mechanical 
Damping and Losses in the Structural Mechanics Modeling chapter.

TABLE 4-4:  AVAILABLE DAMPING TYPES

DAMPING TYPE PHYSICS INTERFACES MATERIAL 
MODELS

STUDY TYPES

Rayleigh damping All All Time domain, 
frequency domain

Isotropic loss factor All All Frequency domain

Anisotropic loss factor All, except Beam, 
Pipe Mechanics, 
Truss and Wire

Linear Elastic Frequency domain

Viscous damping Solid Mechanics, 
Membrane, 
Multibody Dynamics

All Time domain, 
frequency domain

Viscous damping Shell All Time domain, 
frequency domain

Loss factor Shell, Plate Section 
Stiffness

Frequency domain

Maximum loss factor Solid Mechanics, 
Membrane, 
Multibody Dynamics, 
Layered Shell

All Time domain, 
frequency domain

Wave attenuation Solid Mechanics, 
Multibody Dynamics, 
Layered Shell

Isotropic 
Linear Elastic

Time domain, 
frequency domain
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S H E L L  P R O P E R T I E S

D A M P I N G  S E T T I N G S

Select a Damping type, and enter the settings accordingly.

Rayleigh Damping
This choice can be used in Eigenfrequency, Frequency Domain, and Time Dependent 
study. In this model, the damping ratio  is expressed in terms of the mass m and the 
stiffness k as

That is, Rayleigh damping is proportional to a linear combination of the stiffness and 
mass; there is no direct physical interpretation of the mass damping parameter dM 
and the stiffness damping parameter dK.

Select Input parameters — Alpha and beta — to enter the damping parameters explicitly, 
or Damping ratios to derive the damping parameters from the damping ratio at two 
frequencies.

When Alpha and beta is selected, enter values or expressions for the Mass damping 

parameter dM and the Stiffness damping parameter dK.

When Damping ratios is selected, enter two pairs of frequencies, f1 and f2, and the 
corresponding damping ratios 1 and 2 at these frequencies. The Rayleigh damping 
parameters are then computed as

This section is only present when Damping is used as a subnode to:

• A material model in the Layered Shell interface. See the documentation 
for the Damping node in the Layered Shell chapter.

• Layered Linear Elastic Material in the Shell interface. See the 
documentation for the Damping node in the Shell and Plate chapter.

• Layered Linear Elastic Material in the Membrane interface. See the 
documentation for the Damping node in the Membrane chapter.

 dMm dKk+=
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In order to visualize the damping ratio as a function of frequency, click Damping Ratio 

Preview ( ).

Isotropic Loss Factor
This choice is effective only in Eigenfrequency and Frequency Domain study. The 
isotropic loss factor damping is described by the single isotropic loss factor s, which 
acts on all entries in the elastic constitutive matrix. It can be used for isotropic, 
orthotropic, and anisotropic materials.

When Isotropic loss factor is selected, use the Isotropic structural loss factor list to select 
the way to enter s. The default is to take the value From material. For User defined, 
enter another value or expression.

Anisotropic Loss Factor
This choice is effective only in Eigenfrequency and Frequency Domain study. An 
elastic material is in general described by a symmetric 6-by-6 elasticity matrix D. The 
loss can be isotropic or anisotropic, and is described by either the isotropic loss factor 
s or by a symmetric anisotropic 6-by-6 loss factor matrix D or DVo. The 
orientations are the same as in the parent node.

When Anisotropic loss factor is selected, use the Loss factor for elasticity matrix D list to 
select the way to enter D or DVo. The default is to take the values From material. For 
User defined enter the components of D or DVo in the upper-triangular part of a 
symmetric 6-by-6 matrix.

dM 4f1f2
1f2 2f1–

f2
2 f1

2
–

---------------------------=

dK
2f2 1f1–

 f2
2 f1

2
– 

---------------------------=

The values for the loss factors are ordered in two different ways, 
consistent with the selection of either Standard (XX, YY, ZZ, XY, YZ, XZ) 
or Voigt (XX, YY, ZZ, YZ, XZ, XY) notation in the corresponding Linear 
Elastic Model. If the values are taken from the material, these loss factors 
are found in the Anisotropic or Anisotropic, Voigt notation property group 
for the material. For an isotropic material, the anisotropic loss factor is 
always given as D using the standard notation.
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Viscous Damping
This choice can be used in Eigenfrequency, Frequency Domain, and Time Dependent 
study. With viscous damping, the material will get additional stresses proportional to 
the strain rate. Enter Bulk viscosity b and Shear viscosity v to model damping caused 
by volume change and deformation, respectively.

Maximum Loss Factor
This damping model can be used in Eigenfrequency, Frequency Domain, and Time 
Dependent studies. Enter the Maximum loss factor max together with the Reference 

frequency fref, at which the maximum loss factor occurs. The model approximates the 
maximum loss factor around the provided reference frequency.

Wave Attenuation
This damping model is only available when Isotropic is selected as the Material 

symmetry in the parent Linear Elastic Material feature. It can be used in 
Eigenfrequency, Frequency Domain, and Time Dependent study. Enter the elastic 
wave spatial Attenuation coefficient for the pressure waves (p-subscript) and shear waves 
(s-subscript) together with the Reference frequency fp,ref and fs,ref at which the 
respective coefficient was measured. You can also select the Attenuation unit for the 
Attenuation coefficient inputs. The available options are: decibel (dB) per wavelength, 
neper (Np) per wavelength, decibel per unit length, and neper per unit length. The 
damping model is similar to Viscous Damping, for which the software will use the 
effective bulk and shear viscosity computed automatically based on the attenuation 
inputs.

See also Viscous Damping in the Structural Mechanics Theory chapter.

See also Maximum Loss Factor in the Structural Mechanics Theory 
chapter.

See also Wave Attenuation in the Structural Mechanics Theory chapter.
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Loss Factor

The loss factors are directly acting on the components of the different matrices. Each 
component in the given damping matrix acts on the corresponding entry in the 
stiffness matrix.

Enter the Loss factor for stiffness matrix DA, DA; Loss factor for stiffness matrix DB, 
DB; Loss factor for stiffness matrix DD, DD; and Loss factor for stiffness matrix DAs, 
DAs.

The default for all section properties is to take the values From material. Any one of the 
loss matrices can also be User defined. In that case, selecting Isotropic input is identical 
to selecting Diagonal input and entering the same value in all three diagonal 
components. In most cases, the Symmetric input option is the most relevant, since that 
is the only one in which a loss factor can be assigned to all elements in the section 
stiffness matrices.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Damping

Solid Mechanics>Nonlinear Elastic Material>Damping

Solid Mechanics>Hyperelastic Material>Damping

This option is available when working with the Section Stiffness material 
model in the Shell interface.

• The time-stepping algorithms also add numerical damping, which is 
independent of any explicit damping added. For the generalized alpha 
time-stepping algorithm you can control the amount of numerical 
damping.

• In a study using mode superposition, you can add damping to the 
individual eigenmodes.

For an example of Damping, see Heat Generation in a Vibrating 
Structure: Application Library path Structural_Mechanics_Module/

Thermal-Structure_Interaction/vibrating_beam
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  975



976 |  C H A P T E R
Solid Mechanics>Elastoplastic Soil Material>Damping

Shell>Linear Elastic Material>Damping

Shell>Layered Linear Elastic Material>Damping

Shell>Layered Linear Hyperelastic Material>Damping

Shell>Section Stiffness>Damping

Layered Shell>Linear Elastic Material>Damping

Layered Shell>Hyperelastic Material>Damping

Membrane>Linear Elastic Material>Damping

Membrane>Layered Linear Elastic Material>Damping

Membrane>Nonlinear Elastic Material>Damping

Membrane>Hyperelastic Material>Damping

Plate>Linear Elastic Material>Damping

Plate>Section Stiffness>Damping

Beam>Linear Elastic Material>Damping

Beam>Section Stiffness>Damping

Pipe Mechanics>Fluid and Pipe Properties>Damping

Truss>Linear Elastic Material>Damping

Wire>Elastic Wire>Damping

Multibody Dynamics>Linear Elastic Material>Damping

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, Hyperelastic 

Material, Layered Linear Hyperelastic Material, Nonlinear Elastic Material, Elastoplastic Soil 

Material, Section Stiffness, Fluid and Pipe Properties, or Elastic Wire node selected in the 
model tree:

Attributes>Damping

Mechanical Damping

The Mechanical Damping subnode allows you to model mechanical losses in the 
Piezoelectric Material and Piezomagnetic Material either using loss factor material data 
for the stiffness, or in the form of Rayleigh proportional damping.

The Mechanical Damping subnode is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

D A M P I N G  S E T T I N G S

Select a Damping type — Loss factor for cE, Isotropic loss factor, Rayleigh damping, or 
Maximum loss factor.
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Loss Factor for cE (Piezoelectric Material)
This choice is effective only in Eigenfrequency and Frequency Domain study. By 
default, the Loss factor for elasticity matrix cE cE uses values From material. For User 

defined enter other values or expressions in the matrix.

Loss Factor for sE (Piezoelectric Material)
This choice is only available if the Constitutive relation in the parent node is 
Strain-charge form, and it is effective only in Eigenfrequency and Frequency Domain 
study. By default, the Loss factor for compliance matrix sE sE uses values From material. 
For User defined enter other values or expressions in the matrix.

Loss Factor for cH (Piezomagnetic Material)
This choice is effective only in Eigenfrequency and Frequency Domain study. By 
default, the Loss factor for elasticity matrix cH cE uses values From material. For User 

defined enter other values or expressions in the matrix.

Isotropic Loss Factor
This choice is effective only in Eigenfrequency and Frequency Domain study. By 
default, the Isotropic structural loss factor s uses values From material. For User defined 
enter another value or expression.

Rayleigh Damping
This damping model can be used in Eigenfrequency, Frequency Domain, and Time 
Dependent study. Enter the Mass damping parameter dM and the Stiffness damping 

parameter dK.

The damping ratio  is expressed in terms of the mass m and the stiffness k as

That is, Rayleigh damping is proportional to a linear combination of the stiffness and 
mass; there is no direct physical interpretation of the mass damping parameter dM 
and the stiffness damping parameter dK. Note that the beta-damping is applied only 
to the mechanical part of the problem.

In order to visualize the damping ratio as a function of frequency, click Damping Ratio 

Preview ( ).

To include the Rayleigh damping effect for the piezoelectric coupling terms, add a 
Coupling Loss subnode.

 dMm dKk+=
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Maximum Loss Factor
This choice can be used in Eigenfrequency, Frequency Domain, and Time Dependent 
study. Enter the Maximum loss factor max together with the Reference frequency fref , 
at which the maximum occurs.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Piezoelectric Material>Mechanical Damping

Solid Mechanics>Piezomagnetic Material>Mechanical Damping

Layered Shell>Piezoelectric Material>Mechanical Damping

Ribbon
Physics tab with Piezoelectric Material or Piezomagnetic Material node selected in the 
model tree:

Attributes>Mechanical Damping

Coupling Loss

The Coupling Loss subnode allows you to model losses in the piezoelectric coupling in 
a Piezoelectric Material, either by using the loss factor material data for the coupling 
matrix or as Rayleigh proportional damping.

The Coupling Loss subnode is only available with some COMSOL products (see https:/
/www.comsol.com/products/specifications/).

See also Piezoelectric Losses.
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C O U P L I N G  L O S S  S E T T I N G S

Select a Coupling loss — Loss factor for e or Rayleigh damping.

• For Loss factor for e select a Loss factor for coupling matrix e from the list. Select User 

defined to enter values or expressions for e in a 3-by-6 matrix. This choice is 
effective only in Eigenfrequency and Frequency Domain study.

• For Rayleigh damping enter a Stiffness damping parameter dC. This choice can be 
used in Eigenfrequency Frequency Domain, and Time Dependent study.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Piezoelectric Material>Coupling Loss

Layered Shell>Piezoelectric Material>Coupling Loss

Ribbon
Physics tab with Piezoelectric Material node selected in the model tree:

Attributes>Coupling Loss

Dielectric Loss

The Dielectric Loss subnode allows you to model electrical losses in the Piezoelectric 
Material. The losses can be prescribed either by using a loss factor for the electrical 
permittivity, or in the form of dielectric dispersion.

The Dielectric Loss subnode is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

D I E L E C T R I C  L O S S  S E T T I N G S

From the Dielectric loss list, select one of the following options:

• Loss factor for S. This choice is effective only in Eigenfrequency and Frequency 
Domain study. You can select the input type for Loss factor for electrical permittivity 
S to be either From material to use the value from the material, or from User defined 
to enter values or expressions for the loss factor in the associated fields. Select 
Symmetric to enter the components of S in the upper-triangular part of a 

See also Piezoelectric Losses.
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symmetric 3-by-3 matrix, select Isotropic to enter a single scalar loss factor, or select 
Diagonal. The default values are 0.

• Loss factor for T. This choice is only available if the Constitutive relation in the parent 
node is Strain-charge form, and it is effective only in Eigenfrequency and Frequency 
Domain study. You can select the input type for Loss factor for electrical permittivity 
T to be either From material to use the value from the material, or from User defined 
to enter values or expressions for the loss factor in the associated fields. Select 
Symmetric to enter the components of  in the upper-triangular part of a 
symmetric 3-by-3 matrix, select Isotropic to enter a single scalar loss factor, or select 
Diagonal. The default values are 0.

• Dispersion. This choice can be used in Eigenfrequency Frequency Domain, and 
Time Dependent study. Enter the Relaxation time d, and the Relative permittivity 

contribution rS in the associated fields. For the latter, you can select Isotropic, 
Diagonal, or Symmetric matrix input options. You can also specify how the relative 
permittivity input rS on the parent node should be interpreted by selecting the 
Static response (the default value is Low frequency limit).

• Complex permittivity. This choice can be used in Eigenfrequency, Frequency 
Domain, and Time Dependent study. You enter the Relative permittivity (real part) 
' and Relative permittivity (imaginary part) '', which can be either Isotropic or 
Diagonal matrices. You also enter the Reference frequency fref at which the 
permittivity values have been measured. You can also specify how the relative 
permittivity input rS on the parent node should be interpreted by selecting the 
Static response (the default value is Low frequency limit). You can also specify how 
the relative permittivity input rS on the parent node should be interpreted by 
selecting the Static response (the default value is Low frequency limit). In Time 
Dependent study, the software will use the dispersion model, for which the effective 
relaxation time and relative permittivity increment are computed automatically 
based on the node input parameters.

• Maximum loss tangent. This choice can be used in Eigenfrequency, Frequency 
Domain, and Time Dependent study. You enter the Maximum loss tangent max 
together with the Reference frequency fref at which the maximum occurs. Both 
inputs can be either Isotropic or Diagonal matrices. In the latter case, different 
frequency can be used for the corresponding components of the loss tangent. You 
can also specify how the relative permittivity input rS on the parent node should be 
interpreted by selecting the Static response (the default value is Low frequency limit). 
In Time Dependent study, the software will use the dispersion model, for which the 

T
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effective relaxation time and relative permittivity increment are computed 
automatically based on the node input parameters.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Piezoelectric Material>Dielectric Loss

Layered Shell>Piezoelectric Material>Dielectric Loss

Ribbon
Physics tab with Piezoelectric Material node selected in the model tree:

Attributes>Dielectric Loss

Conduction Loss (Time-Harmonic)

The Conduction Loss (Time-Harmonic) subnode allows you to model possible conductive 
losses in a Piezoelectric Material. The effect is only active in an eigenfrequency or 
frequency-domain study.

The Conduction Loss (Time-Harmonic) subnode is only available with some COMSOL 
products (see https://www.comsol.com/products/specifications/).

C O N D U C T I O N  C U R R E N T

By default, the Electrical conductivity e for the media is defined From material. You can 
also select User defined or Linearized resistivity.

• For User defined select Isotropic, Diagonal, Symmetric, or Full depending on the 
characteristics of the electrical conductivity, and then enter values or expressions for 
the Electrical conductivity e in the field or matrix.

• For Linearized resistivity the default Reference temperature T0, and Resistivity 

temperature coefficient r, and Reference resistivity 0 are taken From material, which 

See also Piezoelectric Losses.

If your license includes either the AC/DC Module or MEMS Module, 
more options for modeling dielectric dispersion can be found in 
Dispersion section in the AC/DC Module User’s Guide.
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means that the values are taken from the domain (or boundary) material. T is the 
current temperature, which can be a value that is specified as a model input or the 
temperature from a heat transfer interface. The definition of the temperature field 
appears in the Model Inputs section.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Piezoelectric Material>Conduction Loss (Time-Harmonic)

Electrostatics>Charge Conservation>Conduction Loss (Time-Harmonic)

Ribbon
Physics tab with Piezoelectric Material or Charge Conservation node selected in the 
model tree:

Attributes>Conduction Loss (Time-Harmonic)

External Stress-Strain Relation

The External Stress-Strain Relation is a special type of material model where the 
computation of second Piola–Kirchhoff stress is delegated to external code which has 
been compiled into a shared library. External libraries must first be imported into an 
External Material feature under Global Definitions>Materials.

The External Stress-Strain Relation node is only available with some COMSOL 
products (see https://www.comsol.com/products/specifications/).

M A T E R I A L

Select an External material from the list of compatible external materials added under 
Global Definitions>Materials. For a material to be compatible with this External Material 
model node, its Interface type must be set to a type whose required input quantities are 
all defined by this external material. Allowed required inputs include Green–Lagrange 
strains, the deformation gradient, as well as all standard model inputs.

See also Piezoelectric Losses.

See also External Material and Working with External Materials in the 
COMSOL Multiphysics Reference Manual.
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G E O M E T R I C  N O N L I N E A R I T Y

The use of an External Stress-Strain Relation will always force the study to be 
geometrically nonlinear. The default behavior is then to use a large strain formulation 
in all domains. There are, however, some cases when the use of a small strain 
formulation for a certain domain is needed. This will for example be the case if the 
material model you have implemented is formulated using engineering strains.

In such cases, select the Geometrically linear formulation check box. When selected, a 
small strain formulation is always used, independently of the setting in the study step.

T R A N S V E R S E  S H E A R  S T R A I N S

As a default, it is assumed that the transverse shear strains are zero. For a state of plane 
stress, this is true for an isotropic material, and for nonisotropic materials where the 
normal to the surface is a principal direction. If this is not the case, select the Transverse 

shear strains check box to store state variables also for the two transverse shear strains.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>External Stress-Strain Relation

Membrane>Material Models>External Stress-Strain Relation

Ribbon
Physics tab with Solid Mechanics selected:

Domains>Material Models>External Stress-Strain Relation

Physics tab with Membrane selected:

Boundaries>Material Models>External Stress-Strain Relation

• Modeling Geometric Nonlinearity

• Studies and Solvers in the COMSOL Multiphysics Reference Manual.

This section is only present in the Membrane interface and in 2D Plane 
Stress in the Solid Mechanics interface.
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Rigid Material

Add the Rigid Material node and select one or more geometrical objects to make them 
a rigid body. Rigid Material is a material model, with only one material property: the 
mass density. It can be used for

• Domains in the Solid Mechanics interface (3D, 2D, and 2D axisymmetry).

• Boundaries in the Shell interface.

• Boundaries (2D) and edges (3D) in the Beam interface.

By default, an Initial Values node is added (see Initial Values (Rigid Material)).

You can add functionality to a rigid domain through the following subnodes:

• Fixed Constraint (Rigid Material) to fully constrain the rigid domain.

• Prescribed Displacement/Rotation to prescribe the displacement of individual 
degrees of freedom.

• Applied Force (Rigid Material) to apply a force in given point.

• Applied Moment (Rigid Material) to apply a moment.

• Mass and Moment of Inertia (Rigid Material) to add extra mass and moment of 
inertia in a given point.

• Spring Foundation (Rigid Material) to add a translational or rotational spring or 
damper in a given point.

The Rigid Material node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

S H E L L  P R O P E R T I E S

In 2D axisymmetric interfaces, the rigid domain has only a single degree 
of freedom: translation along the Z-axis. In this case it is not possible to 
give moment loads, mass moment of inertia, or rotational springs.

This section is only present when Rigid Material is used in the Layered 
Shell interface. See the documentation for the Rigid Material node in the 
Layered Shell chapter.
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D E N S I T Y

The default Density  is taken From material. In this case the material assignment for 
the domain supplies the mass density. For User defined enter another value or 
expression.

If any material in the model has a temperature dependent mass density, and From 

material is selected, the Volume reference temperature list will appear in the Model Input 
section. As a default, the value of Tref is obtained from a Common model input. You can 
also select User defined to enter a value or expression for the reference temperature 
locally.

C E N T E R  O F  R O T A T I O N

Select a Center of Rotation — Center of mass, Centroid of selected entities, or User 

defined. The center of rotation affects how displacements are interpreted, and is also 
used as the default in various subnodes.

• For Center of mass, the center of rotation is taken as the center of mass of the rigid 
domain.

• For Centroid of selected entities select an Entity level — Boundary, Edge, or Point. The 
available choices depend on physics interface and geometrical dimension. The 
center of rotation is located at the centroid of the selected entities, which do not 

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).

See also

• Mass Density and Volume Reference Temperature.

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.
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need to be related to rigid domain itself. As a special case, you can select a single 
point, and thus use that point as center of rotation.

• For User defined, enter the Global coordinates of center of rotation, Xc, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
center of rotation. Enter values for the offset vector Xoffset.

The center of rotation used is the sum of the vector obtained from any of the input 
methods and the offset vector.

F O R M U L A T I O N

Some contributions from a rigid domain will, under geometric nonlinearity, result in a 
nonsymmetric local stiffness matrix. If all other aspects of the model are such that the 
global stiffness matrix would be symmetric, then such a nonsymmetric contribution 
may have a heavy impact on the total solution time and memory usage. In such cases, 
it is often more efficient to use an approximative local stiffness matrix that is symmetric.

Once chosen, a default Center of Rotation: Boundary, Center of 
Rotation: Edge, or Center of Rotation: Point subnode is automatically 
added.

XP XP,input Xoffset+=

This section is not available in 2D axisymmetric components.
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Select Use symmetric formulation for geometric nonlinearity to force all matrix 
contributions from the rigid domain and its subnodes to be symmetric.

C O N S T R A I N T  S E T T I N G S

When a rigid domain shares a boundary with a flexible material, all nodes on that 
boundary are constrained to move as a rigid body. As a default these constraints are 
implemented as pointwise constraints. If you want to use a weak constraint 
formulation, select Use weak constraints for rigid-flexible connection.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Material Models>Rigid Material

Shell>Material Models>Rigid Material

Layered Shell>Material Models>Rigid Material

Beam>Material Models>Rigid Material

Ribbon
Physics tab with Solid Mechanics selected:

Using an approximative stiffness matrix will in general require more 
iterations. However, since the computational cost per iteration will be cut 
at least by a factor of two if a symmetric matrix can be used, it is usually 
more efficient to ignore a weak nonsymmetry.

In particular, if the rotation of the rigid domain per time step or 
parameter increment is small, there will in general be no increase in the 
number of iterations at all if this option is used.

When the global stiffness matrix is nonsymmetric for other reasons, then 
there is nothing to be gained from symmetrizing the contribution from 
the rigid domain.

Rigid Material

Modeling Rigid Bodies: Application Library path 
Structural_Mechanics_Module/Connectors_and_Mechanisms/rigid_domain
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Domains>Material Models>Rigid Material

Physics tab with Shell or Layered Shell selected:

Boundaries>Material Models>Rigid Material

Physics tab with Beam selected:

Edges>Material Models>Rigid Material (3D)
Boundaries>Material Models>Rigid Material (2D)

Initial Values (Rigid Material)

The Initial Values node is automatically added as a default node to a Rigid Material 
node. You can enter initial values for the rigid body displacement, rotation and 
velocities, which can serve as an initial condition for a transient simulation or as an 
initial guess for a nonlinear analysis. The initial values that you specify are interpreted 
in the selected coordinate system.

C E N T E R  O F  R O T A T I O N

Select an option from the list: From parent, Centroid of selected entities, or User defined. 
The given initial values are interpreted at the center of rotation.

• For From parent, the center of rotation is taken as the one defined in the parent Rigid 

Material node.

• For Centroid of selected entities select an Entity level — Boundary, Edge, or Point. The 
available choices depend on physics interface and geometrical dimension. The initial 
conditions act at the centroid of the selected entities, which do not need to be 
related to rigid domain itself. As a special case, you can select a single point, and thus 
prescribe the initial conditions at that point

• For User defined, enter the Global coordinates of center of rotation, Xc, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
center of rotation. Enter values for the offset vector Xoffset.

The center of rotation used is the sum of the vector obtained from any of the input 
methods and the offset vector.

Once chosen, a default Center of Rotation: Boundary, Center of 
Rotation: Edge, or Center of Rotation: Point subnode is automatically 
added.
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I N I T I A L  V A L U E S :  T R A N S L A T I O N A L

• Displacement at center of rotation u.

• Velocity at center of rotation u/t.

I N I T I A L  V A L U E S :  R O T A T I O N A L

• For 3D components only: Axis of rotation 

• Angle of rotation .

• Angular velocity (3D components) and  /t (2D components)

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically added when the Rigid Material node is created. It cannot be 
added or removed manually.

Fixed Constraint (Rigid Material)

The Fixed Constraint node adds a condition that makes the entire rigid domain fixed 
(fully constrained). The displacements and rotations are zero in all directions. There 
are no settings for this node. See Rigid Material.

R E A C T I O N  F O R C E  S E T T I N G S

Select Evaluate reaction forces to compute the reaction force caused by the constraint. 
The default is to not compute the reaction force. When selected, the constraint is 
implemented as a weak constraint.

Select Apply reaction only on rigid body variables to use a unidirectional constraint for 
enforcing the prescribed motion. The default is that bidirectional constraints are used. 
For a fixed constraint, there is no effect of changing this setting.

XP XP,input Xoffset+=





The Fixed Constraint and Prescribed Displacement/Rotation subnodes 
cannot be combined for a Rigid Material.

You can activate and deactivate the fixed constraint by assigning it to a 
constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Material>Fixed Constraint

Shell>Rigid Material>Fixed Constraint

Layered Shell>Rigid Material>Fixed Constraint

Beam>Rigid Material>Fixed Constraint

Pipe Mechanics>Rigid Material>Fixed Constraint

Multibody Dynamics>Rigid Material>Fixed Constraint

Ribbon
Physics tab with Rigid Material node selected in the model tree:

Attributes>Fixed Constraint

When this node has been added once, it is no longer available for selection in the 
context menu or ribbon.

Prescribed Displacement/Rotation

The Prescribed Displacement/Rotation subnode can be used to selectively constrain or 
prescribe degrees the of freedom of a Rigid Material:

• One or several displacement components can be constrained or prescribed at an 
arbitrary point.

• One or several rotation components can be constrained.

• The rotation around a given axis can be prescribed.

The prescribed values that you specify are interpreted in the selected coordinate 
system.

C E N T E R  O F  R O T A T I O N

The selection of the center of rotation only affects the prescribed displacements, not 
the rotations.

The Fixed Constraint and Prescribed Displacement/Rotation subnodes 
cannot be combined for a Rigid Material.
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Select an option from the list: From parent, Centroid of selected entities, or User defined.

• For From parent, the center of rotation is taken as the one defined in the parent Rigid 

Material node.

• For Centroid of selected entities select an Entity level — Boundary, Edge, or Point. The 
available choices depend on physics interface and geometrical dimension. The 
constraints act at the centroid of the selected entities, which do not need to be 
related to rigid domain itself. As a special case, you can select a single point, and thus 
constrain that point

• For User defined, enter the Global coordinates of center of rotation, Xc, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
center of rotation. Enter values for the offset vector Xoffset.

The center of rotation used is the sum of the vector obtained from any of the input 
methods and the offset vector.

P R E S C R I B E D  D I S P L A C E M E N T  A T  C E N T E R  O F  R O T A T I O N

Select one or several of the Prescribed in x direction, Prescribed in y direction, and 
Prescribed in z direction (3D components only) check boxes. Then enter a value or 
expression for u0x, u0y, and u0z (3D components).

P R E S C R I B E D  R O T A T I O N

Select an option from the By list: Free, Constrained rotation, or Prescribed rotation.

Once chosen, a default Center of Rotation: Boundary, Center of 
Rotation: Edge, or Center of Rotation: Point subnode is automatically 
added.

XP XP,input Xoffset+=

For 2D components, and if Prescribed rotation is selected, enter a value or 
expression for the Angle of rotation 0.
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R E A C T I O N  F O R C E  S E T T I N G S

Select Evaluate reaction forces to compute the reaction force caused by the prescribed 
motion. The default is to not compute the reaction force. When selected, the 
prescribed motion is implemented as a weak constraint.

Select Apply reaction only on rigid body variables to use a unidirectional constraint for 
enforcing the prescribed motion. The default is that bidirectional constraints are used. 
This setting is useful in a situation where a bidirectional constraint would give an 
unwanted coupling in the equations. This would happen if the prescribed value of the 
motion is a variable solved for in other equations.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Material>Prescribed Displacement/Rotation

Shell>Rigid Material>Prescribed Displacement/Rotation

Layered Shell>Rigid Material>Prescribed Displacement/Rotation

Beam>Rigid Material>Prescribed Displacement/Rotation

Pipe Mechanics>Rigid Material>Prescribed Displacement/Rotation

For 3D components:

• For Constrained rotation select one or several of the Constrain rotation 

around x-axis, Constrain rotation around y-axis, and Constrain rotation 

around z-axis check boxes.

• For Prescribed rotation enter values or expressions in the table for the 
Axis of rotation  . Then enter a value or expression for the Angle of 

rotation 0.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements and 
rotations in a frequency domain analysis of perturbation type.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.

• You can assign the value of the prescribed displacement and rotation to 
a load group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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Multibody Dynamics>Rigid Material>Prescribed Displacement/Rotation

Ribbon
Physics tab with Rigid Material node selected in the model tree:

Attributes>Prescribed Displacement/Rotation

When this node has been added once, it is no longer available for selection in the 
context menu or ribbon.

Applied Force (Rigid Material)

The Applied Force subnode is used to apply forces on a rigid domain. The force can act 
at an arbitrary position in space. A force implicitly contributes also to the moment if it 
is not applied at the center of mass of a rigid domain. The force that you specify is 
interpreted in the selected coordinate system.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Coordinate system list contains all applicable coordinate systems in the model. 
Select a Coordinate system for specifying the directions of the force.

L O C A T I O N

Select an option from the list: Center of rotation, Centroid of selected entities, or User 

defined. This is the location where the force is applied.

• For Center of rotation, the location of the load is taken as the center of rotation as 
defined in the parent Rigid Material node.

• For Centroid of selected entities select an Entity level — Boundary, Edge, or Point. The 
available choices depend on physics interface and geometrical dimension. The force 
acts at the centroid of the selected entities, which do not need to be related to rigid 
domain itself. As a special case, you can select a single point, and thus place the force 
at that point.

• For User defined, enter the Location (global coordinates), Xp, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
location. Enter values for the offset vector Xoffset.

Once chosen, a default Location: Boundary, Location: Edge, or 
Location: Point subnode is automatically added.
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The location used is the sum of the vector obtained from any of the input methods and 
the offset vector.

A P P L I E D  F O R C E

Select the Direction of the applied force — Space-fixed direction or Body-fixed direction.

• For Space-fixed direction, the directions of the applied force F are fixed with respect 
to the selected Coordinate system.

• For Body-fixed direction, the directions of the applied force F follow the rotation of 
the rigid domain.

Enter values or expressions for the components of the Applied force F. The direction 
coordinate names can vary depending on the selected coordinate system.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

XP XP,input Xoffset+=

For more information about live and dead loads, see Buckling Analysis.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Material>Applied Force

Shell>Rigid Material>Applied Force

Layered Shell>Rigid Material>Applied Force

Beam>Rigid Material>Applied Force

Pipe Mechanics>Rigid Material>Applied Force

Multibody Dynamics>Rigid Material>Applied Force

Ribbon
Physics tab with Rigid Material node selected in the model tree:

Attributes>Applied Force

Location Nodes

L O C A T I O N :  B O U N D A R Y

The Location: Boundary subnode is used to select a set of boundaries whose centroid 
represents the point of application of a force on a rigid domain.

L O C A T I O N :  E D G E

The Location: Edge subnode is used to select a set of edges whose centroid represents 
the point of application of a force on a rigid domain.

L O C A T I O N :  P O I N T

The Location: Point subnode is used to select a set of points whose centroid represents 
the point of application of a force on a rigid domain.

L O C A T I O N  I N  U S E R  I N T E R F A C E

These nodes are automatically added when Centroid of selected entities is selected in 
the parent Applied Force node. They cannot be added or removed manually.

Applied Moment (Rigid Material)

Use the Applied Moment subnode to apply moments on a rigid domain. The moment 
that you specify is interpreted in the selected coordinate system.
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Coordinate system list contains all applicable coordinate systems in the model. 
Select a Coordinate system for specifying the directions of the moment.

In 2D, the moment is a scalar input and is not affected by the coordinate system 
selection.

A P P L I E D  M O M E N T

For 3D components, select the Direction of the applied moment — Space-fixed direction 
or Body-fixed direction.

• For Space-fixed direction, the directions of the applied moment M are fixed with 
respect to the selected Coordinate system.

• For Body-fixed direction, the directions of the applied moment M follow the rotation 
of the rigid domain.

Enter values or expressions for the Applied moment M.

• For 3D components, enter the x, y, and z components of M.

• For 2D components, enter the applied moment around the z-axis, Mz.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

For more information about live and dead loads, see Buckling Analysis.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Material>Applied Moment

Shell>Rigid Material>Applied Moment

Layered Shell>Rigid Material>Applied Moment

Beam>Rigid Material>Applied Moment

Pipe Mechanics>Rigid Material>Applied Moment

Multibody Dynamics>Rigid Material>Applied Moment

Ribbon
Physics tab with Rigid Material node selected in the model tree:

Attributes>Applied Moment

Mass and Moment of Inertia (Rigid Material)

Use the Mass and Moment of Inertia subnode to add an effect of associated abstract rigid 
domain, which is physically not modeled and whose inertial properties are known. 
These inertial properties can be specified at an arbitrary point in space, which is 
assumed to be the center of gravity of this extra mass. The moment of inertia tensor 
that you specify is interpreted in the selected coordinate system.

C E N T E R  O F  M A S S

Here you specify the location of the center of mass for the contribution given in this 
node. Select an option from the list: Center of rotation, Centroid of selected entities, or 
User defined.

• For Center of rotation, the location of the load is taken as the center of rotation as 
defined in the parent Rigid Material node.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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• For Centroid of selected entities select an Entity level — Boundary, Edge, or Point. The 
available choices depend on physics interface and geometrical dimension. The 
center of mass is located at the centroid of the selected entities, which do not need 
to be related to rigid domain itself. As a special case, you can select a single point, 
and thus position the mass at that point

• For User defined, enter the Global coordinates of center of mass, Xm, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
location. Enter values for the offset vector Xoffset.

The center of mass used is the sum of the vector obtained from any of the input 
methods and the offset vector.

M A S S  A N D  M O M E N T  O F  I N E R T I A

Enter values or expressions for the Mass m. Then for the Moment of inertia the axis 
directions of the moment of inertia tensor are given by the selected coordinate system.

• For 3D components, select Isotropic, Diagonal, or Symmetric and enter one or more 
components for the tensor I.

• For 2D components, enter a value or expression for Iz.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Material>Mass and Moment of Inertia

Shell>Rigid Material>Mass and Moment of Inertia

Layered Shell>Rigid Material>Mass and Moment of Inertia

Beam>Rigid Material>Mass and Moment of Inertia

Pipe Mechanics>Rigid Material>Mass and Moment of Inertia

Multibody Dynamics>Rigid Material>Mass and Moment of Inertia

Ribbon
Physics tab with Rigid Material node selected in the model tree:

Attributes>Mass and Moment of Inertia

Once chosen, a default Center of Mass: Boundary, Center of Mass: Edge, 
or Center of Mass: Point subnode is automatically added.

Xm Xm,input Xoffset+=
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Center of Mass Nodes

C E N T E R  O F  M A S S :  B O U N D A R Y

Use the Center of Mass: Boundary subnode to select a set of boundaries whose centroid 
represents the center of mass of a Mass and Moment of Inertia (Rigid Material).

C E N T E R  O F  M A S S :  E D G E

The Center of Mass: Edge subnode to select a set of edges whose centroid represents the 
center of mass of a Mass and Moment of Inertia (Rigid Material).

C E N T E R  O F  M A S S :  P O I N T

The Center of Mass: Point subnode to select a set of points whose centroid represents 
the center of mass of a Mass and Moment of Inertia (Rigid Material).

L O C A T I O N  I N  U S E R  I N T E R F A C E

These nodes are automatically added when Centroid of selected entities is selected in 
the parent Mass and Moment of Inertia (Rigid Material) node. They cannot be added 
or removed manually.

Spring Foundation (Rigid Material)

The Spring Foundation subnode is used to specify a spring or damper connecting the 
rigid domain to a fixed ground. The spring can act at an arbitrary position in space. A 
translational spring implicitly contributes also to the moment if it is not applied at the 
center of mass of a rigid domain. The data that you specify is interpreted in the selected 
coordinate system.

L O C A T I O N

Select an option from the list: Center of rotation, Centroid of selected entities, or User 

defined. This is the location where the spring will be attached.

• For Center of rotation, the location of the spring is taken as the center of rotation as 
defined in the parent Rigid Material node.

• For Centroid of selected entities select an Entity level — Boundary, Edge, or Point. The 
available choices depend on physics interface and geometrical dimension. The 
spring is attached at the centroid of the selected entities, which do not need to be 
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related to the rigid domain itself. As a special case, you can select a single point, and 
thus attach the spring at that point.

• For User defined, enter the Global coordinates of center of rotation, Xc, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
location. Enter values for the offset vector Xoffset.

The location used is the sum of the vector obtained from any of the input methods and 
the offset vector.

S P R I N G

Select a Spring type — Spring constant or Force as function of extension.

When Spring constant is selected, the translational spring matrix can be entered as 
Isotropic, Diagonal, Symmetric, or Full. For Isotropic the same spring constant is used in 
all the diagonal elements of the spring matrix.

When Force as function of extension is selected, enter the force vector Fs. It must be a 
function of the built-in variables describing the spring extension. The default value 
indicates the correct variable name, for example, solid.rd1.uspring1_spf1.

R O T A T I O N A L  S P R I N G

Select a Spring type — Spring constant or Moment as function of rotation.

When Spring constant is selected, the rotational spring matrix can be entered as 
Isotropic, Diagonal, Symmetric, or Full. For Isotropic the same spring constant is used in 
all the diagonal elements of the spring matrix.

When Moment as function of rotation is selected, enter the moment vector Ms. It must 
be a function of the built-in variables describing the spring extension. The default value 
indicates the correct variable name, for example, solid.rd1.thspring1_spf1.

Once chosen, a default Location: Boundary, Location: Edge, or 
Location: Point subnode is automatically added.

XP XP,input Xoffset+=

In 2D the Spring constant is only a single scalar, representing the stiffness 
for rotation around the out-of-plane direction. Similarly, the Moment as 

function of rotation is a single scalar.
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L O S S  F A C T O R  D A M P I N G

From the Loss factor type list, select Scalar (Same for all components) or Individual 

components.

• For Scalar (Same for all components) enter a single Loss factor for spring u,s, which 
is used to multiply all values of the spring matrix or spring force vector.

• For Individual components select Isotropic, Diagonal, Symmetric, or Full, then enter 
values or expressions in the table for the Loss factor for spring u,k or f based on 
space dimension. The loss factors act on the corresponding components of the 
spring matrix or spring force vector. If you select Isotropic, the effect is the same as 
when you select Diagonal and enter the same value for all diagonal elements.

R O T A T I O N A L  L O S S  F A C T O R  D A M P I N G

All settings in this section are analogous to the corresponding settings in the Loss 
Factor Damping section. In 2D, only one scalar loss factor, corresponding to rotation 
around the out-of-plane axis, is given.

V I S C O U S  D A M P I N G

Select Isotropic, Diagonal, Symmetric, or Full, then enter values or expressions for the 
damping constants du in the table. If you select Isotropic, the effect is the same as when 
you select Diagonal and enter the same value for all diagonal elements.

V I S C O U S  R O T A T I O N A L  D A M P I N G

All settings in this section are analogous to the corresponding settings in the Viscous 
Damping section. In 2D, only one scalar viscous damping, corresponding to rotation 
around the out-of-plane axis, is given.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Material>Spring Foundation

Shell>Rigid Material>Spring Foundation

Layered Shell>Rigid Material>Spring Foundation

Beam>Rigid Material>Spring Foundation

Pipe Mechanics>Rigid Material>Spring Foundation

Multibody Dynamics>Rigid Material>Spring Foundation

Ribbon
Physics tab with Rigid Material node selected in the model tree:

Attributes>Spring Foundation
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Free

The Free node is the default boundary condition. It means that there are no constraints 
and no loads acting on the boundary. When the physics interface is added, a default 
Free node is added. If you look at the selections for this node, it will show all 
boundaries that do not have any boundary conditions applied.

In each physics interface, the Free node applies to a geometric entity that is one level 
below the one on which the physics is active:

• For the Solid Mechanics, Plate, and Multibody Dynamics interfaces, the Free node 
applies to boundaries.

• For the Shell, Layered Shell, and Membrane interfaces, the Free node applies to 
edges.

• For the Beam, Pipe Mechanics, and Truss interfaces, the Free node applies to points.

You can manually add Free nodes to override other boundary conditions. This is 
however seldom needed.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Free

Shell>Free

Plate>Free

Layered Shell>Free

Membrane>Free

Beam>Free

Pipe Mechanics>Free

Truss>Free

Wire>Free

Multibody Dynamics>Free

Ribbon
Physics tab with a physics interface selected:

Boundaries>More Constraints>Free

Edges>More Constraints>Free

Points>More Constraints>Free
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Prescribed Displacement

The Prescribed Displacement node adds a condition where the displacements are 
prescribed in one or more directions to the geometric entity (domain, boundary, edge, 
or point).

If a displacement is prescribed in one direction, this leaves the solid free to deform in 
the other directions.

You can also define more general displacements as a linear combination of the 
displacements in each direction.

S H E L L  P R O P E R T I E S

I N T E R F A C E  S E L E C T I O N

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The constraints are applied in the axis directions of the coordinate system selected in 
this section. You should only use a coordinate system that has fixed spatial directions.

P R E S C R I B E D  D I S P L A C E M E N T

Select a Notation — Standard or General.

If a zero displacement is applied in all directions, this is the same as a Fixed 
Constraint.

For details, see Prescribed Displacements, Velocities, and Accelerations.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Prescribed Displacement node.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Prescribed Displacement, 
Interface node.
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Standard Notation
To define the displacements individually, click the Standard notation button.

Select one or all of the Prescribed in x direction, Prescribed in y direction, Prescribed in 

z direction check boxes (only applicable check boxes are shown based on the spatial 
dimension). Then enter a value or expression for the corresponding inputs u0, v0, and 
w0. For axisymmetric components, select one or both of the Prescribed in r direction 
and Prescribed in z direction check boxes. Then enter a value or expression for u0 and 
w0. When twist is included in 2D axisymmetry, the circumferential displacement can 
also be prescribed.

General Notation
In 3D, 2D, or 2D axisymmetry, click the General notation to specify the displacements 
using a general notation that includes any linear combination of displacement 
components. For example, for 2D components, use the relationship

For H matrix H select Isotropic, Diagonal, Symmetric, or Full and then enter values as 
needed in the field or matrix. Enter values or expressions for the R vector R.

For example, to achieve the condition u = v, use the settings

,

which force the domain to move only diagonally in the xy-plane.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

H u
v

R=

H 1 1–

0 0
= R 0

0
=

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

• Excluded Surfaces, Excluded Edges, and Excluded Points
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Domain Constraints>Prescribed Displacement

Solid Mechanics>Prescribed Displacement (Boundary)
Solid Mechanics>Edges>Prescribed Displacement

Solid Mechanics>Points>Prescribed Displacement

Solid Mechanics>Thin Layer>Prescribed Displacement

Layered Shell>Face and Domain Constraints>Prescribed Displacement

Layered Shell>Face and Domain Constraints>Interfaces>Prescribed Displacement, 

Interface

Layered Shell>Prescribed Displacement (Edge)
Layered Shell>More Constraints>Interfaces>Prescribed Displacement, Interface (Edge)
Layered Shell>Points>Prescribed Displacement

Layered Shell>Points>Interfaces>Prescribed Displacement, Interface

Membrane>Face Constraints>Prescribed Displacement

Membrane>Prescribed Displacement (Edge)
Membrane>Points>Prescribed Displacement

Truss>Line Constraints>Prescribed Displacement

Truss>Prescribed Displacement (Point)
Wire>Line Constraints>Prescribed Displacement

When Individual dependent variables is selected in the Apply reaction terms 

on list, the constraint forces are applied directly on the degrees of 
freedom, which are the displacements along the global coordinate axes. If 
you use this setting together with a local coordinate system, the results 
will be inconsistent since the constraint forces will not match the 
constraint orientation.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements in a 
frequency domain analysis of perturbation type.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.

• You can assign the value of the prescribed displacement to a load 
group. See Load Cases in the Structural Mechanics Modeling chapter.
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Wire>Prescribed Displacement (Point)
Multibody Dynamics>Domain Constraints>Prescribed Displacement

Multibody Dynamics>Prescribed Displacement (Boundary)
Multibody Dynamics>Edges>Prescribed Displacement

Multibody Dynamics>Points>Prescribed Displacement

Ribbon
Physics tab with Solid Mechanics selected:

Domains>Domain Constraints>Prescribed Displacement

Boundaries>Solid Mechanics>Prescribed Displacement

Edges>Solid Mechanics>Prescribed Displacement

Points>Solid Mechanics>Prescribed Displacement

Physics tab with Membrane selected:

Boundaries>Face Constraints>Prescribed Displacement

Edges>Membrane>Prescribed Displacement

Points>Membrane>Prescribed Displacement

Physics tab with Truss selected:

Edges>Line Constraints>Prescribed Displacement

Points>Truss>Prescribed Displacement

Physics tab with Wire selected:

Edges>Line Constraints>Prescribed Displacement

Points>Wire>Prescribed Displacement

Physics tab with Multibody Dynamics selected:

Domains>Domain Constraints>Prescribed Displacement

Boundaries>Multibody Dynamics>Prescribed Displacement

Edges>Multibody Dynamics>Prescribed Displacement

Points>Multibody Dynamics>Prescribed Displacement

Physics tab with Thin Layer node selected in the model tree:

Attributes>Prescribed Displacement (Boundary)

Prescribed Velocity

The Prescribed Velocity node adds a boundary or domain condition where the velocity 
is prescribed in one or more directions. The prescribed velocity condition is applicable 
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for Time Dependent and Frequency Domain studies. It is possible to prescribe a 
velocity in one direction, leaving the solid free in the other directions. The Prescribed 

Velocity node is a constraint and overrides any other constraint on the same selection. 
The Prescribed Velocity node is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

S H E L L  P R O P E R T I E S

I N T E R F A C E  S E L E C T I O N

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a coordinate system in which the given velocity components will be interpreted.

P R E S C R I B E D  V E L O C I T Y

Select one or all of the Prescribed in x direction, Prescribed in y direction, and Prescribed 

in z direction check boxes (only applicable check boxes are shown based on the spatial 
dimension). Then enter a value or expression for vx, vy, and vz. For axisymmetric 
components, select one or both of the Prescribed in r direction and Prescribed in z 

direction check boxes. Then enter a value or expression for vr and vz. When twist is 
included in 2D axisymmetry, the circumferential displacement can also be prescribed.

For details about prescribed velocities and accelerations, see Prescribed 
Displacements, Velocities, and Accelerations.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Prescribed Velocity and node.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Prescribed Velocity, Interface 
node.

Coordinate systems with directions that change with time should not be 
used for a prescribed velocity.
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In a stationary study, this node can either be ignored or treated as a constraint (similar 
to a Prescribed Displacement node with zero displacement). To control this, select an 
option from the Displacement in stationary study list — Free or Constrained.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Domain Constraints>Prescribed Velocity

Solid Mechanics>More Constraints>Prescribed Velocity (Boundary)
Layered Shell>Face and Domain Constraints>Prescribed Velocity

Layered Shell>Face and Domain Constraints>Interfaces>Prescribed Velocity, Interface

Layered Shell>More Constraints>Prescribed Velocity (Edge)
Membrane>Face Constraints>Prescribed Velocity

Membrane>More Constraints>Prescribed Velocity (Edge)
Truss>Line Constraints>Prescribed Velocity

Truss>More Constraints>Prescribed Velocity (Point)

Ribbon
Physics tab with Solid Mechanics selected:

Domains>Domain Constraints>Prescribed Velocity

Boundaries>More Constraints>Prescribed Velocity

Physics tab with Layered Shell selected:

Boundaries>Face and Domain Constraints>Prescribed Velocity

Boundaries>Interfaces>Prescribed Velocity, Interface

Edges>More Constraints>Prescribed Velocity

Physics tab with Membrane selected:

Boundaries>Face Constraints>Prescribed Velocity

Edges>More Constraints>Prescribed Velocity

Physics tab with Truss selected:

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements in a 
frequency domain analysis of perturbation type.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.
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Edges>Line Constraints>Prescribed Velocity

Points>More Constraints>Prescribed Velocity

Prescribed Acceleration

The Prescribed Acceleration node adds a boundary or domain condition, where the 
acceleration is prescribed in one or more directions. The prescribed acceleration 
condition is applicable for Time Dependent and Frequency Domain studies. It is 
possible to prescribe an acceleration in one direction, leaving the solid free in the other 
directions. The Prescribed Acceleration node is a constraint and overrides any other 
constraint on the same selection.

The Prescribed Acceleration node is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

S H E L L  P R O P E R T I E S

I N T E R F A C E  S E L E C T I O N

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a coordinate system in which the given acceleration components will be 
interpreted.

For details about prescribed velocities and accelerations, see Prescribed 
Displacements, Velocities, and Accelerations.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Prescribed Acceleration and 
node.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Prescribed Acceleration, 
Interface node.

Coordinate systems with directions that change with time should not be 
used for a prescribed acceleration.
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P R E S C R I B E D  A C C E L E R A T I O N

Select one or all of the Prescribed in x direction, Prescribed in y direction, and Prescribed 

in z direction check boxes (only applicable check boxes are shown based on the spatial 
dimension). Then enter a value or expression for ax, ay, and az. For axisymmetric 
components, select one or both of the Prescribed in r direction and Prescribed in z 

direction check boxes. Then enter a value or expression for ar and az. When twist is 
included in 2D axisymmetry, the circumferential displacement can also be prescribed.

In a stationary study, this node can either be ignored or treated as a constraint (similar 
to a Prescribed Displacement node with zero displacement). To control this, select an 
option from the Displacement in stationary study list — Free or Constrained.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Domain Constraints>Prescribed Acceleration

Solid Mechanics>More Constraints>Prescribed Acceleration (Boundary)
Layered Shell>Face and Domain Constraints>Prescribed Acceleration

Layered Shell>Face and Domain Constraints>Interfaces>Prescribed Acceleration, Interface

Layered Shell>More Constraints>Prescribed Acceleration (Edge)
Membrane>Face Constraints>Prescribed Acceleration

Membrane>More Constraints>Prescribed Acceleration (Edge)
Truss>Line Constraints>Prescribed Acceleration

Truss>More Constraints>Prescribed Acceleration (Point)
Wire>Line Constraints>Prescribed Acceleration

Wire>More Constraints>Prescribed Acceleration (Point)

Ribbon
Physics tab with Solid Mechanics selected:

Domains>Domain Constraints>Prescribed Acceleration

Boundaries>More Constraints>Prescribed Acceleration

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements in a 
frequency domain analysis of perturbation type.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.
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Physics tab with Layered Shell selected:

Boundaries>Face and Domain Constraints>Prescribed Acceleration

Boundaries>Interfaces>Prescribed Acceleration, Interface

Edges>More Constraints>Prescribed Acceleration

Physics tab with Membrane selected:

Boundaries>Face Constraints>Prescribed Acceleration

Edges>More Constraints>Prescribed Acceleration

Physics tab with Truss or Wire selected:

Edges>Line Constraints>Prescribed Acceleration

Points>More Constraints>Prescribed Velocity

Fixed Constraint

The Fixed Constraint node adds a condition that makes the geometric entity fixed (fully 
constrained); that is, the displacements are zero in all directions on the selected 
geometrical entities. If there are rotational degrees of freedom, they will also be zero.

S H E L L  P R O P E R T I E S

I N T E R F A C E  S E L E C T I O N

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Fixed Constraint node.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Fixed Constraint, Interface 
node.
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Domain Constraints>Fixed Constraint

Solid Mechanics>Fixed Constraint (Boundary)
Solid Mechanics>Edges>Fixed Constraint

Solid Mechanics>Points>Fixed Constraint

Solid Mechanics>Thin Layer>Fixed Constraint (Boundary)
Layered Shell>Face and Domain Constraints>Fixed Constraint

Layered Shell>Face and Domain Constraints>Interfaces>Fixed Constraint, Interface

Layered Shell>Fixed Constraint (Edge)
Layered Shell>More Constraints>Interfaces>Fixed Constraint, Interface (Edge)
Layered Shell>Points>Fixed Constraint

Layered Shell>Points>Interfaces>Fixed Constraint, Interface

Membrane>Face Constraints>Fixed Constraint

Membrane>Fixed Constraint (Edge)
Membrane>Points>Fixed Constraint

Beam>Line Constraints>Fixed Constraint

Beam>Fixed Constraint (Point)
Multibody Dynamics>Domain Constraints>Fixed Constraint

Multibody Dynamics>Fixed Constraint (Boundary)
Multibody Dynamics>Edges>Fixed Constraint

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

• Excluded Surfaces, Excluded Edges, and Excluded Points

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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Multibody Dynamics>Points>Fixed Constraint

Ribbon
Physics tab with Solid Mechanics selected:

Domains>Domain Constraints>Fixed Constraint

Boundaries>Solid Mechanics>Fixed Constraint

Edges>Solid Mechanics>Fixed Constraint

Points>Solid Mechanics>Fixed Constraint

Physics tab with Layered Shell selected:

Boundaries>Face and Domain Constraints>Fixed Constraint

Boundaries>Interfaces>Fixed Constraint, Interface

Edges>Layered Shell>Fixed Constraint

Edges>Interfaces>Fixed Constraint, Interface

Points>Layered Shell>Fixed Constraint

Points>Interfaces>Fixed Constraint, Interface

Physics tab with Membrane selected:

Boundaries>Face Constraints>Fixed Constraint

Edges>Membrane>Fixed Constraint

Points>Membrane>Fixed Constraint

Physics tab with Beam selected:

Edges>Line Constraints>Fixed Constraint

Points>Truss>Fixed Constraint

Physics tab with Multibody Dynamics selected:

Domains>Domain Constraints>Fixed Constraint

Boundaries>Multibody Dynamics>Fixed Constraint

Edges>Multibody Dynamics>Fixed Constraint

Points>Multibody Dynamics>Fixed Constraint

Physics tab with Thin Layer node selected in the model tree:

Attributes>Fixed Constraint (Boundary)

Thermal Expansion (for Constraints)

Add the Thermal Expansion subnode to a constraint (Fixed Constraint or Prescribed 

Displacement) to prescribe a deformation of the constrained boundary caused by 
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changes in the surrounding temperature. This makes it possible to reduce the stresses 
caused by such boundary conditions.

Select an Input type to specify how the thermal strain is entered. The default is Secant 

coefficient of thermal expansion, in which case the thermal strain is given by

here, the secant coefficient of thermal expansion  can be temperature dependent.

When Input type is Tangent coefficient of thermal expansion, the thermal strain is given 
by

where t is the tangential coefficient of thermal expansion.

When Input type is Thermal strain, enter the thermal strain dL as function of 
temperature explicitly.

In all three cases, the default is to take values From material. When entering data as 
User defined, select Isotropic, Diagonal, or Symmetric to enter one or more components 
for a general coefficient of the thermal expansion tensor or the thermal strain tensor. 
When a nonisotropic input is used, the axis orientations are given by the coordinate 
system selection in the parent node.

The Thermal Expansion subnode is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

S H E L L  P R O P E R T I E S

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain. This is a description of 
the thermal expansion of surroundings idealized by the constraints.

th  T Tref– =

th t   d
Tref

T

 
 
 

exp 1–=

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Thermal Expansion (for 
Constraints) node.
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Select Inherit from domain to take the thermal expansion data from the domain being 
constrained. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation. For this reason, it is only possible to inherit from a Thermal Expansion node 
under a material model, not from the Thermal Expansion multiphysics coupling.

• The virtual surrounding material has the same thermal expansion as the domain 
itself.

The Inherit from domain check box is not available when the constraint in the parent 
node is applied to domains. In that case, the data is implicitly inherited from the 
domain.

When Inherit from domain is not selected, enter:

• A value or expression for the Volume reference temperature Tref that is the 
temperature at which there are no thermal displacements at the constraints.

• A value or expression for Temperature T, specifying the temperature distribution of 
the surrounding material. Any temperature variation must be an explicit function of 
the material frame coordinates. It is not possible to use a computed temperature 
distribution.

• Select the Input type — Secant coefficient of thermal expansion, Tangent coefficient of 

thermal expansion, or Thermal strain to specify how the thermal strain is entered. The 
default values From material are used. This requires that a material has been assigned 
to the boundaries, edges, or points where the constraint is active. When a 
nonisotropic coefficient of thermal expansion is used, the axis orientations are given 
by the coordinate system selected in the Coordinate System Selection section.

Enter the coordinates of the Reference point, the point where the displacement is zero. 
The choice of reference point only affects the rigid body motion. If there are several 
different constraints with a Thermal Expansion subnode, the same reference point 
should usually be selected in all of them.

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Fixed Constraint>Thermal Expansion

Solid Mechanics>Prescribed Displacement>Thermal Expansion

Layered Shell>Fixed Constraint>Thermal Expansion

Layered Shell>Prescribed Displacement>Thermal Expansion

Membrane>Fixed Constraint>Thermal Expansion

Membrane>Prescribed Displacement>Thermal Expansion

Multibody Dynamics>Fixed Constraint>Thermal Expansion

Multibody Dynamics>Prescribed Displacement>Thermal Expansion

Ribbon
Physics tab with Fixed Constraint or Prescribed Displacement node selected in the model 
tree:

Attributes>Thermal Expansion

Roller

The Roller node adds a roller constraint as the boundary condition; that is, the 
displacement is zero in the direction perpendicular (normal) to the boundary, but the 
boundary is free to move in the tangential direction. A Roller condition is similar to a 
Symmetry condition, but the latter has some other options. The Roller constraint is not 
available in 1D and 1D axisymmetry; use a Fixed constraint instead.

R O L L E R  C O N S T R A I N T

The default roller constraint acts along a normal to the selected boundaries, which is 
computed numerically. For a certain mesh node, this direction is kept constant during 
the analysis, so it cannot represent finite sliding on a curved boundary. You can 
however, for some important cases, prescribe that the boundary slides on an analytical 
surface. There are two situations where you may want to do this:

• The geometry or mesh representation of the actual boundary is imperfect. This can 
lead to unexpected locking of the deformation, since the computed normals do not 
have the intended directions.

• In a geometrically nonlinear analysis, the use of an analytical surface makes it 
possible to model finite sliding also along curved boundaries.

Select a Normal orientation — Automatic, Plane, Cylinder, or Sphere.
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For Automatic, the constraint is applied in the direction normal to the boundary, as 
represented by the mesh. This orientation is not updated during the analysis.

For Plane, select Orientation of normal — X-axis, Y-axis, Z-axis, or User defined to 
describe the constraint direction. When User defined is used, enter the vector en, 
pointing along the normal to the plane along which the boundary is sliding.

For Cylinder, select Axis type — X-axis, Y-axis, Z-axis, or User defined to describe the 
orientation of the cylinder. Enter the location of a Point on axis, Xc, in order fix the 
location of the cylinder. When User defined is used, enter the vector es, pointing along 
the axis of the cylinder. The constraints will act radially from the cylinder axis. If the 
analysis is geometrically nonlinear, each mesh node is assumed to maintain its distance 
from the cylinder axis.

For Sphere, enter the location of the Center of sphere, Xc. The constraints will act 
radially from this point. If the analysis is geometrically nonlinear, each mesh node is 
assumed to maintain its distance from the center of the sphere.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

E X C L U D E D  E D G E S ,  E X C L U D E D  P O I N T S

To display these sections (Excluded Edges in 3D geometries only), click the Show More 

Options button ( ) and select Advanced Physics Options in the Show More Options 
dialog box. For more information about these sections, see Excluded Surfaces, 

In the theory section of the Structural Mechanics User’s Guide:

• Rigid Connector

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Constraint Settings

• Weak Constraints
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Excluded Edges, and Excluded Points in the COMSOL Multiphysics Reference 
Manual.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Roller

Solid Mechanics>Thin Layer>Roller (Boundary)
Layered Shell>Face and Domain Constraints>Interfaces>Roller, Interface

Layered Shell>Roller

Multibody Dynamics>Roller

Ribbon
Physics tab with Solid Mechanics selected:

Boundaries>Solid Mechanics>Roller

Physics tab with Layered Shell selected:

Boundaries>Interfaces>Roller, Interface

Edges>Layered Shell>Roller

Physics tab with Multibody Dynamics selected:

Boundaries>Multibody Dynamics>Roller

Physics tab with Thin Layer node selected in the model tree:

Attributes>Roller (Boundary)

Symmetry

The Symmetry node adds a boundary condition that represents symmetry in the 
geometry and in the loads. A symmetry condition is free in the plane and fixed in the 
out-of-plane direction.

When applied to an edge (in the Membrane interface) the symmetry plane is formed 
by the normal to the boundary and the edge tangent.

When the model is axisymmetric, use the Symmetry Plane node instead.

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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The Symmetry node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/). The Symmetry constraint is not 
available in 1D and 1D axisymmetry; use a Fixed constraint instead.

S H E L L  P R O P E R T I E S

N O R M A L  D I R E C T I O N  C O N D I T I O N

You can allow a symmetry plane to move along its normal direction. This can be used 
to model some situations where you want a plane to remain strictly planar but still relax 
the property of it being fixed.

From the list, select No displacement, Free Displacement, Prescribed force, or Prescribed 

displacement.

The value No displacement gives a standard symmetry condition.

Select Free Displacement to allow the symmetry plane to translate in the normal 
direction. The displacement is determined by the criterion that there is no resulting 
reaction force in the normal direction.

Select Prescribed force to prescribe the total reaction force acting on the direction 
normal to the symmetry plane. Enter the Normal force Fn. The force is defined as 
positive when acting along the outward normal of the symmetry plane. Setting the 
prescribed force to zero gives the same effect as using Free Displacement.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Symmetry node.
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Select Prescribed displacement to prescribe the displacement in the direction normal to 
the symmetry plane. Enter the Normal displacement un0. Setting the prescribed 
displacement to zero gives the same effect as using No displacement.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>More Constraints>Symmetry

Layered Shell>More Constraints>Symmetry

• Using Free Displacement, Prescribed force, or Prescribed displacement is 
only meaningful if the geometry selection corresponds to a single 
symmetry plane.

• When using Free Displacement or Prescribed force, an extra global 
degree of freedom is added for determining the displacement in the 
normal direction. This degree of freedom will have a name of the type 
<component>.<interface>.<symmetry_tag>.un (for example, 
comp1.solid.sym1.un).

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

• Excluded Surfaces, Excluded Edges, and Excluded Points

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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Membrane>More Constraints>Symmetry

Ribbon
Physics tab with Solid Mechanics selected:

Boundaries>More Constraints>Symmetry

Physics tab with Layered Shell or Membrane selected:

Edges>More Constraints>Symmetry

Symmetry Plane

The Symmetry Plane node adds a boundary condition that represents symmetry in the 
geometry and in the loads. This node is available only in 2D axisymmetry, where the 
only possible symmetry plane is normal to the Z-axis. A symmetry condition is free in 
the plane and fixed in the out-of-plane direction.

N O R M A L  D I R E C T I O N  C O N D I T I O N

You can allow a symmetry plane to move along its normal direction. This can be used 
to model some situations where you want a plane to remain strictly planar but still relax 
the property of it being fixed.

From the list, select No displacement, Free Displacement, Prescribed force, or Prescribed 

displacement.

The value No displacement gives a standard symmetry condition.

Select Free Displacement to allow the symmetry plane to translate in the normal 
direction. The displacement is determined by the criterion that there is no resulting 
reaction force in the normal direction.

Select Prescribed force to prescribe the total reaction force acting on the direction 
normal to the symmetry plane. Enter the Normal force Fn. The force is defined as 
positive when acting along the outward normal of the symmetry plane. Setting the 
prescribed force to zero gives the same effect as using Free Displacement.
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Select Prescribed displacement to prescribe the displacement in the direction normal to 
the symmetry plane. Enter the Normal displacement un0. Setting the prescribed 
displacement to zero gives the same effect as using No displacement.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>More Constraints>Symmetry Plane

Membrane>More Constraints>Symmetry Plane

• Using Free Displacement, Prescribed force, or Prescribed displacement is 
only meaningful if the geometry selection corresponds to a single 
symmetry plane.

• When using Free Displacement or Prescribed force, an extra global 
degree of freedom is added for determining the displacement in the 
normal direction. This degree of freedom will have a name of the type 
<component>.<interface>.<symmetry_tag>.un (for example, 
comp1.solid.symp1.un).

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

• Excluded Surfaces, Excluded Edges, and Excluded Points

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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Ribbon
Physics tab with Solid Mechanics selected:

Boundaries>More Constraints>Symmetry Plane

Physics tab with Membrane selected:

Edges>More Constraints>Symmetry Plane

Antisymmetry

The Antisymmetry node adds a boundary condition for an antisymmetry boundary. An 
antisymmetry condition is fixed in the plane and free in the out-of-plane direction.

When applied to an edge (in the Membrane interface) the antisymmetry plane is 
formed by the normal to the boundary and the edge tangent.

The Antisymmetry node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/). It is available for 3D and 2D.

S H E L L  P R O P E R T I E S

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

In a geometrically nonlinear analysis, large rotations must not occur at the 
antisymmetry plane because this causes artificial straining.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Antisymmetry node.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

• Excluded Surfaces, Excluded Edges, and Excluded Points
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>More Constraints>Antisymmetry

Layered Shell>Antisymmetry

Membrane>More Constraints>Antisymmetry

Ribbon
Physics tab with Solid Mechanics selected:

Boundaries>More Constraints>Antisymmetry

Physics tab with Membrane or Layered Shell selected:

Edges>More Constraints>Antisymmetry

Rigid Motion Suppression

The Rigid Motion Suppression node adds constraints required to suppress rigid body 
modes. The constraints are selected so that there will be no reaction forces if the 
external loads are self-equilibrating.

The constraints will, depending on the physics interface and the geometrical 
dimension, be applied to reference points as needed. These points are automatically 
picked from the selected geometrical domains.

This feature must not be combined with any other types of constraints, such as 
prescribed displacements.

If you need to constrain several objects that are not physically connected, you must add 
as many Rigid Motion Suppression nodes as there are disconnected objects. Rigid Motion 

Suppression is available for 3D, 2D, and 2D axisymmetry.

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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S H E L L  P R O P E R T I E S

C O N T R I B U T I N G  P O I N T S

By default the selectable input is Automatic, which corresponds to using all points in 
the domain. When selecting From selection input, a new Point Selection section is shown 
where specific points can be selected. For 3D at least three points are expected, and for 
2D at least two points are expected.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Domain Constraints>Rigid Motion Suppression

Shell>Face Constraints>Rigid Motion Suppression

Plate>Face Constraints>Rigid Motion Suppression

Layered Shell>Face Constraints>Rigid Motion Suppression

Membrane>Face Constraints>Rigid Motion Suppression

Beam>Line Constraints>Rigid Motion Suppression

Multibody Dynamics>Domain Constraints>Rigid Motion Suppression

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:

Domains>Domain Constraints>Rigid Motion Suppression

Physics tab with Shell or Membrane selected:

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Rigid Motion Suppression 
node.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

• Rigid Body Motion in the Structural Mechanics Modeling chapter.

• Rigid Motion Suppression in the Structural Mechanics Theory chapter.
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Boundaries>Face Constraints>Rigid Motion Suppression

Physics tab with Plate selected:

Domains>Face Constraints>Rigid Motion Suppression

Physics tab with Layered Shell selected:

Boundaries>Face and Domain Constraints>Rigid Motion Suppression

Physics tab with Beam or Truss selected:

Edges>Line Constraints>Fixed Constraint

Body Load

Add a Body Load to domains for modeling general volumetric loads.

For loads caused by gravity or rotation, it is more convenient to use the Gravity and 
Rotating Frame nodes.

S H E L L  P R O P E R T I E S

F O R C E

Select a Load type — Force per unit volume, Total force, or for 2D components, Force 

per unit area.

Then enter values or expressions for the components in the matrix based on the 
selection and the space dimension.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Body Load node.

• After selecting a Load type, the Load list normally only contains User 

defined. When combining with another physics interface that can 
provide this type of load, it is also possible to choose a predefined load 
from this list.

• For Total force, COMSOL Multiphysics divides the total force by the 
volume of the domains where the load is active. For 2D components, 
and if Force per unit area is selected, the body load as force per unit 
volume is then the value of F divided by the thickness.
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L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

TABLE 4-5:  

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY 
LEVEL

SPACE DIMENSION 
(COMPONENTS)

Force per unit volume FV N/m3 domains 3D (x, y, z)

2D (x, y)

1D (x)

2D axisymmetric (r, z)

1D axisymmetric (r)

Force per unit area FA Nm2 domains 2D (x, y)

Total force Ftot N domains 3D (x, y, z)

2D (x, y)

1D (x)

2D axisymmetric (r, z)

1D axisymmetric (r)

For more information about live and dead loads, see Buckling Analysis.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Volume Forces>Body Load

Layered Shell>Face and Volume Loads>Body Load

Membrane>Face and Volume Loads>Body Load

Multibody Dynamics>Volume Forces>Body Load

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:

Domains>Volume Forces>Body Load

Ribbon
Physics tab with Layered Shell or Membrane selected:

Boundaries>Face and Volume Loads>Body Load

Gravity

When you add a Gravity node, gravity forces are applied to all features in the physics 
interface with a density, mass, or mass distribution.

The gravity acts in a fixed spatial direction. The load intensity is g  geg where g as a 
default is the acceleration of gravity (a predefined physical constant).

The Gravity node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a coordinate system in which the gravity field vector is represented. Only systems 
with space-independent axis directions are consistent with the assumptions of this 
feature. The Global coordinate system is selected by default.

G R A V I T Y

Enter the components for Gravity g. The default value is g_const, which is the 
gravitational acceleration constant at mean sea level having the value 9.80665 m/s2.

• For 3D, the default is that the gravity acts in the negative z direction.

Gravity is not available in 1D axisymmetry.
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• For 2D, the default is that the gravity acts in the negative y direction.

• For 1D, the default is that the gravity acts in the negative x direction.

• For 2D axisymmetry, the default is that the gravity acts in the negative z direction.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Gravity

Shell>Gravity

Only features that have a geometrical selection contribute to the mass 
forces. The Mass and Moment of Inertia nodes are global features and will 
not get any contribution from Gravity. You may need to add extra force 
contributions if such nodes are present.

Frame Acceleration Forces

In versions earlier than 6.1, the Gravity node was a feature with domain 
selection. In a model created in an earlier version, the old Gravity node 
remains unchanged. For such a model, it is recommended to use the 
newer functionality. There are different options:

• In most cases, switching to the new version of Gravity is appropriate.

• If the current Gravity node has a selection, which is not the entire 
model, or if it contains expressions that depends on the spatial 
coordinates, you can replace it by a Linearly Accelerated Frame node.

• If the current Gravity node is used to represent an acceleration imposed 
by the foundation, consider replacing it by a Base Excitation node.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements and 
rotations in a frequency domain analysis of perturbation type.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Layered Shell>Gravity

Plate>Gravity

Membrane>Gravity

Beam>Gravity

Truss>Gravity

Wire>Gravity

Multibody Dynamics>Gravity

Ribbon
Physics tab with a structural mechanics interface selected:

Global>Gravity

Base Excitation

The Base Excitation node is used to represent an acceleration that is applied at all 
constraints. The main use case is for modal based analyses, in which case it is not 
possible to directly prescribe non-zero displacements at constrained degrees of 
freedom. It is however possible to use Base Excitation in any type of dynamic analysis.

When a structure is subjected to a base excitation, displacements, velocities, and 
accelerations are measured relative to a space fixed coordinate system.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a coordinate system in which the base acceleration vector is represented. Only 
systems with space-independent axis directions are consistent with the assumptions of 
the base excitation.

B A S E  E X C I T A T I O N

Enter the Base acceleration, ab.

A degree of freedom should either be constrained or free in the direction 
where the base excitation acts. Having a constraint acting in a local 
direction that is not either aligned or orthogonal to the excitation may 
produce unexpected results.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Base Excitation

Shell>Base Excitation

Layered Shell>Base Excitation

Plate>Base Excitation

Membrane>Base Excitation

Beam>Base Excitation

Truss>Base Excitation

Wire>Base Excitation

Multibody Dynamics>Base Excitation

Ribbon
Physics tab with a structural mechanics interface selected:

Global>Base Excitation

Rotating Frame

Centrifugal, Coriolis, and Euler forces are “fictitious” volume forces that need to be 
introduced in a rotating frame of reference, since it is not an inertial system. Use a 
Rotating Frame node to add the effect of these forces. The forces are generated by all 
selected features in the physics interface having a density, mass, or mass distribution. 
You select objects having the highest geometrical dimension of the interface, and all 
objects with a lower dimensionality that belong to the selection are automatically 
included.

The idea when using a rotating frame is that the observer rotates with the structure. 
All results, such as displacements are thus relative to the rotating frame.

The Rotating Frame node is only available with some COMSOL products (see https:/
/www.comsol.com/products/specifications/). Rotating Frame is available in 3D, 2D, 
and 2D axisymmetry.

Only features that have a geometrical selection contribute to the mass 
forces. The Mass and Moment of Inertia nodes are global features and will 
not get any contribution from Base Excitation. You may need to add extra 
force contributions if such nodes are present.
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S H E L L  P R O P E R T I E S

R O T A T I N G  F R A M E

Select an Axis of rotation — x-axis, y-axis, z-axis, or User defined. For User defined enter 
a Rotation axis base point rbp and Rotation axis direction eax.

Select a Rotational direction — Counterclockwise or Clockwise. The rotational direction 
does not make any difference for a centrifugal force.

Select a Rotational frequency — Angular velocity magnitude, Revolutions per time, Rigid 

body, or User defined.

• For Angular velocity magnitude enter a value for the angular velocity magnitude .

• For Revolutions per time, enter an RPM value.

• For Rigid body, enter an Applied moment, M, and an Initial angular velocity, 0. In 
this case, the angular speed is variable over time, and computed by using time 
integration of the angular acceleration caused by the applied moment.

It is assumed that axis of orientation is kept fixed. The moment of inertia around 
the axis of rotation, Iax, is automatically computed from the mass properties if the 
selection.

• For User defined, enter the Rotation angle  in radians as function of time (the 
variable t).

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Rotating Frame node.

The option Rigid body is only available in the Solid Mechanics and 
Multibody Dynamics interfaces.

Iax

t

------- M=

Iax rp
2 Vd=
R  4 :  S O L I D  M E C H A N I C S



In the case of a geometrically nonlinear analysis, the displacements computed in the 
Solid Mechanics interface are used to defined the spatial frame. When a rotating frame 
is used, there are two possible interpretations.

• The default is that the spatial frame is also interpreted as corotating, that is only the 
displacements relative to the rotation are defining the spatial frame.

• Select Define spatial frame rotation to add also the rotation to the definition of the 
spatial frame. For other physics interfaces, this is similar to specifying a Rotating 
Domain, but with the displacements added. This approach must be used if there are 
a mix of stationary and rotating domains.

F R A M E  A C C E L E R A T I O N  E F F E C T

For 3D and 2D components, use the Centrifugal force, Coriolis force, or Euler force 
check boxes to determine which effects of a rotating frame that are to be incorporated 
in the analysis. Only Centrifugal force is selected by default.

For 2D axisymmetric components, the only effect from a rotating frame is the 
centrifugal force, which is then always included.

The Spin softening check box is selected by default. When including spin-softening 
effects, an extra contribution to the centrifugal force from deformation is taken into 
account. The Spin softening check box is only available if Centrifugal force or Euler force 

is selected.

When Define spatial frame rotation is selected, the actual angle of rotation 
becomes important. If the angular speed is nonconstant, you must then 
enter an expression for the angle as function of time explicitly using the 
User defined option. For the two other input options, the angle of rotation 
is assumed to be 0 + t.

Frame Acceleration Forces

Only features that have a geometrical selection contribute to the mass 
forces. The Mass and Moment of Inertia nodes are global features and will 
not get any contribution from Rotating Frame. You may need to add extra 
force contributions if such nodes are present.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Volume Forces>Rotating Frame

Shell>Face and Volume Loads>Rotating Frame

Layered Shell>Face and Volume Loads>Rotating Frame

Plate>Face and Volume Loads>Rotating Frame

Membrane>Face and Volume Loads>Rotating Frame

Beam>Line and Volume Loads>Rotating Frame

Truss>Line and Volume Loads>Rotating Frame

Wire>Line and Volume Loads>Rotating Frame

Multibody Dynamics>Volume Forces>Rotating Frame

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:

Domains>Volume Forces>Rotating Frame

Physics tab with Shell, Layered Shell, or Membrane selected:

Boundaries>Face and Volume Loads>Rotating Frame

Physics tab with Plate selected:

Domains>Face and Volume Loads>Rotating Frame

Physics tab with Beam, Truss or Wire selected:

Edges>Line and Volume Loads>Rotating Frame

Linearly Accelerated Frame

When you add a Linearly Accelerated Frame node, inertial forces are applied to all 
selected features in the physics interface with a density, mass, or mass distribution. You 
select objects having the highest geometrical dimension of the interface, and all objects 
with a lower dimensionality that belong to the selection are automatically included.

The Linearly Accelerated Frame node is only available with some COMSOL products 
(see https://www.comsol.com/products/specifications/).

You can assign this load to a load group. See Load Cases in the Structural 
Mechanics Modeling chapter.
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S H E L L  P R O P E R T I E S

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes. It can be used when 
prescribing the direction of the frame acceleration.

L I N E A R L Y  A C C E L E R A T E D  F R A M E

Enter the components of the linear Frame acceleration, af. The force is computed as 
f  af and acts in a fixed spatial direction.

T I M E - D E P E N D E N T  S T U D Y

For a time-dependent study, you can compute the absolute velocity and absolute 
displacement postprocessing variables by checking the corresponding check boxes.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Volume Forces>Linearly Accelerated Frame

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Linearly Accelerated Frame 
node.

Frame Acceleration Forces

Only features that have a geometrical selection contribute to the mass 
forces. The Mass and Moment of Inertia nodes are global features and will 
not get any contribution from Linearly Accelerated Frame. You may need 
to add extra force contributions if such nodes are present.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed acceleration.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  1035



1036 |  C H A P T E
Shell>Face and Volume Loads>Linearly Accelerated Frame

Layered Shell>Face and Volume Loads>Linearly Accelerated Frame

Plate>Face and Volume Loads>Linearly Accelerated Frame

Membrane>Face and Volume Loads>Linearly Accelerated Frame

Beam>Line and Volume Loads>Linearly Accelerated Frame

Truss>Line and Volume Loads>Linearly Accelerated Frame

Wire>Line and Volume Loads>Linearly Accelerated Frame

Multibody Dynamics>Volume Forces>Linearly Accelerated Frame

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:

Domains>Volume Forces>Linearly Accelerated Frame

Physics tab with Shell, Layered Shell, or Membrane selected:

Boundaries>Face and Volume Loads>Linearly Accelerated Frame

Physics tab with Plate selected:

Domains>Face and Volume Loads>Linearly Accelerated Frame

Physics tab with Beam, Truss or Wire selected:

Edges>Line and Volume Loads>Linearly Accelerated Frame

Boundary Load

Use a Boundary Load to apply tractions or pressure on boundaries.

S H E L L  P R O P E R T I E S

F O R C E

Select the Load type — Force per unit area, Pressure, Total force, Resultant, or for 2D 
components, Force per unit length. Then enter values or expressions based on the 
selection and the space dimension.

• For Force per unit area, the traction components are given explicitly.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Boundary Load node.
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• For Total force, COMSOL Multiphysics divides the total force by the area of the 
boundaries where the load is active. Then the force is applied in the same way as for 
a Force per unit area. When working with curved boundaries or local coordinate 
systems, use this option carefully, as the result is not always intuitive.

• For Pressure, a scalar input is given, and the orientation of the load is given by the 
normal to the boundary. The pressure is positive when directed toward the solid. In 
a geometrically nonlinear analysis, the current surface normal and area are used.

• For Resultant, enter the Force and Moment with respect to a point. Select the 
Application point defined using — Centroid, Point, or Coordinates. For Centroid, the 
coordinates of the application point is the centroid of the selected boundaries. For 
Point, select a geometrical point in the section Application Point. For Coordinates, 
enter the Application point coordinates xa.

When using the Resultant option, it is formally possible to select a 
nonplanar boundary, but the traction distribution may then be 
unpredictable.

After selecting a Load type, the Load list normally only contains User 

defined. When combining with another physics interface that can provide 
this type of load, it is also possible to choose a predefined load from this 
list.

TABLE 4-6:  

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY 
LEVEL

SPACE DIMENSION 
(COMPONENTS)

Force per unit area FA Nm2 boundaries 3D (x, y, z)

2D (x, y)

1D (x)

2D axisymmetric (r, z)

1D axisymmetric (r)

Force per unit length FL N/m boundaries 2D (x, y)

Total force Ftot N boundaries 3D (x, y, z)

2D (x, y)

1D (x)

2D axisymmetric (r, z)

1D axisymmetric (r)
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T R A C T I O N  F I E L D

This section is only shown when Resultant has been selected as Load type. The 
distribution of the tractions over the boundaries is controlled by the settings here.

Select a Traction distribution — Beam or User defined.

When Beam is selected, the traction field approximately matches the stress distribution 
over a beam cross section.

For User Defined, you can write expressions for the traction distributions. Enter 
expressions for the six dimensionless vector-valued traction distribution functions, q1, 
q2, q3, q4, q5, and q6. Usually, the local coordinates of the loaded region would be used 
for this purpose, but there is no limitation on the form of the functions. The built-in 
variables for the local coordinates are named <physics_tag>.<load_tag>.x2 and 
<phys_tag>.<load_tag>.x3, for example solid.bndl1.x2. The default value is the 
distribution that is used when the option Beam is selected.

The local coordinates of the boundary, x2 and x3, are defined in the following way:

• The origin is at the centroid of the boundary.

• The axis directions coincide with the principal axes of the boundary.

• x2 is the axis around which the principal area moment of inertia is larger.

When User Defined is selected, you can also select a Weight function — None, Circular, or 
User Defined. This function acts as a multiplier to the traction distribution functions. 
When None is selected, the weight function w = 1. For Circular, enter a radius rw of a 
circle, outside of which no load is applied (w = 0). Inside the circle, w = 1. For User 

Defined, enter a weighting expression. Usually, the built-in local coordinates of the 
loaded region would be used for this purpose, but there is no limitation on the form 
of the function. A time- or parameter-dependent function can, for example, be used to 
model a moving load.

Pressure p Pa boundaries 3D (x, y, z)

2D (x, y)

2D axisymmetric (r, z)

Resultant F, M N, N m boundaries 3D (x, y, z)

2D (x, y)

TABLE 4-6:  

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY 
LEVEL

SPACE DIMENSION 
(COMPONENTS)
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The traction distribution functions have the property that the total traction field is

where the coefficients ci are chosen so that the given force and moment resultants are 
obtained.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Boundary Load

Solid Mechanics>Thin Layer>Boundary Load

Layered Shell>Boundary Load

Multibody Dynamics>Boundary Load

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:

t x  w x  ciqi x 

i 1=

6

=

For more information about live and dead loads, see Buckling Analysis.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Boundaries>Solid Mechanics>Body Load

Boundaries>Multibody Dynamics>Body Load

Physics tab with Layered Shell selected:

Edges>Layered Shell>Boundary Load

Physics tab with Thin Layer selected:

Attributes>Boundary Load

Edge Load

Add an Edge Load to 3D components to apply a force distributed along an edge.

S H E L L  P R O P E R T I E S

F O R C E

Select a Load type — Force per unit length or Total force. Then enter values or 
expressions for the components in the matrix based on the selection:

• The load per unit length FL.

• The total force Ftot. COMSOL Multiphysics then divides the total force by the 
volume where the load is active.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Edge Load node.

After selecting a Load type, the Load list normally only contains User 

defined. When combining with another physics interface that can provide 
this type of load, it is also possible to choose a predefined load from this 
list.
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If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Edges>Edge Load

Layered Shell>Edge Load

Multibody Dynamics>Edges>Edge Load

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:

Edges>Edge Load

Physics tab with Layered Shell selected:

Edges>Layered Shell>Edge Load

Point Load

Add a Point Load to points for concentrated forces at points in 2D and 3D.

For more information about live and dead loads, see Buckling Analysis.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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S H E L L  P R O P E R T I E S

Select the Load type — Force per point, Total force, or Resultant. Then enter values or 
expressions based on the selection.

• For Force per point enter values or expressions for the components of the point load 
Fp.

• For Total force, COMSOL Multiphysics divides the total force by the number of 
points where the load is active. Then the force is applied in the same way as for Force 

per point. 

• For Resultant, enter the Force and Moment with respect to a point. Select the 
Application point defined using — Centroid, Point, or Coordinates. For Centroid, the 
coordinates of the application point is the centroid of the selected points. For Point, 
select a geometrical point in the section Application Point. For Coordinates, enter the 
Application point coordinates xa.

T R A C T I O N  F I E L D

This section is only shown when Resultant has been selected as Load type. The 
distribution of the forces over the selected points is controlled by the settings here.

Select a Traction distribution — Beam or User defined.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Point Load node.

When using the Resultant option, the following should be observed

• In 3D, the selection must contain at least three points, and all points 
can not be located so that they are collinear.

• in 2D, the selection must contain at lease two points.

• While it is formally possible to select points that are not located in a 
plane, the force distribution may be unpredictable in such a case.

The Load list normally only contains User defined. When combining with 
another physics interface that can provide this type of load, it is also 
possible to choose a predefined load from this list.
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When Beam is selected, the force distribution approximately matches the stress 
distribution over a beam cross section.

For User Defined, you can write expressions for the force distribution. Enter expressions 
for the six dimensionless vector-valued distribution functions, q1, q2, q3, q4, q5, and 
q6. Usually, the local coordinates of the loaded region would be used for this purpose, 
but there is no limitation on the form of the functions. The built-in variables for the 
local coordinates are named <physics_tag>.<load_tag>.x2 and 
<phys_tag>.<load_tag>.x3, for example solid.pl1.x2. The default value is the 
distribution that is used when the option Beam is selected.

The local coordinates, x2 and x3, are defined in the following way:

• The origin is at the centroid of the selected points.

• The axis directions coincide with the principal axes of a virtual collection of points 
with unit mass.

• x2 is the axis around which the virtual principal area moment of inertia is larger.

When User Defined is selected, you can also select a Weight function — None, Circular, or 
User Defined. This function acts as a multiplier to the force distribution functions. 
When None is selected, the weight function w = 1. For Circular, enter a radius rw of a 
circle, outside of which no load is applied (w = 0). Inside the circle, w = 1. For User 

Defined, enter a weighting expression. Usually, the built-in local coordinates of the 
loaded region would be used for this purpose, but there is no limitation on the form 
of the function. A time- or parameter-dependent function can, for example, be used to 
model a moving load.

The traction distribution functions have the property that the forces are distributed as

where the coefficients ci are chosen so that the given force and moment resultants are 
obtained.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

f x  w x  ciqi x 

i 1=

6

=
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If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Points>Point Load

Layered Shell>Points>>Interfaces>Point Load

Truss>Point Load

Wire>Point Load

Multibody Dynamics>Points>Point Load

Ribbon
Physics tab with Solid Mechanics, Multibody Dynamics, or Multibody Dynamics selected:

Points>Point Load

Physics tab with Layered Shell selected:

Points>Interfaces>Point Load

Physics tab with Truss or Wire selected:

Points>Truss>Point Load

For more information about live and dead loads, see Buckling Analysis.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Point Load, Free

Use a Point Load, Free node to add concentrated loads with locations specified by 
coordinates. Such loads do not have to be placed in a geometrical point or in a mesh 
node. This is particularly useful for the following cases:

• Imported meshes, where there may not be suitable points for load application

• Moving loads

• Several point loads, in which case it may be impractical to create points at all load 
locations

The Point Load, Free node is only available with some COMSOL products (see https:/
/www.comsol.com/products/specifications/). It is available in 3D, 2D, and 2D 
axisymmetry.

L O C A T I O N  A N D  F O R C E

Select a Frame — Material or Spatial, which determines how the given coordinates are 
interpreted in case of a geometrically nonlinear analysis. When Material is selected, the 
load location on the body is interpreted with respect to the initial configuration. When 
Spatial is selected, then the load location is given in space fixed coordinates, which 
usually means that the material point on the body where the load is applied will change 
with deformation even if the coordinate values are constant.

For each row in the table, enter the data for one load. If material frame input is used, 
then the location is specified in terms of the material coordinates (X, Y, Z). If spatial 
frame input is used, then the spatial coordinates (x, y, z) are used. Then, enter the force 

• For each free point load, there will be a search for the mesh element 
that is closest to the given location. For the load to be active, the 
location must be within a certain small distance from at least one 
element. The actual load location is taken as the point on the element 
that is closest to the given location. If no element is found, the load is 
silently ignored.

You can check the number of loads that were ignored through the 
variable <phys>.<load_tag>.num_ignored (for example, 
solid.plf1.num_ignored).

• The local stress field in the element where a point load acts will not be 
reliable.
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values, Fxl, Fyl, and Fzl. The force vector is interpreted in the coordinate system selected 
in the Coordinate System Selection section.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Point Load, Free

Membrane>Point Load, Free

Truss>Point Load, Free

Wire>Point Load, Free

Multibody Dynamics>Point Load, Free

Ribbon
Physics tab with Solid Mechanics selected:

Global>Solid Mechanics>Point Load, Free

Physics tab with Membrane selected:

For more information about live and dead loads, see Buckling Analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.

Pratt Truss Bridge: Application Library path 
Structural_Mechanics_Module/Beams_and_Shells/pratt_truss_bridge
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Global>Membrane>Point Load, Free

Physics tab with Truss or Wire selected:

Global>Truss>Point Load, Free

Physics tab with Multibody Dynamics selected:

Global>Multibody Dynamics>Point Load, Free

Ring Load

A load applied to a point, not located at the axis of revolution, in a 2D axisymmetric 
model actually represents a ring load. Add a Ring Load to points located at R > 0 to 
model such loads.

F O R C E

Select the Load type — Force per unit length or Total force. Enter values or expressions 
for FL or Ftot.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

• The Load list normally only contains User defined. When combining 
with another physics interface that can provide this type of load, it is 
also possible to choose a predefined load from this list.

• The Total force option should not be directly interpreted as a resultant, 
since the orientation is changing. Rather, it should be interpreted as the 
per unit length values, multiplied by 2r, where r is the radius of the 
point.

For more information about live and dead loads, see Buckling Analysis.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Points>Ring Load

Membrane>Ring Load

Ribbon
Physics tab with Solid Mechanics selected:

Points>Ring Load

Physics tab with Membrane selected:

Points>Membrane>Ring Load

Ring Load, Free

A load applied to a point, not located at the axis of revolution, in a 2D axisymmetric 
model actually represents a ring load. Add a Ring Load, Free node to describe 
concentrated loads with locations specified by coordinates. Such loads do not have to 
be placed in a geometrical point or in a mesh node. This is particularly useful for the 
following cases:

• Imported meshes, where there may not be suitable points for load application

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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• Moving loads

• Several point loads, in which case it may be impractical to create points at all load 
locations

L O C A T I O N  A N D  F O R C E

Select a Frame — Material or Spatial that determines how the given coordinates are 
interpreted in case of a geometrically nonlinear analysis. When Material is selected, the 
load location on the body is interpreted with respect to the initial configuration. When 
Spatial is selected, then the load location is given in space fixed coordinates, which 
usually means that the material point on the body where the load is applied will change 
with deformation even if the coordinate values are constant.

For each row in the table, enter the data for one load. If material frame input is used, 
then the location is specified in terms of the material coordinates (R, Z). If spatial frame 
input is used, then the spatial coordinates (r, z) are used. Then, enter the force values, 
Fxl and Fyl. The force vector is interpreted in the coordinate system selected in the 
Coordinate System Selection section.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

• For each free load, there will be a search for the mesh element that is 
closest to the given location. For the load to be active, the location 
must be within a certain small distance from at least one element. The 
actual load location is taken as the point on the element that is closest 
to the given location. If no element is found, the load is silently 
ignored.

You can check the number of loads that were ignored through the 
variable <phys>.<load_tag>.num_ignored (for example, 
solid.rlf1.num_ignored).

• The local stress field in the element where a point load acts will not be 
reliable.
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  1049



1050 |  C H A P T E
If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Ring Load, Free

Membrane>Ring Load, Free

Ribbon
Physics tab with Solid Mechanics selected:

Global>Solid Mechanics>Ring Load, Free

Physics tab with Membrane selected:

Global>Membrane>Ring Load, Free

Point Load (on Axis)

A Point Load (on Axis) node can be added to points located at R = 0 in 2D axially 
symmetric models. This is the only true point load an axisymmetric model, since loads 
applied at points having nonzero radial coordinates actually represent a ring load. You 
can add a ring load using a Ring Load node.

For more information about live and dead loads, see Buckling Analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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F O R C E

Enter values or expressions for the Force Fz in the axial direction.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Points>Point Load (on Axis)

Shell>Point Load (on Axis)

Membrane>Point Load (on Axis)

Ribbon
Physics tab with Solid Mechanics selected:

Points>Point Load (on Axis)

The Load list normally only contains User defined. When combining with 
another physics interface that can provide this type of load, it is also 
possible to choose a predefined load from this list.

For more information about live and dead loads, see Buckling Analysis.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Physics tab with Shell or Membrane selected:

Points>Shell>Point Load (on Axis)

Points>Membrane>Point Load (on Axis)

Thin Layer

Use the Thin Layer node to apply elastic and damping conditions between two parts on 
interior boundaries, or a thin cladding on external boundaries to a solid.

B O U N D A R Y  P R O P E R T I E S

Select a Thin layer type — Nonlayered or Layered.

• For Nonlayered (the default), enter the thin layer Thickness Lth.

• For Layered, and when Use all layers is selected, all information is taken from the 
definitions made in the Single Layer Material, Layered Material Link, or Layered 

Material Stack nodes under the Materials node in the current component.

• For Layered, and when Use all layers is not selected, the Layered material list is 
displayed. You can select from the current component:

1 Any Single Layer Material available under the Materials node.

2 Any Layered Material Link available under the Materials node.

3 Any Layered Material Stack available under the Materials node.

T H I N  L A Y E R

Select the thin layer Approximation — Solid, Membrane, or Spring. Only the Solid 
approximation is available for Layered structures.

In the COMSOL Multiphysics Reference Manual: Single Layer 
Materials, Layered Material Link, and Layered Material Stack
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By adding the following subnodes to the Linear Elastic Material, Nonlinear Elastic 

Material, or Hyperelastic Material nodes you can incorporate many effects in thin layers:

The Thin Layer node and subnodes are only available with some COMSOL products 
(see https://www.comsol.com/products/specifications/).

The Thin Layer node is available in 3D, 2D, and 2D axisymmetry.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Thin Layer

Ribbon
Physics tab with Solid Mechanics selected:

Boundaries>Thin Layer

Prescribed Displacement (Thin Layer)

The Prescribed Displacement node adds a condition where the displacements are 
prescribed in one or more directions to the boundary.

If a displacement is prescribed in only one direction, this leaves the thin layer free to 
deform in the other directions.

• Thermal Expansion (for Materials)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress

• External Strain

• Inelastic Strain Rate

• Damping

• Viscoelasticity

• Plasticity

• Creep

• Viscoplasticity

• Mullins Effect

• Modeling Thin Layers in the Structural Mechanics Modeling chapter.

• Theory for Thin Layers in the Structural Mechanics Theory chapter.
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You can also define more general displacements as a linear combination of the 
displacements in each direction, see Prescribed Displacement.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
all applicable coordinate systems in the model. Prescribed displacements and rotations 
are specified along the axes of this coordinate system.

P R E S C R I B E D  D I S P L A C E M E N T

Select a Notation — Standard or General.

Standard Notation
To define the displacements individually, click the Standard notation button.

Select one or all of the Prescribed in x direction, Prescribed in y direction, Prescribed in 

z direction check boxes. Then enter a value or expression for the corresponding inputs 
u0x, u0y, and u0z. For axisymmetric components, select one or both of the Prescribed 

in r direction and Prescribed in z direction check boxes. Then enter a value or expression 
for u0 and w0. When twist is included in 2D axisymmetry, the circumferential 
displacement can also be prescribed.

General Notation
In 3D, 2D, or 2D axisymmetry, click General notation to specify the displacements 
using a general notation that includes any linear combination of displacement 
components. For example, for 2D components, use the relationship

For the H matrix H select Isotropic, Diagonal, Symmetric, or Full and then enter values 
as needed in the field or matrix. Enter values or expressions for the R vector R.

For example, to achieve the condition u = v, use the settings

If a zero displacement is applied in all directions, this is the same as a Fixed 
Constraint (Thin Layer).

For details, see Prescribed Displacements, Velocities, and Accelerations.

H u
v

R=
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,

which force the domain to move only diagonally in the xy-plane.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. For more information about this 
section, see Constraint Settings in the COMSOL Multiphysics Reference Manual.

E X C L U D E D  P O I N T S

To display these sections, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. For more information about these 
sections, see Excluded Surfaces, Excluded Edges, and Excluded Points in the 
COMSOL Multiphysics Reference Manual.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Thin Layer>Prescribed Displacement (Edge)
Solid Mechanics>Thin Layer>Points>Prescribed Displacement

Ribbon
Physics tab with Thin Layer node selected in the model tree:

Attributes>Prescribed Displacement (Edge)
Attributes>Points>Prescribed Displacement

Fixed Constraint (Thin Layer)

The Fixed Constraint and Prescribed Displacement (Thin Layer) nodes are similar, in 
that the prescribed displacement of the structural part on which it is acting is 
prescribed to zero. The displacements and rotations are prescribed to zero in all 
directions. There are no settings for this node. See Fixed Constraint.

H 1 1–

0 0
= R 0

0
=

• Modeling Thin Layers in the Structural Mechanics Modeling chapter.

• Theory for Thin Layers in the Structural Mechanics Theory chapter.
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. For more information about this 
section, see Constraint Settings in the COMSOL Multiphysics Reference Manual.

E X C L U D E D  P O I N T S

To display these sections, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. For more information about these 
sections, see Excluded Surfaces, Excluded Edges, and Excluded Points in the 
COMSOL Multiphysics Reference Manual.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Thin Layer>Fixed Constraint (Edge)
Solid Mechanics>Thin Layer>Points>Fixed Constraint

Ribbon
Physics tab with Thin Layer node selected in the model tree:

Attributes>Fixed Constraint (Edge)
Attributes>Points>Fixed Constraint

Roller (Thin Layer)

The Roller node adds constraints on the edges of the Thin Layer node. The displacement 
is zero in the normal direction, but the thin layer is free to move in the other directions. 
See Roller.

F A C E  D E F I N I N G  T H E  L O C A L  O R I E N T A T I O N S

When an edge is shared between two or more boundaries, the local directions may not 
always be unique. It is then possible to use the control Face Defining the Local 

Orientations to select from which boundary the normal direction should be picked. The 
default is Use face with lowest number.

• Modeling Thin Layers in the Structural Mechanics Modeling chapter.

• Theory for Thin Layers in the Structural Mechanics Theory chapter.
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. For more information about this 
section, see Constraint Settings in the COMSOL Multiphysics Reference Manual.

E X C L U D E D  P O I N T S

To display these sections (Excluded Edges in 3D geometries only), click the Show More 

Options button ( ) and select Advanced Physics Options in the Show More Options 
dialog box. For more information about these sections, see Excluded Surfaces, 
Excluded Edges, and Excluded Points in the COMSOL Multiphysics Reference 
Manual.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Thin Layer>Roller (Edge)

Ribbon
Physics tab with Thin Layer node selected in the model tree:

Attributes>Roller

Face Load (Thin Layer)

Add a Face Load node to apply tractions or pressure on boundaries where the Thin Layer 
material is active.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
all applicable coordinate systems in the model. Prescribed loads are specified along the 
axes of this coordinate system.

• Modeling Thin Layers in the Structural Mechanics Modeling chapter.

• Theory for Thin Layers in the Structural Mechanics Theory chapter.
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F O R C E

Select the Load type — Force per unit area, Total force, or Pressure. Force per unit length 
is also available for 2D components. Then enter values or expressions for the boundary 
load components based on the selection and the space dimension.

• For Force per unit area, the traction components are given explicitly.

• For Total force, the total force is divided by the area of the boundaries where the 
load is active. Then it is applied in the same way as for a Force per unit area. When 
working with curved boundaries or local coordinate systems, use this option 
carefully, as the result is not always intuitive.

• For Pressure, a scalar input is given, and the orientation of the load is given by the 
normal to the boundary. The pressure is positive when directed toward the thin 
layer. In a geometrically nonlinear analysis, the current surface normal and area are 
used.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

After selecting a Load type, the Load list normally only contains User 

defined. When combining with another physics interface that can provide 
this type of load, it is also possible to choose a predefined load from this 
list.

TABLE 4-7:  

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY 
LEVEL

SPACE DIMENSION 
(COMPONENTS)

Force per unit area FA Nm2 boundaries 3D (x, y, z)

2D (x, y)

2D axisymmetric (r, z)

Force per unit length FL N/m boundaries 2D (x, y)

Total force Ftot N boundaries 3D (x, y, z)

2D (x, y)

2D axisymmetric (r, z)

Pressure p Pa boundaries 3D (x, y, z)

2D (x, y)

2D axisymmetric (r, z)
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If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Thin Layer>Face Load

Ribbon
Physics tab with Thin Layer node selected in the model tree:

Attributes>Face Load

Boundary Load (Thin Layer)

Add a Boundary Load node to apply tractions or pressure on edges adjacent to 
boundaries where the Thin Layer node is active.

For more information about live and dead loads, see Buckling Analysis.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.

• Modeling Thin Layers in the Structural Mechanics Modeling chapter.

• Theory for Thin Layers in the Structural Mechanics Theory chapter.
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
all applicable coordinate systems in the model. Prescribed loads are specified along the 
axes of this coordinate system.

F O R C E

Select the Load type — Force per unit area, Total force, or Pressure. Force per unit length 
is also available for 2D components. Then enter values or expressions for the boundary 
load components based on the selection and the space dimension.

• For Force per unit area, the traction components are given explicitly.

• For Total force, the total force is divided by the area of the boundaries where the 
load is active. Then it is applied in the same way as for a Force per unit area. When 
working with curved boundaries or local coordinate systems, use this option 
carefully, as the result is not always intuitive.

• For Pressure, a scalar input is given, and the orientation of the load is given by the 
normal to the boundary. The pressure is positive when directed toward the thin 
layer. In a geometrically nonlinear analysis, the current surface normal and area are 
used.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

For more information about live and dead loads, see Buckling Analysis.

• Modeling Thin Layers in the Structural Mechanics Modeling chapter.

• Theory for Thin Layers in the Structural Mechanics Theory chapter.
R  4 :  S O L I D  M E C H A N I C S



L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Thin Layer>Boundary Load

Ribbon
Physics tab with Thin Layer node selected in the model tree:

Attributes>Boundary Load

Spring Material

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The spring constants and loss factors are given with respect to the selected coordinate 
system.

S P R I N G

Select the Spring type and its associated spring constant or force using Table 4-8 as a 
guide. 

Use the built-in variables for the thin layer extension for the options Force per area as 

function of extension, Force per length as function of extension, or Total force as function 

of extension. The names are <item>.uelt1, <item>.uelt2, and <item>.ueln, where 
<item> is the name of the Thin Layer node (e.g. solid.tl1), and t1, t2, and n are 
the coordinate names of the local boundary system.

The spring constants can be entered as Isotropic, Diagonal, or Symmetric. For Isotropic 
the same spring constant is used in all the diagonal elements of the spring matrix.

TABLE 4-8:  SPRING TYPES FOR THE SPRING MATERIAL FEATURE

SPRING TYPE VARIABLE SI UNITS SPACE DIMENSION

Spring constant per unit area kA N/(mm2) 3D, 2D, and 2D 
axisymmetric

Spring constant per unit length kL N/(mm) 2D

Total spring constant ktot N/m 3D, 2D, and 2D 
axisymmetric

Force per area as function of extension FA N/m2 3D, 2D, and 2D 
axisymmetric

Force per length as function of extension FL N/m 2D

Total force as function of extension Ftot N 3D, 2D, and 2D 
axisymmetric
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Enter the Mass type of the thin elastic layer — Total mass, Mass per unit volume, or Mass 

per unit area. For thin layers on 2D geometries, it is also possible to enter the Mass per 

unit length L.

G E O M E T R I C  N O N L I N E A R I T Y

The settings in this section affect the behavior of the Spring Material in a geometrically 
nonlinear analysis.

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. Select the Geometrically linear formulation check box to 
always use a small strain formulation, irrespective of the setting in the study step.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. For more information about this 
section, see Constraint Settings in the COMSOL Multiphysics Reference Manual.

D A M P I N G

From the Damping type list, select Loss factor or Viscous damping.

When choosing Loss factor type, select Scalar (Same for all components) or Individual 

components.

• For Scalar (Same for all components) enter a single Loss factor for spring s, which is 
used to multiply all values of the spring matrix or spring force vector.

• For Individual components select Isotropic, Diagonal, or Symmetric, then enter values 
or expressions for the Loss factor for spring k. The loss factors act on the 
corresponding components of the spring matrix or spring force vector. If you select 
Isotropic, the effect is the same as when you select Diagonal and enter the same value 
for all diagonal elements.

When choosing Viscous damping, enter the Normal viscosity b and the Shear 

viscosity v.

Spring Foundation

Use the Spring Foundation node to apply elastic and damping boundary conditions for 
domains, boundaries, edges, and points.

By adding the Predeformation subnode, you can prescribe that the spring force is zero 
at a nonzero spring extension.
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The Spring Foundation and Thin Elastic Layer nodes are similar, with the difference that 
a Spring Foundation connects the structural part on which it is acting to a fixed 
“ground”, while a Thin Elastic Layer acts between two parts, either on an interior 
boundary or between two boundaries forming a pair.

The Spring Foundation node is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

S H E L L  P R O P E R T I E S

I N T E R F A C E  S E L E C T I O N

P A I R  S E L E C T I O N

If this node is selected from the Pairs menu, choose the pair on which to apply this 
condition. An identity pair has to be created first.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The spring and damping constants are given with respect to the selected coordinate 
system.

S P R I N G

Select the Spring type and its associated spring constant or force using Table 4-9 as a 
guide. The default option is the spring type for the type of geometric entity and space 
dimension, and there are different combinations available based on this.

When the option is of the type ‘force as function of extension’, then the built-in 
variables describing the spring extension must be used in the expression as described 
in Springs and Dampers. The spring matrix can be entered as Isotropic, Diagonal, 
Symmetric, or Full. For Isotropic the same spring constant is used in all the diagonal 
elements of the spring matrix.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Spring Foundation node.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Spring Foundation, Interface 
node.
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When Use material data is selected as Spring type, the spring stiffness values are 
computed from the given material data and a layer thickness. From the Specify list, 
select a pair of elastic properties — Young’s modulus and Poisson’s ratio, Young’s modulus 

and shear modulus, or Bulk modulus and shear modulus. Each of these pairs define the 
elastic properties and it is possible to convert from one set of properties to another 
according to Table 4-10. For the chosen properties, select from the applicable list to 
use the value From material or enter a User defined value or expression. In order to use 
From material, you must have assigned a material to the selected boundaries.

Enter a Thickness, ds, to specify the physical thickness of the elastic layer.

TABLE 4-9:  SPRING TYPES FOR THE SPRING FOUNDATION FEATURE

SPRING TYPE VARIABLE SI UNITS GEOMETRIC ENTITY LEVEL SPACE DIMENSION

Spring constant 
per unit volume

kV N/(mm3) domains 3D, 2D, 1D, and 
2D/1D 
axisymmetric

Total spring 
constant

ktot N/m domains, edges 3D, 2D, 1D, and 
2D/1D 
axisymmetric

Spring constant 
per unit area

kA N/(mm2) boundaries 3D, 2D

Spring constant 
per unit length

kL N/(mm) edges, boundaries (2D) 3D, 2D, 1D

Spring constant kP N/m points 3D, 2D, 1D, and 
2D axisymmetric

Force per 
volume as 
function of 
extension

FV N/m3 domains 3D, 2D, 1D, and 
2D/1D 
axisymmetric

Total force as 
function of 
extension

Ftot N domains, boundaries, 
edges

3D, 2D, 1D, and 
2D/1D 
axisymmetric

Force per area 
as function of 
extension

FA N/m2 domains, boundaries 3D, 2D

Force per length 
as function of 
extension

FL N/m edges 3D/1D
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R O T A T I O N A L  S P R I N G

This section is available for the Beam interface. All settings are analogous to the 
corresponding settings in the Spring section, but with forces replaced by moments and 
displacements replaced by rotations.

L O S S  F A C T O R  D A M P I N G

From the Loss factor type list, select Scalar (Same for all components) or Individual 

components. The latter option is not available for 1D or 1D axisymmetry.

• For Scalar (Same for all components) enter a single Loss factor for spring s, which is 
used to multiply all values of the spring matrix or spring force vector.

• For Individual components select Isotropic, Diagonal, Symmetric, or Full, then enter 
values or expressions in the table for the Loss factor for spring k or f based on space 
dimension. The loss factors act on the corresponding components of the spring 
matrix or spring force vector. If you select Isotropic, the effect is the same as when 
you select Diagonal and enter the same value for all diagonal elements.

R O T A T I O N A L  L O S S  F A C T O R  D A M P I N G

This section is available for the Beam and Pipe Mechanics interfaces. All settings are 
analogous to the corresponding settings in the Loss Factor Damping section.

Force as 
function of 
extension

FP N points 3D, 2D, 1D, and 
2D/1D 
axisymmetric

Use material 
data

N/A N/A boundaries 3D, 2D, and 2D 
axisymmetric

TABLE 4-10:  EXPRESSIONS FOR THE ELASTIC MODULI.

DESCRIPTION VARIABLE DE DEG DKG

Young’s 
modulus

E = E E

Poisson’s 
ratio

 = 

Bulk 
modulus

K = K

Shear 
modulus

G = G G

TABLE 4-9:  SPRING TYPES FOR THE SPRING FOUNDATION FEATURE

SPRING TYPE VARIABLE SI UNITS GEOMETRIC ENTITY LEVEL SPACE DIMENSION

9KG
3K G+
-------------------

E
2G
-------- 1– 1

2
--- 1 3G

3K G+
-------------------– 

 

E
3 1 2– 
------------------------ EG

3 3G E– 
---------------------------

E
2 1 + 
---------------------
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V I S C O U S  D A M P I N G

Select the Damping type using Table 4-11 as a guide. The default option is the default 
damping type for the type of geometric entity and space dimension, and there are 
different combinations available based on this. The damping matrix can be entered as 
Isotropic, Diagonal, Symmetric, or Full. For Isotropic the same viscous constant is used in 
all the diagonal elements of the damping matrix

R O T A T I O N A L  V I S C O U S  D A M P I N G

This section is available for the Beam and Pipe Mechanics interfaces. All settings in this 
section are analogous to the corresponding settings in the Viscous Damping section, 
but with forces replaced by moments and velocities replaced by angular velocities.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Mass, Spring, and Damper>Spring Foundation (Domain, Boundary)
Solid Mechanics>Edges>Spring Foundation

Solid Mechanics>Points>Spring Foundation

TABLE 4-11:  DAMPING TYPES FOR THE SPRING FOUNDATION FEATURE

DAMPING TYPE VARIABLE SI UNITS GEOMETRIC ENTITY 
LEVEL

SPACE DIMENSION

Damping constant 
per unit volume

dV Ns/(mm3) domains, 
boundaries (2D)

3D, 2D, 1D

Damping constant 
per unit area

dA Ns/(mm2) domains, 
boundaries

3D, 2D, and 2D 
axisymmetric

Total damping 
constant

dtot Ns/m domains, 
boundaries, 
edges, points

3D, 2D, 1D, and 
2D/1D 
axisymmetric

Damping constant 
per unit length

dL Ns/(mm) edges 3D, 1D

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.

• Springs and Dampers in the Structural Mechanics Modeling chapter.

• Spring Foundation and Thin Elastic Layer in the Structural Mechanics 
Theory chapter.
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Shell>Mass, Spring, and Damper>Spring Foundation (Boundary, Edge)
Shell>Points>Spring Foundation

Plate>Mass, Spring, and Damper>Spring Foundation (Domain, Boundary)
Plate>Points>Spring Foundation

Layered Shell>Mass, Spring, and Damper>Spring Foundation (Boundary, Edge)
Layered Shell>Mass, Spring, and Damper>Interfaces>Spring Foundation, Interface 
(Boundary, Edge)
Layered Shell>Points>Spring Foundation

Layered Shell>Points>Interfaces>Spring Foundation, Interface

Membrane>Mass, Spring, and Damper>Spring Foundation (Boundary, Edge)
Membrane>Points>Spring Foundation

Beam>Mass, Spring, and Damper>Spring Foundation

Pipe Mechanics>Mass, Spring, and Damper>Spring Foundation

Truss>Mass, Spring, and Damper>Spring Foundation

Multibody Dynamics>Mass, Spring, and Damper>Spring Foundation (Domain)
Multibody Dynamics>Spring Foundation (Boundary)
Multibody Dynamics>Edges>Spring Foundation

Multibody Dynamics>Points>Spring Foundation

Ribbon
Physics tab with Solid Mechanics selected:

Domains>Mass, Spring, and Damper>Spring Foundation

Boundaries>Mass, Spring, and Damper>Spring Foundation

Edges>Solid Mechanics>Spring Foundation

Points>Solid Mechanics>Spring Foundation

Physics tab with Shell or Membrane selected:

Boundaries>Mass, Spring, and Damper>Spring Foundation

Edges>Mass, Spring, and Damper>Spring Foundation

Points>Shell>Spring Foundation

Points>Membrane>Spring Foundation

Physics tab with Plate selected:

Domains>Mass, Spring, and Damper>Spring Foundation

Boundaries>Mass, Spring, and Damper>Spring Foundation

Points>Plate>Spring Foundation

Physics tab with Layered Shell selected:

Boundaries>Mass, Spring, and Damper>Spring Foundation
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Boundaries>Interfaces>Spring Foundation, Interface

Edges>Mass, Spring, and Damper>Spring Foundation

Edges>Interfaces>Spring Foundation, Interface

Points>Layered Shell>Spring Foundation

Points>Interfaces>Spring Foundation, Interface

Physics tab with Beam, Pipe Mechanics, or Truss selected:

Edges>Mass, Spring, and Damper>Spring Foundation

Points>Mass, Spring, and Damper>Spring Foundation

Physics tab with Multibody Dynamics selected:

Domains>Mass, Spring, and Damper>Spring Foundation

Boundaries>Multibody Dynamics>Spring Foundation

Edges>Multibody Dynamics>Spring Foundation

Points>Multibody Dynamics>Spring Foundation

Thin Elastic Layer

Use the Thin Elastic Layer node to apply elastic and damping conditions between two 
parts, either on an interior boundary or on a boundary pair.

By adding the Predeformation subnode, you can prescribe that the spring force is zero 
at a nonzero spring extension.

The Thin Elastic Layer and Spring Foundation nodes are similar, with the difference that 
a Spring Foundation connects the structural part on which it is acting to a fixed 
“ground”.

The Thin Elastic Layer node is only available with some COMSOL products (see https:/
/www.comsol.com/products/specifications/). Thin Elastic Material is available in 3D, 
2D, and 2D axisymmetry.

S H E L L  P R O P E R T I E S

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Thin Elastic Layer node.
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I N T E R F A C E  S E L E C T I O N

P A I R  S E L E C T I O N

If this node is selected from the Pairs menu, choose the pair on which to apply this 
condition. An identity pair has to be created first.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The spring and damping constants are given with respect to the selected coordinate 
system, with the exception that when the stiffness is specified by Use material data, the 
coordinate system selection is not used.

S P R I N G

Select the Spring type and its associated spring constant or force using Table 4-12 as a 
guide. The default option is the spring type for the type of geometric entity and space 
dimension, and there are different combinations available based on this.

When the option is of the type “force as function of extension”, then the built-in 
variables describing the spring extension must be used in the expression as described 
in Springs and Dampers. The spring matrix can be entered as Isotropic, Diagonal, 
Symmetric, or Full. For Isotropic the same spring constant is used in all the diagonal 
elements of the spring matrix.

When Use material data is selected as Spring type, the spring stiffness values are 
computed from material data and layer thickness. From the Specify list, select a pair of 
elastic properties — Young’s modulus and Poisson’s ratio, Young’s modulus and shear 

modulus, or Bulk modulus and shear modulus. Each of these pairs define the elastic 
properties and it is possible to convert from one set of properties to another according 
to Table 4-10. For the chosen properties, select from the applicable list to use the value 
From material or enter a User defined value or expression. In order to use From material, 
you must have assigned a material to the selected boundaries.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Thin Elastic Layer, Interface 
node.
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Enter a Thickness, ds, to specify the physical thickness of the elastic layer.

A D D E D  M A S S

Enter the added mass of the thin elastic layer. The type of input depends on the 
selected Spring type; see Table 4-12.

• For Total spring constant and Total force as function of extension, enter the Total mass 
m of the thin elastic layer.

• For Spring constant per unit area and Force per area as function of extension, enter 
the Mass per unit area A of the thin elastic layer.

• For Spring constant per unit area and Force per area as function of extension, enter 
the Mass per unit length L of the thin elastic layer.

• For Use material data, enter the Density  of the thin elastic layer. Either use the value 
From material or enter a User defined value or expression. In order to use 
From material, you must have assigned a material to the selected boundaries.

TABLE 4-12:  SPRING TYPES FOR THE THIN ELASTIC LAYER FEATURE

SPRING TYPE VARIABLE SI UNITS SPACE DIMENSION

Total spring constant ktot N/m 3D, 2D, and 2D 
axisymmetric

Spring constant per unit area kA N/(mm2) 3D, 2D, and 2D 
axisymmetric

Spring constant per unit length kL N/(mm) 2D

Total force as function of extension Ftot N 3D, 2D, and 2D 
axisymmetric

Force per area as function of 
extension

FA N/m2 3D, 2D, and 2D 
axisymmetric

Force per length as function of 
extension

FL N/m 2D

Use material data N/A N/A 3D, 2D, and 2D 
axisymmetric
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L O S S  F A C T O R  D A M P I N G

From the Loss factor type list, select Scalar (Same for all components) or Individual 

components.

• For Scalar (Same for all components) enter a single Loss factor for spring s, which is 
used to multiply all values of the spring matrix or spring force vector.

• For Individual components select Isotropic, Diagonal, Symmetric, or Full and enter 
values or expressions in the table for the Loss factor for spring k or f based on space 
dimension. The loss factors act on the corresponding components of the spring 
matrix or spring force vector. If you select Isotropic, the effect is the same as when 
you select Diagonal and enter the same value for all diagonal elements.

V I S C O U S  D A M P I N G

Select the Damping type using Table 4-13 as a guide. The default option is the default 
damping type for the space dimension. The damping matrix can be entered as Isotropic, 
Diagonal, Symmetric, or Full. For Isotropic the same viscous constant is used in all the 
diagonal elements of the damping matrix

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Mass, Spring, and Damper>Thin Elastic Layer

TABLE 4-13:  DAMPING TYPES FOR THE THIN ELASTIC LAYER FEATURE

DAMPING TYPE VARIABLE SI UNITS SPACE DIMENSION

Damping constant per unit area dA Ns/(mm2) 3D, 2D, and 2D 
axisymmetric

Total damping constant dtot Ns/m 3D, 2D, and 2D 
axisymmetric

Damping constant per unit length dL Ns/(mm) 2D

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.

• Springs and Dampers in the Structural Mechanics Modeling chapter.

• Spring Foundation and Thin Elastic Layer in the Structural Mechanics 
Theory chapter.
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Solid Mechanics>Pairs>Thin Elastic Layer

Layered Shell>Mass, Spring, and Damper>Thin Elastic Layer (Edge)

Ribbon
Physics tab with Solid Mechanics selected:

Boundaries>Mass, Spring, and Damper>Thin Elastic Layer

Pairs>Solid Mechanics>Thin Elastic Layer

Physics tab with Layered Shell selected:

Edges>Mass, Spring, and Damper>Thin Elastic Layer

Predeformation

Use the Predeformation subnode to specify that the elastic forces in Spring Foundation 
or Thin Elastic Layer are nonzero at zero displacement. Thus, you can model cases 
where the unstressed state of the spring is in another configuration than the one 
described by the geometry.

The value of the predeformation can vary during the simulation, so it should not be 
interpreted as an initial value.

S H E L L  P R O P E R T I E S

S P R I N G  P R E D E F O R M A T I O N

Based on space dimension, enter the values for the Spring Predeformation u0.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Spring Foundation>Predeformation

Solid Mechanics>Thin Elastic Layer>Predeformation

Shell>Spring Foundation>Predeformation

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Predeformation node.

You can assign the load caused by the predeformation to a load group. 
See Load Cases in the Structural Mechanics Modeling chapter.
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Layered Shell>Spring Foundation>Predeformation

Layered Shell>Spring Foundation, Interface>Predeformation

Layered Shell>Thin Elastic Layer>Predeformation

Plate>Spring Foundation>Predeformation

Membrane>Spring Foundation>Predeformation

Beam>Spring Foundation>Predeformation

Truss>Spring Foundation>Predeformation

Wire>Spring Foundation>Predeformation

Multibody Dynamics>Spring Foundation>Predeformation

Ribbon
Physics tab with Spring Foundation, Spring Foundation, Interface, or Thin Elastic Layer 
node selected in the model tree:

Attributes>Predeformation

Spring-Damper

Use a Spring-Damper ( ) for 3D, 2D and 1D components to model — between two 
points — an elastic spring, a viscous damper, or both.

The spring can either act as an axial spring between the two points, or be defined be a 
general spring matrix, connecting all the degrees of freedom in the two points. The 
two points are referred to as the source and destination point, respectively. The points 
can be geometrical points, but there are also other methods for describing the 
attachment point of the spring as a virtual point in space.

A spring-damper can connect two points belonging to two different physics interfaces. 
If at least one of the physics interfaces possesses rotational degrees of freedom, the 
Spring-Damper should be placed in such an interface.

The Spring-Damper node is only available with some COMSOL products (see https:/
/www.comsol.com/products/specifications/).

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

This section is only of importance when a full matrix representation of the 
spring-damper is used. In that case, the matrix is interpreted as acting on the degrees 
of freedom in the local directions provided by the local coordinate system.
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S K E T C H

This section is only available if Directional is selected as Spring type. In that case, a 
conceptual representation of the spring-damper assembly is shown.

A T T A C H M E N T  S E L E C T I O N

In this section, you select the two points between which the spring or damper is 
connected.

Source Point
Select a Source. The default is Select a connection point. You will then do the actual 
selection in the Source Point subnode. If you select more than a single point, the spring 
will be connected to a virtual point, the location of which is the average of the selected 
points. If you make another choice than Select a connection point, the corresponding 
Source Point subnode will be removed.

The other option that is always available as Source is Fixed. When Fixed is selected, the 
source side of the spring is fixed in space, and not connected to any modeled parts. In 
this case, you need to specify the location of the source point. For Connection point, 
select User defined and enter the coordinate Xs of the source point.

If a Base Motion is defined in a Multibody Dynamics interface, it can be selected as 
Source. Selecting a base motion gives a behavior similar to using Fixed, with the 
exception that the base now can have a nonzero prescribed displacement, velocity or 
acceleration.

Any Attachment node in the model can be selected as Source, irrespective of in which 
physics interface it is defined. The use of attachments required the Multibody 
Dynamics Module or the Rotordynamics Module.

From the Source list, you can also select any object that is of a rigid body type, 
irrespective on in which physics interface it is defined. Such objects are:

• Rigid Material

• Spur Gear (in the Multibody Dynamics interface)

• Helical Gear (in the Multibody Dynamics interface)

• Bevel Gear (in the Multibody Dynamics interface)

• Worm Gear (in the Multibody Dynamics interface)

• Spur Rack (in the Multibody Dynamics interface)

• Helical Rack (in the Multibody Dynamics interface)
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Destination Point
Most settings are the same as for the Source. The differences are the following:

• The options Fixed and Base Motion are not available for the destination point.

• There is one other option: Prescribed displacement.

The available inputs for Prescribed displacement depend on the selected Spring type in 
the Spring-Damper section.

If the spring type is Directional, enter an expression for the Prescribed displacement, ud, 
and for the Reference destination point, Xd. The entered values determine how the 
spring extension is computed.

If the spring type is Matrix, enter expressions for the Prescribed displacement, ud, and 
the Prescribed rotation, d.

Using Prescribed displacement, it is possible to connect the spring to 
another physics interface. In order to do that, you can enter expressions 
using Nonlocal Couplings defined in the Definitions node for a component.

When the Spring type is set to Matrix, the rotation of the source and the 
destination (s and d) are determined by availability of rotational 
degrees of freedom. If the physics interface itself has rotational degrees of 
freedom, these will be used in a point selection. For all physics interfaces, 
irrespective whether they have rotational degrees of freedom or not, a 
connection to an attachment or rigid body type object will provide a 
rotation.

Some settings in the GUI are only available if rotational degrees of 
freedom are present.
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S P R I N G - D A M P E R

Select a Spring type — Directional or Matrix. The latter option is not available for 1D 
and 1D axisymmetry.

Directional
Select a Definition — Spring constant or Force as function of extension.

• For Spring constant enter a value for k.

• For Force as function of extension enter an expression for Fs. The expression must be 
a function of the extension of the spring. The built-in variable for the spring 
extension has the form <physicsName>.<SpringNodeTag>.dl, for example 
solid.spd1.dl.

To add viscous damping in a dynamic analysis, enter a value or expression for the 
Damping coefficient c.

Matrix
• Under Spring constants, enter the stiffness matrices defining the elastic connection 

between the source and destination. Input fields for the matrices ku and k are 
always shown. Select Translational-rotational coupling to show input fields for the 
coupling matrices ku and ku. In 2D, most elements of these matrices are by 
definition zero. Only elements that can be nonzero are shown; these are elements 
13 and 23 for ku and elements 31 and 32 for ku.

• Under Damping coefficients, enter the damping matrices defining the viscous 
connection between the source and destination. Input fields for the matrices cu and 
c are always shown. Select Translational-rotational coupling to show input fields for 
the coupling matrices cu and cu. In 2D, most elements of these matrices are by 
definition zero. Only elements that can be nonzero are shown; these are elements 
13 and 23 for cu and elements 31 and 32 for cu.

When the Spring-Damper node is used in the Multibody Dynamics 
interface, there is one more option: Use selection filter.

In large models, the list of available attachments can become very long. 
You can then create geometric filters to narrow down the search. When 
the Use selection filter check box is selected, two subnodes named Source 
Filter and Destination Filter are added to the Spring-Damper node. In 
these subnodes you can make graphic selections of the objects whose 
attachments should be shown in the Source and a Destination lists.
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• By default, the relative displacement between source and destination is computed as 
u  udus. In some cases, however, it can be more reasonable to also include 
displacements resulting from a rigid body type rotation. If Include rotational 

contribution in displacement is selected, an additional term is added to the expression 
for the relative displacement. It describes the additional displacement due to the 
rotation of the destination if the source and destination were connected by a rigid 
bar element.

F R E E  L E N G T H

This section is only available if Directional is selected as Spring type.

The free length is the distance between the connection points when there is no force 
in the spring. Select an option from the list: Specify initial extension or Specify free 

length.

• For Specify initial extension enter a value for l0. The free length is computed as 
lf  l0  l0, where l0 is the initial distance between the connection points.

• For Specify free length enter a value for lf.

A C T I V A T I O N  C O N D I T I O N S

If Directional is selected as Spring type, you can select a Spring action — Bidirectional, 
Tension only, or Compression only.

If you want to activate or deactivate the entire spring-damper, select the Deactivation 
check box. Then, enter a Deactivation expression idac. The expression is treated as a 
Boolean expression, so that when it evaluated to a nonzero value, the spring or damper 
is deactivated.

Select the Permanently deactivate check box if the spring is supposed to be removed 
permanently from the simulation when the deactivation condition is fulfilled for the 
first time.

As an example, if the spring should break at a certain extension, you can write an 
expression like solid.spd2.dl>0.12[m], and select the Permanently deactivate check 
box. If the check box is not selected, the spring would become active again when its 
connection points come close enough to each other.

Spring-Damper Theory
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Spring-Damper

Shell>Spring-Damper

Plate>Spring-Damper

Layered Shell>Spring-Damper

Membrane>Spring-Damper

Beam>Spring-Damper

Truss>Spring-Damper

Multibody Dynamics>Spring-Damper

Pipe Mechanics>Spring-Damper

Ribbon
Physics tab with Solid Mechanics selected:

Global>Solid Mechanics>Spring-Damper

Physics tab with Shell selected:

Global>Shell>Spring-Damper

Physics tab with Plate selected:

Global>Plate>Spring-Damper

Physics tab with Layered Shell selected:

Global>Layered Shell>>Spring-Damper

Physics tab with Membrane selected:

Global>Membrane>Spring-Damper

Physics tab with Beam selected:

Global>Beam>Spring-Damper

Physics tab with Truss selected:

Global>Truss>Spring-Damper

Physics tab with Multibody Dynamics selected:

Global>Multibody Dynamics>Spring-Damper

Physics tab with Pipe Mechanics selected:
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Global>Pipe Mechanics>Spring-Damper

Source Point (for Spring-Damper)

Select a point, or a set of points, representing the source connection point for the 
Spring-Damper. The main intent is that you should select a single connection point, 
but it is also possible to select several points. If you select several points, the spring 
attachment location is the average value of the coordinates of the selected points. The 
displacement is computed as the average of the displacements in the selected points, 
which for a flexible body might not be the same as the actual displacement in the 
averaged location. The spring force is distributed over the selected points.

L O C A T I O N  I N  U S E R  I N T E R F A C E

When Select a connection point is chosen under Source for in the parent Spring-Damper 
node, this subnode will automatically be generated. It cannot be added or removed 
manually.

Destination Point (for Spring-Damper)

Select a point, or a set of points, representing the destination connection point for the 
Spring-Damper. For details, see Source Point (for Spring-Damper).

L O C A T I O N  I N  U S E R  I N T E R F A C E

When Select a connection point is chosen under Destination for in the parent 
Spring-Damper node, this subnode will automatically be generated. It cannot be 
added or removed manually.

Source Point Nodes

S O U R C E  P O I N T :  B O U N D A R Y

Select a set of boundaries whose centroid represents the source connection point.

S O U R C E  P O I N T :  E D G E

Select a set of edges whose centroid represents the source connection point.

S O U R C E  P O I N T :  P O I N T

Select a set of points whose centroid represents the source connection point.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

When Centroid of selected entities is chosen under Connection point for the source 
attachment in the parent Spring-Damper, a subnode will be generated based on the 
setting of Entity level. They cannot be added or removed manually.

Destination Point Nodes

D E S T I N A T I O N  P O I N T :  B O U N D A R Y

Select a set of boundaries whose centroid represents the destination connection point.

D E S T I N A T I O N  P O I N T :  E D G E

Select a set of edges whose centroid represents the destination connection point.

D E S T I N A T I O N  P O I N T :  P O I N T

Select a set of points whose centroid represents the destination connection point.

L O C A T I O N  I N  U S E R  I N T E R F A C E

When Centroid of selected entities is chosen under Connection point for the destination 
attachment in the parent Spring-Damper, a subnode will be generated based on the 
setting of Entity level. They cannot be added or removed manually.

Added Mass

The Added Mass node is available on different geometrical entity levels and can be used 
to supply inertia that is not part of the material itself. Such inertia does not need to be 
isotropic in the sense that the inertial effects are not the same in all directions.

The Added Mass node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

S H E L L  P R O P E R T I E S

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Added Mass node.
R  4 :  S O L I D  M E C H A N I C S

https://www.comsol.com/products/specifications/
https://www.comsol.com/products/specifications/


I N T E R F A C E  S E L E C T I O N

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The added mass values are given with respect to the selected coordinate directions.

F A C E  D E F I N I N G  T H E  L O C A L  O R I E N T A T I O N S

This section is only present in the Added Mass node in the Shell interface.

A D D E D  M A S S

Select a Mass type using Table 4-14 as a guide. The default option is the type for the 
geometric entity. The added mass matrix can be entered as Isotropic, Diagonal, or 
Symmetric. For Isotropic the same mass is used in all the diagonal elements of the mass 
matrix.

F R A M E  A C C E L E R A T I O N  F O R C E S

Select the Exclude contribution check box to switch off the loads generated by this node 
when the frame is accelerated when using a Gravity, Rotating Frame, Linearly 
Accelerated Frame, or Base Excitation feature. The setting will also determine whether 
the node will contribute when computing mass properties.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Added Mass, Interface node.

For more information about the special coordinate systems available in 
the Shell and Plate interfaces, see Added Mass in the documentation for 
these interfaces.

TABLE 4-14:  AVAILABLE MASS TYPES BASED ON GEOMETRIC ENTITY

MASS TYPE VARIABLE SI UNITS GEOMETRIC ENTITY LEVEL

Mass per unit volume pV kg/m3 domains, boundaries

Mass per unit area pA kg/m2 domains, boundaries, edges

Mass per unit length pL kg/m edges, points

Total mass m kg domains, boundaries, edges

For more information, see Computing Mass Properties.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Mass, Spring, and Damper>Added Mass (Domain, Boundary)
Solid Mechanics>Edges>Added Mass

Shell>Mass, Spring, and Damper>Added Mass (Boundary, Edge)
Plate>Mass, Spring, and Damper>Added Mass (Domain, Boundary)
Layered Shell>Mass, Spring, and Damper>Added Mass (Boundary, Edge)
Layered Shell>Points>Added Mass (Point)
Layered Shell>Mass, Spring, and Damper>Interfaces>Added Mass, Interface (Boundary, 
Edge)
Membrane>Mass, Spring, and Damper>Added Mass (Boundary, Edge)
Beam>Mass, Spring, and Damper>Added Mass (Edge)
Truss>Mass, Spring, and Damper>Added Mass (Edge)
Wire>Mass, Spring, and Damper>Added Mass (Edge)
Multibody Dynamics>Mass, Spring, and Damper>Added Mass (Domain)
Multibody Dynamics>Added Mass (Boundary)
Multibody Dynamics>Edges>Added Mass

Ribbon
Physics tab with Solid Mechanics selected:

Domains>Mass, Spring, and Damper>Added Mass

Boundaries>Mass, Spring, and Damper>Added Mass

Edges>Solid Mechanics>Added Mass

Physics tab with Shell or Membrane selected:

Boundaries>Mass, Spring, and Damper>Added Mass

Edges>Mass, Spring, and Damper>Added Mass

Physics tab with Plate selected:

Domains>Mass, Spring, and Damper>Added Mass

Boundaries>Mass, Spring, and Damper>Added Mass

Physics tab with Layered Shell selected:

Boundaries>Mass, Spring, and Damper>Added Mass

Boundaries>Interfaces>Added Mass, Interface

Edges>Mass, Spring, and Damper>Added Mass

Edges>Interfaces>Added Mass, Interface

Points>Layered Shell>Added Mass
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Physics tab with Beam, Truss, or Wire selected:

Edges>Mass, Spring, and Damper>Added Mass

Physics tab with Multibody Dynamics selected:

Domains>Mass, Spring, and Damper>Added Mass

Boundaries>Multibody Dynamics>Added Mass

Edges>Multibody Dynamics>Added Mass

Periodic Condition

Use a Periodic Condition to prescribe that the displacements on two different sets of 
boundaries with the same geometrical shape are related, as in a periodic structure.

Several different types of periodicity properties of the solution can be prescribed using 
this boundary condition.

• The Continuity, Antiperiodicity, and User defined periodic conditions directly 
prescribe relations between displacements and can be used for any type of study.

• The Floquet periodicity can be used for frequency domain problems with a spatial 
periodicity of the geometry and solution. The modeled structure is typically a unit 
cell of a repetitive structure.

• The Cyclic symmetry is a special case of a Floquet condition, intended for structures 
that consist of a number of sectors that are identical when rotated around a common 
axis, like in a fan.

The Floquet periodicity and Cyclic symmetry options are available only with some 
COMSOL products (see https://www.comsol.com/products/specifications/).

The two sets of boundaries between which there is a periodicity condition are called 
the source and destination. It is not required to have the same mesh on the source and 
destination, but the local accuracy of the solution at the boundaries will be better if 
you use the same mesh.

If you use physics-controlled meshing, the mesh on the source and 
destination boundaries will automatically match.
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B O U N D A R Y  S E L E C T I O N

In cases where the periodic boundary is split into several boundaries within the 
geometry, it might be necessary to apply separate periodic conditions to each pair of 
geometry boundaries for the matching to work properly.

D E S T I N A T I O N  S E L E C T I O N

This section is available for specifying the destination boundaries, if needed, when the 
Manual Destination Selection option is selected in the context menu for the Periodic 

Condition node. You can only select destination boundaries from the union of all source 
and destination boundaries.

P E R I O D I C I T Y  S E T T I N G S

With Type of periodicity you select the form of periodicity that your solution should 
have.

• For Continuity the displacements on the destination are set equal to the 
displacements on the source; . If the source and destination 
boundaries are rotated with respect to each other, a transformation is automatically 
performed, so that corresponding displacement components are connected.

• For Antiperiodicity the displacements on the destination are set equal to the 
displacements on the source with the sign reversed; . If the source 
and destination boundaries are rotated with respect to each other, a transformation 
is automatically performed, so that corresponding displacement components are 
connected.

• For Floquet periodicity enter a k-vector for Floquet periodicity kF. This is the wave 
number vector for the excitation.

• For Cyclic symmetry choose how to define the sector angle that the geometry 
represents using Sector angle. If Automatic is selected, the program attempts to find 
out how many full repetitions of the geometry there will be on a full revolution. If 
User defined is selected, enter a value for the sector angle S. In both cases, also enter 

The software usually automatically identifies the boundaries as either 
source boundaries or destination boundaries, as indicated in the selection 
list. This works fine for cases like opposing parallel boundaries. In other 
cases, right-click Periodic Condition and select Manual Destination Selection 
to control the destination. By default it contains the selection that 
COMSOL Multiphysics identifies.

u xd  u xs =

u xd  u– xs =
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an Azimuthal mode number for the mode to be studied. It can vary from 0 to N/2, 
where N is the total number of sectors on a full revolution.

• For User defined select the check box for any of the displacement components as 
needed. Then for each selection, choose the Type of periodicity — Continuity or 
Antiperiodicity. Each selected displacement component will be connected by 

 or . If the source and destination boundaries 
are rotated with respect to each other, a transformation is automatically performed, 
so that corresponding displacement components are connected.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

E X C L U D E D  E D G E S ,  E X C L U D E D  P O I N T S

To display these sections (Excluded Edges in 3D geometries only), click the Show More 

Options button ( ) and select Advanced Physics Options in the Show More Options 
dialog box. For more information about these sections, see Excluded Surfaces, 
Excluded Edges, and Excluded Points in the COMSOL Multiphysics Reference 
Manual.

O R I E N T A T I O N  O F  S O U R C E

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. For information about the 
Orientation of Source section, see Orientation of Source and Destination in the 
COMSOL Multiphysics Reference Manual.

O R I E N T A T I O N  O F  D E S T I N A T I O N

This section appears if the setting for Transform to intermediate map in the Orientation 

of Source section is changed from the default value, Automatic, and Advanced Physics 

Options is selected in the Show More Options dialog box. For information about the 
Orientation of Destination section, see Orientation of Source and Destination in the 
COMSOL Multiphysics Reference Manual.

ui xd  ui xs = ui xd  ui xs –=

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings
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M A P P I N G  B E T W E E N  S O U R C E  A N D  D E S T I N A T I O N

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. For information about the 
Mapping Between Source and Destination section, see Mapping Between Source and 
Destination in the COMSOL Multiphysics Reference Manual.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Connections>Periodic Condition

Ribbon
Physics tab with Solid Mechanics selected:

Boundaries>Connections>Periodic Condition

Adiabatic Heating

Add an Adiabatic Heating node to model abrupt changes in temperature due to fast 
deformation. The increase in temperature is then defined by solving the distributed 
equation

here,  is the density, Cp is the heat capacity at constant pressure, T is the temperature 
field, ah is the coefficient of adiabatic heating, and Qh corresponds to the heat sources 
due to mechanical dissipative processes.

The Adiabatic Heating node is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

I N I T I A L  V A L U E S

Enter the Initial temperature Tini. The default value is 293.15 K.

See also Cyclic Symmetry and Floquet Periodic Conditions.

Vibrations of an Impeller: Application Library path 
Structural_Mechanics_Module/Dynamics_and_Vibration/impeller

CpTꞏ ahQh=
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T H E R M O D Y N A M I C S

The density is taken from the material model (Linear Elastic Material, Nonlinear 
Elastic Material, Hyperelastic Material).

The default Heat capacity at constant pressure Cp uses values From material. For 
User defined, enter an expression or value. The default value for the User defined is 0 J/
(kg K).

Enter the Coefficient of adiabatic heating, ah. The default value is 1 (dimensionless), 
which means that dissipative processes contribute 100% as heat sources.

Select the Dissipative heat source — Include all dissipative sources or User defined.

The Dissipative heat source list makes it possible to include specific heat sources for the 
adiabatic heating. Enter a value or expression for the heat source Qh to include. For 
instance, the dissipated energy density due to creep is available under the variable 
solid.Wc and due to viscoplasticity under the variable solid.Wvp. Here solid 
denotes the name of the physics interface node.

T I M E  S T E P P I N G

Select a Method — Automatic, Backward Euler, or Domain ODEs.

• The Backward Euler method is not available with the Layered Shell interface nor with 
the Layered Linear Elastic Material in the Shell and Membrane interfaces.

Automatic
The Automatic method corresponds to the backward Euler method except for the 
Layered Shell interface or when the Layered Linear Elastic Material is used. Domain 
ODEs are solved in these cases.

Backward Euler
For the Backward Euler method, enter the following settings:

• Maximum number of local iterations. To determine the maximum number of iteration 
in the Newton loop when solving the local equation.

• Absolute tolerance. To check the convergence of the local equation based on the step 
size in the Newton loop.

• Relative tolerance. To check the convergence of the local equation based on the step 
size in the Newton loop. The final tolerance is computed based on the current 
solution of the local variable and the entered value.

• Residual tolerance. To check the convergence of the local equation based on the 
residual.
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If both a step size and residual convergence check is requested, it is sufficient that one 
of the conditions is fulfilled. Setting either the Absolute tolerance and Relative tolerance 
or the Residual tolerance to zero ignores the corresponding convergence check. An 
error is returned if all are set to zero.

Domain ODEs
No settings are needed for the Domain ODEs method. However, this method adds 
degrees-of-freedom that are solved as part of the general solver sequence. The scaling 
of this field can affect the convergence of the overall solution.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>More>Adiabatic Heating

Membrane>More>Adiabatic Heating

Ribbon
Physics tab with Solid Mechanics or Membrane selected:

Domains>More>Adiabatic Heating

Boundary>More>Adiabatic Heating

Cell Periodicity

Use the Cell Periodicity node to model a unit cell (representative volume element; 
RVE) of a larger repetitive structure. Periodic boundary conditions will be used on the 
outer boundaries of this unit cell.

From the Cell Periodicity node, is possible to generate the elasticity matrix for the 
equivalent homogenized material.

If more than one Cell Periodicity node is used, they must have disjoint selections. It is 
thus possible to evaluate more than one RVE in the same study.

The Cell Periodicity node is only available with some COMSOL products (see https:/
/www.comsol.com/products/specifications/). Cell Periodicity is available for 3D and 
2D.

P E R I O D I C I T Y  T Y P E

Select a Periodicity type — Free expansion, Average strain, Average stress, or Mixed.
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With the Free expansion periodicity type, the unit cell is allowed to expand freely in a 
periodic manner. This option is useful to determine the thermal expansion or 
hygroscopic swelling coefficients of a heterogeneous unit cell. 

Select Calculate average properties — None, Coefficient of thermal expansion, or 
Coefficient of hygroscopic swelling.

The Average strain periodicity type makes it possible to derive homogenized elastic 
properties of media with periodic structures, such as a perforated plates, porous media 
or composites structures. In this case, you have to examine six load cases in 3D. Enter 
values or expressions for the components of the Average strain tensor avg. In a 
geometrically nonlinear analysis, the average strains are interpreted as Green–Lagrange 
strains.

Select Calculate average properties — None, Elasticity matrix, Standard (XX, YY, ZZ, XY, 

YZ, XZ), or Elasticity matrix, Voigt (XX, YY, ZZ, YZ, XZ, XY).

The Average stress periodicity type makes it possible to derive the homogenized 
compliance matrix of media with periodic structures. Enter values or expressions for 
the components of the Average stress tensor avg. In a geometrically nonlinear analysis, 
the stresses are interpreted as Second Piola–Kirchhoff stresses.

Select Calculate average properties — None, Compliance matrix, Standard (XX, YY, ZZ, XY, 

YZ, XZ), or Compliance matrix, Voigt (XX, YY, ZZ, YZ, XZ, XY).

With the Mixed periodicity type, enter either the average strain or average stress tensor 
components.

In 2D, use either a Plane stress or a Generalized plane strain approximation 
to calculate averaged properties with the Free expansion periodicity type.

In 2D, use a Generalized plane strain approximation to calculate averaged 
properties with the Average strain or Average stress periodicity types.

When using a Plane stress or a Plane strain 2D approximation with the 
Mixed periodicity type, you only need to enter three components (XX, YY, 
XY) of the average strain or average stress tensors. For the Generalized 

plane strain approximation, you also need to enter the ZZ component.
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  1089



1090 |  C H A P T E
For all values of Periodicity type, select the Cell volume — Solid, Void volume fraction, or 
User defined.

• When Solid is selected, the volume of the RVE is computed from the domains 
selected in the Cell Periodicity node.

• The Void volume fraction option can be used to scale the RVE volume when there 
are voids inside the RVE that are not selected as domains. Enter the void volume 
fraction, f. This is the fraction of the total RVE that is occupied by voids. The 
volume of the RVE is computed as

• By using the User defined option, you can enter the volume of the RVE, V, explicitly.

The variable <item>.vol contains the volume of the RVE used when computing 
average strains and stresses.

Load Group, Material and Study Generation
You can create the elasticity matrix for a homogenized material, and make it accessible 
as a material to be used in other components. In order to do this, a number of 
fundamental load cases must be analyzed. The necessary definitions and steps required 
for such an analysis can be automated as described below.

On the Periodicity Type section toolbar, there is an icon Study and Material Generation 
( ). It has a list with three entries:

• Create Load Groups and Study . This option can be selected when Periodicity Type 
is Average strain or Average stress. When you select it, the following changes will be 
made to the model:

- A number of load groups will be created under Global Definitions. They are 
collected in a group named Load Groups for Cell Periodicity. The load groups 
correspond to unit loads along different axes.

- The Average strain or Average stress tensor in the Periodicity Type section will be 
populated using the load group variables.

- A new study, named Cell Periodicity Study, will be created. This study contains a 
stationary study step. In the Study Extensions section of the new Cell Periodicity 

Study, one load case is added for each load group.

• Create Material by Reference ( ). This option can be selected when Periodicity Type 
is Average strain or Average stress, and Calculate average properties not set to None. 
When you select it, a new material will be created under Global>Materials. It contains 

VRVE
Vsolid
1 f–

--------------=
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the elasticity matrix or the compliance matrix. The name of this material is 
Homogeneous Material.

• Create Material by Value ( ). This option is similar to Create Material by Reference, 
with the difference that the material properties are numerical values, and not 
references to variables in the node. The benefits of this option is faster computation 
when the material is used by other physics interfaces. Also, if the Cell Periodicity node 
is deleted, the material created from it can still be used in sequential computations.

A D V A N C E D

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. Furthermore, this section is shown 
only if elasticity or compliance matrices are requested through Calculate average 

properties.

In that case, you can modify the behavior of how the studies for computing the 
homogenized matrices are generated by selecting a Study tag — Automatic or Legacy. 
The Legacy option is mainly for maintaining compatibility with versions prior to 6.0. 

For this type of analysis to work correctly, it is important that you do not 
edit the generated nodes manually. By clicking the Create button again, 
you can reset all settings in the generated nodes to their default values.

See also

• Load Cases and Effective Properties of Periodic Structures in the 
Structural Mechanics Modeling chapter.

• Periodic Cell Theory in the Structural Mechanics Theory chapter.

• Materials and Solid Mechanics Material Properties in the Materials 
chapter in the COMSOL Multiphysics Reference Manual.

• Micromechanical Model of a Fiber Composite: Application Library 
path Structural_Mechanics_Module/Material_Models/

micromechanical_model_of_a_fiber_composite

• Micromechanics and Stress Analysis of a Composite Cylinder: 
Application Library path Composite_Materials_Module/Tutorials/

composite_cylinder_micromechanics_and_stress_analysis
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  1091



1092 |  C H A P T E
With the default Automatic option, it is, for example, possible to set up nested 
homogenizations. A unique tag for the study will be composed by combining the 
physics interface tag and the tag of the Cell Periodicity node, for example 
solid1cp1std.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>More>Cell Periodicity

Ribbon
Physics tab with Solid Mechanics selected:

Domains>More>Cell Periodicity

Boundary Pair

In the Boundary Pair node, you supply information about the corresponding periodic 
boundaries. In 2D, you need at least two such pairs, and in 3D at least three pairs. The 
number of pairs depends on the shape of the unit cell. This node has no other settings 
that the boundary selection.

Select all corresponding boundaries belonging to both sides of the pair. If you need to 
manually specify the source and destination sides of the pairs, add a Destination 

Selection subnode.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Cell Periodicity>Boundary Pair

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings
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Ribbon
Physics tab with Cell Periodicity node selected in the model tree:

Attributes>Boundary Pair

Low-Reflecting Boundary

Use the Low-Reflecting Boundary node to let waves pass out from the model without 
reflection in time-dependent or frequency domain analysis. As a default, it takes 
material data from the domain in an attempt to create a perfect impedance match for 
both pressure waves and shear waves. It can be sensitive to the direction of the 
incoming wave.

The Low-Reflecting Boundary node is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/). Low-Reflecting Boundary is 
available for 3D, 2D, and 2D axisymmetry.

D A M P I N G

Select a Damping type — P and S waves or User defined. For User defined enter values or 
expressions for the Mechanical impedance dim. The defaults for all values are 
0.5*solid.rho*(solid.cp+solid.cs).

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Mass, Spring, and Damper>Low-Reflecting Boundary

Ribbon
Physics tab with Solid Mechanics selected:

Boundaries >Mass, Spring, and Damper>Low-Reflecting Boundary

Rigid Connector

The Rigid Connector is a boundary condition for modeling rigid regions and kinematic 
constraints such as prescribed rigid rotations. A rigid connector can connect an 

Low-Reflecting Boundary Condition
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arbitrary combination of boundaries, edges, and points that all will move together as 
being attached to a virtual rigid object.

You can add the Rigid Connector node at the boundary, edge, and point levels.

• When added at the boundary level, you can connect boundaries, edges (3D), and 
points as long as at least one boundary is selected. Selecting edges and points is 
optional.

• When added at the edge level (3D only), you can connect edges and points as long 
as at least one edge is selected. Selecting points is optional.

• When added at the point level, you can connect a set of points to each other.

When the selection consists of boundaries only, you can also choose to remove the 
assumption of rigidity, while still respecting force and moment equilibrium. With this 
formulation, it is possible to avoid artificial constraint effects at the connected 
boundaries.

If the study step is geometrically nonlinear, the rigid connector takes finite rotations 
into account.

Rigid connectors are available in the Solid Mechanics, Multibody Dynamics, Shell, 
Beam, and Pipe Mechanics interfaces. Rigid connectors from different interfaces can 
be attached to each other.

You can add functionality to the rigid connector through the following subnodes:

• Applied Force (Rigid Connector) to apply a force in given point.

• Applied Moment (Rigid Connector) to apply a moment.

• Mass and Moment of Inertia (Rigid Connector) to add extra mass and moment of 
inertia in a given point.

• Spring Foundation (Rigid Connector) to add a translational or rotational spring or 
damper in a given point.
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When physics symbols are shown, a rigid connector is represented by a symbol at the 
center of rotation, together with a set of lines connecting the center of rotation with 
the centers of gravity of the selected entities.

The Rigid Connector node is only available with some COMSOL products (see https:/
/www.comsol.com/products/specifications/). Rigid Connector is available for 3D and 
2D.

S H E L L  P R O P E R T I E S

I N T E R F A C E  S E L E C T I O N

B O U N D A R Y  S E L E C T I O N

This section is present when the Rigid Connector node has been added at the boundary 
level. Select one or more boundaries to be part of the rigid region.

• When the rigid connector is added at the boundary level, such symbols 
are shown only for the selected boundaries, but not for auxiliary 
selections of edges or points.

• When the rigid connector is added at the edge level, such symbols are 
shown only for the selected edges, but not for auxiliary selections of 
points.

• Because of the way physics symbols are evaluated, as a lightweight 
operation when moving between physics nodes in the model builder 
tree, it is sometimes not possible to determine the center of rotation. 
In particular, if an offset is supplied, it will not be taken into account.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Rigid Connector node.

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Rigid Connector, Interface 
node.
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E D G E  S E L E C T I O N

This section is present in 3D when the Rigid Connector node has been added at the 
boundary or edge level, and Connection Type is Rigid.

• When the Rigid Connector is added at the edge level, select one or more edges that 
form part of the rigid region.

• When the Rigid Connector is added at the boundary level, this section is initially 
collapsed. Here, you can add optional edges to the rigid region. The edges cannot 
be adjacent to the selected boundaries.

P O I N T  S E L E C T I O N

This section is always present when Connection Type is Rigid.

• When the Rigid Connector is added at the point level, select a number of points that 
form the rigid region.

• When the Rigid Connector is added at the boundary or edge levels, this section is 
initially collapsed. Here, you can add optional points to the rigid region. The points 
cannot be adjacent to the selected boundaries or edges.

If your selection is too small, you may introduce rigid body motions in the 
model. No exact rules can be given because there are many possible 
configurations where, for example, domains are connected to each other 
or affected by other constraints. Also, you can, by providing proper 
constraints for the rigid connector, suppress rigid body motions.

Some suggestion for ensuring stability are

• At the point level in 3D, at least three points, not located on a straight 
line, are needed.

• At the point level in 2D, at least two points are needed.

• At the edge level in 3D, a single straight edge is not sufficient since it 
can act as a hinge.

A set of consistency checks where violations of these rules can be detected 
is performed. You can suppress these checks by clearing the Include 

consistency checks check box in the Advanced section.
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
all applicable coordinate systems in the model. Prescribed displacements and rotations 
are specified along the axes of this coordinate system. It is also used for defining the 
axis directions of the moment of inertia tensor of the Mass and Moment of Inertia 
subnode.

C O N N E C T I O N  T Y P E

Select Rigid or Flexible. When the connection type is rigid, the whole rigid connector 
acts as a virtual rigid object. In the flexible formulation, the selected boundaries are 
allowed to have internal deformations, and the kinematic constraints are fulfilled only 
in an average sense. The flexible formulation is useful for example when applying loads, 
since it will reduce local constraint effects.

In order to be applicable, a coordinate system must have axis directions 
that are independent of the location in space.
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If a selected boundary is located on a rigid domain, the connection type setting does 
not matter. The rigid formulation is always used,

C E N T E R  O F  R O T A T I O N

The center of rotation serves two purposes.

• If you prescribe the displacement of the rigid connector, this is the location in space 
where it is fixed.

• Results are interpreted with respect to the center of rotation.

Select a Center of rotation — Automatic, Centroid of selected entities, or User defined.

• For Automatic, the center of rotation is at the geometrical center of the selected 
geometrical objects of the highest geometrical dimension.

The flexible formulation can be used when the selection only consists of 
boundaries.

• The Connection Type section is shown only when the Rigid Connector has 
been added at the boundary level.

• When the connection type has been set to Flexible, the Edge Selection 
and Point Selection sections are hidden.

• Any edges or points that have been selected prior to changing from 
Rigid to Flexible will be ignored.

With the flexible formulation, some extra degrees of freedom are added 
for each rigid connector. In order to get good convergence properties for 
a nonlinear solution, these variables must have a good scaling.

When a new solver sequence is generated, then an appropriate manual 
scaling is automatically set for these variables.

If, however, an existing solver sequence was generated while Connection 

Type was set to Rigid, and you then change to Flexible, no such scaling will 
be present. In this case, you either have to regenerate the solver sequence, 
or set the scaling manually under the Dependent Variables node in each 
study step.
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• For Centroid of selected entities select an Entity level — Boundary, Edge, or Point. The 
available choices depend on the physics interface and geometrical dimension.

• For User defined, in the Global coordinates of center of rotation XC table enter 
coordinates based on space dimension.

Select the Offset check box to add an optional offset vector to the definition of the 
center of rotation. Enter values for the offset vector Xoffset.

The center of rotation used is the sum of the vector obtained from any of the input 
methods and the offset vector.

P R E S C R I B E D  D I S P L A C E M E N T  A T  C E N T E R  O F  R O T A T I O N

To define a prescribed displacement at the center of rotation for each space direction, 
select one or several of the available check boxes then enter values or expressions for 
the prescribed displacements. The direction coordinate names can vary depending on 
the selected coordinate system.

• Prescribed in x direction u0x

• Prescribed in y direction u0y

• For 3D components: Prescribed in z direction u0z

• When selected, a default Center of Rotation: Boundary, Center of 
Rotation: Edge, or Center of Rotation: Point subnode is automatically 
added.

• The center of rotation is located at the centroid of the selected entities, 
which do not need to be related to the rigid connector itself. As a 
special case, you can select a single point, and use it as center of 
rotation.

• When Entity level is set to Point, any point in the geometry can be 
selected, even if it is not part of the physics interface.

XC XC,input Xoffset+=
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P R E S C R I B E D  R O T A T I O N

Specify the rotation at the center of rotation. Select from the By list: Free, Constrained 

rotation, or Prescribed rotation about the center of rotation.

Constrained Rotation (3D Components)
For Constrained rotation select one or more of the available check boxes to enforce zero 
rotation about the corresponding axis in the selected coordinate system:

• Constrain rotation about x-axis

• Constrain rotation about y-axis

• Constrain rotation about z-axis

Prescribed Rotation
For Prescribed rotation enter an Angle of rotation . For 3D components also enter 
an Axis of rotation  for the x, y, and z coordinates.

R E L E A S E D  D E G R E E S  O F  F R E E D O M

In some cases it can be useful to not constrain the displacement in a certain direction. 
For instance, the radial displacement of a Rigid Connector acting on a circular 
cross-section could be allowed to be free. To do so, select a local Coordinate system for 
specifying the directions in which the degree of freedom will be released. The 
Coordinate system list contains only applicable coordinate systems in the model.

Select one or more of the available check boxes to release the displacement in the 
corresponding axis in the selected coordinate system:

• Release displacement in x1 direction

• Release displacement in x2 direction

• For 3D components: Release displacement in x3 direction

Note that the Rigid Connector solves for global displacement degrees of freedom 
(DOFs) and global rotation DOFs – unless they are explicitly prescribed. Since 
releasing certain displacement field components reduces the number of equations used 
to solve for the global DOFs, it may become necessary to constrain some global 
displacement or rotation components to achieve static determinacy.

 For 2D components, the Constrained rotation and Prescribed rotation is 
always about the z-axis, so no component selection is necessary.

0
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The section Released Degrees of Freedom is only shown if Connection Type is Rigid (if 
applicable), and if the check box Use weak constraints for rigid-flexible connection in the 
section Constrain Settings is not enabled.

R E A C T I O N  F O R C E  S E T T I N G S

Select Evaluate reaction forces to compute the reaction force caused by a prescribed 
motion. The default is to not compute the reaction force. When selected, the 
prescribed motion is implemented as a weak constraint.

Select Apply reaction only on rigid body variables to use a unidirectional constraint for 
enforcing a prescribed motion. The default is that bidirectional constraints are used. 
This setting is useful in a situation where a bidirectional constraint would give an 
unwanted coupling in the equations. This would happen if the prescribed value of the 
motion is a variable solved for in other equations.

F O R M U L A T I O N

Some contributions from a rigid connector will, under geometric nonlinearity, result 
in a nonsymmetric local stiffness matrix. If all other aspects of the model are such that 
the global stiffness matrix would be symmetric, then such a nonsymmetric 
contribution may have a heavy impact on the total solution time and memory usage. 
In such cases, it is often more efficient to use an approximative local stiffness matrix 
that is symmetric.

Select Use symmetric formulation for geometric nonlinearity to force all matrix 
contributions from the rigid connector and its subnodes to be symmetric.

Using an approximative stiffness matrix will in general require more 
iterations. However, since the computational cost per iteration will be cut 
at least by a factor of two if a symmetric matrix can be used, it is usually 
more efficient to ignore a weak nonsymmetry.

In particular, if the rotation of the rigid connector per time step or 
parameter increment is small, there will in general be no increase in the 
number of iterations at all if this option is used.

When the global stiffness matrix is nonsymmetric for other reasons, then 
there is nothing to be gained from symmetrizing the contribution from 
the rigid connector.
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C O N S T R A I N T  S E T T I N G S

On the boundaries where the rigid connector is coupled to a flexible material, all nodes 
on such a boundary are constrained to move as a rigid body. As a default these 
constraints are implemented as pointwise constraints. If you want to use a weak 
constraint formulation, select Use weak constraints for rigid-flexible connection.

This formulation cannot be combined with the Flexible formulation of the rigid 
connector, which in itself is a special form of weak constraint.

A D V A N C E D

When the rigid connector is added at edge or point level, automatic tests are 
performed to check for selections that would result in a singularity. If these checks give 
false positives, you can turn them off by clearing the Include consistency checks check 
box. This could, for example, be necessary if a rigid connector, which in itself is 
singular, is connected to another one in a way that forms a stable configuration.

When the Rigid Connector is added at the point level, select the Add rotational stiffness 

for two-point selection check box to automatically suppress singularities when the 
Include consistency checks check box is disabled. This check box allows to enter a 
rotational stiffness, k, to stabilize the rigid connector. The rotational stiffness is only 
added if less than three points are selected.

Select Group dependent variables in solver — From physics interface (default), Yes, or No, 
to choose how to group the dependent variables added by the Rigid Connector feature 
in the solver sequence.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements and 
rotations in a frequency domain analysis of perturbation type.

• You can activate and deactivate the rigid connector by assigning it to a 
constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.

• You can assign the value of the prescribed displacement and rotation to 
a load group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Connections>Rigid Connector

Solid Mechanics>Edges>Rigid Connector

Solid Mechanics>Points>Rigid Connector

Layered Shell>Face and Domain Constraints, Interfaces>Rigid Connector, Interface

Layered Shell>Connections>Rigid Connector

Multibody Dynamics>Rigid Connector

Multibody Dynamics>Edges>Rigid Connector

Multibody Dynamics>Points>Rigid Connector

Ribbon
Physics tab with Solid Mechanics selected:

Boundaries>Connections>Rigid Connector

Edges>Solid Mechanics>Rigid Connector

Points>Solid Mechanics>Rigid Connector

Physics tab with Layered Shell selected:

Boundaries>Interfaces>Rigid Connector, Interface

Edges>Connections>Rigid Connector

Physics tab with Multibody Dynamics selected:

Boundaries>Multibody Dynamics>Rigid Connector

Edges>Multibody Dynamics>Rigid Connector

Points>Multibody Dynamics>Rigid Connector

• Rigid Connector

• Harmonic Perturbation

• Load Cases

Assembly with a Hinge: Application Library path 
Structural_Mechanics_Module/Connectors_and_Mechanisms/hinge_assembly
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Center of Rotation Nodes

For each of the following physics features, a subnode is automatically added as 
indicated.

• Rigid Connector

• Initial Values (Rigid Material)

• Prescribed Displacement/Rotation

• Average Rotation

C E N T E R  O F  R O T A T I O N :  D O M A I N

Use the Center of Rotation: Domain subnode to select a set of domains whose centroid 
represents the center of rotation.

C E N T E R  O F  R O T A T I O N :  B O U N D A R Y

Use the Center of Rotation: Boundary subnode to select a set of boundaries whose 
centroid represents the center of rotation.

C E N T E R  O F  R O T A T I O N :  E D G E

Use the Center of Rotation: Edge subnode to select a set of edges whose centroid 
represents the center of rotation.

C E N T E R  O F  R O T A T I O N :  P O I N T

Use the Center of Rotation: Point subnode to select a set of points whose centroid 
represents the center of rotation.

L O C A T I O N  I N  U S E R  I N T E R F A C E

These nodes are automatically added when Centroid of selected entities is selected in 
the parent node. They cannot be added or removed manually.

Thermal Expansion (Rigid Connector)

Add the Thermal Expansion subnode to prescribe a deformation of the rigid connector 
caused by changes in temperature. This makes it possible to reduce stresses caused by 
the rigid connector being rigid, while there are thermal deformations in the flexible 
body to which it is attached.

Select an Input type to specify how the thermal strain is entered. The default is Secant 

coefficient of thermal expansion, in which case the thermal strain is given by
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here, the secant coefficient of thermal expansion  can be temperature dependent.

When Input type is Tangent coefficient of thermal expansion, the thermal strain is given 
by

where t is the tangential coefficient of thermal expansion.

When Input type is Thermal strain, enter the thermal strain dL as function of 
temperature explicitly.

In all three cases, the default is to take values From material. When entering data as 
User defined, select Isotropic, Diagonal, or Symmetric to enter one or more components 
for a general coefficient of the thermal expansion tensor or the thermal strain tensor. 
When a nonisotropic input is used, the axis orientations are given by the coordinate 
system selection in the parent node.

S H E L L  P R O P E R T I E S

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain in the rigid connector.

Select Inherit from domain to take the thermal expansion data from the domain to 
which it is attached. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual material in the rigid connector has the same thermal expansion as the 
domain itself.

When Inherit from domain is not selected, enter:

• A value or expression for the Volume reference temperature Tref that is the 
temperature at which there are no thermal displacements at the constraints.

th  T Tref– =

th t   d
Tref

T

 
 
 

exp 1–=

This section is only present in the in the Layered Shell interface, where it 
is described in the documentation for the Thermal Expansion (Rigid 
Connector) node.
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• A value or expression for Temperature T, specifying the temperature distribution of 
the surrounding material. Any temperature variation must be an explicit function of 
the material frame coordinates. It is not possible to use a computed temperature 
distribution.

• Select the Input type — Secant coefficient of thermal expansion, Tangent coefficient of 

thermal expansion, or Thermal strain to specify how the thermal strain is entered. The 
default values From material are used. This requires that a material has been assigned 
to the boundaries, edges, or points where the constraint is active. When a 
nonisotropic coefficient of thermal expansion is used, the axis orientations are given 
by the coordinate system selected in the Coordinate System Selection section.

Enter the coordinates of the Reference point, the point where the displacement is zero. 
The choice of reference point only affects the rigid body motion. If there are several 
different constraints with a Thermal Expansion subnode, the same reference point 
should usually be selected in all of them.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Connector>Thermal Expansion

Layered Shell>Rigid Connector>Thermal Expansion

Layered Shell>Rigid Connector, Interface>Thermal Expansion

Multibody Dynamics>Rigid Connector>Thermal Expansion

Ribbon
Physics tab with Rigid Connector or Rigid Connector, Interface node selected in the model 
tree:

Attributes>Thermal Expansion

Applied Force (Rigid Connector)

Use the Applied Force to apply a force to the rigid connector. The force can act at an 
arbitrary position in space, and if it is not located at the center of rotation, there is also 

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.
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a moment contribution. The force that you specify is interpreted in the selected 
coordinate system.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Coordinate system list contains all applicable coordinate systems in the model. 
Select a Coordinate system for specifying the directions of the force.

L O C A T I O N

Select an option from the list: Center of rotation or User defined. This is the location 
where the force is applied.

• For Center of rotation, the location of the load is taken as the center of rotation as 
defined in the parent Rigid Connector node.

• For User defined, enter the Location (global coordinates), Xp, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
location. Enter values for the offset vector Xoffset.

The location used is the sum of the vector obtained from any of the input methods and 
the offset vector.

A P P L I E D  F O R C E

Select the Direction of the applied force — Space-fixed direction or Body-fixed direction.

• For Space-fixed direction, the directions of the applied force F are fixed with respect 
to the selected Coordinate system.

• For Body-fixed direction, the directions of the applied force F follow the rotation of 
the rigid domain.

Enter values or expressions for the components of the Applied force F. The direction 
coordinate names can vary depending on the selected coordinate system.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

In order to be applicable, a coordinate system must have axis directions 
that are independent of the location in space.

XP XP,input Xoffset+=
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If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Connector>Applied Force

Shell>Rigid Connector>Applied Force

Beam>Rigid Connector>Applied Force

Multibody Dynamics>Rigid Connector>Applied Force

Ribbon
Physics tab with Rigid Connector node selected in the model tree:

Attributes>Applied Force

Applied Moment (Rigid Connector)

Use the Applied Moment subnode to apply a moment at the center of rotation. The 
moment that you specify is interpreted in the selected coordinate system.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Coordinate system list contains all applicable coordinate systems in the model. 
Select a Coordinate system for specifying the directions of the moment.

For more information about live and dead loads, see Buckling Analysis.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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In 2D, the moment is a scalar input, and is not affected by the coordinate system 
selection.

A P P L I E D  M O M E N T

For 3D components, select the Direction of the applied moment — Space-fixed direction 
or Body-fixed direction.

• For Space-fixed direction, the directions of the applied moment M are fixed with 
respect to the selected Coordinate system.

• For Body-fixed direction, the directions of the applied moment M follow the rotation 
of the rigid domain.

Enter values or expressions for the Applied moment M.

• For 3D components, enter the x, y, and z components of M.

• For 2D components, enter the applied moment around the z-axis, Mz.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

In order to be applicable, a coordinate system must have axis directions 
that are independent of the location in space.

For more information about live and dead loads, see Buckling Analysis.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Connector>Applied Moment

Shell>Rigid Connector>Applied Moment

Beam>Rigid Connector>Applied Moment

Multibody Dynamics>Rigid Connector>Applied Moment

Ribbon
Physics tab with Rigid Connector node selected in the model tree:

Attributes>Applied Moment

Mass and Moment of Inertia (Rigid Connector)

Use the Mass and Moment of Inertia subnode to add inertia properties to the rigid 
connector for dynamic analysis.

C E N T E R  O F  M A S S

Here you specify the location of the center of mass for the contribution given in this 
node. Select an option from the list: Center of rotation or User defined.

• For Center of rotation, the location of the load is taken as the center of rotation as 
defined in the parent Rigid Connector node.

• For User defined, enter the Global coordinates of center of mass, Xm, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
location. Enter values for the offset vector Xoffset.

The center of mass used is the sum of the vector obtained from any of the input 
methods and the offset vector.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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M A S S  A N D  M O M E N T  O F  I N E R T I A

Enter values or expressions for the Mass m. Also enter values or expressions for the 
Moment of inertia I. The axis directions of the moment of inertia tensor are given by 
the coordinate system selection in the parent Rigid Connector node.

• For 3D components, select Isotropic, Diagonal, or Symmetric and enter one or more 
components for the tensor I.

• For 2D components, enter a value or expression for Iz.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Connector>Mass and Moment of Inertia

Shell>Rigid Connector>Mass and Moment of Inertia

Multibody Dynamics>Rigid Connector>Mass and Moment of Inertia

Ribbon
Physics tab with Rigid Connector node selected in the model tree:

Attributes>Mass and Moment of Inertia

Spring Foundation (Rigid Connector)

Add a Spring Foundation subnode to specify a spring or damper connecting the rigid 
connector to a fixed ground. The spring can act at an arbitrary position in space. A 
translational spring implicitly contributes also to the moment if it is not applied at the 
center of rotation of the rigid connector. The data that you specify is interpreted in the 
selected coordinate system.

L O C A T I O N

Select an option from the list: Center of rotation or User defined. This is the location 
where the spring is attached.

• For Center of rotation, the spring will be attached to the center of rotation as defined 
in the parent Rigid Connector node.

• For User defined, enter the Location (global coordinates), Xp, in the table.

Select the Offset check box to add an optional offset vector to the definition of the 
location. Enter values for the offset vector Xoffset.

Xm Xm ,input Xoffset+=
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The location used is the sum of the vector obtained from any of the input methods and 
the offset vector.

S P R I N G

Select a Spring type — Spring constant or Force as function of extension.

When Spring constant is selected, the translational spring matrix can be entered as 
Isotropic, Diagonal, Symmetric, or Full. For Isotropic the same spring constant is used in 
all the diagonal elements of the spring matrix.

When Force as function of extension is selected, enter the force vector Fs. It must be a 
function of the built-in variables describing the spring extension. The default value 
indicates the correct variable name, for example, solid.rig1.uspring1_spf1.

R O T A T I O N A L  S P R I N G

Select a Spring type — Spring constant or Moment as function of rotation.

When Spring constant is selected, the rotational spring matrix can be entered as 
Isotropic, Diagonal, Symmetric, or Full. For Isotropic the same spring constant is used in 
all the diagonal elements of the spring matrix.

When Moment as function of rotation is selected, enter the moment vector Ms. It must 
be a function of the built-in variables describing the spring extension. The default value 
indicates the correct variable name, for example, solid.rig1.thspring1_spf1.

L O S S  F A C T O R  D A M P I N G

From the Loss factor type list, select Scalar (Same for all components) or Individual 

components.

• For Scalar (Same for all components) enter a single Loss factor for spring u,s, which 
is used to multiply all values of the spring matrix or spring force vector.

• For Individual components select Isotropic, Diagonal, Symmetric, or Full, then enter 
values or expressions in the table for the Loss factor for spring u,k or f based on 
space dimension. The loss factors act on the corresponding components of the 

XP XP,input Xoffset+=

In 2D the Spring constant is only a single scalar, representing the stiffness 
for rotation around the out-of-plane direction. Similarly, the Moment as 

function of rotation is a single scalar.
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spring matrix or spring force vector. If you select Isotropic, the effect is the same as 
when you select Diagonal and enter the same value for all diagonal elements.

R O T A T I O N A L  L O S S  F A C T O R  D A M P I N G

All settings in this section are analogous to the corresponding settings in the Loss 
Factor Dampingsection. In 2D, only one scalar loss factor, corresponding to rotation 
around the out-of-plane axis, is given.

V I S C O U S  D A M P I N G

Select Isotropic, Diagonal, Symmetric, or Full, then enter values or expressions for the 
damping constants du in the table. If you select Isotropic, the effect is the same as when 
you select Diagonal and enter the same value for all diagonal elements.

V I S C O U S  R O T A T I O N A L  D A M P I N G

All settings in this section are analogous to the corresponding settings in the Viscous 
Damping section. In 2D, only one scalar viscous damping, corresponding to rotation 
around the out-of-plane axis, is given.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Rigid Connector>Spring Foundation

Multibody Dynamics>Rigid Connector>Spring Foundation

Shell>Rigid Connector>Spring Foundation

Beam>Rigid Connector>Spring Foundation

Ribbon
Physics tab with Rigid Connector node selected in the model tree:

Attributes>Spring Foundation

Attachment

The Attachment node is used to define a set of boundaries on a flexible domain which 
can be used to connect it with other components through a joint in the Multibody 
Dynamics interface.

There are two formulations of the attachment. In the default formulation, all the 
selected boundaries behave as if they were connected by a common rigid body. In some 
cases, this give an unwanted stiffening or unrealistic local stresses. You can then switch 
to a flexible formulation where the constraint is applied only in an average sense.
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Using attachments is optional when connecting a rigid component. It is, however, 
useful if you consider switching between a rigid and a flexible representation, since you 
then do not have to change the settings in the joints.

Attachments can be added to boundaries in a Multibody Dynamics or a Solid 
Mechanics interface, to edges in a Shell or Layered Shell interface, or to points in a 
Beam interface. This makes it possible to use a joint in the Multibody Dynamics 
interface for connecting parts modeled in different physics interfaces.

The Attachment node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/). It is available in 3D, 2D, and 2D 
axisymmetry.

C O N N E C T I O N  T Y P E

Select Rigid or Flexible.

When the connection type is rigid, the whole attachment selection acts as a virtual rigid 
object. This will cause a stiffening of the part with the attachment, and local stress 
concentrations at the selected boundaries if the domain with the attachment is flexible.

In the flexible formulation, the selected boundaries are allowed to have internal 
deformations, and the kinematic constraints are fulfilled only in an average sense. This 
will essentially provide a statically equivalent load distribution over the boundaries.

If a selected boundary is located on a rigid domain, the connection type setting does 
not matter. The rigid formulation is always used.

The use of attachments is discussed in the Attachments section in the 
Structural Mechanics Modeling chapter.
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A D V A N C E D

Select Group dependent variables in solver — From physics interface (default), Yes, or No, 
to choose how to group in the solver sequence the dependent variables added by the 
Attachment feature.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Connections>Attachment

Ribbon
Physics tab with Solid Mechanics selected:

Boundaries>Connections>Attachment

Thermal Expansion (Attachment)

Add the Thermal Expansion subnode to prescribe a deformation of the attachment 
caused by changes in temperature. This makes it possible to reduce stresses caused by 
the attachment being rigid, while there are thermal deformations in the flexible body 
to which it is attached.

[Select an Input type to specify how the thermal strain is entered. The default is Secant 

coefficient of thermal expansion, in which case the thermal strain is given by

here, the secant coefficient of thermal expansion  can be temperature dependent.

With the flexible formulation, some extra degrees of freedom are added 
for each attachment. In order to get good convergence properties for a 
nonlinear solution, these variables must have a good scaling.

When a new solver sequence is generated, then an appropriate manual 
scaling is automatically set for these variables.

If, however, an existing solver sequence was generated while Connection 

Type was set to Rigid, and you then change to Flexible, no such scaling will 
be present. In this case, you either have to regenerate the solver sequence, 
or set the scaling manually under the Dependent Variables node in each 
study step.

th  T Tref– =
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When Input type is Tangent coefficient of thermal expansion, the thermal strain is given 
by

where t is the tangential coefficient of thermal expansion.

When Input type is Thermal strain, enter the thermal strain dL as function of 
temperature explicitly.

In all three cases, the default is to take values From material. When entering data as 
User defined, select Isotropic, Diagonal, or Symmetric to enter one or more components 
for a general coefficient of the thermal expansion tensor or the thermal strain tensor. 
When a nonisotropic input is used, the axis orientations are given by the coordinate 
system selection in the parent node.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain in the attachment.

Select Inherit from domain to take the thermal expansion data from the domain to 
which it is attached. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual material in the attachment has the same thermal expansion as the 
domain itself.

When Inherit from domain is not selected, enter:

• A value or expression for the Volume reference temperature Tref that is the 
temperature at which there are no thermal displacements at the constraints.

• A value or expression for Temperature T, specifying the temperature distribution of 
the surrounding material. Any temperature variation must be an explicit function of 
the material frame coordinates. It is not possible to use a computed temperature 
distribution.

• Select the Input type — Secant coefficient of thermal expansion, Tangent coefficient of 

thermal expansion, or Thermal strain to specify how the thermal strain is entered. The 
default values From material are used. This requires that a material has been assigned 
to the boundaries, edges, or points where the constraint is active. When a 

th t   d
Tref

T

 
 
 

exp 1–=
R  4 :  S O L I D  M E C H A N I C S



nonisotropic coefficient of thermal expansion is used, the axis orientations are given 
by the coordinate system selected in the Coordinate System Selection section.

Enter the coordinates of the Reference point, the point where the displacement is zero. 
The choice of reference point only affects the rigid body motion. If there are several 
different constraints with a Thermal Expansion subnode, the same reference point 
should usually be selected in all of them.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Attachment>Thermal Expansion

Multibody Dynamics>Attachment>Thermal Expansion

Ribbon
Physics tab with Attachment node selected in the model tree:

Attributes>Thermal Expansion

Reduced Flexible Components

Add a Reduced Flexible Components node to define one or more flexible parts of the 
structure as a reduced-order model (ROM) for component mode synthesis (CMS). 
When the settings in this node and its Component Definition subnodes are ready, press 
the Configure CMS Study ( ) button to set up the study sequence that generates the 
ROMs for all selected components.

The Reduced Flexible Components node is only available with some COMSOL products 
(see https://www.comsol.com/products/specifications/). It is available in 3D and 
2D.

C O M P O N E N T  M O D E  S Y N T H E S I S

Select a Component Definition — Detect from geometry or User defined. If Detect from 

geometry is used, then a geometric analysis is performed, and the selection is 
subdivided into a number of disjoint components. For each such component found, a 

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.
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Component Definition subnode is added. In order to do manual selection of the 
domains to be included in the reduced components, select User defined.

Enter a required Number of eigenmodes to be included in the dynamic representation 
of each reduced component. This value can be modified for individual components in 
the settings in the Component Definition nodes.

A D V A N C E D

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

Select the Include load contributions in Reduced Components check box if any loads in 
the physics interface should be part of the reduced component. A load that is included 
in a reduced component will act when that reduced component is used in a global 
study. In order to avoid double contributions, that same load must then be disabled 
when running the global study. The default is such that this check box is cleared, in 
which case loads are not included in the reduced components and will be only active 
when running the global study.

When Synchronize ‘Solve for’ study setting for Reduced Components is selected, the Solve 

for column in the table in the Physics and Variables Selection section in applicable study 
steps is automatically managed for consistency between ROMs and their generating 
physics interface. To take manual control, clear this check box.

When Include connections and pairs in component definition is selected, geometrically 
disconnected domains that are connected by pair features or connection features in the 
Shell interface are merged. Such features include:

• Continuity

• Thin elastic layer

• Boundary to Boundary

• Edge to Boundary

• Edge to Edge.

See also

• Component Mode Synthesis in the Structural Mechanics Modeling 
chapter.

• Model Reduction in the COMSOL Multiphysics Reference Manual.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>More>Reduced Flexible Components

Shell>More>Reduced Flexible Components

Multibody Dynamics>More>Reduced Flexible Components

Ribbon
Physics tab with Solid Mechanics, Shell, or Multibody Dynamics selected:

Domains>More>Reduced Flexible Components

Component Definition

The Component Definition subnode under Reduced Flexible Components is used for 
selecting the domains that form a reduced component. By default, a number of 
Component Definition nodes are automatically generated when a selection is made in the 
parent node. Each Component Definition node then contains a selection of domains that 
form a contiguous object, based on an analysis of the geometry.

You can modify the initial automatic selections, and add or remove Component 

Definition nodes as needed. To make manual selections possible, you must set 
Component Definition to User defined in the parent node.

The Component Definition node is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

C O M P O N E N T  M O D E  S Y N T H E S I S

Select the Number of eigenmodes to be used when building this reduced component. 
The default is From parent. Select User defined to enter another value.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Reduced Flexible Components>Component Definition

Shell>Reduced Flexible Components>Component Definition

Multibody Dynamics>Reduced Flexible Components>Component Definition

Ribbon
Physics tab with Reduced Flexible Components node selected in the model tree:

Attributes>Component Definition
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Fixed Joint

The Fixed Joint node is mainly intended for connecting reduced-order models in the 
context of Component Mode Synthesis. A fixed joint connects, for example, two 
attachments so that they form a common rigid region.

The Fixed Joint node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

A T T A C H M E N T  S E L E C T I O N

Select a Source and a Destination attachment from the lists. You can select any 
Attachment or Rigid Material in the model. In case that there is a Multibody Dynamics 
interface in the model, also such features as Spur Gear, Helical Gear, Bevel Gear, Worm 

Gear, Spur Rack, and Helical Rack can be selected. In Source, an additional option, Fixed, 
is also available. When Fixed is selected, the source side of the joint is fixed in space, 
and not connected to any modeled parts. If any Base Motion nodes are present in a 
Multibody Dynamics interface, these also appear in the list for the Source attachment. 
Selecting a base motion gives a behavior similar to using Fixed, with the exception that 
the base now can have a nonzero prescribed displacement, velocity, or acceleration.

In large models, the list of available attachments can become long. You can then create 
geometric filters to narrow down the search. When the Use selection filter check box is 
selected, two subnodes named Source Filter and Destination Filter are added to the 
joint node. In these subnodes you can make graphic selections of the objects whose 
attachments should be shown in the Source and a Destination lists.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Fixed Joint

Shell>Fixed Joint

Ribbon
Physics tab with Solid Mechanics or Shell selected in the Model Builder tree:

• If a Multibody Dynamics Module license is available, you can get access 
to many different joint types by adding a Multibody Dynamics 
interface to your model.

• In contexts other than component mode synthesis, connecting two 
parts by a Rigid Connector is usually a more natural approach.
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Global>Solid Mechanics>Fixed Joint

Source Filter

When you select domains in this node, the Source list in the parent Fixed Joint node will 
only contain attachments and rigid domains that are part of the selection. The selection 
rules are:

• If any part of an active rigid domain is within the selection, that rigid domain will 
appear in the list.

• If any boundary of an active attachment is adjacent to the selected domains, that 
attachment will appear in the list.

• If the selection is such that no attachments or rigid domains satisfy the rules above, 
the Source list in the parent node will only contain the entry None.

• If the selection is such that some attachments or rigid domains satisfy the rules 
above, the None entry in the Source list in the parent node will be removed, and one 
of the attachments or rigid domains will be selected as default. This means that if 
the selection is such that the Source list has only one unique item, this item is 
automatically selected.

• If the selection is empty, the behavior is as if Use selection filter were not selected.

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically created when the Use selection filter check box is selected in 
the Attachment Selection section in the parent Fixed Joint node. The Source Filter node 
cannot be added or removed manually.

Destination Filter

When you select domains in this node, the Destination list in the parent Fixed Joint node 
will only contain attachments and rigid domains which are part of the selection. The 
selection rules are described in Source Filter.

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically created when the Use selection filter check box is selected in 
the Attachment Selection section in the parent Fixed Joint node.The Destination Filter 
node cannot be added or removed manually.
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Contact

In the Contact node, you define the mechanical and numerical properties for a set of 
contact pairs in a contact analysis. Use it for modeling structural contact and 
multiphysics contact. In the latter case, you will also need to add corresponding pair 
conditions in the other participating physics interfaces.

In the contact pair, the destination side selection must be part of the physics interface 
in which you add the Contact node. The source side selection can be any kind of 
meshed object, but if it is part of the current physics interface, more options are made 
available. It is also possible to use the same selection for both the destination and 
source side to, for example, model self-contact. Note that the source and destination 
may not partially intersect each other.

• If friction is to be included in the modeling, add a Friction or a Slip Velocity 
subnode. The latter provides a simplified modeling when state of the friction and 
the direction of slip between the two boundaries is known.

• You can compute the wear caused by sliding by adding a Wear subnode.

• You can also model perfect bonding and debonding of the contact pair using the 
Adhesion and Decohesion subnodes.

If contact pairs are present and active in the model component, a default Contact node 
is added to the physics with all contact pairs selected. Contact pairs selected in a Contact 
node are exclusive, which means that if a contact pair is selected more than once, only 
its last occurrence in the physics tree will be active. Hence, by adding new Contact 
nodes, physics properties and settings related to specific contact pairs can be set.

Moreover, contact equations are only added if and only if a destination boundary of an 
active contact pair intersects with the selection of the physics interface. If only source 
boundaries are active, it is, however, possible to for example add offsets to the contact 
surface. This can be useful when setting up contact conditions across multiple physics 
interfaces.

Which of the Contact settings described below are visible, depends on the applicable 
selections of the specific feature.

• If both source and destination boundaries are applicable, all settings are visible.

The Wear subnode is not available in the Layered Shell interface.
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• If only source boundaries are applicable, only settings that affect variables on the 
source boundaries are visible.

• If only destination boundaries are applicable, only settings that affect equations and 
variables on the destination boundaries are visible.

• If no boundaries are applicable, no settings are visible.

If no contact pairs are selected, all settings are visible.

The Contact node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

Updating the settings window of the Contact node based on the applicable 
selections can result in some delay for models with a large number of pairs. 
This functionality can be turned off by disabling the Selection Information 
( ) option in the Show More Options dialog ( ), which may improve 
the responsiveness of the user interface.

In order to specify contact conditions, one or more Contact Pair nodes 
must be available in the Definitions branch.

If you have several physics interfaces with displacement degrees of 
freedom on the same geometrical objects in your model, there are special 
considerations for contact modeling. The gap and slip are determined by 
the locations of the contacting objects in the spatial frame. This means 
that you can only model contact between physics interfaces that either 
control the spatial frame, or have displacements which are identical to 
such an interface.

When a Contact node is present in your model, all studies are 
geometrically nonlinear. The Include geometric nonlinearity check box on 
the study step Settings window is selected and cannot be cleared.

For the default Contact node, selecting Disconnect pair in the Contact 
method section removes the above requirement and makes it possible to 
clear the Include geometric nonlinearity check box.
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C O N T A C T  S U R F A C E

When Contact is used in a Layered Shell, Shell, or Membrane interface, settings that 
control which side of the boundary that can come into contact are also made available.

For Contact surface, destination and Contact surface, source, select Top or Bottom. The 
top side is the one with an outward pointing normal vector.

C O N T A C T  M E T H O D

Select the algorithm used for computing the contact, Penalty (default); Penalty, 

dynamic; Augmented Lagrangian; Augmented Lagrangian, dynamic; or Nitsche. The 
augmented Lagrangian method is in general more accurate than the penalty method, 
but also more expensive in terms of computer resources. The Nitsche method is also a 
more accurate method that is available with it the Solid Mechanics and Multibody 
Dynamics interfaces.

When Augmented Lagrangian is selected, it is also possible to choose Solution method —
Segregated (default) or Fully coupled. This setting affects how the default solver 
suggestion is set up when generating a new solver sequence, as well as some variable 
definitions and equations.

The Penalty, dynamic; and Augmented Lagrangian, dynamic formulations are intended 
for use in time-dependent studies to model dynamics contact, such as soft impact type 
events.

• Contact Modeling

• Contact Analysis Theory

This section is only present when Contact is used in a:

• Layered Shell interface

• Shell interface

• Membrane interface

For a longer discussion about controlling and visualizing normal vectors, 
see Contact Detection
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The Nitsche method can conceptually be seen as an enhancement of the penalty 
method where the surface traction of the adjacent domains is utilized to improve 
accuracy. When selected, it is also possible to choose a Formulation — Symmetric, 
Skew-symmetric, or Nonsymmetric (default). This setting controls how the equations 
added to implement the contact condition are written and can influence the robustness 
and performance of the solution. The default Nonsymmetric formulation is the least 
expensive of the three, and, in the majority of cases, gives an accurate and robust 
solution.

For the default Contact node, it is possible to disconnect the selected contact pairs by 
selecting Disconnect pair. When the pairs are disconnected, they will add contributions 
by adding equations or variables, but the region is still identified as a pair region. Also, 
the presence of the Contact node will require the study to be geometrically nonlinear.

C O N T A C T  P R E S S U R E  P E N A L T Y  F A C T O R

The settings in this section are used to control the penalty factor used by the pressure 
contact model. The settings available depend on the chosen contact method.

In the penalty method, the penalty factor is the actual stiffness of a spring 
inserted between the boundaries in the contact pair.

In the augmented Lagrangian method, the penalty factor controls how 
“hard” the interface surface is during the iterations, but it does not affect 
the converged results. You can consider the penalty factor as a spring 
giving a resisting force if the boundaries in the contact pair have an 
overclosure. For a segregated solution, a larger value gives faster but less 
stable convergence to the state where there is no overclosure. A too large 
value can create convergence difficulties, particularly if the overclosure is 
large. For a coupled solution, the penalty factor mainly affects the 
structure of the underlying equation, which can alter the convergence 
properties of the model.

In the Nitsche method, the penalty factor is mainly a stabilization 
parameter and, in theory, it does not affect the accuracy of the solution. 
However, using a too low penalty factor causes instability which 
deteriorates the accuracy of the solution.
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Settings for the Penalty Method
Select the type of Penalty factor control — Automatic; Automatic, soft; Manual tuning; 
Nonlinear; or User defined.

• Automatic and Automatic, soft provide predefined values for the penalty factor 
multiplier fp. The Automatic, soft is mainly intended for bending dominated 
problems, typically encountered when using contact with the Shell interface.

• For Manual Tuning, enter a Penalty factor multiplier fp. The default value is 1, which 
corresponds to the Automatic option.

• For Nonlinear, enter an Initial penalty factor multiplier fp,init and a Final penalty factor 

multiplier fp,fin. Also enter a value for the Transition gap, gn,tr to control when to 
switch between the initial and final penalty factors. The default value is 
<phys>.hmin_dst.*1e-3.

• For User defined, enter a Contact pressure penalty factor pn. The default value is 
<phys>.<contact_tag>.E_char/<phys>.hmin_dst. The variable E_char 
contains the value given as characteristic stiffness, and hmin_dst is the minimum 
element size on the destination selection.

Click to select Offset penalty function if you want the contact pressure to be nonzero 
when the gap is zero. In that case, also enter a value for the Contact pressure at zero 

gap T0. Through this option, you can to some extent compensate for the overclosure 
that is inherent to the penalty method if you know an approximate value of the 
expected contact pressure.

Settings for the Penalty, Dynamic Method
Select the type of Penalty factor control — Automatic; Automatic, soft; Manual tuning; 
Nonlinear; Viscous only; or User defined. The settings are the same as for the standard 
penalty method, except for the Viscous only option. By selecting Viscous only, the 
stiffness terms of the penalty contact are omitted from the formulation.

Select the type of Viscous penalty factor control — Automatic or User defined. For 
Automatic, enter a value for the Characteristic time n. This value can be used as a 
multiplier for the viscous penalty factor, but should as a rule-of-thumb be in the same 
order of magnitude as the duration of the contact event. When User defined is selected, 
enter the Viscous contact pressure penalty factor pnv. The default value is 
(<phys>.<contact_tag>.E_char/<phys>.hmin_dst)*1[ms]. The variable E_char 
contains the value given as characteristic stiffness, and hmin_dst is the minimum 
element size on the destination selection.
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Settings for the Segregated Augmented Lagrangian Method
Select the type of Penalty factor control — Preset (default), Manual tuning, or User 

defined. The settings give access to an increasing level of detailed control of the penalty 
factor, and are available when Solution method is set to Segregated.

If you select Preset, you have the options to select Tuned for to be Stability (default), 
Speed, or Bending. If the contact boundaries move toward each other, so that large 
overclosures can be expected in the initial outer iterations, then Stability is the better 
choice since it relaxes the penalty factor during the first iterations. In many models, 
where the contact state does not change much, using Speed gives significant 
performance improvements. The Bending option provides a low penalty factor equal to 
the one used for the first iterations when using Stability. This option thus provides a 
conservative algorithm that can be particularly useful for problems dominated by 
bending. However, it might require many iterations to reach convergence.

The Penalty factor control selection Manual tuning gives you access to a number of 
detailed settings for the penalty factor.

Enter a Penalty factor multiplier fp. The default value is 1. From Use relaxation, select 
Always (default), Never, or Conditional. When using relaxation, the penalty factor is 
decreased during the first outer iterations in each parameter or time step. The purpose 
is to avoid large residuals in the case of a large initial overclosure between the 
contacting boundaries.

If relaxation is used, enter the Initial Relaxation Factor ri. The default is 0.005. This 
factor multiplies the penalty factor in the first outer iteration. Enter Number of 

iterations with relaxation Nr. The default value is 4. The penalty factor is gradually 
increased up to its full value, which is used in the outer iteration after the one where 
the specified number of iterations with relaxation have been reached.

If Use relaxation is set to Conditional, enter a Suppression criterion. The default is 0, 
which means that the relaxation is used for all parameter or time steps. This is a 
Boolean expression which, when fulfilled, suppresses the relaxation. If you, for 
example, know that your problem needs relaxation only during the initial phase of the 
solution, enter an expression like load_parameter>0.1. It is also possible to use 
expressions based on the solution, for example abs(solid.cnt1.gap)<0.05*h. This 
expression is true when the gap or overclosure is small compared to the mesh size. It 
could be taken as an indication that the contact problem is almost converged, and thus 
not in need of any relaxation of the penalty factor.

Using the Penalty factor control selection User defined gives you the possibility to enter 
an explicit expression for penalty factor. Enter the Contact pressure penalty factor pn. 
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The default is (min(1e-3*(5^niterCMP,1))*<phys>.<contact_tag>.E_char)/
<phys>.hmin_dst. The default value causes the penalty factor to be increased during 
the outer iterations and takes material stiffness and element size at the contact surface 
into account. The variable E_char contains the value given as characteristic stiffness, 
and hmin_dst is the minimum element size on the destination selection.

Settings for the Fully Coupled Augmented Lagrangian Method and the Nitsche 
Method
Select the type of Penalty factor control — Automatic (default), Manual tuning, or User 

defined. These settings are available when Solution method is set to Fully Coupled.

• For Manual Tuning, enter a Penalty factor multiplier fp. The default value is 1, which 
corresponds to the Automatic option.

• For User defined, enter a Contact pressure penalty factor pn. The default value is 
<phys>.<contact_tag>.E_char/<phys>.hmin_dst. The variable E_char 
contains the value given as characteristic stiffness, and hmin_dst is the minimum 
element size on the destination selection.

Settings for the Augmented Lagrangian, Dynamic Method
Select the type of Viscous penalty factor control — Preset (default), Manual tuning, or 
User defined. The settings give access to an increasing level of detailed control of the 
penalty factor.

When Preset or Manual Tuning is selected, enter a value for the Characteristic time n. 
This value can be used as a multiplier for the viscous penalty factor, but should as a 
rule-of-thumb be in the same order of magnitude as the duration of the contact event. 
The same settings as for the segregated augmented Lagrangian method are available 
for the Preset and Manual Tuning options. However, the default is to use no relaxation 
when the Augmented Lagrangian, dynamic method is used.

Using the Penalty factor control selection User defined gives you the possibility to enter 
an explicit expression for penalty factor. Enter the Viscous contact pressure penalty 

factor pnv. The default value is (<phys>.<contact_tag>.E_char/
<phys>.hmin_dst)*1[ms]. The variable E_char contains the value given as 
characteristic stiffness, and hmin_dst is the minimum element size on the destination 
selection.

The default values when Manual tuning is selected corresponds to the 
default expression when User defined is selected. The same expression is 
also used internally when Preset is used with the Stability option.
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T R I G G E R  C U T B A C K

Select the Trigger cutback check box to enable additional control over solver cutbacks 
in a time-dependent study or a stationary study with an auxiliary sweep. Enter a logical 
expression for Cutback criterion. When this expression evaluates to a nonzero value, the 
iterations are immediately terminated, and the solver tries to use a smaller value of the 
time or parameter. You can use this setting to avoid that the solver spends many 
iterations trying to recover from an unphysical state. As an example, if you know that 
the destination boundary is confined, so that it will not move more than 1 mm 
anywhere, an entry like solid.disp > 5[mm] can be useful, since it is unlikely that a 
displacement of this size should appear during a successful iteration history.

C O N T A C T  S U R F A C E  O F F S E T  A N D  A D J U S T M E N T

Enter a value or expression for Offset from geometric destination surface doffset,d. The 
offset is subtracted from the gap in the normal direction of the destination surface.

Enter a value or expression for Offset from geometric source surface doffset,s. The offset 
is subtracted from the gap in the normal direction of the source surface.

Select Force zero initial gap to compensate for any difference caused by irregularities in 
geometry or mesh when the two contacting boundaries should exactly coincide in the 
initial state. Gaps smaller than the tolerance gap are adjusted to be zero before any 

In the COMSOL Multiphysics Reference Manual:

• Time Dependent and Stationary

• About the Time-Dependent Solver and About the Parametric Solver
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offset is added. By default, gap is set to Inf, meaning that all gaps detected are 
adjusted to be zero.

I N I T I A L  V A L U E

This section is only available when Formulation is Augmented Lagrangian or Augmented 

Lagrangian, dynamic. In the augmented Lagrangian method, the contact pressure is 
introduced as an extra dependent variable on the destination boundaries. Enter a value 
for Contact pressure Tn to supply an initial value for the contact pressure.

D I S C R E T I Z A T I O N

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

This section is only available when Formulation is Augmented Lagrangian or Augmented 

Lagrangian, dynamic. In the augmented Lagrangian method, the contact pressure is 
introduced as an extra dependent variable on the destination boundaries. You can 

Use the offset properties to adjust initial clearances (negative values) or 
interference fits (positive values) without having to change the geometry. 
These properties are also useful for studying the effects of geometrical 
tolerance when the structure is still modeled using its nominal size.

When combined with Force zero initial gap, the offset will be exact in the 
sense that it is not affected by mesh irregularities.

The adjustment made by Force zero initial gap does not move any nodes 
in the mesh. Effectively, it adds an extra hidden offset, which compensates 
for the initial distance between source and destination boundaries.

Contact Surface Offset and Adjustment

• It is possible to speed up the convergence by supplying a guess of the 
correct order of magnitude of the contact pressure.

• If not all the contacting parts are fully constrained, it is sometimes 
possible to avoid singular problems by introducing a nonzero value for 
the contact pressure.
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modify the shape function type and order of this field. The default is to always use a 
linear shape function order for the contact pressure, but using a higher order can 
improve the accuracy of the contact condition. A value up to the discretization order 
of the displacement field is allowed. This setting also affects the shape function for 
dependent variables added by any subnode added to the Contact node.

To change the discretization, select Shape function type — Lagrange or Nodal 

serendipity.

• For the Lagrange shape-function type, select Element order — Linear, Quadratic, 
Cubic, Quartic, or (in 2D) Quintic.

• For the Nodal serendipity shape-function type, select Element order — Quadratic, 
Cubic, or Quartic. The Nodal serendipity option is not available when the order of the 
displacement field is linear.

The lumped solver used for the segregated augmented Lagrangian method is only 
optimal when the shape function order is Linear; otherwise, use a standard segregated 
step instead. The proper solver sequence is set up when adding a new default solver.

Q U A D R A T U R E  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

Typically, the expression in the contact weak equations include discontinuous 
functions. It is sometimes preferable to use a high integration order to improve the 
accuracy of the numerical integration of such expression. By default, the numerical 
integration of the contact weak equations is two times the shape function order of the 
displacement field. Clear the Use automatic quadrature settings check box to specify a 
custom order. When the check box is cleared, enter an integer value between 0 and 41 
in the Integration order field. This setting also affects the integration order for any 
subnode added to the Contact node.

• The Integration order both affects the numerical integration of the 
contact weak contributions and the number of state variables used 
when, for example, computing friction forces.

• Increasing the integration order increases the time spent on assembling 
the system matrices each iteration. This increase can be significant if a 
too high order is used since the contact mapping is done at each 
integration point on the destination boundaries.
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A D V A N C E D

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

Enter a Characteristic stiffness Echar. The default is <phys>.Eequ, the equivalent 
Young’s modulus as defined by most material models. The characteristic stiffness 
(stored in a variable named <phys>.<contact_tag>.E_char) is used in expressions 
for the default penalty factors for both the penalty and the augmented Lagrangian 
methods. The characteristic stiffness should be representative for the stiffness of the 
destination domain material in a direction normal to the boundary. You may for 
example need to adjust the default value in for the following cases:

• The material is strongly anisotropic. The default value is based on an average in all 
directions.

• The material is highly nonlinear. The default value is based on the stiffness at zero 
strain.

• The variable <phys>.Eequ is not defined by the material. This is the case for some 
user-defined materials.

Multiphysics Contact Detection
When analyzing a multiphysics contact problem, the state of being in contact or not 
will be passed from the contact analysis in the structural mechanics interface to other 
participating physics interfaces. For numerical reasons, the gap value will however not 
be exactly zero, even when the boundaries are in contact. A certain small positive value 
of the gap will thus be considered as being in contact. The default Multiphysics contact 

tolerance is Automatic. If you want to explicitly specify the limit of the gap considered 
as being in contact, select Manual, and enter the Contact tolerance contact.

Jacobian Contribution
The equations for the contact conditions can be implemented differently in order to 
influence the robustness and stability of the discretized system of equations and its 
linearization. This can be controlled by the Jacobian Contribution setting. 

When the Jacobian Contribution is set to Nonsymmetric, the variations of the normal 
vector on the source boundary are excluded. This is the most robust implementation 
for cases where the source boundary undergoes large deformation. However, it has the 

The automatic multiphysics contact detection tolerance is based on the 
size of the geometric entity.
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drawback of causing the global stiffness matrix to become nonsymmetric, which 
increases the memory requirement in the linear solver.

The Symmetric option can be used instead when this is problematic for the linear solver. 
For this option, the main contact equations does not force a nonsymmetric stiffness 
matrix, although some subnodes may still do so. Variations of the normal vector on the 
source boundary are excluded also for this option, but it is not as robust as the 
Nonsymmetric option.

When the Jacobian Contribution is set to Automatic, the Nonsymmetric option is used for 
contact pairs using the Deformed configuration mapping method, while the Symmetric 
option is used for the Initial configuration mapping method.

When the Jacobian Contribution is set to Legacy, variations of the normal vector on the 
source boundary are included, and the contribution to the global stiffness matrix is 
symmetric.

For the Nitsche method, the Jacobian Contribution setting is not available, since the 
equations are always formulated according to the Nonsymmetric option.

Fields Excluded from Variation
In some cases, it is not desirable to include reaction forces from all physics when setting 
up the variational term of the contact weak contributions. When Fields excluded from 

variation is set to Automatic, variations are taken with respect all fields expect when a 
Wear subnode is added. If a Wear subnode is active and uses a Deformed geometry 
formulation, variations with respect to the material mesh displacement field is excluded 
in all weak equations added by Contact and its subnodes. By setting Fields excluded from 

variation to Manual, it is possible to exclude variations with respect to any field present 
in the model. When Manual is selected, enter a comma separated list of field names to 
exclude. By default, the input field is populated with material.disp, which exclude 
variations with respect to material mesh displacement field added by the deformed 
geometry functionality.

Select Add contact status to solver log to get printouts about the change in the contact 
state in the solver log window. Doing so will add internal dependent variables used for 
tracking the contact state on the destination boundaries.

The Penalty, dynamic and Augmented Lagrangian, dynamic are dissipative formulations. 
When either of these are selected in the Contact Method section, select Compute 

viscous contact dissipation to compute and store to the energy dissipated by the viscous 
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pressure contact. This adds one extra dependent variable and an extra distributed 
ODE.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Pairs>Contact

Shell>Pairs>Contact

Layered Shell>Pairs>Contact

Membrane>Pairs>Contact

Multibody Dynamics>Pairs>Contact

Ribbon
Physics tab with Solid Mechanics, Layered Shell, Shell, Membrane, or Multibody Dynamics 
selected:

Pairs>Contact

Friction

By adding the Friction subnode to a Contact node, you can model static and dynamic 
friction in 3D, 2D, and 2D axisymmetry.

The selection in the Friction node is the same as that of its parent Contact node. There 
can only be one Friction node under a specific Contact node.

In the case that the sliding velocity is known, you can replace the Friction node by Slip 
Velocity, which provides a more efficient model, since there is no need to solve for the 
friction forces and slip direction. The Friction and Slip Velocity nodes are mutually 
exclusive.

If Friction and Adhesion are present under the same Contact node, the friction settings 
will be ignored at the locations where the adhesion criterion is fulfilled.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The friction forces are defined as boundary tractions with respect to the selected 
coordinate system. The selection is limited to boundary systems.

Dependent Variables in Contact Analysis
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Make sure that the tangents of the selected boundary system are well defined on all 
destination boundaries.

F R I C T I O N  P A R A M E T E R S

Select a Friction model — Coulomb, Exponential dynamic Coulomb, or User defined. The 
Exponential dynamic Coulomb option is only relevant for time-dependent studies, since 
the value of the friction coefficient depends on the slip velocity.

For Coulomb friction, enter a Friction coefficient .

For Exponential dynamic Coulomb friction, enter a Static friction coefficient stat, a 
Dynamic friction coefficient dyn and a Friction decay coefficient dcf.

The effective friction coefficient is

where vslip is the slip velocity.

For both Coulomb type options, you can modify the rules for sliding by providing 
minimum and maximum shear tractions.

Enter a Cohesion sliding resistance Tcohe to set a tangential traction that must be 
overcome before sliding can occur. The use of cohesion will give an offset to the 
friction force under sliding conditions.

Independently, you can enter a Maximum tangential traction Tt,max. When the 
tangential traction exceeds this value, slip will occur, independent of the normal 
pressure. The default expression is Inf, indicating that no limit on the tangential 
traction is active.

The tangential friction force during sliding, Tt,crit, can be written as

Here, Tn is the contact pressure. If the tangential force is less than this value, there is 
no sliding.

When Friction model is set to User defined, enter an expression to define Tt,crit. This 
expression can depend on any quantity. However, the implementation of the friction 
model is only correct if Tt,crit does not depend on the current friction force.

 dyn stat dyn– e
dcf vslip–

+=

Tt crit, min Tn Tcohe+ Tt max =
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P E N A L T Y  F A C T O R

The settings in this section are used to control the penalty factor used by the friction 
model. The available settings depend on the chosen contact method in the parent 
Contact node. When the Nitsche method is used in the parent Contact node, the same 
penalty factor as in the parent contact node is used for friction. Hence this section is 
not available. 

Settings for the Penalty and the Penalty, Dynamic Methods
When the Penalty or Penalty, dynamic method is used in the parent Contact node, select 
the Penalty factor control —Automatic (default); Automatic, soft; Manual Tuning; From 

Parent; or User defined.

• Automatic and Automatic, soft provide predefined values for the penalty factor 
multiplier ft.

• For Manual Tuning, enter a Penalty factor multiplier ft. The default value is 1, which 
corresponds to the Automatic option.

• For From Parent, the friction force penalty factor pt = pn/3. This option is not 
available for the Penalty, dynamic method if the Viscous only penalty factor control is 
used in the parent Contact node.

• For User defined, enter a Friction force penalty factor pt. The default value is 
(<phys>.<contact_tag>.E_char/<phys>.hmin_dst)/3.

Settings for the Augmented Lagrangian Methods
When the Augmented Lagrangian or Augmented Lagrangian, dynamic method is used in 
the parent Contact node, select the Penalty factor control — From Parent, Preset, 
Automatic, Manual Tuning, or User defined.

• From Parent is available when Formulation is Augmented Lagrangian, and is then the 
default. When selected, the friction force penalty factor pt = pn/3

• Preset is available when Solution method is Segregated in the parent Contact node and 
for the Augmented Lagrangian, dynamic, for which is the default. It provides the same 
settings as described in the Contact Pressure Penalty Factor.

• Automatic is available when Solution method is Fully coupled in the parent Contact 
node and provides a predefined value for the penalty factor multiplier ft.

• For Manual Tuning, enter a Penalty factor multiplier ft. The default value is 1. When 
Solution method is Segregated in the parent Contact node and for the Augmented 
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Lagrangian, dynamic, additional settings are available. These are the same as 
described for the Contact pressure penalty factor section.

• For User defined, enter a Friction force penalty factor pt. The default value depends 
on the selected Solution method in the parent Contact node.

I N I T I A L  V A L U E

If Formulation is Augmented Lagrangian or Augmented Lagrangian, dynamic in the parent 
Contact node, enter values or expressions for the components of the initial force acting 
on the destination surface as Friction force Tt.

To determine whether friction effects are active when starting the solution or not, 
select the Previous contact state — Not in contact or In contact.

For In contact enter values or expressions for the Previous mapped source coordinates 
xm, old. These serve as initial values to compute the tangential slip. The default value 
is (X, Y, Z) and indicates that the contacting boundaries are perfectly coincident in the 
initial state. The mapped source coordinates are defined as the location on the source 
boundary where it is hit by a certain point on the destination boundary.

A D V A N C E D

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

For numerical reasons, the gap value will not be exactly zero even when the boundaries 
are in contact. A certain small positive value of the gap must thus be used to determine 
that the boundaries touch each other, so that friction forces can be introduced. Select 
a Friction detection — Automatic or Manual. For Manual, enter an absolute value for the 
Friction detection tolerance friction, which is the gap when the friction becomes active.

Select Compute frictional dissipation to compute and store to the energy dissipated by 
friction. This adds one extra dependent variable and an extra distributed ODE.

The entries in this section should be given as vector components in the 
material frame.
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You can also request that the total accumulated slip distance it stored by selecting the 
Store accumulated slip check box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Contact>Friction

Shell>Contact>Friction

Layered Shell>Contact>Friction

Membrane>Contact>Friction

Multibody Dynamics>Contact>Friction

Ribbon
Physics tab with Contact selected in the Model Builder tree:

Attributes>Friction

Slip Velocity

The Slip Velocity node facilitates a simplified form of slip friction modeling, which can 
be used in the case that the direction and speed of the sliding is known. In this case, 
there is no need to solve for the friction forces and slip orientation.

The selection in the Slip Velocity node is the same as that of its parent Contact node. 
There can only be one Slip Velocity node under a specific Contact node.

The Slip Velocity and Friction nodes are mutually exclusive.

The automatic friction detection tolerance is in the Solid Mechanics 
interface based on the mesh element size. For the Shell and Membrane 
interfaces, it is based on their thickness.

See also

• Including Friction, and The Friction Node in the Structural Mechanics 
Modeling chapter.

• Tangential Contact with Friction in the Structural Mechanics Theory 
chapter.
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The Slip Velocity node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The slip velocity is defined as acting in the tangent plane of the destination boundary, 
and is given along the directions of a boundary system.

Only boundary systems can be selected. Make sure that the tangents of the selected 
boundary system are well defined on all destination boundaries.

F R I C T I O N  P A R A M E T E R S

Select a Friction model — Coulomb, Exponential dynamic Coulomb, or User defined. Since 
the velocity is prescribed, a velocity dependent friction model can be used also in a 
stationary analysis.

For Coulomb friction, enter the Friction coefficient .

For Exponential dynamic Coulomb friction, enter a Static friction coefficient stat, a 
Dynamic friction coefficient dyn and a Friction decay coefficient dcf.

The effective friction coefficient is

where vslip is the slip velocity.

For both Coulomb type models, you can modify the rules for sliding by providing 
minimum and maximum shear tractions.

Enter a Cohesion sliding resistance Tcohe to provide an offset to the tangential traction.

Independently, you can enter a Maximum tangential traction Tt,max. This is the 
maximum tangential traction, independent of the contact pressure. The default 
expression is Inf, indicating that no limit on the tangential traction is active.

The magnitude of the tangential friction traction, Tt,crit, can be written as

Here, Tn is the contact pressure.

When Friction model is set to User defined, enter an expression to define Tt,crit. This 
expression can depend on any quantity. However, the implementation of the friction 
model is only correct if Tt,crit does not depend implicitly on the current friction force.

 dyn stat dyn– e
dcf vslip–

+=

Tt crit min Tn Tcohe+ Tt max =
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P R E S C R I B E D  V E L O C I T Y

Enter the relative velocity between the destination and source boundaries, vslip. The 
velocity is expressed in the coordinate system provided in the Coordinate System 

Selection section, interpreted on the destination boundary.

A D V A N C E D

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

For numerical reasons, the gap value will not be exactly zero even when the boundaries 
are in contact. A certain small positive value of the gap must thus be used to determine 
that the boundaries touch each other, so that friction forces can be introduced. Select 
a Friction detection — Automatic or Manual. For Manual, enter an absolute value for the 
Friction detection tolerance friction, which is the gap when the friction becomes active.

Select Compute frictional dissipation to compute and store to the energy dissipated by 
friction. This adds one extra set of state variables to be stored. The integration is 
explicit, and adds only marginally to the computational cost.

You can also request that the total accumulated slip distance it stored by selecting the 
Store accumulated slip check box.

• The automatic friction detection tolerance is based on the mesh 
element size.

• The dissipated energy and accumulated slip require a time integration, 
and are thus only available for time-dependent analysis.

• The rate of energy dissipation is always computed, even in a stationary 
analysis. It can for example be used as a heat source in a heat transfer 
analysis. It is stored in a variable with a name like solid.cnt1.qfric.

See also

• Including Friction, and The Slip Velocity Node in the Structural 
Mechanics Modeling chapter.

• Tangential Contact with Friction in the Structural Mechanics Theory 
chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Contact>Slip Velocity

Shell>Contact>Slip Velocity

Solid Mechanics>Contact>Slip Velocity

Membrane>Contact>Slip Velocity

Multibody Dynamics>Contact>Slip Velocity

Ribbon
Physics tab with Contact selected in the Model Builder tree:

Attributes>Slip Velocity

Adhesion

Using the Adhesion subnode, you can add adhesion properties to a contact pair. This 
functionality requires that the contact is modeled using the penalty method, and that 
no offset is used in the penalty stiffness function.

The selection of the Adhesion node is the same as that of its parent Contact node. There 
can only be one Adhesion node under a specific Contact node. If Adhesion and Friction 
are present under the same Contact node, the friction settings will be ignored at the 
locations where the adhesive activation criterion is fulfilled.

The Adhesion subnode is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The adhesive stresses are defined as boundary tractions with respect to the selected 
coordinate system. The selection is limited to boundary systems. Make sure that the 
tangents of the selected boundary system are well defined on all destination 
boundaries.

A D H E S I V E  A C T I V A T I O N

Select an Activation criterion to describe the onset of the adhesion between the source 
and destination boundaries.

When the criterion is Pressure, enter the minimum contact pressure p0, at which 
adhesion is initiated.
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When the criterion is Gap, enter the distance between the source and destination 
boundaries 0, at which adhesion is initiated. A negative value indicates that there must 
be a certain overclosure before adhesion is activated.

When the criterion is User Defined, enter a Boolean expression such that when it 
evaluates to true, adhesion is activated.

When the criterion is Always active, the source and destination boundaries are always 
in adhesive contact, unless broken by decohesion.

A D H E S I V E  S T I F F N E S S

In this section, you specify the stiffness of the adhesive layer in the normal and 
tangential directions. The adhesive normal stiffness is used in tension only; in 
compression the contact pressure penalty factor is always used.

Select how to specify the Adhesive stiffness of the adhesive layer — From contact penalty 

factor, User defined, or Use material data. The default is to use From contact penalty 

factor, in which case the normal stiffness is the same as the Contact pressure penalty 

factor specified in the settings of the parent Contact node.

To define the tangential stiffness, select Shear stiffness defined using to be either Normal 

to shear ratio or Adhesive Poisson’s ratio. For Normal to shear ratio, enter the ratio 
between the shear stiffness and the normal stiffness n. For Adhesive Poisson’s ratio, 
enter Poisson’s ratio for the adhesive layer, , explicitly.

When Adhesive stiffness is set to User defined, enter each component of the stiffness 
vector k individually.

When Adhesive stiffness is set to Use material data, the stiffness vector k is computed 
from material data and layer thickness. From the Specify list, select a pair of elastic 
properties — Young’s modulus and Poisson’s ratio, Young’s modulus and shear modulus, 
or Bulk modulus and shear modulus. Each of these pairs define the elastic properties and 
it is possible to convert from one set of properties to another according to Table 4-10. 
For the chosen properties, select from the applicable list to use the value From material 
or enter a User defined value or expression. In order to use From material, you must 
have assigned a material to the selected boundaries.
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Enter a Thickness, ds, to specify the physical thickness of the adhesive layer.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Contact>Adhesion

Shell>Contact>Adhesion

Layered Shell>Contact>Adhesion

Membrane>Contact>Adhesion

Multibody Dynamics>Contact>Adhesion

Ribbon
Physics tab with Contact selected in the Model Builder tree:

Attributes>Adhesion

Decohesion

Using the Decohesion subnode, you can add decohesion properties to a contact pair. 
This functionality requires that an Adhesion subnode is present and active in the same 
parent Contact node.

The selection of the Decohesion node is the same as that of its parent Contact node. 
There can only be one Decohesion node under a specific Contact node.

The Decohesion subnode is only available with some COMSOL products (see https:/
/www.comsol.com/products/specifications/).

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The adhesive stresses are defined as boundary tractions with respect to the selected 
coordinate system. The selection is limited to boundary systems. Make sure that the 
tangents of the selected boundary system are well defined on all destination 
boundaries.

See also

• Including Adhesion and Decohesion, and The Adhesion Node in the 
Structural Mechanics Modeling chapter.

• Adhesion in the Structural Mechanics Theory chapter.
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D E C O H E S I O N

Select a Cohesive zone model — Displacement-based damage or Energy-based damage to 
choose the type of variable that controls the damage process.

Select a Traction separation law — Linear, Exponential, Polynomial, or Multilinear. The 
definition of these differ between the two cohesive zone models, and the last option is 
available only for Displacement-based damage.

For the displacement-based damage models, enter:

• Tensile strength, t. This is the peak stress in pure tension.

• Shear strength, s. This is the peak stress in pure shear.

• Tensile energy release rate, Gct. This is the energy released during the whole 
decohesion process in a state of pure tension.

• Shear energy release rate, Gcs. This is the energy released during the whole 
decohesion process in a state of pure shear.

For the Multilinear separation law, also enter the Shape factor, .

When the traction separation law is Linear, Exponential, or Polynomial, select the Mixed 

mode criterion to be either Power law or Benzeggagh-Kenane. In either case, enter the 
Mode mixity exponent . The mixed mode criterion determines how normal and shear 
components are combined into a single scalar failure criterion. For the Multilinear 
separation law, the mixed mode criterion is always linear (equivalent to a power law 
with = 1.)

For the energy-based damage models, enter:

• Tensile damage threshold, G0t. This is the elastic energy at the onset of damage in 
pure tension.

• Shear damage threshold, G0s. This is the elastic energy at the onset of damage in pure 
shear.

• Tensile energy release rate, Gct. This is the energy released during the whole 
decohesion process in a state of pure tension.

• Shear energy release rate, Gcs. This is the energy released during the whole 
decohesion process in a state of pure shear.

• Mode mixity exponent, damage initiation, 0. The value determines how normal and 
shear components are combined into a single scalar criterion for damage initiation.

• Mode mixity exponent, c. The value determines how normal and shear components 
are combined into a single scalar failure criterion.
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• Smoothening parameter, N. This parameter adjusts the shape of the of the traction 
separation law. It is available for the Exponential and Polynomial options. By default, 
N = 1; a smaller value gives a smoother behavior.

In the Regularization list, it is possible to add a viscous delay to the damage growth for 
time-dependent studies. Do this by selecting Delayed damage and enter a value for the 
Characteristic time, .

A D V A N C E D

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

Maximum damage determines the residual stiffness of the adhesive layer after 
decohesion. By default, dmax = 1, which means that no residual stiffness remains. 
Enter a value smaller than 1 to introduce some residual stiffness.

Select Compute damage dissipation energy to compute and store to the energy 
dissipated by damage.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Contact>Decohesion

Shell>Contact>Decohesion

Layered Shell>Contact>Decohesion

Membrane>Contact>Decohesion

Multibody Dynamics>Contact>Decohesion

Ribbon
Physics tab with Contact selected in the Model Builder tree:

Attributes>Decohesion

See also

• Including Adhesion and Decohesion, and The Decohesion Node in 
the Structural Mechanics Modeling chapter.

• Decohesion in the Structural Mechanics Theory chapter.
T H E  S O L I D  M E C H A N I C S  I N T E R F A C E  |  1145



1146 |  C H A P T E
Wear

Add a Wear subnode to model mechanical wear created when the contacting surfaces 
are sliding along each other. Typically, the wear rate is a function of the contact 
pressure and the slip velocity.

The selection of the Wear node is the same as that of its parent Contact node. If 
significant wear can be expected on both surfaces in a contact pair, you can add two 
Wear nodes.

As wear involves a rate equation, it is only possible to compute wear a in 
time-dependent study. For other study types, the Wear node is ignored.

The Wear node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

W E A R  M O D E L

Select a Formulation — Deformed geometry or Offset-based. When Deformed geometry is 
selected, the geometry of the domain is actually changed, and a set of extra degrees of 
freedom are added to the model. For the Offset-based formulation, the computed wear 
depth hwear is added as an offset to the contact condition.

Select a Wear model — Generalized Archard or User defined.

For Generalized Archard, enter a Wear constant, kwear, a Reference contact pressure, 
Tn,ref, and an Exponent, n. The wear rate is defined as

Here, Tn is the contact pressure, and vslip is the slip velocity. For a classical Archard 
equation, n = 1. The reference contact pressure, Tn,ref, can be chosen arbitrarily, and 
is used only to obtain consistent units. In most cases, Tn,ref, should be chosen as the 
unit pressure in the current unit system (for example, 1 Pa).

This setting is not present in the Shell and Membrane interfaces. In these 
interfaces, the wear is incorporated as a change in the thickness.

t
hwear kwear

Tn
Tn,ref
------------- 
 

n
vslip=
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For User defined, enter an expression for the general source term, f, which defines the 
wear rate. The default is an expression similar to
(1e-9[m^2/N]*solid.cnt1.wear1.Tn)*solid.cnt1.wear1.vslipnorm. 
This expression provides the names of the local variables for contact pressure and slip 
velocity, inserted in a classical Archard equation.

Finally, select a Wear surface — Destination or Source. If both surfaces in the contact 
pair are subject to wear, use two separate Wear nodes.

D E F O R M I N G  D O M A I N  S E T T I N G S

This section is only available when Formulation is set to Deformed geometry.

Choose how to set the Deforming domain selection — Automatic or Manual. When 
Automatic is selected, the deforming domains are assumed to be all domains adjacent 
to the destination or source boundaries, as selected by Wear surface. This is the default. 
By selecting Manual, a new section, Deforming Domain Selection, is displayed. There, you 
can make a manual selection of the domains to act as deforming.

In order for the mesh smoothing in the deforming domain to work properly, the mesh 
on all exterior boundaries, except the wear surface, should be free to slide in the 
tangential directions. Choose how to set the Sliding boundary selection — Automatic or 
Manual. When Automatic is selected, a sliding boundary condition added to all exterior 
boundaries of the deforming domain, expect the wear surface. This is the default. By 
selecting Manual, a new section, Sliding Boundary Selection, is displayed. There, you can 
make a manual selection of the sliding boundaries. The selection on which wear is 
applied is always excluded.

• In general, modeling wear on the destination side is slightly more 
accurate, since it is there that the contact pressure and slip velocity are 
originally computed.

• It is possible to use the Rigid Material material model on the source 
side.

If the model was originally created in version 5.2 or earlier, you must 
enable the possibility to use deformed geometry manually. Go to the 
settings for the Component, and click the Permanently Define All Frames 
button. See also The Component Node.
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The remaining settings in the section affect the detailed mathematical model used for 
remapping the mesh in the deforming domain. For details, see Deforming Domain.

D I S C R E T I Z A T I O N

This section is present when Formulation is set to Offset-based, or when the Wear node 
is used in the Shell or Membrane interfaces.

In these cases, the amount of wear will be a separate field that is computed by a time 
integration of the wear rate expression. In the case of Solid Mechanics or Multibody 
Dynamics, the field is added to the contact offset. For Shell and Membrane, it is 
subtracted from the thickness of the elements.

Select a Shape function type — From physics, Discontinuous Lagrange, or Gauss point data. 
When selecting From physics, the additional thickness field is approximated by the same 
shape functions that are used for the dependent variables of the physics.

The order of the shape functions is in all cases selected automatically, based on the 
discretization in the physics interface.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Contact>Wear

Shell>Contact>Wear

In most cases, the Automatic option will set up an appropriate Deforming 

domain selection and a corresponding Sliding boundary selection. For 
complex geometries it might, however, be necessary to manually control 
these selections. In case the automatic selections are incorrect, it is often 
displayed as an error from the solver, or clearly visible in the results of the 
exterior edges of the wear surface.

See also

• Including Wear, and The Wear Node in the Structural Mechanics 
Modeling chapter.

• Wear in the Structural Mechanics Theory chapter.

• Deformed Geometry and Moving Mesh in the COMSOL Multiphysics 
Reference Manual.
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Membrane>Contact>Wear

Multibody Dynamics>Contact>Wear

Ribbon
Physics tab with Contact selected in the Model Builder tree:

Attributes>Wear

Continuity

Add a Continuity node to connect parts of an assembly using one or several Identity 

pairs. Both sides of the identity pair must be part of the physics interface in which you 
add the Continuity node.

M E T H O D

Select a method to implement the continuity conditions: Classic constraints (default) 
or Nitsche. When classic constraints are selected, the continuity conditions are 
implemented as pointwise constraints on the destination side of the pair.

The Nitsche method implements the continuity condition in a weak sense by adding 
equations instead of constraints. If many other nodes that add constraints are present 
in the model, this has the advantage of not adding extra work for the constraint 
elimination algorithm of the solver. Moreover, the Nitsche method is often the more 
accurate method for connecting parts with nonconforming meshes at the shared 
boundary.

If Nitsche is selected, choose how to define the Stabilization factor — Automatic, Manual 

Tuning, or User defined. When Manual tuning is selected, enter a value for the 
Stabilization factor multiplier. This is a multiplier acting on the characteristic stiffness 
defined for all selected pairs. The stiffness is based on the material properties and the 
mesh element size on both sides of a pair. For User defined, enter an expression for the 
stabilization factor  that will be used for all pairs.

Also, choose a Formulation — Symmetric, Skew-symmetric (default), or Nonsymmetric. 
This setting controls how the equations added to implement the continuity condition 
are written and can influence the robustness and performance of the solution. The 
default Skew-symmetric formulation is the most robust formulation, but is more 
expensive to use compared to the Nonsymmetric formulation. The Symmetric 
formulation has the advantage that it maintains the symmetry of the stiffness matrix, 
which can be important for large models.
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It is also possible to select on which side to the pair to apply the continuity conditions 
by setting Apply on to either: Source and destination (default), Source, or Destination. It 
is generally recommended to apply the continuity conditions on the side with the finest 
mesh. However, the unbiased formulation obtained by the default Source and 

destination option is in the majority of cases equally accurate but can be more 
expensive.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Pairs>Continuity

Multibody Dynamics>Pairs>Continuity

Ribbon
Physics tab with Solid Mechanics or Multibody Dynamics selected:

Pairs>Continuity

Bolt Pretension

Use the Bolt Pretension node to define the prestress force in pretensioned bolts. It is 
available for 3D and 2D axial symmetry only. Typically, the prestressed state is 
established in an initial study step, which is then followed by one or more steps in 
which the service loads are added.

When using Continuity to connect parts of an assembly in a large 
deformation analysis, the most robust solution is obtained by setting the 
Source fame and Destination frame to Material in the used Identity pairs. 
This is especially important for the Nitsche method, since it enforces 
continuity in a weak sense only. For the same reason, avoid using a Contact 

pair in a Continuity feature also.

The Nitsche method is not allowed for pairs where any source or 
destination boundary is adjacent to a Rigid Material.

See also Continuity Condition in the Structural Mechanics Theory 
chapter.
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When you add a Bolt Pretension node, a default Bolt Selection subnode is also 
automatically added. Use one such node to select each individual bolt.

The Bolt Pretension node is only available with some COMSOL products (see https:/
/www.comsol.com/products/specifications/).

B O L T  L A B E L

Enter a name that will form the basis for the automatic generation of bolt labels when 
Bolt Selection subnodes are added. The label is used for identification during 
postprocessing. The default name is Bolt.

B O L T  P R E T E N S I O N

Select how to describe the pretension by selecting a Pretension type — Pretension force, 
Pretension stress, or Tightening torque.

• For Pretension force enter a value or expression for Fp, the pretension force in the 
bolt.

To compute the corresponding tightening torque, select the Compute tightening 

torque check box. Then, enter data as described below.

• For Pretension stress enter a value or expression for p, the pretension stress in the 
bolt. The pretension force is computed through multiplication by the actual area of 
each selected bolt.

To compute the corresponding tightening torque, select the Compute tightening 

torque check box. Then, enter data as described below.

• For Tightening torque, enter the following data:

- The tightening torque, MT.

- The Nominal bolt diameter. The default is From geometry, in which case the bolt 
diameters are derived from the cross section selections in the Bolt Selection 

If the base name is changed, it only affects how bolt labels are generated 
in Bolt Selection subnodes that are added later on. You may then, in 
particular, want to manually edit the default Bolt Selection subnode.
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subnodes. To use another value, select User defined, and enter the bolt 
diameter, d.

- The Bolt hole diameter. The default is Automatic, in which case the bolt hole 
diameter is set to 1.1 times the nominal bolt diameter. To use anther value, select 
User defined, and enter the bolt hole diameter, dh.

- The Bolt thread mean diameter. The default is Automatic, in which case the bolt 
thread mean diameter is set to 0.9 times the nominal bolt diameter. To use 
another value, select User defined, and enter the thread mean diameter, dt.

- The Bolt head type — Circular or Hexagonal.

For a circular bolt head, enter the Bolt head diameter. The default is Automatic, in 
which case the bolt head diameter is set to 1.6 times the nominal bolt diameter. 
To use another value, select User defined, and enter the bolt head diameter, do.

For a hexagonal bolt head, enter the Bolt head width. The default is Automatic, in 
which case the bolt head width is set to 1.6 times the nominal bolt diameter. To 
use another value, select User defined, and enter the bolt head width, H.

- The Half thread angle, . The default is 30[deg], which is used in for example the 
ISO and UTS standards.

- The Lead, l.

- The Bolt head friction coefficient, h. This is the friction coefficient between the 
bolt head and the material under it, including the effect of, for example, washers. 
The default is 0.15.

- The Bolt thread friction coefficient, t. This is the friction coefficient between 
inner and outer thread. The default is 0.15.

See also

• Modeling Pretensioned Bolts in the Structural Mechanics Modeling 
chapter for a complete description of how to model pretensioned bolts.

• Bolt Modeling Theory.

• Bolt Pretension Study for information about the Bolt Pretension study 
type.

Modeling of Pretensioned Bolts: Application Library path 
Structural_Mechanics_Module/Tutorials/bolt_pretension_tutorial
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S O L V E R  S U G G E S T I O N

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Bolt Pretension

Beam>Bolt Pretension

Ribbon
Physics tab with Solid Mechanics or Beam selected in the Model Builder tree:

Global>Bolt Pretension

Bolt Selection

The Bolt Selection subnode is automatically added as a default node to the Bolt 
Pretension node. It is used for selecting the individual bolts. One Bolt Selection node 
is required for each bolt.

This section is present only in models created in versions prior to 5.3, in 
which the new Bolt Pretension study type was introduced. The purpose is 
to maintain backward compatibility for older models.

Select Solve in bolt pretension study only check box to make the bolt 
pretension degrees of freedom behave as in a version 5.3 model, that is 
being solved for only in a study step of the Bolt Pretension type. By default, 
the check box is cleared, and then the bolt pretension degrees of freedom 
are solved for in any type of study step, unless you explicitly suppress that.

The settings of the Solve in bolt pretension study only check box only 
affects new study sequences being generated. Existing study sequences 
will keep the current state for the bolt pretension degrees of freedom.

Once you select the Solve in bolt pretension study only check box, the 
Solver Suggestion section will be hidden. Thus, it is not possible to clear 
the check box again. The degrees of freedom created under this Bolt 

Pretension node from now on assumes the version 5.3 behavior.
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B O U N D A R Y  S E L E C T I O N

P O I N T  S E L E C T I O N

B O L T  L A B E L

Enter a Bolt label. The default is automatically generated based on the name given in 
the Bolt label section of the parent Bolt Pretension node. The label is used for 
identification during postprocessing.

The automatic name generation is also active when a Bolt Selection node is duplicated 
or copy-pasted.

This section is only present in the in the Solid Mechanics interface.

From the Selection list, choose the boundaries to define a cross section of 
a single bolt. This cross section must be an interior boundary. It is the 
section where the stress in the bolt is measured.

In 2D axial symmetry, the cross section must be perpendicular to the 
Z-axis.

This section is only present in the in the Beam interface.

From the Selection list, choose a point to define a cross section of a single 
bolt. This cross section must be an interior point. It is the section where 
the stress in the bolt is measured.
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B O L T  P R E T E N S I O N

Select a Pretension type — From Parent, Pretension force, Pretension stress, or Tightening 

torque. In most cases, the input for the pretension force is given in the parent node. If, 
however, you need to modify the settings for individual bolts, you can do it here.

• For Pretension force enter a value or expression for Fp, the pretension force in the 
bolt.

• For Pretension stress enter a value or expression for p, the pretension stress in the 
bolt. The pretension force is computed through multiplication by the actual area of 
each selected bolt.

• For Tightening torque, enter a value or expression for MT, the tightening torque. All 
other values needed for computing the bolt force from the torque are taken from 
the parent node.

If you want to include a Relaxation of the bolt pretension, enter a value or expression 
for r. The relaxation is an axial displacement, which is subtracted from the 
predeformation of the bolt. This value can, for example, be time-dependent in the case 
of a creep relaxation of the bolt stress.

If you want to model a process where the bolt forces are not applied simultaneously, 
select the Sequential tightening check box. When selected, a new input field, 
Pretensioning expression, is accessible.

The Pretensioning expression is a boolean expression, giving the parameter values at 
which the prestress is changed. Such an expression could, for example, be par==5 || 
par==10 if the bolt is tightened in two steps. If the tightening process is done 
stepwise, you also need to use a Pretension type which is not the default From parent. 
The expression for the pretension force in each individual bolt can then vary with the 
continuation parameter, and should match the steps at which the pretension force is 
changed.

S Y M M E T R Y  D E T E C T I O N

If a bolt is cut by a symmetry plane, the force in the modeled part is only half of the 
force in the real bolt. When Automatic symmetry detection is selected, this is 
compensated for. The program will then automatically detect when a bolt is located in 
a symmetry plane, and apply corrections.

• If the input of the pretension load in the parent node is by Pretension force, the given 
force is interpreted as the force for the whole bolt.

• All results are given for the whole bolt.
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When Automatic symmetry detection is cleared, the inputs and outputs are based on the 
modeled cross section area.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Bolt Pretension>Bolt Selection

Beam>Bolt Pretension>Bolt Selection

Ribbon
Physics tab with Bolt Pretension selected in the Model Builder tree:

Attributes>Bolt Selection

Bolt Thread Contact

Use the Bolt Thread Contact node to define a simplified model for the contact between 
two mating threads. The boundary between the internal and external thread is 
assumed to have a cylindrical shape. This feature is available for 3D and 2D axial 
symmetry only. One Bolt Thread Contact node is required for each bolt.

The Bolt Thread Contact node is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

The Symmetry Detection section is not present in 2D axial symmetry, since 
the bolt in that case always is axially symmetric.

The Symmetry Detection section is not present in the Beam interface, since 
it is not possible to automatically determine the geometrical shape of the 
bolt.

See also Modeling Pretensioned Bolts in the Structural Mechanics 
Modeling chapter.

Modeling of Pretensioned Bolts: Application Library path 
Structural_Mechanics_Module/Tutorials/bolt_pretension_tutorial
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P A I R  S E L E C T I O N

From the Pair selection list, choose the contact pair that defines the thread connection 
for this bolt. The contact pair should be created so that the source boundary is the 
internal thread, and the destination boundary is the external (bolt) thread.

B O L T  G E O M E T R Y

Enter the Half thread angle, . The default angle is 30[deg], which is used in for 
example the ISO and UTS standards. For 2D axial symmetry, this is the only input 
required to describe the bolt geometry. For 3D, you need also to provide the following 
settings:

Enter the Lead, l. This is the axial distance a single thread travels after one full 
revolution of the bolt.

Select a Handedness — Right-handed or Left-Handed. Most bolts are right- handed.

Select a Bolt geometry — Automatic or User defined. If the mesh on the boundaries 
selected for the contact between internal and external thread give a good 
representation of a cylinder, the diameter and centerline of the bolt can be determined 
automatically. If this is not sufficient, you can instead enter the data manually.

• When using Automatic, the computed orientation of the beam axis, ea, is 
indeterminate with respect to its direction. If needed, you can control the direction 
by selecting the Direction adjustment check box. Then, enter a vector giving an 
Approximate orientation, ea,approx. The positive orientation of the bolt axis will be 
chosen so that .

• For User defined, enter the bolt diameter, dp. Then enter the Orientation of the bolt 
axis, ea, and a Point on axis, P.

Select a Contact orientation — Both, Up, or Down. In most cases, it is obvious that only 
one side of the thread will come into contact. It is then possible to decrease the size of 
the contact problem by considering only that direction. For a prestressed bolt, having 
the bolt axis orientation vector ea pointing toward the bolt head, it will usually be 
sufficient to check contact in the Up direction.

C O N T A C T

Enter a value or an expression for the Penalty factor, p. A smaller value will increase 
overclosure and sliding, but is in general more stable. The default value, 
(2*solid.btc1.Eequ)/solid.btc1.rd, is intended to supply a stiffness that gives a 
small elastic slip. This slip is related to the estimated bending stiffness of the threads.

ea ea,approx 0
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Enter a value for the Friction coefficient, .

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Pairs>Bolt Thread Contact

Ribbon
Physics tab with Solid Mechanics selected in the Model Builder tree:

Pairs>Bolt Thread Contact

Crack

Add a Crack node to indicate that certain boundaries represent a crack. A crack can 
either be infinitely thin, and represented by a single boundary, or being represented by 
disjoint surfaces in the geometry.

A crack can have any number of branches and corresponding crack fronts.

The Crack node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/). It is available for 3D, 2D, and 2D 
axisymmetry.

In order to specify contact conditions like this, one or more Contact Pair 
nodes must be defined in the Definitions branch of the component.

When a contact feature is present in your model, all studies are 
geometrically nonlinear. The Include geometric nonlinearity check box on 
the study step Settings window is selected and cannot be cleared.

See also Simplified Modeling of Bolt Threads in the Structural Mechanics 
Modeling chapter for a complete description of how to model bolt 
threads.
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C R A C K  F R O N T

This section is only shown if Crack surface is set to Symmetric in the Crack Definition 
section. In this case, it is not possible to deduce the number of crack fronts uniquely 
from geometric analysis, so you must explicitly select the crack front or crack fronts.

C R A C K  F A C E  1

This section is only shown if Crack surface is set to From geometry in the Crack 
Definition section. In this case, the main selection will contain both sides of the crack. 
In this section, select one of the crack faces, so that it is possible to discriminate 
between the two faces of the crack.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The coordinate system selection is only used when a user defined crack orientation is 
selected in the Crack Orientation section.

C R A C K  D E F I N I T I O N

In this section, you select how the crack is represented in the geometry.

Select a Crack surface — Slit, From geometry, or Symmetric.

• When the crack is represented as an internal boundary, select Slit. This will cause the 
displacements of the two sides of the boundary to be decoupled from each other so 
that a crack is formed.

For 3D components, select a boundary or set of edges representing the 
crack fronts.

For 2D and 2D axisymmetry, select points located at the crack fronts.
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• When the crack is physically represented in the model, so that the two crack faces 
are different boundaries, select From geometry.

• If only half of a symmetric structure is modeled, so that the crack is an external 
boundary, select Symmetric. In 2D axisymmetry, this is only meaningful for cracks 
that are perpendicular to the axis of rotation. There are two cases:

- The crack is infinitely thin and located in the symmetry plane. Other boundary 
conditions like Fixed Constraint or Symmetry will be overridden on the crack 
surface, so that the crack can be opened.

- One of the crack faces is represented by the geometry. The other crack face is then 
assumed to be a mirror copy on the other side of the symmetry plane.

C R A C K  O R I E N T A T I O N

The direction of the crack growth is important if you are going to compute a 
J-Integral.

Select a Crack orientation — From crack or User defined. In most cases the crack growth 
direction can be automatically deduced from the geometry of the crack. If this is not 
the case, select User defined and then enter a vector for the Crack growth direction. The 
vector is represented in the coordinate system selected in the Coordinate System 
Selection section.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>More>Crack

Ribbon
Physics tab with Solid Mechanics selected:

Boundaries>More>Crack

Crack Closure

Add a Crack Closure subnode under a Crack node to include contact conditions 
between crack faces. These includes contact in the normal direction of the crack faces, 
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and, optionally, friction in the tangential directions. Only a single Crack Closure 
subnode can be added per Crack node.

The Crack Closure node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

C O N T A C T

Enter an expression for the Penalty factor, pn. The default expression, 
(2*<phys>.Eequ)/h, estimates the penalty factor from the stiffness of the adjacent 
domains and the mesh element size. The constant can be modified to improve accuracy 
or stability of the model — a too high penalty factor can lead to ill-conditioned 
matrices.

Select a Friction model — None, Coulomb, or User defined. By selecting None, frictionless 
contact is considered.

When Coulomb is selected, the critical contact friction force is a function of the contact 
pressure. Enter values for:

• The Friction coefficient, 

• The Cohesion sliding resistance, Tcohe,

• The Maximum tangential traction, Tt,max.

When User defined is selected, enter an expression for the Critical friction force, Tt,crit, 
that may depend on any quantity in the model. This expression defines the limit 
between sticking and sliding friction. Note, that the implementation of the friction 
model is only correct if Tt,crit does not depend on the current friction force.

The Crack Closure subnode is only applicable when Crack surface in the 
parent a Crack node is set to Slit or Symmetry. If Crack surface is set to From 

geometry, contact conditions can be added by a Contact node.

Friction can, furthermore, only be considered if Crack surface is set to Slit.

See also:

• Contact Between Crack Faces in the Structural Mechanics Modeling 
Chapter.

• Contact Analysis Theory in the Structural Mechanics Theory Chapter,
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If either Coulomb or User defined, select Compute frictional dissipation to compute and 
store to the energy dissipated by friction.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Crack>Crack Closure

Ribbon
Physics tab with Crack node selected in the model tree:

Attributes>Crack Closure

Face Load (Crack)

Add a Face Load subnode under a Crack node to describe a load acting on a crack face. 
In some cases, a Boundary Load can be used to the same effect. If, however, a 
J-integral is to be computed, and it encloses a loaded part of the crack face, then the 
load must be described using the Face Load node.

The Face Load node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

L O A D

Enter the Crack face pressure, p. The pressure is applied to both faces of the crack.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Crack>Face Load

Ribbon
Physics tab with Crack node selected in the model tree:

See also J-Integral Theory in the Structural Mechanics Theory Chapter.

You can assign this load to a load group. See Load Cases in the Structural 
Mechanics Modeling chapter.
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Attributes>Face Load

J-Integral

Add a J-integral subnode under a Crack node in order to compute the J-integral along 
a certain integration path. When a J-integral has been computed, stress intensity factors 
will also be available.

The J-integral node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

J - I N T E G R A L

The J-Integral is computed along a circular path centered at the crack front.

Circular Integration Path
Enter the Radius of contour integral, r. The default value is an expression of the form 
solid.<crack_tag>.crackSize*0.5. The variable crackSize is estimated from the 
crack geometry. For common cases, in particular in 2D, this is exactly the length of the 
crack. For more complex cases, in particular for branched cracks, there is no 
well-defined crack length, and the value of the variable must be considered only as 
being of the right order of magnitude.

The integration path must not intersect any external boundaries or internal slits, such 
as other cracks. There should also not be any holes or applied loads inside the 
integration path. Integration paths with a very small radius compared to the crack 
length will in general give low accuracy, since they will pass through the singular stress 
field in the vicinity of the crack tip. It is good practice to evaluate the J-integral along 
several paths, to assess the accuracy.

For 2D components, the integration path for the J-integral can be 
described either by a sequence of boundaries, or as a circular path around 
the crack tip. Select Integration path — Circular or On edges.

If On edges is selected, a new section, Integration path is shown. In that 
section, select the boundaries that define the integration path. The 
boundaries much be selected so that they form a contiguous path from 
one side of the crack surface to the other. In case the crack is located on a 
symmetry plane, the path should go from that plane to the crack surface.

For the case Circular, see below.
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In 3D, the J-integral will vary along the crack front. It will be computed along several 
circular paths, centered at different locations along the crack front.

S T R E S S  I N T E N S I T Y  F A C T O R S

When computing stress intensity factors from the J-integral, the

I N T E G R A T I O N

In this section, you can adjust the accuracy of the numerical evaluation of the 
J-integral. The section is only shown when circular integration paths are used.

Integration on Contour
Select Number of integration points — Fixed number or Relative to path length.

When Fixed number is selected, enter the total number of points along the integration 
path, N.

When Relative to path length is selected, enter a relative number of points along the 
integration path, n. The total number of integration points is computed as

where r is the radius of the integration path, and Lcrack is the crack length (as 
represented by the variable solid.<crack_tag>.crackSize).

Integration on Surface
In 3D and 2D axisymmetry, the J-integral also has contributions from the surface 
enclosed by the integration contour.

Select Number of integration points — Fixed number or Relative to enclosed area.

When Fixed number is selected, enter the total number of integration points on the 
enclosed surface, NA.

When Relative to enclosed area is selected, enter a relative number of points on the 
enclosed surface, nA. The total number of integration points is computed as

where  is the radius of the integration path, and Lcrack is the crack length (as 
represented by the variable solid.<crack_tag>.crackSize).

N
r

Lcrack
--------------n=

NA
r

Lcrack
-------------- 
 

2
nA=

r
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S T R E S S  I N T E N S I T Y  F A C T O R S

In order to separate the stress intensity factors for the different crack modes, the 
displacements on the crack surfaces are analyzed. In order to get a good value, this 
analysis should be performed in a region where the theoretical solution for the fields 
around a crack tip is valid. Ideally, this is close to the crack tip. It is, however, not 
possible to get an accurate numerical evaluation very close to the crack tip, due to the 
singularity of the fields.

The default is that the region used for the evaluation starts at a distance of 20% of the 
crack length from the tip, and extends to half the crack length. You can modify these 
values by entering a Lower bound, b, and an Upper bound, c.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Crack>J-Integral

Ribbon
Physics tab with Crack node selected in the model tree:

Attributes>J-Integral

Reverse Crack Front

Use the Reverse Crack Front node to manually control the tangent direction of a crack 
front in 3D. This may be necessary, for example, if a crack front consists of several 
edges that have opposing tangent directions from the geometry. The main purpose of 
this node is to control the definition of what is positive and negative values of the stress 
intensity factor KII.

This node has no other settings than an edge selection. The selected edges will, from 
the crack analysis point of view, have a tangent direction that is reversed when 
compared by the tangent direction defined by the geometry.

See also J-Integral Theory in the Structural Mechanics Theory Chapter.

This node is only available in 3D.
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The Reverse Crack Front node is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Crack>Reverse Crack Front

Ribbon
Physics tab with Crack node selected in the model tree:

Attributes>Reverse Crack Front

Port

The Port boundary condition is used to excite and absorb elastic waves that enter or 
leave waveguide structures. A given port condition supports one specific propagating 
mode. To provide the full description, combine several port conditions on the same 
boundary, for example, one for longitudinal, one for torsional, and one for transverse 
modes. Make sure that all relevant propagating modes in the studied frequency range 
are included (all modes that have a cutoff frequency in the frequency range). By doing 
this, the combined port conditions provide a superior nonreflecting condition for 
waveguides to, for example, a perfectly matched layer (PML) configuration or the 
Low-Reflecting Boundary. The same port boundary condition feature should not be 
applied to several waveguide inlets and outlets. The port condition supports 
S-parameter (scattering parameter) calculation, but it can also be used as a source to 
just excite a system.

The Port node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

The Port boundary condition exists only for 3D models.

See the tutorial Mechanical Multiport System: Elastic Wave 
Propagation in a Small Aluminum Plate. Application Library path: 
Structural_Mechanics_Module/Elastic_Waves/mechanical_multiport_system
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On a given boundary, a combination of ports will define the displacement field u (sum 
of incident and outgoing waves) as

where the summation “i” is over all ports on the given boundary “bnd”, Sij is the 
scattering parameter, Ain is the amplitude of the incident field (at port “j”),  is a 
possible phase, and ui is the mode shape of the ith port. The mode shape ui is 
normalized to carry a unit power of 1 W. This definition means that the scattering 
parameter Sij defines the amplitude of mode i when a system is exited at port j (with 
mode j). This corresponds to a multi-mode expansion of the solution on the given 
port. The scattering parameters are automatically calculated when a model is set up 
with just one port exciting the system. To get the full scattering matrix, The Port 
Sweep Functionality can be used.

P O R T  P R O P E R T I E S

Enter a unique Port name. Only nonnegative integer numbers can be used as Port name 
as it is used to define the elements of the S-parameter matrix. The numeric port names 
are also required for the port sweep functionality. The port name is automatically 
incremented by one every time a port condition is added.

Select a Type of port: Numeric or User defined. Depending on the selection, different 
options appear in the Port Mode Settings section (see below).

P O R T  M O D E  S E T T I N G S

Depending on the option selected in the Type of port (see above):

• In the case of a Numeric port, a boundary mode problem is solved on the port face 
to compute the desired propagating mode. This option requires the use of a 
Boundary Mode Analysis step in the study. It should be placed before the Frequency 

Domain step. In the study, add one Boundary Mode Analysis step for each Numeric port 

u Ainei Sijui ij ui 2n n ui – + 
i bnd
=



Only one port should be excited at a time if the purpose is to compute 
S-parameters. The S-parameters are defined as solid.Smatrix11, 
solid.Smatrix21, and so on, and can be used in postprocessing.

In other cases, having more than one port exciting the system might be 
wanted, but the S-parameter variables cannot be correctly computed. 
When several ports are excited, the S-parameter output is turned off.
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and make sure to reference the proper Port name in the study step. When using the 
Numeric port, it is not possible to perform a frequency sweep in the Frequency 

Domain study step. Only one frequency can be used and it should correspond to the 
Mode analysis frequency entered in the Boundary Mode Analysis step(s). One option is 
to add a Parametric Sweep and define a parameter for the frequency used in both the 
steps. In this case, care should be taken when setting up the search criteria in the 
mode analysis.

• For User defined, enter user defined expressions for the Mode shape un and the Mode 

wave number kn. The mode shape will automatically be scaled to unit power before 
it is used in the port condition. Use the user defined option to enter a known 
analytical expression.

I N C I D E N T  M O D E  S E T T I N G S

Activate if the given port is excited by an incident wave of the given mode shape. For 
the first Port condition added in a model, the Incident wave excitation at this port is set 
to On. For subsequent conditions added the excitation is set to Off per default. If more 
than one port in a model is excited, the S-parameter calculation is not performed.

When the Incident wave excitation at this port is set to On, then select how to define 
the incident wave. Select the Define incident wave: Displacement amplitude or Power.

• For Displacement amplitude enter the amplitude Ain of the incident wave. This is in 
general defined as the maximum amplitude for a given mode shape.

• For Power enter the power Pin of the incident wave. This is in general defined as the 
RMS power of the incident wave.

• For both options enter the phase  of the incident wave. This phase contribution is 
multiplied with the amplitude defined by the above options. The Displacement 

amplitude input can be a complex number.

When the Numeric port option is used and the boundary mode analysis is 
run, the boundary conditions from the Solid Mechanics model are 
automatically inherited in the boundary problem. For this automatic 
procedure, there is only support for the Free, Fixed, Roller, Symmetry, 
Antisymmetry, and Spring Foundation conditions.


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Note that when the Activate port sweep option is selected at the physics level, the 
options in the Incident Mode Settings section are deactivated. This is because this option 
automatically sends in a mode of unit power, sweeping through one port at the time.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options.

T H E  P O R T  S W E E P  F U N C T I O N A L I T Y

The port sweep functionality is used to reconstruct the full scattering matrix Sij by 
automatically sweeping the port excitation through all the ports included in the model. 
When the port sweep is activated, the options in the Incident Mode Settings in the port 
conditions are deactivated and COMSOL controls which port that is excited with an 
incident mode.

The port sweep functionality is activated at the main physics interface level by selecting 
Activate port sweep in the Port Sweep Settings section. Enter the Sweep parameter 

name, the default is PortName. Create a parameter with the same name under Global 

Definitions>Parameters 1. This is the name of the parameter to be used in a parametric 
sweep, here it should represent the Port name integer values (defined when adding the 
port conditions). Add a parametric sweep study step and run the sweep over the 
PortName parameter with an integer number of values representing all the ports in the 
model. Once the model is solved the full scattering matrix can be evaluated using the 

All ports with incident wave excitation turned off have an arrow symbol, 
added in the Graphics window, that points outward. When incident wave 
excitation is turned on, the arrow symbol points inward.

If a waveguide is cut by one or several symmetry planes, care should be 
taken when setting up the port modes and when postprocessing.

When postprocessing, remember that absolute values like, for example, 
the outgoing power at port 1, solid.port1.P_out, needs to be 
multiplied with an appropriate factor. Multiply with 2 if one symmetry 
plane is used, and so on.
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defined global variables solid.Smatrix11, solid.Smatrix21, solid.Smatrix12, 
ans so on.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>More>Port

Ribbon
Physics tab with Solid Mechanics selected:

Boundaries>More>Port

Elastic Predeformation

The Elastic Predeformation node can be used for incremental solution updates using the 
deformed geometry functionality. This approach can significantly speed up 
computations is case of large elastic deformations.

The equations solved by the Solid Mechanics interface are formulated using the 
material frame. The concept of deformed geometry implies that the geometry of the 
structure on the material frame can differ from that originally drawn (using the 
geometry frame).

The Elastic Predeformation subnode is only available with some COMSOL products 
(see https://www.comsol.com/products/specifications/). It is available for 3D, 2D, 
and 2D axisymmetry.

E L A S T I C  P R E D E F O R M A T I O N

By default, the Predeformation gradient is set to From material frame, which means that 
the deformation gradient relating the geometry and material frames will be used. The 
predeformation gradient will enter into the definition of the elastic strains, which will 
create an initial stress state on the material frame corresponding to the total 
deformation starting from the original geometry configuration.

When the check box Store deformation history is checked (default) the displacement 
field computed during the current solution step (using the current material frame) will 
be stored in a special variable, u_pd, which can be used then on the next solution step, 

Use the Global Matrix Evaluation under Derived Values to evaluate the full 
scattering matrix solid.Smatrix.
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if any. When the check box Set up deformed geometry is selected (default) the material 
frame will differ from the geometry frame by a prescribed displacement u_pd 
computed at the previous solution step. The solution computed on each step 
represents an incremental step in the total deformation. The total solution can be set 
up using either a time-dependent or a stationary parametric study, for example, with 
the loading gradually increasing from one step to the other. Special postprocessing 
variables, u_tot_old and u_tot, are defined to store the total displacement before and 
after each step, respectively.

Alternatively, you can set the Predeformation gradient to User defined. Then, you can 
enter explicitly expressions referring to some previously computed solution, for 
example: withsol('sol1', solid.FdxX), and so on. The contribution will enter the 
elastic strain definitions, which will result into an initial stress state corresponding to 
the previously computed solution.

• Adding this feature will induce the geometric nonlinearity in the 
model; the corresponding check box on every study step node will be 
automatically checked and become inaccessible (grayed out).

• This feature takes inelastic strain contributions into account. It is thus 
possible to use it together with nonlinear material models like large 
deformation plasticity.

• The domain selection is set to all domains and locked, so that all 
domains selected by the corresponding Solid Mechanics interface are 
always selected. This is because the material frame handling requires 
consistency over the entire structure.

• When this feature is present, the displacement input in the Prescribed 
Displacement nodes (domain, boundary, edge, or point) will represent 
a constraint for the total displacement.

If the model was originally created in version 5.2 or earlier, you must 
enable the possibility to use deformed geometry manually. Go to the 
settings for the Component, and click the Permanently Define All Frames 
button. See also The Component Node.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>More>Elastic Predeformation (Domain)

Ribbon
Physics tab with Solid Mechanics selected:

Domains>More>Elastic Predeformation

Phase

You can add a Phase subnode to nodes that define a load in order to prescribe the phase 
angle in a frequency-domain analysis.

For modeling the frequency response, the physics interface splits the harmonic load 
into two parameters:

• The amplitude, F, which is specified in the node for the load.

• The phase ( ), which is specified in the Phase subnode.

Together these define a harmonic load, for which the amplitude and phase shift can 
vary with the excitation frequency, f:

S H E L L  P R O P E R T I E S

In the Structural Mechanics Theory chapter:

• Deformed Geometry

• Elastic Predeformation



Ffreq F f  2ft + cos=

This section is only present in the Layered Shell interface. See also The 
Shell Properties and Interface Selection Sections and the documentation 
for the corresponding parent nodes.
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P H A S E

Enter the components of Load phase in radians (for a pressure the load phase  is a 
scalar value). Add [deg] to a phase value to specify it using degrees.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Body Load>Phase

Solid Mechanics>Boundary Load>Phase

Solid Mechanics>Edge Load>Phase

Solid Mechanics>Point Load>Phase

Solid Mechanics>Ring Load>Phase

Solid Mechanics>Point Load (on Axis)>Phase

Solid Mechanics>Rigid Connector>Applied Force>Phase

Solid Mechanics>Rigid Connector>Applied Moment>Phase

Solid Mechanics>Rigid Material>Applied Force>Phase

Solid Mechanics>Rigid Material>Applied Moment>Phase

Layered Shell>Body Load>Phase

Layered Shell>Boundary Load>Phase

Layered Shell>Edge Load>Phase

Layered Shell>Line Load>Phase

Layered Shell>Point Load>Phase

Layered Shell>Rigid Connector>Applied Force>Phase

Layered Shell>Rigid Connector>Applied Moment>Phase

Layered Shell>Rigid Material>Applied Force>Phase

Layered Shell>Rigid Material>Applied Moment>Phase

Membrane>Body Load>Phase

Membrane>Face Load>Phase

Membrane>Edge Load>Phase

Truss>Edge Load>Phase

Truss>Point Load>Phase

Wire>Edge Load>Phase

Wire>Point Load>Phase

 

Typically, the load magnitude is a real scalar value. If the load specified in 
the parent feature contains a phase (using a complex-valued expression), 
the software adds the phase from the Phase node to the phase already 
included in the load.
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Membrane>Point Load>Phase

Multibody Dynamics>Body Load>Phase

Multibody Dynamics>Boundary Load>Phase

Multibody Dynamics>Edge Load>Phase

Multibody Dynamics>Point Load>Phase

Multibody Dynamics>Rigid Connector>Applied Force>Phase

Multibody Dynamics>Rigid Connector>Applied Moment>Phase

Multibody Dynamics>Rigid Material>Applied Force>Phase

Multibody Dynamics>Rigid Material>Applied Moment>Phase

Ribbon
Physics tab with Body Load, Boundary Load, Face Load, Edge Load, Point Load, Applied 

Force, or Applied Moment selected:

Attributes>Phase

Harmonic Perturbation

Use the Harmonic Perturbation subnode to specify the harmonic part of nonzero 
prescribed displacements, rotations, velocities, or accelerations. This node is used if the 
study step contains frequency response of a perturbation type.

The settings are the same as in the parent Prescribed Displacement, Prescribed 
Displacement, Interface, Prescribed Velocity, Prescribed Velocity, Interface, Prescribed 
Acceleration, Prescribed Acceleration, Interface, Prescribed Displacement/Rotation 
or Rigid Connector node. Only degrees of freedom selected as prescribed in the parent 
node can be assigned a value.

S H E L L  P R O P E R T I E S

 See Harmonic Perturbation in the Structural Mechanics Modeling 
chapter.

This section is only present in the Layered Shell interface. See also The 
Shell Properties and Interface Selection Sections and the documentation 
for the corresponding parent nodes.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Prescribed Displacement>Harmonic Perturbation

Solid Mechanics>Prescribed Velocity>Harmonic Perturbation

Solid Mechanics>Prescribed Acceleration>Harmonic Perturbation

Solid Mechanics>Rigid Material>Prescribed Displacement/Rotation>Harmonic Perturbation

Solid Mechanics>Rigid Connector>Harmonic Perturbation

Layered Shell>Prescribed Displacement>Harmonic Perturbation

Layered Shell>Prescribed Displacement, Interface>Harmonic Perturbation

Layered Shell>Prescribed Velocity>Harmonic Perturbation

Layered Shell>Prescribed Velocity, Interface>Harmonic Perturbation

Layered Shell>Prescribed Acceleration>Harmonic Perturbation

Layered Shell>Prescribed Acceleration, Interface>Harmonic Perturbation

Membrane>Prescribed Displacement>Harmonic Perturbation

Membrane>Prescribed Velocity>Harmonic Perturbation

Membrane>Prescribed Acceleration>Harmonic Perturbation

Truss>Prescribed Displacement>Harmonic Perturbation

Truss>Prescribed Velocity>Harmonic Perturbation

Truss>Prescribed Acceleration>Harmonic Perturbation

Wire>Prescribed Displacement>Harmonic Perturbation

Wire>Prescribed Velocity>Harmonic Perturbation

Wire>Prescribed Acceleration>Harmonic Perturbation

Multibody Dynamics>Prescribed Displacement>Harmonic Perturbation

Multibody Dynamics>Rigid Material>Prescribed Displacement/Rotation>Harmonic 

Perturbation

Multibody Dynamics>Rigid Connector>Harmonic Perturbation

Ribbon
Physics tab with Prescribed Displacement, Prescribed Velocity, Prescribed Acceleration, 
Prescribed Displacement/Rotation, or Rigid Connector node selected in the model tree:

Attributes>Harmonic Perturbation

Stress Linearization

Use the Stress Linearization node to define a line (stress classification line; SCL) along 
which a linearization of the stress state will be made. A number of result variables are 
created for each SCL. Add one Stress Linearization node for each SCL along which you 
want to compute linearized stresses.
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When a Stress Linearization node has been added or modified, you do not need to 
compute a new solution. It is sufficient to perform an Update Solution ( ) to make 
the variables for the new SCL available.

The Stress Linearization node is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

L I N E A R I Z A T I O N

Select what Type of linearization to use — Line or Distributed. For Line, the stress is 
linearized along a single predefined SCL, whereas for Distributed, the stress is 
linearized in a domain. The direction of the SCL is in the distributed case given by the 
normal of the selected boundaries from which it originates. In principle, an infinite 
number of SCLs are created in the domain.

When Line is selected, the SCL can either be defined by a set of edges or by two points. 
Control this by setting Defined by to either Edge or Two points.

If the SCL is defined by Edge, the Linearization Line, Edge selection can consist of several 
edges, but they are assumed to form a straight line from one free boundary to another.

If the SCL is defined by Two points, you can either choose to use geometrical points 
or arbitrary coordinates within the solid to define the endpoints of the SCL. An SCL 
is created by connecting the two points with a straight line. To control how to specify 
the endpoints, select either Point or Coordinates in the Starting point defined by and 
Endpoint defined by lists.

• For Points, select a point in Linearization Line, Starting Point or Linearization Line, 

Endpoint.

• For Coordinates, enter the coordinate vector of the point.

When Distributed is chosen, select entities in Boundary Selection from which the 
distributed SCLs start. The SCLs are then created along the normal to the selected 
boundaries, and extends through the entities selected in Domain Selection.

For 2D and 2D Axisymmetric geometries, no more inputs are need to define the SCL. 
For 3D, you also need to specify the orientation of the local coordinate system in which 
the linearized stresses are represented.

S E C O N D  A X I S  O R I E N T A T I O N

This section is present only in 3D. Here you specify the orientation of the local 
coordinate system in which the components of the linearized stress tensor are 
represented. The first direction is always along the SCL, and you indicate the second 
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direction. The third direction is automatically formed by being orthogonal to the SCL 
and the second direction.

For the Line linearization type, select Reference point or Orientation vector. When a 
reference point is used, the second local direction will be in the plane formed by the 
SCL and the selected point. When an orientation vector is used, the second local 
direction will be directed in the plane formed by the SCL and the selected orientation. 
The orientation is always adjusted so that it is orthogonal to the SCL.

• For Reference point, select Defined by — Point or Coordinates. When Point is used, 
select the reference point in the Second Axis Orientation Reference Point section. 
When Coordinates is used, enter the coordinates for the reference point in the 
Reference point defining local 2 direction table.

• For Orientation vector select Defined by — Edge or Coordinates. When Edge is used, 
select an edge in the geometry as orientation vector in the Second Axis Orientation 

Reference Vector section. When Coordinates is used, enter the orientation vector 
manually in the Orientation vector defining local 2 direction table.

For the Distributed linearization type, select a boundary system from the Defined by list. 
The second direction of the SCL is always taken as the first tangent vector of the 
selected boundary system.

P O S T P R O C E S S I N G

This section is only present for the Distributed linearization type. Enter the coordinates 
for the starting point of a SCL; it must be part of the selected boundaries. The specified 
point is used to create a Linearization Line dataset to postprocess a single SCL that 
extends from the point through the selected domains.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Variables>Stress Linearization

See also

• Stress Linearization in the Structural Mechanics Modeling Chapter.

• Stress Linearization in the Structural Mechanics Theory Chapter.

• Updating a Solution in the COMSOL Multiphysics Reference Manual
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Ribbon
Physics tab with Solid Mechanics selected in the Model Builder tree:

Global>Variables>Stress Linearization

Section Forces

Add a Section Forces node to compute the integrated section forces for a cross section 
in a solid. The cross section can consist of more than one boundary, but all the selected 
boundaries must be planar and located in the same plane. The section forces are 
computed in a local coordinate system. The details are described under Coordinate 
System Selection below.

The local section forces are denoted as follows:

• N — Axial force

• T1 — Shear force along first local axis

• T2 — Shear force along second local axis

• Mt — Twisting moment

• M1 — Bending moment around first local axis

• M2 — Bending moment around second local axis

C U T  P L A N E  S E L E C T I O N

Select the boundaries that define the cross section over which the section forces are to 
be computed. As a default, it is assumed that the cross section is contiguous. This 
assumption can be relaxed by selecting the Allow disconnected boundaries check box.

• The section forces will be shown in an evaluation group, named Section 

Forces. Optionally, you can also generate two plot groups showing the 
section forces as arrows.

• When a Section Forces node has been added or modified, you do not 
need to compute a new solution. It is sufficient to perform an Update 

Solution ( ) to make the variables for the new section forces available.

• Note that when you add a Section Forces node after solving a study, 
then neither the evaluation group nor the plots will be generated.
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a coordinate system that defines the orientations of the section forces. Only 
boundary systems with constant axis directions can be selected. The orientation of the 
local axes are defined as follows:

• The axial force and twisting moment are positive in the direction of the boundary 
system normal. For an external boundary, this is by default the outward normal. For 
an internal boundary, you can use the Reverse Normal subnode under a Boundary 

System to control the orientation.

• If the Symmetry plane check box is cleared, the first local axis defining the section 
forces is the same the first in-plane direction of the selected coordinate system.

• If the Symmetry plane check box is selected, only the normal orientation of the 
boundary system is used. The first local axis is taken as the inward normal from the 
symmetry plane into the structure.

• The second in-plane direction is determined by the cross product .

S Y M M E T R Y  P L A N E  S E L E C T I O N

This section is only visible if the Symmetry plane check box is selected. In that case, 
select one boundary in the symmetry plane, in order to identify its location and 
orientation. The symmetry plane should be orthogonal to the cut plane.

C U T  P L A N E

Select the Allow disconnected boundaries check box for the case that the cross section is 
defined by boundaries that are not all adjacent to each other. As a default, this situation 
will generate a warning message, and no results are computed.

Select the Symmetry plane check box if the section forces are to be computed for a cross 
section for which only one half is modeled due to symmetry. When selected, choose a 
Symmetry type — Symmetry or Antisymmetry, matching the type of symmetry 
conditions being used. Also, you need to select a boundary in the symmetry plane in 
the Symmetry Plane Selection section.

Using a symmetry plane has the following effects:

• The orientation of the section forces are controlled by the orientation of the 
symmetry plane, as described under Coordinate System Selection.

• The center of gravity of the section is assumed to be located in the symmetry plane.

e2 n e1=
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• Section forces will be doubled, so that the value for the complete section is obtained.

• Some of the section forces are set to zero, is dictated by the type of symmetry.

R E S U L T S

Select the Add default plots check box in order to get default plots showing the 
computed section forces.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Variables>Section Forces

Ribbon
Physics tab with Solid Mechanics selected in the Model Builder tree:

Global>Variables>Section Forces

TABLE 4-15:  EFFECT OF SYMMETRY SETTINGS ON SECTION FORCES

TYPE N T1 T2 MT M1 M2

Symmetry Double 0 Double 0 Double 0

Antisymmetry 0 Double 0 Double 0 Double

The forces and moments are shown both as arrows, and with their 
numerical values. The convention for the force arrows is:

• Red: Axial force N

• Green: Shear force T1

• Blue: Shear force T2

The moment arrows have a double head, and use the following colors:

• Red: Twisting moment Mt

• Green: Bending moment M1

• Blue: Bending M2

If the annotation box with the numerical values obscures the arrows, you 
can just disable the Annotation node in the corresponding plot group.

Updating a Solution in the COMSOL Multiphysics Reference Manual.
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Test Material

Under large strains, several material models have regions where the material is 
unstable. These instabilities might be triggered by a uniaxial deformation limit, or by 
a combination of multiaxial deformations. These instabilities indicate that the material 
is used outside the validity range where the material parameters were obtained. 
Unstable materials generate convergence problems and unphysical solutions, and 
therefore it is beneficial to test a given material model before running big models.

Some options described below are only available with certain COMSOL products (see 
https://www.comsol.com/products/specifications/).

D O M A I N  S E L E C T I O N

You can only select one domain, so that one material model can be tested at the time. 
If you want to test different material models, you can sequentially change the domain 
selection, or add several Test Material nodes with different selections.

M A T E R I A L  T E S T S

Select the Study setup — Stationary or Time dependent, and then select the Test setup 
— Monotonic, Cyclic, or User defined. 

For the Time dependent test, enter the Test time tf. The default is 1 second.

For either the Stationary or the Time dependent test, enter the Number of measurement 

points in the study Np. The default is 50 points.

For the Monotonic test, the number of measurement points sets up the resolution for 
the given load or deformation interval.

For the Cyclic test, enter the Number of cycles Nc. In a Stationary test, each cycle has 
Np/Nc measurement points per cycle. In a Time dependent test, each cycle has a period 
of tc  tf/Nc, and a time step given by t  tf/Np.

For the User defined test, select the Test control — Stretch driven or Force driven. 
Depending on the choice, you can specify how the prescribed displacement or load 
varies as a function of time or parameter range. Enter a Parameter name (default is 
para) to be used in the user-defined inputs for the stretch functions or force functions. 
A parameter with the given name will be created in the Parameters node when clicking 
Set up Tests ( ) as shown further below.
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Tests
Select one or more of the available check boxes to test the material under different load 
conditions:

• Uniaxial test — Enter the stretch range for this default test. The minimum stretch 
min gives the compressive limit, and the maximum stretch max gives the tensile 
limit. A uniaxial compression test is achieved by setting max  1, and a uniaxial 
extension test by setting min  1. The inputs should be such min  max.

• Biaxial test — Enter the minimum stretch min, the maximum stretch max, and the 
biaxiality ratio  for the test.

• Shear test — Enter the maximum shear angle max for the test.

• Isotropic test — Enter the minimum stretch min and the maximum stretch max 
for the test.

• Oedometer test — Enter the axial stretch min for the test.

• Triaxial test — Enter the in situ stress ins and the axial stretch min for the test.

Load Group, Material and Study Generation
The material parameters of a given material model are tested by creating dedicated tests 
on a single element. In order to do this, a number of fundamental load cases are 
analyzed. These steps are described below.

Isotropic Compression with Modified Cam-Clay Material Model: 
Application Library path Geomechanics_Module/Verification_Examples/

isotropic_compression.

Triaxial and Oedometer Test with Modified Cam-Clay Material 
Model: Application Library path Geomechanics_Module/

Verification_Examples/isotropic_compression_mscc.
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On the Material Tests section toolbar, there is an icon Auto Test Setup ( ). Select:

• Set Up Tests ( ). This option generates a new 3D Component, which contains a 
single element to test the material model defined under Domain Selection. When you 
select it, the following changes will be made to the model:

- A new 3D Component is created.

- A new Solid Mechanics interface is added to this component.

- A number of boundary conditions will be available to the new Solid Mechanics 
interface. The boundary conditions correspond to the selected tests.

- A Mesh node containing a single element.

- A new Study node will be added based on the Study setup selection. A stationary 
or time dependent study will contain the Number of measurement points for either 
a Monotonic or a Cyclic test. This study runs automatically after selecting Set Up 

Tests.

- A Stop Condition node will be added under the stationary or time dependent 
study. This condition stops the loading when the element is fully collapsed. See 
Stop Condition in the COMSOL Multiphysics Reference Manual.

- A new Material Tests node will be added to the Results node. Different plots will 
show the Tests and the results from the Study node.

• Clear Tests ( ). This option deletes the 3D Component, the Solid Mechanics 
interface, and the Mesh, Study, and Results nodes added after selecting Set Up Tests.

Local System Results

Add a Local System Results node to create variables for common structural mechanics 
quantities having vector and tensor components oriented in a local coordinate system.

When a Local System Results node has been added, you do not need to compute a new 
solution. It is sufficient to perform an Update Solution ( ) to make the new variables 
available for postprocessing.
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a coordinate system defined under Definitions from the list. Only coordinate 
systems with orthonormal axis directions will be shown.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Variables>Local System Results

Multibody Dynamics>Variables>Local System Results

Solid Rotor>Variables>Local System Results

Ribbon
Physics tab with Solid Mechanics, Multibody Dynamics, or Solid Rotor selected in the 
Model Builder tree:

Global>Variables>Local System Results

TABLE 4-16:  QUANTITIES TRANSFORMED BY LOCAL SYSTEM RESULTS

QUANTITY VARIABLE NAME EXAMPLE

Displacement <interface>.<tag>.<dofname>i solid.lsr1.u1

Velocity <interface>.<tag>.<dofname>_ti solid.lsr1.u_t1

Acceleration <interface>.<tag>.<dofname>_tti solid.lsr1.u_tt1

Cauchy Stress <interface>.<tag>.slij solid.lsr1.sl12

Total strain 
(Green-Lagrange)

<interface>.<tag>.elij solid.lsr1.el12

Elastic strain

(Green-Lagrange)

<interface>.<tag>.eelij solid.lsr1.el12

Elasticity matrix <interface>.<tag>.Dij solid.lsr1.Dl12

• If you have selected a local coordinate system in a material model, stress 
and strain tensors in the corresponding local directions are always 
available.

• For more general transformations, and to transform other quantities 
than those supplied by Local System Results, you can use Vector 
Transform or Matrix Transform.

Updating a Solution in the COMSOL Multiphysics Reference Manual.
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Average Rotation

Add an Average Rotation node to compute the average rotation and displacement for a 
set of points. The points are assumed to move together as a rigid body in a least-squares 
sense. Vectors for average rotation and displacement, as well as their velocities and 
accelerations, are created as result variables. Add one Average Rotation node for each 
set of points that you want to evaluate.

The point selection requires at least two points in 2D and three points in 3D.

C E N T E R  O F  R O T A T I O N

Select a method for determining the Center of Rotation — Automatic, Centroid of 

selected entities, or User defined.

• If Automatic is selected, the center of rotation is determined as the average position 
of the selected points.

• For Centroid of selected entities, select an Entity level — Domain, Boundary, Edge, or 
Point. The available choices depend on physics interface and geometrical dimension. 
The center of rotation is located at the centroid of the selected entities, which do 
not need to be related to the points used for computing the average rotation. As a 
special case, you can select a single point, and thus use that point as center of 
rotation.

• When User defined is selected, enter the location of the center of rotation manually.

R O T A T I O N  M O D E L

Select a Rotation Model — Small rotations or Finite rotations. With Small rotations, the 
computation of displacements caused by rotations is linearized using a cross product. 
If large rotations are expected, the Finite rotation formulation is more accurate. In this 
case, the rotation is described by a nonlinear rotation matrix.

F O R M U L A T I O N

Select a Formulation — Symmetric segregated or Unsymmetric coupled. This affects how 
the least-squares equations for computing the average rotations are formulated. Using 
an appropriate setting here, and a corresponding setup of the solver strategy can 

Once chosen, a default Center of Rotation: Domain, Center of Rotation: 
Boundary, Center of Rotation: Edge, or Center of Rotation: Point 
subnode is automatically added.
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strongly affect the computational cost. The cost of solving for the average rotation 
variables as such is very small, but it can affect the structure of the system of equations.

With the Unsymmetric coupled option, you do not have to care about solver setup. 
However, the majority of structural mechanics problems produce a symmetric stiffness 
matrix, and that symmetry is now broken by adding the equations for average rotation. 
This will lead to a significant (about a factor 2) penalty on solution time and memory 
usage.

If the variables created by this feature are used in other equations, you should also 
typically use the Unsymmetric coupled option.

In most cases, the average rotations and displacements are however used only during 
result presentation. This means that the most efficient solution procedure is to first 
compute the structural mechanics displacements, and subsequently solve the least 
squares problem for the average rotations. If this is the case, using the Symmetric 

segregated approach is usually the best choice. You must, however, set up the solver 
sequence in a way such that you can benefit from this property. There are several 
possible strategies, for example:

• Use two different study steps. In the first step, do not solve for the average rotation 
and displacement variables. This can be done by disabling the Average Rotation node 
in the study settings. In the second study step, solve only for those variables by 
disabling the other dependent variables under the Dependent Variables node.

• A similar approach is to use a separate study, rather than a study step, for computing 
the average rotation. The main difference is that you manually have to connect the 
two studies using the Values of Dependent Variables section of the second study.

• Use a segregated solver. In this case, solve for the average rotation and displacement 
variables only in the last segregated step. Note that in the default case, always at least 
two iterations will be performed in a segregated solver. This is typically not what you 
want. Set Termination technique to Iterations in the Segregated node, and terminate 
after one iteration. Then, if required, set up the Segregated Step in which the 
structural mechanics problem is solved so that proper nonlinear iterations are 
performed until convergence.

See also Average Rotation in the Structural Mechanics Theory Chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Variables>Average Rotation

Membrane>Variables>Average Rotation

Truss>Variables>Average Rotation

Wire>Variables>Average Rotation

Multibody Dynamics>Variables>Average Rotation

Solid Rotor>Variables>Average Rotation

Ribbon
Physics tab with an applicable physics interface selected in the Model Builder tree:

Global>Variables>Average Rotation

Wave Speeds

When you add a Wave Speeds node, a number of postprocessing variables containing 
information about wave speeds in the material are created. This node does not 
influence the solution.

When a Wave Speeds node has been added, you do not need to compute a new 
solution. It is sufficient to perform an Update Solution ( ) to make the new variables 
available for result presentation.

The Wave Speeds node is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/). It is available for 3D, 2D, and 2D 
axisymmetry.

W A V E  S P E E D S

Select a Wave propagation direction — Coordinate system axes or User Defined. This is 
the propagation direction with respect to which the wave speeds will be computed.

When is Coordinate system axes used, the wave propagation direction is along the first 
axis of the selected coordinate system.

When User Defined is selected, enter also the Direction vector, n. The vector, which is 
interpreted in the selected coordinate system, gives the wave propagation direction.
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Select Compute group velocity in order to create variables also for the group velocities. 
The default is to only compute phase velocities.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Linear Elastic Material>Variables>Wave Speeds

Solid Mechanics>Piezoelectric Material>Variables>Wave Speeds

Ribbon
Physics tab with Linear Elastic Material or Piezoelectric Material selected in the Model 
Builder tree:

Attributes>Wave Speeds

Important Variables in the Solid Mechanics Interface

In each node in the physics interface, a number of variables are defined. In Table 4-17, 
you can find a list of variables that you as a user may want to use when, for example, 
creating your own variables and expressions. This list is far from exhaustive but 
contains some of the most commonly used variables. To see all variables defined by a 
certain node in the Model Builder tree, enable Equation View, and examine the 
contents in the Equation View node under each physics node in the Model Builder tree.

The scopes of the variables in the table serve as examples only and assume the default 
first instance of a certain feature in the Model Builder tree. The actual scope will 
depend on the tag of a certain node in the model tree.

In the case of vectors and tensors, only a single component is shown. The actual indices 
can depend on the dimensionality of the problem and names of coordinate system axis 
directions.

See also

• Wave Speed Computation for the theory for a linear elastic material.

• Wave Propagation in Piezoelectric Media for the theory for a 
piezoelectric material.

• Updating a Solution in the COMSOL Multiphysics Reference 
Manual.
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Variables created in contact analysis are summarized in Dependent Variables in Contact 
Analysis and Important Contact Variables

In the COMSOL Multiphysics Reference Manual:

• For more information about the Equation View node, see Equation 
View.

• For more information about variable scopes, see Variable Naming 
Convention and Namespace.

• For more information about tags in the model tree, see Displaying 
Node Names, Tags, and Types in the Model Builder.

TABLE 4-17:  IMPORTANT VARIABLES IN THE SOLID MECHANICS INTERFACE

VARIABLE DESCRIPTION DEFINED IN COMMENTS

solid.disp Total displacement All materials1

solid.vel Velocity magnitude All materials1

solid.u_tX Velocity, X 
component

All materials1

solid.acc Acceleration 
magnitude

All materials1

solid.u_ttX Acceleration, X 
component

All materials1

solid.eXX Strain tensor, XX 
component

All materials1 Total (Green–
Lagrange) strain in 
global directions. 
See also 
Deformation 
Measures.

solid.el11 Strain tensor, local 
coordinate system, 11 
component

All materials1 Total strain in the 
local directions.

solid.eel11 Elastic strain tensor, 
local coordinate 
system, 11 
component

All materials1

solid.eeldev11 Deviatoric elastic 
strain tensor, local 
coordinate system, 11 
component

All materials1
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solid.eiel11 Inelastic strain tensor, 
local coordinate 
system, 11 
component

All materials1 See also Inelastic 
Strain 
Contributions.

solid.FdxX Deformation gradient, 
xX component

All materials1 See also 
Deformation 
Measures.

solid.Fdlx1 Deformation gradient, 
local, x1 component

All materials1

solid.J Volume ratio All materials1 Total relative 
volume change.

solid.Cel11 Elastic Cauchy–Green 
tensor, local 
coordinate system, 11 
component

All materials1

solid.Jel Elastic volume ratio All materials1 Elastic relative 
volume change.

solid.Ldxy Rate of strain tensor, 
xy component

All materials1 See also Strain 
Rate and Spin.

solid.Lwxy Spin tensor, xy 
component

All materials1 See also Strain 
Rate and Spin.

solid.SXX Second Piola–
Kirchhoff stress, XX 
component

All materials1 See also Defining 
Stress.

solid.Sl11 Second Piola–
Kirchhoff stress, local 
coordinate system, 11 
component

All materials1

solid.SdevX Deviatoric second 
Piola–Kirchhoff stress, 
X component

All material1 See also 
Invariants of the 
Stress Tensor.

solid.PxX First Piola–Kirchhoff 
stress, xX component

All materials1 See also Defining 
Stress.

solid.sxy Stress tensor, xy 
component

All materials1 Cauchy stress, 
See also Defining 
Stress.

TABLE 4-17:  IMPORTANT VARIABLES IN THE SOLID MECHANICS INTERFACE

VARIABLE DESCRIPTION DEFINED IN COMMENTS
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1 - All materials: Linear Elastic Material, Nonlinear Elastic Material, Hyperelastic Material, 
Piezoelectric Material, Piezomagnetic Material, Cam-Clay Material.

solid.sdevx Deviatoric stress 
tensor, x component

All materials1 Deviatoric 
Cauchy stress, 
See also 
Invariants of the 
Stress Tensor.

solid.mises von Mises stress All materials1 See also 
Invariants of the 
Stress Tensor.

solid.tresca Tresca stress All materials1 See also 
Invariants of the 
Stress Tensor.

solid.I1s First principal 
invariant of stress

All materials1 See also 
Invariants of the 
Stress Tensor.

solid.I2s Second principal 
invariant of stress

All materials1 See also 
Invariants of the 
Stress Tensor.

solid.I3s Third principal 
invariant of stress

All materials1 See also 
Invariants of the 
Stress Tensor.

solid.II2s Second invariant of 
stress deviator

All materials1 See also 
Invariants of the 
Stress Tensor.

solid.II3s Third invariant of 
stress deviator

All materials1 See also 
Invariants of the 
Stress Tensor.

solid.RFx Reaction force, x 
component

All materials1

solid.RMx Reaction moment, y 
component

All materials1

solid.Tax Traction (force/area), 
x component

All materials1

TABLE 4-17:  IMPORTANT VARIABLES IN THE SOLID MECHANICS INTERFACE

VARIABLE DESCRIPTION DEFINED IN COMMENTS
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S h e l l  a n d  P l a t e
This chapter describes the Shell and Plate interfaces, which are found under the 
Structural Mechanics branch ( ) when adding a physics interface.

In this chapter:

• Modeling with Plates and Shells

• Theory for the Shell and Plate Interfaces

• The Shell and Plate Interfaces
 1193
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Mode l i n g  w i t h  P l a t e s  and S h e l l s

In this section:

• Introduction

• Dependent Variables

• Layered and Nonlayered Shells

• Working with Section Stiffness

Introduction

Shells and plates are structures which are significantly thinner in one direction than in 
the other two directions. The mathematical description can then be simplified by using 
the following assumptions:

• The deformation field is described by the displacements of the midsurface plus the 
rotation of the midsurface normal.

• The in-plane total strains vary linearly through the thickness.

• The stress in the transverse direction is negligible.

These assumptions make it possible to reduce the number of degrees of freedom 
significantly from what would be needed for a corresponding 3D solid model. In 
addition, there are advantages in terms of numerical conditioning and meshing.

In shell theory, all quantities refer to the midsurface. In the Shell interface, you can 
however use any boundary that is parallel to the midsurface for modeling. If the 
reference surface where the mesh is located is not the midsurface, you can use an offset 
distance to describe the true location. If you have a full 3D geometry, there is thus no 
need to create the midsurface. You can place the mesh on either the top or bottom 
surface of the actual geometry.

Plates are similar to shells but act in a single plane and usually with only out-of-plane 
loads. The plate and shell elements in COMSOL Multiphysics are based on the same 
formulation. The Plate interface for 2D models is a specialization of the Shell interface. 
In the following, the text fully describes the Shell interface, and the Plate interface is 
mentioned only where there are nontrivial differences.

A Shell interface can be active on:

• Free surfaces embedded in 3D.
R  5 :  S H E L L  A N D  P L A T E



• The boundary of a solid 3D object. In this case, it can be used to model a 
reinforcement on the surface of a 3D solid.

• Free boundaries in 2D axisymmetry.

• The boundary of a solid object modeled in 2D axisymmetry. In this case, it can be 
used to model a reinforcement on the surface of a 3D solid.

A Plate interface can only be active on domains in 2D.

Dependent Variables

The element used for the shell interface is of Mindlin-Reissner type, which means that 
transverse shear deformation is accounted for. It can thus also be used for rather thick 
shells. In 3D and for plates, an MITC (mixed interpolation of tensorial components) 
formulation is used. A general description of this element family is given in Ref. 1.
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The dependent variables in 3D are the displacements u, v, and w in the global x, y, and 
z directions, and the displacements of the shell normals ax, ay, and az in the global x, 
y, and z directions.

Figure 5-1: The degrees of freedom in the shell interface. N is the normal vector in the 
original configuration and n is the normal in the deformed state.

The degrees of freedom represent the displacements on the reference surface. If an 
offset property is used, the reference surface differs from the physical shell midsurface. 
The displacement vector on the midsurface, u, can be expressed as

where uR is the displacement on the reference surface (the displacement degrees of 
freedom) and 0 is the offset. The rotational displacement a is the same on both 
midsurface and reference surface.

u uR 0a+=

In axisymmetry, there are four degrees of freedom, since u and a only has 
components in the RZ-plane.
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For input and output, the Shell interface to a large extent replaces the displacements 
of the shell normals by the more customary rotations x, y, and z about the global 
axes. For a geometrically linear analysis, the relation between normal displacement and 
rotation vector is simple: a    n where n is the unit normal of the shell.

For a standard plate analysis, only three degrees of freedom are needed: the 
out-of-plane displacement w and the displacements of the shell normals ax and ay. It 
is also possible to activate all six degrees of freedom, so that any type of analysis of a 
shell initially positioned in the xy-plane can be performed using the Plate interface. 
Using six degrees of freedom is the default, but three degrees of freedom can be 
selected instead for efficiency.

For plates, the rotations x, y, and (possibly) z are used to a large extent.

Layered and Nonlayered Shells

The Shell interface has two fundamental types of material models. The first is 
represented by Linear Elastic Material, Rigid Material, and Section Stiffness. The other 
type of material models consists of Layered Linear Elastic Material and Layered 
Hyperelastic Material. In either case, the dependent variables are the same, and exist 
only on the reference surface. The fundamental difference is that in the first group, the 
material properties are assumed to be constant through the thickness, so that stiffness 
and mass matrices can be computed by an analytical integration in the thickness 
direction.

In the Layered Linear Elastic Material and Layered Hyperelastic Material models, there is 
a numerical integration in the thickness direction. It is also possible to store states, such 
as inelastic strains, at different through-thickness locations. Thus, the Layered Linear 

Elastic Material forms the basis for all nonlinear material models even if the shell is not 

• When six degrees of freedoms are used in the Plate interface, there 
must be enough constraints to suppress any in-plane rigid body 
motions.

• In the Shell interface, the coordinates are usually denoted with 
lowercase letters (x, y, z). If a Solid Mechanics or Membrane interface 
is present in the same model, then it becomes necessary to make a 
difference between the material frame and the spatial frame (Material 
and Spatial Coordinates). In this case, the coordinates in the Shell 
interface changes to (X, Y, Z).
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layered as such. Use this material model if you want to write your own expressions as 
function of through-thickness location.

When the Nonlinear Structural Materials Module is available, the Layered Linear Elastic 

Material can be used to model plasticity, creep and other nonlinear materials; and when 
the Composite Materials Module is available it can be used to model multilayered 
shells.

The accuracy of the results in a layered material model depends on the resolution in 
the thickness direction. For each layer, you have the option to set the resolution. In a 
layered material, this is the Mesh elements property in the layer definitions. When 
working with a single layer material, then it is the Mesh elements property in the Shell 
property group.

As this setting indicates, there is a virtual mesh in the transverse direction (the extra 
dimension). When there is a significant variation in the thickness direction, as is the 
case for plastic strains in state of bending, you need a good enough resolution.

The virtual mesh depends on the in-plane discretization, and so does the number of 
integration points in the thickness direction. In Table 5-1, the number of integration 
points that are used in the thickness direction are summarized.

The Layered Linear Elastic Material is only available for the Shell interface, 
not for the Plate interface.

TABLE 5-1:  NUMBER OF INTEGRATION POINTS IN THICKNESS DIRECTION

DISCRETIZATI
ON

MESH 
ELEMENTS =1

MESH 
ELEMENTS = 2

MESH 
ELEMENTS = 3

MESH 
ELEMENTS = 4

Linear 2 4 6 8

Quadratic 3 6 9 12

For an example showing how to model an elastoplastic shell, see Twisting 
and Bending of a Metal Frame: Application Library path 
Nonlinear_Structural_Materials_Module/Plasticity/

frame_with_cutout_plasticity.
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Working with Section Stiffness

In some cases, shell models are used as a homogenized approximation of a thin 
inhomogeneous structure. Examples of this are perforated sheets and corrugated 
sheets, but also laminates. For such cases, a single material model together with a 
thickness does not contain enough information to set up the model.

The Section Stiffness material model provides an option to describe the shell properties 
directly in terms of quantities such as membrane stiffness, bending stiffness, and so on.

In order to use the section stiffness approach, you must obtain all terms in the stiffness 
matrix. In the case of dynamic analysis, also inertial matrices are needed. For some 
common cases, like perforation and corrugation, expressions for these quantities may 
be found in the literature. In general, however, you have to set up a finite element 
model of a representative part of the structure, and compute the homogenized data 
based on the results from various load cases.

Given only the homogenized stiffness and computed deformations, there is not 
enough information to compute stresses. The stress state will depend on the local 
geometry. In the Section Stiffness node, you have a possibility to define expressions for 
the relation between section forces and stresses. Such expressions must then be based 
on your knowledge of the peak stresses in the original, not homogenized structure. As 
an example, for a perforated structure, the stress concentrations around the holes 
should be taken into account.

Loads

Loads can be applied at an arbitrary location in the through-thickness direction. 
Placing loads on the correct side of the shell is particularly important in two cases:

• When the loads act in the plane of the shell, since a tangential traction on the top or 
bottom surface also creates a moment around the midsurface.

• When the shell is thick and curved, since the loaded area will then differ significantly 
between the two sides.

Actually, the Layered Linear Elastic Material is a special case of such a 
homogenized model, where the homogenization is performed in the 
thickness direction. The ABD matrices computed as side effect by this 
material model provides exactly the same form of data that is used as input 
in the Section Stiffness node.
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By using the settings in the Through-Thickness Location section present in various load 
features, you can take these effects into account.
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Th eo r y  f o r  t h e  S h e l l  a nd P l a t e  
I n t e r f a c e s

The theory for the Shell and Plate interfaces is discussed in this section:

• General Theory for the Shell and Plate Interfaces

• Theory for FSDT Laminated Shell

• Theory for Hyperelastic Shells

• Results Evaluation in a Laminate

• Theory for Section Stiffness

• References for the Shell Interface

General Theory for the Shell and Plate Interfaces

Several topics are discussed in this section:

G E O M E T R Y  A N D  D E F O R M A T I O N

Let r be the undeformed shell midsurface position, i be element local (possibly 
nonorthogonal) coordinates with origin in the shell midsurface, and n be the normal 
to the undeformed midsurface. The thickness of the shell is d, which can vary over the 
element. The local coordinates 1 and 2 follow the midsurface, and 3 is the 
coordinate in the normal direction. The normal coordinate has a value of d2 on the 
bottom side of the element, and d2 on the top side.

• Geometry and Deformation

• Strains

• Offset

• Rotation Representation

• The MITC Shell Formulation

• Initial Values and Prescribed Values

• Symmetry and Antisymmetry 
Boundary Conditions

• External Loads

• Stress and Strain Calculations

• Local Coordinate Systems

• Connection Between Shells and 
Solids

• Connection Between Shells and 
Beams
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The position of the deformed midsurface is r  u, and the normal after deformation is 
n  a. To keep the normal a unit vector requires that

 (5-1)

In a geometrically linear analysis Equation 5-1 is replaced by the simpler linearized 
form

since the formulation in that case assumes that

The vectors r, u, n, and a are interpolated by the nth-order Lagrange basis functions. 
The basic assumption is that the position of a point within the shell after deformation 
has a linear dependence of the thickness coordinate, and thus is

The superscripts indicate contravariant indices, while subscripts indicate covariant 
indices.

S T R A I N S

The in-plane Green-Lagrange strain in the local covariant components can then be 
written as

The indices  and  range from 1 to 2. The transverse shear strains in local covariant 
components are

n a+ 1=

n a 0=

a 1«

x 1 2 3   r 1 2
( , ) u 1 2

( , ) 3 n 1 2
( , ) a 1 2

( , )+ + +=

In axial symmetry, the local curvilinear coordinates have a special 
interpretation: 1 is the arc-length along the line on which the shell is 
modeled, and 2 is a circumferential coordinate given by 2 = R.


1
2
---



 r u 3 n a+ + + 


 r u 3 n a+ + + 



 r 3n+ 


 r 3n+ 

–

 3 3 
2
+ +

=

=
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The constitutive relation for the shell elements is a plane stress assumption, as is 
customary in shell theory. The strain component in the normal direction 33 is thus 
irrelevant. The different parts of the strain tensors above can be written out as

In a geometrically linear analysis, the nonlinear terms (products between u, a, and 
their derivatives) disappear. In all study types, the contributions from the parts  and 
 are ignored. They are small unless the element has an extremely high ratio between 
thickness and radius of curvature, in which case the errors from using shell theory are 
large anyway.

O F F S E T

It is possible to model a shell with a midsurface that is not located at the meshed 
surface but at a certain offset from it. The offset is assumed to occur along the normal 
of the shell surface. In this case,

3 3

1
2
---



 r u 3 n a+ + +  n a+ 


 r 3n+  n–  3+

= =

=


1
2
--- u


--------- r


-------- r


--------- u


-------- u


--------- u


--------+ +=


1
2
--- r


--------- a


-------- a


--------- r


-------- u


--------- n


-------- n


--------- u


-------- u


--------- a


-------- a


--------- u


--------+ + + + +=


1
2
--- a


--------- n


-------- n


--------- a


-------- a


--------- a


--------+ +=


1
2
--- r


--------- a u


--------- n u


--------- a+ +=


1
2
--- n


--------- a a


--------- n a


--------- a+ +=

Note that  here is a strain component, not to be confused with the local 
coordinate in the normal direction or offset.

r 1 2
( , ) rR 1 2

( , ) on 1 2
( , )+=
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where rR is the position of the meshed reference surface and o is the offset distance.

Since all geometric derivatives are computed at the mesh on the reference surface, the 
following type of expressions are used when evaluating the strains:

The degrees of freedom are located on the reference surface.

All loads and boundary conditions are assumed to be applied at the midsurface, so a 
force acting in the plane of the shell does not cause any bending action if there is an 
offset.

The numerical integration of the element is performed over the reference surface. If 
the shell is curved, the area of the actual midsurface and the reference surface differ. 
This is compensated for by multiplying the weak expressions with an area scale factor 
(ASF), defined as

Any expressions depending on the coordinates are evaluated on the shell reference 
surface.

For conditions applied to edges, a similar length scale factor (LSF) is required. It is 
formally defined as

where t is the tangent to the edge. For an internal edge, it is possible that there is a 
discontinuity in thickness or offset. In such a case, the line scale factor will be an 
average. Edge conditions are not well defined in such situations because the position 

r


---------

rR


--------- o

n


---------+=

ASF 1

r

2

r

1

rR

2

rR

----------------------------=

LSF 1

r t
2

r t+

1

rR t
2

rR t+

-------------------------------------------=
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of the midsurface can be discontinuous. In practice, errors caused by such effects are 
small.

R O T A T I O N  R E P R E S E N T A T I O N

In a geometrically linear analysis, a rotation vector is defined as

In a geometrically nonlinear analysis, the rotation vector axis is defined by

while the amplitude of the rotation vector is computed as

This representation is unique only for rotations up to 180 degrees, but since the 
rotation vector representation is only an output convenience, it has no impact on the 
analysis.

T H E  M I T C  S H E L L  F O R M U L A T I O N

The MITC formulation (Ref. 1) does not take the strain components directly from the 
shape functions of the element. Instead, meticulously selected interpolation functions 
are selected for the individual strain components. The values of the interpolated strains 
are then at selected points in the element tied to the value that would be computed 
from the shape functions. The interpolation functions and tying points are specific to 
each element shape and order.

Each contribution to the virtual work of the element is numerically integrated over the 
reference surface while the integration in the thickness direction is performed 
analytically. The computation of the strain energy from transverse shear deformations 
uses a correction factor of 56 to compensate for the difference between the assumed 
constant average shear strain and the true parabolic distribution.

The LSF variable is computed from the principal curvatures, see 
Curvature Variables in the COMSOL Multiphysics Reference Manual.

 n a=

e
n a
n a
-----------------=

 1 n a+ acos=

In axisymmetry, the MITC formulation is not used. Instead, a reduced 
integration scheme is employed in order to avoid locking for thin shells.
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F O L D  L I N E S

In regions where the discretized surface is smooth (which is always the case for plates), 
the normal of the shell surface is uniquely defined. When two or more shell elements 
meet at an angle, each element must however keep its own normal direction. It is thus 
not possible to have the same set of degrees of freedom for the displacement of the 
normal in such a point, and this is automatically handled. The automatic search for 
these fold lines compares the normals of all boundaries sharing an edge. If the angle 
between the normals is larger than a certain angle (with a default of 0.001 rad, which 
is approximately 0.6 degrees) it is considered as a fold line. For a fold line, the 
assumption is that the angle between the shell normals remains constant. This gives

or

 (5-2)

where the values or j and k range over the number of shells elements with different 
normals. The third term in Equation 5-2 is relevant only in a large deformation analysis 
because it is nonlinear. A special case occurs when two adjacent boundaries are parallel 
but their normal vectors have opposite directions. In this case the special constraint

is applied along their common edge.

I N T E G R A T I O N

All volume integrals over a shell element are split into a surface integral, which is 
performed numerically, and a thickness direction integral which is performed 
analytically. It is thus not possible to enter data which depend on the thickness 
direction. All material properties are evaluated at the reference surface. Formally this 
can be written as

All functions of  are assumed to be of the form n. Odd powers will integrate to zero, 
so typically the through-thickness integration will give factors d (for the case n  0) 
and d3/12 (for the case n  2). The thickness d can be a function of the position.

nj nk nj aj+  nk ak+ =

nj ak aj nk aj ak+ + 0=

ak a– j=

f 1 2 3   Vd
V
 f1 1 2 f2 3  d Ad

d– 2

d 2


A
 f1 1 2 F2 d  Ad

A
= =
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I N I T I A L  V A L U E S  A N D  P R E S C R I B E D  V A L U E S

Because the normal vector displacements are quantities which are less intuitive than the 
more customary nodal rotations, it is possible to specify the prescribed values in terms 
of nodal rotations as well as in terms of the normal vector displacement. The 
representation by normal vector direction is insensitive to whether the analysis is 
geometrically nonlinear or not. The direction of the shell normal is prescribed in the 
deformed state, n0. The prescribed values for the actual degrees of freedom, a0, are 
internally computed as

If the rotation vector input is used, and the analysis is geometrically linear, then

where 0 is the vector of prescribed nodal rotations. This relation is fully defined only 
when all three components of 0 are given. It is also possible to prescribe only one or 
two of the components of 0, while leaving the remaining components free. Because 
it has no relevance to prescribe the rotation about the normal direction of the shell, it 
is only possible prescribe individual rotations in a shell local system. In this case, the 
result becomes one or two constraint relations between the components of a0. The 
directions are the edge local coordinate system where t1 is the tangent to the edge and 
t2 is perpendicular and inward from the edge, in the plane of the shell. These 
constraints are formulated as

Here 0i is the prescribed rotation around the axis ti.

In a geometrically nonlinear analysis, it is not possible to prescribe individual elements 
of the rotation vector. If only one or two components have been specified, the 
remaining components are set to zero. The actual degrees of freedom are then 
computed as

where R is a standard rotation matrix, representing the finite rotation about the given 
rotation vector.

a0
n0
n0
--------- n–=

a0 0 n=

t2 a0 – 01=

t1 a0 02=

a0 R 0  I– n=
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Initial velocities are always given using an angular velocity vector  as

S Y M M E T R Y  A N D  A N T I S Y M M E T R Y  B O U N D A R Y  C O N D I T I O N S

It is possible to prescribe symmetry and antisymmetry boundary conditions. As a 
default, they are expressed in a shell local coordinate system. If applied to a boundary, 
the normal to the shell is assumed to be the normal to the symmetry or antisymmetry 
plane. The conditions are

for the symmetry case and

for the antisymmetry case. Here t1 and t2 are two perpendicular directions in the plane 
of the shell.

When applied to an edge, there is a local coordinate system where t1 is the tangent to 
the edge, and t2 is perpendicular and in the plane of the shell. The assumption is then 
that t2 is the normal to the symmetry or antisymmetry plane. The constraints are

for the symmetry case and

aꞏ  n a0+ =

u n 0=

a t1 0=

a t2 0=

u t1 0=

u t2 0=

u t2 0=

a t2 0=

u t1 0=

u t2 0=

a t1 0=

a t2 0=
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for the antisymmetry case.

When symmetry or antisymmetry conditions are specified in a general coordinate 
system with axis directions ei, i  1, 2, 3 with e1 as the normal to the symmetry/
antisymmetry plane the constraints are

or the symmetry case and

for the antisymmetry case. Using a general coordinate system sometimes leads to 
higher accuracy, since there is no element interpolation of the constraint directions 
involved.

Axisymmetric Models
In axisymmetric models, the only possible symmetry plane is the one having the Z-axis 
as normal. In this case, you can use the Symmetry Plane boundary condition. The 
imposed constraint is

E X T E R N A L  L O A D S

Contributions to the virtual work from the external load is of the form

where the forces (F) and moments (M) can be distributed over a boundary or an edge 
or concentrated in a point. The contribution from the normal vector displacement a 
is only included in a geometrically nonlinear analysis. Loads are always referred to the 
midsurface of the element. In the special case of a follower load, defined by its pressure 
p, the force intensity is

u e1 0=

a e2 n  0=

a e3 n  0=

u e2 0=

u e3 0=

a e1 n  0=

w 0=

utest F atest M n a+  +
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For a follower load, the change in midsurface area is not taken into account, in order 
to be consistent with the assumption that thickness changes are ignored.

S T R E S S  A N D  S T R A I N  C A L C U L A T I O N S

The strains calculated in the element are, as described above, the covariant tensor 
components. They have little significance for the user, and are internally transformed 
to a Cartesian coordinate system. This system can be global or element local. The 
stresses are computed by applying the constitutive law to the thus computed strain 
tensor.

Each part of the covariant strain (, , ) is transformed separately. They 
correspond to membrane, bending, and shear action, respectively, and it is thus 
possible to separate the stresses from each of these actions. The membrane stress is 
defined as

where D is the plane stress constitutive matrix, Ni are the initial membrane forces, and 
i the initial membrane strains. The influence of thermal strains is included through the 
midsurface temperature Tm, and the hygroscopic swelling through the midsurface 
moisture concentration, cm. The membrane stress can be considered as the stress at the 
midsurface, or as the average through the thickness.

The bending stress is defined as

where i is the initial value of the bending part of the strain tensor (actually: the 
curvature), and Mi are the initial bending and twisting moments. T is the 
temperature difference between the top and bottom surface of the shell, and cmo is 
the difference in moisture concentration between the top and bottom. The bending 
stress is the stress at the top surface of the shell if no membrane stress is present.

The average transverse shear stress is defined as

F p n a+ –=

m D  i–  Tm Tref– – h cm cmo,ref– – 
Ni
d
------+=

b
Dd
2

--------  i– T
d

--------– h
cmo

d
-------------–

6Mi

d2
-----------+=

s
5
6
--- 2G  i– 

Qi
d
------+=
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where G represent the transverse shear moduli, i is the initial average shear strain, and 
Qi are the initial transverse shear forces. The correction factor 56 ensures that the 
stresses are averaged so that they correspond to the ratio between shear force and 
thickness. The corresponding strains  and i are averaged in an energy sense.

The actual in-plane stress at a certain level in the element is then

where z is a parameter ranging from 1 (bottom surface) to 1 (top surface). The 
computation of the shear stress at a certain level in the element uses the following 
analytical parabolic stress distribution:

The shell section forces (membrane forces, bending moments, and shear forces) are 
computed from the stresses as

In certain situations, the NMQ formulation is used to improve performance.

L O C A L  C O O R D I N A T E  S Y S T E M S

Boundaries
Many quantities for a shell can best be interpreted in a local coordinate system aligned 
to the shell surface. Material data, initial stresses and stress results are always 
represented in this local coordinate system. You specify the orientation of the local 
directions in a Shell Local System node under the Linear Elastic Material.

The local system for stress output coincides with the orientations defined for the 
material input. Stresses are also available transformed to the global coordinate system.

If a Boundary System is selected, then the orientation of the shell local system is fully 
defined by the boundary system. When using a boundary system, it also possible to 
control the orientation of the shell normal by selecting the Reverse normal direction 
check box.

 m zb+=

3s 1 z2
– 

2
-----------------------------

N dm=

M d2

6
------

b
=

Q ds=
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Other types of coordinate systems are not necessarily aligned with the shell surface. For 
such systems, the definition of the local shell surface coordinate system is as follows:

1. The local z direction ezl is the positive geometry normal of the shell surface.

2. The local x direction exl is the projection of the first direction in the material 
coordinate system (ex1) on the shell surface

This projection cannot be performed if ex1 is normal to the shell. In that case, the 
second axis ex2 of the material system instead defines exl using the same procedure. 
Thus, if

then

3. At last, the second in-plane direction is generated as

This procedure is followed irrespective of whether a global or a local coordinate system 
defines the directions.

Note the following:

• When using an isotropic material, the only effect of selecting a local coordinate 
system is that the definition directions of local stresses change.

• When defining orthotropic and anisotropic materials, local coordinate systems do 
not need to be created so that they exactly follow the shell surface. It is sufficient 
that the local system when projected as described above gives the intended in-plane 
directions.

• For shells in the XY-plane, and for plates, the global and local directions coincide by 
default.

• On curved shells, local stress components can become discontinuous if there is a 
location where ex1 becomes perpendicular to the shell surface.

exl
ex1 ex1 ezl ezl–

ex1 ex1 ezl ezl–
----------------------------------------------------=

ex1 ezl 0.99

exl
ex2 ex2 ezl ezl–

ex2 ex2 ezl ezl–
----------------------------------------------------=

eyl ezl exl=
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• Avoid using the Shell Local System to enter loads or constraints at an edge or point 
where two or more shells which do not have common orientations meet. For 
prescribing edge loads, a Local Edge System is usually preferred.

• In this section, every reference to stresses is equally valid for strains.

Local Edge System
Many features, such as an edge load, allow input in an edge local coordinate system. 
The orthogonal local edge coordinate system directions xl, yl, and zl are defined so 
that:

• The first direction (xl) is along the edge. This direction can be visualized by 
selecting the Show edge directions arrows check box in the View settings.

• The third direction (zl) is the same as the shell normal direction. The shell normal 
direction can be visualized in the default plot named Undeformed geometry, or by 
adding a Coordinate System Surface plot and selecting the Shell, Local System.

• The second direction (yl) is in the plane of the shell and orthogonal to the edge. It 
is formed by the cross product of zl and xl; yl  zl  xl.

When an edge is shared between two or more boundaries, the directions may not 
always be unique. It is then possible to use the control Face Defining the Local 

Orientations to select from which boundary the normal direction zl should be picked. 
The default is Use face with lowest number.

If the geometry selection contains several edges, the only available option is Use face 

with lowest number, since the list of adjacent boundaries would then be different for 
each edge. For each edge in the selection, the face with the lowest number attached to 
that edge is then used for the definition of the normal orientation.

R E S U L T S  E V A L U A T I O N

For visualization and results evaluation, predefined variables include all nonzero stress 
and strain tensor components, principal stresses and principal strains, in-plane and 
out-of-plane forces, moments, and von Mises and Tresca equivalent stresses. It is 
possible to evaluate the stress and strain tensor components and equivalent stresses at 
an arbitrary distance from the midsurface. The parameter zshell (variable name 
shell.z) is found in, for example, the Parameters table of the Settings window of a 
surface plot. It can be set to a value from 1 (downside) to 1 (upside). A value of 0 
means the midsurface of the shell. The default value is given in the Default 

through-thickness result location section of the Shell interface.
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Stresses and strains are available both in the global coordinate system and in the shell 
local system as described in Local Coordinate Systems.

Using the Shell Dataset
The Shell dataset is tailored for display of results computed in the Shell interface. The 
purpose is to simultaneously show results on the top and bottom surfaces of the shell 
with a separation which matches the physics thickness. A Shell dataset with appropriate 
settings is generated together with the default plots, and some of the default plots 
make use of it.

Results such as stresses and strains which have an explicit thickness dependence will be 
displayed with the correct values on the respective surfaces when using a Shell dataset. 
Results like the degrees of freedom, which are only defined on the reference surface, 
will be displayed with the same value on both sides.

For thin shells, it can be difficult to see the top and bottom side. You can then manually 
increase the separation between the displayed top and bottom surfaces by changing the 
value of the Distance parameter in the Shell dataset.

The Shell dataset is not available in 2D, so it cannot be used with the Plate interface.

Gauss Point Evaluation
When you evaluate stress and strain results, it is usually better to use the results at Gauss 
points than at the element nodes. This is particularly important when you use the 
MITC formulation, and when there are inelastic strain contributions such as thermal 
expansion. You can do this by applying the gpeval() operator to the selected result 
quantity.

The default stress plots generated from the Shell interface show the von Mises stress at 
Gauss points, using an expression like gpeval(4,shell.mises).

R I G I D  D O M A I N  F O R  S H E L L S

The inertial properties mass (m) and moment of inertia tensor (I) of a rigid shell take 
the finite thickness into account. They are computed as:
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where E3 and XM are the identity matrix and the center of mass of the rigid domain, 
respectively. The last term in I is accounting for the finite thickness, and there the fact 
that nT n  1 has been used.

C O N N E C T I O N  B E T W E E N  S H E L L S  A N D  S O L I D S

This section describes the theory and assumptions behind the multiphysics couplings 
Solid-Thin Structure Connection and Solid-Beam Connection. Only the shell version 
of the connection is described in detail, since the beam version is a direct specialization 
to 2D.

There are three types of connections between a shell and a solid of interest:

• Type 1 connection: The shell connects to the solid in a thin region (having the same 
thickness as the shell), so that shell theory is valid on both sides. This connection is 
the most important from the application point of view and the most difficult to 
create manually.

• Type 2 connection: The tangent plane to the shell is perpendicular to the face of a 
“thick” solid, in which case the physics of the connection can, at best, be 
approximate.

• Type 3 connection: The shell acts as cladding on a solid.

m  Vd
V
 d Ad

A
= =

XM
1
m
----- X Vd

V
 1

m
-----  r n+  Vd

V
 1

m
----- dr Ad

A
= = =

I X XM– T X XM–  E3 X XM–  X XM– T–  Vd
V
= =

r XM– T r XM–  E3 r XM–  r XM– T– d Ad
A
 +

E3 nnT
– d3

12
------ Ad

A


Solver Settings
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The first two cases have similar physics and can be treated more or less as one case. 
Usually, the shell should not connect to parts on the solid boundary further away than 
what is represented by the shell thickness (or some other user-defined distance).

Shell Perpendicular to Solid
Figure 5-2 illustrates the first two cases. The shell edge can be part of the definition of 
the solid but there is no assumption about that.

Figure 5-2: An example of a shell extending perpendicular to the solid boundary.

The connection of a solid to a shell is based on that shell theory is valid on both sides 
of the connection. This can be divided into these assumptions:

• The dimension of the solid in the shell thickness direction is the same as the 
thickness variable in the shell, shell.d.

• The midsurface of the shell to be connected to the solid is positioned at the 
midsurface of the solid. The reference surface of the shell can be placed anywhere.

• The cut in the solid is orthogonal to the tangent of the shell (that is, the shell normal 
vector is in the plane of the cut).

• Basic shell theory assumptions are valid, for example, the direct stress in the 
transverse direction is negligible.

One basic shell theory assumption is actually not valid in practice: plane sections do 
not always remain plane under deformation. A detailed analysis shows that if there is a 
transverse shear force in the section, there must be a deviation from planarity to get the 
correct shear strain distribution. This is more important as the shell grows thicker, but 
without it, it is not possible to get a perfect connection. In Mindlin plate theory, shear 
is related to the difference between rotation and the derivative of displacement, so that 
plane sections remain plane, but no longer perpendicular to the midsurface. This gives 
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an average shear strain, while it is known from analytical solutions that the shear strain 
has a parabolic distribution through the thickness.

Consider a cut where the local coordinates are defined as follows:

• x is the outward normal to the solid boundary

• z is along the shell normal

• y is the tangent to the shell edge, directed so that x-y-z form a right-hand system

Using the plane section assumption in the shell gives the displacements in the solid as:

where the subscripts sld and sh represent “solid” and “shell”, respectively, and a is 
the displacement of the shell normal, represented in the local directions.

The values on the solid boundaries should be interpreted as mapped using an extrusion 
operator from the shell edge.

A simple connection for the transverse direction can be generated by

This connection, however, enforces a ‘plane strain condition’ in the solid, which is not 
consistent with shell theory and which causes local unphysical stresses if Poisson’s ratio 
is nonzero. This effect disappears within a few elements from the connection, and the 
approximation can, in many situations, be acceptable. This constraint is enforced if 
Method is set to Rigid in the multiphysics coupling.

A more accurate connection is derived in the following. The first approximation of the 
stress state in a moderately curved shell is

u'sld y' z'( , ) u'sh y' 0( , ) z'a'x y' 0( , )+=

v'sld y' z'( , ) v'sh y' 0( , ) z'a'y y' 0( , )+=

w'sld y' z'( , ) w'sh y' 0( , )=

x' A1 B1z'+=

y' A2 B2z'+=

z' 0=

x'y' B3z'=

x'z' C1 1 z2
– =

y'z' C2 1 z2
– =














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where the relative thickness coordinate  has been introduced.

Assuming that Hooke’s law and plane stress conditions are valid, the transverse direct 
strain can be computed as

The transverse displacement is then, after integration with respect to z:

Thus, in order to obtain a stress-free transverse displacement, this deformation must 
be allowed. Note that the last term makes the solid thinner on one side of the 
midsurface and thicker on the other. The constant term — that is, the displacement at 
the midsurface of the solid — is known from the shell midsurface displacement. The 
other two terms depend on the stress state and thus on derivatives of the displacement, 
which are not readily available. The K1 term is caused by the membrane action and the 
K2 term by the bending action.

For the transverse shear stress, Hooke’s law gives

which can be reformulated as

Note that as the K1 term is related to membrane action, it cannot contribute to the 
transverse shear stress. Since the derivative in the x direction cannot be controlled by 
a condition on the boundary, it is necessary to make an assumption about u(z. An 
integration with respect to z gives

This shows that a third power of z is required in order to be able to represent the 
correct shear strain contribution.

It is, however, not possible to directly determine the coefficients in front of the 
additional terms, since they depend on the actual stress state. The idea is here to 

z 2z'
d

-------=

z'

E
---- x' y'+ – K1 x' y'( , ) 2K2 x' y'( , )z'+= =

w' K0 x' y'( , ) K1 x' y'( , )z'+ K2 x' y'( , )z'
2
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x'z'
u'
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x'z'
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–= =

u' M0 x' y'( , ) M1 x' y'( , )z'+ M3 x' y'( , )z'
3

+=
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introduce them as dependent variables in the problem. These variables are defined by 
extra shape functions on the shell edge.

The constraints applied on the solid can then be written as

Here qu, qw1, and qw2 are the new dependent variables defined on the shell edge. They 
are dimensionless, due to the multiplication with the shell thickness, d. The constants 
ku  35 and kw2  15 are explained below. The variable qw1 is proportional to the 
membrane axial strain, the variable qw2 is proportional to the bending strain, and the 
variable qu is proportional to the transverse shear strain. Since these variables are 
directly related to strains, the shape function order used is one order lower than for the 
displacements.

If no extra equations defining qu, qw1, and qw2 are introduced, these variables try to 
adapt to proper values through the reaction forces on the solid. The reaction force for 
u is the traction x and the reaction force for w is the traction xz. When taking the 
variation of the new dependent variables, these enforce the following constraints:

u'sld y' z'( , ) u'sh y' 0( , ) z'a'x y' 0( , ) qu y' 0( , ) z3 kuz– d+ +=

v'sld y' z'( , ) v'sh y' 0( , ) z'a'y y' 0( , )+=

w'sld y' z'( , ) w'sh y' 0( , ) qw1 y' 0( , )zd qw2 y' 0( , ) z2 kw2– d+ +=

test qu  z3 kuz– x' z'd

d–
2

-------

d
2
----

 0=

test qw1  zx'z' z'd

d–
2

-------

d
2
----

 0=

test qw2  z2 kw2– x'z' z'd

d–
2

-------

d
2
----

 0=
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The equation with qw1 is trivially fulfilled because the shear stress is an even function 
of z. Inserting the known stress distributions gives equations that can be solved for ku 
and kw2.

The constraint expressions must now be formulated in global directions. As a start, the 
constraints are written on vector form in local directions as

 (5-3)

where

The fact that az  0 has been used when formulating Equation 5-3.

All coordinate directions are retrieved from the shell, because the normal to the solid 
boundary is not necessarily constant.

The only coordinate value needed is actually z. For the other two coordinates, only 
the direction is important. The coordinate in the normal direction can be computed as

This definition of z assumes that the thickness of the solid does not change 
significantly. Under geometric nonlinearity, the computation should be based on the 
current geometry.

The latter expression introduces additional nonlinearities in the model because it 
depends on deformed position and deformed normal. Also, the position of the shell 
midsurface with respect to the solid is actually part of the solution.

Let  be the matrix that transforms displacements from the global system to the local 
system:

The expression for the constraints in global directions then becomes

u'sld u'sh z'a' q+ +=

q
qu y' 0( , ) z3 kuz– 

0

qw1 y' 0( , )z qw2 y' 0( , ) z2 kw2– +

=

z' Xsld Xsh–  Nsh=

z' xsld xsh–  nsh=

 ex' ey' ez'
=
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The only transformation actually needed is thus the projection of the q vector. For a 
linear case, the transformation can be written as

where N is the undeformed shell normal (shell.an) and tl is the shell edge tangent 
(shell.tle). The coefficient s is either 1 or 1, and is selected so that the x direction 
coincides with the outward normal of the solid.

For a geometrically nonlinear case, the corresponding deformed directions are used.

When an offset is used for the shell, it is assumed that the center of the connection is 
at the actual shell midsurface.

Beam Perpendicular to Solid
This is the analogous case in 2D. Beam theory assumes that the stress in the 
out-of-plane direction is zero. It is thus only physically sound to connect to a model 
where the plane stress assumption is used. The derivation above still remains valid with 
the following exceptions: the displacements in the local y’ direction are zero and the 
tangent direction tl is replaced by the out-of-plane direction.

The shell thickness is replaced by twice the effective radius of the beam in the equations 
defining the displacements.

Shell Parallel to Solid
The case where the shell is parallel to the boundary of the solid exists in two versions 
— Shared and Parallel.

In the shared case, the shell is modeled on a boundary which is a face of the solid. In 
this case, it assumed that the names of the displacement degrees of freedom in the solid 
and shell interfaces are not the same. If the same names are used, there is no need to 
use a connection feature, since the coupling is then automatic. A shell offset can be 
used to model an actual distance between the boundaries. For a layer “glued” on the 
solid, the offset would equal half the shell thickness.

In the parallel case, a separate boundary is used for modeling the shell. The distance 
between the shell and the face of the solid is taken into account when setting up the 
constraints, so that

usld Tu'sld T u'sh z'a' q+ +  ush z'a Tq+ += = =

 stl Nsh stl Nsh=

usld ushl a–=
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where  is a distance from the solid to the shell. The right-hand side is mapped from 
the shell to the solid using an extrusion operator. The default is that  is half the shell 
thickness, but you can also use the geometrical distance between the boundaries, or a 
user-defined distance.

C O N N E C T I O N  B E T W E E N  S H E L L S  A N D  B E A M S

When connecting elements from the Shell interface with elements from the Beam 
interface, the following must be noted:

• The rotational degrees of freedom have different definitions in the two interfaces. 
The Beam interface uses a rotation vector representation, whereas the Shell interface 
uses the normal vector displacements.

• In general, a shell element locally has three translational, but only two rotational, 
degrees of freedom. The rotation around the normal is not part of the shell theory 
and is constrained to zero. The corresponding rotational degree of freedom in a 
beam should thus not be connected to the shell.

You can create the appropriate couplings by adding a Solid-Thin Structure Connection 
multiphysics coupling. The theory of this connection is outlined below.

Beam Edge to Shell Edge
This coupling is intended for the common situation where beams are attached along a 
plate to act as stiffeners. There are two variants of the coupling:

• The beam is modeled at an edge which is also an edge in the beam interface. This 
case is called Shell and beam shared edges in the Shell-Beam Connection node. In 
practice, the beam is usually placed on one side of the shell, and this offset plays an 
important role in the stiffness of the combined section. The offset, d0, can be given 
as a user input.

• The beam is modeled at a separate edge, representing the actual centerline. This case 
is called Shell and beam parallel edges in the Shell-Beam Connection node, and the 
closest geometrical distance between the edges directly gives d0. You do not need 
to use the same mesh on both lines. Since the constraints are formed for the shell 
edge, some parts of the beams could however become unconnected if the beam 
elements are very short when compared to the shell element size.

The displacement at the centerline of the beam can then be written in terms of the 
degrees of freedom in the shell as

ub us d0 n a+=
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where n is the normal to the shell. The rotation vector in the beam can be expressed 
in the shell degrees of freedom as

For a geometrically linear case, the constraint

is enforced by the shell interface for each shell boundary. This is why there are only two 
active rotational degrees of freedom. To avoid propagating this constraint to the beam, 
only those components of the beam rotation that act in the plane of the shell should 
be constrained. This can be expressed as

which can be simplified to

The constraints are actually formed on the shell edge, and the degrees of freedom are 
taken from the beam using a General Extrusion operator which maps values from the 
closest point on the beam to the shell.

The definitions of n, t1, and t2 may, however, be discontinuous over a shell edge. For 
this reason, the constraint is formed using values from one boundary only if several 
boundaries share the edge. Another complication arises when the edge is a fold line, 
that is when the boundaries that meet do not have a common normal direction. On a 
fold line all three rotational degrees of freedom do exist in the shell and should then 
be connected to the corresponding degrees of freedom in the shell. In this case, also a 
third rotational constraint is formed.

Beam Point to Shell Boundary
This coupling is intended for the case when the beam is not in the same plane as the 
boundary modeled by shell theory. This case is called Shell boundaries to beam points 
in the Shell-Beam Connection node. Physically, this can be seen as a beam with one end 
welded to a plate. In order to get a correct stiffness representation of such a 
connection, it is necessary that the beam is connected to an area of the shell which is 
similar to the actual physical width of the beam. The connected area on the shell does 

b n a=

n a 0=

b n a–  ti       i 1 2=

b t1 a t2+ 0=

b t2 a t1– 0=
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not have to fit a boundary in the geometry. It is however necessary that the mesh size 
is such that there are at least three nodes within the connected area.

You can then select the region to connect using three different criteria.

The connected region is treated as rigid. The displacement of the shell is controlled by 
the displacement and rotation of the beam endpoint through

The coordinates of the shell are evaluated at the reference surface.

As it is only possible to constrain the in-plane rotations of the shell, the continuity in 
rotation is projected onto the shell, giving

The rotation of the beam around the normal of the shell, which does not participate 
in the rotation constraints, is indirectly connected through the displacement equation, 
so it implicitly receives an appropriate stiffness.

Beam Point to Shell Edge
This case is identical to the previous case, with the only exception that the selection in 
the Shell interface is an edge. The beam can have any orientation relative to the shell 
edge. This case is called Shell edges to beam points in the Shell-Beam Connection node.

Theory for FSDT Laminated Shell

The theory of laminated shells is discussed in this section. The Layered Linear Elastic 

Material node in the Shell interface allows the modeling of laminated shells, also 
popularly known as composite laminates, having different orthotropic properties per 
layer. The first order shear deformation theory (FSDT) is used to find homogenized 
equivalent material properties of a composite laminate.

Several topics are discussed in this section:

• About Composite Laminates

• Equivalent Single Layer (ESL) Theory

• First-Order Shear Deformation Theory (FSDT)

• Integration in a Laminate

us ub b Xs Xb– +=

b t1 a t2+ 0=

b t2 a t1– 0=
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• Lamina Constitutive Law

• Laminate Constitutive Law

• Shear Correction Factor Computation

• Results Evaluation in a Laminate

A B O U T  C O M P O S I T E  L A M I N A T E S

A layered shell, also known as a composite laminate, is a thin-walled structure in having 
many layers of different orthotropic (or optionally isotropic/anisotropic) material 
stacked on top of each other.

A layered shell can be active either on free surfaces embedded in 3D, or on the 
boundary of a solid object in 3D. In the latter case, it can be used to model a 
reinforcement on the surface of a solid object. Similarly, it can be active on free 
boundaries in 2D axisymmetry, or on the boundary of a solid object in 2D 
axisymmetry.

A simple form is assumed for the variation of the displacement through the thickness 
in order to develop a model for the deformation that is more similar to a 2D plane 
stress condition than to a full 3D state.

Figure 5-3: Geometry of a doubly curved composite laminate.

Figure 5-3 shows a doubly curved laminated shell with uniform total thickness, d. It 
is represented by orthogonal curvilinear coordinate system (1 2 ). The geometry 
T H E O R Y  F O R  T H E  S H E L L  A N D  P L A T E  I N T E R F A C E S  |  1225



1226 |  C H A P T E
representation of a layered shell is same as a single layer shell as discussed in the 
Geometry and Deformation section.

A typical stacking sequence of a composite laminate having n layers is shown in 
Figure 5-4. The thickness of each layer (dk), as well as the fiber direction in each layer 
(k) with respect to the first principal direction (1) of the laminate are indicated. A 
counterclockwise rotation of the fiber direction with respect to the  direction is 
considered as positive.

Figure 5-4: A typical stacking sequence of a composite laminate showing thickness and 
fiber orientation in each layer.

E Q U I V A L E N T  S I N G L E  L A Y E R  ( E S L )  T H E O R Y

Composite laminates are formed by stacking layers of different materials or having 
different fiber orientations. In general, composite laminates have a planar dimension 
that is orders of magnitude larger than the thickness. They are often used in the 
applications requiring membrane and bending strengths. Therefore, composite 
laminates can often be modeled using a shell element based on an equivalent single 
layer (ESL) theory.

In ESL theory, a heterogeneous laminated shell is converted into a statically equivalent 
single layer shell by reducing the 3D continuum problem to a 2D shell problem. In 
addition to their simplicity and low computational cost, ESL theory provides 
sufficiently accurate description of global response for a thin to moderately thick 
laminates, for example gross deflections in a laminate, critical buckling loads, and 
eigenfrequencies with corresponding mode shapes.

Assumptions and Restrictions
Some of the general assumptions when using shell theory to model a thin solid 
structure are:

• Straight lines perpendicular to the midsurface remain straight after deformation.
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• Plane stress condition is assumed.

• The transverse normal strain or out-of-plane strain is nonzero, but it is not part of 
the formulation and is ignored while expressing the energy of the system.

• The normal rotates in such a way that it remains perpendicular to the mid surface 
after deformation.

Some of the assumptions specific to ESL theory when used to model a composite 
laminate are:

• The material in each layer is assumed linear elastic and orthotropic.

• Each layer has a uniform thickness.

• All layers are perfectly bonded together and thus interface or delamination 
modeling is not possible.

• Transverse shear stresses at the top and bottom surfaces of a laminate are zero.

Classification
The ESL theories can be classified into various groups based on the description of the 
transverse shear stresses.

Classical Laminate Plate Theory (CLPT)

The classical laminate plate theory is an extension of Kirchhoff or classical plate theory 
used for single layer thin shells. In this theory, transverse shear stresses are neglected 
and the deformation is entirely due to the bending and in-plane stretching.

First Order Shear Deformation Theory (FSDT)

The first order shear deformation theory is similar to the Mindlin-Reissner shell theory 
used for single layer thick shells. This theory extends the kinematics of CLPT by 
including the gross transverse shear deformation. The transverse shear strain is 
assumed to be constant with respect to the thickness coordinate. As the transverse 
shear strain has a constant value, this theory requires a shear correction factor.

Higher Order or Third Order Shear Deformation Theory (HSDT)

This theory is an extension of FSDT where the displacement field is approximated in 
such a way that the transverse shear strain varies quadratically with respect to the 

The last assumption is present only in the classical laminate plate theory.
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thickness coordinate. It makes the transverse shear stresses zero at the top and bottom 
surfaces of the laminate, thus eliminating the need of a shear correction factor.

F I R S T - O R D E R  S H E A R  D E F O R M A T I O N  T H E O R Y  ( F S D T )

In COMSOL Multiphysics, the first-order shear deformation theory (FSDT) is 
implemented to model composite laminates using an equivalent single layer approach. 
The element used for the shell interface is of Mindlin-Reissner type, which means that 
transverse shear deformations are accounted for. It can thus also be used for rather 
thick shells. It has an MITC (mixed interpolation of tensorial components) 
formulation.

FSDT differs from the single layer shell theory in the way through-thickness 
integrations are performed, constitutive equations are formed, and results are 
evaluated. In the following sections, these topics are discussed in detail.

I N T E G R A T I O N  I N  A  L A M I N A T E

All volume integrals over a shell element are split into a surface integration and a 
through-thickness integration. Both integrations are performed numerically. The 
surface geometry is used for surface integration, and an extra dimension geometry is 
used for the through-thickness integration. It is thus possible to enter data which 
depend on the thickness direction.

Unlike a single layer shell, where all material properties are evaluated at the reference 
surface, different material and fiber orientation can be specified in each layer of the 
composite laminate. Formally this can be written as:

The FSDT theory for a layered shell extends the ordinary theory for a 
single layer shell. See the following topics from the single layer shell 
theory for more details:

• Geometry and Deformation

• Strains

• Offset

• Rotation Representation

• The MITC Shell Formulation

• Local Coordinate Systems
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For curved laminates, an area scale factor is also included since the layers have different 
surface area. This is independent of whether an offset is used or not, but the offset 
affects the scale factor. The definition of the area scale factor (ASF) for a composite 
laminate is similar to that of a single layer shell.

L A M I N A  C O N S T I T U T I V E  L A W

In classical laminate theory, a lamina is assumed to be in a plane stress state and all three 
transverse stress components (xz yz zz) are assumed to be zero. In terms of strains, 
the transverse shear strain components (xz yz) are zero while the transverse normal 
strain (zz) is nonzero but not part of the formulation.

FSDT extends the classical laminate theory and allows nonzero transverse shear strain 
components.

In-Plane Constitutive Equations (Membrane and Bending Equations)
The linear constitutive relation for orthotropic lamina k in a composite laminate, can 
be written as:

where

• ij are the stress components in the principal material directions of a lamina

• ij are the strain components in the principal material directions of a lamina

• Qij are the elasticity matrix components in the principal material directions of a 
lamina

For an orthotropic lamina, the elasticity matrix components (Qij) can be defined in 
terms of the material constants ( ):
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A general composite laminate is made of several orthotropic layers, having principal 
material directions with different orientations with respect to the laminate coordinates 
(1 2 ) as shown in Figure 5-3. The constitutive equations for a lamina can be 
transformed from its material coordinate system to the laminate coordinate system, 
giving:

where

• ij are the stress components in the laminate coordinate system

• ij are the strain components in the laminate coordinate system

• Qij are the elasticity matrix components in the laminate coordinate system

The transformed in-plane elasticity matrix is defined as:

The principal material direction (or fiber direction) in each lamina makes an angle () 
with the first in-plane direction (1) of the laminate coordinate system. Hence the 
transformation matrix can be defined as:

where c  cos and s  sin.
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Out-of-Plane Constitutive Equations (Shear Equations)
The linear constitutive relation for the transverse shear in a lamina k can be written as:

where

• ij are the transverse shear stress components in the principal material directions of 
a lamina

• ij are the transverse shear strain components in the principal material directions of 
a lamina

• Qij are the elasticity matrix components in the principal material directions of a 
lamina

For an orthotropic lamina, the elasticity matrix components (Qij) can be defined in 
terms of the two shear moduli ( ):

The constitutive equations of a lamina can be transformed from its material coordinate 
system to the laminate coordinate system and can be written as:

where

• ij are the transverse shear stress components in the laminate coordinate system

• ij are the transverse shear strain components in the laminate coordinate system

• Qij are the elasticity matrix components in the laminate coordinate system

The transformed out-of-plane elasticity matrix is defined as:

where the transformation matrix is defined as:
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L A M I N A T E  C O N S T I T U T I V E  L A W

The laminate constitutive law relates the resultant membrane forces, bending 
moments, and transverse shear forces to the membrane strains, bending strains, and 
transverse shear strains.

Figure 5-5: An equivalent layer of a composite laminate having n layers. The resultant 
membrane forces (Nij), bending moments (Mij), and transverse shear forces (Qi) are 
shown.

The resultant membrane forces, bending moments, and transverse shear forces in a 
composite laminate are computed as:

T cos sin–

sin cos
=
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d
k
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
k 1=

n
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where

• Nij are the membrane forces in the laminate coordinate system

• Mij are the bending moments in the laminate coordinate system

• Qi are the transverse shear forces in the laminate coordinate system

• ij are the stress components in the laminate coordinate system

• Ks is the shear correction factor

• R1 and R2 are the principal radii of curvature of the equivalent shell (actually this 
implies that the laminate system is aligned with the principal curvatures, but that is 
of no consequence, due to the approximations made below).

For shallow shells, the following approximation can be used:

This leads to
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Hence the expressions for the resultant membrane force, bending moment, and 
transverse shear force reduce to the following:

This formulation, with its assumption of a moderate curvature, is the one used in the 
Shell interface.

The stress components can be written in terms of elasticity matrix components and 
strain components by using the lamina constitutive law. This establishes the relation 
between resultant forces and the midplane strains as given below:
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The resultant force and moment expressions can be further rewritten as:

 (5-4)

 (5-5)

 (5-6)

where

•  is the membrane part of strain

•  is the bending/flexural part of strain or (curvatures)

• Aij is the extensional stiffness matrix

• Bij is the bending-extensional coupling stiffness matrix

• Dij is the bending stiffness matrix

The extensional, bending, and coupling stiffnesses are defined as:
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The in-plane laminate constitutive law, relating resultant forces and midplane strains, 
can also be written in matrix form as:

The midplane strains can be written using resultant forces and flexibility matrices as:

where

• a is the extensional flexibility matrix

• b is the bending-extensional coupling flexibility matrix

• d is the bending flexibility matrix

N 
M 

A  B 
B  D 

 0  

 1  
=

 0  

 1  

A  B 
B  D 

1–
N 
M 

=

 0  

 1  

a  b 
b  d 

N 
M 

=

The stiffness and flexibility matrices are available for output, using for 
example Derived Values->Point Matrix Evaluation. The following matrix 
variables are defined:

• Stiffness matrix — shell.ABD

• Flexibility matrix — shell.abd

• Extensional stiffness matrix — shell.DA

• Extensional stiffness matrix — shell.DA

• Bending stiffness matrix — shell.DD

• Bending-extensional stiffness matrix — shell.DB

• Extensional flexibility matrix — shell.Da

• Bending flexibility matrix — shell.Dd

• Bending-extensional flexibility matrix — shell.Db
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S H E A R  C O R R E C T I O N  F A C T O R  C O M P U T A T I O N

The transverse shear strains and stresses computed from the FSDT theory are averaged 
values. For this reason, they need shear correction factors in order to give correct strain 
energy contributions.

In order to compute the shear correction factor, the following assumptions are taken:

• Based on 3D elasticity theory, it is known that the first derivative of the transverse 
shear strain with respect to the thickness coordinate is a straight line. Thus, the 
transverse shear strains in each lamina are assumed to have parabolic profiles.

• In order to avoid nonlinear equations, it is assumed that there is no cross coupling 
between transverse shear stresses and transverse shear strains, that is, 

.

• It is assumed that shear modulus Gij is only a function of the thickness and does 
not change in the plane of laminate.

These assumptions are only satisfied exactly for a laminate with isotropic layers. For a 
laminate with orthotropic layers, the first assumption does not hold exactly but is 
approximately satisfied. The second assumption only holds for a cross-ply laminate 
having 0- and 90-degree layers.

For a laminate with isotropic layers, the transverse shear stresses are zero at free surfaces 
and they are continuous at interfaces between two layers. The through-thickness 
profile matches the 3D elasticity solution very closely. For a laminate with orthotropic 
layers, the vanishing shear stress condition is achieved at free surfaces of a laminate, 
while shear stress continuity at the interfaces is not guaranteed.

Based on the first assumption, the through-thickness derivative of a transverse strain 
component can be defined as:

Integrating the above equation in through-thickness direction, the transverse shear 
strain in each layer can be written as:

where

• E and F are constant for a given laminate

• Ki is the integration constant for each layer in the laminate

Q45 Q54 0= =



------ E F+  avg=

i E2 F Ki+ +  avg=
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The transverse shear stress for each layer can be written as:

For n number of layers in a laminate, there are n+2 variables (unknowns) and thus n+2 
equations are needed to solve them. The first n+1 equations are the form of shear stress 
continuity can be written as:

Here, the subscript indicates the layer index, and the superscript indicates the interface 
position (top or bottom) of a particular layer.

The missing equation can be expressed in the form of the average shear stress:

Using this set of equations, it is possible to solve for the correct distribution of shear 
stresses and strains. In order to compute the shear correction factor for the strain 
energy contribution, an additional equation is needed. It can be obtained through an 
energy equivalence approach between 3D elasticity and FSDT formulations.

The transverse shear strain energy based on the 3D elasticity theory is written as:

where the shear strain distribution is defined as:

The transverse shear strain energy, corresponding to (13), based on FSDT theory is 
written as:
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The shear correction factor can be obtained by equating the two energy equations:

Similarly, the shear correction factor corresponding to (23) is:

Theory for Hyperelastic Shells

Different hyperelastic material models are constructed by specifying different elastic 
strain energy expressions. Several predefined material models are included, and also the 
option to enter user defined expressions for the strain energy density. See Hyperelastic 
Materials in the Structural Mechanics Theory chapter.

Results Evaluation in a Laminate

For visualization and results evaluation, predefined variables include all nonzero stress 
and strain tensor components, principal stresses and principal strains, in-plane and 
out-of-plane forces, moments, and von Mises and Tresca equivalent stresses.

Stresses and strains are available in the global coordinate system, laminate coordinate 
system, as well as in the layer local coordinate system.

L A Y E R E D  M A T E R I A L  S L I C E  P L O T

It is possible to evaluate the stress and strain tensor components and equivalent stresses 
in each layer of a laminate using Layered Material Slice plot.
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The through-thickness location can be set to evaluate a quantity in the middle of a 
layer, at an interface between two layers, top or bottom of a laminate, and so on. The 
top, bottom, and the middle of a laminate can be defined as:

• Bottom of a laminate: 1 (relative) and 0 (physical)

• Middle of a laminate: (relative) and d/2 (physical)

• Top of a laminate: 1 (relative) and d (physical)

The default value for the through-thickness location is given in the Default 

through-thickness result location section of the Layered Shell interface.

T H R O U G H  T H I C K N E S S  P L O T

The through-thickness variation of a quantity at one or more locations on the reference 
surface can be plotted using a Through Thickness plot. In this plot, the reference surface 
locations can be specified through following ways:

• By selecting one or more geometric points

• By specifying the coordinate of one or more points

• By creating a cut point dataset

L A Y E R E D  M A T E R I A L  D A T A S E T

The Layered Material dataset allows the display of results in 3D solid even though the 
equations are solved on a 2D surface.

Using this dataset, results can either be visualized on a 3D object or on slices created 
in the through-thickness direction of a 3D object. The following options are available 
in the dataset to create slices in the through-thickness direction:

• Mesh nodes

• Interfaces

• Layer midplanes

Sometimes, when a laminate is very thin, it becomes difficult to distinguish between a 
surface or a solid object. In such cases it is possible to scale the through-thickness 
direction in the dataset for better visualization.

Theory for Section Stiffness

The Section Stiffness node in the Shell interface allows modeling of a shell by directly 
entering the effective stiffness or compliance matrices without specifying the 
R  5 :  S H E L L  A N D  P L A T E



geometrical and material properties of the cross section. A typical use case is for 
modeling shells with homogenized properties, for example, perforated or corrugated 
sheets.

The background and theory of the Section Stiffness model is based on the Theory for 
FSDT Laminated Shell. However, instead of performing a numerical integration in the 
extra dimension to account for the through thickness variation of geometrical and 
material properties, this is assumed to have been done beforehand. Hence, you directly 
enter the coefficients of the A, B, and D matrices in Equation 5-4 to Equation 5-6 to 
define the effective properties of the cross section. Additionally, shear correction 
factors are needed so that the transverse strains and stresses give the correct 
contributions to the strain energy.

A consequence of this formulation is that stresses are not straightforwardly available 
for result evaluation, since they are not part of the formulation. Stresses can, however, 
be evaluated using the following equations

where matrices SN, SM, and SQ are user inputs. They are by default populated with 
coefficient that gives the stress on the top surface of the shell.

References for the Shell Interface

1. D. Chapelle and K.J. Bathe, The Finite Element Analysis of Shells — 
Fundamentals, Springer-Verlag, Berlin Heidelberg, 2003.

2. J.N. Reddy, Mechanics of Laminated Composite Plates and Shells — Theory and 
Analysis, CRC Press, Second Edition, 2004.
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Th e  S h e l l  a nd P l a t e  I n t e r f a c e s

The Shell (shell) interface ( ), found under the Structural Mechanics branch ( ) 
when adding a physics interface, is used to model structural shells on boundaries in 3D 
or 2D axisymmetry. Shells are thin flat or curved structures, having significant bending 
stiffness. The interface uses shell elements of the MITC type, which can be used for 
analyzing both thin (Kirchhoff theory) and thick (Mindlin theory) shells.

The Plate (plate) interface ( ), found under the Structural Mechanics branch ( ) 
when adding a physics interface, provides the ability to model structural plates in 2D. 
Plates are thin flat structures with significant bending stiffness, being loaded in a 
direction out of the plane.

The Linear Elastic Material is the default material model. It adds a linear elastic 
equation for the displacements and has a Settings window to define the elastic material 
properties. With this material model, the material is assumed to be homogeneous 
through the thickness of the shell.

When this interface is added, these default nodes are also added to the Model Builder 
— Linear Elastic Material, Thickness and Offset, Free (a boundary condition where edges 
are free, with no loads or constraints), and Initial Values. Then, from the Physics 
toolbar, add other nodes that implement, for example, boundary conditions. You can 
also right-click Shell or Plate to select physics features from the context menu.

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 

The Shell interface is for 3D and 2D axisymmetry models.

The Plate interface is for 2D models — domains are selected instead of 
boundaries, and boundaries instead of edges. Otherwise the Settings 
windows are similar to those for the Shell interface.
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different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is shell or plate.

S K E T C H

In the Sketch section, a conceptual sketch of the degrees of freedom in the Shell and 
Plate interfaces appears.

A X I A L  S Y M M E T R Y  A P P R O X I M A T I O N

S T R U C T U R A L  T R A N S I E N T  B E H A V I O R

From the Structural transient behavior list, select Include inertial terms (the default) or 
Quasistatic. Use Quasistatic to treat the dynamic behavior as quasi static (with no mass 
effects; that is, no second-order time derivatives). Selecting this option gives a more 
efficient solution for problems where the variation in time is slow when compared to 
the natural frequencies of the system. The default solver for the time stepping is 
changed from Generalized alpha to BDF when Quasistatic is selected.

For problems with creep, and sometimes viscoelasticity, the problem can be considered 
as quasistatic. This is also the case when the time dependence exists only in some other 
physics, like a transient heat transfer problem causing thermal strains.

F O L D - L I N E  S E T T I N G S

Select Circumferential mode extension to prescribe a circumferential wave 
number to be used in eigenfrequency or frequency-domain studies. When 
selected, enter the Azimuthal mode number m.

For more information, see Circumferential Displacement and 
Out-of-Plane Waves in the Structural Mechanics Theory chapter.

Eigenfrequency Analysis of a Free Cylinder: Application Library path 
Structural_Mechanics_Module/Verification_Examples/free_cylinder.

This section is available for the Shell interface only. Also see The MITC 
Shell Formulation.
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The fold-line limit angle  is the smallest angle between the normals of two boundaries 
that makes their intersection to be treated as a fold line. The normal to the shell is 
discontinuous along a fold-line. Enter a value or expression in the  field. The default 
value is 0.01 radians (approximately 0.6 degrees). The value must be larger than 0, and 
less than /2, but angles larger than a few degrees are not usually meaningful.

Since the rotational degrees of freedom have different meaning across a fold line, they 
are separate degrees of freedom, which a joined by a constraint. This constraint is, as 
default, implemented as a pointwise constraint. Select Use weak constraints to use a 
weak constraint instead.

D E F A U L T  T H R O U G H - T H I C K N E S S  R E S U L T  L O C A T I O N

Enter a number between -1 and 1 for the Local z-coordinate [-1,1] for 

thickness-dependent results Z. The value can be changed from 1 (downside) to 1 
(upside). The default is +1. A value of 0 means the midsurface of the shell. This is the 
default position for stress and strain evaluation during the results analysis. During the 
results and analysis stage, the coordinates can be changed in the Parameters section in 
the result features.

A D V A N C E D  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. Normally these settings do not 
need to be changed.

The Use MITC interpolation check box is selected by default, and this interpolation, 
which is part of the MITC shell formulation, should normally always be active.

For the Plate interface, the Use 3D formulation check box is used to select 
whether six or three variables are used in the formulation. For 
geometrically nonlinear analyses, or when in-plane (membrane) forces are 
active, six variables must be used. This check box is selected by default.
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In order to maintain the property that the shell normal has unit length, a constraint is 
applied on the shell normal displacement degrees of freedom in each node. This 
constraint is, as default, implemented as a pointwise constraint. Select Use weak 

constraints for shell normals to use a weak constraint instead.

You can chose how to group in the solver nodes the extra ODE variables added by 
some features.

Select the Rigid connectors check box to group in the solver node the variables added 
by the Rigid Connector feature.

Select the Attachments check box to group in the solver node the variables added by 
the Attachment feature.

The selection made in the Advanced Settings section can be overridden by the settings 
in the Advanced section of the Rigid Connector or Attachment features.

A U T O M A T E D  M O D E L  S E T U P

This section will only be displayed if a mesh on NASTRAN® format, containing RBE2 
elements, has been imported in an Import node under Mesh. The purpose is to 
automatically create rigid connectors from RBE2 elements in the NASTRAN file.

An RBE2 element represents a rigid connection between a set of mesh nodes. This 
means that it can, and often does, connect elements from different physics interfaces.

In the drop-down menu in the section title, you can select Create Rigid Connectors from 

RBE2. The effect is that one rigid connector will be created for each RBE2 element in 
the imported file. This will happen for all physics interfaces in the Interfaces list. 
Supported interfaces are: Solid Mechanics, Shell, Beam, and Multibody Dynamics. If 
there are RBE2 elements spanning more than one physics interface, they will be 
automatically connected.

The created rigid connectors will have point, edge, and boundary selections as inferred 
from the nodes in the RBE2 element and the mesh connectivity. The ‘independent 
node’ of the RBE2 element is used as center of rotation for the rigid connector.

As a default, a selective integration scheme is used for the weak 
contributions used to form the stiffness matrix in 2D axisymmetry. The 
membrane part of the strain energy is integrated using reduced integration 
in order to remove locking effects for thin shells. Deselect the Use reduced 

integration scheme check box to use full integration instead.
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The Automated Model Setup section is present in the Solid Mechanics, Shell, and Beam 
interfaces. In a model that contains several physics interfaces, you should use the 
automated model setup from only one of them, and make sure that all the involved 
interfaces are selected in the Interfaces list.

D I S C R E T I Z A T I O N

Select the order of the Displacement field — Linear or Quadratic. The degrees of 
freedom for the displacement of the shell normals will always have the same shape 
functions as the displacements.

D E P E N D E N T  V A R I A B L E S

Both interfaces define two dependent variables (fields) — the displacement field u and 
the field of normal displacements ar. The names can be changed, but the names of 
fields and dependent variables must in general be unique within a model. If you 
intentionally use the same name for fields from different physics interfaces, these 
degrees of freedom are treated as being the same. This can be used when mixing 
different type of structural mechanics interfaces, where you often want the 
displacements to be the equal.

• Domain, Boundary, Edge, Point, and Pair Nodes for the Shell and 
Plate Interfaces

• Theory for the Shell and Plate Interfaces

• Vibrations of a Disk Backed by an Air-Filled Cylinder: Application 
Library path Structural_Mechanics_Module/Acoustic-Structure_Interaction/

coupled_vibrations_manual

• Pinched Hemispherical Shell: Application Library path 
Structural_Mechanics_Module/Verification_Examples/

pinched_hemispherical_shell
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Domain, Boundary, Edge, Point, and Pair Nodes for the Shell and 
Plate Interfaces

The Shell and Plate Interfaces have the following domain, boundary, edge, point, and 
pair nodes available from the Physics ribbon toolbar (Windows users), Physics context 
menu (Mac or Linux users), or right-click to access the context menu (all users).

F E A T U R E S  A V A I L A B L E  F R O M  S U B M E N U S

Many features for the Shell or Plate interface are added from submenus in the Physics 
toolbar groups or context menu (when you right-click the node). The submenu name 
is the same in both cases.

The submenus at the Boundary (Shell interface) or Domain (Plate interface) level are

• Material Models

• Face and Volume Loads

• Mass, Spring, and Damper

• Connections

• Face Constraints

The submenus at the Edge (Shell interface) or Boundary (Plate interface) level are

• Mass, Spring, and Damper

• Connections (Shell interface only)

• More Constraints

• Pairs

There is also the Points submenu.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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L I N K S  T O  F E A T U R E  N O D E  I N F O R M A T I O N

These nodes are described in this section (listed in alphabetical order):

• Added Mass

• Layered Adiabatic Heating

• Antisymmetry

• Attachment

• Body Load

• Boundary to Boundary

• Damping

• Edge Load

• Edge to Boundary

• Boundary to Boundary

• External Stress

• Face Load

• Fixed Constraint

• Hygroscopic Swelling

• Inelastic Strain Rate

• Initial Values

• Initial Stress and Strain

• Layered Linear Elastic Material

• Layered Hyperelastic Material

• Linear Elastic Material

• No Rotation

• Periodic Condition

• Phase

• Pinned

• Point Load

• Point Load, Free

• Point Mass

• Point Mass Damping

• Predeformation

• Prescribed Acceleration

• Prescribed Displacement/Rotation

• Prescribed Velocity

• Rigid Connector

• Ring Load

• Ring Load, Free

• Safety

• Section Stiffness

• Shell Local System

• Simply Supported

• Spring Foundation

• Symmetry

• Symmetry Plane

• Thermal Expansion (for 
Constraints)

• Thermal Expansion (for Materials)

• Thermal Expansion (Attachment)

• Thermal Expansion (Rigid 
Connector)

• Thickness and Offset
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These nodes are described in the documentation for the Solid Mechanics interface:

Initial Values

The Initial Values node adds initial values for the translational displacement and velocity 
field as well as the for the normal displacement and velocity field. It can serve as an 

If there are subsequent constraints specified on the same geometrical 
entity, the last one takes precedence. The exception is that “Pinned” and 
“No Rotation” boundary conditions do not override each other.

• Adhesion

• Applied Force (Rigid Connector)

• Applied Moment (Rigid Connector)

• Base Excitation

• Center of Rotation Nodes

• Component Definition

• Contact

• Creep

• Damage

• Fixed Joint

• Free

• Friction

• Linearly Accelerated Frame1

• Mass and Moment of Inertia (Rigid 
Connector)Gravity

• Plasticity

• Point Load (on Axis)

• Reduced Flexible Components

• Rigid Material

• Rigid Motion Suppression

• Rotating Frame1

• Slip Velocity

• Spring-Damper

• Wear

• Viscoelasticity

• Viscoplasticity

1 This is selected from the Face and Volume Loads submenu for this interface.

Harmonic Perturbation, Prestressed Analysis, and Small-Signal Analysis 
in the COMSOL Multiphysics Reference Manual

In the COMSOL Multiphysics Reference Manual see Table 2-4 for links 
to common sections and Table 2-5 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.
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initial condition for a transient simulation or as an initial guess for a nonlinear analysis. 
In addition to the default Initial Values node always present in the interface, you can 
add more Initial Values nodes if needed.

I N I T I A L  V A L U E S

Enter values or expressions for the initial values:

• Displacement field u (the displacement components u, v, and w)

• Velocity field

• Displacement of shell normals ar

• Displacement of shell normals, first time derivative

Context Menus
Shell>Initial Values

Shell>Boundaries>Initial Values

Plate>Initial Values

Plate>Domains>Initial Values

Ribbon
Physics tab with Shell selected:

Boundaries>Shell>Initial Values

Physics tab with Plate selected:

Domains>Plate>Initial Values

Thickness and Offset

Use the Thickness and Offset node to define the thickness for the different parts of a 
shell or membrane structure. In addition to the default Thickness and Offset node 
always present in the interface, you can add more Thickness and Offset nodes if needed.

If the actual midsurface is not on the selected boundaries, you can also prescribe an 
offset in the direction of the surface normal. The offset is defined as positive if the 
midsurface is displaced from the meshed boundary in the direction of the positive 
boundary normal.

T H I C K N E S S  A N D  O F F S E T

Enter a value for the Thickness d0 of the selected boundaries. The default is 0.01 m in 
the Shell and Plate interfaces, and 0.0001 m in the Membrane interface. If an 

u
t
------

ar
t

----------
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expression is used, the thickness can be variable so that a tapered shell or membrane 
can be modeled.

You can also add a Thickness Change subnode to take into account that the thickness 
may change over time.

For the offset, select a Position — Top surface on boundary, Midsurface on boundary, 
Bottom surface on boundary, or User defined.

For User defined, enter a value or expression in the zrel_offset field for the offset. It is 
given as the ratio between the offset distance and half the thickness. A value of +1 
means that the actual bottom surface is located on the meshed boundary, and a value 
of 1 means that the top surface is located on the meshed boundary.

Figure 5-6: Meshed boundary indicated in red. The vector n indicates the positive 
orientation of the boundary normal.

Values of zrel_offset outside the range [-1,1] are also allowed.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Thickness and Offset

Plate>Thickness and Offset

Membrane>Thickness and Offset

The offset settings are not available for the Plate interface.

Thickness and offset settings specified on this node are not applicable for 
a Layered Linear Elastic Material or a Layered Hyperelastic Material node as 
this information is then provided on Layered Material and Layered Material 

Link nodes.

For theory, see Offset.
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Ribbon
Physics tab with Shell selected:

Boundaries>Shell>Thickness and Offset

Physics tab with Plate selected:

Domains>Plate>Thickness and Offset

Physics tab with Membrane selected:

Boundaries>Membrane>Thickness and Offset

Thickness Change

Add a Thickness Change node to incorporate an expression for how the thickness of a 
shell or membrane changes as a function of time. This feature is only used in 
time-dependent studies. The intended applications are when the thickness varies due 
to wear, corrosion, electrodeposition, or similar processes. In many cases, the 
expression for the rate of change will thus depend on variables computed elsewhere.

T H I C K N E S S  C H A N G E

To incorporate a changing thickness, select Thickness rate, top surface and/or Thickness 

rate, bottom surface, as applicable. Then, enter expressions for the thickness change 
rates,  and .

The current thickness will be computed as d0 + top(t) + bot(t), where d0 is the 
original thickness given in the parent Thickness and Offset node.

D I S C R E T I Z A T I O N

The additional thickness is a field as function of the spatial coordinates, and it will be 
approximated by a set of shape functions. Select a Shape function type — From physics, 
Discontinuous Lagrange, or Gauss point data. When selecting From physics, the additional 
thickness field is approximated by the same shape functions that are used for the 
dependent variables of the physics.

The order of the shape functions is in all cases selected automatically, based on the 
discretization in the physics interface.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Thickness and Offset>Thickness Change

top
t

-------------
bot

t
-------------
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Membrane>Thickness and Offset>Thickness Change

Ribbon
Physics tab with Thickness and Offset node selected in the model tree:

Attributes>Thickness Change

Linear Elastic Material

The Linear Elastic Material node adds the equations for a linear elastic shell and an 
interface for defining the elastic material properties.

By adding the following subnodes to the Linear Elastic Material node you can 
incorporate many other effects:

• Thermal Expansion (for Materials)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress

• Damping

• Safety

A Shell Local System subnode is always added. In this node you specify the coordinate 
system in which material orientations and results are interpreted. You can add several 
Shell Local System nodes in order to control the local directions on different 
boundaries.

L I N E A R  E L A S T I C  M A T E R I A L

Select Material symmetry— Isotropic, Orthotropic, or Anisotropic and enter the settings 
as described for the Linear Elastic Material for the Solid Mechanics interface. Note 
that:

• For Orthotropic no values for Ez, yz, or xz need to be entered due to the shell 
assumptions. It is also possible to define Transversely isotropic material properties.

• For User defined Anisotropic a 6-by-6 symmetric matrix is displayed. Due to the shell 
assumptions, you only need to enter values for D11, D12, D22, D14, D24, D55, D66, 
and D56.

• The material orientation is always interpreted in a local coordinate system aligned 
with the shell boundary as described in Local Coordinate Systems.
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O U T - O F - P L A N E  S T R A I N

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If the Solve for out-of-plane strain components check box is selected, extra degrees of 
freedom will be added for computing the out-of-plane strain components. This 
formulation is similar to what is used for plane stress in the Solid Mechanics and 
Membrane interfaces, and it is computationally somewhat more expensive than the 
standard formulation. In the default formulation, the out-of-plane strain in the shell is 
explicitly computed from the stress. This may cause circular references of variables if 
you for example want the constitutive law to be strain-dependent. If you encounter 
such problems, use the alternative formulation.

G E O M E T R I C  N O N L I N E A R I T Y

The settings in this section affect the behavior of the selected domains in a 
geometrically nonlinear analysis.

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. Select the Geometrically linear formulation check box to 
always use a small strain formulation, irrespective of the setting in the study step.

The default value is that the check box is cleared, except when opening a model created 
in a version prior to 4.3.

When a geometrically nonlinear formulation is used, the elastic deformations used for 
computing the stresses can be obtained in two different ways if inelastic deformations 
are present: additive decomposition and multiplicative decomposition. The default is 
to use multiplicative decomposition. Select Additive strain decomposition to change to 
an assumption of additivity.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Material Models>Linear Elastic Material

Plate>Material Models>Linear Elastic Material

Ribbon
Physics tab with Plasticity node selected in the model tree:

Attributes>Set Variables

Physics tab with Plate selected:
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Domains>Material Models>Linear Elastic Material

Layered Linear Elastic Material

The Layered Linear Elastic Material node adds the equations for a layered linear elastic 
shell.

If the Composite Materials Module analysis is available, this material model can be 
applied to arbitrary layers in a multilayered shell. The material properties, orientations, 
and layer thicknesses are defined using Layered Material node. The offset, and local 
coordinate system, in which material orientations and results are interpreted, is defined 
by Layered Material Link or Layered Material Stack node.

Without the Composite Materials Module, only single layer shells can be modeled. 
This is still useful. In particular, it is used for nonlinear material models, but also for 
some multiphysics couplings. For single layer materials, an ordinary Material node can 
be used, as long you include a Shell property group in which, for example, the thickness 
is given.

By adding the following subnodes to the Layered Linear Elastic Material node you can 
incorporate many other effects:

• Thermal Expansion (for Materials)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress

• Inelastic Strain Rate

• Damping

• Viscoelasticity

• Plasticity

• Creep

• Viscoplasticity

• For a general description about layered materials, see Layered Materials 
in the documentation for the Composite Materials Module.

• See also the discussion in Layered and Nonlayered Shells.
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• Damage

• Safety

Some of these material models are only available together with the Nonlinear 
Structural Materials Module (see https://www.comsol.com/products/
specifications/).

S H E L L  P R O P E R T I E S

For this node, the Shell Properties section is mainly used for selecting a material model, 
but not individual layers. There is one exception: it is possible to select a single stack 
member. This is useful when combining the Shell interface and the Layered Shell 
interface on the same boundary (sometimes called the multiple model method)

B O U N D A R Y  S E L E C T I O N

The boundary selection in this node is similar to the Linear Elastic Material node. It is 
however only possible to select boundaries which are part of the selection of a layered 
material defined in a Layered Material Link or a Layered Material Stack node.

L I N E A R  E L A S T I C  M A T E R I A L

Select Material symmetry— Isotropic, Orthotropic, or Anisotropic and enter the settings 
as described for the Linear Elastic Material for the Solid Mechanics interface. If the 
layers have different types of anisotropy properties, select the one that is most complex.

The Layered Linear Elastic Material is only available for the Shell interface, 
but not for the Plate interface.

TABLE 5-2:  LAYER SELECTIONS; LAYERED LINEAR ELASTIC MATERIAL

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Default when added When a Layered Material 
Stack is used, it is possible to 
select a single stack member

For a general description of this section, see Layer and Interface 
Selections in the documentation for the Composite Materials Module.
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Note that:

• For Orthotropic no values for Ez, yz, or xz need to be entered due to the shell 
assumptions. It is also possible to define Transversely isotropic material properties.

• For User defined Anisotropic a 6-by-6 symmetric matrix is displayed. Due to the shell 
assumptions, you only need to enter values for D11, D12, D22, D14, D24, D55, D66, 
and D56.

• The material orientation is always interpreted in a laminate coordinate system 
aligned with the shell boundary as described in Local Coordinate Systems together 
with the orientation of each layer specified on a layered material.

Mixed Formulation
For a material with a very low compressibility, using only displacements as degrees of 
freedom may lead to a numerically ill-posed problem. You can then use a mixed 
formulation, which adds an extra dependent variable for either the pressure or for the 
volumetric strain, see the Mixed Formulation section in the Structural Mechanics 
Theory chapter.

From the Use mixed formulation list, select None, Pressure formulation, or Strain 

formulation.

O U T - O F - P L A N E  S T R A I N

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If the Solve for out-of-plane strain components check box is selected, extra degrees of 
freedom will be added for computing the out-of-plane strain components. This 
formulation is similar to what is used for plane stress in the Solid Mechanics and 
Membrane interfaces, and it is computationally somewhat more expensive than the 
standard formulation. See Plane Stress.

In the default formulation, the out-of-plane strain in the shell is explicitly computed 
from the stress, and no extra degree of freedom is added. This may cause circular 
references of variables if you for example want the constitutive law to be strain 
dependent. If you encounter such problems, select the Solve for out-of-plane strain 

components check box.

When the Mixed Formulation is used, the Solve for out-of-plane strain components 
check box is selected, the extra degrees of freedom are added, and the section 
Out-of-Plane Strain is hidden.
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S H E A R  C O R R E C T I O N  F A C T O R

In this section there is a list for defining the value of shear correction factors. The two 
options available are Automatic and User defined. Once User defined option is selected, 
you can enter the values of k23 and k13.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

G E O M E T R I C  N O N L I N E A R I T Y

The settings in this section affect the behavior of the selected domains in a 
geometrically nonlinear analysis.

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. Select the Geometrically linear formulation check box to 
always use a small strain formulation, irrespective of the setting in the study step.

When a geometrically nonlinear formulation is used, the elastic deformations used for 
computing the stresses can be obtained in two different ways if inelastic deformations 
are present: additive decomposition and multiplicative decomposition. The default is 
to use multiplicative decomposition. Select Additive strain decomposition to change to 
an assumption of additivity.

E N E R G Y  D I S S I P A T I O N

The section is available when you also have the Nonlinear Structural Materials Module. 
Then, to display this section, click the Show More Options button ( ) and select 
Advanced Physics Options in the Show More Options dialog box.

D I S C R E T I Z A T I O N

If Pressure formulation is used, select the discretization for the Auxiliary pressure — 
Automatic, Discontinuous Lagrange, Continuous, Linear, or Constant. If Strain formulation 
is used, select the discretization for the Auxiliary volumetric strain — Automatic, 
Discontinuous Lagrange, Continuous, Linear, or Constant.

The Discretization section is available when Pressure formulation or Strain 

formulation is selected from the Use mixed formulation list. To display the 
section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Material Models>Layered Linear Elastic Material

Ribbon
Physics tab with Shell selected:

Boundaries>Material Models>Layered Linear Elastic Material

Shell Local System

The Shell Local System subnode is used for interpreting directions of orthotropic and 
anisotropic material data as well as when stresses or strains are presented in a local 
system.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any valid additional coordinate system that the model includes. If the selected 
coordinate system is not a boundary system, it is projected onto the shell surface as 
described in Local Coordinate Systems.

When a Shell or Plate interface is added, there is also a Shell Local System 
node added under Definitions. This coordinate system can be used to 
reference the local directions selected in a Shell interface. It is used 
internally in the Shell interface, and can also be accessed from other 
physics interfaces. The coordinate system can also be used in a Coordinate 

System Surface plot to visualize the local directions.

• Do not edit or duplicate the Shell Local System node added under 
Definitions.

• If you add more than one Shell physics interface to the same 
component, one Shell Local System node is added under Definitions by 
each interface. Do not reference a coordinate system that belongs to 
another Shell interface.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Linear Elastic Material>Shell Local System

Shell>Rigid Domain>Shell Local System

Plate>Linear Elastic Material>Shell Local System

Ribbon
Physics tab with Linear Elastic Material or Rigid Domain node selected in the model tree:

Attributes>Shell Local System

Layered Hyperelastic Material

The Layered Hyperelastic Material node adds the equations for a layered hyperelasticity 
at large strains. Hyperelastic materials can be suitable for modeling rubber and other 
polymers, biological tissue, and also for applications in acoustoelasticity.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.

If the Composite Materials Module is available, this material model can be applied to 
arbitrary layers in a multilayered shell. The material properties and layer thicknesses are 
defined using Layered Material node. The offset, and local coordinate system, in which 
material orientations and results are interpreted, is defined by Layered Material Link or 
Layered Material Stack node.

When a hyperelastic material is included in your model, all studies are geometrically 
nonlinear. The Include geometric nonlinearity check box in the study settings is selected 
and cannot be cleared.

By adding the following subnodes to the Layered Hyperelastic Material node you can 
incorporate many other effects. Some of these material models are only available 
together with the Nonlinear Structural Materials Module (see https://
www.comsol.com/products/specifications/).

• Thermal Expansion (for Materials)

• Hygroscopic Swelling

• External Stress

• External Strain

• Inelastic Strain Rate

• Damping

• Viscoelasticity

• Mullins Effect
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Without the Composite Materials Module, only single layer hyperelastic shells can be 
modeled. This is still useful. In particular, it is used for nonlinear material models, but 
also for some multiphysics couplings. For single layer materials, an ordinary Material 
node can be used, as long you include a Shell property group in which, for example, 
the thickness is given.

S H E L L  P R O P E R T I E S

For this node, the Shell Properties section is only used for selecting a material model, 
but not individual layers.

Data given in the other sections of this node applies to all layers. Thus, if you enter 
material data explicitly, rather relying on the default From material option, you will 
override that material property for all selected layers.

B O U N D A R Y  S E L E C T I O N

The boundary selection in this node is similar to the Linear Elastic Material node. It is 
however only possible to select boundaries which are part of the selection of a layered 
material defined in Layered Material Link or Layered Material Stack node.

• For a general description about layered materials, see Layered and 
Nonlayered Shells.

The Layered Hyperelastic Material is only available for the Shell interface, 
but not for the Plate interface.

TABLE 5-3:  LAYER SELECTIONS; LAYERED HYPERELASTIC MATERIAL

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Default when added. When Use all layers is not 
selected.

• All other settings for the Hyperelastic Material node are described in the 
documentation for Hyperelastic Material in the Solid Mechanics 
interface.

• You can provide material parameters with a through-thickness variation 
by explicitly or implicitly using expressions containing the extra 
dimension coordinate.
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H Y P E R E L A S T I C  M A T E R I A L

Select a Material model and enter the settings as described for the Hyperelastic Material 
for the Solid Mechanics interface.

S H E A R  C O R R E C T I O N  F A C T O R

Enter the shear correction factors for transverse shear k23 and k13.

When computing the contribution from shear stiffness to the total virtual work, it is 
necessary to take into account that the shell approximation assumes that shear stresses 
and strains in the thickness direction are constant, whereas in reality the distribution is 
more complicated. The shear correction factors are used to compensate for this, so that 
the total strain energy density is correct.

E N E R G Y  D I S S I P A T I O N

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Material Models>Layered Hyperelastic Material

Ribbon
Physics tab with Shell selected:

Boundaries>Material Models>Layered Hyperelastic Material

Viscoelasticity

Use the Viscoelasticity subnode to add viscous stress contributions to a Layered Linear 
Elastic Material or to a Layered Hyperelastic Material.

If the Composite Materials Module analysis is available, the viscoelastic model can be 
applied to arbitrary layers in a multilayered shell.

See also Layered and Nonlayered Shells.
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S H E L L  P R O P E R T I E S

Select the layer or layers for which this viscoelastic model is to be used.

If the viscoelastic model differs between layers, you will need to add several 
Viscoelasticity nodes with different layer selections.

If the same layer is selected in two Viscoelasticity nodes being active on the boundary, 
then there will be two viscoelastic contributions.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Layered Linear Elastic Material>Viscoelasticity

Shell>Layered Hyperelastic Material>Viscoelasticity

Ribbon
Physics tab with Layered Linear Elastic Material or Layered Hyperelastic Material node 
selected in the model tree:

Attributes>Viscoelasticity

Plasticity

Use the Plasticity subnode to define the properties for modeling elastoplastic materials. 
This material model can be used together with the Layered Linear Elastic Material.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.

TABLE 5-4:  LAYER SELECTIONS; VISCOELASTICITY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the Viscoelasticity node are described in the 
documentation for Viscoelasticity in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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If the Composite Materials Module is available, the plasticity model can be applied to 
arbitrary layers in a multilayered shell.

S H E L L  P R O P E R T I E S

Select the layer or layers for which this plasticity model is to be used.

If the plasticity model differs between layers, you will need to add several Plasticity 
nodes with different layer selections. If the model is the same, and only the material 
data values differ, you can use a single Plasticity node where From material is used to 
define the values. The data for each layer is then received from global Layered Material 
nodes.

If there are two Plasticity nodes where the same layer is selected on the same boundary, 
the latter will be overridden on the common selections.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Layered Linear Elastic Material>Plasticity

Ribbon
Physics tab with Layered Linear Elastic Material node selected in the model tree:

Attributes>Plasticity

See also Layered and Nonlayered Shells.

TABLE 5-5:  LAYER SELECTIONS; PLASTICITY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection 
when the node is added.

When Use all layers is not selected.

Only a subset of the layers selected in 
the parent can be selected.

• All other settings for the Plasticity node are described in the 
documentation for Plasticity in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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Set Variables

Use the Set Variables subnode to Plasticity of a Layered Linear Elastic Material to reset 
plasticity variables according to a Setting condition that you define. When the Setting 

condition is satisfied, the plasticity variables are reset to the specified values.

S E T  V A R I A B L E S

Enter the Setting condition. This is a Boolean expression that will determine when the 
plastic variables are reset.

From the Equivalent plastic strain list, select Do not set or User defined. The default User 

defined value is zero. Depending on the type of plasticity model, set additional 
plasticity variables.

From the Plastic strain tensor list, select Do not set or User defined. The default User 

defined values are zero for all components of the Plastic strain tensor.

If Armstrong-Frederick or Chaboche is selected from the Kinematic Hardening Model 
list, specify the values for the components of the Back strain tensor. From the Back 

strain tensor list, select Do not set or User defined. The default User defined values are 
zero for all components of the Back strain tensor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Layered Linear Elastic Material>Plasticity>Set Variables

Ribbon
Physics tab with Plasticity node selected in the model tree:

Attributes>Set Variables

Creep

Use the Creep subnode to define the creep properties of a Layered Linear Elastic 
Material.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.
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If the Composite Materials Module is available, creep models can be applied to 
arbitrary layers in a multilayered shell.

S H E L L  P R O P E R T I E S

Select the layer or layers for which this creep model is to be used.

When the creep model differs between layers, you will need to add several Creep nodes 
with different layer selections. If the model is the same, and only the material data 
values differ, you can use a single Creep node where From material is used to define the 
values. The data for each layer is then received from global Layered Material nodes.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Layered Linear Elastic Material>Creep

Ribbon
Physics tab with Layered Linear Elastic Material node selected in the model tree:

Attributes>Creep

See also Layered and Nonlayered Shells.

TABLE 5-6:  LAYER SELECTIONS; CREEP

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the Creep node are described in the 
documentation for Creep in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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Additional Creep

Use the Additional Creep subnode to define additional contributions to the creep model 
defined by the parent Creep node, such as primary or tertiary creep behavior. A Creep 
node can have any number of Additional Creep subnodes with different settings to 
model advanced creep mechanisms.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.

If the Composite Materials Module is available, the creep model can be applied to 
arbitrary layers in a multilayered shell.

S H E L L  P R O P E R T I E S

Select the layer or layers for which this creep model is to be used.

When the creep model differs between layers, you will need to add several Additional 

Creep nodes with different layer selections. If the model is the same, and only the 
material data values differ, you can use a single Additional Creep node where From 

material is used to define the values. The data for each layer is then received from global 
Layered Material nodes.

See also Layered and Nonlayered Shells.

TABLE 5-7:  LAYER SELECTIONS; CREEP

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.
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If the same layer is selected in two Additional Creep nodes being active on the boundary, 
then there will be two creep strain contributions

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Layered Linear Elastic Material>Creep>Additional Creep

Ribbon
Physics tab with Creep node selected in the model tree:

Attributes>Additional Creep

Viscoplasticity

Use the Viscoplasticity subnode to define the viscoplastic properties of a Layered Linear 
Elastic Material.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.

If the Composite Materials Module is available, the viscoplastic model can be applied 
to arbitrary layers in a multilayered shell.

• All other settings for the Additional Creep node are described in the 
documentation for Additional Creep in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

See also Layered and Nonlayered Shells.
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S H E L L  P R O P E R T I E S

Select the layer or layers for which this viscoplasticity model is to be used.

When the viscoplasticity model differs between layers, you will need to add several 
Viscoplasticity nodes with different layer selections. If the model is the same, and only 
the material data values differ, you can use a single Viscoplasticity node where From 

material is used to define the values. The data for each layer is then received from global 
Layered Material nodes.

If the same layer is selected in two Viscoplasticity nodes being active on the same 
boundary, the second definition will override the previous.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Layered Linear Elastic Material>Viscoplasticity

Ribbon
Physics tab with Layered Linear Elastic Material node selected in the model tree:

Attributes>Viscoplasticity

Thermal Expansion (for Materials)

Use the Thermal Expansion subnode to add an internal thermal strain caused by changes 
in temperature. It is possible to model bending due to a temperature gradient in the 
thickness direction of the shell.

TABLE 5-8:  LAYER SELECTIONS; VISCOPLASTICITY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the Viscoplasticity node are described in the 
documentation for Viscoplasticity in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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Thermal expansion can be modeled for the Linear Elastic Material, Layered Linear 
Elastic Material, or Layered Hyperelastic Material. The thermal expansion can be 
applied to arbitrary layers in a multilayered shell when the Composite Materials 
Module analysis is available.

S H E L L  P R O P E R T I E S

This section is present when this node is added under Layered Linear Elastic Material or 
Layered Hyperelastic Elastic Material node. In this section, select the layers in which 
thermal expansion needs to be modeled.

For a multilayered shell, it is often easiest to add one Thermal Expansion node per layer, 
if the temperature input is manual.

If the same layer is selected in two Thermal Expansion nodes being active on the same 
boundary, the second definition will override the previous.

M O D E L  I N P U T S

The Volume reference temperature Tref is the temperature at which there are no thermal 
strains. As a default, the value is obtained from a Common model input. You can also 
select User defined to enter a value or expression for the temperature locally.

See also Layered and Nonlayered Shells.

TABLE 5-9:  LAYER SELECTIONS; THERMAL EXPANSION

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide parameters for the expansion with a through-thickness 
variation by explicitly or implicitly using expressions containing the 
extra dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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The Temperature T is by default obtained from a Common model input. You can also 
select an existing temperature variable from a heat transfer interface (for example, 
Temperature (htsh/sol1)), if any temperature variables exist, or manually enter a value 
or expression by selecting User defined. This is the midsurface temperature of the shell, 
controlling the membrane part of the thermal expansion. For layered shells, it is the 
mid-layer temperature for each layer.

If needed, you can add a through-thickness temperature gradient in the Thermal 

Bending section.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Select an Input type to specify how the thermal strain is entered. For the default Secant 

coefficient of thermal expansion the thermal strain is given by

wherethe secant coefficient of thermal expansion  can be temperature dependent.

When Input type is Tangent coefficient of thermal expansion, the thermal strain is given 
by

Thermal strains are proportional to the temperature, while structural 
strains are computed from the gradient of the displacement field. It is 
good practice to match the discretization order of thermal and structural 
strains.

When adding a Thermal Expansion subnode, and the temperature field is 
computed by another physics interface (often the Heat Transfer in Shells 
interface); use a discretization one order lower for the temperature field 
than what is used for the displacement field.

See also:

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual

th  T Tref– =

th t   d
Tref

T

 
 
 

exp 1–=
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where t is the tangential coefficient of thermal expansion.

When Input type is Thermal strain, enter the thermal strain dL as function of 
temperature explicitly.

In all three cases, the default is to take values From material. When entering data as 
User defined, select Isotropic, Diagonal, or Symmetric to enter one or more components 
for a general coefficient of the thermal expansion tensor or the thermal strain tensor. 
When Diagonal or Symmetric input is used, the axis orientations are given by the 
coordinate system selection in the parent node

T H E R M A L  B E N D I N G

The temperature is assumed to vary linearly through the thickness.

Linear Elastic Material
Enter the Temperature difference in thickness direction Tz. This is the temperature 
difference between the top and bottom surfaces.

Layered Linear Elastic or Layered Hyperelastic Material
From the list, select Temperature difference in thickness direction or Temperature 

gradient in thickness direction.

When Temperature difference in thickness direction is selected, enter the temperature 
difference Tz between the top surface of the topmost of the selected layers and 
bottom surface of the bottommost of the selected layers.

When Temperature gradient in thickness direction is selected, enter the temperature 
gradient T ' in the direction from the bottom surface to the top surface.

The settings in this section differ slightly depending on if the Thermal 

Expansion subnode is added under Linear Elastic Material, Layered Linear 

Elastic Material, Layered Hyperelastic Material,or Section Stiffness.

If the temperature distribution is obtained from another physics interface 
of a layered type, such as Heat Transfer in Shells, then the temperature 
variation in the through-thickness direction is automatically known. No 
input in this section is needed.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Linear Elastic Material>Thermal Expansion

Shell>Layered Linear Elastic Material>Thermal Expansion

Shell>Layered Hyperelastic Material>Thermal Expansion

Shell>Section Stiffness>Thermal Expansion

Plate>Linear Elastic Material>Thermal Expansion

Plate>Section Stiffness>Thermal Expansion

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, Layered 

Hyperelastic Material or Section Stiffness node selected in the model tree:

Attributes>Thermal Expansion

Hygroscopic Swelling

Hygroscopic swelling is an internal strain caused by changes in moisture content. This 
strain can be written as

where h is the coefficient of hygroscopic swelling, cmo is the moisture concentration, 
and cmo,ref is the strain-free reference concentration. It is possible to model bending 
due to a concentration gradient in the thickness direction of the shell.

Hygroscopic swelling can be modeled for the Linear Elastic Material, Layered Linear 
Elastic Material, and Layered Hyperelastic Material. The swelling can be applied to 
arbitrary layers in a multilayered shell when the Composite Materials Module analysis 
is available.

hs h cmo cmo,ref– =

See also Layered and Nonlayered Shells.
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S H E L L  P R O P E R T I E S

This section is present when this node is added under Layered Linear Elastic Material or 
Layered Hyperelastic Material node. In this section, select the layers in which 
hygroscopic swelling needs to be modeled.

If the Moisture concentration type differs between layers, you will need to add several 
Hygroscopic Swelling nodes with different layer selections. If only the material data 
values differ, you can use a single Hygroscopic Swelling node with From material. The 
data for each layer is then received from global Layered Material nodes.

For a multilayered shell, it is often easiest to add one Hygroscopic Swelling node per 
layer, if the temperature input is manual.

If the same layer is selected in two Hygroscopic Swelling nodes being active on the same 
boundary, the second definition will override the previous.

M O D E L  I N P U T S

From the Concentration c list, select an existing concentration variable from another 
physics interface, if any concentration variables exist. For User defined enter a value or 
expression for the concentration. This is the midsurface concentration in the shell, 
controlling the membrane part of the hygroscopic swelling.

The unit for the input depends on the setting of Concentration type in the Hygroscopic 

Swelling Properties section. Only concentration variables having the chosen physical 
dimension are available in the Concentration list.

TABLE 5-10:  LAYER SELECTIONS; HYGROSCOPIC SWELLING

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide parameters for the expansion with a through-thickness 
variation by explicitly or implicitly using expressions containing the 
extra dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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If needed, you can add a through-thickness concentration gradient in the Hygroscopic 

Bending section.

H Y G R O S C O P I C  S W E L L I N G  P R O P E R T I E S

In the Concentration type list, select Molar concentration (the default) or Mass 

concentration, depending on the units used for the concentration.

Enter a Strain reference concentration cref. This is the concentration at which there are 
no strains due to hygroscopic swelling.

If Molar concentration is selected as Concentration type, also enter the Molar mass of the 
fluid, Mm. The default value is 0.018 kg/mol, which is the molar mass of water.

The default Coefficient of hygroscopic swelling h uses values From material. For 
User defined select Isotropic (the default), Diagonal, or Symmetric to enter one or more 
components for a general coefficient of hygroscopic swelling tensor h. The default 
value for the User defined case is 1.5e-4 m3/kg. When a nonisotropic coefficient of 
hygroscopic swelling is used, the axis orientations are given by the coordinate system 
selection in the parent node.

The Include moisture as added mass check box is selected by default. When selected, 
the mass of the fluid is included in a dynamic analysis, and when using mass 
proportional loads. It will also contribute when computing mass properties.

H Y G R O S C O P I C  B E N D I N G

Hygroscopic strains are proportional to the concentration, while 
structural strains are computed from the gradient of the displacement 
field. It is good practice to match the discretization order of hygroscopic 
and structural strains.

When adding a Hygroscopic Swelling subnode, and the concentration field 
is computed by another physics interface; use a discretization one order 
lower for the concentration field than what is used for the displacement 
field.

The settings in this section differ slightly depending on if the Hygroscopic 

Swelling subnode is added under Linear Elastic Material, Layered Linear 

Elastic Material, or Layered Hyperelastic Material.
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The concentration is then assumed to vary linearly through the thickness.

Linear Elastic Material
Enter the Concentration difference in thickness direction cz. This is the difference 
between the concentrations at the top and bottoms surfaces.

Layered Linear Elastic or Layered Hyperelastic Material
From the list, select Concentration difference in thickness direction or Concentration 

gradient in thickness direction.

When Concentration difference in thickness direction is selected, enter the concentration 
difference cz between the top surface of the topmost of the selected layers and 
bottom surface of the bottommost of the selected layers.

When Concentration gradient in thickness direction is selected, enter the concentration 
gradient c’ in the direction from the bottom surface to the top surface.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Linear Elastic Material>Hygroscopic Swelling

Shell>Layered Linear Elastic Material>Hygroscopic Swelling

Shell>Layered Hyperelastic Material>Hygroscopic Swelling

Plate>Linear Elastic Material>Hygroscopic Swelling

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, or Layered 

Hyperelastic Material node selected in the model tree:

Attributes>Hygroscopic Swelling

Initial Stress and Strain

You can add the Initial Stress and Strain subnode to the Linear Elastic Material, Layered 
Linear Elastic Material, or Section Stiffness material models in order to specify the 
stress or strain state in the structure before applying any constraint or load. The values 
given are not initial values in the mathematical sense but rather a contribution to the 
constitutive relation
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When used with the Layered Linear Elastic Material, the contribution can be applied to 
arbitrary layers in a multilayered shell when the Composite Materials Module is 
available.

S H E L L  P R O P E R T I E S

This section is only present when this node is added under Layered Linear Elastic 

Material node. Select the layers in which initial stress and strain needs to be modeled.

If the initial stress or strain differ between layers, you will need to add several Initial 

Stress and Strain nodes with different layer selections.

If the same layer is selected in two Initial Stress and Strain nodes being active on the 
same boundary, the contributions will be added.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a Local coordinate system defining the directions along which the initial stresses 
and strains are given.

See also Layered and Nonlayered Shells.

In many cases Initial Stress and Strain and External Stress are 
interchangeable when prescribing stresses, but you can find some more 
options in the latter.

TABLE 5-11:  LAYER SELECTIONS; INITIAL STRESS AND STRAIN

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

For a general description of this section, see Layer and Interface 
Selections in the documentation for the Composite Materials Module.
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As Subnode to Linear Elastic Material
The Shell local system is selected by default. This means that the orientations are the 
same as used for the material description.

If you select Projected from coordinate system, you can select any coordinate system 
present in the model. The Coordinate system list will then contain any coordinate 
system present in the model. The coordinate system given is projected onto the shell 
surface as described in Local Coordinate Systems.

As Subnode to Layered Linear Elastic Material or Section Stiffness
You can select any available boundary system.

I N I T I A L  S T R E S S

Specify the initial stress as the Initial in-plane force, the Initial moment, and the Initial 

out-of-plane shear force. Enter values or expressions in the applicable fields for the:

• Initial in-plane force N0

• Initial moment M0

• Initial out-of-plane shear force Q0

I N I T I A L  S T R A I N

Specify the initial strain as the Initial membrane strain, the Initial bending strain, and the 
Initial transverse shear strain. Enter values or expressions in the applicable fields for the:

• Initial membrane strain 0
• Initial bending strain 0

• Initial transverse shear strain 0

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Linear Elastic Material>Initial Stress and Strain

Shell>Layered Linear Elastic Material>Initial Stress and Strain

Shell>Section Stiffness>Initial Stress and Strain

• For definitions of the generalized strains, see Theory for the Shell and 
Plate Interfaces.

• For details about initial stresses and strains, see Inelastic Strain 
Contributions and Initial Stresses and Strains.
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Plate>Linear Elastic Material>Initial Stress and Strain

Plate>Section Stiffness>Initial Stress and Strain

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, or Section 

Stiffness node selected in the model tree:

Attributes>Initial Stress and Strain

External Stress

You can add the External Stress subnode to the Linear Elastic Material, Layered Linear 
Elastic Material, Layered Hyperelastic Material, or Section Stiffness material models in 
order to specify an additional stress contribution which is not part of the constitutive 
relation. The external stress can be added to the total stress tensor, or act only as an 
extra load contribution.

S H E L L  P R O P E R T I E S

This section is present when this node is added under Layered Linear Elastic Material or 
Layered Hyperelastic Material node.

Select the layers in which external stress is to be modeled.

If the external stress input type differs between layers, you will need to add several 
External Stress nodes with different layer selections.

In many cases External Stress and Initial Stress and Strain are 
interchangeable when prescribing stresses. In Initial Stress and Strain, the 
given stress is however always added to the stress tensor, whereas the 
option to use the stress as only a load contribution exists only in External 

Stress.

TABLE 5-12:  LAYER SELECTIONS; EXTERNAL STRESS

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.
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If the same layer is selected in two External Stress nodes being active on the same 
boundary, the contributions will be added.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a Local coordinate system defining the directions along which the components 
of the input data are given.

Linear Elastic Material
The Shell local system is selected by default. This means that the orientations are the 
same as used for the material description.

If you select Projected from coordinate system, you can select any coordinate system 
present in the model. The Coordinate system list will then contain any coordinate 
system present in the model. The coordinate system given is projected onto the shell 
surface as described in Local Coordinate Systems.

Layered Linear Elastic Material, Layered Hyperelastic Material, or Section Stiffness
You can select any available boundary system.

E X T E R N A L  S T R E S S

Select a Stress input — Stress tensor or Section forces. This selection is not available 
when the parent node is Section Stiffness, in which case only the section force type of 
input is possible.

• When Stress tensor is selected, you enter the external stress in the form of Second 
Piola-Kirchhoff stress tensors. The Membrane part of external stress, Bending part of 

external stress, and Shear part of external stress lists all behave the same way: 
Depending on the type, they will contain all membrane (bending, shear) stress 
tensors announced by any physics interface, and also the entry User defined. When 
User defined is selected, you can enter the data for the membrane (bending, shear) 
part of the External stress tensor ext,m (ext,b, ext,s) as Isotropic, Diagonal, or 
Symmetric depending on the properties of the tensor. The tensor components are 
interpreted in the selected coordinate system. If a stress tensor announced by a 

For a general description of this section, see Layer and Interface 
Selections in the documentation for the Composite Materials Module.
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physics interface is selected, the coordinate system setting is ignored — the 
orientation is handled internally.

Choose a Contribution type — Add to stress tensor, Load contribution only, or Residual 

stress to determine the effect of the contribution.

• When Section forces is selected, specify the external stress as values or expressions for 
the In-plane force Next, the Moment Mext, and the Out-of-plane shear force Qext. 
Choose a Contribution type — Add to stress tensor, Load contribution only, or Residual 

stress to determine the effect of the contribution.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Linear Elastic Material>External Stress

Shell>Layered Linear Elastic Material>External Stress

Shell>Layered Hyperelastic Material>External Stress

Shell>Section Stiffness>External Stress

Plate>Linear Elastic Material>External Stress

Plate>Section Stiffness>External Stress

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, Layered 

Hyperelastic Material, or Section Stiffness node selected in the model tree:

Attributes>External Stress

External Strain

Many of the material models in COMSOL Multiphysics will compute a stress based on 
an elastic strain. The elastic strain tensor is obtained after removing any inelastic 
deformation contribution from the total deformation from the displacements.

Selecting a stress tensor announced by the same physics interface as where 
the External Stress node is added, will result in an error (‘Circular 
variable dependency detected’). This operation would imply that 
the computed stress depends on itself.

For theory, see External Stress.
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In the finite deformation case, the inelastic strain is instead removed using a 
multiplicative decomposition of the deformation gradient tensor. The elastic 
deformation gradient tensor is the basis for all strain energy formulations in 
hyperelastic materials, and also for the elastic strain in linear and nonlinear elasticity. It 
is derived by removing the inelastic deformation from the total deformation gradient 
tensor. See Multiplicative Decomposition in the Structural Mechanics Theory 
chapter.

The External Strain subnode allows you to provide inelastic strain contributions to the 
Layered Hyperelastic Material.

S H E L L  P R O P E R T I E S

See the documentation for the External Strain node in the Layered Shell chapter.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a Coordinate system. All inputs that you give below are interpreted in the given 
coordinate system. Deformation gradients are rotated by the local system in both 
indices.

E X T E R N A L  S T R A I N

Select the type of Strain input — Deformation gradient, Deformation gradient, inverse, or 
Stretches.

Deformation Gradient
For Deformation gradient, enter an inelastic deformation gradient contribution Fext. 
From the External deformation gradient list, you can choose User defined, or any 
deformation gradient tensor which is announced by another physics interface. If you 
select User defined, enter values or expressions for the components of the deformation 
gradient tensor.

Deformation Gradient, Inverse
For Deformation gradient, inverse, enter an inelastic inverse deformation gradient 
contribution . From the External deformation gradient inverse list, you can choose 
User defined, or any inverse deformation gradient tensor which is announced by 
another physics interface. If you select User defined, enter values or expressions for the 
components of the inverse deformation gradient tensor.

Stretches
For Stretches, enter values or expressions for the three principal stretches. Entering 
data on this form is convenient for some simple geometries and strain states, but in 

Fext
1–
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general it is difficult to provide suitable a coordinate system for the principal 
orientations.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Layered Hyperelastic Material>External Strain

Ribbon
Physics tab with Layered Hyperelastic Material node selected in the model tree:

Attributes>External Strain

Inelastic Strain Rate

The Inelastic Strain Rate subnode allows you to provide inelastic strain contributions to 
the material models Layered Linear Elastic Material and Layered Hyperelastic Material on 
a variety of formats as in External Strain. Here, however, the inelastic contribution is 
given as a rate, and the total inelastic contribution is computed by integrating this rate 
in time.

S H E L L  P R O P E R T I E S

See the documentation for the Inelastic Strain Rate node in the Layered Shell chapter.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Layered Linear Elastic Material>Inelastic Strain Rate

Shell>Layered Hyperelastic Material>Inelastic Strain Rate

Ribbon
Physics tab with Layered Linear Elastic Material node selected in the model tree:

Attributes>Creep

All other settings for the Inelastic Strain Rate node are described in the 
documentation for Inelastic Strain Rate in the Solid Mechanics interface.
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Damage

The Damage subnode allows you to model damage and cracking in brittle materials 
according to various criteria. It is available in the Solid Mechanics, Shell and Layered 
Shell interfaces, and it can be used in combination with the Layered Linear Elastic 
Material.

S H E L L  P R O P E R T I E S

Select the layer or layers for which the damage is to be computed.

If the damage input type differs between layers, you will need to add several Damage 
nodes with different layer selections.

If the same layer is selected in two Damage nodes being active on the same boundary, 
the contributions will be overridden.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Layered Linear Elastic Material>Damage

TABLE 5-13:  LAYER SELECTIONS; DAMAGE

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection 
when the node is added.

When Use all layers is not selected.

Only a subset of the layers selected in 
the parent can be selected.

• All other settings for the Damage node are described in the 
documentation for Damage in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe strain values with a through-thickness variation by 
explicitly or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.

See also

• Modeling Damage in the Structural Mechanics Modeling chapter.

• Damage Models in the Structural Mechanics Theory chapter.
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Ribbon
Physics tab with Layered Linear Elastic Material node selected in the model tree:

Attributes>Damage

Mullins Effect

Some nonlinear effects observed in rubbers, such as hysteresis in stress-stretch curves, 
residual strains, and stress softening effects, are not accounted in the formulation of 
common hyperelastic materials. See Mullins Effect in the Structural Mechanics 
Theory chapter.

Use the Mullins effect subnode to define the properties for modeling the 
stress-softening phenomenon under cyclic loading. The Mullins effect can be used 
together with Layered Hyperelastic Material.

S H E L L  P R O P E R T I E S

See the documentation for the Mullins Effect node in the Layered Shell chapter.

M U L L I N S  E F F E C T

The Damage function defines the model for Mullins effect. Select Ogden-Roxburgh or 
Miehe.

For Ogden-Roxburgh enter the following settings:

• Maximum damage d.The default is 1.

• Damage saturation Wsat. The default is 1 MJ/m3.

• Deformation dependence coefficient The default is 0.

For Miehe enter the following settings:

• Maximum damage d.The default is 1.

Damage saturation Wsat. The default is 1 MJ/m3.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Layered Hyperelastic Material>Mullins Effect

Ribbon
Physics tab with Layered Hyperelastic Material node selected in the model tree:

Attributes>Mullins Effect
T H E  S H E L L  A N D  P L A T E  I N T E R F A C E S  |  1285



1286 |  C H A P T E
Safety

Use the Safety subnode to set up variables which can be used to check the risk of failure 
according to various criteria. It can be used in combination with Linear Elastic Material, 
and Layered Linear Elastic Material. Four different variables describing the failure risk 
are defined, as described in Table 5-14.

You can add any number of Safety nodes to a single material model. The contents of 
this feature do not affect the analysis results as such, so you can add Safety nodes after 
having performed an analysis, and just do an Update Solution in order to access to the 
new variables for result evaluation.

For orthotropic and anisotropic failure criteria, the directions are given by the 
coordinate system selection in the parent node.

S H E L L  P R O P E R T I E S

This section is only present when this node is added under Layered Linear Elastic 

Material node.

Select the layer or layers for which the safety factor variables are to be defined.

TABLE 5-14:  VARIABLES FOR SAFETY FACTOR EVALUATION

VARIABLE DESCRIPTION CRITERION 
FULFILLED

CRITERION 
VIOLATED

Failure index, FI For a linear criterion, this is the ratio 
between the computed value and the 
given limit.

FI<1 FI>1

Damage index, DI A binary value, indicating whether 
failure is predicted or not. DI is based 
on the value of FI.

DI=0 DI=1

Safety factor, SF For a linear criterion, this is 1/FI. SF>1 SF<1

Margin of safety, MoS SF-1 MoS>0 MoS<0

TABLE 5-15:  LAYER SELECTIONS; SAFETY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection 
when the node is added.

When Use all layers is not selected.

Only a subset of the layers selected in 
the parent can be selected.
R  5 :  S H E L L  A N D  P L A T E



Each Safety subnode defines its own set of variables, so there is no interaction if you 
add several such nodes with the same selection.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Linear Elastic Material>Variables>Safety

Shell>Layered Linear Elastic Material>Variables>Safety

Plate>Linear Elastic Material>Variables>Safety

Ribbon
Physics tab with Linear Elastic Material or Layered Linear Elastic Material node selected 
in the model builder tree:

Attributes>Variables>Safety

Damping

Use the Damping subnode to add several types of damping to the material model. 
Damping can be used in Time Dependent, Eigenfrequency, and Frequency Domain 
studies; for other study types the settings in the Damping subnode are ignored.

S H E L L  P R O P E R T I E S

This section is only present when this node is added under Layered Linear Elastic 

Material node.

• All other settings for the Safety node are described in the 
documentation for Safety in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe parameters for the allowable values with a 
through-thickness variation by explicitly or implicitly using expressions 
containing the extra dimension coordinate as described in Using the 
Extra Dimension Coordinates.
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Select the layer or layers for which this damping model is to be used.

When the damping model differs between layers, you will need to add several Damping 
nodes with different layer selections. If the model is the same, and only the material 
data values differ, you can for most models use a single Damping node with From 

material. The data for each layer is then received from global Layered Material nodes.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Linear Elastic Material>Damping

Shell>Layered Linear Elastic Material>Damping

Shell>Layered Linear Hyperelastic Material>Damping

Shell>Section Stiffness>Damping

Plate>Linear Elastic Material>Damping

Plate>Section Stiffness>Damping

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, Layered 

Hyperelastic Elastic Material, or Section Stiffness node selected in the model tree:

Attributes>Damping

TABLE 5-16:  LAYER SELECTIONS; DAMPING

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection 
when the node is added.

When Use all layers is not selected.

Only a subset of the layers selected in 
the parent can be selected.

• All other settings for the Damping node are described in the 
documentation for Damping in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe damping values with a through-thickness variation by 
explicitly or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.
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Section Stiffness

The Section Stiffness material model provides a way of directly entering the stiffness or 
compliance of a shell without direct knowledge about the cross-section thickness and 
material distribution. Its main purpose is for entering homogenized properties of for 
example perforated or corrugated sheets.

Since only the stiffness, but not the section geometry is known, it is not possible to 
deduce the stresses. You can however provide an expression for stress computation 
based on the computed section forces.

In many cases, the properties of the shell cross section are anisotropic. All input data 
are interpreted along the local directions specified in the Coordinate System Selection 
section.

By adding the following subnodes to the Section Stiffness node you can incorporate 
other effects:

• Thermal Expansion (for Materials)

• Initial Stress and Strain

• External Stress

• Damping

S E C T I O N  P R O P E R T I E S

From the Specify list, select Effective stiffness or Effective flexibility in order to specify 
the representation of the section stiffness.

For Effective stiffness, enter the Extensional stiffness matrix, DA; Bending-extensional 

stiffness matrix, DB; Bending stiffness matrix, DD; and Shear stiffness matrix, DAs.

For Effective flexibility, enter the Extensional flexibility matrix, Da; Bending-extensional 

flexibility matrix, Db; Bending flexibility matrix, Dd; and Shear flexibility matrix, Das.

If required, enter also the Translational inertia, I0; Rotational-translational inertia 

matrix, I1; and Rotational inertia matrix, I2. The translational inertia is the average mass 
per unit area. As long as the shell is not thick or shear flexible, the two latter 
contributions to the inertia can usually be ignored. If the mass distribution of the shell 
is symmetric with respect to the midplane, then I1 is identically zero.
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The default for all section properties is to take the values From material. Any one of the 
matrices can also be User defined.

S T R E S S  E V A L U A T I O N  P R O P E R T I E S

If you want a certain stress value to be computed, you can enter a linear relation 
between section forces and stress here.

Enter an In-plane force factor, SN. This is a matrix which transforms the local membrane 
force (N11, N22, N12) into a local in-plane stress (s11, s22, s12).

Enter a Moment factor, SM. This is a matrix which transforms the local bending 
moment (M11, M22, M12) into a local in-plane stress (s11, s22, s12).

Enter an Out-of-plane force factor, SQ. This is a matrix which transforms the local shear 
force (Q1, Q2) into a local transverse shear stress (s13, s23).

S H E A R  C O R R E C T I O N  F A C T O R

Enter the shear correction factors for transverse shear k23 and k13.

When computing the contribution from shear stiffness to the total virtual work, it is 
necessary to take into account that the shell approximation assumes that shear stresses 
and strains in the thickness direction are constant, whereas in reality the distribution is 
more complicated. The shear correction factors are used to compensate for this, so that 
the total strain energy density is correct. When operating with stiffness and flexibility 
matrices, this correction can also be built directly into the matrices DAs and Das. Is so, 
set both shear correction factors to 1.

G E O M E T R I C  N O N L I N E A R I T Y

The settings in this section affect the behavior of the selected domains in a 
geometrically nonlinear analysis.

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. Select the Geometrically linear formulation check box to 
always use a small strain formulation, irrespective of the setting in the study step.

The inertia matrices are needed only for dynamic analysis. They are also 
used when computing mass forces for gravitational or rotating frame 
loads, and when computing mass properties (Computing Mass 
Properties).
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When a geometrically nonlinear formulation is used, the elastic deformations used for 
computing the stresses can be obtained in two different ways if inelastic deformations 
are present: additive decomposition and multiplicative decomposition. The default is 
to use multiplicative decomposition. Select Additive strain decomposition to change to 
an assumption of additivity.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Material Models>Section Stiffness

Plate>Material Models>Section Stiffness

Ribbon
Physics tab with Shell selected:

Boundaries>Material Models>Section Stiffness

Physics tab with Plate selected:

Domains>Material Models>Section Stiffness

Fixed Constraint

The Fixed Constraint node adds a condition that makes the geometric entity fixed (fully 
constrained); that is, the displacements and rotations are zero in all directions.

F A C E  D E F I N I N G  T H E  L O C A L  O R I E N T A T I O N S

This setting is used in conjunction with weak constraints. In order to be able to 
interpret the orientations of rotations to which the Lagrange multipliers are defined, 
you must know to which boundary they are applied. Select the boundary which should 
be used when setting up the weak constraints. The default is Use face with lowest 

number.

This section is available only for edges and points in the Shell interface 
and is only visible if Advanced Physics Options has been selected.
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face Constraints>Fixed Constraint

Shell>More Constraints>Fixed Constraint (Edge)
Shell>Points>Fixed Constraint

Plate>Face Constraints>Fixed Constraint

Plate>More Constraints>Fixed Constraint (Boundary)
Plate>Points>Fixed Constraint

Ribbon
Physics tab with Shell selected:

Boundaries>Face Constraints>Fixed Constraint

Edges>More Constraints>Fixed Constraint

Points>Shell>Fixed Constraint

Physics tab with Plate selected:

Boundaries>Face Constraints>Fixed Constraint

Edges>More Constraints>Fixed Constraint

Points>Plate>Fixed Constraint

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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Prescribed Displacement/Rotation

The Prescribed Displacement/Rotation node adds an edge, boundary, domain, or point 
condition to a model where the displacements and rotations are prescribed in one or 
more directions.

With this condition it is possible to prescribe one or more displacement components, 
as well as one or more rotational components, leaving the shell free to deform or rotate 
in the remaining directions.

• Prescribing all displacements and rotations to zero is equivalent to using a Fixed 

Constraint.

• Prescribing all displacements to zero is equivalent to a Pinned condition.

• Prescribing all rotations to zero is equivalent to the No Rotation condition.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select the coordinate system to use for specifying the prescribed displacement/
rotation. The coordinate system selection is based on the geometric entity level.

Domains (Plate Interface)
From the Coordinate system list select from:

• Global coordinate system (the default)

• Shell Local System

• Any additional user-defined coordinate system

Boundaries (Shell and Plate Interfaces)
From the Coordinate system list select from:

• Global coordinate system (the default)

• Boundary System (a predefined normal-tangential coordinate system)

• Shell Local System

• Any additional user-defined coordinate system

Edges (Shell Interface)
From the Coordinate system list select from:

• Global coordinate system (the standard global coordinate system).

• Local edge system (the default).

• Any additional user-defined coordinate system.
T H E  S H E L L  A N D  P L A T E  I N T E R F A C E S  |  1293



1294 |  C H A P T E
Points (Shell and Plate Interfaces)
From the Coordinate system list select from:

• Global coordinate system (the default)

• Shell Local System

• Any additional user-defined coordinate system

F A C E  D E F I N I N G  T H E  L O C A L  O R I E N T A T I O N S

This setting is used in conjunction with a Local edge system and Shell Local System. If 
displacement or rotations is prescribed for an edge or point which is shared between 
boundaries, the local system can be ambiguous. Select the boundary which should 
define the local system. The default is Use face with lowest number.

P R E S C R I B E D  D I S P L A C E M E N T

To prescribe a displacement in a certain spatial direction (x, y, or z), select one or all 
of the Prescribed in x direction, Prescribed in y direction, and Prescribed in z direction 
check boxes. Then enter a value or expression for the prescribed displacements u0x, 
u0y, or u0z.

P R E S C R I B E D  R O T A T I O N S

Select a prescribed rotation from the By list — Free, Rotation, or Normal vector. Select:

• Free (the default) to leave the rotations unconstrained.

• Rotation to activate a prescribed rotation in a certain direction. Enter a value or 
expression for the prescribed rotation,  about the tangential directions t1 and t2 
of the shell local system. The rotation is always interpreted the with respect to the 
shell local system, and independent of the Coordinate System Selection.

For geometric linearity, select one or both of the Free rotation around t1 direction 
and Free rotation around t2 direction check boxes to remove the constraint for the 
corresponding rotation component. If unchecked, the rotations are constrained to 
either the input value or to the default zero rotation. The status of the check boxes 

For details about the definition of local edge systems, see Local Edge 
System.

This section is available only for edges and points in the Shell interface.
R  5 :  S H E L L  A N D  P L A T E



has no effect when the geometric nonlinearity is activated under the study settings. 
This is because the constraints for different rotation components are not 
independent of each other in the case of finite rotations.

• Normal vector to describe the rotation by prescribing the shell normal vector in the 
deformed configuration. Enter the components of the Prescribed normal vector N0.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

In 2D axisymmetry, there is only one input, the Prescribed rotation around 
the out-of-plane direction, .

For details, see Initial Values and Prescribed Values.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

When Individual dependent variables is selected in the Apply reaction terms 

on list, the constraint forces are applied directly on the degrees of 
freedom, which are the displacements along the global coordinate axes. If 
you use this setting together with a local coordinate system, the results 
will be inconsistent since the constraint forces will not match the 
constraint orientation.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face Constraints>Prescribed Displacement/Rotation

Shell>Prescribed Displacement/Rotation (Edge)
Shell>Points>Prescribed Displacement/Rotation

Plate>Face Constraints>Prescribed Displacement/Rotation

Plate>Prescribed Displacement/Rotation (Boundary)
Plate>Points>Prescribed Displacement/Rotation

Ribbon
Physics tab with Shell selected:

Boundaries>Face Constraints>Prescribed Displacement/Rotation

Edges>Shell>Prescribed Displacement/Rotation

Points>Shell>Prescribed Displacement/Rotation

Physics tab with Plate selected:

Domains>Face Constraints>Prescribed Displacement/Rotation

Boundaries>Plate>Prescribed Displacement

Points>Plate>Prescribed Displacement

Thermal Expansion (for Constraints)

Add the Thermal Expansion subnode to Fixed Constraint to prescribe a deformation of 
the constrained edge caused by changes in temperature of the surroundings. This 
makes it possible to reduce the stresses caused by such boundary conditions.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements in a 
frequency domain analysis of perturbation type.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.

• You can assign the value of the prescribed displacement to a load 
group. See Load Cases in the Structural Mechanics Modeling chapter.
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T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain. This is a description of 
the thermal expansion of the surroundings idealized by the constraints.

Select Inherit from boundary to take the thermal expansion data from the domain being 
constrained. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual surrounding material has the same thermal expansion as the domain 
itself.

When Inherit from boundary is not selected, enter:

• A value or expression for the Volume reference temperature Tref that is the 
temperature at which there are no thermal displacements at the constraints.

• A value or expression for Temperature T, specifying the temperature distribution of 
the surrounding material. Any temperature variation must be an explicit function of 
the material frame coordinates. It is not possible to use a computed temperature 
distribution.

• Select the Input type — Secant coefficient of thermal expansion, Tangent coefficient of 

thermal expansion, or Thermal strain to specify how the thermal strain is entered. The 
default values From material are used. This requires that a material has been assigned 
to the boundaries, edges, or points where the constraint is active. When a 
nonisotropic coefficient of thermal expansion is used, the axis orientations are given 
by the coordinate system selected in the Coordinate System Selection section.

Enter the coordinates of the Reference point, the point where the displacement is zero. 
The choice of reference point only affects the rigid body motion. If there are several 
different constraints with a Thermal Expansion subnode, the same reference point 
should usually be selected in all of them.

• Thermal Expansion Properties.

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Fixed Constraint>Thermal Expansion

Plate>Fixed Constraint>Thermal Expansion

Ribbon
Physics tab with Fixed Constraint node selected in the model tree:

Attributes>Thermal Expansion

Prescribed Velocity

The Prescribed Velocity node adds an edge, boundary, or domain condition where the 
translational or rotational velocity is prescribed in one or more directions. The 
prescribed velocity condition is applicable for Time Dependent and Frequency 
Domain studies. With this condition it is possible to prescribe a velocity in one 
direction, leaving the shell free in the other directions.

The Prescribed Velocity node is a constraint, and overrides any other constraint on the 
same selection.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select the coordinate system to use for specifying the prescribed velocity. The 
components are entered in the selected coordinate system.

The coordinate system selection is based on the geometric entity level.

Domains (Plate Interface)
From the Coordinate system list select from:

• Global coordinate system (the default)

For details about prescribed velocities and accelerations, see Prescribed 
Displacements, Velocities, and Accelerations.

Coordinate systems with directions that change with time should not be 
used. If you choose another, local coordinate system, the velocity 
components change accordingly.
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• Shell Local System

• Any additional user-defined coordinate system

Boundaries (Shell and Plate Interfaces)
From the Coordinate system list select from:

• Global coordinate system (the default)

• Boundary System (a predefined normal-tangential coordinate system)

• Shell Local System

• Any additional user-defined coordinate system

Edges (Shell Interface)
From the Coordinate system list select from:

• Global coordinate system (the standard global coordinate system).

• Local edge system (the default)

• Shell Local System

• Any additional user-defined coordinate system.

F A C E  D E F I N I N G  T H E  L O C A L  O R I E N T A T I O N S

This setting is used in conjunction with a Local edge system and Shell Local System. If 
the velocity is prescribed for an edge which is shared between boundaries, the edge 
system can be ambiguous. Select the boundary which should define the edge system. 
The default is Use face with lowest number.

P R E S C R I B E D  V E L O C I T Y

To define a prescribed velocity for each spatial direction (x, y, and z), select one or 
more of the Prescribed in x direction, Prescribed in y direction, and Prescribed in 

z direction check boxes. Then enter a value or expression for the prescribed velocity 
components vx, vy, and vz.

For details about the definition of local edge systems, see Local Edge 
System.

This section is available only for edges in the Shell interface.
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P R E S C R I B E D  A N G U L A R  V E L O C I T Y

To define a prescribed angular velocity for each spatial direction (x, y, and z), select one 
or all of the Prescribed around x direction, Prescribed around y direction, and Prescribed 

around z direction check boxes and enter a value or expression for in each xt, y
t, or zt field.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face Constraints>Prescribed Velocity

Shell>More Constraints>Prescribed Velocity (Edge)
Plate>Face Constraints>Prescribed Velocity

Plate>More Constraints>Prescribed Velocity (Boundary)

Ribbon
Physics tab with Shell selected:

Boundaries>Face Constraints>Prescribed Velocity

Edges>>More Constraints>Prescribed Velocity

Physics tab with Plate selected:

Domains>Face Constraints>Prescribed Velocity

Boundaries>>More Constraints>Prescribed Velocity

Prescribed Acceleration

The Prescribed Acceleration node adds an edge, boundary, or domain condition where 
the translational or rotational acceleration is prescribed in one or more directions. The 
prescribed acceleration condition is applicable for Time Dependent and Frequency 
Domain studies. With this condition it is possible to prescribe an acceleration in one 
direction, leaving the shell free in the other directions.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed velocity in a 
frequency domain analysis of perturbation type.

• Prescribed Velocity cannot be used as a weak constraint.
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The Prescribed Acceleration node is a constraint, and overrides any other constraint on 
the same selection.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select the coordinate system to use for specifying the prescribed acceleration. The 
coordinate system selection is based on the geometric entity level.

Domains (Plate Interface)
From the Coordinate system list select from:

• Global coordinate system (the default)

• Shell Local System

• Any additional user-defined coordinate system

Boundaries (Shell and Plate Interfaces)
From the Coordinate system list select from:

• Global coordinate system (the default)

• Boundary System (a predefined normal-tangential coordinate system)

• Shell Local System

• Any additional user-defined coordinate system

Edges (Shell Interface)
From the Coordinate system list select from:

• Global coordinate system (the standard global coordinate system).

• Local edge system (the default)

For details about prescribed velocities and accelerations, see Prescribed 
Displacements, Velocities, and Accelerations.

Coordinate systems with directions that change with time should not be 
used. If you choose another, local coordinate system, the acceleration 
components change accordingly.
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• Shell Local System

• Any additional user-defined coordinate system.

F A C E  D E F I N I N G  T H E  L O C A L  O R I E N T A T I O N S

This setting is used in conjunction with a Local edge system and Shell Local System. If 
the acceleration is prescribed for an edge which is shared between boundaries, the edge 
system can be ambiguous. Select the boundary which should define the edge system. 
The default is Use face with lowest number.

P R E S C R I B E D  A C C E L E R A T I O N

To define a prescribed acceleration for each spatial direction (x, y, and z), select one or 
more of the Prescribed in x direction, Prescribed in y direction, and Prescribed in 

z direction check boxes. Then enter a value or expression for the prescribed 
acceleration components ax, ay, and az.

P R E S C R I B E D  A N G U L A R  A C C E L E R A T I O N

To define a prescribed angular acceleration for each spatial direction (x, y, and z), select 
one or all of the Prescribed around x, y, and z direction check boxes and enter a value 
or expression for in each , , or  field.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face Constraints>Prescribed Acceleration

Shell>More Constraints>Prescribed Acceleration (Edge)

For details about the definition of local edge systems, see Local Edge 
System.

This section is available only for edges in the Shell interface.

2x  t2 2y  t2 2z  t2

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed acceleration in a 
frequency domain analysis of perturbation type.

• Prescribed Acceleration cannot be used as a weak constraint.
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Plate>Face Constraints>Prescribed Acceleration

Plate>More Constraints>Prescribed Acceleration (Boundary)

Ribbon
Physics tab with Shell selected:

Boundaries>Face Constraints>Prescribed Acceleration

Edges>>More Constraints>Prescribed Acceleration

Physics tab with Plate selected:

Domains>Face Constraints>Prescribed Acceleration

Boundaries>>More Constraints>Prescribed Acceleration

Pinned

The Pinned node adds an edge, boundary, domain, or point condition that fixes the 
translations in all directions; that is, all displacements are zero. The rotations are not 
constrained.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face Constraints>Pinned

Shell>More Constraints>Pinned (Edge)
Shell>Points>Pinned

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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Plate>Face Constraints>Pinned

Plate>More Constraints>Pinned (Boundary)
Plate>Points>Pinned

Ribbon
Physics tab with Shell selected:

Boundaries>Face Constraints>Pinned

Edges>More Constraints>Pinned

Points>Shell>Pinned

Physics tab with Plate selected:

Boundaries>Face Constraints>Pinned

Edges>More Constraints>Pinned

Points>Plate>Pinned

No Rotation

The No Rotation node adds an edge, boundary, domain, or point condition that fixes 
the rotations around all axes. The translations are not constrained.

F A C E  D E F I N I N G  T H E  L O C A L  O R I E N T A T I O N S

This setting is used in conjunction with weak constraints. In order to be able to 
interpret the orientations to which the Lagrange multipliers are defined, you must 
know to which boundary they are applied. Select the boundary which should be used 
when setting up the weak constraints. The default is Use face with lowest number.

This section is available only for edges and points in the Shell interface 
and is only visible if Advanced Physics Options has been selected.
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face Constraints>No Rotation

Shell>More Constraints>No Rotation (Edge)
Shell>Points>No Rotation

Plate>Face Constraints>No Rotation

Plate>More Constraints>No Rotation (Boundary)
Plate>Points>No Rotation

Ribbon
Physics tab with Shell selected:

Boundaries>Face Constraints>No Rotation

Edges>More Constraints>No Rotation

Points>Shell>No Rotation

Physics tab with Plate selected:

Boundaries>Face Constraints>No Rotation

Edges>More Constraints>No Rotation

Points>Plate>No Rotation

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
T H E  S H E L L  A N D  P L A T E  I N T E R F A C E S  |  1305



1306 |  C H A P T E
Simply Supported

The Simply Supported node adds an edge condition that constrains the displacement in 
the direction perpendicular to the shell. The in-plane rotation perpendicular to the 
edge is also constrained. Optionally you can constrain the in-plane displacements.

I N - P L A N E  D I S P L A C E M E N T  C O N S T R A I N T S

Select Along edge to constrain the in-plane translation along the edge.

Select Perpendicular to edge to constrain the in-plane displacement perpendicular to the 
edge.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>More Constraints>Simply Supported

Plate>More Constraints>Simply Supported

Ribbon
Physics tab with Shell selected:

Edges>More Constraints>Simply Supported

Physics tab with Plate selected:

Boundaries>More Constraints>Simply Supported

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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Symmetry

The Symmetry node adds an edge or boundary condition that defines a symmetry edge 
or boundary.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N  ( E D G E S  O N L Y )

Select the coordinate system to use for specifying a symmetry edge. From the 
Coordinate system list select from:

• Local edge system (the default).

• Global coordinate system (the standard global coordinate system).

• Any additional user-defined coordinate system.

F A C E  D E F I N I N G  T H E  L O C A L  O R I E N T A T I O N S

This setting is used in conjunction with a Local edge system and Shell Local System. If 
symmetry is prescribed for an edge which is shared between boundaries, the edge 
system can be ambiguous. Select the boundary which should define the edge system. 
The default is Use face with lowest number.

For 2D axisymmetric components, use the Symmetry Plane node instead.

This section is available only for edges in the Shell interface.

For details about the definition of local edge systems, see Local Edge 
System.

This section is available only for edges in the Shell interface.
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S Y M M E T R Y

If another coordinate system than the Local edge system is used, select a Symmetry plane 

normal — First axis, Second axis, or Third axis. This indicates which axis in the selected 
coordinate system that acts as normal to the symmetry plane.

N O R M A L  D I R E C T I O N  C O N D I T I O N

You can allow a symmetry plane to move along its normal direction. This can be used 
to model some situations where you want a plane to remain strictly planar but still relax 
the property of it being fixed.

From the list, select No displacement, Free Displacement, Prescribed force, or Prescribed 

displacement.

The value No displacement gives a standard symmetry condition.

Select Free Displacement to allow the symmetry plane to translate in the normal 
direction. The displacement is determined by the criterion that there is no resulting 
reaction force in the normal direction.

Select Prescribed force to prescribe the total reaction force acting on the direction 
normal to the symmetry plane. Enter the Normal force Fn. The force is defined as 
positive when acting along the outward normal of the symmetry plane. Setting the 
prescribed force to zero gives the same effect as using Free Displacement.

This section is available only for edges in the Shell interface.
R  5 :  S H E L L  A N D  P L A T E



Select Prescribed displacement to prescribe the displacement in the direction normal to 
the symmetry plane. Enter the Normal displacement un0. Setting the prescribed 
displacement to zero gives the same effect as using No displacement.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face Constraints>Symmetry

• Using Free Displacement, Prescribed force, or Prescribed displacement is 
only meaningful if the geometry selection corresponds to a single 
symmetry plane.

• When using Free Displacement or Prescribed force, an extra global 
degree of freedom is added for determining the displacement in the 
normal direction. This degree of freedom will have a name of the type 
<component>.<interface>.<symmetry_tag>.un, for example 
comp1.shell.sym1.un.

• In the Plate interface, this section is only present when Use 3D 

formulation is selected in the interface settings.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry and Antisymmetry Boundary Conditions

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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Shell>More Constraints>Symmetry (Edge)
Plate>More Constraints>Symmetry (Boundary)

Ribbon
Physics tab with Shell selected:

Boundaries>Face Constraints>Symmetry

Edges>More Constraints>Symmetry

Physics tab with Plate selected:

Boundaries>More Constraints>Symmetry

Symmetry Plane

In an axially symmetric problem, the only possible symmetry plane has the Z-axis as 
normal. Use the Symmetry Plane node to impose such a symmetry condition.

N O R M A L  D I R E C T I O N  C O N D I T I O N

You can allow a symmetry plane to move along its normal direction. This can be used 
to model some situations where you want a plane to remain strictly planar but still relax 
the property of it being fixed.

From the list, select No displacement, Free Displacement, Prescribed force, or Prescribed 

displacement.

The value No displacement gives a standard symmetry condition.

Select Free Displacement to allow the symmetry plane to translate in the normal 
direction. The displacement is determined by the criterion that there is no resulting 
reaction force in the normal direction.

Select Prescribed force to prescribe the total reaction force acting on the direction 
normal to the symmetry plane. Enter the Normal force Fn. The force is defined as 
positive when acting along the outward normal of the symmetry plane. Setting the 
prescribed force to zero gives the same effect as using Free Displacement.

This node is only available in the 2D axisymmetric Shell interface.
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Select Prescribed displacement to prescribe the displacement in the direction normal to 
the symmetry plane. Enter the Normal displacement un0. Setting the prescribed 
displacement to zero gives the same effect as using No displacement.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>More Constraints>Symmetry Plane

• Using Free Displacement, Prescribed force, or Prescribed displacement is 
only meaningful if the geometry selection corresponds to a single 
symmetry plane.

• When using Free Displacement or Prescribed force, an extra global 
degree of freedom is added for determining the displacement in the 
normal direction. This degree of freedom will have a name of the type 
<component>.<interface>.<symmetry_tag>.un, for example 
comp1.shell.symp1.un.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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Ribbon
Physics tab with Shell selected:

Points>More Constraints>Symmetry Plane

Antisymmetry

The Antisymmetry node adds an edge or boundary condition that defines an 
antisymmetry edge or boundary.

F A C E  D E F I N I N G  T H E  L O C A L  O R I E N T A T I O N S

This setting is used in conjunction with a Local edge system. If antisymmetry is 
prescribed for an edge which is shared between boundaries, the edge system can be 
ambiguous. Select the boundary which should define the edge system. The default is 
Use face with lowest number.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N  ( E D G E S  O N L Y )

Select the coordinate system to use for specifying a symmetry edge. From the 
Coordinate system list select from:

• Local edge system (the default).

• Global coordinate system (the standard global coordinate system).

• Any additional user-defined coordinate system.

A N T I S Y M M E T R Y  ( E D G E S  O N L Y )

If another coordinate system than the Local edge system is used, select a Symmetry plane 

normal — First axis, Second axis, or Third axis. This indicates which axis in the selected 
coordinate system that acts as normal to the antisymmetry plane.

This section is available only for edges in the Shell interface.

For details about the definition of local edge systems, see Local Edge 
System.
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face Constraints>Antisymmetry

Shell>More Constraints>Antisymmetry (Edge)
Plate>More Constraints>Antisymmetry (Boundary)

Ribbon
Physics tab with Shell selected:

Boundaries>Face Constraints>Antisymmetry

Edges>More Constraints>Antisymmetry

Physics tab with Plate selected:

Boundaries>More Constraints>Antisymmetry

Body Load

Add a Body Load to boundaries (for the Plate interface add it to domains). The loads 
are defined in the given coordinate system.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry and Antisymmetry Boundary Conditions

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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F O R C E

Enter values or expressions for the components (x, y, z) of the body load FV.

M O M E N T

Enter values or expressions for the components (x, y, z) of the moment body load ML.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face and Volume Loads>Body Load

Plate>Face and Volume Loads>Body Load

Ribbon
Physics tab with Shell selected:

The list selection for FV normally only contains User defined. When 
combining the Shell interface with another physics interface, it is also 
possible to select a predefined load from this list.

For more information about live and dead loads, see Buckling Analysis.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Boundaries>Face and Volume Loads>Body Load

Physics tab with Plate selected:

Domains>Face and Volume Loads>Body Load

Face Load

Add a Face Load to boundaries (for the Plate interface add it to domains), to use it as 
a pressure or tangential force acting on a surface. The loads are defined in the given 
coordinate system.

T H R O U G H - T H I C K N E S S  L O C A T I O N

Select a surface — Top Surface, Midsurface, or Bottom Surface. The default is that the 
load is applied at the midsurface. The effect of using another surface than the 
midsurface is twofold:

• For a curved boundary, the difference in area between the midsurface and the 
selected surface is taken into account.

• For a tangential load, the distance from the midsurface is used to compute an 
additional equivalent moment load.

To place the load at another distance from the midsurface, select the Offset check box, 
and enter a value for the offset, zoffset.

If the material model is Section Stiffness, there may physically not be a well-defined top 
and bottom surface. If the load is applied at such a surface, the thickness value used to 
compute the load is taken from the settings in the Thickness and Offset node.
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F O R C E

Select a Load type — Force per unit area, Total force, or Pressure.

M O M E N T

Enter values or expressions for the components of the moment face load MA.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

TABLE 5-17:  

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY LEVEL

SPACE DIMENSION 
(COMPONENTS)

Force per unit area FA N/m2 boundaries

domains

3D (x, y, z)

2D (x, y, z)

Total force Ftot N boundaries

domains

3D(x, y, z)

2D(x, y, z)

Pressure p Pa boundaries

domains

3D

2D

• A positive pressure is directed in the negative element normal 
direction.

• The pressure load is a “follower load”. The direction changes with 
deformation in a geometrically nonlinear analysis.

• After selecting a Load type, the Load list normally only contains User 

defined. When combining with another physics interface, it is also 
possible to choose a predefined load from this list.

For more information about live and dead loads, see Buckling Analysis.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Face and Volume Loads>Face Load

Plate>Face and Volume Loads>Face Load

Membrane>Face and Volume Loads>Face Load

Ribbon
Physics tab with Shell or Membrane selected:

Boundaries>Face and Volume Loads>Face Load

Physics tab with Plate selected:

Domains>Face and Volume Loads>Face Load

Edge Load

Add an Edge Load as a force or moment distributed along an edge (for the Plate 
interface add it to boundaries). The load is defined in the given local coordinate 
system.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select the coordinate system to use for specifying the load. From the Coordinate system 
list select from:

• Global coordinate system (the standard global coordinate system).

• Shell Local System

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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• Local edge system

• Any additional user-defined coordinate system.

F A C E  D E F I N I N G  T H E  O R I E N T A T I O N S

This setting is used in conjunction with Local edge system and Shell Local System. When 
the load is applied to an edge which is shared between boundaries, the coordinate 
system can be ambiguous. Select the boundary which should define the edge system. 
The default is Use face with lowest number.

T H R O U G H - T H I C K N E S S  L O C A T I O N

Select a surface — Top Surface, Midsurface, or Bottom Surface. The default is that the 
load is applied at the midsurface. The effect of using another surface than the 
midsurface is twofold:

• For a curved boundary, the difference in area between the midsurface and the 
selected surface is taken into account.

• For a tangential load, the distance from the midsurface is used to compute an 
additional equivalent moment load.

To place the load at another distance from the midsurface, select the Offset check box, 
and enter a value for the offset, zoffset.

If the material model is Section Stiffness, there may physically not be a well-defined top 
and bottom surface. If the load is applied at such a surface, the thickness value used to 
compute the load is taken from the settings in the Thickness and Offset node.

If a selected edge is connected to boundaries having different thicknesses, then the 
result of specifying Top Surface or Bottom Surface is not well defined.

For details about the definition of local edge systems, see Local Edge 
System.

This section is available only for edges in the Shell interface and is only 
visible if the selected coordinate system is Local edge system or Shell Local 

System.
R  5 :  S H E L L  A N D  P L A T E



F O R C E

Select a Load type — Force per unit length (the default), Force per unit area, or Total 

Force. Enter values or expressions for the components (x, y, z).

M O M E N T

Select a Load type to define the moment load — Moment per unit length (the default) 
or Moment per unit area. Enter values or expressions for the components (x, y, z).

This section is available only in the Shell and Plate interfaces.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

TABLE 5-18:  

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY LEVEL

SPACE DIMENSION

Force per unit length FL Nm edges

boundaries

3D

2D

Force per unit area FA N/m2 edges

boundaries

3D

2D

Total force Ftot N edges

boundaries

3D

2D

After selecting a Load type, the Load list normally only contains User 

defined. When combining the Shell interface with another physics 
interface, it is also possible to choose a predefined load from this list.

TABLE 5-19:  

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY LEVEL

SPACE DIMENSION

Moment per unit length ML N edges

boundaries

3D

2D

Moment per unit area MA Nm/m2 edges

boundaries

3D

2D

Total moment Mtot Nm edges

boundaries

3D

2D
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If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Edge Load

Plate>Edge Load

Membrane>Edge Load

Ribbon
Physics tab with Shell or Membrane selected:

Boundaries>Shell>Edge Load

Boundaries>Membrane>Edge Load

Physics tab with Plate selected:

Domains>Plate>Edge Load

Point Load

Add a Point Load to points for concentrated forces or moments at points. The loads are 
defined in the given coordinate system. From the Coordinate system list select from:

• Global coordinate system (the standard global coordinate system).

For more information about live and dead loads, see Buckling Analysis.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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• Shell Local System

• Any additional user-defined coordinate system.

F A C E  D E F I N I N G  T H E  L O C A L  O R I E N T A T I O N S

This setting is used in conjunction with Shell Local System. When the load is applied to 
an edge which is shared between boundaries, the coordinate system can be ambiguous. 
Select the boundary which should define the edge system. The default is Use face with 

lowest number.

T H R O U G H - T H I C K N E S S  L O C A T I O N

Select a surface — Top Surface, Midsurface, or Bottom Surface. The default is that the 
load is applied at the midsurface. The effect of using another surface than the 
midsurface is that for a tangential load, the distance from the midsurface is used to 
compute an additional equivalent moment load.

To place the load at another distance from the midsurface, select the Offset check box, 
and enter a value for the offset, zoffset.

If the material model is Section Stiffness, there may physically not be a well-defined top 
and bottom surface. If the load is applied at such a surface, the thickness value used to 
compute the load is taken from the settings in the Thickness and Offset node.

If a selected point is connected to boundaries having different thicknesses, then the 
result of specifying Top Surface or Bottom Surface is not well defined.

F O R C E

Enter values or expressions for the components (x, y, z) of the point load FP.

M O M E N T

Enter values or expressions for the components (x, y, z) of the point moment MP.

This section is available only for edges in the Shell interface and is only 
visible if the selected coordinate system is Shell Local System.

The Load list normally only contains User defined. When combining the 
Shell interface with another physics interface, it is also possible to choose 
a predefined load from this list.
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L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Points>Point Load

Plate>Points>Point Load

Ribbon
Physics tab with Shell or Plate selected:

Points>Point Load

Point Load, Free

Add a Point Load, Free node to describe concentrated loads with locations specified by 
coordinates. Such loads do not have to be placed in a geometrical point or in a mesh 
node. This is particularly useful for the following cases:

• Imported meshes, where there may not be suitable points for load application

For more information about live and dead loads, see Buckling Analysis.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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• Moving loads

• Several point loads, in which case it may be impractical to create points at all load 
locations

L O C A T I O N  A N D  F O R C E

Select a Through-thickness location — Top Surface, Midsurface, or Bottom Surface. The 
default is that the load is applied at the midsurface. The effect of using another surface 
than the midsurface is that for a tangential load, the distance from the midsurface is 
used to compute an additional equivalent moment load.

To place the load at another distance from the midsurface, select the Offset check box, 
and enter a value for the offset, zoffset.

If the material model is Section Stiffness, there may physically not be a well-defined top 
and bottom surface. If the load is applied at such a surface, the thickness value used to 
compute the load is taken from the settings in the Thickness and Offset node.

Select a Frame — Material or Spatial that determines how the given coordinates are 
interpreted in case of a geometrically nonlinear analysis. When Material is selected, the 
load location on the body is interpreted with respect to the initial configuration. When 
Spatial is selected, then the load location is given in space fixed coordinates, which 

• For each free point load, there will be a search for the mesh element 
that is closest to the given location. For the load to be active, the 
location must be within a certain small distance from at least one 
element. The actual load location is taken as the point on the element 
that is closest to the given location. If no element is found, the load is 
silently ignored.

You can check the number of loads that were ignored through the 
variable <phys>.<load_tag>.num_ignored, for example 
shell.plf1.num_ignored.

• The local stress field in the element where a point load acts will not be 
reliable.

The coordinates that you enter for the load location are not affected by 
this setting; they should always refer to the reference surface, that is the 
coordinates of the mesh.
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usually means that the material point on the body where the load is applied will change 
with deformation even if the coordinate values are constant.

For each row in the table, enter the data for one load. If material frame input is used, 
then the location is specified in terms of the material coordinates (X, Y, Z). If spatial 
frame input is used, then the spatial coordinates (x, y, z) are used. Then, enter the force 
and moment values, Fxl, Fyl, Fzl, Mxl, Myl, and Mzl. The force and moment vectors are 
interpreted in the coordinate system selected in the Coordinate System Selection section.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

Context Menus
Shell>Point Load, Free

Plate>Point Load, Free

Ribbon
Physics tab with Shell selected:

Global>Shell>Point Load, Free

For more information about live and dead loads, see Buckling Analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.

Pratt Truss Bridge: Application Library path 
Structural_Mechanics_Module/Beams_and_Shells/pratt_truss_bridge
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Physics tab with Plate selected:

Global>Plate>Point Load, Free

Ring Load

A load applied to a point, not located at the axis of revolution, in an axisymmetric 
model actually represents a ring load. Add a Ring Load to points located at R > 0 to 
model such loads.

T H R O U G H - T H I C K N E S S  L O C A T I O N

Select a surface — Top Surface, Midsurface, or Bottom Surface. The default is that the 
load is applied at the midsurface. The effect of using another surface than the 
midsurface is that for a tangential load, the distance from the midsurface is used to 
compute an additional equivalent moment load.

To place the load at another distance from the midsurface, select the Offset check box, 
and enter a value for the offset, zoffset.

If the material model is Section Stiffness, there may physically not be a well-defined top 
and bottom surface. If the load is applied at such a surface, the thickness value used to 
compute the load is taken from the settings in the Thickness and Offset node.

If a selected point is connected to boundaries having different thicknesses, then the 
result of specifying Top Surface or Bottom Surface is not well defined.

F O R C E

Select the Load type — Force per unit length, Force per unit area, or Total force. Enter 
values or expressions for FL, FA, or Ftot.
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M O M E N T

Select the Load type — Moment per unit length, Moment per unit area, or Total moment. 
Enter values or expressions for ML, MA, or Mtot.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Ring Load

• The Load list normally only contains User defined. When combining 
with another physics interface that can provide this type of load, it is 
also possible to choose a predefined load from this list.

• The Total force and Total moment options should not be directly 
interpreted as resultants, since the orientation is changing. Rather, it 
should be interpreted as the per unit length values, multiplied by 2r, 
where r is the radius of the point.

For more information about live and dead loads, see Buckling Analysis.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Ribbon
Physics tab with Shell selected:

Points>Shell>Ring Load

Ring Load, Free

A load applied to a point, not located at the axis of revolution, in an axisymmetric 
model actually represents a ring load. Add a Ring Load, Free node to describe 
concentrated loads with locations specified by coordinates. Such loads do not have to 
be placed in a geometrical point or in a mesh node. This is particularly useful for the 
following cases:

• Imported meshes, where there may not be suitable points for load application

• Moving loads

• Several point loads, in which case it may be impractical to create points at all load 
locations

L O C A T I O N  A N D  F O R C E

Select a Through-thickness location — Top Surface, Midsurface, or Bottom Surface. The 
default is that the load is applied at the midsurface. The effect of using another surface 
than the midsurface is that for a tangential load, the distance from the midsurface is 
used to compute an additional equivalent moment load.

• For each free load, there will be a search for the mesh element that is 
closest to the given location. For the load to be active, the location 
must be within a certain small distance from at least one element. The 
actual load location is taken as the point on the element that is closest 
to the given location. If no element is found, the load is silently 
ignored.

You can check the number of loads that were ignored through the 
variable <phys>.<load_tag>.num_ignored, for example 
shell.rlf1.num_ignored.

• The local stress field in the element where a point load acts will not be 
reliable.
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To place the load at another distance from the midsurface, select the Offset check box, 
and enter a value for the offset, zoffset.

If the material model is Section Stiffness, there may physically not be a well-defined top 
and bottom surface. If the load is applied at such a surface, the thickness value used to 
compute the load is taken from the settings in the Thickness and Offset node.

Select a Frame — Material or Spatial that determines how the given coordinates are 
interpreted in case of a geometrically nonlinear analysis. When Material is selected, the 
load location on the body is interpreted with respect to the initial configuration. When 
Spatial is selected, then the load location is given in space fixed coordinates, which 
usually means that the material point on the body where the load is applied will change 
with deformation even if the coordinate values are constant.

For each row in the table, enter the data for one load. If material frame input is used, 
then the location is specified in terms of the material coordinates (R, Z). If spatial frame 
input is used, then the spatial coordinates (r, z) are used. Then, enter the force and 
moment values, Fxl, Fzl, and Myl. The force and moment components are interpreted 
in the coordinate system selected in the Coordinate System Selection section.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

The coordinates that you enter for the load location are not affected by 
this setting; they should always refer to the reference surface, that is the 
coordinates of the mesh.

For more information about live and dead loads, see Buckling Analysis.
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Location in User Interface

Context Menus
Shell>Ring Load, Free

Ribbon
Physics tab with Shell selected:

Global>Shell>Ring Load, Free

Spring Foundation

Use the Spring Foundation node to apply elastic and damping boundary conditions for 
domains, boundaries, edges, and points.

By adding the Predeformation subnode, you can prescribe that the spring force is zero 
at a nonzero spring extension.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select the coordinate system to use for specifying the spring properties. The coordinate 
system selection is based on the geometric entity level.

Domains (Plate Interface)
From the Coordinate system list select from:

• Global coordinate system (the default)

• Shell Local System

• Any additional user-defined coordinate system

Boundaries (Shell and Plate Interfaces)
From the Coordinate system list select from:

• Global coordinate system (the default)

• Boundary System (a predefined normal-tangential coordinate system)

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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• Shell Local System

• Any additional user-defined coordinate system

Edges (Shell Interface)
From the Coordinate system list select from:

• Global coordinate system (the standard global coordinate system).

• Local edge system (the default).

• Shell Local System

• Any additional user-defined coordinate system.

Points (Shell and Plate Interfaces)
From the Coordinate system list select from:

• Global coordinate system (the default)

• Shell Local System

• Any additional user-defined coordinate system

S P R I N G

Select the Spring type and its associated spring constant or force using Table 5-20 as a 
guide. The default option is the spring type for the type of geometric entity and space 
dimension, and there are different combinations available based on this.

When the option is of the type ‘force as function of extension’, then the built-in 
variables describing the spring extension must be used in the expression as described 
in Springs and Dampers. The spring matrix can be entered as Isotropic, Diagonal, 
Symmetric, or Full. For Isotropic the same spring constant is used in all the diagonal 
elements of the spring matrix.

For details about the definition of local edge systems, see Local Edge 
System.

TABLE 5-20:  SPRING TYPES FOR THE SPRING FOUNDATION FEATURE

SPRING TYPE VARIABLE SI UNITS GEOMETRIC ENTITY LEVEL

Spring constant per 
unit volume

kV N/(mm3) domains (Plate), boundaries (Shell)

Total spring constant ktot N/m domains (Plate), boundaries (Shell, 
Plate), edges (Shell)
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L O S S  F A C T O R  D A M P I N G

From the Loss factor type list, select Scalar (Same for all components) or Individual 

components.

• For Scalar (Same for all components) enter a single Loss factor for spring s which is 
used to multiply all values of the spring matrix or spring force vector.

• For Individual components select Isotropic, Diagonal, Symmetric, or Full, then enter 
values or expressions in the table for the Loss factor for spring k or f based on space 
dimension. The loss factors act on the corresponding components of the spring 
matrix or spring force vector. If you select Isotropic, the effect is the same as when 
you select Diagonal and enter the same value for all diagonal elements.

V I S C O U S  D A M P I N G

Select the Damping type using Table 5-21 as a guide. The default option is the default 
damping type for the type of geometric entity and space dimension, and there are 
different combinations available based on this. The damping matrix can be entered as 

Spring constant per 
unit area

kA N/(mm)2 domains (Plate), boundaries (Shell, 
Plate), edges (Shell)

Spring constant per 
unit length

kL N/(mm) boundaries (Plate), edges (Shell)

Spring constant kP N/m points (Shell, Plate)

Force per volume as 
function of 
extension

FV N/m3 domains (Plate), boundaries (Shell)

Total force as 
function of 
extension

Ftot N domains (Plate), boundaries (Shell, 
Plate), edges (Shell)

Force per area as 
function of 
extension

FA N/m2 domains (Plate), boundaries (Shell, 
Plate), edges (Shell)

Force per length as 
function of 
extension

FL N/m boundaries (Plate), edges (Shell)

Force as function of 
extension

FP N points (Shell, Plate)

TABLE 5-20:  SPRING TYPES FOR THE SPRING FOUNDATION FEATURE

SPRING TYPE VARIABLE SI UNITS GEOMETRIC ENTITY LEVEL
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Isotropic, Diagonal, Symmetric, or Full. For Isotropic the same viscous constant is used in 
all the diagonal elements of the damping matrix

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Mass, Spring, and Damper>Spring Foundation (Boundary, Edge)
Shell>Points>Spring Foundation

Plate>Mass, Spring, and Damper>Spring Foundation (Domain, Boundary)
Plate>Points>Spring Foundation

Ribbon
Physics tab with Shell selected:

Boundaries>Mass, Spring, and Damper>Spring Foundation

Edges>Mass, Spring, and Damper>Spring Foundation

Points>Shell>Spring Foundation

Points>Membrane>Spring Foundation

TABLE 5-21:  DAMPING TYPES FOR THE SPRING FOUNDATION FEATURE

DAMPING TYPE VARIABLE SI UNITS GEOMETRIC ENTITY LEVEL

Damping constant 
per unit volume

dV Ns/(mm3) domains (Plate), boundaries (Shell)

Damping constant 
per unit area

dA Ns/(mm2) domains (Plate), boundaries (Shell, 
Plate), edges (Shell)

Total damping 
constant

dtot Ns/m domains (Plate), boundaries (Shell, 
Plate), edges (Shell)

Damping constant 
per unit length

dL Ns/(mm) boundaries (Plate), edges (Shell)

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.

• Springs and Dampers in the Structural Mechanics Modeling chapter.

• Spring Foundation and Thin Elastic Layer in the Structural Mechanics 
Theory chapter.
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Physics tab with Plate selected:

Domains>Mass, Spring, and Damper>Spring Foundation

Boundaries>Mass, Spring, and Damper>Spring Foundation

Points>Plate>Spring Foundation

Predeformation

Use the Predeformation subnode to specify that the elastic forces in Spring Foundation 
are nonzero at zero displacement. Thus, you can model cases where the unstressed 
state of the spring is in another configuration than the one described by the geometry.

The value of the predeformation can vary during the simulation, so it should not be 
interpreted as an initial value.

S P R I N G  P R E D E F O R M A T I O N

Based on space dimension, enter the values for the Spring Predeformation u0.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Spring Foundation>Predeformation

Plate>Spring Foundation>Predeformation

Ribbon
Physics tab with Spring Foundation or Thin Elastic Layer node selected in the model tree:

Attributes>Predeformation

Added Mass

The Added Mass node is available on boundaries and edges and can be used to supply 
inertia that is not part of the material itself. Such inertia does not need to be isotropic, 
in the sense that the inertial effects are not the same in all directions.

You can assign the load caused by the predeformation to a load group. 
See Load Cases in the Structural Mechanics Modeling chapter.
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select the coordinate system to use for specifying the mass distribution in case of a 
nonisotropic mass contribution. The coordinate system selection is based on the 
geometric entity level.

Domains (Plate Interface)
From the Coordinate system list select from:

• Global coordinate system (the default)

• Shell Local System

• Any additional user-defined coordinate system

Boundaries (Shell and Plate Interfaces)
From the Coordinate system list select from:

• Global coordinate system (the default)

• Boundary System (a predefined normal-tangential coordinate system)

• Shell Local System

• Any additional user-defined coordinate system

Edges (Shell Interface)
From the Coordinate system list select from:

• Global coordinate system (the standard global coordinate system).

• Local edge system (the default)

• Shell Local System

• Any additional user-defined coordinate system.

F A C E  D E F I N I N G  T H E  L O C A L  O R I E N T A T I O N S

This setting is used in conjunction with a Local edge system and Shell Local System. If 
the mass is prescribed for an edge which is shared between boundaries, the edge system 

For details about the definition of local edge systems, see Local Edge 
System.
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can be ambiguous. Select the boundary which should define the edge system. The 
default is Use face with lowest number.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Mass, Spring, and Damper>Added Mass (Boundary, Edge)
Plate>Mass, Spring, and Damper>Added Mass (Domain, Boundary)

Ribbon
Physics tab with Shell selected:

Boundaries>Mass, Spring, and Damper>Added Mass

Edges>Mass, Spring, and Damper>Added Mass

Physics tab with Plate selected:

Domains>Mass, Spring, and Damper>Added Mass

Boundaries>Mass, Spring, and Damper>Added Mass

Point Mass

Use the Point Mass node to model a discrete mass or mass moment of inertia that is 
concentrated at a point.

The Point Mass Damping subnode can be added to specify a mass-proportional 
damping.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

With the Coordinate system list, control the coordinate system around the axis of which 
the principal mass moments of inertia are defined.

P O I N T  M A S S

Enter a Point mass m.

This section is available only for edges in the Shell interface.

All other settings for the Added Mass node are described in the 
documentation for Added Mass in the Solid Mechanics interface.
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Enter a single value for an isotropic Mass moment of inertia J, or select Diagonal or 
Symmetric to enter a full moment of inertia tensor.

F R A M E  A C C E L E R A T I O N  F O R C E S

Select the Exclude contribution check box to switch off the loads generated by this node 
when the frame is accelerated when using a Gravity, Rotating Frame, Linearly 
Accelerated Frame, or Base Excitation feature. The setting will also determine whether 
the node will contribute when computing mass properties.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Points>Point Mass

Plate>Points>Point Mass

Ribbon
Physics tab with Shell or Plate selected:

Points>Shell>Point Mass

Points>Plate>Point Mass

Point Mass Damping

Use the Point Mass Damping subnode to add damping to a Point Mass parent node.

P O I N T  M A S S  D A M P I N G

Enter a Mass damping parameter dM. This is the mass proportional term of a Rayleigh 
damping.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Point Mass>Point Mass Damping

Plate>Point Mass>Point Mass Damping

Ribbon
Physics tab with Point Mass node selected in the model tree:

For more information, see Computing Mass Properties.
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Attributes>Point Mass Damping

Periodic Condition

Use a Periodic Condition to prescribe that the displacements and rotations on two 
different sets of edges with the same geometrical shape are related, as in a periodic 
structure. In the Plate interface the connection is between boundaries rather than 
edges as is the case in the Shell interface.

Several different types of periodicity properties of the solution can be prescribed using 
this boundary condition.

• The Continuity, Antiperiodicity, and User defined periodic conditions directly 
prescribe relations both between displacements and between rotations. They can be 
used for any type of study.

• The Floquet periodicity can be used for frequency domain problems with a spatial 
periodicity of the geometry and solution. The modeled structure is typically a unit 
cell of a repetitive structure.

• The Cyclic symmetry is a special case of a Floquet condition, intended for structures 
which consist of a number of sectors which are identical when rotated around a 
common axis, like in a fan.

The two sets of edges between which there is a periodicity condition are called the 
source and destination. It is not required to have the same mesh on the source and 
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destination, but the local accuracy of the solution near the edges will be better if you 
use the same mesh.

E D G E  S E L E C T I O N / B O U N D A R Y  S E L E C T I O N

Select both the source and destination edges or boundaries.

The software automatically identifies the edges as either source edges or destination 
edges. This works fine for cases like opposing parallel edges. In more general cases, 
right-click the Period Condition node and choose Manual Destination Selection to 
add a Destination Selection section where you can specify the edges which constitute the 
destination. By default, this node contains the selection that COMSOL Multiphysics 
has identified.

For periodic conditions on shells, the periodicity condition acts on edges, 
as opposed to solids and plates where it acts on boundaries. This means 
that the orientation cannot be determined automatically. You must 
provide coordinate systems using the Orientation of Source and Orientation 

of Destination sections. The default coordinate system is the Global 
coordinate system, which works well if the edges are parallel. In other 
cases, you need to add a Destination Selection subnode, in order to supply 
the coordinate system for the destination.

In cases of rotational symmetry, you can assign the same cylindrical 
coordinate system to both source and destination. Note that cylindrical 
coordinate systems in general cannot be used in situations where they are 
accessed in points located on the axis of revolution, since axis orientations 
are not uniquely defined there. Thus, if the edges intersect at the axis of 
revolution, you must use two different coordinate systems with fixed axis 
directions, rotated with respect to each other.

When there is a common point on the axis of revolution, you should 
explicitly constrain it to remain on the axis and to have no rotations using 
Prescribed Displacement/Rotation.
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In cases where the periodic edge is split into several edges within the geometry, it 
might be necessary to apply separate periodic conditions to each pair of geometry 
edges for the matching to work properly.

D E S T I N A T I O N  S E L E C T I O N

This section is available for specifying the destination edges or boundaries, if needed, 
when the Manual Destination Selection option is selected in the context menu for the 
Periodic Condition node. You can only select destination edges or boundaries from the 
union of all source and destination edge or boundaries.

P E R I O D I C I T Y  S E T T I N G S

With Type of periodicity you select the form of periodicity that your solution should 
have.

• For Continuity the displacements and rotations on the destination are set equal to 
their counterparts on the source;  and . If the 
source and destination objects are rotated with respect to each other, a 
transformation is performed using the selected coordinate systems, so that 
corresponding components of the degrees of freedom are connected.

• For Antiperiodicity the displacements and rotations on the destination are set equal 
to their counterparts on the source but with the sign reversed;  
and . If the source and destination objects are rotated with respect 
to each other, a transformation is performed using the selected coordinate systems, 
so that corresponding components of the degrees of freedom are connected.

• For Floquet periodicity enter a k-vector for Floquet periodicity kF. This is the wave 
number vector for the excitation.

• For Cyclic symmetry the settings differ slightly between the Plate and Shell interfaces.

In the Plate interface, Edge Selection is replaced by Boundary Selection.

u xd  u xs = a xd  a xs =

u xd  u– xs =

a xd  a– xs =

In the Plate interface, choose how to define the sector angle that the 
geometry represents using the Sector angle list. If Automatic is selected, the 
program attempts to find out how many full repetitions of the geometry 
there will be on a full revolution. If User defined is selected, enter a value 
for the sector angle S.
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In either case, also enter an Azimuthal mode number for the mode to be studied. It 
can vary from 0 to N/2, where N is the total number of sectors on a full revolution.

• For User defined select the check box for any of the displacement or rotation 
components as needed. Then for each selection, choose the Type of periodicity — 
Continuity or Antiperiodicity. Each selected displacement component will be 
connected by  or . Each selected rotation 
component will be connected by  or  If the 
source and destination objects are rotated with respect to each other, a 
transformation is performed using the selected coordinate systems so that 
corresponding components of the degrees of freedom are connected.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

O R I E N T A T I O N  O F  S O U R C E

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. For information about the 
Orientation of Source section, see Orientation of Source and Destination in the 
COMSOL Multiphysics Reference Manual.

O R I E N T A T I O N  O F  D E S T I N A T I O N

This section appears if the setting for Transform to intermediate map in the Orientation 

of Source section is changed from the default value, Automatic, and Advanced Physics 

If any point on the edges having the periodic condition is located on the 
axis of cyclic symmetry, enter the Axis direction vector, tc. This orientation 
of the axis of cyclic symmetry is then needed for eliminating conflicting 
constraints.

In the Shell interface, you always must enter a value for the sector angle 
S.

ui xd  ui xs = ui xd  ui xs –=

ai xd  ai xs = ai xd  ai xs –=

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings
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Options is selected in the Show More Options dialog box. For information about the 
Orientation of Destination section, see Orientation of Source and Destination in the 
COMSOL Multiphysics Reference Manual.

M A P P I N G  B E T W E E N  S O U R C E  A N D  D E S T I N A T I O N

For information about the Mapping Between Source and Destination section, see 
Mapping Between Source and Destination in the COMSOL Multiphysics Reference 
Manual.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Connections>Periodic Condition

Plate>Periodic Condition

Ribbon
Physics tab with Shell selected:

Edges>Connections>Periodic Condition

Physics tab with Plate selected:

Boundaries>Periodic Condition

Layered Adiabatic Heating

The Layered Adiabatic Heating node adds the equations for adiabatic heating in layered 
shells caused by abrupt changes in temperature due to fast deformation.

The increase in temperature is then defined by solving the distributed equation

• Cyclic Symmetry and Floquet Periodic Conditions in the Structural 
Mechanics Theory chapter.

• Orientation of Source and Destination in the COMSOL Multiphysics 
Reference Manual.

Vibrations of an Impeller: Application Library path 
Structural_Mechanics_Module/Dynamics_and_Vibration/impeller

CpTꞏ ahQh=
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here,  is the density, Cp is the heat capacity at constant pressure, T is the temperature 
field, ah is the coefficient of adiabatic heating, and Qh corresponds to the heat sources 
due to mechanical dissipative processes.

Adiabatic heating is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

If the Composite Materials Module is available, adiabatic heating can be applied to 
arbitrary layers. The material properties, orientations, and layer thicknesses are defined 
using Layered Material node. The offset, and local coordinate system, in which material 
orientations and results are interpreted, is defined by Layered Material Link or Layered 

Material Stack node.

Without the Composite Materials Module, only single layer shells and membranes can 
be modeled. This is still useful, for example for some multiphysics couplings. For single 
layer materials, an ordinary Material node can be used, as long you include a Shell 
property group in which, for example, the thickness is given.

B O U N D A R Y  S E L E C T I O N

It is only possible to select boundaries which are part of the selection of a layered 
material defined in Layered Material Link or Layered Material Stack node.

S H E L L  P R O P E R T I E S

Select the layers in which adiabatic heating is to be modeled.

If the same layer is selected in two nodes being active on the same boundary, the 
contributions will be exclusive

• For a general description about layered materials, see Layered Materials 
in the documentation for the Composite Materials Module.

TABLE 5-22:  LAYER SELECTION

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Default when added. When Use all layers is not selected.

Only a subset of the layers selected 
in the parent can be selected.

For a general description of this section, see Layer and Interface 
Selections in the documentation for the Composite Materials Module.
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I N I T I A L  V A L U E S

Enter the Initial temperature Tini. The default value is 293.15 K.

T H E R M O D Y N A M I C S

The density  is taken from the material model (Linear Elastic Material or Hyperelastic 
Material).

The default Heat capacity at constant pressure Cp uses values From material. For 
User defined, enter an expression or value. The default value for the User defined is 0 J/
(kg K).

Enter the Coefficient of adiabatic heating, ah. The default value is 1 (dimensionless), 
which means that dissipative processes contribute 100% as heat sources.

Select the Dissipative heat source — Include all dissipative sources or User defined.

The Dissipative heat source list makes it possible to include specific heat sources for the 
adiabatic heating. Enter a value or expression for the heat source Qh to include. For 
instance, the dissipated energy density due to creep is available under the variable 
shell.Wc and due to viscoplasticity under the variable shell.Wvp. Here solid 
denotes the name of the physics interface node.

T I M E  S T E P P I N G

The Backward Euler method is not available with the Layered Shell interface neither 
with the Layered Linear Elastic Material nor the Layered Hyperelastic Material in the 
Shell and Membrane interfaces.

Domain ODEs
No settings are needed for the Domain ODEs method. However, this method adds 
degrees-of-freedom that are solved as part of the general solver sequence. The scaling 
of this field can affect the convergence of the overall solution.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>More>Layered Adiabatic Heating

Ribbon
Physics tab with Shell selected:

Boundary>More>Layered Adiabatic Heating
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Boundary to Boundary

Add a Boundary to Boundary node to connect two shell boundaries that are 
geometrically disjoint. It is assumed that the boundaries are parallel. The connection 
between corresponding points on the two edges can be rigid or flexible.

This connection is useful in, for example, the following situations:

• Two plates are joined by a thin glue layer.

• It is physically a single plate, but for modeling reasons you want to extend it on 
different boundaries in different directions.

The mesh does not have to be the same on both boundaries, but there will be less local 
stress fluctuations if it is.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select the coordinate system to use for specifying the stiffness in the case of a flexible 
connection. From the Coordinate system list select from:

• Global coordinate system (the standard global coordinate system).

• Shell Local System

• Any additional user-defined coordinate system.

C O N N E C T I O N  S E T T I N G S

Select a Connection type— Rigid or Flexible.

For Rigid, the coupling between the two boundaries is rigid in a pointwise manner. 
Every node on the destination boundary is coupled by a virtual rigid bar to the nearest 
point on the source boundary. This does not imply that the whole boundary is rigid. 
Such a coupling can be obtained using a Rigid Connector.

For Flexible, select Connection properties — User defined or From material.

For User defined, enter the Spring constant per unit area. This is a matrix K, coupling 
the displacements on the two sides.

Here, f is the force acting on the destination side, and u is the difference between the 
destination side displacements and the source side displacements. All vectors are 
expressed in the selected coordinate system.

f K– u=
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Optionally, you can enter a Mass per unit area, u,A. This can for example be the mass 
of a glue layer.

In all cases, select the Source boundary and Destination Boundary — Top or Bottom. The 
information is used for two purposes: to connect to the correct set of displacements, 
and to compute the distance, including the shell thickness and offset.

The two boundaries are only connected if they are within a certain tolerance from 
touching each other. The distance is computed including shell thickness and offset, as 
well as the selected connection boundaries. You can modify this tolerance. Select a 
Connection tolerance — Automatic or User defined. For User defined, enter the maximum 
allowable distance or overlap between the boundaries, .

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. The information in this section i 
sonly used if Method is set to Rigid.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Connections>Boundary to Boundary (Boundary)

Ribbon
Physics tab with Shell selected:

Boundaries>Connections>Boundary to Boundary

Edge to Boundary

Add an Edge to Boundary node to connect a shell edge to a shell boundary in a mesh 
independent configuration.

This connection is useful in, for example, the following situations:

• You have an imported geometry where there are slits in the geometry.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings
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• A midsurface generation has left slits in the geometry.

• You want to avoid the extra flexibility that would be the effect of connecting at the 
midsurface. With this type of coupling, you can take she shell thickness into account 
in a more accurate way.

• You want to model and evaluate a weld. In that case, you can use the flexible version 
of the coupling, and evaluate the forces in it.

If possible, use the Edge to Edge coupling, which involves fewer approximations. The 
Edge to Boundary coupling has the advantage that there is no need for having matching 
edges in the geometry.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select the coordinate system to use for specifying the stiffness in the case of a flexible 
connection. From the Coordinate system list select from:

• Global coordinate system (the standard global coordinate system).

• Shell Local System

• Local edge system

• Any additional user-defined coordinate system.

F A C E  D E F I N I N G  T H E  O R I E N T A T I O N S

This setting is used in conjunction with Local edge system and Shell Local System. When 
the connection is used for an edge which is shared between boundaries, the coordinate 
system can be ambiguous. Select the boundary which should define the edge system. 
The default is Use face with lowest number.

C O N N E C T I O N  S E T T I N G S

Select a Method — Rigid or Flexible.

For details about the definition of local edge systems, see Local Edge 
System.

This section is available only for edges in the Shell interface and is only 
visible if the selected coordinate system is Local edge system or Shell Local 

System.
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For Rigid, the coupling between the two parts is rigid in a pointwise manner. Every 
point on the destination boundary is coupled by a virtual rigid bar to the nearest point 
on the source edge. This does not imply that the whole edge is rigid.

For Rigid, select for both the source and destination sides of the connection the 
Connected location — Top surface, Midsurface (default), or Bottom surface.

For Flexible, you supply a stiffness matrix, connecting the corresponding points on the 
source an destination sides. The stiffness coefficients are given per unit length along 
the edge. Input fields for the matrices ku,L and k,L are always shown. Select 
Translational-rotational coupling to show input fields for the coupling matrices ku,L 
and ku,L. In 2D axisymmetry, most elements of these matrices are by definition zero. 
Only elements which can be nonzero are shown; these are elements 13 and 23 for 
ku,L, and elements 31 and 32 for ku,L.

The stiffness relation can be expressed as

Here, f and m are the forces and moments per unit length acting on the destination 
side, and u is the difference between the destination side displacements and the 
source side displacements. Similarly,  is the difference between the destination side 
rotations and the source side rotations. All vectors are expressed in the selected 
coordinate system.

Optionally, you can enter a Mass per unit length, u,L. This can for example be the mass 
of a not modeled weld.

On the boundary, a strip with a certain width is used for the connection. Select a 
Connected area defined by — Shell thickness or Distance from shell midsurface to control 
the width of the strip. The default is Shell thickness, in which case the thickness of the 
shell on the source side (the edge) is used as the connection width. By choosing 
Distance from shell midsurface.

The two boundaries are only connected if they are within a certain tolerance from 
touching each other. The distance is computed including shell thickness and offset. 
You can modify this tolerance. Select a Connection tolerance — Automatic or User 

defined. For User defined, enter the maximum allowable distance or overlap between 
the boundaries, .

f
m

ku L ku L

ku L k L

–= u

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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. The information in this section i 
sonly used if Method is set to Rigid.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Connections>Edge to Boundary (Edge)

Ribbon
Physics tab with Shell selected:

Edges>Connections>Edge to Boundary

Edge to Edge

Add an Edge to Edge node to connect two shell edges that are geometrically disjoint. 
It is assumed that the edges are parallel. The connection between corresponding points 
on the two edges can be rigid or flexible.

This connection is useful in, for example, the following situations:

• You have an imported geometry where there are slits between edges.

• A midsurface generation has left slits between edges.

• You want to avoid the extra flexibility that would be the effect of connecting at the 
midsurface using a common edge. With this type of coupling, you can take she shell 
thickness into account in a more accurate way.

• You want to model and evaluate a weld. In that case, you can use the flexible version 
of the coupling, and evaluate the forces in it.

If there is no good match between two edges, you can as an alternative use the Edge 
to Boundary coupling.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select the coordinate system to use for specifying the stiffness in the case of a flexible 
connection. From the Coordinate system list select from:

• Global coordinate system (the standard global coordinate system).

• Shell Local System

• Local edge system

• Any additional user-defined coordinate system.

F A C E  D E F I N I N G  T H E  O R I E N T A T I O N S

This setting is used in conjunction with Local edge system and Shell Local System. When 
the connection is used for an edge which is shared between boundaries, the coordinate 
system can be ambiguous. Select the boundary which should define the edge system. 
The default is Use face with lowest number.

C O N N E C T I O N  S E T T I N G S

Select a Method — Rigid or Flexible.

For Rigid, the coupling between the two edges is rigid in a pointwise manner. Every 
node on the destination edge is coupled by a virtual rigid bar to the nearest point on 
the source edge. This does not imply that the whole edge is rigid. Such a coupling can 
be obtained using a Rigid Connector.

For Rigid, select for both the source and destination sides of the connection the 
Connected location — Top surface, Midsurface (default), or Bottom surface.

For Flexible, you supply a stiffness matrix, connecting the corresponding points on the 
source an destination edges. The stiffness coefficients are given per unit length along 
the edge. Input fields for the matrices ku,L and k,L are always shown. 

For details about the definition of local edge systems, see Local Edge 
System.

This section is available only for edges in the Shell interface and is only 
visible if the selected coordinate system is Local edge system or Shell Local 

System.
T H E  S H E L L  A N D  P L A T E  I N T E R F A C E S  |  1349



1350 |  C H A P T E
Select Translational-rotational coupling to show input fields for the coupling matrices 
ku,L and ku,L. In 2D axisymmetry, most elements of these matrices are by definition 
zero. Only elements which can be nonzero are shown; these are elements 13 and 23 
for ku,L, and elements 31 and 32 for ku,L.

The stiffness relation can be expressed as

Here, f and m are the forces and moments per unit length acting on the destination 
side, and u is the difference between the destination side displacements and the 
source side displacements. Similarly,  is the difference between the destination side 
rotations and the source side rotations. All vectors are expressed in the selected 
coordinate system.

Optionally, you can enter a Mass per unit length, u,L. This can for example be the mass 
of a not modeled weld.

In order to ascertain that the two edges are parallel, a certain tolerance is used when 
comparing the angles between them. You can modify this tolerance. Select the 
Connection tolerance — Automatic or User defined. For, , enter the maximum angle 
between the edges.

Select the Weld verification check box to compute forces and stresses per unit length 
and their average along the weld.

Select the Weld type — Double-sided fillet, Single-sided fillet (top), Single-sided fillet 

(bot), or Butt. For any of the options, enter the Throat size a, the Allowable equivalent 

stress , and the Allowable normal stress (perpendicular to the weld) .

f
m

ku L ku L

ku L k L

–= u


eq
max 

max
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. The information in this section is 
only used if Method is set to Rigid.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Connections>Edge to Edge (Edge)

Ribbon
Physics tab with Shell selected:

Edges>Connections>Edge to Edge

Rigid Connector

The Rigid Connector is a boundary condition for modeling rigid regions and kinematic 
constraints such as prescribed rigid rotations. A rigid connector can connect an 
arbitrary combination of edges and points which all will move together as being 
attached to a virtual rigid object.

You can add the Rigid Connector node at the boundary, edge, and point levels.

• When added at the boundary level, you can connect boundaries, edges, and points 
as long as at least one boundary is selected. Selecting edges and points is optional.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings
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• When added at the edge level, you can connect edges and points as long as at least 
one edge is selected. Selecting points is optional.

• When added at the point level, you can connect a set of points to each other.

If the study step is geometrically nonlinear, the rigid connector takes finite rotations 
into account.

Rigid connectors are available in the Solid Mechanics, Multibody Dynamics, Shell, 
Beam, and Pipe Mechanics interfaces. Rigid connectors from different interfaces can 
be attached to each other.

You can add functionality to the rigid connector through the following subnodes:

• Applied Force (Rigid Connector) to apply a force in given point.

• Applied Moment (Rigid Connector) to apply a moment.

• Mass and Moment of Inertia (Rigid Connector) to add extra mass and moment of 
inertia in a given point.

Spring Foundation (Rigid Connector) to add a translational or rotational spring or 
damper in a given point.When physics symbols are shown, a rigid connector is 

If your selection is too small, you may introduce rigid body motions in the 
model. No exact rules can be given because there are many possible 
configurations where, for example, boundaries are connected to each 
other or affected by other constraints. Also, you can, by providing proper 
constraints for the rigid connector, suppress rigid body motions.

When the rigid connector is added at point level, a set of consistency 
checks is performed. You can suppress these checks by clearing the Include 

consistency checks check box in the Advanced section.
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represented by a symbol at the center of rotation, together with a set of lines 
connecting the center of rotation with the centers of gravity of the selected entities.

B O U N D A R Y  S E L E C T I O N

This section is present when the Rigid Connector node has been added at the boundary 
level. Select one or more boundaries to be part of the rigid region.

E D G E  S E L E C T I O N

This section is present when the Rigid Connector node has been added at the boundary 
or edge level.

• When the Rigid Connector is added at the edge level, select one or more edges that 
form part of the rigid region.

• When the Rigid Connector is added at the boundary level, this section is initially 
collapsed. Here, you can add optional edges to the rigid region. The edges cannot 
be adjacent to the selected boundaries.

P O I N T  S E L E C T I O N

This section is always present.

• When the Rigid Connector is added at the point level, select a number of points that 
form the rigid region.

• When the Rigid Connector is added at the boundary or edge levels, this section is 
initially collapsed. Here, you can add optional points to the rigid region. The points 
cannot be adjacent to the selected boundaries or edges.

• When the rigid connector is added at the boundary level, such symbols 
are shown only for the selected boundaries, but not for auxiliary 
selections of edges or points.

• When the rigid connector is added at the edge level, such symbols are 
shown only for the selected edges, but not for auxiliary selections of 
points.

• Because of the way physics symbols are evaluated, as a lightweight 
operation when moving between physics nodes in the model builder 
tree, it is sometimes not possible to determine the center of rotation. 
In particular, if an offset is supplied, it will not be taken into account.
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
all applicable coordinate systems in the model. Prescribed displacements or rotations 
are specified along the axes of this coordinate system. It is also used for defining the 
axis directions of the moment of inertia tensor of the Mass and Moment of Inertia 
subnode.

C E N T E R  O F  R O T A T I O N

The center of rotation serves two purposes.

• If you prescribe the displacement of the rigid connector, this is the place where it is 
fixed.

• Results are interpreted with respect to the center of rotation.

Select a Center of rotation — Automatic, Centroid of selected entities, or User defined.

• For Automatic the center of rotation is at the geometrical center of the selected 
edges. The constraints are applied at the center of rotation.

• For Centroid of selected entities, a subnode for selection of the entities is added to 
the Model Builder. The center of rotation is located at the centroid of the selected 
entities, which do not need to be related to the selection of the rigid connector. 

In order to be applicable, a coordinate system must have axis directions 
that are independent of the location in space.
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When points are selected, It is the geometrical location of the points that is used for 
computing the centroid. Any offset of the shell at the points is ignored.

- When the rigid connector is added at boundary or edge level, select an Entity 

level — Edge or Point.

- When the rigid connector is added at point level, the centroid can only be defined 
by a point selection. As a special case, you can select a single point, and thus locate 
the center of rotation at a certain point.

• For User defined, in the Global coordinates of center of rotation XC table enter 
coordinates based on space dimension.

Select the Offset check box to add an optional offset vector to the definition of the 
center of rotation. Enter values for the offset vector Xoffset.

The center of rotation used is the sum of the vector obtained from any of the input 
methods and the offset vector.

P R E S C R I B E D  D I S P L A C E M E N T  A T  C E N T E R  O F  R O T A T I O N

To define a prescribed displacement for each spatial direction x, y, and z select one or 
all of the Prescribed in x, Prescribed in x, and Prescribed in z direction check boxes. Then 
enter a value or expression for the prescribed displacements u0x, u0y, or u0z.

• For a rigid connector at edge level, when Centroid of selected entities is 
chosen, a default Center of Rotation: Edge or Center of Rotation: 
Point subnode is added, depending on the setting of Entity level.

• For a rigid connector at point level, when Centroid of selected entities 
is chosen, a default Center of Rotation: Point subnode is added.

• The center of rotation is located at the centroid of the selected entities, 
which do not need to be related to the rigid connector itself. As a 
special case, you can select a single point, and thus use that point as 
center of rotation.

• When a Center of Rotation: Point node is used for selection, any point 
in the geometry can be selected, even if it is not part of the physics 
interface.

XC XC,input Xoffset+=
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P R E S C R I B E D  R O T A T I O N

Select an option from the By list — Free (the default), Constrained rotation, or 
Prescribed rotation.

• For Constrained rotation select one or more of the Constrain rotation about x, 
Constrain rotation about y, and Constrain rotation about z axis check boxes in order 
to enforce zero rotation about the corresponding axis in the selected coordinate 
system.

• For Prescribed rotation enter an Axis of rotation  and an Angle of rotation . The 
axis of rotation is given in the selected coordinate system.

R E L E A S E D  D E G R E E S  O F  F R E E D O M

In some cases it can be useful to not constrain the displacement in a certain direction. 
For instance, the radial displacement of a Rigid Connector acting on a circular 
cross-section could be allowed to be free. To do so, select a local Coordinate system for 
specifying the directions in which the degree of freedom will be released. The 
Coordinate system list contains only applicable coordinate systems in the model.

Select one or more of the available check boxes to release the displacement in the 
corresponding axis in the selected coordinate system:

• Release displacement in x1 direction

• Release displacement in x2 direction

• For 3D components: Release displacement in x3 direction

Note that the Rigid Connector solves for global displacement degrees of freedom 
(DOFs) and global rotation DOFs – unless they are explicitly prescribed. Since 
releasing certain displacement field components reduces the number of equations used 
to solve for the global DOFs, it may become necessary to constrain some global 
displacement or rotation components to achieve static determinacy.

The section Released Degrees of Freedom is only shown if the check box Use weak 

constraints for rigid-flexible connection in the section Constrain Settings is not enabled.

R E A C T I O N  F O R C E  S E T T I N G S

Select Evaluate reaction forces to compute the reaction force caused by a prescribed 
motion. The default is to not compute the reaction force. When selected, the 
prescribed motion is implemented as a weak constraint.

Select Apply reaction only on rigid body variables to use a unidirectional constraint for 
enforcing a prescribed motion. The default is that bidirectional constraints are used. 

0
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This setting is useful in a situation where a bidirectional constraint would give an 
unwanted coupling in the equations. This would happen if the prescribed value of the 
motion is a variable solved for in other equations.

F O R M U L A T I O N

Some contributions from a rigid connector will, under geometric nonlinearity, result 
in a nonsymmetric local stiffness matrix. If all other aspects of the model are such that 
the global stiffness matrix would be symmetric, then such a nonsymmetric 
contribution may have a heavy impact on the total solution time and memory usage. 
In such cases, it is often more efficient to use an approximative local stiffness matrix 
that is symmetric.

Select Use symmetric formulation for geometric nonlinearity to force all matrix 
contributions from the rigid connector and its subnodes to be symmetric.

C O N S T R A I N T  S E T T I N G S

On the edges where the rigid connector is coupled to a flexible material, all nodes on 
such an edge are constrained to move as a rigid body. As a default, these constraints 
are implemented as pointwise constraints. If you want to use a weak constraint 
formulation, select Use weak constraints for rigid-flexible connection.

Using an approximative stiffness matrix will in general require more 
iterations. However, since the computational cost per iteration will be cut 
at least by a factor of two if a symmetric matrix can be used, it is usually 
more efficient to ignore a weak nonsymmetry.

In particular, if the rotation of the rigid connector per time step or 
parameter increment is small, there will in general be no increase in the 
number of iterations at all if this option is used.

When the global stiffness matrix is nonsymmetric for other reasons, then 
there is nothing to be gained from symmetrizing the contribution from 
the rigid connector.
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A D V A N C E D

It is possible to couple rigid connectors to each other. In the Connect to list, you can 
select any rigid connector defined in the Solid Mechanics or Multibody Dynamics 
interfaces as being rigidly connected to the current one.

When the rigid connector is added at the point level, the section contains the 
additional Include consistency checks check box. The check box, which is checked by 
default, controls whether to perform singularity checks for the selections. If the checks 
give false positives, you can turn them off by clearing the check box. This could, for 
example, be necessary if a rigid connector, which in itself is singular, is connected to 
another one in a way that forms a stable configuration.

When the Rigid Connector is added at the point level, select the Add rotational stiffness 

for two-point selection check box to automatically suppress singularities when the 
Include consistency checks check box is disabled. This check box allows to enter a 
rotational stiffness, k, to stabilize the rigid connector. The rotational stiffness is only 
added if less than three points are selected.

Select Group dependent variables in solver — From physics interface (default), Yes, or No, 
to choose how to group the dependent variables added by the Rigid Connector feature 
in the solver sequence.

When coupling rigid connectors to each other, you must be careful not to 
add conflicting settings. Typically, you should only assign constraints to 
one of the connectors, and it is recommended to use a common center of 
rotation. It is, however, possible to deviate from these recommendations 
and create other meaningful combinations.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements and 
rotations in a frequency domain analysis of perturbation type.

• You can activate and deactivate the rigid connector by assigning it to a 
constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.

• You can assign the value of the prescribed displacement and rotation to 
a load group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Connections>Rigid Connector (Boundary)
Shell>Connections>Rigid Connector (Edge)
Shell>Points>Rigid Connector (Point)

Ribbon
Physics tab with Shell selected:

Boundaries>Connections>Rigid Connector

Edges>Connections>Rigid Connector

Points>Shell>Rigid Connector

Thermal Expansion (Rigid Connector)

Add the Thermal Expansion subnode to prescribe a deformation of the rigid connector 
caused by changes in temperature. This makes it possible to reduce stresses caused by 
the rigid connector being rigid, while there are thermal deformations in the flexible 
shell to which it is attached.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain in the rigid connector.

Select Inherit from boundary to take the thermal expansion data from the boundary to 
which it is attached. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual material in the rigid connector has the same thermal expansion as the 
domain itself.

When Inherit from boundary is not selected, enter:

• A value or expression for the Volume reference temperature Tref that is the 
temperature at which there are no thermal displacements in the rigid connector.

• Rigid Connector

• Harmonic Perturbation

• Load Cases
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• A value or expression for Temperature T, specifying the temperature distribution of 
the rigid connector. Any spatial variation must be an explicit function of the material 
frame coordinates. It is not possible to use a computed temperature distribution.

• Select the Input type — Secant coefficient of thermal expansion, Tangent coefficient of 

thermal expansion, or Thermal strain to specify how the thermal strain is entered. The 
default values From material are used. This requires that a material has been assigned 
to the boundaries of the rigid connector selection. When a nonisotropic coefficient 
of thermal expansion is used, the axis orientations are given by the coordinate 
system selected in the Coordinate System Selection section.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Rigid connector>Thermal Expansion

Ribbon
Physics tab with Rigid connector node selected in the model tree:

Attributes>Thermal Expansion

Attachment

The Attachment node is used to define a set of edges on a flexible shell which can be 
used to connect it with other components through a joint in the Multibody Dynamics 
interface. All the selected edges behave as if they were connected by a common rigid 
body.

Attachments can be added to boundaries in a Multibody Dynamics or a Solid 
Mechanics interface, to edges in a Shell or Layered Shell interface, or to points in a 

• Thermal Expansion Properties.

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.
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Beam interface. This makes it possible to use a joint in the Multibody Dynamics 
interface for connecting parts modeled in different physics interfaces.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Connections>Attachment

Ribbon
Physics tab with Shell selected:

Edges>Connections>Attachment

Thermal Expansion (Attachment)

Add the Thermal Expansion subnode to prescribe a deformation of the attachment 
caused by changes in temperature. This makes it possible to reduce stresses caused by 
the attachment being rigid, while there are thermal deformations in the flexible shell 
to which it is attached.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain in the attachment.

Select Inherit from boundary to take the thermal expansion data from the boundary to 
which it is attached. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual material in the attachment has the same thermal expansion as the 
boundary itself.

All other settings for the Attachment node are described in the 
documentation for Attachment in the Solid Mechanics interface.

The use of attachments is discussed in the Attachments section in the 
Structural Mechanics Modeling chapter.
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When Inherit from boundary is not selected, enter:

• A value or expression for the Volume reference Temperature Tref which is the 
temperature at which there are no thermal displacements in the attachment

• A value or expression for Temperature T, specifying the temperature distribution of 
the attachment. Any spatial variation must be an explicit function of the material 
frame coordinates. It is not possible to use a computed temperature distribution.

• Select the Input type — Secant coefficient of thermal expansion, Tangent coefficient of 

thermal expansion, or Thermal strain to specify how the thermal strain is entered. The 
default values From material are used. This requires that a material has been assigned 
to the boundaries of the attachment selection. When a nonisotropic coefficient of 
thermal expansion is used, the axis orientations are given by the coordinate system 
selected in the Coordinate System Selection section.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Mechanics>Attachment>Thermal Expansion

Multibody Dynamics>Attachment>Thermal Expansion

Ribbon
Physics tab with Attachment node selected in the model tree:

Attributes>Thermal Expansion

Phase

You can add a Phase subnode to nodes which define a load in order to prescribe the 
phase angle in a frequency domain analysis.

• Thermal Expansion Properties.

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.
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For modeling the frequency response, the physics interface splits the harmonic load 
into two parameters:

• The amplitude, F, which is specified in the node for the load.

• The phase ( ), which is specified in the Phase subnode.

Together these define a harmonic load, for which the amplitude and phase shift can 
vary with the excitation frequency, f:

P H A S E

Add the phase angle Fph for harmonic loads. Enter the phase for each component of 
the load in the corresponding fields.

M O M E N T  L O A D  P H A S E

Add the phase for the moment load Mph for harmonic loads. Enter the phase for each 
component of the moment load in the corresponding fields.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Body Load>Phase

Shell>Face Load>Phase

Shell>Edge Load>Phase

Shell>Point Load>Phase

Shell>Rigid Connector>Applied Force>Phase

Shell>Rigid Connector>Applied Moment>Phase

Ribbon
Physics tab with Body Load, Face Load, Edge Load, Point Load, Applied Force, or Applied 

Moment selected:

Attributes>Phase

Harmonic Perturbation

Use the Harmonic Perturbation subnode to specify the harmonic part of nonzero 
prescribed displacements. This node is used if the study step is frequency response of 
a perturbation type.



Ffreq F f  2ft + cos=
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The settings are the same as in the parent Prescribed Displacement/Rotation, 
Prescribed Velocity, Prescribed Acceleration, or Rigid Connector node. Only degrees 
of freedom selected as prescribed in the parent node can be assigned a value.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Shell>Prescribed Displacement/Rotation>Harmonic Perturbation

Shell>Prescribed Velocity>Harmonic Perturbation

Shell>Prescribed Acceleration>Harmonic Perturbation

Shell>Rigid Connector>Harmonic Perturbation

Plate>Prescribed Displacement/Rotation>Harmonic Perturbation

Plate>Prescribed Velocity>Harmonic Perturbation

Plate>Prescribed Acceleration>Harmonic Perturbation

Ribbon
Physics tab with Prescribed Displacement/Rotation, Prescribed Velocity, Prescribed 

Acceleration, or Rigid Connector node selected in the model tree:

Attributes>Harmonic Perturbation

 See Harmonic Perturbation in the Structural Mechanics Modeling 
chapter.
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L a y e r e d  S h e l l
This chapter describes the Layered Shell interface, which is found under the 
Structural Mechanics branch ( ) when adding a physics interface.

In this chapter:

• Theory for the Layered Shell Interface

• The Layered Shell Interface
 1365
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Th eo r y  f o r  t h e  L a y e r e d  S h e l l  
I n t e r f a c e

The theory for the Layered Shell interface is discussed in this section:

• About Layered Shells

• Theory Background for the Layered Shell Interface

About Layered Shells

A layered shell, also known as a composite laminate, is a thin-walled structure in 3D 
having many layers of different orthotropic (or optionally isotropic/anisotropic) 
material stacked on top of each other. A layered shell can be active either on free 
surfaces embedded in 3D or on the boundary of a solid object in 3D. In the latter case, 
it can be used to model a reinforcement on the surface of a solid object.

Figure 6-1: Geometry of a doubly curved laminated shell.

Figure 6-1 shows the uniform thickness doubly curved laminated shell having an 
orthogonal curvilinear coordinate system ( ) and a total thickness (d).

A typical stacking sequence of a composite laminate having n layers is shown in 
Figure 6-2. The thickness of each layer (dk), as well as the fiber direction in each layer 
(k) with respect to first principal direction (1) of the laminate are indicated. A 

1 2  
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counterclockwise rotation of the fiber direction with respect to the () direction is 
considered as positive.

Figure 6-2: A typical stacking sequence of a composite laminate showing thickness and 
fiber orientation in each layer.

In COMSOL Multiphysics, layered shells can be analyzed either by the layerwise 
theory using the Layered Shell interface, or by the first order shear deformation theory 
(ESL-FSDT) theory using the Layered Linear Elastic Material in the Shell interface. The 
layerwise theory of modeling a layered shell is discussed in the next section.

Theory Background for the Layered Shell Interface

The Layered Shell interface is based on the layerwise theory of modeling a composite 
laminate. A layerwise (LW) theory is very similar to the traditional 3D elasticity theory 
where the degrees of freedom are only the displacement fields defined in the product 

For a general description of this section, see About Laminated Composite 
Shells in the documentation for the Composite Materials Module.

The first order shear deformation theory (ESL-FSDT) of modeling a 
layered shell is described in Theory for FSDT Laminated Shell.
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geometry. The product geometry, or a domain, is defined by the reference geometric 
surfaces and a virtual extra dimension in the thickness direction.

This section covers the following topics:

• Physics Interface Selection

• Governing Equations

• Gradient Definition

• Area Scale Factor

• Integration

• Discretization

• Layer Materials, Thicknesses, and Orientations

• Offset and Local Coordinate System

• Transform and Scale

• Fold-Line Connection

• Layered Shell Continuity

• Using the Extra Dimension Coordinates

• Results Evaluation in Layered Shells

P H Y S I C S  I N T E R F A C E  S E L E C T I O N

A Layered Shell physics interface is defined using a surface (2D) geometry and an extra 
dimension (1D) geometry in the through-thickness (or normal) direction. The surface 
geometry is a physical geometry and supposed to be created in the model whereas the 
extra dimension geometry is a virtual geometry created by Layered Material and similar 
nodes.

The geometric surface (or its lower dimension) selection, together with layer (or 
interface) selection creates the product geometry for the governing equations and 
boundary conditions of the Layered Shell interface.

The Layered Shell interface itself exists on a domain level which is a product geometry 
created using selected geometric surfaces and material layers. The physics features can 

The key features of the layerwise theory and a comparison with ESL 
theory and 3D elasticity theory are described in Laminated Shell Theories 
in the documentation for the Composite Materials Module.
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exist on domain level or its lower dimensions. Based on whether a physics feature exists 
on a layer or an interface, the physics features can be divided into two categories:

• Layer features (having boundary, edge, or point selection)

• Interface features (having boundary, edge, or point selection)

Layer features may or may not allow a layer selection. When a layer selection is not 
allowed, the layer feature is applied to all layers.

Interface features, may allow only exterior interfaces, interior interfaces, or 
alternatively all interfaces of a laminate.

G O V E R N I N G  E Q U A T I O N S

The dependent variable in the Layered Shell interface is the displacement field. The 
dependent variable is available in the product geometry.

The governing differential equations, constitutive relations, the definition of 
deformation, stresses, strains are same as in the 3D elasticity theory as described for the 
Solid Mechanics interface.

G R A D I E N T  D E F I N I T I O N

In the analysis of deformations in 3D, the deformation gradient F is defined as

An equivalent definition of a deformation gradient in a product geometry of a layered 
shell can be written as

 (6-1)

• For a general description of layer selections, see Layer and Interface 
Selections in the documentation for the Composite Materials Module.

• For a general description of layered materials, see Layered Materials in 
the documentation for the Composite Materials Module.

See Solid Mechanics Theory for more details.

F x
X

------- u I+= =

F x
X

------- uT
du
dz
--------nT I+ += =
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where

•  is the tangential gradient operator

• z is the extra dimension thickness coordinate (varies between 0 and d)

• n is the positive normal direction

Equation 6-1 is exact for flat laminates. For curved laminates, the deformation 
gradient expression must account for the surface area of each layer. The deformation 
gradient in a product geometry of a curved layered shell can be written as

where

• Xr are the reference surface coordinates

• zoff is the relative midplane offset

• d is the laminate thickness

In some applications, it is required to model variable thickness layers. This is achieved 
by scaling the constant thickness of the layer (d_layer) using a thickness scale factor 
(lsc), which could be a function of surface coordinates. The deformation gradient in a 
scaled product geometry of a curved layered shell can be written as

where

• zs is the scaled extra dimension thickness coordinate (varies between 0 and ds)

• ds is the scaled laminate thickness

T

F x
X

------- uT
du
dz
--------nT I+ + 

  X
Xr

--------- 
  1–
= =

X
Xr

--------- I z d
2
--- 1 zoff+– + 

  nT+=

F x
X

------- uT
1

lsc
-------du

dz
--------nT I+ + 

  X
Xr

--------- 
  1–
= =

X
Xr

--------- I zs
ds

2
----- 1 zoff+– + 

 n 
 

T+=
R  6 :  L A Y E R E D  S H E L L



A R E A  S C A L E  F A C T O R

For a curved laminate, the change in surface area of each layer should be accounted for 
while integrating the energy expressions. The area scale factor (ASF) for each layer of 
the laminate can be defined as:

Length Scale Factor

For conditions applied to edges, a similar length scale factor (LSF) is required. It is 
formally defined as

where t is the tangent to the edge. For an internal edge, it is possible that there is a 
discontinuity in thickness or offset. In such a case, the line scale factor will be an 
average. Edge conditions are not well defined in such situations because the position 
of the midsurface can be discontinuous. In practice, errors caused by such effects are 
small.

I N T E G R A T I O N

All volume integrals over a layered shell element are split into a surface integration and 
a through-thickness integration. Both integrations are performed numerically. The 
surface geometry is used for surface integration and the extra dimension geometry is 
used for the through-thickness integration. It is thus possible to enter data which 
explicitly depends on the thickness direction.

Unlike a single layer shell, where all material properties are evaluated at the reference 
surface, different material and fiber orientation can be specified in each layer of the 
composite laminate. Formally this can be written as:

ASF X
Xr

---------=

LSF 1

r t
2

r t+

1

rR t
2

rR t+

-------------------------------------------=

The LSF variable is computed from the principal curvatures, see 
Curvature Variables in the COMSOL Multiphysics Reference Manual.
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As discussed in the previous section, an area scale factor is included for curved 
laminates since the layers have different surface area. This is independent of whether 
an offset is used or not, but the offset affects the scale factor.

The layer thickness scale factor (lsc) is also accounted in the integrations when variable 
thickness layers are present in the model.

D I S C R E T I Z A T I O N

The Layered Shell interface can use different shape orders for the displacement field in 
the reference surface and in the through-thickness direction. The shape orders used 
can be divided into categories:

• Same shape order in the reference surface and in the extra dimension (Figure 6-3 
and Figure 6-4)

• Different shape orders in the reference surface and in the extra dimension 
(Figure 6-5)

Based on the above two categories, 9 different elements are available:

• Linear (8 nodes)

• Quadratic Lagrange (27 nodes)

• Quadratic Serendipity (24 nodes)

• Cubic Lagrange (64 nodes)

• Cubic Serendipity (48 nodes)

• Quadratic-Linear Lagrange (18 nodes)

• Quadratic-Linear Serendipity (16 nodes)

• Quadratic-Cubic Lagrange (36 nodes)

• Quadratic-Cubic Serendipity (32 nodes)
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Figure 6-3: Element having linear shape order.

Figure 6-4: Elements having quadratic and cubic shape orders.

Linear (8 nodes)

Quadratic Lagrange (27 nodes) Quadratic Serendipity (24 nodes)

Cubic Lagrange (64 nodes) Cubic Serendipity (48 nodes)
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Figure 6-5: Elements having different shape orders on the reference surface and in the 
through-thickness direction.

L A Y E R  M A T E R I A L S ,  T H I C K N E S S E S ,  A N D  O R I E N T A T I O N S

A layered shell can have many layers with following different properties in each layer:

• Material (isotropic, orthotropic, or anisotropic)

• Thickness

• Orientation

• Mesh elements in the through-thickness direction

Quadratic-Linear Lagrange (18 nodes)

Quadratic-Cubic Lagrange (36 nodes) Quadratic-Cubic Serendipity (32 nodes)

Quadratic-Linear Serendipity (16 nodes)

For a general description of layered materials, see Layered Materials in the 
documentation for the Composite Materials Module.
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O F F S E T  A N D  L O C A L  C O O R D I N A T E  S Y S T E M

The position of the reference surface with respect to midplane of the laminate and the 
local coordinate system in which material properties and results are interpreted can be 
defined in Layered Material and similar nodes.

T R A N S F O R M  A N D  S C A L E

The transform functionality can be optionally used to simplify the definition of 
stacking sequence. Various transform options available are symmetric, antisymmetric, 
and repeated.

The scale functionality can be optionally used to model a variable thickness layer. The 
scale defined for each layer, which could be a function of reference geometry, is 
multiplied to the constant layer thickness essentially making it a variable thickness layer.

The transform and scale options can be defined in Layered Material and similar nodes.

F O L D - L I N E  C O N N E C T I O N

When two or more layered shell surfaces meet at an angle, the displacement field 
cannot be same on the side faces of all the layered shell surfaces. Thus, a slit condition 
is needed on the common edges and a connection needs to be established between the 
displacement field of different layered shell surfaces sharing an edge.

This is automatically handled by the program. The automatic search for these fold lines 
compares the normals of all the layered shell surfaces sharing an edge. If the angle 
between the normals is larger than a certain angle (default 3°) it is considered as a fold 
line.

In order to connect the displacement field of different shell surfaces meeting at a fold 
line, the following two conditions are needed:

• The displacement at the reference surface position should be continuous. This can 
be written as

For a general description of layered materials, see Layered Materials in the 
documentation for the Composite Materials Module.

For a general description of layered materials, see Layered Materials in the 
documentation for the Composite Materials Module.

ubj ubk=
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where ub is the displacement vector at the reference surface location in the 
through-thickness direction.

• The angle between the shell normals remains constant. This can be written as

where ur is the displacement vector in the through-thickness direction relative to the 
displacement vector at the reference surface location.

L A Y E R E D  S H E L L  C O N T I N U I T Y

Different layered materials have their own virtual extra dimension geometry and that 
is why, by default, two layered materials sharing a common edge in the geometry do 
not have a continuous displacement field. Thus, when two layered shell surfaces having 
different layered materials meet side-by-side, a displacement continuity needs to be 
established in the through-thickness direction on the common edge.

For an example, a layered material having 3 layers shares a common edge with another 
layered material having 2 layers. For that case, some of the ways you can connect the 
two layered materials in the through-thickness direction are as follows:

• Connecting the first and third layer of the left layered material to both the layers of 
the right layered material. This type of connection is typically used in a ply dropping 
scenario.

nj nk urj urk=

ur z d
2
--- 1 zoff+– + 

 n u ub–+=
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• Connecting the geometrically common area of both the layered materials in 
through-thickness direction.

• Connecting the first two layers of the left layered material to both the layers of the 
right layered material.
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U S I N G  T H E  E X T R A  D I M E N S I O N  C O O R D I N A T E S

Sometimes, you want to write expressions that are functions of the coordinates in the 
thickness direction of the layered shell. If you write expressions based on the usual 
coordinates, like X, Y, and Z, such an expression will be evaluated on the reference 
surface (the meshed boundaries). In addition to this, you can access locations in the 
through-thickness direction by making explicit or implicit use of the coordinates in the 
extra dimension.

The extra dimension coordinate has a name like x_llmat1_xdim. The middle part of 
the coordinate name is derived from the tag of the layered material definition where it 
is created; in this example a Layered Material Link.

You can also access the extra dimension coordinate as wrapped into a physics interface 
variable, like lshell.xd (varies from 0 to the total laminate thickness d) and 
lshell.xd_rel (varies from 0 to 1).

Finally, the coordinates in 3D space are available using the physics scoped variables 
lshell.X, lshell.Y, and lshell.Z. These coordinates vary also in the thickness 
direction of the layered shell.

You can also write expressions that explicitly contain the number of the layer, available 
in the variable lshell.num. The number of the bottommost layer is ‘1’.

Note that continuity between different layered materials meeting side by 
side is correctly established for surfaces having the same normal direction 
at the common edge.

In case the two layered materials have normal orientation in opposite 
directions, you may want to switch the Connection type from Straight to 
Twisted in the Connection Settings section of the Continuity node in order 
to connect points in extra dimension which are geometrically close to 
each other.

Using the continuity condition when the two surfaces meet at an angle 
may give rise to the stress concentration near the common edge, as well 
as a locking of the global rotation of the layered shell surfaces.
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R E S U L T S  E V A L U A T I O N  I N  L A Y E R E D  S H E L L S

For visualization and results evaluation, predefined variables include all nonzero stress 
and strain tensor components, principal stresses and principal strains, in-plane and 
out-of-plane forces, moments, and von Mises and Tresca equivalent stresses.

Stresses and strains are available in the global coordinate system, laminate coordinate 
system, as well as in the layer local coordinate system.

Layered Material Slice Plot
It is possible to evaluate the stress and strain tensor components and equivalent stresses 
in each layer of a laminate using Layered Material Slice plot.

The through-thickness location can be set to evaluate a quantity in the middle of a 
layer, at an interface between two layers, top or bottom of a laminate, and so on. The 
top, bottom, and the middle of a laminate can be defined as:

• Bottom of a laminate: 1 (relative) and 0 (physical)

• Middle of a laminate: (relative) and d/2 (physical)

• Top of a laminate: 1 (relative) and d (physical)

The default value for the through-thickness location is given in the Default 

through-thickness result location section of the Layered Shell interface.

Through Thickness Plot
The through-thickness variation of a quantity at one or more locations on the reference 
surface can be plotted using a Through Thickness plot. In this plot, the reference surface 
locations can be specified through following ways:

• By selecting one or more geometric points

• By specifying the coordinate of one or more points

• By creating a cut point dataset

Layered Material Dataset
The Layered Material dataset allows the display of results in 3D solid even though the 
equations are solved on a 2D surface.

Using this dataset, results can either be visualized on a 3D object or on slices created 
in the through-thickness direction of a 3D object. The following options are available 
in the dataset to create slices in the through-thickness direction:

• Mesh nodes
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• Interfaces

• Layer midplanes

Sometimes, when a laminate is very thin, it becomes difficult to distinguish between a 
surface or a solid object. In such cases it is possible to scale the through-thickness 
direction in the dataset for better visualization.
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Th e  L a y e r e d  S h e l l  I n t e r f a c e

The Layered Shell (lshell) interface ( ), found under the Structural Mechanics 
branch ( ) when adding a physics interface, is used to model layered structural shells 
on 3D boundaries. Shells are thin flat or curved structures, having significant bending 
stiffness.

The Layered Shell interface is applicable for thick and moderately thin shells. The 
formulation resembles that of a stack of fully 3D solid mechanics models, so all stress 
components, including interlaminar shear stresses can be resolved. For very thin shells 
this formulation tends to become numerically ill-behaved, and it is then better to use 
the Shell interface with the Layered Linear Elastic Material model.

The Linear Elastic Material is the default material model. With the Nonlinear 
Structural Materials Module, the physics interface is extended with more material 
models, like hyperelasticity, plasticity, creep, and viscoplasticity.

When this interface is added, these default nodes are also added to the Model Builder 
— Linear Elastic Material, Free (a boundary condition where edges are free, with no 
loads or constraints), and Initial Values. Then, from the Physics toolbar, add other 
nodes that implement, for example, boundary conditions. You can also right-click 
Layered Shell to select physics features from the context menu.

The Layered Shell interface is only available with the Composite Materials Module (see 
https://www.comsol.com/products/specifications/).

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is lshell.
T H E  L A Y E R E D  S H E L L  I N T E R F A C E  |  1381

https://www.comsol.com/products/specifications/


1382 |  C H A P T E
S H E L L  P R O P E R T I E S

Here you select on which layers in a layered material that the physics interface should 
be active. By default, the Use all layers check box is selected. This means that all layers 
in all layered materials on the selected boundaries are used.

If you deselect the Use all layers check box, you can select individual layers within a 
single layered material. This is a seldom used option, since it means that the physics 
interface is restricted to the boundaries on which a specific layered material is defined.

S T R U C T U R A L  T R A N S I E N T  B E H A V I O R

From the Structural transient behavior list, select Include inertial terms (the default) or 
Quasistatic. Use Quasistatic to treat the dynamic behavior as quasistatic (with no mass 
effects; that is, no second-order time derivatives). Selecting this option gives a more 
efficient solution for problems where the variation in time is slow when compared to 
the natural frequencies of the system. The default solver for the time stepping is 
changed from Generalized alpha to BDF when Quasistatic is selected.

For problems with creep, and sometimes viscoelasticity, the problem can be considered 
as quasistatic. This is also the case when the time dependence exists only in some other 
physics, like a transient heat transfer problem causing thermal strains.

F O L D - L I N E  S E T T I N G S

A fold-line is an edge where the boundaries that meet do not have a continuous 
orientation of the normal vector. Along fold lines, the degrees of freedom are in 
general not continuous, but rather connected by a set of constraints.

Select a Constraint type — Full or Simplified. The full fold-line constraint formulation is 
accurate, consistent with the degrees of freedom, and does not produce any stress 
singularities near the fold-lines. However, it is computationally expensive, and leads to 
a nonlinear problem, even in an otherwise linear model. On the other hand, the 
simplified fold-line constraint formulation assumes that thin shell kinematics can be 
used. It is computationally more efficient, does not force the problem to be nonlinear, 
and works very well for thin or moderately thick shells.

The fold-line limit angle  is the smallest angle between the normals of two boundaries 
that makes their intersection to be treated as a fold line. The normal to the layered shell 
is discontinuous along a fold-line. Enter a value or expression in the  field. The default 

For a general description of layer selections, see The Shell Properties and 
Interface Selection Sections.
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value is 0.05 radians (approximately 3°). The value must be larger than 0, and less than 
/2, but angles larger than a few degrees are not usually meaningful.

D E F A U L T  T H R O U G H - T H I C K N E S S  R E S U L T  L O C A T I O N

Enter a number between -1 and 1 for the Local z-coordinate [-1,1] for 

thickness-dependent results Z. The value can be changed from 1 (downside) to 1 
(upside). The default is +1. A value of 0 means the midsurface of the layered shell. This 
is the default position for stress and strain evaluation during the results analysis.

A D V A N C E D  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. Normally these settings do not 
need to be changed.

You can chose how to group in the solver nodes the extra ODE variables added by 
some features.

Select the Rigid connectors check box to group in the solver node the variables added 
by the Rigid Connector and Rigid Connector, Interface features.

Select the Attachments check box to group in the solver node the variables added by 
the Attachment feature.

The selection made in the Advanced Settings section can be overridden by the settings 
in the Advanced section of the Rigid Connector, Rigid Connector, Interface, or 
Attachment features.

D I S C R E T I Z A T I O N

In the Layered Shell interface you can choose not only the order of the discretization, 
but also the type of shape functions: Lagrange or serendipity. For highly distorted 

See Fold-Line Connection for the theory of fold line constraints in 
layered shell.
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elements, Lagrange shape functions provide better accuracy than serendipity shape 
functions of the same order. The serendipity shape functions will however give 
significant reductions of the model size for a given mesh containing hexahedral, prism, 
or quadrilateral elements. The default is to use Quadratic Lagrange shape functions for 
the Displacement field.

The order of the discretization is used not only in the reference surface but also in the 
thickness direction. It is possible to choose different order of discretization in the 
reference surface and in the thickness direction.

D E P E N D E N T  V A R I A B L E S

The physics interface uses the global spatial components of the Displacement field u as 
dependent variables. The default names for the components are (u, v, w).

Since the Layered Shell Interface uses a discretization also in the thickness direction, 
the degrees of freedom are allocated not only in the plane of the shell, but also in that 
direction.

You can change both the field name and the individual component names. If a new 
field name coincides with the name of another displacement field, the two fields (and 
the interfaces which define them) share degrees of freedom and dependent variable 
component names.

A new field name must not coincide with the name of a field of another type (that is, 
it must contain a displacement field), or with a component name belonging to some 
other field. Component names must be unique within a model except when two 
interfaces share a common field name.

See Discretization for the details on discretization order for a layered 
shell.

• Domain, Boundary, Edge, Point, and Pair Nodes for the Layered Shell 
Interface

• Theory for the Layered Shell Interface
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The Shell Properties and Interface Selection Sections

The physics features can be of two, fundamentally different, types: Those who act on 
the layers themselves, and those who act on the interfaces between layers. The settings 
for these two types of features are slightly different.

T H E  S H E L L  P R O P E R T I E S  S E C T I O N

Almost all layer type of physics nodes that you add in the Layered Shell interface have 
a section named Shell Properties. Selections in this section interact with the standard 
selections of geometrical objects (boundary, edges, or points) in order to provide a 
complete specification of where a material property or boundary condition is to be 
applied. The default selection is typically inherited from the selection in the physics 
interface, or from a parent node.

The Use all layers check box indicates that all layers within the geometrical selection are 
used as selection. Only layers that are selected in the physics interface and parent nodes 
are considered, though.

When Use all layers is deselected, you will be presented a list of all applicable layups 
defined by Layered Material Link, Layered Material Stack, and Single Layer Material nodes 
in the component. If the parent node has Use all layers selected, all such nodes are 
selectable. If not, the same selection as in the parent is the only option.

When a single layup is selected, you can usually select individual layers within it. There 
are some exceptions, because for some physics features it is not meaningful not to act 
on all layers.

T H E  I N T E R F A C E  S E L E C T I O N  S E C T I O N

Almost all interface type of physics nodes that you add in the Layered Shell interface 
have a section named Interface Selection. Selections in this section interact with the 
standard selections of geometrical objects (boundary, edges, or points) in order to 

• Micromechanics and Stress Analysis of a Composite Cylinder: 
Application Library path Composite_Materials_Module/Tutorials/

composite_cylinder_micromechanics_and_stress_analysis

• Forced Vibration Analysis of a Composite Laminate: Application 
Library path Composite_Materials_Module/Dynamics_and_Vibration/

forced_vibration_of_a_composite_laminate
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provide a complete specification of where a material property or boundary condition 
is to be applied.

You can only select interfaces that are adjacent to a layer selected in the parent. Some 
boundary conditions also impose other restrictions for physical reasons.

The interface selection in the Apply to list also provides a number of shortcuts:

• Top interface

• Bottom interface

• Exterior interfaces

• Interior interfaces

• All interfaces

If all layers in the laminate are selected by the parent, then Exterior interfaces means 
top and bottom. If not, it means all interfaces that are ‘free’ in the sense that they have 
a selected layer on one side only.

If all layers in the laminate are selected by the parent, then Interior interfaces means all 
interfaces except top and bottom. If not, it means all interfaces that have a selected 
layer on both sides.

When All interfaces is selected, it applies to all interfaces of layers selected in the parent.

Domain, Boundary, Edge, Point, and Pair Nodes for the Layered Shell 
Interface

The Layered Shell Interface have the following domain, boundary, edge, point, and 
pair nodes available from the Physics ribbon toolbar (Windows users), Physics context 
menu (Mac or Linux users), or right-click to access the context menu (all users).

See Physics Interface Selection for more details.

For a general description of layer selections, see Layer and Interface 
Selections in the documentation for the Composite Materials Module.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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F E A T U R E S  A V A I L A B L E  F R O M  S U B M E N U S

Many features for the Layered Shell interface are added from submenus in the Physics 
toolbar groups or context menu (when you right-click the node). The submenu name 
is the same in both cases.

The submenus at the Boundary level are

• Material Models

• Face and Volume Loads

• Mass, Spring, and Damper

• Face and Domain Constraints

The submenus at the Edge level are

• Connections

• Mass, Spring, and Damper

• More Constraints

There is also the Points submenu.

In order to distinguish the layer features with interface features, all the interface 
features are further grouped in an Interfaces menu and placed within the respective 
submenu.

L I N K S  T O  F E A T U R E  N O D E  I N F O R M A T I O N

These nodes are described in this section (listed in alphabetical order):
T H E  L A Y E R E D  S H E L L  I N T E R F A C E  |  1387



1388 |  C H A P T E
 R  6 :  L A Y E R E D  S H E L L



• Activation

• Added Mass

• Added Mass, Interface

• Adiabatic Heating

• Antisymmetry

• Attachment

• Body Load

• Boundary Load

• Continuity

• Coupling Loss

• Creep

• Damage

• Damping

• Delamination

• Dielectric Loss

• Edge Load

• External Stress

• External Strain

• Face Load

• Fixed Constraint

• Fixed Constraint, Interface

• Free

• Hygroscopic Swelling

• Hyperelastic Material

• Initial Values

• Initial Stress and Strain

• Linear Elastic Material

• Line Load

• Mechanical Damping

• Mullins Effect

• Phase

• Piezoelectric Material

• Plasticity

• Point Load

• Predeformation

• Prescribed Acceleration

• Prescribed Acceleration, Interface

• Prescribed Displacement

• Prescribed Displacement, Interface

• Prescribed Velocity

• Prescribed Velocity, Interface

• Rigid Connector

• Rigid Connector, Interface

• Rigid Material

• Rotating Frame

• Rigid Motion Suppression

• Roller

• Roller, Interface

• Safety

• Set Variables

• Spring Foundation

• Spring Foundation, Interface

• Symmetry

• Thermal Expansion (for Constraints)

• Thermal Expansion (for Materials)

• Thin Elastic Layer

• Thin Elastic Layer, Interface

• Viscoelasticity

• Viscoplasticity
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These nodes are described in the documentation for the Solid Mechanics interface:

Initial Values

The Initial Values node adds initial values for the displacement and velocity fields. It can 
serve as an initial condition for a transient simulation or as an initial guess for a 
nonlinear analysis. In addition to the default Initial Values node always present in the 
interface, you can add more Initial Values nodes if needed.

If there are subsequent constraints specified on the same geometrical 
entity, the last one takes precedence.

• Thermal Expansion (Rigid 
Connector)

• Applied Force (Rigid Connector)

• Applied Force (Rigid Material)

• Applied Moment (Rigid Connector)

• Applied Moment (Rigid Material)

• Base Excitation

• Contact

• Fixed Constraint (Rigid Material)

• Gravity

• Initial Values (Rigid Material)

• Mass and Moment of Inertia (Rigid 
Connector)

• Mass and Moment of Inertia (Rigid 
Material)

• Prescribed Displacement/Rotation

• Spring Foundation (Rigid Material)

Harmonic Perturbation, Prestressed Analysis, and Small-Signal Analysis 
in the COMSOL Multiphysics Reference Manual

In the COMSOL Multiphysics Reference Manual see Table 2-4 for links 
to common sections and Table 2-5 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.
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S H E L L  P R O P E R T I E S

Select the material layers to which the initial values are to be applied.

Context Menus
Layered Shell>Initial Values

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Layered Shell>Initial Values

Linear Elastic Material

The Linear Elastic Material node adds the equations for a linear elastic layered shell and 
an interface for defining the elastic material properties. When working with layered 
shells, you almost invariably take the material data from what has been defined using 
Layered Material Link, Layered Material Stack, or Single Layer Material nodes. It is 
however possible to override some data from a Linear Elastic Material node too.

In order to have a correct model, all layers must have been assigned material data for 
all boundaries selected in the settings for the interface. The override rules for the 
material models in the Layered Shell interface cannot enforce this, in the same way as 

TABLE 6-1:  LAYER SELECTIONS; INITIAL VALUES

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as interface selection when the 
node is added.

In the default material node, the setting 
is always inherited from the interface 
setting and cannot be changed.

Not available

• All other settings for the Initial Values node are described in the 
documentation for Initial Values in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide material parameters with a through-thickness variation 
by explicitly or implicitly using expressions containing the extra 
dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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for other physics interfaces. You can have several Linear Elastic Material nodes with the 
same (or partially overlapping) geometrical selections, but with different layer 
selections.

By adding the following subnodes to the Linear Elastic Material node you can 
incorporate many other effects:

• Thermal Expansion (for Materials)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress

• External Strain

• Inelastic Strain Rate

• Damping

• Viscoelasticity

• Plasticity

• Creep

• Viscoplasticity

• Activation

• Safety

S H E L L  P R O P E R T I E S

Select the layer or layers for which this material model is to be used.

If the properties of the layers differ in the sense of the Material symmetry setting 
(Isotropic, Orthotropic, or Anisotropic) you can still use a single Linear Elastic Material 
node. Select the most complex of the models. Isotropic material data available in a 
Material node will automatically be converted to the two other types if needed. 
Similarly, orthotropic data will automatically be converted to anisotropic.

TABLE 6-2:  LAYER SELECTIONS; LINEAR ELASTIC MATERIAL

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as interface selection when the 
node is added.

In the default material node, the setting 
is always inherited from the interface 
setting and cannot be changed.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.
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Data given in the other sections of this node applies to all selected layers. Thus, if you 
enter material data explicitly, rather relying on the default From material option, you 
will override that material property for all selected layers.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Material Models>Linear Elastic Material

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Material Models>Linear Elastic Material

Hyperelastic Material

The Hyperelastic Material subnode adds the equations for hyperelasticity at large strains. 
Hyperelastic materials can be suitable for modeling rubber and other polymers, 
biological tissue, and also for applications in acoustoelasticity.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.

When a hyperelastic material is included in your model, all studies are geometrically 
nonlinear. The Include geometric nonlinearity check box in the study settings is selected 
and cannot be cleared.

• All other settings for the Linear Elastic Material node are described in 
the documentation for Linear Elastic Material in the Solid Mechanics 
interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide material parameters with a through-thickness variation 
by explicitly or implicitly using expressions containing the extra 
dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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By adding the following subnodes to the Hyperelastic Material node you can 
incorporate many other effects:

S H E L L  P R O P E R T I E S

Select the layer or layers for which this material model is to be used.

Data given in the other sections of this node applies to all layers. Thus, if you enter 
material data explicitly, rather relying on the default From material option, you will 
override that material property for all selected layers.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Material Models>Hyperelastic Material

• Thermal Expansion (for Materials)

• Hygroscopic Swelling

• External Stress

• External Strain

• Damping

• Viscoelasticity

• Mullins Effect

TABLE 6-3:  LAYER SELECTIONS; HYPERELASTIC MATERIAL

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as interface selection when the 
node is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the Hyperelastic Material node are described in the 
documentation for Hyperelastic Material in the Solid Mechanics 
interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide material parameters with a through-thickness variation 
by explicitly or implicitly using expressions containing the extra 
dimension coordinate as described in Using the Extra Dimension 
Coordinates.
R  6 :  L A Y E R E D  S H E L L



Ribbon
Physics tab with Layered Shell selected:

Boundaries>Material Models>Hyperelastic Material

Piezoelectric Material

The Piezoelectric Material node defines the piezoelectric material properties either in 
stress-charge form using the elasticity matrix and the coupling matrix, or in 
strain-charge form using the compliance matrix and the coupling matrix. It is normally 
used together with a Layered Piezoelectric Effect multiphysics coupling node and a 
corresponding Piezoelectric Layer node in the Electric Currents in Layered Shells 
interface. This node is added by default to the Layered Shell interface when adding a 
Piezoelectricity, Layered Shell multiphysics interface.

This material model requires one of these products: Structural Mechanics Module, 
MEMS Module, or Acoustics Module.

When working with layered shells, you almost invariably take the material data from 
what has been defined using Layered Material Link, Layered Material Stack, or Single 

Layer Material nodes. It is however possible to override some data from a Piezoelectric 

Material node too.

In order to have a correct model, all layers must have been assigned material data for 
all boundaries selected in the settings for the interface. The override rules for the 
material models in the Layered Shell interface cannot enforce this, in the same way as 
for other physics interfaces. You can have several Piezoelectric Material nodes with the 
same (or partially overlapping) geometrical selections, but with different layer 
selections.

By adding the following subnodes to the Piezoelectric Material node you can 
incorporate many other effects:

• Initial Stress and Strain

• Thermal Expansion (for Materials)

• Mechanical Damping

• Coupling Loss
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• Dielectric Loss

S H E L L  P R O P E R T I E S

Select the layer or layers for which this material model is to be used.

Data given in the other sections of this node applies to all layers. Thus, if you enter 
material data explicitly, rather relying on the default From material option, you will 
override that material property for all selected layers.

P I E Z O E L E C T R I C  M A T E R I A L  P R O P E R T I E S

Select a Constitutive relation — Stress-charge form or Strain-charge form. For each of the 
following, the default uses values From material. For User defined enter other values in 
the matrix or field as needed.

• For Stress-charge form, select an Elasticity matrix, Voigt notation (cE).

• For a Strain-charge form, select a Compliance matrix, Voigt notation (sE).

• Select a Coupling matrix, Voigt notation (d).

• Select a Relative permittivity (erS or erT).

When the Piezoelectric Material node is added to the Layered Shell 
interface in the absence of an active Layered Piezoelectric Effect 
multiphysics coupling node, the material behaves similarly to a Linear 
Elastic Material node. The elastic properties will correspond to the 
elasticity or compliance matrix entered (see below). The piezoelectric 
effect is then not included in the equation system.

See also Piezoelectricity in the Structural Mechanics Theory chapter.

TABLE 6-4:  LAYER SELECTIONS; PIEZOELECTRIC MATERIAL

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as interface selection when the 
node is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.
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• Enter values for the Remanent electric displacement Dr.

• Select a Density (p).

Density
If any material in the model has a temperature dependent mass density, and From 

material is selected, the Volume reference temperature list will appear in the Model Input 
section. As a default, the value of Tref is obtained from a Common model input. You can 
also select User defined to enter a value or expression for the reference temperature 
locally.

O U T - O F - P L A N E  M A T E R I A L  O R I E N T A T I O N

The layered material always operates with a boundary coordinate system on the base 
surface (laminate system). For such systems, the third base vector direction is always 
normal to the surface. Use a special control available in this section if you need to 
change the out-of-plane orientation of the material. This is essential if your 
piezoelectric device requires the pole direction to be tangential to the shell, but the 
pole direction in the material data coincides with the third coordinate axis - such 
material orientation is assumed for all the piezoelectric material data available in 
COMSOL Material Library.

For entering these matrices, use the following order (Voigt notation), 
which is the common convention for piezoelectric materials: xx, yy, zz, yz, 
xz, zy.

The density is for dynamic analysis, and also when computing mass forces 
for gravitational or rotating frame loads.

See also

• Mass Density and Volume Reference Temperature.

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.
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G E O M E T R I C  N O N L I N E A R I T Y

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. There are, however, some cases when the use of a small 
strain formulation for a certain domain is needed. In those cases, select the 
Geometrically linear formulation check box. When selected, a small strain formulation is 
always used, independently of the setting in the study step. The check box is not 
selected by default to conserve the properties of the model.

When a geometrically nonlinear formulation is used, the elastic deformations used for 
computing the stresses can be obtained in two different ways if inelastic deformations 
are present: additive decomposition and multiplicative decomposition. The default is 
to use multiplicative decomposition. Select Additive strain decomposition to change to 
an assumption of additivity.

E N E R G Y  D I S S I P A T I O N

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

Select the Calculate dissipated energy check box as needed to compute the energy 
dissipated by Mechanical damping.

Q U A D R A T U R E  S E T T I N G S

Select the Reduced integration check box to reduce the integration points for the weak 
contribution of the feature. Select a method for Hourglass stabilization — Automatic, 
Manual, or None to use in combination with the reduced integration scheme. The 
default Automatic stabilization technique is based on the shape function and shape 
order of the displacement field.

Control the hourglass stabilization scheme by using the Manual option. Select Shear 

stabilization (default) or Volumetric stabilization.

When Shear stabilization is selected, enter a stabilization shear modulus, Gstb, and the 
shear correction factor kstb. The value for Gstb should be in the order of magnitude of 
the equivalent shear modulus.

When Volumetric stabilization is selected, enter a stabilization bulk modulus, Kstb. The 
value should be in the order of magnitude of the equivalent bulk modulus.

• Modeling Piezoelectric Problems

• Modeling Geometric Nonlinearity
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Material Models>Piezoelectric Material

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Material Models>Piezoelectric Material

Viscoelasticity

Use the Viscoelasticity subnode to add viscous stress contributions to an elastic material 
model.

S H E L L  P R O P E R T I E S

Select the layer or layers for which this viscoelastic model is to be used.

If the viscoelastic model differs between layers, you will need to add several 
Viscoelasticity nodes with different layer selections.

If the same layer is selected in two Viscoelasticity nodes being active on the boundary, 
then there will be two viscoelastic contributions.

TABLE 6-5:  LAYER SELECTIONS; VISCOELASTICITY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the Viscoelasticity node are described in the 
documentation for Viscoelasticity in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide material parameters with a through-thickness variation 
by explicitly or implicitly using expressions containing the extra 
dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Linear Elastic Material>Viscoelasticity

Layered Shell>Hyperelastic Material>Viscoelasticity

Ribbon
Physics tab with Linear Elastic Material or Hyperelastic Material node selected in the 
model tree:

Attributes>Viscoelasticity

Mullins Effect

Use the Mullins effect subnode to define the properties for modeling the 
stress-softening phenomenon under cyclic loading. The Mullins effect can be used 
together with Hyperelastic Material.

S H E L L  P R O P E R T I E S

Select the layer or layers for which this Mullins effect model is to be used.

If the Mullins effect model differs between layers, you will need to add several Mullins 

Effect nodes with different layer selections. If there are two Mullins Effect nodes where 

TABLE 6-6:  LAYER SELECTIONS; MULLINS EFFECT

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.
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the same layer is selected on the same boundary, the latter will be overridden on the 
common selections.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Hyperelastic Material>Mullins Effect

Ribbon
Physics tab with Hyperelastic Material node selected in the model tree:

Attributes>Mullins Effect

Plasticity

Use the Plasticity subnode to define the properties for modeling elastoplastic materials. 
This material model can be used together with the Linear Elastic Material and 
Hyperelastic Material.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.

• All other settings for the Mullins Effect node are described in the 
documentation for Mullins Effect in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide material parameters with a through-thickness variation 
by explicitly or implicitly using expressions containing the extra 
dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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S H E L L  P R O P E R T I E S

Select the layer or layers for which this plasticity model is to be used.

If the plasticity model differs between layers, you will need to add several Plasticity 
nodes with different layer selections. If the model is the same, and only the material 
data values differ, you can use a single Plasticity node where From material is used to 
define the values. The data for each layer is then received from global Layered Material 
nodes.

If there are two Plasticity nodes where the same layer is selected on the same boundary, 
the latter will be overridden on the common selections

P L A S T I C I T Y  M O D E L

Use this section to define the plastic properties of the material.

Plasticity Model
Select Small strains or Large strains to apply either an additive or multiplicative 
decomposition between elastic and plastic strains.

• When using plasticity together with a hyperelastic material, only the option Large 
strains.

The other settings are the same as described in Plasticity Model for Solid Mechanics.

TABLE 6-7:  LAYER SELECTIONS; PLASTICITY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the Plasticity node are described in the 
documentation for Plasticity in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide material parameters with a through-thickness variation 
by explicitly or implicitly using expressions containing the extra 
dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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Context Menus
Layered Shell>Linear Elastic Material>Plasticity

Layered Shell>Hyperelastic Material>Plasticity

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:

Attributes>Plasticity

Set Variables

Use the Set Variables subnode to Plasticity of a Linear Elastic Material or Hyperelastic 
Material to reset plasticity variables according to a Setting condition that you define. 
When the Setting condition is satisfied, the plasticity variables are reset to the specified 
values.

S H E L L  P R O P E R T I E S

Select the layer or layers for which the variables are to be defined.

S E T  V A R I A B L E S

Enter the Setting condition. This is a Boolean expression that will determine when the 
plastic variables are reset.

From the Equivalent plastic strain list, select Do not set or User defined. The default User 

defined value is zero. Depending on the type of plasticity model, set additional 
plasticity variables.

• When Small plastic strains is selected in the Plasticity Model list, specify the values 
for the components of the Plastic strain tensor. From the Plastic strain tensor list, 
select Do not set or User defined. The default User defined values are zero for all 
components of the Plastic strain tensor.

• When Large plastic strains is selected in the Plasticity Model list, specify the values 
for the components of the Plastic deformation gradient inverse. From the Plastic 

TABLE 6-8:  LAYER SELECTIONS; SAFETY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection when 
the node is added.

When Use all layers is not selected.

Only a subset of the layers selected 
in the parent can be selected.
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deformation gradient inverse list, select Do not set or User defined. The default User 

defined value is the identity tensor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Linear Elastic Material>Plasticity>Set Variables

Layered Shell>Hyperelastic Material>Plasticity>Set Variables

Ribbon
Physics tab with Plasticity node selected in the model tree:

Attributes>Set Variables

Creep

Use the Creep subnode to define the creep properties of a Linear Elastic Material.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.

S H E L L  P R O P E R T I E S

Select the layer or layers for which this creep model is to be used.

When the creep model differs between layers, you will need to add several Creep nodes 
with different layer selections. If the model is the same, and only the material data 
values differ, you can use a single Creep node where From material is used to define the 
values. The data for each layer is then received from global Layered Material nodes.

TABLE 6-9:  LAYER SELECTIONS; CREEP

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.
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If the same layer is selected in two Creep nodes being active on the boundary, then 
there will be two creep strain contributions.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Linear Elastic Material>Creep

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:

Attributes>Creep

Additional Creep

Use the Additional Creep subnode to define additional contributions to the creep model 
defined by the parent Creep node, such as primary or tertiary creep behavior. A Creep 
node can have any number of Additional Creep subnodes with different settings to 
model advanced creep mechanisms.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.

• All other settings for the Creep node are described in the 
documentation for Creep in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide material parameters with a through-thickness variation 
by explicitly or implicitly using expressions containing the extra 
dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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S H E L L  P R O P E R T I E S

Select the layer or layers for which this creep model is to be used.

When the creep model differs between layers, you will need to add several Additional 

Creep nodes with different layer selections. If the model is the same, and only the 
material data values differ, you can use a single Additional Creep node where From 

material is used to define the values. The data for each layer is then received from global 
Layered Material nodes.

If the same layer is selected in two Creep nodes being active on the boundary, then 
there will be two creep strain contributions

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Linear Elastic Material>Creep>Additional Creep

Ribbon
Physics tab with Creep node selected in the model tree:

Attributes>Additional Creep

TABLE 6-10:  LAYER SELECTIONS; CREEP

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the Additional Creep node are described in the 
documentation for Additional Creep in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide material parameters with a through-thickness variation 
by explicitly or implicitly using expressions containing the extra 
dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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Viscoplasticity

Use the Viscoplasticity subnode to define the viscoplastic properties of the material 
model.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.

S H E L L  P R O P E R T I E S

Select the layer or layers for which this viscoplasticity model is to be used.

When the viscoplasticity model differs between layers, you will need to add several 
Viscoplasticity nodes with different layer selections. If the model is the same, and only 
the material data values differ, you can use a single Viscoplasticity node where From 

material is used to define the values. The data for each layer is then received from global 
Layered Material nodes.

If the same layer is selected in two Viscoplasticity nodes being active on the same 
boundary, the second definition will override the previous.

TABLE 6-11:  LAYER SELECTIONS; VISCOPLASTICITY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the Viscoplasticity node are described in the 
documentation for Viscoplasticity in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide material parameters with a through-thickness variation 
by explicitly or implicitly using expressions containing the extra 
dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Linear Elastic Material>Viscoplasticity

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:

Attributes>Viscoplasticity

Thermal Expansion (for Materials)

Use the Thermal Expansion subnode to add an internal thermal strain caused by changes 
in temperature.

S H E L L  P R O P E R T I E S

Select the layer or layers for which this thermal strain contribution is to be added.

If the Input type differs between layers, you will need to add several Thermal Expansion 
nodes with different layer selections. If only the material data values differ, you can use 
a single Thermal Expansion node with From material. The data for each layer is then 
received from global Layered Material nodes.

TABLE 6-12:  LAYER SELECTIONS; THERMAL EXPANSION

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.
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If the same layer is selected in two Thermal Expansion nodes being active on the same 
boundary, the second definition will override the previous.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Linear Elastic Material>Thermal Expansion

Layered Shell>Hyperelastic Material>Thermal Expansion

Layered Shell>Piezoelectric Material>Thermal Expansion

Ribbon
Physics tab with Linear Elastic Material, Hyperelastic Material, or Piezoelectric Material 
node selected in the model tree:

Attributes>Thermal Expansion

Hygroscopic Swelling

Hygroscopic swelling is an internal strain caused by changes in moisture content. This 
strain can be written as

where h is the coefficient of hygroscopic swelling,m is the molar mass, cmo is the 
moisture concentration, and cmo,ref is the strain-free reference concentration.

You can provide a concentration with a through-thickness variation by explicitly or 
implicitly use expressions containing the extra dimension coordinate as described in 
Using the Extra Dimension Coordinates.

• All other settings for the Thermal Expansion node are described in the 
documentation for Thermal Expansion (for Materials) in the Solid 
Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide parameters for the expansion with a through-thickness 
variation by explicitly or implicitly using expressions containing the 
extra dimension coordinate as described in Using the Extra Dimension 
Coordinates.

hs hMm cmo cmo,ref– =
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S H E L L  P R O P E R T I E S

Select the layer or layers for which this swelling strain contribution is to be added.

If the swelling properties differ between layers, you will need to add several Hygroscopic 

Swelling nodes with different layer selections. If only the material data values differ, you 
can use a single Hygroscopic Swelling node with From material. The data for each layer 
is then received from global Layered Material nodes.

If the same layer is selected in two Hygroscopic Swelling nodes being active on the same 
boundary, the second definition will override the previous.

TABLE 6-13:  LAYER SELECTIONS; HYGROSCOPIC SWELLING

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

Hygroscopic strains are proportional to the concentration, while 
structural strains are computed from the gradient of the displacement 
field. It is good practice to match the discretization order of hygroscopic 
and structural strains.

When adding a Hygroscopic Swelling subnode, and the concentration field 
is computed by another physics interface; use a discretization one order 
lower for the concentration field than what is used for the displacement 
field.

• All other settings for the Hygroscopic Swelling node are described in the 
documentation for Hygroscopic Swelling in the Solid Mechanics 
interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide parameters for the swelling with a through-thickness 
variation by explicitly or implicitly using expressions containing the 
extra dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Linear Elastic Material>Hygroscopic Swelling

Layered Shell>Hyperelastic Material>Hygroscopic Swelling

Ribbon
Physics tab with Linear Elastic Material or Hyperelastic Material node selected in the 
model tree:

Attributes>Hygroscopic Swelling

Initial Stress and Strain

You can add the Initial Stress and Strain subnode to the Linear Elastic Material, in order 
to specify the stress or strain state in the structure before applying any constraint or 
load. The values given are not initial values in the mathematical sense but rather a 
contribution to the constitutive relation.

S H E L L  P R O P E R T I E S

Select the layer or layers for which this stress or strain contribution is to be added.

If the initial stress or strain differ between layers, you will need to add several Initial 

Stress and Strain nodes with different layer selections.

In many cases Initial Stress and Strain and External Stress are 
interchangeable when prescribing stresses, but you can find some more 
options in the latter.

For details about initial stresses and strains, see Initial Stresses and Strains.

TABLE 6-14:  LAYER SELECTIONS; INITIAL STRESS AND STRAIN

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.
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If the same layer is selected in two Initial Stress and Strain nodes being active on the 
same boundary, the contributions will be added.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Linear Elastic Material>Initial Stress and Strain

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:

Attributes>Initial Stress and Strain

External Stress

You can add the External Stress subnode to the Linear Elastic Material or Hyperelastic 
Material in order to specify an additional stress contribution which is not part of the 
constitutive relation. The external stress can be added to the total stress tensor, act as 
an extra load contribution, or behave as a residual stress.

• All other settings for the Initial Stress and Strain node are described in 
the documentation for Initial Stress and Strain in the Solid Mechanics 
interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe stress or strain values with a through-thickness 
variation by explicitly or implicitly using expressions containing the 
extra dimension coordinate as described in Using the Extra Dimension 
Coordinates.

In many cases External Stress and Initial Stress and Strain are 
interchangeable when prescribing stresses. In Initial Stress and Strain, the 
given stress is however always added to the stress tensor, whereas the 
option to use the stress as only a load contribution exists only in External 

Stress.
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S H E L L  P R O P E R T I E S

Select the layer or layers for which this stress contribution is to be added.

If the external stress input type differs between layers, you will need to add several 
External Stress nodes with different layer selections.

If the same layer is selected in two External Stress nodes being active on the same 
boundary, the contributions will be added.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Linear Elastic Material>External Stress

Layered Shell>Hyperelastic Material>External Stress

Ribbon
Physics tab with Linear Elastic Material or Hyperelastic Material node selected in the 
model builder tree:

Attributes>External Stress

TABLE 6-15:  LAYER SELECTIONS; EXTERNAL STRESS

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the External Stress node are described in the 
documentation for External Stress in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe stress values with a through-thickness variation by 
explicitly or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.
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External Strain

The External Strain subnode allows you to provide inelastic strain contributions to the 
Linear Elastic Material or Hyperelastic Material on a variety of formats.

S H E L L  P R O P E R T I E S

Select the layer or layers for which this strain contribution is to be added.

If the external strain input type differs between layers, you will need to add several 
External Strain nodes with different layer selections.

If the same layer is selected in two External Strain nodes being active on the same 
boundary, the contributions will be added.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Linear Elastic Material>External Strain

Layered Shell>Hyperelastic Material>External Strain

Ribbon
Physics tab with Linear Elastic Material or Hyperelastic Material node selected in the 
model builder tree:

TABLE 6-16:  LAYER SELECTIONS; EXTERNAL STRAIN

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the External Strain node are described in the 
documentation for External Strain in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe strain values with a through-thickness variation by 
explicitly or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.
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Attributes>External Strain

Inelastic Strain Rate

The Inelastic Strain Rate subnode allows you to provide inelastic strain contributions to 
the material models Linear Elastic Material, Nonlinear Elastic Material, and Hyperelastic 

Material on a variety of formats as in External Strain. Here, however, the inelastic 
contribution is given as a rate, and the total inelastic contribution is computed by 
integrating this rate in time.

S H E L L  P R O P E R T I E S

Select the layer or layers for which this strain contribution is to be added.

If the inelastic strain input type differs between layers, you will need to add several 
Inelastic Strain Rate nodes with different layer selections.

If the same layer is selected in two Inelastic Strain Rate nodes being active on the same 
boundary, the contributions will be added.

TABLE 6-17:  LAYER SELECTIONS; EXTERNAL STRAIN

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the Inelastic Strain Rate node are described in the 
documentation for Inelastic Strain Rate in the Solid Mechanics 
interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe strain values with a through-thickness variation by 
explicitly or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Linear Elastic Material>Inelastic Strain Rate

Layered Shell>Hyperelastic Material>Inelastic Strain Rate

Ribbon
Physics tab with Linear Elastic Material or Hyperelastic Material node selected in the 
model builder tree:

Attributes>Inelastic Strain Rate

Damage

The Damage subnode allows you to model damage and cracking in brittle materials 
according to various criteria. It is available in the Solid Mechanics, Shell and Layered 
Shell interfaces, and it can be used in combination with the Linear Elastic Material.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.

S H E L L  P R O P E R T I E S

Select the layer or layers for which the damage is to be computed.

If the damage input type differs between layers, you will need to add several Damage 
nodes with different layer selections.

TABLE 6-18:  LAYER SELECTIONS; DAMAGE

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.
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If the same layer is selected in two Damage nodes being active on the same boundary, 
the contributions will be overridden.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Linear Elastic Material>Damage

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:

Attributes>Damage

Activation

Use the Activation subnode to activate or deactivate layers according to an Activation 

expression that you define. When the activation expression is satisfied, the material is 
activated in a state of zero stress.

• All other settings for the Damage node are described in the 
documentation for Damage in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe strain values with a through-thickness variation by 
explicitly or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.

See also

• Modeling Damage in the Structural Mechanics Modeling chapter.

• Damage Models in the Structural Mechanics Theory chapter.
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S H E L L  P R O P E R T I E S

Select the layer or layers for which this stress contribution is to be added.

If the same layer is selected in two Activation nodes being active on the same boundary, 
the second definition will override the previous.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Linear Elastic Material>Activation

Ribbon
Physics tab with Linear Elastic Material node selected in the model builder tree:

Attributes>External Strain

TABLE 6-19:  LAYER SELECTIONS; ACTIVATION

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the Activation node are described in the 
documentation for Activation in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe activation properties with a through-thickness 
variation by explicitly or implicitly using expressions containing the 
extra dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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Delamination

By adding a Delamination node, you can model interfacial failure between the layers in 
a laminate.

I N T E R F A C E  S E L E C T I O N

Select the interface or interfaces for which this delamination model is to be added.

If the same interface is selected in two Delamination nodes being active on the same 
boundary, the second definition will override the previous.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The interface stresses are defined as boundary tractions with respect to the selected 
coordinate system. The selection is limited to boundary systems. Make sure that the 
tangents of the selected boundary system are well defined.

I N I T I A L  S T A T E

Select an initial state for the interface, Bonded or Delaminated. If the state is 
delaminated, the effect of this node is only to act as a contact condition between the 

The formulation of the delamination models is essentially identical to the 
decohesion model used in contact simulations. See also:

• Including Adhesion and Decohesion, and The Decohesion Node in 
the Structural Mechanics Modeling chapter.

• Decohesion in the Structural Mechanics Theory chapter.

TABLE 6-20:  INTERFACE SELECTIONS; DELAMINATION

SELECTION APPLY TO SELECTION OF INDIVIDUAL 
INTERFACES

Boundary When added: Interior interfaces.

The choice All interfaces is equivalent to 
Interior interfaces.

When Selected Interfaces is 
selected.

Only internal interfaces 
between layers selected in the 
physics interface can be 
selected.

For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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two delaminated layers. In this case, only the Contact section of the settings is 
displayed.

A D H E S I O N

In this section, you specify the stiffness of the adhesive layer in the normal and 
tangential directions. The adhesive normal stiffness is used in tension only; in 
compression the penalty factor is always used.

The default is to set Adhesive stiffness to User defined. For this setting you enter each 
component of the stiffness vector kA individually.

When Adhesive stiffness is set to Use material data, the stiffness vector kA is computed 
from material data and layer thickness. From the Specify list, select a pair of elastic 
properties — Young’s modulus and Poisson’s ratio, Young’s modulus and shear modulus, 
or Bulk modulus and shear modulus. For the chosen properties, select from the 
applicable list to use the value From material or enter a User defined value or expression. 
In order to use From material, you must have assigned a material to the selected 
boundaries.

Enter a Thickness, ds, to specify the physical thickness of the adhesive layer.

D E L A M I N A T I O N

Select a Cohesive zone model — Displacement-based damage or Energy-based damage to 
choose the type of variable that controls the damage process.

Select a Traction separation law — Linear, Exponential, Polynomial, or Multilinear. The 
definition of these differ between the two cohesive zone models, and the last option is 
available only for Displacement-based damage.

For the displacement-based damage models, enter:

• Tensile strength, t. This is the peak stress in pure tension.

• Shear strength, s. This is the peak stress in pure shear.

• Tensile energy release rate, Gct. This is the energy released during the whole 
delamination process in a state of pure tension.

• Shear energy release rate, Gcs. This is the energy released during the whole 
delamination process in a state of pure shear.

For Multilinear separation, also enter the Shape factor, .

When the traction separation law is Linear, Exponential, or Polynomial select the Mixed 

mode criterion to be either Power law or Benzeggagh-Kenane. In either case, enter the 
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Mode mixity exponent . The mixed mode criterion determines how normal and shear 
components are combined into a single scalar failure criterion. For the Multilinear 
separation law, the mixed mode criterion is always linear (equivalent to a power law 
with = 1.)

For the energy-based damage models, enter:

• Tensile damage threshold, G0t. This is the elastic energy at the onset of damage in 
pure tension.

• Shear damage threshold, G0s. This is the elastic energy at the onset of damage in pure 
shear.

• Tensile energy release rate, Gct. This is the energy released during the whole 
delamination process in a state of pure tension.

• Shear energy release rate, Gcs. This is the energy released during the whole 
delamination process in a state of pure shear.

• Mode mixity exponent, damage initiation, 0. The value determines how normal and 
shear components are combined into a single scalar criterion for damage initiation.

• Mode mixity exponent, c. The value determines how normal and shear components 
are combined into a single scalar failure criterion.

• Smoothening parameter, N. This parameter adjusts the shape of the of the traction 
separation law. It is only available for the Exponential and Polynomial options. By 
default, N = 1; a smaller value gives a smoother behavior.

In the Regularization list it is possible to add a viscous delay to the damage growth for 
time-dependent studies. Do this by selecting Delayed damage and enter a value for the 
Characteristic time, .

C O N T A C T

In this section you specify the Penalty factor used to minimize the overclosure of the 
two layers during compression in the normal direction. The default is to use From 

adhesive stiffness, in which case the normal component of the stiffness vector kA is 
used.

When Penalty factor is set to User defined, enter the Contact pressure penalty factor pn. 
The default value is <phys>.Eequ/<phys>.d_ad.

A D V A N C E D

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.
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Maximum damage determines the residual stiffness of the adhesive layer after 
delamination. By default, dmax = 1, which means that no residual stiffness remains. 
Enter a value smaller than 1 to introduce some residual stiffness.

Select Compute damage dissipation energy to compute and store to the energy 
dissipated by damage.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Material Models>Delamination

Ribbon
Physics tab with Layered Shell selected in the Model Builder tree:

Boundaries>Delamination

Safety

Add the Safety subnode to a Linear Elastic Material to set up variables which can be 
used to check the risk of failure according to various criteria. Four different variables 
describing the failure risk are defined, as described in Table 6-21

You can add any number of Safety nodes to a single material model. The contents of 
this feature do not affect the analysis results as such, so you can add Safety nodes after 
having performed an analysis, and just do an Update Solution in order to access to the 
new variables for result evaluation.

For orthotropic and anisotropic failure criteria, the directions are given by the 
coordinate system selection in the parent node.

TABLE 6-21:  VARIABLES FOR SAFETY FACTOR EVALUATION

VARIABLE DESCRIPTION CRITERION 
FULFILLED

CRITERION 
VIOLATED

Failure index, FI For a linear criterion, this is the ratio 
between the computed value and the 
given limit.

FI<1 FI>1

Damage index, DI A binary value, indicating whether 
failure is predicted or not. DI is based 
on the value of FI.

DI=0 DI=1

Safety factor, SF For a linear criterion, this is 1/FI. SF>1 SF<1

Margin of safety, MoS SF-1 MoS>0 MoS<0
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S H E L L  P R O P E R T I E S

Select the layer or layers for which the safety factor variables are to be defined.

Each Safety subnode defines its own set of variables, so there is no interaction if you 
add several such nodes with the same selection.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Linear Elastic Material>Variables>Safety

Ribbon
Physics tab with Linear Elastic Material node selected in the model builder tree:

Attributes>Variables>Safety

Damping

Using the Damping subnode, you can add several types of damping to the material 
model. Damping can be used in Time Dependent, Eigenfrequency, and Frequency 
Domain studies; for other study types the settings in the Damping subnode are ignored.

TABLE 6-22:  LAYER SELECTIONS; SAFETY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the Safety node are described in the 
documentation for Safety in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe parameters for the allowable values with a 
through-thickness variation by explicitly or implicitly using expressions 
containing the extra dimension coordinate as described in Using the 
Extra Dimension Coordinates.
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S H E L L  P R O P E R T I E S

Select the layer or layers for which this damping model is to be used.

When the damping model differs between layers, you will need to add several Damping 
nodes with different layer selections. If the model is the same, and only the material 
data values differ, you can for most models use a single Damping node with From 

material. The data for each layer is then received from global Layered Material nodes.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Linear Elastic Material>Damping

Layered Shell>Hyperelastic Material>Damping

Ribbon
Physics tab with Linear Elastic Material or Hyperelastic Material node selected in the 
model tree:

Attributes>Damping

TABLE 6-23:  LAYER SELECTIONS; DAMPING

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the Damping node are described in the 
documentation for Damping in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe damping values with a through-thickness variation by 
explicitly or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.
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Mechanical Damping

The Mechanical Damping subnode allows you to model mechanical losses in the 
Piezoelectric Material, either using loss factor material data for the stiffness, or in the 
form of Rayleigh proportional damping.

S H E L L  P R O P E R T I E S

Select the layer or layers for which this damping model is to be used.

When the damping model differs between layers, you will need to add several 
Mechanical Damping nodes with different layer selections. If the model is the same, and 
only the material data values differ, you can for most models use a single Mechanical 

Damping node with From material. The data for each layer is then received from global 
Layered Material nodes.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Piezoelectric Material>Mechanical Damping

Ribbon
Physics tab with Piezoelectric Material node selected in the model tree:

TABLE 6-24:  LAYER SELECTIONS; MECHANICAL DAMPING

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the Mechanical Damping node are described in the 
documentation for Mechanical Damping in the Solid Mechanics 
interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe damping values with a through-thickness variation by 
explicitly or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.
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Attributes>Mechanical Damping

Coupling Loss

The Coupling Loss subnode allows you to model losses in the piezoelectric coupling in 
a Piezoelectric Material, either by using the loss factor material data for the coupling 
matrix or as Rayleigh proportional damping.

S H E L L  P R O P E R T I E S

Select the layer or layers for which this loss model is to be used.

When the loss model differs between layers, you will need to add several Coupling Loss 
nodes with different layer selections. If the model is the same, and only the material 
data values differ, you can for most models use a single Coupling Loss node with From 

material. The data for each layer is then received from global Layered Material nodes.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Piezoelectric Material>Coupling Loss

Ribbon
Physics tab with Piezoelectric Material node selected in the model tree:

TABLE 6-25:  LAYER SELECTIONS; COUPLING LOSS

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the Coupling Loss node are described in the 
documentation for Coupling Loss in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe loss values with a through-thickness variation by 
explicitly or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.
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Attributes>Coupling Loss

Dielectric Loss

The Dielectric Loss subnode allows you to model losses in the electrical losses in a 
Piezoelectric Material. The losses can be prescribed either by using a loss factor for the 
electrical permittivity, or in the form of dielectric dispersion.

S H E L L  P R O P E R T I E S

Select the layer or layers for which this loss model is to be used.

When the loss model differs between layers, you will need to add several Dielectric Loss 
nodes with different layer selections. If the model is the same, and only the material 
data values differ, you can for most models use a single Dielectric Loss node with From 

material. The data for each layer is then received from global Layered Material nodes.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Piezoelectric Material>Dielectric Loss

Ribbon
Physics tab with Piezoelectric Material node selected in the model tree:

TABLE 6-26:  LAYER SELECTIONS; DIELECTRIC LOSS

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

• All other settings for the Dielectric Loss node are described in the 
documentation for Dielectric Loss in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe loss values with a through-thickness variation by 
explicitly or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.
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Attributes>Dielectric Loss

Rigid Material

Add the Rigid Material node and select one or more boundaries to make them a rigid 
body. Rigid Material is a material model, with only one material property: the mass 
density. All layers through the shell thickness act together as a single rigid body, so it 
is not possible to select individual layers.

By default, an Initial Values node is added (see Initial Values (Rigid Material)).

You can add functionality to the rigid domain through the following subnodes:

• Fixed Constraint (Rigid Material) to fully constrain the rigid domain.

• Prescribed Displacement/Rotation to prescribe the displacement of individual 
degrees of freedom.

• Applied Force (Rigid Material) to apply a force in given point.

• Applied Moment (Rigid Material) to apply a moment.

• Mass and Moment of Inertia (Rigid Material) to add extra mass and moment of 
inertia in a given point.

• Spring Foundation (Rigid Material) to add a translational or rotational spring or 
damper in a given point.

S H E L L  P R O P E R T I E S

The selection in this section only acts as a filter for the boundary selection.

TABLE 6-27:  LAYER SELECTIONS; RIGID DOMAIN

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as interface selection when the 
node is added.

No

• All other settings for the Rigid Material node are described in the 
documentation for Rigid Material in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Material Models>Rigid Material

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Material Models>Rigid Material

Free

The Free node is the default boundary condition. It means that there are no constraints 
and no loads acting on the edge. When the physics interface is added, a default Free 
node is added. If you look at the selections for this node, it will show all edges which 
do not have boundary conditions applied to all layers.

You can manually add Free nodes to override other boundary conditions. This is 
however seldom needed.

S H E L L  P R O P E R T I E S

The selection in this section only acts as a filter for the boundary selection.

If you manually add a Free node, it will override loads and constraints on all layers from 
the selected edges.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Free

Ribbon
Physics tab with a physics interface selected:

TABLE 6-28:  LAYER SELECTIONS; FREE

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Edge Same as interface selection when the 
node is added.

No

For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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Edges>Layered Shell>Free

Prescribed Displacement

The Prescribed Displacement node adds a condition where the displacements are 
prescribed in one or more directions to the selected geometric entity (boundary, edge, 
or point).

If a displacement is prescribed in one direction, this leaves the material free to deform 
in the other directions.

To prescribe displacements on interfaces between the material layers, use Prescribed 
Displacement, Interface.

S H E L L  P R O P E R T I E S

Select the layer or layers on which this constraint is to be used.

If the same layer is selected in two Prescribed Displacement nodes being active on the 
same boundary, the second definition will override the previous.

TABLE 6-29:  LAYER SELECTIONS; PRESCRIBED DISPLACEMENT

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary, 
Edge, 
Point

Same as interface selection when the 
node is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the physics 
interface can be selected.

• All other settings for the Prescribed Displacement node are described in 
the documentation for Prescribed Displacement in the Solid 
Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can prescribe displacements with a through-thickness variation by 
explicitly or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Face and Domain Constraints>Prescribed Displacement

Layered Shell>Prescribed Displacement (Edge)
Layered Shell>Points>Prescribed Displacement

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Face and Domain Constraints>Prescribed Displacement

Edges>Layered Shell>Prescribed Displacement

Points>Layered Shell>Prescribed Displacement

Prescribed Displacement, Interface

The Prescribed Displacement, Interface node adds a condition where the displacements 
are prescribed in one or more directions to interfaces between material layers in the 
selected geometric entity (boundary, edge, or point).

If a displacement is prescribed in one direction, this leaves the material free to deform 
in the other directions.

To prescribe displacements to the actual material layers, use Prescribed Displacement.

I N T E R F A C E  S E L E C T I O N

Select the interface or interfaces for which this constraint is to be added.

TABLE 6-30:  INTERFACE SELECTIONS; PRESCRIBED DISPLACEMENT, INTERFACE

SELECTION APPLY TO SELECTION OF INDIVIDUAL 
INTERFACES

Boundary When added: Exterior interfaces. When Selected Interfaces is 
selected.

Only exterior interfaces can 
be selected.

Edge, 
Point

When added: Top interface. When Selected Interfaces is 
selected.

Any interface can be selected.
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If the same layer is selected in two Prescribed Displacement, Interface nodes being active 
on the same boundary, the second definition will override the previous.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Face and Domain Constraints>Interfaces>Prescribed Displacement, Interface

Layered Shell>More Constraints>Interfaces>Prescribed Displacement, Interface (Edge)
Layered Shell>Points>Interfaces>Prescribed Displacement, Interface

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Interfaces>Prescribed Displacement, Interface

Edges>Interfaces>Prescribed Displacement, Interface

Points>Interfaces>Prescribed Displacement, Interface

Prescribed Velocity

The Prescribed Velocity node adds a boundary or domain condition where the velocity 
is prescribed in one or more directions. This condition is applicable for time- 
dependent and frequency domain studies. It is possible to prescribe a velocity in one 
direction, leaving the structure free in the other directions. The Prescribed Velocity 
node is a constraint and overrides any other constraint on the same selection.

To prescribe velocities on the top or bottom surfaces of the shell, use Prescribed 
Velocity, Interface.

• All other settings for the Prescribed Displacement, Interface node are 
described in the documentation for Prescribed Displacement in the 
Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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S H E L L  P R O P E R T I E S

The selection in this section only acts as a filter for the boundary selection. The 
condition is applied all through the thickness of the shell.

If the same layer is selected in two Prescribed Velocity nodes being active on the same 
boundary, the second definition will override the previous.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Face and Domain Constraints>Prescribed Velocity

Layered Shell>More Constraints>Prescribed Velocity (Edge)

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Face and Domain Constraints>Prescribed Velocity

Edges>More Constraints>Prescribed Velocity

Prescribed Velocity, Interface

The Prescribed Velocity, Interface node adds a boundary condition on the top or 
bottom face of the shell where the velocity is prescribed in one or more directions. This 
condition is applicable for time- dependent and frequency domain studies. It is possible 
to prescribe a velocity in one direction, leaving the structure free in the other 

TABLE 6-31:  LAYER SELECTIONS; PRESCRIBED VELOCITY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary, 
Edge

Same as interface selection when the 
node is added.

No

• All other settings for the Prescribed Velocity node are described in the 
documentation for Prescribed Velocity in the Solid Mechanics 
interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can prescribe velocities with a through-thickness variation by 
explicitly or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.
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directions. The Prescribed Velocity, Interface node is a constraint and overrides any 
other constraint on the same selection.

To prescribe velocities on the actual material layers, use Prescribed Velocity.

I N T E R F A C E  S E L E C T I O N

Select the interface or interfaces for which this constraint is to be added.

If the same layer is selected in two Prescribed Velocity, Interface nodes being active on 
the same boundary, the second definition will override the previous.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Face and Domain Constraints>Interfaces>Prescribed Velocity, Interface

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Interfaces>Prescribed Velocity, Interface

Prescribed Acceleration

The Prescribed Acceleration node adds a boundary or domain condition where the 
acceleration is prescribed in one or more directions. This condition is applicable for 
time- dependent and frequency domain studies. It is possible to prescribe an 
acceleration in one direction, leaving the structure free in the other directions. The 

TABLE 6-32:  INTERFACE SELECTIONS; PRESCRIBED VELOCITY, INTERFACE

SELECTION APPLY TO SELECTION OF INDIVIDUAL 
INTERFACES

Boundary When added: Exterior interfaces. When Selected Interfaces is 
selected.

Only exterior interfaces can 
be selected.

• All other settings for the Prescribed Velocity, Interface node are 
described in the documentation for Prescribed Velocity in the Solid 
Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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Prescribed Acceleration node is a constraint and overrides any other constraint on the 
same selection.

To prescribe accelerations on the top or bottom surfaces of the shell, use Prescribed 
Acceleration, Interface.

S H E L L  P R O P E R T I E S

The selection in this section only acts as a filter for the boundary selection. The 
condition is applied all through the thickness of the shell.

If the same layer is selected in two Prescribed Acceleration nodes being active on the 
same boundary, the second definition will override the previous.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Face and Domain Constraints>Prescribed Acceleration

Layered Shell>More Constraints>Prescribed Acceleration (Edge)

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Face and Domain Constraints>Prescribed Acceleration

Edges>More Constraints>Prescribed Acceleration

TABLE 6-33:  LAYER SELECTIONS; PRESCRIBED ACCELERATION

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary, 
Edge

Same as interface selection when the 
node is added.

No

• All other settings for the Prescribed Acceleration node are described in 
the documentation for Prescribed Acceleration in the Solid Mechanics 
interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can prescribe accelerations with a through-thickness variation by 
explicitly or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.
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Prescribed Acceleration, Interface

The Prescribed Acceleration, Interface node adds a boundary condition on the top or 
bottom face of the shell where the acceleration is prescribed in one or more directions. 
This condition is applicable for time- dependent and frequency domain studies. It is 
possible to prescribe an acceleration in one direction, leaving the structure free in the 
other directions. The Prescribed Acceleration, Interface node is a constraint and 
overrides any other constraint on the same selection.

To prescribe accelerations on the actual material layers, use Prescribed Acceleration.

I N T E R F A C E  S E L E C T I O N

Select the interface or interfaces for which this constraint is to be added.

If the same layer is selected in two Prescribed Acceleration, Interface nodes being active 
on the same boundary, the second definition will override the previous.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Face and Domain Constraints>Interfaces>Prescribed Acceleration, Interface

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Interfaces>Prescribed Acceleration, Interface

TABLE 6-34:  INTERFACE SELECTIONS; PRESCRIBED ACCELERATION, INTERFACE

SELECTION APPLY TO SELECTION OF INDIVIDUAL 
INTERFACES

Boundary When added: Exterior interfaces. When Selected Interfaces is 
selected.

Only exterior interfaces can 
be selected.

• All other settings for the Prescribed Acceleration, Interface node are 
described in the documentation for Prescribed Acceleration in the 
Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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Fixed Constraint

Use the Fixed Constraint node to set all displacements on the selected geometric entity 
(boundary, edge, or point) to zero.

To constrain interfaces between the material layers, use Fixed Constraint, Interface.

S H E L L  P R O P E R T I E S

Select the layer or layers on which this constraint is to be used.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Face and Domain Constraints>Fixed Constraint

Layered Shell>Fixed Constraint (Edge)
Layered Shell>Points>Fixed Constraint

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Face and Domain Constraints>Fixed Constraint

Edges>Layered Shell>Fixed Constraint

Points>Layered Shell>Fixed Constraint

TABLE 6-35:  LAYER SELECTIONS; FIXED CONSTRAINT

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary, 
Edge, 
Point

Same as interface selection when the 
node is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the physics 
interface can be selected.

• All other settings for the Fixed Constraint node are described in the 
documentation for Fixed Constraint in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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Fixed Constraint, Interface

Use the Fixed Constraint, Interface to add a condition where the displacements 
constrained in all directions at interfaces between material layers in the selected 
geometric entity.

To constrain the actual material layers, use Fixed Constraint.

I N T E R F A C E  S E L E C T I O N

Select the interface or interfaces for which this constraint is to be added.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Face and Domain Constraints>Interfaces>Fixed Constraint, Interface

Layered Shell>More Constraints>Interfaces>Fixed Constraint, Interface (Edge)
Layered Shell>Points>Interfaces>Fixed Constraint, Interface

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Interfaces>Fixed Constraint, Interface

Edges>Interfaces>Fixed Constraint, Interface

Points>Interfaces>Fixed Constraint, Interface

TABLE 6-36:  INTERFACE SELECTIONS; PRESCRIBED DISPLACEMENT, INTERFACE

SELECTION APPLY TO SELECTION OF INDIVIDUAL 
INTERFACES

Boundary When added: Exterior interfaces. When Selected Interfaces is 
selected.

Only exterior interfaces can 
be selected.

Edge, 
Point

When added: Top interface. When Selected Interfaces is 
selected.

Any interface can be selected.

• All other settings for the Fixed Constraint, Interface node are described 
in the documentation for Fixed Constraint in the Solid Mechanics 
interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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Thermal Expansion (for Constraints)

Add the Thermal Expansion subnode to a constraint (Fixed Constraint or Prescribed 

Displacement, or to Fixed Constraint, Interface or Prescribed Displacement, Interface) to 
prescribe a deformation of the constrained boundary caused by changes in temperature 
of the surroundings. This makes it possible to reduce the stresses caused by such 
boundary conditions.

S H E L L  P R O P E R T I E S

This section is only present when the parent node has layer selection.

I N T E R F A C E  S E L E C T I O N

This section is only present when the parent node has interface selection.

Select the interface or interfaces for which this thermal expansion is to be added.

TABLE 6-37:  LAYER SELECTIONS; THERMAL EXPANSION

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Same level 
as parent

Same as parent selection when the node 
is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the parent can be 
selected.

TABLE 6-38:  INTERFACE SELECTIONS; THERMAL EXPANSION

SELECTION APPLY TO SELECTION OF INDIVIDUAL 
INTERFACES

Same level 
as parent

Same as parent selection when the node 
is added.

When Selected Interfaces is 
selected.

Only a subset of the interfaces 
selected in the parent can be 
selected.

• All other settings for the Thermal Expansion node are described in the 
documentation for Thermal Expansion (for Constraints) in the Solid 
Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Fixed Constraint>Thermal Expansion

Layered Shell>Fixed Constraint, Interface>Thermal Expansion

Layered Shell>Prescribed Displacement>Thermal Expansion

Layered Shell>Prescribed Displacement, Interface>Thermal Expansion

Ribbon
Physics tab with Fixed Constraint, Fixed Constraint, Interface, Prescribed Displacement, or 
Prescribed Displacement, Interface node selected in the model tree:

Attributes>Thermal Expansion

Roller

Use the Roller node to add a roller constraint as boundary condition on the boundaries 
formed by the edge of the shell. The displacement is zero in the direction 
perpendicular (normal) to the boundary, but the boundary is free to move in the 
tangential direction. A Roller condition is similar to a Symmetry condition, but the 
latter has more options.

To apply a roller condition on one of the faces of the shell, use Roller, Interface.

S H E L L  P R O P E R T I E S

The selection in this section only acts as a filter for the boundary selection. The 
constraint is applied all through the thickness of the shell.

TABLE 6-39:  LAYER SELECTIONS; ROLLER

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Edge Same as interface selection when the 
node is added.

No

• All other settings for the Roller node are described in the 
documentation for Roller in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Roller

Ribbon
Physics tab with Layered Shell selected:

Edges>Layered Shell>Roller

Roller, Interface

Use the Roller, Interface node to add a roller constraint as boundary condition to one 
of the faces of the shell. The displacement is zero in the direction perpendicular 
(normal) to the boundary, but the boundary is free to move in the tangential direction.

To apply a roller conditions on the boundaries formed by the edge of the shell, use 
Roller.

S H E L L  P R O P E R T I E S

Select the interface or interfaces at which the constraint is to be applied.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Face and Domain Constraints>Interfaces>Roller, Interface

Ribbon
Physics tab with Layered Shell selected:

TABLE 6-40:  INTERFACE SELECTIONS; PRESCRIBED ACCELERATION, INTERFACE

SELECTION APPLY TO SELECTION OF INDIVIDUAL 
INTERFACES

Boundary When added: Exterior interfaces. When Selected Interfaces is 
selected.

Only exterior interfaces can 
be selected.

• All other settings for the Roller node are described in the 
documentation for Roller in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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Boundaries>Interfaces>Roller, Interface

Symmetry

Use the Symmetry node to add a boundary condition that represents symmetry in the 
geometry and in the loads. A symmetry condition is free in the plane and fixed in the 
out-of-plane direction.

S H E L L  P R O P E R T I E S

The selection in this section only acts as a filter for the boundary selection. The 
constraint is applied all through the thickness of the shell.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Symmetry

Ribbon
Physics tab with Layered Shell selected:

Edges>More Constraints>Symmetry

Antisymmetry

Use the Antisymmetry node adds a boundary condition for an antisymmetry boundary. 
An antisymmetry condition is fixed in the plane and free in the out-of-plane direction.

When applied to an edge the antisymmetry plane is formed by the normal to the 
boundary and the edge tangent.

TABLE 6-41:  LAYER SELECTIONS; SYMMETRY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Edge Same as interface selection when the 
node is added.

No

• All other settings for the Symmetry node are described in the 
documentation for Symmetry in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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S H E L L  P R O P E R T I E S

The selection in this section only acts as a filter for the boundary selection. The 
constraint is applied all through the thickness of the shell.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Antisymmetry

Ribbon
Physics tab with Layered Shell selected:

Edges>More Constraints>Antisymmetry

Rigid Motion Suppression

The Rigid Motion Suppression node adds a minimum number of constraints required to 
suppress rigid body modes. The constraints are selected so that there will be no 
reaction forces if the external loads are self-equilibrating. If you need to constrain 
several objects which are not physically connected, you must add as many Rigid Motion 

Suppression nodes as there are disconnected objects.

TABLE 6-42:  LAYER SELECTIONS; ANTISYMMETRY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Edge Same as interface selection when the 
node is added.

No

• All other settings for the Antisymmetry node are described in the 
documentation for Antisymmetry in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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S H E L L  P R O P E R T I E S

As the constraints are added automatically to the geometrical selection, it is not 
possible to select individual layers. The selection in this section only acts as a filter for 
the boundary selection.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Face Constraints>Rigid Motion Suppression

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Face and Domain Constraints>Rigid Motion Suppression

Body Load

Add a Body Load to boundaries for modeling general volumetric loads.

For loads caused by gravity or rotation, it is more convenient to use the Gravity, 
Linearly Accelerated Frame, and Rotating Frame nodes.

TABLE 6-43:  LAYER SELECTIONS; RIGID MOTION SUPPRESSION

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as interface selection when the 
node is added.

No

All other settings for the Rigid Motion Suppression node are described in 
the documentation for Rigid Motion Suppression in the Solid Mechanics 
interface.
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S H E L L  P R O P E R T I E S

Select the layer or layers to which this load is to be applied.

Contributions from several Body Load nodes having a common selection will be added 
to each other.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Face and Volume Loads>Body Load

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Face and Volume Loads>Body Load

TABLE 6-44:  LAYER SELECTIONS; BODY LOAD

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as interface selection when the 
node is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the interface can 
be selected.

• All other settings for the Body Load node are described in the 
documentation for Body Load in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can prescribe loads with through-thickness variation by explicitly 
or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Face Load

Add a Face Load to boundaries to use it as a pressure or tangential force acting on a 
surface. The loads are defined in the given coordinate system.

I N T E R F A C E  S E L E C T I O N

Select the interface or interfaces at which the load is to be applied.

F O R C E

Select a Load type — Force per unit area, Total force, or Pressure.

Select a Load type — Force per unit area, Pressure, Total force, or for 2D components, 
Force per unit length. Then enter values or expressions for the components in the 
matrix based on the selection and the space dimension.

• For Force per unit area, the traction components are given explicitly.

• For Total force, COMSOL Multiphysics then divides the total force by the area of 
the boundaries where the load is active. Then it is applied in the same way as for a 
Force per unit area. When working with curved boundaries or local coordinate 
systems, use this option carefully, as the result is not always intuitive.

• For Pressure, a scalar input is given, and the orientation of the load is along the 
direction of the shell boundary normal. The sign convention is such that for a 
positive value of the pressure, the load acts toward the shell, when considered as a 
solid object. Thus, the orientation of the load is flipped if it is moved from the top 
side to the bottom side

TABLE 6-45:  INTERFACE SELECTIONS; FACE LOAD

SELECTION APPLY TO SELECTION OF INDIVIDUAL INTERFACES

Boundary When added: Exterior interfaces. When Selected Interfaces is selected.

Only exterior interfaces can be 
selected.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

TABLE 6-46:  LOAD TYPES.

LOAD TYPE VARIABLE SI UNIT

Force per unit area FA N/m2
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Face and Volume Loads>Face Load

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Face and Volume Loads>Face Load

Rotating Frame

Centrifugal, Coriolis, and Euler forces are “fictitious” volume forces that need to be 
introduced in a rotating frame of reference, since it is not an inertial system. Use a 
Rotating Frame node to add the effect of these forces. The forces are generated by all 
selected features in the physics interface having a density, mass, or mass distribution. 
You select boundaries, and all edges and points which belong to the selection are 
automatically included.

Total force Ftot N

Pressure p Pa

TABLE 6-46:  LOAD TYPES.

LOAD TYPE VARIABLE SI UNIT

• The pressure load is a ‘follower load’. The direction changes with 
deformation in a geometrically nonlinear analysis.

• After selecting a Load type, the Load list normally only contains User 

defined. When combining with another physics interface, it is also 
possible to choose a predefined load from this list.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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S H E L L  P R O P E R T I E S

As a frame rotation always acts on the entire structure, it is not possible to select 
individual layers. The selection in this section only acts as a filter for the boundary 
selection.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Face and Volume Loads>Rotating Frame

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Face and Volume Loads>Rotating Frame

Linearly Accelerated Frame

When you add a Linearly Accelerated Frame node, inertial forces are applied to all 
selected features in the physics interface with a density, mass, or mass distribution. You 
select boundaries, and all edges and points which belong to the selection are 
automatically included.

TABLE 6-47:  LAYER SELECTIONS; ROTATING FRAME

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as interface selection when the 
node is added.

No

• All other settings for the Rotating Frame node are described in the 
documentation for Rotating Frame in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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S H E L L  P R O P E R T I E S

Select the layer or layers to which the frame acceleration force is to be applied.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Face and Volume Loads>Linearly Accelerated Frame

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Face and Volume Loads>Linearly Accelerated Frame

Boundary Load

Use a Boundary Load to apply forces distributed on the layers along an edge of the 
layered shell. The load is defined in the given local coordinate system.

TABLE 6-48:  LAYER SELECTIONS; LINEARLY ACCELERATED FRAME

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary Same as interface selection when the 
node is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the interface can 
be selected.

• All other settings for the Linearly Accelerated Frame node are described 
in the documentation for Linearly Accelerated Frame in the Solid 
Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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S H E L L  P R O P E R T I E S

Select the layer or layers to which this load is to be applied.

Contributions from several Boundary Load nodes having a common selection will be 
added to each other

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Boundary Load

Ribbon
Physics tab with Layered Shell selected:

Edges>Layered Shell>Boundary Load

TABLE 6-49:  LAYER SELECTIONS; BOUNDARY LOAD

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Edge Same as interface selection when the 
node is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the interface can 
be selected.

• All other settings for the Boundary Load node are described in the 
documentation for Boundary Load in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can prescribe loads with through-thickness variation by explicitly 
or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Edge Load

Add an Edge Load as a force distributed on the interfaces between the layers along an 
edge of the layered shell. The load is defined in the given local coordinate system.

I N T E R F A C E  S E L E C T I O N

Select the interface or interfaces at which the load is to be applied.

Contributions from several Edge Load nodes having a common selection will be added 
to each other

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Edge Load

Ribbon
Physics tab with Layered Shell selected:

Edges>Layered Shell>Edge Load

TABLE 6-50:  INTERFACE SELECTIONS; EDGE LOAD

SELECTION APPLY TO SELECTION OF INDIVIDUAL 
INTERFACES

Edge When added: Top interface. When Selected Interfaces is 
selected.

Any interface can be selected.

• All other settings for the Edge Load node are described in the 
documentation for Edge Load in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Line Load

Use a Line Load to apply forces distributed on the layers on a point the layered shell. 
The load is defined in the given local coordinate system. A point represents an edge 
going through the thickness of the shell.

S H E L L  P R O P E R T I E S

Select the layer or layers to which this load is to be applied.

Contributions from several Line Load nodes having a common selection will be added 
to each other

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Points>Line Load

Ribbon
Physics tab with Layered Shell selected:

TABLE 6-51:  LAYER SELECTIONS; LINE LOAD

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Point Same as interface selection when the 
node is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the interface can 
be selected.

• All other settings for the Line Load node are described in the 
documentation for Edge Load in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Points>Layered Shell>Line Load

Point Load

Add an Point Load as a force on the interfaces between the layers on a point of the 
layered shell. The load is defined in the given local coordinate system.

I N T E R F A C E  S E L E C T I O N

Select the interface or interfaces at which the load is to be applied.

Contributions from several Point Load nodes having a common selection will be added 
to each other

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Points>Interfaces>Point Load

Ribbon
Physics tab with Layered Shell selected:

Points>Interfaces>Point Load

TABLE 6-52:  INTERFACE SELECTIONS; POINT LOAD

SELECTION APPLY TO SELECTION OF INDIVIDUAL 
INTERFACES

Point When added: Top interface. When Selected Interfaces is 
selected.

Any interface can be selected.

• All other settings for the Point Load node are described in the 
documentation for Point Load in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Phase

You can add a Phase subnode to nodes which define a load in order to prescribe the 
phase angle in a frequency domain analysis.

For modeling the frequency response, the physics interface splits the harmonic load 
into two parameters:

• The amplitude, F, which is specified in the node for the load.

• The phase ( ), which is specified in the Phase subnode.

Together these define a harmonic load, for which the amplitude and phase shift can 
vary with the excitation frequency, f:

S H E L L  P R O P E R T I E S

Select the layer or interfaces based on this node is added under which type of load 
feature. You can select individual layers or interfaces in this node which are allowed on 
the parent node.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Body Load>Phase

Layered Shell>Face Load>Phase

Layered Shell>Boundary Load>Phase

Layered Shell>Edge Load>Phase

Layered Shell>Line Load>Phase

Layered Shell>Point Load>Phase

Ribbon
Physics tab with Body Load, Face Load, Boundary Load, Edge Load, Line Load, or Point 

Load node selected in the model tree:

Attributes>Phase



Ffreq F f  2ft + cos=

All other settings for the Phase node are described in the documentation 
for Phase in the Solid Mechanics interface.
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Spring Foundation

Use the Spring Foundation node to apply elastic and damping boundary conditions on 
the material layers (on boundaries, edges, and points) of a layered shell. For applying 
spring conditions on an interface, see Spring Foundation, Interface.

• When the selection is a boundary, a volumetric spring is added to the selected layers

• When the selection is an edge, a spring per area is added to the faces of the layers at 
the edge.

• When the selection is a point, a spring is added to the layer edges in the 
through-thickness direction for the selected layers.

By adding the Predeformation subnode, you can prescribe that the spring force is zero 
at a nonzero spring extension.

S H E L L  P R O P E R T I E S

Select the material layers to which the spring condition is to be applied.

TABLE 6-53:  LAYER SELECTIONS; SPRING FOUNDATION

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary, 
Edge, 
Point

Same as interface selection when the 
node is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the physics 
interface can be selected.

• All other settings for the Spring Foundation node are described in the 
documentation for Spring Foundation in the Solid Mechanics 
interface.

• For more information about the use of springs, see Springs and 
Dampers in the Structural Mechanics Modeling chapter.

• For a theoretical background, see Spring Foundation and Thin Elastic 
Layer in the Structural Mechanics Theory chapter.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Mass, Spring, and Damper>Spring Foundation (Boundary, Edge)
Layered Shell>Points>Spring Foundation

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Mass, Spring, and Damper>Spring Foundation

Edges>Mass, Spring, and Damper>Spring Foundation

Points>Layered Shell>Spring Foundation

Spring Foundation, Interface

Use the Spring Foundation, Interface node to apply elastic and damping boundary 
conditions on the interfaces of material layers (on boundaries, edges, and points) of a 
layered shell. For applying spring conditions on a layer, see Spring Foundation.

By adding the Predeformation subnode, you can prescribe that the spring force is zero 
at a nonzero spring extension.
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I N T E R F A C E  S E L E C T I O N

Select the interface or interfaces for which this spring condition is to be added.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Mass, Spring, and Damper>Interfaces>Spring Foundation, Interface 
(Boundary, Edge)
Layered Shell>Points>Interfaces>Spring Foundation, Interface

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Interfaces>Spring Foundation, Interface

Edges>Interfaces>Spring Foundation, Interface

TABLE 6-54:  INTERFACE SELECTIONS; SPRING FOUNDATION, INTERFACE

SELECTION APPLY TO SELECTION OF INDIVIDUAL 
INTERFACES

Boundary When added: Exterior interfaces. When Selected Interfaces is 
selected.

Only exterior interfaces can 
be selected.

Edge, 
Point

When added: Top interface. When Selected Interfaces is 
selected.

Any interface can be selected.

• All other settings for the Spring Foundation, Interface node are described 
in the documentation for Spring Foundation in the Solid Mechanics 
interface.

• For more information about the use of springs, see Springs and 
Dampers in the Structural Mechanics Modeling chapter.

• For a theoretical background, see Spring Foundation and Thin Elastic 
Layer in the Structural Mechanics Theory chapter.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.
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Points>Interfaces>Spring Foundation, Interface

Thin Elastic Layer

Use the thin Elastic Layer node to apply elastic and damping boundary conditions on 
the interior edges of a layered shell. Physically, this means that the spring condition is 
added at the interface between two layers located in adjacent boundaries.

By adding the Predeformation subnode, you can prescribe that the spring force is zero 
at a nonzero spring extension.

S H E L L  P R O P E R T I E S

Select the material layers to which the spring condition is to be applied.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Mass, Spring, and Damper>Thin Elastic Layer (Edge)

TABLE 6-55:  LAYER SELECTIONS; THIN ELASTIC LAYER

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Edge Same as interface selection when the 
node is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the physics 
interface can be selected.

• All other settings for the Thin Elastic Layer node are described in the 
documentation for Thin Elastic Layer in the Solid Mechanics interface.

• For more information about the use of springs, see Springs and 
Dampers in the Structural Mechanics Modeling chapter.

• For a theoretical background, see Spring Foundation and Thin Elastic 
Layer in the Structural Mechanics Theory chapter.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.
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Ribbon
Physics tab with Layered Shell selected:

Edges>Mass, Spring, and Damper>Thin Elastic Layer

Thin Elastic Layer, Interface

Use the thin Elastic Layer, Interface node to apply elastic and damping boundary 
conditions on the interior edges of a layered shell.

By adding the Predeformation subnode, you can prescribe that the spring force is zero 
at a nonzero spring extension.

I N T E R F A C E  S E L E C T I O N

Select the interface or interfaces for which this spring condition is to be added.

TABLE 6-56:  INTERFACE SELECTIONS; THIN ELASTIC LAYER, INTERFACE

SELECTION APPLY TO SELECTION OF INDIVIDUAL 
INTERFACES

Boundary When added: Interior interfaces. When Selected Interfaces is 
selected.

Only interior interfaces can be 
selected.

• All other settings for the Thin Elastic Layer, Interface node are described 
in the documentation for Thin Elastic Layer in the Solid Mechanics 
interface.

• For more information about the use of springs, see Springs and 
Dampers in the Structural Mechanics Modeling chapter.

• For a theoretical background, see Spring Foundation and Thin Elastic 
Layer in the Structural Mechanics Theory chapter.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.
T H E  L A Y E R E D  S H E L L  I N T E R F A C E  |  1459



1460 |  C H A P T E
L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Mass, Spring, and Damper>Interfaces>Thin Elastic Layer (Boundary)

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Mass, Spring, and Damper>Interfaces>Thin Elastic Layer, Interface

Predeformation

Use the Predeformation subnode to specify that the elastic forces in Spring Foundation, 
Spring Foundation, Interface, Thin Elastic Layer, or Thin Elastic Layer, Interface are 
nonzero at zero displacement. Thus, you can model cases where the unstressed state 
of the spring is in another configuration than the one described by the geometry.

The value of the predeformation can vary during the simulation, so it should not be 
interpreted as an initial value.

S H E L L  P R O P E R T I E S

This section is only present when Predeformation is used as a subnode to Spring 

Foundation or Thin Elastic Layer.

Select the layers for which this predeformation value is to be used. You can only select 
a subset of the layers selected in the parent node.

I N T E R F A C E  S E L E C T I O N

This section is only present when Predeformation is used as a subnode to Spring 

Foundation, Interface or Thin Elastic Layer, Interface.
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Select the interfaces for which this predeformation value is to be used. You can only 
select a subset of the interfaces selected in the parent node.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Spring Foundation>Predeformation

Layered Shell>Spring Foundation, Interface>Predeformation

Layered Shell>Shin Elastic Layer>Predeformation

Layered Shell>Thin Elastic Layer, Interface>Predeformation

Ribbon
Physics tab with Spring Foundation, Spring Foundation, Interface, Thin Elastic Layer, or 
Thin Elastic Layer, Interface node selected in the model tree:

Attributes>Predeformation

Added Mass

The Added Mass node is available for boundaries, edges, and points and can be used to 
supply inertia that is not part of the material itself. Such inertia does not need to be 
isotropic, in the sense that the inertial effects are not the same in all directions. The 
extra inertia is as a volumetric, boundary, or edge contribution to the selected material 
layers.

You can also add inertia to the interfaces between the material layers by using Added 
Mass, Interface.

• All other settings for the Predeformation node are described in the 
documentation for Predeformation in the Solid Mechanics interface.

• For more information about the use of springs, see Springs and 
Dampers in the Structural Mechanics Modeling chapter.

• For a theoretical background, see Spring Foundation and Thin Elastic 
Layer in the Structural Mechanics Theory chapter.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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S H E L L  P R O P E R T I E S

Select the material layers to which this added mass contribution is to be applied.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Mass, Spring, and Damper>Added Mass (Boundary, Edge)
Layered Shell>Points>Added Mass (Point)

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Mass, Spring, and Damper>Added Mass

Edges>Mass, Spring, and Damper>Added Mass

Points>Layered Shell>Added Mass

Added Mass, Interface

The Added Mass, Interface node is available for boundaries and edges and can be used 
to supply inertia that is not part of the material itself. Such inertia does not need to be 
isotropic, in the sense that the inertial effects are not the same in all directions. The 
inertia is added at the selected interfaces between the material layers.

TABLE 6-57:  LAYER SELECTIONS; ADDED MASS

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Boundary, 
Edge, 
Point

Same as interface selection when the 
node is added.

When Use all layers is not 
selected.

Only a subset of the layers 
selected in the physics 
interface can be selected.

• All other settings for the Added Mass node are described in the 
documentation for Added Mass in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe added mass densities with a through-thickness 
variation by explicitly or implicitly using expressions containing the 
extra dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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I N T E R F A C E  S E L E C T I O N

Select the interface or interfaces for which this added mass contribution is to be added.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Mass, Spring, and Damper>Interfaces>Added Mass, Interface (Boundary, 
Edge)

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Interfaces>Added Mass, Interface

Edges>Interfaces>Added Mass, Interface

Adiabatic Heating

The Adiabatic Heating node adds the equations for adiabatic heating in layered shells 
caused by abrupt changes in temperature due to fast deformation.

The increase in temperature is then defined by solving the distributed equation

TABLE 6-58:  INTERFACE SELECTIONS; ADDED MASS, INTERFACE

SELECTION APPLY TO SELECTION OF INDIVIDUAL 
INTERFACES

Boundary, 
Edge, 
Point

When added: Top interface. When Selected Interfaces is 
selected.

Any interface can be selected.

• All other settings for the Added Mass, Interface node are described in the 
documentation for Added Mass in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe added mass densities with a through-thickness 
variation by explicitly or implicitly using expressions containing the 
extra dimension coordinate as described in Using the Extra Dimension 
Coordinates.

CpTꞏ ahQh=
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here,  is the density, Cp is the heat capacity at constant pressure, T is the temperature 
field, ah is the coefficient of adiabatic heating, and Qh corresponds to the heat sources 
due to mechanical dissipative processes.

Adiabatic heating is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

If the Composite Materials Module is available, adiabatic heating can be applied to 
arbitrary layers. The material properties, orientations, and layer thicknesses are defined 
using Layered Material node. The offset, and local coordinate system, in which material 
orientations and results are interpreted, is defined by Layered Material Link or Layered 

Material Stack node.

Without the Composite Materials Module, only single layer shells and membranes can 
be modeled. This is still useful, for example for some multiphysics couplings. For single 
layer materials, an ordinary Material node can be used, as long you include a Shell 
property group in which, for example, the thickness is given.

B O U N D A R Y  S E L E C T I O N

It is only possible to select boundaries which are part of the selection of a layered 
material defined in Layered Material Link or Layered Material Stack node.

S H E L L  P R O P E R T I E S

Select the layers in which adiabatic heating is to be modeled.

If the same layer is selected in two nodes being active on the same boundary, the 
contributions will be exclusive

• For a general description about layered materials, see Layered Materials 
in the documentation for the Composite Materials Module.

TABLE 6-59:  LAYER SELECTION

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Default when added. When Use all layers is not selected.

Only a subset of the layers selected 
in the parent can be selected.

For a general description of this section, see Layer and Interface 
Selections in the documentation for the Composite Materials Module.
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I N I T I A L  V A L U E S

Enter the Initial temperature Tini. The default value is 293.15 K.

T H E R M O D Y N A M I C S

The density  is taken from the material model (Linear Elastic Material or Hyperelastic 
Material).

The default Heat capacity at constant pressure Cp uses values From material. For 
User defined, enter an expression or value. The default value for the User defined is 0 J/
(kg K).

Enter the Coefficient of adiabatic heating, ah. The default value is 1 (dimensionless), 
which means that dissipative processes contribute 100% as heat sources.

Select the Dissipative heat source — Include all dissipative sources or User defined.

The Dissipative heat source list makes it possible to include specific heat sources for the 
adiabatic heating. Enter a value or expression for the heat source Qh to include. For 
instance, the dissipated energy density due to creep is available under the variable 
shell.Wc and due to viscoplasticity under the variable shell.Wvp. Here solid 
denotes the name of the physics interface node.

T I M E  S T E P P I N G

The Backward Euler method is not available with the Layered Shell interface neither 
with the Layered Linear Elastic Material nor the Layered Hyperelastic Material in the 
Shell and Membrane interfaces.

Domain ODEs
No settings are needed for the Domain ODEs method. However, this method adds 
degrees-of-freedom that are solved as part of the general solver sequence. The scaling 
of this field can affect the convergence of the overall solution.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>More> Adiabatic Heating

Ribbon
Physics tab with Layered Shell selected:

Boundary>More>Adiabatic Heating
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Rigid Connector

The Rigid Connector is a boundary condition for modeling rigid regions and kinematic 
constraints such as prescribed rigid rotations. The selected shell edges will move as a 
single rigid object, irrespective of whether they are geometrically adjacent or not.

To add a rigid connector to the top or bottom interface of the shell, use Rigid 
Connector, Interface.

If the study step is geometrically nonlinear, the rigid connector takes finite rotations 
into account. The feature is similar to the rigid connectors in the Solid Mechanics and 
Beam interfaces. Rigid connectors from the Shell, Beam, and Solid Mechanics 
interfaces can be attached to each other.

You can add functionality to the rigid connector through the following subnodes.

• Thermal Expansion (Rigid Connector) to include thermal expansion.

• Applied Force (Rigid Connector) to apply a force in given point.

• Applied Moment (Rigid Connector) to apply a moment.

• Mass and Moment of Inertia (Rigid Connector) to add extra mass and moment of 
inertia in a given point.

• Spring Foundation (Rigid Connector) to add a translational or rotational spring or 
damper in a given point.

S H E L L  P R O P E R T I E S

As the whole edge moves as a single rigid object, it is not possible to select individual 
layers. The selection in this section only acts as a filter for the boundary selection.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Connections>Rigid Connector

TABLE 6-60:  LAYER SELECTIONS; RIGID CONNECTOR

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Edge Same as interface selection when the 
node is added.

No

All other settings for the Rigid Connector node are described in the 
documentation for Rigid Connector in the Solid Mechanics interface.
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Ribbon
Physics tab with Layered Shell selected:

Edges>Connections>Rigid Connector

Rigid Connector, Interface

The Rigid Connector is a boundary condition for modeling rigid regions and kinematic 
constraints such as prescribed rigid rotations. The selected shell faces will move as a 
single rigid object, irrespective of whether they are geometrically adjacent or not.

To add a rigid connector to the edge of the shell, use Rigid Connector.

If the study step is geometrically nonlinear, the rigid connector takes finite rotations 
into account. The feature is similar to the rigid connectors in the Solid Mechanics and 
Beam interfaces. Rigid connectors from the Shell, Beam and Solid Mechanics 
interfaces can be attached to each other.

You can add functionality to the rigid connector through the following subnodes.

• Thermal Expansion (Rigid Connector) to include thermal expansion.

• Applied Force (Rigid Connector) to apply a force in given point.

• Applied Moment (Rigid Connector) to apply a moment.

• Mass and Moment of Inertia (Rigid Connector) to add extra mass and moment of 
inertia in a given point.

• Spring Foundation (Rigid Connector) to add a translational or rotational spring or 
damper in a given point.
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I N T E R F A C E  S E L E C T I O N

Select the interface or interfaces for which this spring condition is to be added.

Context Menus
Layered Shell>Face and Domain Constraints, Interfaces>Rigid Connector, Interface

Ribbon
Physics tab with Layered Shell selected:

Boundaries>Interfaces>Rigid Connector, Interface

Thermal Expansion (Rigid Connector)

Add the Thermal Expansion subnode to prescribe a deformation of the rigid connector 
caused by changes in temperature. This makes it possible to reduce stresses caused by 
the rigid connector being rigid, while there are thermal deformations in the flexible 
body to which it is attached.

S H E L L  P R O P E R T I E S

This section is only present when Thermal Expansion is used as a subnode to Rigid 

Connector.

Select the layers for which these thermal expansion properties are to be used. You can 
only select a subset of the layers selected in the parent node.

TABLE 6-61:  INTERFACE SELECTIONS; RIGID CONNECTOR, INTERFACE

SELECTION APPLY TO SELECTION OF INDIVIDUAL 
INTERFACES

Boundary When added: Exterior interfaces. When Selected Interfaces is 
selected.

Only exterior interfaces can 
be selected.

• All other settings for the Rigid Connector, Interface node are described 
in the documentation for Rigid Connector in the Solid Mechanics 
interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections
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I N T E R F A C E  S E L E C T I O N

This section is only present when Predeformation is used as a subnode to Rigid 

Connector, Interface.

Select the interfaces for which these thermal expansion properties are to be used. You 
can only select a subset of the interfaces selected in the parent node

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Rigid Connector>Thermal Expansion

Layered Shell>Rigid Connector, Interface>Thermal Expansion

Ribbon
Physics tab with Rigid Connector or Rigid Connector, Interface node selected in the model 
tree:

Attributes>Thermal Expansion

Attachment

The Attachment node is used to define a set of edges on a flexible layered shell which 
can be used to connect it with other components through a joint in the Multibody 
Dynamics interface. All the selected edges behave as if they were connected by a 
common rigid body.

Attachments can be added to boundaries in a Multibody Dynamics or a Solid 
Mechanics interface, to edges in a Shell or Layered Shell interface, or to points in a 
Beam interface. This makes it possible to use a joint in the Multibody Dynamics 
interface for connecting parts modeled in different physics interfaces.

• All other settings for the Thermal Expansion node are described in the 
documentation for Thermal Expansion (Rigid Connector) in the Solid 
Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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S H E L L  P R O P E R T I E S

As the whole edge moves as a single rigid object, it is not possible to select individual 
layers. The selection in this section only acts as a filter for the boundary selection.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Connections>Attachment

Ribbon
Physics tab with Layered Shell selected:

Edges>Connections>Attachment

Thermal Expansion (Attachment)

Add the Thermal Expansion subnode to prescribe a deformation of an Attachment 
caused by changes in temperature. This makes it possible to reduce stresses caused by 
the attachment being rigid, while there are thermal deformations in the flexible body 
to which it is attached.

S H E L L  P R O P E R T I E S

If the parent node has Use all layers selected, it is possible to select only a subset. If not, 
then the layer selection will be the same as in the parent. Since selection of individual 

TABLE 6-62:  LAYER SELECTIONS; ATTACHMENT

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Edge Same as interface selection when the 
node is added.

No

All other settings for the Attachment node are described in the 
documentation for Attachment in the Solid Mechanics interface.

The use of attachments is discussed in the Attachments section in the 
Structural Mechanics Modeling chapter.
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layers is not possible in either case, this section only acts as a filter for the boundary 
selection.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Attachment>Thermal Expansion

Ribbon
Physics tab with Attachment node selected in the model tree:

Attributes>Thermal Expansion

Continuity

Add a Continuity node to connect two layered shell boundaries sharing a common edge 
and having different layered materials.

The continuity constraint is added on the common edge in the through-thickness 
direction.

L A Y E R  S E L E C T I O N

Select Source and Destination layered materials from all the Layered Material Link and 
Layered Material Stack available in the component. All the edges are selected by default 
and the common edges between the two layered materials becomes applicable 
automatically. Optionally you can remove some of the edges if you do not want to 
enforce the continuity on all the common edges.

TABLE 6-63:  LAYER SELECTIONS; THERMAL EXPANSION (ATTACHMENT)

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL 
LAYERS

Edge Same as parent selection when the node 
is added.

No

• All other settings for the Thermal Expansion node are described in the 
documentation for Thermal Expansion (Attachment) in the Solid 
Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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In the Source, select the Layered Materials based on what you want to use in the 
continuity constraints. This option is available only when Layered Material Stack is 
chosen.

In the Destination, select the Layered Materials based on what you want to use in the 
continuity constraints. In addition to this, an Offset can be specified on the destination 
side which decides the actual connection area between the two layered materials.

You can swap the source and destination by clicking Swap Source and Destination ( ).

In order to visualize the connection, click Layer Cross Section Preview ( ).

You can use the Clear All ( ) and Reset to Default ( ) buttons to clear or reset all 
the selections as well as the offset values in two cases, respectively.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

C O N N E C T I O N  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

Choose a Connection type — Straight or Twisted.

In case the two layered materials have normal orientation in opposite directions, you 
may want to switch the Connection type from Straight to Twisted in order to connect 
points in through-thickness direction which are geometrically close to each other.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Layered Shell>Continuity

Ribbon
Physics tab with Layered Shell selected:

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings
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Edges>Continuity
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M e m b r a n e
This chapter describes the Membrane (mbrn) interface, which is found under the 
Structural Mechanics branch ( ) when adding a physics interface.

In this chapter:

• Theory for the Membrane Interface

• The Membrane Interface
 1475
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Th eo r y  f o r  t h e  Memb r an e  I n t e r f a c e

The theory for the Membrane interface is described in this section:

• About Membranes

• Theory Background for the Membrane Interface

About Membranes

Membranes can be considered as plane stress elements in 3D with a possibility to 
deform both in the in-plane and out-of-plane directions. The difference between a 
shell and a membrane is that the membrane does not have any bending stiffness. If the 
ratio between the thickness and the dimensions in the other directions becomes very 
small, a membrane formulation is numerically better posed than a shell formulation.

The Membrane interface supports the same study types as the Solid Mechanics 
interface except it does not include the Linear Buckling study type, but wrinkling can 
be modeled instead.

To describe a membrane, provide its thickness and the material properties. All 
properties can be variable over the element. All elemental quantities are integrated only 
at the midsurface. This is a good approximation since by definition a membrane is thin.

The physics interface is intended to model either prestressed membranes or a thin 
cladding on top of a solid.

S T I F F N E S S  I N  T H E  N O R M A L  D I R E C T I O N

When membrane elements are used separately, not supported by other structural 
elements, a prestress is necessary in order to avoid a singularity. The unstressed 
membrane has no stiffness in the normal direction. It is the geometrically nonlinear 
effects (stress stiffening) which supply the out-of-plane stiffness. A prestress can be 
given either through initial stress and strain or through a tensile boundary load. 
Prestress is not necessary in cases where inertia effects are included in a dynamic 
analysis. A small prestress can, however, still be useful to stabilize the analysis in the 
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initial state. In order to obtain the prestress effect, you must select Include geometric 

nonlinearity in the settings for the study step.

M E M B R A N E S  F O R  3 D  M O D E L S

The Membrane interface in 3D can be active on internal and external boundaries of a 
domain, as well as on boundaries not adjacent to any domain.

The dependent variables are the displacements u, v, and w in the global x, y, and z 
directions, and the displacement derivative unn in the direction normal to the 
membrane. For anisotropic materials, the tangential displacements derivatives u1n and 
u2n are additionally added as dependent variables.

M E M B R A N E S  F O R  2 D  A X I S Y M M E T R I C  M O D E L S

The Membrane interface for 2D axisymmetric models can be active on internal and 
external boundaries of a solid, as well as on edges that not adjacent to a solid.

The dependent variables are the displacements u and w in the global r and z directions, 
and the displacement derivative unn in the direction normal to the membrane in the 
rz-plane. For anisotropic materials, the tangential displacements derivatives u1n and 
u2n are additionally added as dependent variables.

L A Y E R E D  A N D  N O N L A Y E R E D  M E M B R A N E S

The Membrane interface includes several material models; Linear Elastic Material, 
Layered Linear Elastic Material, Nonlinear Elastic Material, Hyperelastic Material, and 
External Stress-Strain Relation. 

The fundamental difference between the Linear Elastic Material and the Layered Linear 

Elastic Material is that in the Linear Elastic Material the material properties are assumed 

For a detailed discussion about dynamic analysis of prestressed structures, 
see Prestressed Structures.

When using membranes, also the prestress step must be geometrically 
nonlinear.

If you want to explicitly prescribe the stress field for a prestressed analysis 
rather than solving for it, you should not use the two study step 
procedure. In such a case, prescribe the stress field using an Initial Stress 

and Strain, External Stress, or External Strain node. Then add a separate 
Eigenfrequency or Frequency Domain study and select Include Geometric 

Nonlinearity in the settings for the study step.
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to be constant through the thickness. In the Layered Linear Elastic Material model, there 
is a numerical integration in the thickness direction, and it is also possible to store 
states, such as inelastic strains, at different through-thickness locations.

When the Composite Materials Module is available, the Layered Linear Elastic Material 
model can be used to model multilayered membrane. This is the main use of this 
material model. It is, however, also used for the Layered Thermal Expansion 
multiphysics coupling, even if there is just a single layer.

Since membranes are thin, the actual order of the layers in a multilayered membrane is 
not considered for the analysis.

For each layer, you have the option to set the resolution in the thickness direction. In 
a layered material, this is the Mesh elements property in the layer definitions. When 
working with a single layer material, then it is the Mesh elements property in the Shell 
property group. For membrane analysis, you can set this value to ‘1’ since in-layer 
variations are not part of the theory.

Theory Background for the Membrane Interface

A 3D membrane is similar to a shell but it has only translational degrees of freedom 
and the results are constant in the thickness direction.

The thickness of the membrane is d, which can vary over the element. The 
displacements are interpolated by Lagrange or Serendipity shape functions.

A 2D axisymmetric membrane is similar to the 3D membrane and it has a nonzero 
circumferential strain in the out-of-plane direction.

L O C A L  C O O R D I N A T E  S Y S T E M S

Boundaries
Many quantities for a membrane can best be interpreted in a local coordinate system 
aligned to the membrane surface. Material data, initial stresses-strains, and constitutive 
laws are always represented in the local coordinate system.

This local membrane surface coordinate system is defined by the boundary coordinate 
system (tl, t2, n).

The quantities like stresses and strains are also available as results in the global 
coordinate system after a transformation from a local (boundary) system.
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Local Edge System
Many features, such as an edge load, allow input in an edge local coordinate system. 
The orthogonal local edge coordinate system directions xl, yl, and zl are defined so 
that:

• The first direction (xl) is along the edge. This direction can be visualized by 
selecting the Show edge directions arrows check box in the View settings.

• The third direction (zl) is the same as the membrane normal direction of the 
adjacent boundary.

• The second direction (yl) is in the plane of the shell and orthogonal to the edge. It 
is formed by the cross product of zl and xl; yl  zl  xl.

The local edge system can be visualized by plotting the components of the local edge 
transformation matrix with an Arrow Line plot. The matrix components are defined per 
feature. For instance, the variable name for the xx-component is 
<interface>.<feature_tag>.TleXX.

When an edge is shared between two or more boundaries, the directions may not 
always be unique. It is then possible to use the control Face Defining the Local 

Orientations to select from which boundary the normal direction zl should be picked. 
The default is Use face with lowest number.

If the geometry selection contains several edges, the only available option is Use face 

with lowest number, since the list of adjacent boundaries would then be different for 
each edge. For each edge in the selection, the face with the lowest number attached to 
that edge is then used for the definition of the normal orientation.

S T R A I N - D I S P L A C E M E N T  R E L A T I O N

The kinematic relations of the membrane element are first expressed along the global 
coordinate axes. The strains are then transformed to the element local direction. Since 
the membrane is defined only on a boundary, derivatives in all spatial directions are not 
directly available. This makes the derivation of the strain tensor somewhat different 
from what is used in solid mechanics.

The deformation gradient F is in general defined as the gradient of the current 
coordinates with respect to the original coordinates:

In the Membrane interface, a tangential deformation gradient is computed as

F x
X

------- I u
X

-------+= =
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Here tu is the displacement gradient computed using the tangential gradient on the 
membrane surface, and N is the normal vector to the undeformed membrane. The 
tangential deformation gradient Ft then contains information about the stretching in 
the membrane plane.

Since the tangential deformation gradient does not contain any information about the 
transverse (out-of-plane) stretch n, it must be augmented by the normal deformation 
gradient Fn to define the full deformation gradient. It is given by

where n is the normal vector to the deformed membrane. For anisotropic materials, 
the shear deformation gradient Fs is also needed to define the full deformation 
gradient. It is given by

where t1 and t2 are the tangent vectors on the deformed membrane surface. The full 
deformation gradient F is then computed from the sum of tangential, shear and 
normal deformation

Note that Fs is only nonzero for anisotropic materials, otherwise Fs = 0.

The right Cauchy–Green tensor C is then defined as

The Green-Lagrange strains are computed using the standard expression

The local tangential strains are calculated by transforming this tensor into the local 
coordinate system.

The Jacobian J is the ratio between the current volume and the initial volume. In full 
3D it is defined as

Ft I N N ut+–=

Fn nn N 1 unn+ n N= =

Fs u1nt1 u2nt2+  N=

F Ft Fs Fn++=

C FTF=

E 1
2
--- C I– =

J det F  det C = =
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and the area scale factor is computed from

In the case of geometrically linear analysis, a linearized version of the strain tensor is 
used.

C O N S T I T U T I V E  R E L A T I O N  A N D  W E A K  C O N T R I B U T I O N S

The constitutive relations for the membrane on the reference surface are similar to 
those used in the Solid Mechanics interface.

The thermal strains and initial stresses-strains (only for the in-plane directions of the 
membrane) are added in the constitutive relation in a similar manner as it is done in 
Solid Mechanics.

The weak expressions in the Membrane interface are similar to that of linear elastic 
continuum mechanics.

W R I N K L I N G

Due to the zero bending stiffness assumption, the numerical treatment of thin 
structures is much simpler with the membrane theory as compared to shell theory. 
However, this assumption is disadvantageous in some cases such as wrinkling, which 
happens when the membrane is subjected to negative principal stresses.

A thin shell will wrinkle when the compressive stress reaches a critical level defined by 
its bending stiffness, which is a local buckling phenomenon. When such thin structures 
are modeled within the membrane theory, wrinkles appear at the onset of the 
compressive stresses as the bending stiffness is assumed to be zero. Due to zero 
bending stiffness such states can be represented by continuously distributed 
infinitesimal wrinkles.

When using the traditional membrane theory, which does not incorporates a wrinkling 
model, negative principal stresses result in a equilibrium instability. In order to 
overcome this instability, the wrinkling model within the framework of the tension 
field theory can remove compressive stresses from wrinkled regions resulting in a 
correct stress distribution, Ref. 1–3.

JA
J

1 unn+
-------------------=

See also Analysis of Deformation in the documentation of the Solid 
Mechanics interface.
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The modified membrane theory, which incorporates a wrinkling model to the 
traditional membrane theory, disregards the out-of-plane deformation in wrinkling; so 
wrinkles including details like their amplitude and wavelength are determined on the 
mean surface of the membrane (Ref. 1–3).

There are two approaches to embed the tension field theory into the framework of 
classical membrane theory, but essentially both approaches are equivalent (Ref. 3). 
One approach is to replace the strain energy density with a relaxed variant of it, while 
the other approach is to modify the deformation gradient (Ref. 1). While the first 
approach can only be used for isotropic membranes, the second approach is more 
general (Ref. 1), and it is the method implemented in COMSOL Multiphysics.

The undeformed configuration of the membrane is described by the material 
coordinates X, Y, and Z. The uniaxial stress occurs in the X direction; Y is the 
wrinkling direction and Z is the normal to the membrane plane (Figure 7-1). The 
deformed configuration is represented by the x, y and z coordinates. After 
deformation, the membrane can be in one of three possible states:

• A taut state, which is achieved when both in-plane principal stresses are positive, and 
there is no need to modify the deformation tensor.

• A wrinkled state, which happens when one of the principal stresses is negative. A 
modification to the deformation gradient tensor is necessary.

• A slack state, reached when both in-plane principal stresses are negative. In this case, 
the stress tensor is set to be zero.

As shown in Figure 7-1 there are three different kinematic descriptions (Ref. 1):

• The tensor F* maps the reference configuration to the true wrinkled configuration. 
This mapping is not suitable to describe the strain field in wrinkled membranes.

• The tensor F maps the reference configuration to the mean configuration, where 
the current area is smaller than the actual wrinkled area. Hence, this mapping is also 
not suitable to describe the strain field in wrinkled membranes.

• The tensor  maps the reference configuration to a fictitious lengthened 
configuration, where the current area is equal to the actual wrinkled area. This 
mapping is suitable to describe the strain field in wrinkled membranes.

F
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Figure 7-1: Kinematics of wrinkling.

When n1 is the direction of uniaxial extension, and assuming that wrinkling occurs in 
the n2 direction, the modified deformation tensor  is written as

 (7-1)

Here,  is the wrinkling parameter, so  = 0 represents a taut condition. According to 
the orthogonality condition in tension field theory, these two vectors satisfy

 (7-2)

Reference configuration

Wrinkled configuration

Mean configuration

Fictive lengthened configuration

F

F

F*

dY

dX

dy

dx

dx

dx

dy

dy

n1

n1

n1

n2

n2

n2

F

F I n2 n2+ F=

n1  n2  0=

n2  n2  0=
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where  is the Cauchy stress tensor written in terms of the second Piola-Kirchhoff 
stress tensor

Assuming that the mean configuration F is known, the only unknowns in 
Equation 7-1 and Equation 7-2 are  and n2.

Since the material properties and membrane theory itself are given in the reference 
configuration, Equation 7-1 and Equation 7-2 are transformed to the reference 
configuration (Ref. 2). The fictive Green-Lagrange strain tensor  is then written 
with the help of a vector in the reference configuration which corresponds to the 
wrinkling direction n2, so g = n2F,

This can be written as

where m and N2 are the wrinkling parameter and wrinkling direction in the reference 
configuration. The two unknowns  and n2 in the deformed configuration are 
replaced by the two unknowns m and N2 in the reference configuration.

The membrane surface is spanned by a coordinate system having two in-plane 
orthogonal unit vectors e1 and e2. Thus, N1 and N2 can be written with the help of 
the wrinkling angle m

So the scalar wrinkling angle m is sufficient to define the wrinkling vector N2. The 
two nonlinear equations in Equation 7-2 are then solved for the two unknowns m 
and m with the Newton-Raphson method. Once the parameters m and m are 
determined, the deformation gradient and the second Piola-Kirchhoff stress tensor are 
modified to get the correct stress distribution and to define the wrinkled regions.

E X T E R N A L  L O A D S

The contributions to the virtual work from an external load is given by

 1
J
---FS F FT=

E

E 1
2
--- FTF I–  E  2

2
------+ 

 FTn2 n2F+= =

E E mN2 N2+=

N1 m e1 m e2sin+cos=

N2 m e1 m e2cos+sin–=
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where the force F can be distributed over a boundary, an edge, or it can be 
concentrated in a point. In the special case of a follower load, defined by a pressure p, 
the force intensity is F = pn, where n is the normal vector to the membrane surface 
in the deformed configuration.

For a follower load, the change in midsurface area is taken into account, and 
integration of the load is done in the deformed configuration.

S T R E S S  C A L C U L A T I O N S

The stresses are computed by applying the constitutive law to the computed strains.

Membranes do not support transverse nor bending forces, and the only section forces 
are defined as:

Here,  is the local stress tensor which contains in-plane stress components only.
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T h e  Memb r an e  I n t e r f a c e

The Membrane (mbrn) interface ( ), found under the Structural Mechanics 
branch ( ) when adding a physics interface, is mainly used to model prestressed 
membranes, but can also be used to model a thin cladding on a solid. Membranes can 
be considered as plane stress elements on boundaries in 3D with a possibility to deform 
both in the in-plane and out-of-plane directions. There is also a version of the 
membrane interface for 2D axisymmetric problems. The membrane interface is then 
applicable to lines since that is what represents boundaries.

The difference between a shell and a membrane is that the membrane does not have 
any bending stiffness. In most applications, the membrane is used by itself and not as 
a cladding. A tensile prestress is then necessary in order to avoid singularity because a 
membrane with no stress or compressive stress has no transverse stiffness. To include 
the prestress effect, you must enable geometric nonlinearity for the study step.

The Linear Elastic Material is the default material, which adds a linear elastic equation 
for the displacements and has a Settings window to define the elastic material 
properties. This material model can also be combined with viscoelasticity.

With the Nonlinear Structural Materials Module, you can also model Nonlinear Elastic 
and Hyperelastic materials, and add options such as Plasticity, Creep, and 
Viscoplasticity.

When this physics interface is added, these default nodes are also added to the Model 

Builder: Linear Elastic Material, Free (a condition where edges are free, with no loads or 
constraints), and Initial Values. In the case if axial symmetry, an Axial Symmetry node is 
also added. From the Physics toolbar, you can then add other nodes that implement, 
for example, loads and constraints. You can also right-click Membrane to select physics 
features from the context menu.

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 

For a detailed overview of the functionality available in each product, visit 
https://www.comsol.com/products/specifications/
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<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is mbrn.

S T R U C T U R A L  T R A N S I E N T  B E H A V I O R

From the Structural transient behavior list, select Include inertial terms (the default) or 
Quasistatic. Use Quasistatic to treat the elastic behavior as quasistatic (with no mass 
effects; that is, no second-order time derivatives). Selecting this option gives a more 
efficient solution for problems where the variation in time is slow when compared to 
the natural frequencies of the system.

For problems with creep, and sometimes viscoelasticity, the problem can be considered 
as quasistatic. This is also the case when the time dependence exists only in some other 
physics, like a transient heat transfer problem causing thermal strains.

D I S C R E T I Z A T I O N

In the Membrane interface you can choose not only the order of the discretization, but 
also the type of shape functions: Lagrange or serendipity. For highly distorted 
elements, Lagrange shape functions provide better accuracy than serendipity shape 
functions of the same order. The serendipity shape functions will however give 
significant reductions of the model size for a given mesh containing quadrilateral 
elements.

The default is to use Quadratic serendipity shape functions for the Displacement field.

D E P E N D E N T  V A R I A B L E S

The dependent variable (field variable) is for the Displacement field u which has three 
components (u, v, and w). The name can be changed but the names of fields and 
dependent variables must be unique within a model.

• Boundary, Edge, Point, and Pair Nodes for the Membrane Interface

• Theory for the Membrane Interface

• Selecting Discretization

Vibrating Membrane: Application Library path 
Structural_Mechanics_Module/Verification_Examples/vibrating_membrane
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Boundary, Edge, Point, and Pair Nodes for the Membrane Interface

The Membrane Interface has these boundary, edge, point, and pair nodes available 
from the Physics ribbon toolbar (Windows users), Physics context menu (Mac or Linux 
users), or right-click to access the context menu (all users).

F E A T U R E S  A V A I L A B L E  F R O M  S U B M E N U S

Many features for the Membrane interface are added from submenus in the Physics 
toolbar groups or context menu (when you right-click the node). The submenu name 
is the same in both cases.

• The submenus at the Boundary level are Material Models, Face and Volume Loads, Mass, 

Spring, and Damper, and Face Constraints.

• The submenus at the Edge (3D) or Points (2D axisymmetric) level are Mass, Spring, 

and Damper, More Constraints, and Pairs.

• For 3D components, there is also a Points submenu.

L I N K S  T O  F E A T U R E  N O D E  I N F O R M A T I O N

These nodes (and subnodes) are described in this section (listed in alphabetical order):

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.

• Additional Creep

• Antisymmetry

• Creep

• Damping

• External Stress

• Inelastic Strain Rate

• Initial Stress and Strain

• Layered Adiabatic Heating

• Layered Linear Elastic Material

• Linear Elastic Material

• Safety

• Symmetry

• Viscoelasticity

• Viscoplasticity

• Wrinkling
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These nodes are described for the Solid Mechanics or Shell interfaces:

• Added Mass

• Adhesion

• Adiabatic Heating

• Average Rotation

• Base Excitation

• Body Load1

• Contact

• Damping

• Edge Load3

• External Stress-Strain Relation

• Face Load3

• Fixed Constraint

• Free

• Friction

• Gravity

• Hygroscopic Swelling

• Hyperelastic Material

• Initial Values

• Linearly Accelerated Frame1

• Nonlinear Elastic Material

• Phase

• Point Load

• Point Load, Free

• Point Load (on Axis)

• Predeformation

• Prescribed Acceleration

• Prescribed Displacement2

• Prescribed Velocity

• Ring Load

• Ring Load, Free

• Rotating Frame1

• Slip Velocity

• Spring Foundation

• Spring-Damper

• Symmetry Plane

• Thermal Expansion (for 
Constraints)

• Thermal Expansion (for Materials)

• Thickness and Offset3

• Thickness Change3

• Wear

1 This is selected from the Face and Volume Loads submenu for this interface.
2 At the boundary level, this is selected from the Face Constraints submenu for this 
interface.
3 Described for the Shell interface.

Harmonic Perturbation, Prestressed Analysis, and Small-Signal Analysis 
in the COMSOL Multiphysics Reference Manual
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Linear Elastic Material

The Linear Elastic Material node adds the equations for a linear elastic membrane and 
an interface for defining the elastic material properties.

By adding the following subnodes to the Linear Elastic Material node you can 
incorporate many other effects:

• Thermal Expansion (for Materials)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress

• Inelastic Strain Rate

• Damping

• Wrinkling

• Viscoelasticity

• Plasticity

• Creep

• Viscoplasticity

• Activation

• Safety

Note: Some options are only available with certain COMSOL products (see https://
www.comsol.com/products/specifications/)

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The built in Boundary System 1 is selected by default. The Coordinate system list 
contains any additional boundary coordinate systems that the model includes. The 
coordinate system is used for interpreting directions of orthotropic and anisotropic 
material data and when stresses or strains are presented in a local system. Many of the 
possible subnodes inherit the coordinate system settings.

In the COMSOL Multiphysics Reference Manual see Table 2-4 for links 
to common sections and Table 2-5 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.
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L I N E A R  E L A S T I C  M A T E R I A L

Define the material symmetry and the linear elastic material properties.

Material Symmetry
Select Material symmetry — Isotropic (the default), Orthotropic, or Anisotropic. Select:

• Isotropic for a linear elastic material that has the same properties in all directions.

• Orthotropic for a linear elastic material that has different material properties in 
orthogonal directions. It is also possible to define Transversely isotropic material 
properties.

• Anisotropic for a linear elastic material that has different material properties in 
different directions.

Density
The default Density  uses values From material. For User defined enter another value or 
expression.

Specification of Elastic Properties for Isotropic Materials
For an Isotropic material, from the Specify list select a pair of elastic properties for an 
isotropic material — Young’s modulus and Poisson’s ratio, Young’s modulus and shear 

modulus, Bulk modulus and shear modulus, Lamé parameters, or Pressure-wave and 

shear-wave speeds. For each pair of properties, select from the applicable list to use the 
value From material or enter a User defined value or expression.

• Material Models

• Linear Elastic Material

• Orthotropic and Anisotropic Materials

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).

Each of these pairs define the elastic properties and it is possible to convert 
from one set of properties to another (see Table 3-1 in the theory 
chapter).
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The individual property parameters are:

• Young’s modulus (elastic modulus) E.

• Poisson’s ratio .

• Shear modulus G.

• Bulk modulus K.

• Lamé parameter  and Lamé parameter .

• Pressure-wave speed (longitudinal wave speed) cp.

• Shear-wave speed (transverse wave speed) cs. This is the wave speed for a solid 
continuum. In plane stress, for example, the actual speed with which a longitudinal 
wave travels is lower than the value given.

Specification of Elastic Properties for Orthotropic Materials
When Orthotropic is selected from the Material symmetry list, the material properties 
are different in orthogonal directions (principal directions) given by the axes of the 
selected coordinate system. The Material data ordering can be specified in either 
Standard or Voigt notation. When User defined is selected in 3D, enter three values in 
the fields for Young’s modulus E, Poisson’s ratio , and the Shear modulus G. The latter 
defines defines the relationship between engineering shear strain and shear stress. It is 
applicable only to an orthotropic material and follows the equation

You can set an orthotropic material to be Transversely isotropic. Then, one principal 
direction in the material is different from two others that are equivalent. This special 
direction is assumed to be the first axis of the selected coordinate system. Because of 
the symmetry, the following relations hold:

ij
ij

Gij
--------=

ij is defined differently depending on the application field. It is easy to 
transform among definitions, but check which one the material uses.

E3 E2=

13 12=

G23
E2

2 1 23+ 
--------------------------=
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Thus, only five elasticity moduli need to be entered when User defined option is 
selected.

Specification of Elastic Properties for Anisotropic Materials
When Anisotropic is selected from the Material symmetry list, the material properties 
vary in all directions. They can be specified using either the Elasticity matrix, D or the 
Compliance matrix, D-1. Both matrices are symmetric. The Material data ordering can 
be specified in either Standard or Voigt notation. When User defined is selected, a 6-by-6 
symmetric matrix is displayed.

Mixed Formulation
For a material with a very low compressibility, using only displacements as degrees of 
freedom may lead to a numerically ill-posed problem. You can then use a mixed 
formulation, which add an extra dependent variable for either the pressure or for the 
volumetric strain. For details, see the Mixed Formulation section in the Structural 
Mechanics Theory chapter.

From the Use mixed formulation list, select None, Pressure formulation, or Strain 

formulation.

G E O M E T R I C  N O N L I N E A R I T Y

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all boundaries. There are, however, some rare cases when the use of a 
small strain formulation for a certain boundary is needed.

In such cases, select the Geometrically linear formulation check box. When selected, a 
small strain formulation is always used, independently of the setting in the study step.

E N E R G Y  D I S S I P A T I O N

The section is available when you also have the Nonlinear Structural Materials Module. 
To display the section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

Select the Calculate dissipated energy check box as needed to compute the energy 
dissipated by Creep, Plasticity, Viscoplasticity, or Viscoelasticity.

G12 G13=

• Modeling Geometric Nonlinearity

• Studies and Solvers in the COMSOL Multiphysics Reference Manual
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D I S C R E T I Z A T I O N

If Pressure formulation is used, select the discretization for the Auxiliary pressure — 
Automatic, Discontinuous Lagrange, Continuous, Linear, or Constant. If Strain formulation 
is used, select the discretization for the Auxiliary volumetric strain — Automatic, 
Discontinuous Lagrange, Continuous, Linear, or Constant.

Q U A D R A T U R E  S E T T I N G S

Select the Reduced integration check box to reduce the integration points for the weak 
contribution of the feature. Select a method for Hourglass stabilization — Automatic, 
Manual, or None to use in combination with the reduced integration scheme. The 
default Automatic stabilization technique is based on the shape function and shape 
order of the displacement field.

Control the hourglass stabilization scheme by using the Manual option. Select Shear 

stabilization (default) or Volumetric stabilization.

When Shear stabilization is selected, enter a stabilization shear modulus, Gstb. The 
value should be in the order of magnitude of the equivalent shear modulus.

When Volumetric stabilization is selected, enter a stabilization bulk modulus, Kstb. The 
value should be in the order of magnitude of the equivalent bulk modulus.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Material Models>Linear Elastic Material

Ribbon
Physics tab with Membrane selected:

Boundaries>Material Models>Linear Elastic Material

Layered Linear Elastic Material

The Layered Linear Elastic Material node adds the equations for a layered linear elastic 
membrane.

The Discretization section is available when Pressure formulation or Strain 

formulation is selected from the Use mixed formulation list. To display the 
section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.
R  7 :  M E M B R A N E



If the Composite Materials Module analysis is available, this material model can be 
applied to arbitrary layers in a multilayered membrane. The material properties, 
orientations, and layer thicknesses are defined using Layered Material node. The offset, 
and local coordinate system, in which material orientations and results are interpreted, 
is defined by Layered Material Link or Layered Material Stack node.

Without the Composite Materials Module, only single layer membranes can be 
modeled. This is still useful, for example for some multiphysics couplings. For single 
layer materials, an ordinary Material node can be used, as long you include a Shell 
property group in which, for example, the thickness is given.

By adding the following subnodes to the Layered Linear Elastic Material node you can 
incorporate many other effects:

• Thermal Expansion (for Materials)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress

• Inelastic Strain Rate

• Damping

• Viscoelasticity

• Plasticity

• Creep

• Viscoplasticity

• Safety

Some of these material models are only available together with the Nonlinear 
Structural Materials Module (see https://www.comsol.com/products/
specifications/).

• For a general description about layered materials, see Layered Materials 
in the documentation for the Composite Materials Module.

• See also the discussion in Layered and Nonlayered Membranes.
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S H E L L  P R O P E R T I E S

For this node, the Shell Properties section is only used for selecting a material model, 
but not individual layers.

B O U N D A R Y  S E L E C T I O N

The boundary selection in this node is similar to the Linear Elastic Material node. It is 
however only possible to select boundaries which are part of the selection of a layered 
material defined in Layered Material Link or Layered Material Stack node.

L I N E A R  E L A S T I C  M A T E R I A L

Select Material symmetry — Isotropic, Orthotropic, or Anisotropic and enter the settings 
as described for the Linear Elastic Material for the Solid Mechanics interface. If the 
layers have different types of anisotropy properties, select the one that is most complex.

Note that:

• For Orthotropic no values for Ez, yz, or xz need to be entered due to the membrane 
assumptions. It is also possible to define Transversely isotropic material properties.

• For User defined Anisotropic a 6-by-6 symmetric matrix is displayed. Due to the 
membrane assumptions, you only need to enter values for D11, D12, D22, D14, D24, 
D55, D66, and D56.

• The material orientation is always interpreted in a laminate coordinate system 
aligned with the membrane boundary together with the orientation of each layer 
specified on a layered material. The laminate coordinate system is always a Boundary 

System.

For a material with a very low compressibility, using only displacements as degrees of 
freedom may lead to a numerically ill-posed problem. You can then use a mixed 
formulation, which add an extra dependent variable for either the pressure or for the 
volumetric strain, see the Mixed Formulation section in the Structural Mechanics 
Theory chapter.

TABLE 7-1:  LAYER SELECTIONS; LINEAR ELASTIC MATERIAL

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Default when added No

For a general description of this section, see Layer and Interface 
Selections in the documentation for the Composite Materials Module.
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From the Use mixed formulation list, select None, Pressure formulation, or Strain 

formulation.

G E O M E T R I C  N O N L I N E A R I T Y

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. There are however some cases when you would still want 
to use a small strain formulation for a certain domain. In those cases, select the 
Geometrically linear formulation check box. When selected, a small strain formulation is 
always used, independently of the setting in the study step.

When a geometrically nonlinear formulation is used, the elastic deformations used for 
computing the stresses can be obtained in two different ways if inelastic deformations 
are present: additive decomposition and multiplicative decomposition. The default is 
to use multiplicative decomposition. Select Additive strain decomposition to change to 
an assumption of additivity.

E N E R G Y  D I S S I P A T I O N

The section is available when you also have the Nonlinear Structural Materials Module. 
Then, to display this section, click the Show More Options button ( ) and select 
Advanced Physics Options in the Show More Options dialog box.

Select the Calculate dissipated energy check box as needed to compute the energy 
dissipated by Creep, Plasticity, Viscoplasticity, or Viscoelasticity.

D I S C R E T I Z A T I O N

If Pressure formulation is used, select the discretization for the Auxiliary pressure — 
Automatic, Discontinuous Lagrange, Continuous, Linear, or Constant. If Strain formulation 
is used, select the discretization for the Auxiliary volumetric strain — Automatic, 
Discontinuous Lagrange, Continuous, Linear, or Constant.

Q U A D R A T U R E  S E T T I N G S

Select the Reduced integration check box to reduce the integration points for the weak 
contribution of the feature. Select a method for Hourglass stabilization — Automatic, 
Manual, or None to use in combination with the reduced integration scheme. The 

The Discretization section is available when Pressure formulation or Strain 

formulation is selected from the Use mixed formulation list. To display the 
section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.
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default Automatic stabilization technique is based on the shape function and shape 
order of the displacement field.

Control the hourglass stabilization scheme by using the Manual option. Select Shear 

stabilization (default) or Volumetric stabilization.

When Shear stabilization is selected, enter a stabilization shear modulus, Gstb, and the 
shear correction factor kstb. The value for Gstb should be in the order of magnitude of 
the equivalent shear modulus.

When Volumetric stabilization is selected, enter a stabilization bulk modulus, Kstb. The 
value should be in the order of magnitude of the equivalent bulk modulus.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Material Models>Layered Linear Elastic Material

Ribbon
Physics tab with Membrane selected:

Boundaries>Material Models>Layered Linear Elastic Material

Viscoelasticity

Use the Viscoelasticity subnode to add viscous stress contributions to an elastic material 
model. Viscoelasticity can be added to Linear Elastic Material, Layered Linear Elastic 
Material, Nonlinear Elastic Material and Hyperelastic Material.

If the Composite Materials Module is available, the viscoelasticity model can be applied 
to arbitrary layers in a multilayered membrane.

S H E L L  P R O P E R T I E S

This section is present only when the Viscoelasticity node is used under Layered Linear 
Elastic Material.

See also the discussion in Layered and Nonlayered Membranes.
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Select the layer or layers for which this viscoelastic model is to be used.

If the viscoelastic model differs between layers, you will need to add several 
Viscoelasticity nodes with different layer selections.

If the same layer is selected in two Viscoelasticity nodes being active on the boundary, 
then there will be two viscoelastic contributions.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>Viscoelasticity

Membrane>Layered Linear Elastic Material>Viscoelasticity

Membrane>Nonlinear Elastic Material>Viscoelasticity

Membrane>Hyperelastic Material>Viscoelasticity

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, Nonlinear Elastic 

Material, or Hyperelastic Material node selected in the model tree:

Attributes>Viscoelasticity

TABLE 7-2:  LAYER SELECTIONS; VISCOELASTICITY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection when 
the node is added.

When Use all layers is not 
selected.

• All other settings for the Viscoelasticity node are described in the 
documentation for Viscoelasticity in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide material parameters with a through-thickness variation 
by explicitly or implicitly using expressions containing the extra 
dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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Plasticity

Use the Plasticity subnode to define the properties for modeling elastoplastic materials. 
This material model can be used together with either a Linear Elastic Material, 
Nonlinear Elastic Material, or a Layered Linear Elastic Material.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.

If the Composite Materials Module is available, the plasticity model can be applied to 
arbitrary layers in a multilayered membrane.

S H E L L  P R O P E R T I E S

This section is present only when the Plasticity node is used under Layered Linear 
Elastic Material.

Select the layer or layers for which this plasticity model is to be used.

If the plasticity model differs between layers, you will need to add several Plasticity 
nodes with different layer selections. If the model is the same, and only the material 
data values differ, you can use a single Plasticity node where From material is used to 
define the values. The data for each layer is then received from global Layered Material 
nodes.

If there are two Plasticity nodes where the same layer is selected on the same boundary, 
the latter will be overridden on the common selections.

See also the discussion in Layered and Nonlayered Membranes.

TABLE 7-3:  LAYER SELECTIONS; PLASTICITY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection 
when the node is added.

When Use all layers is not selected.

Only a subset of the layers selected in 
the parent can be selected.

• All other settings for the Plasticity node are described in the 
documentation for Plasticity in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>Plasticity

Membrane>Layered Linear Elastic Material>Plasticity

Membrane>Nonlinear Elastic Material>Plasticity

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, or Nonlinear 

Elastic Material node selected in the model tree:

Attributes>Plasticity

Set Variables

Use the Set Variables subnode to Plasticity of a Linear Elastic Material, Layered Linear 
Elastic Material, or Nonlinear Elastic Material node to reset plasticity variables 
according to a Setting condition that you define. When the Setting condition is satisfied, 
the plasticity variables are reset to the specified values.

S E T  V A R I A B L E S

Enter the Setting condition. This is a Boolean expression that will determine when the 
plastic variables are reset.

From the Equivalent plastic strain list, select Do not set or User defined. The default User 

defined value is zero.

From the Plastic strain tensor list, select Do not set or User defined. The default User 

defined values are zero for all components of the Plastic strain tensor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>Plasticity>Set Variables

Membrane>Layered Linear Elastic Material>Plasticity>Set Variables

Membrane>Nonlinear Elastic Material>Plasticity>Set Variables

Ribbon
Physics tab with Plasticity node selected in the model tree:

Attributes>Set Variables
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Creep

Use the Creep subnode to define the creep properties of the material model. Creep can 
be added to Linear Elastic Material, Layered Linear Elastic Material, and Nonlinear 
Elastic Material.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.

If the Composite Materials Module is available, creep models can be applied to 
arbitrary layers in a multilayered membrane.

S H E L L  P R O P E R T I E S

This section is present only when the Creep node is used under Layered Linear Elastic 
Material.

Select the layer or layers for which this creep model is to be used.

Add several Creep nodes with different layer selections when the creep model differs 
between layers. If the model is the same, and only the material data differ, you can use 

See also the discussion in Layered and Nonlayered Membranes.

TABLE 7-4:  LAYER SELECTIONS; CREEP

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection 
when the node is added.

When Use all layers is not selected.

Only a subset of the layers selected 
in the parent can be selected.
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a single Creep node where From material is used to define the values. The data for each 
layer is then received from global Layered Material nodes.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>Creep

Membrane>Layered Linear Elastic Material>Creep

Membrane>Nonlinear Elastic Material>Creep

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, or Nonlinear 

Elastic Material node selected in the model tree:

Attributes>Creep

Additional Creep

Use the Additional Creep subnode to define additional contributions to the creep model 
defined by the parent Creep node, such as primary or tertiary creep behavior. A Creep 
node can have any number of Additional Creep subnodes with different settings to 
model advanced creep mechanisms.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.

• All other settings for the Creep node are described in the 
documentation for Creep in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide material parameters with a through-thickness variation 
by explicitly or implicitly using expressions containing the extra 
dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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If the Composite Materials Module is available, creep models can be applied to 
arbitrary layers in a multilayered membrane.

S H E L L  P R O P E R T I E S

This section is present only when the Additional Creep node is used under Layered 
Linear Elastic Material.

Select the layer or layers for which this creep model is to be used.

When the creep model differs between layers, you will need to add several Additional 

Creep nodes with different layer selections. If the model is the same, and only the 
material data values differ, you can use a single Additional Creep node where From 

material is used to define the values. The data for each layer is then received from global 
Layered Material nodes.

If the same layer is selected in two Additional Creep nodes being active on the boundary, 
then there will be two creep strain contributions.

See also the discussion in Layered and Nonlayered Membranes.

TABLE 7-5:  LAYER SELECTIONS; CREEP

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection 
when the node is added.

When Use all layers is not selected.

Only a subset of the layers selected in the 
parent can be selected.

• All other settings for the Additional Creep node are described in the 
documentation for Additional Creep in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide material parameters with a through-thickness variation 
by explicitly or implicitly using expressions containing the extra 
dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>Creep>Additional Creep

Membrane>Layered Linear Elastic Material>Creep>Additional Creep

Membrane>Nonlinear Elastic Material>Creep>Additional Creep

Ribbon
Physics tab with Creep node selected in the model tree:

Attributes>Additional Creep

Viscoplasticity

Use the Viscoplasticity subnode to define the viscoplastic properties of the material 
model. Viscoplasticity can be added to Linear Elastic Material, Layered Linear Elastic 
Material, and Nonlinear Elastic Material.

The Nonlinear Structural Materials Module is required for this feature. For details, see 
https://www.comsol.com/products/specifications/.

If the Composite Materials Module is available, the viscoplastic model can be applied 
to arbitrary layers in a multilayered membrane.

S H E L L  P R O P E R T I E S

This section is present only when the Viscoplasticity node is used under Layered Linear 
Elastic Material.

Select the layer or layers for which this plasticity model is to be used.

When the viscoplasticity model differs between layers, you will need to add several 
Viscoplasticity nodes with different layer selections. If the model is the same, and only 
the material data values differ, you can use a single Viscoplasticity node where From 

See also the discussion in Layered and Nonlayered Membranes.

TABLE 7-6:  LAYER SELECTIONS; VISCOPLASTICITY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection 
when the node is added.

When Use all layers is not selected.

Only a subset of the layers selected in 
the parent can be selected.
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material is used to define the values. The data for each layer is then received from global 
Layered Material nodes.

If the same layer is selected in two Viscoplasticity nodes being active on the same 
boundary, the second definition will override the previous.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>Viscoplasticity

Membrane>Layered Linear Elastic Material>Viscoplasticity

Membrane>Nonlinear Elastic Material>Viscoplasticity

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, or Nonlinear 

Elastic Material node selected in the model tree:

Attributes>Viscoplasticity

Wrinkling

Use the Wrinkling node to define the settings for the Newton-Raphson method that 
solves the wrinkling equations. Wrinkling can be added to a Linear Elastic Material or 
to a Hyperelastic Material.

Select a Termination criterion for local method — Step size, Residual, or Step size or 

residual. Set the Maximum number of local iterations in the Newton-Raphson loop when 
solving the local wrinkling equations. The defaults value is 50 local iterations.

• When Step size is chosen as termination criterion, set the Absolute tolerance and the 
Relative tolerance to check the convergence of the local wrinkling equations based 

• All other settings for the Viscoplasticity node are described in the 
documentation for Viscoplasticity in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide material parameters with a through-thickness variation 
by explicitly or implicitly using expressions containing the extra 
dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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on the step size in the Newton-Raphson loop. The final tolerance is computed based 
on the current solution of the local variable and the entered values.

• When Residual is chosen as termination criterion, set the Residual tolerance to check 
the convergence of the local wrinkling equations based on the residual of each 
equation.

• When Step size or residual is chosen, it is sufficient that one of the conditions is 
fulfilled. Setting either the Absolute tolerance and Relative tolerance or the Residual 

tolerance to zero ignores the corresponding convergence check. An error is returned 
if all tolerances are set to zero.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>Wrinkling

Membrane>Hyperelastic Material>Wrinkling

Ribbon

Physics tab with Linear Elastic Material or Hyperelastic Material node selected in the 
model tree:

Attributes>Wrinkling

Thermal Expansion (for Materials)

Use the Thermal Expansion subnode to add an internal thermal strain caused by changes 
in temperature.

Thermal expansion can be modeled for Linear Elastic Material, Layered Linear Elastic 
Material, Nonlinear Elastic Material, and Hyperelastic Material. For the Layered Linear 

Elastic Material, the thermal expansion can be applied to arbitrary layers in a 
multilayered membrane when the Composite Materials Module is available.

The theory is described under Wrinkling in the Theory Background for 
the Membrane Interface section.

See also the discussion in Layered and Nonlayered Membranes.
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S H E L L  P R O P E R T I E S

This section is present only when the Thermal Expansion node is used under Layered 
Linear Elastic Material.

Select the layer or layers for which this thermal strain contribution is to be added.

If the Input type differs between layers, you will need to add several Thermal Expansion 
nodes with different layer selections. If only the material data values differ, you can use 
a single Thermal Expansion node with From material. The data for each layer is then 
received from global Layered Material nodes.

If the same layer is selected in two Thermal Expansion nodes being active on the same 
boundary, the second definition will override the previous.

TABLE 7-7:  LAYER SELECTIONS; THERMAL EXPANSION

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection 
when the node is added.

When Use all layers is not selected.

Thermal strains are proportional to the temperature, while structural 
strains are computed from the gradient of the displacement field. It is 
good practice to match the discretization order of thermal and structural 
strains.

When adding a Thermal Expansion subnode, and the temperature field is 
computed by another physics interface (often the Heat Transfer in Shells 
interface); use a discretization one order lower for the temperature field 
than what is used for the displacement field.

• All other settings for the Thermal Expansion node are described in the 
documentation for Thermal Expansion (for Materials) in the Solid 
Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide parameters for the expansion with a through-thickness 
variation by explicitly or implicitly using expressions containing the 
extra dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>Thermal Expansion

Membrane>Layered Linear Elastic Material>Thermal Expansion

Membrane>Nonlinear Elastic Material>Thermal Expansion

Membrane>Hyperelastic Material>Thermal Expansion

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, Nonlinear Elastic 

Material, or Hyperelastic Material node selected in the model tree:

Attributes>Thermal Expansion

Hygroscopic Swelling

Use the Hygroscopic Swelling subnode to add an internal thermal strain caused by 
changes in temperature.

Hygroscopic swelling can be added to Linear Elastic Material, Layered Linear Elastic 
Material, Nonlinear Elastic Material, and Hyperelastic Material. For the Layered Linear 

Elastic Material, swelling can be applied to arbitrary layers in a multilayered membrane 
when the Composite Materials Module is available.

S H E L L  P R O P E R T I E S

This section is present only when the Hygroscopic Swelling node is used under Layered 
Linear Elastic Material.

Select the layer or layers for which this swelling strain contribution is to be added.

If the Moisture concentration type differs between layers, you will need to add several 
Hygroscopic Swelling nodes with different layer selections. If only the material data 

See also the discussion in Layered and Nonlayered Membranes.

TABLE 7-8:  LAYER SELECTIONS; HYGROSCOPIC SWELLING

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection 
when the node is added.

When Use all layers is not selected.
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values differ, you can use a single Hygroscopic Swelling node with From material. The 
data for each layer is then received from global Layered Material nodes.

If the same layer is selected in two Hygroscopic Swelling nodes being active on the same 
boundary, the second definition will override the previous.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>Hygroscopic Swelling

Membrane>Layered Linear Elastic Material>Hygroscopic Swelling

Membrane>Nonlinear Elastic Material>Hygroscopic Swelling

Membrane>Hyperelastic Material>Hygroscopic Swelling

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, Nonlinear Elastic 

Material, or Hyperelastic Material node selected in the model tree:

Attributes>Hygroscopic Swelling

Hygroscopic strains are proportional to the concentration, while 
structural strains are computed from the gradient of the displacement 
field. It is good practice to match the discretization order of hygroscopic 
and structural strains.

When adding a Hygroscopic Swelling subnode, and the concentration field 
is computed by another physics interface; use a discretization one order 
lower for the concentration field than what is used for the displacement 
field.

• All other settings for the Hygroscopic Swelling node are described in the 
documentation for Hygroscopic Swelling in the Solid Mechanics 
interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can provide parameters for the expansion with a through-thickness 
variation by explicitly or implicitly using expressions containing the 
extra dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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Initial Stress and Strain

You can add the Initial Stress and Strain subnode to the Linear Elastic Material, in order 
to specify the stress or strain state in the structure before applying any constraint or 
load. The values given are not initial values in the mathematical sense, but rather a 
contribution to the constitutive relation.

Initial stresses and strains can be included with Linear Elastic Material, Layered Linear 
Elastic Material, and Nonlinear Elastic Material. For the Layered Linear Elastic Material, 
the contribution can be applied to arbitrary layers in a multilayered membrane when 
the Composite Materials Module is available

S H E L L  P R O P E R T I E S

This section is present only when the Initial Stress and Strain node is used under 
Layered Linear Elastic Material.

Select the layer or layers for which this stress or strain contribution is to be added.

If the initial stress or strain differ between layers, you will need to add several Initial 

Stress and Strain nodes with different layer selections.

If the same layer is selected in two Initial Stress and Strain nodes being active on the 
same boundary, the contributions will be added.

In many cases Initial Stress and Strain and External Stress are 
interchangeable when prescribing stresses, but you can find some more 
options in the latter.

TABLE 7-9:  LAYER SELECTIONS; INITIAL STRESS AND STRAIN

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection 
when the node is added.

When Use all layers is not selected.

Only a subset of the layers selected in 
the parent can be selected.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe stress or strain values with a through-thickness 
variation by explicitly or implicitly using expressions containing the 
extra dimension coordinate as described in Using the Extra Dimension 
Coordinates.
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The given initial stresses and strains are interpreted in this system.

I N I T I A L  S T R E S S  A N D  S T R A I N

Specify the initial stress as the Initial local in-plane force N0 and the initial strain as the 
Initial local in-plane strain 0 (dimensionless). In addition, you can also provide the 
Initial out-of-plane strain n0.

If you know the stress, rather than the force per unit length, type in the stress 
multiplied by the membrane thickness mbrn.d. In a geometrically nonlinear analysis, 
the stresses should be interpreted as Second Piola-Kirchhoff stresses, and the strains 
should be interpreted as Green-Lagrange strains.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>Initial Stress and Strain

Membrane>Layered Linear Elastic Material>Initial Stress and Strain

Membrane>Nonlinear Elastic Material>Initial Stress and Strain

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, or Nonlinear 

Elastic Material node selected in the model tree:

Attributes>Initial Stress and Strain

For details about how local coordinate systems are used in the Membrane 
interface, see Local Coordinate Systems.

• For details about initial stresses and strains, see Inelastic Strain 
Contributions and Initial Stresses and Strains.

• For details about the different strain measures, see Deformation 
Measures.

• For details about the different stress measures, see Defining Stress.

Prestressed Micromirror: Application Library path MEMS_Module/

Actuators/micromirror
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External Stress

You can add the External Stress subnode in order to specify an additional stress 
contribution which is not part of the constitutive relation. The external stress can be 
added to the total stress tensor, or act only as an extra load contribution.

External stresses can be added to Linear Elastic Material, Layered Linear Elastic 
Material, Nonlinear Elastic Material, and Hyperelastic Material. For the Layered Linear 

Elastic Material, the contribution can be applied to arbitrary layers in a multilayered 
membrane when the Composite Materials Module is available.

S H E L L  P R O P E R T I E S

This section is only present when this node is added under Layered Linear Elastic 

Material node. Select the layers in which initial stress and strain needs to be modeled.

If the external stress input type differs between layers, you will need to add several 
External Stress nodes with different layer selections.

If the same layer is selected in two External Stress nodes being active on the same 
boundary, the contributions will be added.

In many cases External Stress and Initial Stress and Strain are 
interchangeable when prescribing stresses. In Initial Stress and Strain, the 
given stress is however always added to the stress tensor, whereas the 
option to use the stress as only a load contribution exists only in External 

Stress.

TABLE 7-10:  LAYER SELECTIONS; EXTERNAL STRESS

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection 
when the node is added.

When Use all layers is not selected.

Only a subset of the layers selected in 
the parent can be selected.

For a general description of this section, see Layer and Interface 
Selections in the documentation for the Composite Materials Module.
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E X T E R N A L  S T R E S S

Select a Stress input — Stress tensor (Material), Stress tensor (Spatial), or In-plane force.

• When Stress tensor (Material) is selected, you enter the external stress in the form of 
a Second Piola-Kirchhoff stress tensor. The External stress tensor list will contain all 
stress tensors announced by any physics interface, and also the entry User defined. 
When User defined is selected, you can enter the data for the External stress tensor 
Sext as Isotropic, Diagonal, or Symmetric depending on the properties of the tensor. 
The tensor components are interpreted in the selected coordinate system. If a stress 
tensor announced by a physics interface is selected, the coordinate system setting is 
ignored — the orientation is handled internally. Choose a Contribution type — Add 

to stress tensor, Load contribution only, or Residual stress to determine the effect of 
the contribution. Stress tensor components which are not in the plane of the 
membrane will be ignored.

• When Stress tensor (Spatial) is selected, you enter the external stress in the form of 
Cauchy stress tensor. The components are interpreted in the selected coordinate 
system. Depending on the properties of the tensor, you can enter the data for the 
External stress tensor ext as Isotropic, Diagonal, or Symmetric. Choose a Contribution 

type — Add to stress tensor, Load contribution only, or Residual stress to determine 
the effect of the contribution. Stress tensor components which are not in the plane 
of the membrane will be ignored.

• When In-plane force is selected, you enter the external stress in the form of section 
forces. Specify the initial stress as values or expressions for the In-plane force Next, 
which has components in the plane of the membrane, along the directions given by 
the selected local coordinate system. Choose a Contribution type — Add to stress 

tensor, Load contribution only, or Residual stress to determine the effect of the 
contribution.

Since all stress tensor representations coincide in a geometrically linear 
analysis, Stress tensor (Spatial) is needed only in the case of a geometrically 
nonlinear analysis. The stress tensor is entered using a Cauchy stress 
tensor representation, and is internally transformed to a Second-Piola 
stress tensor.

• For theory, see External Stress.

• For details about the different stress measures, see Defining Stress.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>External Stress

Membrane>Layered Linear Elastic Material>External Stress

Membrane>Nonlinear Elastic Material>External Stress

Membrane>Hyperelastic Material>External Stress

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, Nonlinear Elastic 

Material, or Hyperelastic Material node selected in the model tree:

Attributes>External Stress

Inelastic Strain Rate

The Inelastic Strain Rate subnode allows you to provide inelastic strain contributions to 
the material models Linear Elastic Material, Layered Linear Elastic Material, Nonlinear 

Elastic Material, or Hyperelastic Material on a variety of formats as in External Strain. 
Here, however, the inelastic contribution is given as a rate, and the total inelastic 
contribution is computed by integrating this rate in time. For the Layered Linear Elastic 

Material, the inelastic contribution can be applied to arbitrary layers in a multilayered 
membrane when the Composite Materials Module is available.

S H E L L  P R O P E R T I E S

See the documentation for the Inelastic Strain Rate node in the Layered Shell chapter.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>Inelastic Strain Rate

Membrane>Layered Linear Elastic Material>Inelastic Strain Rate

Membrane>Nonlinear Elastic Material>Inelastic Strain Rate

Membrane>Hyperelastic Material>Inelastic Strain Rate

All other settings for the Inelastic Strain Rate node are described in the 
documentation for Inelastic Strain Rate in the Solid Mechanics interface.
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Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, Nonlinear Elastic 

Material, or Hyperelastic Material node selected in the model tree:

Attributes>Inelastic Strain Rate

Safety

Use the Safety subnode to set up variables which can be used to check the risk of failure 
according to various criteria. It can be used in combination with Linear Elastic 
Material, Layered Linear Elastic Material, and Nonlinear Elastic Material. Four 
different variables describing the failure risk are defined, as described in Table 7-11.

You can add any number of Safety nodes to a single material model. The contents of 
this feature do not affect the analysis results as such, so you can add Safety nodes after 
having performed an analysis, and just do an Update Solution in order to access to the 
new variables for result evaluation.

For orthotropic and anisotropic failure criteria, the directions are given by the 
coordinate system selection in the parent node.

S H E L L  P R O P E R T I E S

This section is only present when this node is added under Layered Linear Elastic 

Material node.

TABLE 7-11:  VARIABLES FOR SAFETY FACTOR EVALUATION

VARIABLE DESCRIPTION CRITERION 
FULFILLED

CRITERION 
VIOLATED

Failure index, FI For a linear criterion, this is the ratio 
between the computed value and the 
given limit.

FI<1 FI>1

Damage index, DI A binary value, indicating whether 
failure is predicted or not. DI is based 
on the value of FI.

DI=0 DI=1

Safety factor, SF For a linear criterion, this is 1/FI. SF>1 SF<1

Margin of safety, MoS SF-1 MoS>0 MoS<0
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Select the layer or layers for which the safety factor variables are to be defined.

Each Safety subnode defines its own set of variables, so there is no interaction if you 
add several such nodes with the same selection.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>Variables>Safety

Membrane>Layered Linear Elastic Material>Variables>Safety

Membrane>Nonlinear Elastic Material>Variables>Safety

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, or Nonlinear 

Elastic Material node selected in the model builder tree:

Attributes>Variables>Safety

Damping

Use the Damping subnode to add several types of damping to the material model. 
Damping can be used in Time Dependent, Eigenfrequency, and Frequency Domain 
studies; for other study types the settings in the Damping subnode are ignored.

TABLE 7-12:  LAYER SELECTIONS; SAFETY

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection 
when the node is added.

When Use all layers is not selected.

Only a subset of the layers selected in 
the parent can be selected.

• All other settings for the Safety node are described in the 
documentation for Safety in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe parameters for the allowable values with a 
through-thickness variation by explicitly or implicitly using expressions 
containing the extra dimension coordinate as described in Using the 
Extra Dimension Coordinates.
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S H E L L  P R O P E R T I E S

This section is only present when this node is added under Layered Linear Elastic 

Material node.

Select the layer or layers for which this damping model is to be used.

When the damping model differs between layers, you will need to add several Damping 
nodes with different layer selections. If the model is the same, and only the material 
data values differ, you can for most models use a single Damping node with From 

material. The data for each layer is then received from global Layered Material nodes.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>Linear Elastic Material>Damping

Membrane>Layered Linear Elastic Material>Damping

Membrane>Nonlinear Elastic Material>Damping

Membrane>Hyperelastic Material>Damping

Ribbon
Physics tab with Linear Elastic Material, Layered Linear Elastic Material, Nonlinear Elastic 

Material, or Hyperelastic Material node selected in the model tree:

Attributes>Damping

TABLE 7-13:  LAYER SELECTIONS; DAMPING

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Same as parent selection 
when the node is added.

When Use all layers is not selected.

Only a subset of the layers selected 
in the parent can be selected.

• All other settings for the Damping node are described in the 
documentation for Damping in the Solid Mechanics interface.

• For a general description of layer and interface selections, see The Shell 
Properties and Interface Selection Sections.

• You can describe damping values with a through-thickness variation by 
explicitly or implicitly using expressions containing the extra dimension 
coordinate as described in Using the Extra Dimension Coordinates.
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Symmetry

The Symmetry node adds a boundary condition that represents symmetry in the 
geometry and in the loads. A symmetry condition is free in the plane and fixed in the 
out-of-plane direction. The symmetry plane is formed by the normal to the membrane 
surface and the edge tangent.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying a symmetry edge. From the 
Coordinate system list select from:

• Local edge system (the default).

• Global coordinate system (the standard global coordinate system).

• Any additional user-defined coordinate system.

F A C E  D E F I N I N G  T H E  L O C A L  O R I E N T A T I O N S

This section is only shown if the Local Edge System is chosen in the Coordinate System 

Selection. If symmetry is prescribed for an edge which is shared between boundaries, 
the edge system can be ambiguous. Select the boundary which should define the edge 
system. The default is Use face with lowest number.

N O R M A L  D I R E C T I O N  C O N D I T I O N

You can allow a symmetry plane to move along its normal direction. This can be used 
to model some situations where you want a plane to remain strictly planar but still relax 
the property of it being fixed.

From the list, select No displacement, Free Displacement, Prescribed force, or Prescribed 

displacement.

The value No displacement gives a standard symmetry condition.

This node is available only in 3D. When the model is axisymmetric, use 
the Symmetry Plane node instead.

For details about the definition of local edge systems, see Local Edge 
System.
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Select Free Displacement to allow the symmetry plane to translate in the normal 
direction. The displacement is determined by the criterion that there is no resulting 
reaction force in the normal direction.

Select Prescribed force to prescribe the total reaction force acting on the direction 
normal to the symmetry plane. Enter the Normal force Fn. The force is defined as 
positive when acting along the outward normal of the symmetry plane. Setting the 
prescribed force to zero gives the same effect as using Free Displacement.

Select Prescribed displacement to prescribe the displacement in the direction normal to 
the symmetry plane. Enter the Normal displacement un0. Setting the prescribed 
displacement to zero gives the same effect as using No displacement.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

• Using Free Displacement, Prescribed force, or Prescribed displacement is 
only meaningful if the geometry selection corresponds to a single 
symmetry plane.

• When using Free Displacement or Prescribed force, an extra global 
degree of freedom is added for determining the displacement in the 
normal direction. This degree of freedom will have a name of the type 
<component>.<interface>.<symmetry_tag>.un, for example 
comp1.mbrn.sym1.un.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry Constraints
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>More Constraints>Symmetry

Ribbon
Physics tab with Membrane selected:

Edges>More Constraints>Symmetry

Antisymmetry

The Antisymmetry node adds a boundary condition for an antisymmetry boundary. An 
antisymmetry condition is fixed in the plane and free in the out-of-plane direction. The 
antisymmetry plane is formed by the normal to the boundary and the edge tangent.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying a symmetry edge. From the 
Coordinate system list select from:

• Local edge system (the default).

• Global coordinate system (the standard global coordinate system).

• Any additional user-defined coordinate system.

F A C E  D E F I N I N G  T H E  L O C A L  O R I E N T A T I O N S

This section is only shown if the Local Edge System is chosen in the Coordinate System 

Selection. If symmetry is prescribed for an edge which is shared between boundaries, 

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.

This node is available only in 3D.

For details about the definition of local edge systems, see Local Edge 
System.
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the edge system can be ambiguous. Select the boundary which should define the edge 
system. The default is Use face with lowest number.

A N T I S Y M M E T R Y

If another coordinate system than the Local edge system is used, select an Axis to use as 

symmetry plane normal. Select 1, 2, or 3 for the first, second, or third axis, respectively.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>More Constraints>Antisymmetry

Ribbon
Physics tab with Membrane selected:

Edges>More Constraints>Antisymmetry

Layered Adiabatic Heating

The Layered Adiabatic Heating node adds the equations for adiabatic heating in layered 
membranes caused by abrupt changes in temperature due to fast deformation.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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The increase in temperature is then defined by solving the distributed equation

here,  is the density, Cp is the heat capacity at constant pressure, T is the temperature 
field, ah is the coefficient of adiabatic heating, and Qh corresponds to the heat sources 
due to mechanical dissipative processes.

Adiabatic heating is only available with some COMSOL products (see https://
www.comsol.com/products/specifications/).

If the Composite Materials Module is available, adiabatic heating can be applied to 
arbitrary layers. The material properties, orientations, and layer thicknesses are defined 
using Layered Material node. The offset, and local coordinate system, in which material 
orientations and results are interpreted, is defined by Layered Material Link or Layered 

Material Stack node.

Without the Composite Materials Module, only single layer shells and membranes can 
be modeled. This is still useful, for example for some multiphysics couplings. For single 
layer materials, an ordinary Material node can be used, as long you include a Shell 
property group in which, for example, the thickness is given.

B O U N D A R Y  S E L E C T I O N

It is only possible to select boundaries which are part of the selection of a layered 
material defined in Layered Material Link or Layered Material Stack node.

S H E L L  P R O P E R T I E S

Select the layers in which adiabatic heating is to be modeled.

CpTꞏ ahQh=

• For a general description about layered materials, see Layered Materials 
in the documentation for the Composite Materials Module.

TABLE 7-14:  LAYER SELECTION

SELECTION USE ALL LAYERS SELECTION OF INDIVIDUAL LAYERS

Boundary Default when added. When Use all layers is not selected.

Only a subset of the layers selected 
in the parent can be selected.
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If the same layer is selected in two nodes being active on the same boundary, the 
contributions will be exclusive

I N I T I A L  V A L U E S

Enter the Initial temperature Tini. The default value is 293.15 K.

T H E R M O D Y N A M I C S

The density  is taken from the material model (Linear Elastic Material or Hyperelastic 
Material).

The default Heat capacity at constant pressure Cp uses values From material. For 
User defined, enter an expression or value. The default value for the User defined is 0 J/
(kg K).

Enter the Coefficient of adiabatic heating, ah. The default value is 1 (dimensionless), 
which means that dissipative processes contribute 100% as heat sources.

Select the Dissipative heat source — Include all dissipative sources or User defined.

The Dissipative heat source list makes it possible to include specific heat sources for the 
adiabatic heating. Enter a value or expression for the heat source Qh to include. For 
instance, the dissipated energy density due to creep is available under the variable 
shell.Wc and due to viscoplasticity under the variable shell.Wvp. Here solid 
denotes the name of the physics interface node.

T I M E  S T E P P I N G

The Backward Euler method is not available with the Layered Shell interface neither 
with the Layered Linear Elastic Material nor the Layered Hyperelastic Material in the 
Shell and Membrane interfaces.

Domain ODEs
No settings are needed for the Domain ODEs method. However, this method adds 
degrees-of-freedom that are solved as part of the general solver sequence. The scaling 
of this field can affect the convergence of the overall solution.

For a general description of this section, see Layer and Interface 
Selections in the documentation for the Composite Materials Module.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Membrane>More>Layered Adiabatic Heating

Ribbon
Physics tab with Membrane selected:

Boundary>More>Layered Adiabatic Heating
T H E  M E M B R A N E  I N T E R F A C E  |  1525



1526 |  C H A P T E
 R  7 :  M E M B R A N E



 8
B e a m
This chapter describes the Beam interface, which you find under the Structural 

Mechanics branch ( ) when adding a physics interface.

In this chapter:

• Modeling with Beams

• Theory for the Beam Interface

• The Beam Interface
 1527
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Mode l i n g  w i t h  B eams

The Beam Interface theory is described in this section:

About Beams

A beam is a slender structure that can be fully described by its cross-section properties 
such as area, moments of inertia, and torsional constant. Beams are the choice for 
modeling reinforcements in 3D solids and shell structures, as well as in 2D solids under 
the plane stress assumption. Naturally, they can also model latticeworks, both planar 
and three-dimensional.

Beams can sustain forces and moments in any direction, both distributed and on 
individual nodes. The beam’s ends and interconnections can be free, simply supported, 
or clamped. In fact, the simplified boundary conditions are usually responsible for 
most of the difference that can be found between a beam solution and a full 3D solid 
simulation of the same structure. Point constraints on beams are well-behaved, in 
contrast to the solid case, and it is possible to use discrete point masses and mass 
moments of inertia.

The Beam interface is based on the principle of virtual work. The resulting equation 
can equivalently be viewed as a weak formulation of an underlying PDE. The Beam 
interface uses special shape function classes to define stresses and strains in the beams 
using either Euler-Bernoulli or Timoshenko theory.

In-Plane Beams

Use the Beam interface in 2D to analyze planar lattice works of uniaxial beams.

• About Beams

• In-Plane Beams

• 3D Beam

• Orientation of the Cross Section

• Geometric Variables

• Result Evaluation

• Modeling Stiffeners

• Nonrigid Joints
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In-plane beams are defined on edges in 2D. They can be used separately or as stiffeners 
to 2D solid elements.

V A R I A B L E S  A N D  S P A C E  D I M E N S I O N S

The degrees of freedom (dependent variables) are the global displacements u and v in 
the global x and y directions and the rotation  about the global z-axis.

3D Beam

Use the Beam interface in 3D to model three-dimensional frameworks of uniaxial 
beams.
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3D beams are defined on edges in 3D. They can be used separately or as stiffeners to 
2D solid or shell elements.

V A R I A B L E S  A N D  S P A C E  D I M E N S I O N S

The degrees of freedom (dependent variables) are the global displacements u, v, w in 
the global x, y, z directions and the global rotations x, y, and z about the global x-, 
y-, and z-axes.

Figure 8-1: The degrees of freedom in the Beam interface

Orientation of the Cross Section

For 3D beams, the orientation of the cross section in the plane perpendicular to the 
beam axis is an important property. The bending stiffness of most cross sections is 
highly anisotropic. Only a few cross sections, like circular pipes and square sections, 
have the stiffness which is the same in all directions. Even in this case, the section 
orientation will still usually be important for a correct evaluation and interpretation of 
stresses.
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Any cross section has a local yz coordinate system, which correspond to the two 
principal area moments of inertia, Iyy and Izz. Iyy is defined as the moment of inertia 
for bending around the y-axis,

Whether the local y-axis or z-axis is used as the stiffer direction is not important as 
such. For the built-in cross sections (H, T, C, hat) the convention is that Izz > Iyy, so 
that the local y-axis is the stiffer direction.

There are two methods by which you can supply the cross-section orientation 
information. In either case, it is the orientation of the local y-axis that is described.

R E F E R E N C E  P O I N T

When you use the reference point input method, you give the coordinates of a point 
in space. The local y-axis is perpendicular to the beam axis and located in the plane 
described by the beam element and the given point.

O R I E N T A T I O N  V E C T O R

When using orientation vector input, you provide an approximate direction of the 
y-axis. This given vector is then adjusted in the plane given by the beam and vector, so 
that a y-axis perpendicular to the beam is obtained.

Once this direction has been established, it is possible to further rotate it around the 
beam axis. This is particularly useful for L-shaped sections, where the angle between a 
coordinate system aligned with the flanges and the principal axes often is provided in 
design tables.

Geometric Variables

The beam formulations are based on the assumption that cross-section data are known. 
You can either enter them explicitly or, for a number of standard cross sections, get 

Iyy z2 Ad
A
=

See the documentation of the Section Orientation node for details about 
how the local directions are computed from the given input.
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them computed internally. In Table 8-1 contains a summary of the important 
geometric variables used in the Beam interface.

Result Evaluation

The primary results in the Beam interface are the section forces: axial force, shear 
forces, bending moment, and twisting moment. The shear forces and bending 
moments are oriented along the principal directions as described in the Section 
Orientation node.

The formulation of the beam element is such that the variation of axial force, bending 
moments, and twisting moment is linear along the element, whereas the shear forces 

TABLE 8-1:  GEOMETRIC VARIABLES IN BEAM INTERFACE.

PROPERTY VARIABLE NAME DESCRIPTION

A beam.area Cross-section area

Izz beam.Izz Moment of inertia around local z-axis

ez beam.ez Distance to shear center in local z direction

y beam.muy Max shear stress factor in local y direction

y beam.kappay Shear correction factor along local y-axis

rgy beam.rgy Radius of gyration, local y direction

Iyy beam.Iyy Moment of inertia around local y-axis

ey beam.ey Distance to shear center in local y direction

z beam.muz Max shear stress factor in local z direction

z beam.kappaz Shear correction factor along local z-axis

rgz beam.rgz Radius of gyration, local z direction

J beam.J_beam Torsional constant

Wt beam.Wt Torsional section modulus

re beam.re Equivalent radius

beam.yBeam1 
beam.zBeam1

Stress evaluation point 1, local coordinates

beam.yBeam2 
beam.zBeam2

Stress evaluation point 2, local coordinates

beam.yBeam3 
beam.zBeam3

Stress evaluation point 3, local coordinates

beam.yBeam4 
beam.zBeam4

Stress evaluation point 4, local coordinates
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are constant within each element. This means that the solution is exact with any 
discretization as long as there are no distributed transverse loads.

When looking at line plots or line graphs of section forces, it is important consider the 
type of averaging that is used between elements. In a frame structure, axial forces and 
shear forces are continuous as long as two adjacent beams have the same direction. If 
two beams, for example, meet a right angle, the shear force in one of them will be the 
axial force in the other. In this case, an averaging of section forces at the common point 
clearly would be wrong. Similarly, a twisting moment in one of the beams will be a 
bending moment in the next.

In the Quality section of the plot, you can control the level of averaging by changing 
the Smoothing method.

The default method is Inside material domains. In the Beam interface, two adjacent 
edges are considered as part of the same material domain only if they share both 
material and cross-section data. In many cases this gives an optimal level of smoothing 
since beams that meet at nonzero angles often have different cross sections.

You may however want to use Inside geometry domains instead as smoothing method. 
This means that there will be no smoothing at points where a connection may occur.

Since the stresses are functions of the section forces, the same reasoning applies to 
stress plots.

Evaluation of stresses in beam elements required special consideration since the stress 
field produced by various section forces have different distributions over the cross 
section. All that is known in the beam formulation is the peak value of each stress 
contribution. Details about how stresses are combined are given in the section Stress 
Evaluation. In general, the different contributions to the total stress are combined in 
a conservative manner. If you need to study the stress distribution over the cross 
section in detail, this can be done using the Beam Cross Section interface.

S H E A R  F O R C E  A N D  M O M E N T  D I A G R A M S

A common representation of beam results is to draw diagrams of shear forces and 
bending moments on top of the structure. Such diagrams are generated as predefined 
plots, and you can add them from the Add Predefined Plot window. They are available 
as the group Section Force Diagrams.

For details about the settings in the Quality section, see Entering Quality 
Settings for Plot Settings Windows.
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The section force diagrams do not use the standard variables for shear forces and 
bending moments. These variables, like beam.Tzl and beam.Myl, are constant and 
linear, respectively, within each element, as an effect of the finite element formulation. 
Rather, a set of variables that are augmented with information about distributed loads 
is used. The names of these variables are beam.Tzl_d and beam.Myl_d, for example. 
In essence, a numerical integration of the loads is performed along each element up to 
the position where a value is requested. The augmented variables have a much 
smoother distribution than the standard section forces.

The effect is that you can display good section force diagrams also with a very coarse 
mesh. It should however be noted that the numerical integration of the loads has a 
limited resolution. This is not a problem for smooth distributed loads, but if you would 
add a discontinuous line load with an expression like 
q0*(X>1.52[m])*(X<1.54[m]), the load integration may fail to capture it accurately 
if the element length is an order of magnitude larger than the 0.02 m over which the 
load is distributed. This is seldom a problem in reality, since such a mesh can be 
considered as too coarse, and may not even capture the true resultant of such a load.

The section force diagrams are constructed using Arrow Line plots and you may need 
to tune them for your model. Here are some hints on how to work with the section 
force diagrams:

• The arrows are drawn in the direction of the action. In 3D, this means that 
beam.Tzl_d and beam.Myl_d are drawn in one plane, while beam.Tyl_d and 
beam.Mzl_d are drawn in the orthogonal plane.

• The coloring of the arrows is chosen so that red indicates a positive quantity and 
blue indicates a negative quantity.

• Maximum and minimum value markers are used in the plots. You may want to set a 
background color in the Coloring and Style section of the settings for the Max/Min Line 
node.

• The number of arrows is, as a default, set to 500. This may be to dense or too coarse 
for a certain structure.

Geometric Nonlinearity

For geometrically nonlinear studies with the Beam interface, a corotational 
formulation is used. It takes large displacements and rotations into account, but 
assumes small strains. This approach differs from what is used in the other structural 
mechanics interfaces.
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The essence of the formulation is that each element in the mesh has a linear 
formulation within its own frame, but this frame can translate and rotate. The change 
in angle over a single element is assumed to be small. Thus, the number of elements to 
use in the mesh will depend on the expected curvature. This stands in strong contrast 
to linear beam analysis, where the only a single element is needed for each physical 
beam as long as there are no distributed loads.

A consequence of this formulation is that it is not possible to perform prestressed 
analysis with the Beam interface.

Modeling Stiffeners

One common use of beams is as stiffeners in shell structures. Ship hulls and aircraft 
fuselages, for example, are often built using this technique. An important property 
here is the offset between the shell midsurface and the centerline of the attached beam. 
To a large extent, it is the tension of the beam rather than its bending that provides the 
high stiffness. In order to model this effect, you can use two different approaches:

• Model the beam centerline and shell midsurface at their correct locations. Make sure 
that there are edges in the shell geometry placed as imprints under the stiffeners. 
The two sets of edges are then connected using suitable couplings.

• Draw only the “imprint” on the shell, and select these edges in the Beam interface. 
Connect the degrees of freedom in the two interfaces with a coupling that 
mathematically takes the offset into account.

In both cases, you use the Solid-Beam Connection multiphysics coupling, but with 
different settings. From the point of solution accuracy, the methods are equivalent. 
The latter method is more convenient, but it has the drawback that the beams will be 
visualized as being located in the plane of the shell.

Since the beam elements use special shape functions, a connection to another element 
type like a shell will not be conforming. Consider a beam attached to a shell element 
having the default discretization order (quadratic). There will then be two beam 
elements connected to each edge of a shell element. All displacements and rotations in 
the shell element are assumed to have a parabolic distribution. In the beam, however, 
the axial displacements are linear, while the transverse displacements are represented 

Both types of connections are shown in the example Connecting Shells 
and Beams: Application Library path Structural_Mechanics_Module/

Beams_and_Shells/shell_beam_connection
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by cubic polynomials. An effect of this is that there will be local aberrations in the 
forces transferred between the shell and the beam, even though the solution is correct 
in an average sense. Because of this, you may see local stress fluctuations.

Nonrigid Joints

As a default, all beams connected at a point are assumed to be rigidly coupled to each 
other. Sometimes, this is not the case in a true structure. One common case is the 
addition of hinges in a frame to avoid intrinsic stresses caused by for example thermal 
expansion or tolerance deviations.

To model such joints, you use the Beam End Release node. In that node, you can 
specify that some degrees of freedom are decoupled at a certain point.

U S I N G  E D G E  G R O U P S

If more than two beams are attached to such a point, the decoupling is however not 
unique. Consider a case where four beams meet at right angles, and that there is a 
hinge at the common point as shown in Figure 8-2. To model the hinge, the 
out-of-plane rotation is selected as a decoupled degree of freedom in the Beam End 

Release node.

Figure 8-2: Original configuration.

There are several ways in which a hinge at the common connection point can be 
interpreted. Some examples are shown in Figure 8-3 to Figure 8-5. The default 
behavior is that all beams are disconnected in terms of rotation, as displayed in 
Figure 8-3.

1

2

3

4
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Figure 8-3: All beams are free to rotate relative to each other.

Figure 8-4: Beam 1 is free to rotate with respect to the other three beams.
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4
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Figure 8-5: Beams 1 and 3 rotate as a common part with respect to beams 2 and 4.

If you want to describe non-default types of connections, you need to add one or more 
Edge Group subnodes to the Beam End Release node. If just a single beam is 
disconnected, as in Figure 8-4, then you need a single edge group in which you select 
the other three beams (2, 3, and 4).

To describe the case in Figure 8-5, you add two edge groups. You then select beams 1 
and 3 in the first one, and beams 2 and 4 in the second one.

Generally speaking, a beam assigned to an edge group will not have any degrees of 
freedom released with respect to other beams in the same group. A beam cannot 
belong to more than one edge group.

F I N I T E  R O T A T I O N S

In a geometrically nonlinear study, there may be finite rotations. In that case, the axis 
orientations along which degrees of freedoms are released will be updated based on the 
rotation of the beam itself. For the most common type of connections, this will be the 
intended behavior.

There are, however, some cases when the orientations can become ambiguous. 
Consider, for example, a 2D case where both the X-translation and the out-of-plane 
rotation are decoupled where two beams meet. This situation is shown in Figure 8-6. 
Since the rotation is now different in the two beams, so is the definition of a rotated 
X direction. Depending on the physical arrangement, the translational sliding motion 

1

2

3

4

Stress Analysis of a Portal Crane: Application Library path 
Structural_Mechanics_Module/Beams_and_Shells/portal_crane
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can follow either of the two connected beams. In the section Edge Defining the Local 

Direction in the settings for Beam End Release, you can select the edge that controls the 
rotation of the coordinate system under finite rotations.

Figure 8-6: From left to right: Original configuration, deformed with X interpreted from 
beam 2, and deformed with X interpreted from beam 1.
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Th eo r y  f o r  t h e  Beam I n t e r f a c e

The Beam Interface theory is described in this section:

Shape Functions

The beam element has different shape functions for representing the displacements in 
different directions.

• The axial extension is represented by a linear shape function.

• The twist around the beam axis (3D only) is represented by a linear shape function.

• The bending displacement and corresponding rotation are represented by cubic 
shape functions, usually called Hermitian shape functions. These will supply exact 
solutions to the underlying beam equations as long as distributed loads do not vary 
with position.

The shape functions for bending depend on whether Timoshenko theory is employed 
or not.

In the beam local system, the displacements, u, and rotations, , are interpolated as

• Shape Functions

• Geometric Nonlinearity

• Strain-Displacement/Rotation 
Relation

• Stress-Strain Relation

• Thermal Strain

• Hygroscopic Swelling

• Initial Load and Strain

• Implementation

• Theory for Section Stiffness

• Stress Evaluation

• Common Cross Sections

Beam Cross Section
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where the subscript refers to the two nodes of the element, and N is a matrix of shape 
functions.

The shape functions for the Euler-Bernoulli case are expressed in the local coordinate 
, ranging from 0 to 1, as

where L is the length of the beam element.

For the Timoshenko case, the shape functions are modified, so that they depend on 
the degree of shear flexibility. Define

which represent the ratios between bending and shear stiffness in the two principal 
directions. The shape functions are then modified so that

u
 

 
 

N 

u1

1

u2

2
 
 
 
 
 
 
 
 
 

=

N 

N1 0 0 0 0 0 N2 0 0 0 0 0

0 N3 0 0 0 N5 0 N4 0 0 0 N6

0 0 N3 0 N5– 0 0 0 N4 0 N6– 0

0 0 0 M1 0 0 0 0 0 M2 0 0

0 0 M3 0 M5 0 0 0 M4 0 M6 0

0 M– 3 0 0 0 M5 0 M– 4 0 0 0 M6

=

N1 1 –= N2 =

N3 1 32
– 23  += N4 32 23

–= N5 L  22
– 3

+   = N6 L 2
– 3

+ =

M1 1 –= M2 =
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6
L
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L
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where

The superscript i indicates that the shape functions for bending are no longer the same 
in the two principal directions. The shape functions with i  2 are used for bending in 
the local y direction, and the shape functions with i  3 are used for bending in the 
local z direction.

Geometric Nonlinearity

You can use the beam interface for modeling problems with large displacements and 
rotations, but small strains. A so-called co-rotational formulation is used. The 
displacement of each individual beam element is decomposed into a rigid body 
translation and rotation, and a local response of the rotated element which is linear.

The assumption that the individual element behaves linearly implies that you must use 
a fine mesh if the curvature of the deformed beam is large. The difference in rotation 
between the endpoints of the individual element must not be larger than it would be 
possible to analyze it using linear theory.

Different coordinate systems are needed for describing the beam configurations. The 
initial configuration of the beam can be described by a triad of orthogonal unit vectors 

. The first vector is parallel to the beam, and the second and third vectors point in 
the local y and z directions, respectively. The origin of the local system is taken to be 
the midpoint of the element. This system translates and rotates with the rigid body 
motion of the beam, and the new directions of the axes are called .

N3
i N3 iN3

ˆ+ 
1 i+

---------------------------------  = N4
i N4 iN4

ˆ+ 
1 i+

---------------------------------=

N5
i N5 iN5

ˆ+ 
1 i+

---------------------------------  = N6
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ˆ+ 
1 i+

---------------------------------=

M5
i M5 iM5
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ˆ =

ri
0
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The rotation of the beam is represented by rotation vectors, . The rotation at the 
midpoint is approximated as the arithmetic mean of the rotations at the nodes,

The rigid rotation is then represented by a rotation matrix Rr, corresponding to this 
midpoint rotation. It is given by

where  is the skew symmetric representation of the midpoint rotation vector.

The axis directions of the co-rotated coordinate system can now be computed as

The position of a point on the rigidly rotated axis of the element can be obtained as

where the local coordinate  ranges from 0 to 1, and Xi denotes original node 
coordinates. xM is the midpoint position, computed as the average of the two nodes,

In addition to the rigid body motion described so far, there are the local deformational 
displacements with respect to the local rotated beam axes. The deformational 
displacement can be computed as the difference between the current position and the 
rigid body position
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Here, and in the following, an overline denotes a deformational quantity. The 
deformational rotation at the nodes is approximated by

These local deformations are interpolated by the same shape functions as described in 
the previous section:

The total displacement and rotation vectors can be expressed in term of the rigid 
motion of the local axes, followed by the deformational motion relative to these axes.

A deformational rotation matrix  can be defined as

where  is the skew-symmetric representation of the deformational rotation vector.

The total rotation vector is computed from a total rotation matrix, R. The total 
rotation matrix is first composed from the rigid body rotation and the incremental 
rotation.

The total rotation vector can now be extracted from the total rotation matrix. The 
magnitude of the rotation vector is first computed as

The full rotation vector is then computed as
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To avoid singularity problems when the angle is close to zero, the gamma function is 
actually used in the expressions, since

Strain-Displacement/Rotation Relation

The axial strain depends on the rotation derivative (curvature) and axial displacement 
derivative defined by the shape function and the transversal coordinate in the beam. 
For the 3D case it becomes

where s is the local coordinate along the beam axis, and uaxi is the axial displacement. 
The coordinates from the beam centerline in the local transversal directions are 
denoted zl and yl respectively. In the 2D case, the first term is omitted, and the local 
z direction is always directed out of the plane.

The total strain  consists of thermal (th), hygroscopic (hs), initial (i), and elastic 
strains(el)

Stress-Strain Relation

The stress-strain relation for the axial deformation in the beam is described by

where E is Young’s modulus, and i is the initial stress.

The stress strain relation for the torsional and shear deformation is
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where  is the shear stress,  is the shear strain and G is the shear modulus. Often the 
material data is given in terms of Young’s modulus and Poisson’s ratio , in which case 
G is defined as

Thermal Strain

The temperature is assumed to vary linearly across the beam’s cross section. For the 
3D beam it becomes

where Tm is the temperature at the beam centerline while Tgz and Tgy are the 
temperature gradients in the two local transversal directions. The thermal strain is thus

For the 2D beam, the term depending on zl disappears.

Hygroscopic Swelling

The moisture concentration is assumed to vary linearly across the beam’s cross section. 
For the 3D beam it becomes

where cm is the concentration at the beam centerline while cgz and cgy are the 
concentration gradients in the two local transversal directions. The strain from 
hygroscopic swelling is then

where h is the coefficient of hygroscopic swelling, and cmo,ref is the strain-free 
reference moisture concentration.

For the 2D beam, the term depending on zl disappears.

G E
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---------------------=
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Initial Load and Strain

The initial stress means the stress before any loads, displacements, and initial strains 
have been applied.

The initial stress distribution is given as initial forces and moments in the local section 
directions.

In 2D the x- and y-components of moments disappear.

In a Timoshenko beam, the initial shear forces appear as independent quantities, and 
can also be specified.

The initial strain is the strain before any loads, displacements, and initial stresses have 
been applied. The initial axial strain distribution is given as initial curvature and initial 
axial strain

In 2D the zl dependent term disappears. As initial strain for the torsional degree of 
freedom, the derivative of the twist angle,

is used.
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In a Timoshenko beam it is also possible to set the initial values for the shear strains.

Implementation

The implementation is based on the principle of virtual work, which states that the sum 
of virtual work from internal strains and external loads equals zero:

The beam elements are formulated in terms of the stress resultants (normal force, 
bending moments and twisting moment).

The normal force is defined as

Because the local coordinates are defined with their origin at the centroid of the cross 
section, any surface integral of an odd power of a local coordinate evaluates to zero.

The beam bending moments are defined as
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Myl is present only in 3D, and so is the torsional moment Mxl described below. The 
torsional stiffness of the beam is defined using the torsional constant J given by

In a similar way as for the bending part a torsional moment is then defined as

Using the beam moment and normal force the expression for the virtual work becomes 
very compact:
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For 2D, the first and fourth terms are omitted. For the case of Timoshenko beam, 
there is also a shear stress contribution added,

where the second term is present only in 3D.

A special feature of some unsymmetrical cross sections is that they twist under a 
transversal load that is applied to beam centerline. As an example, this would be the 
case for a U-profile under self-weight, loaded in the stiff direction. It is only a load 
applied at the shear center which causes a pure deflection without twist. This effect can 
be incorporated by supplying the coordinates of the shear center in the local coordinate 
system (ey, ez). A given transversal load (fxl, fyl, fzl), which is defined as acting along 
the centerline, is then augmented by a twisting moment given by

Theory for Section Stiffness

The Section Stiffness node in the Beam interface allows modeling of beams with 
non-homogeneous cross sections by, instead of geometrical and material properties, 
directly entering values for the stiffness matrix S.

For a 3D Euler-Bernoulli beam, the relationship between the section forces and the 
deformation of the beam is given by

 (8-1)
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including initial normal force Ni; moments Mixl, Miyl, and Mizl; normal strain i; and 
curvatures sixl siyl, and sizl. Here, S is a 4-by-4 symmetric matrix. For a 
homogeneous prismatic beam with isotropic material properties, it is defined as

For a 2D Euler-Bernoulli beam, out-of-plane moments are zero, and Equation 8-1 
thus simplifies to

with S now being a 2-by-2 symmetric matrix.

For a 3D Timoshenko beam, the relationship between the section forces and the 
deformation of the beam is given by

 (8-2)

with S being a 6-by-6 symmetric matrix. The equation now also includes the initial 
shear forces Tiyl and Tizl as well as the initial shear strains iyl and izl.

For a 2D Timoshenko beam, out-of-plane forces and moments are zero, and 
Equation 8-2 thus simplifies to
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with S now being a 3-by-3 symmetric matrix.

Using the section forces, the virtual work for the beam becomes

where only the relevant terms are kept, depending on the beam formulation and the 
space dimension.

Stress Evaluation

Since the basic result quantities for beams are the integrated stresses in terms of section 
forces and moment, special considerations are needed for the evaluation of actual 
stresses.

The normal stress from axial force is constant over the section, and computed as

The normal stress from bending is computed in four user-selected points (ylk, zlk) in 
the cross section as

In 2D, only two points, specified by their local y-coordinates are used.

The total normal stress in these points is then

The peak normal stress in the section is defined as
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When using the built in common cross sections, a special method is used for the 
Circular and Pipe sections. Since there are no extreme positions around a circle, a 
maximum bending stress is computed as

where do is the outer diameter. This stress then replaces the stress from the stress 
evaluation points in maximum stress expressions. This ensures that the correct peak 
stress is evaluated irrespective of where it appears along the circumference.

The shear stress from twist in general has a complex distribution over the cross section. 
The maximum shear stress due to torsion is defined as

where Wt is the torsional section modulus. This result is available only in 3D.

The section shear forces are computed in two different ways depending on the beam 
formulation. For Euler-Bernoulli theory, the section forces proportional to the third 
derivative of displacement, or equivalently, the second derivative of the rotation.

where Tzl is available only in 3D. In the case of Timoshenko theory shear force is 
computed directly from the shear strain.

The average shear stresses are computed from the shear forces as

 (8-3)
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Since the shear stresses are not constant over the cross section, the maximum shear 
stresses are also available, using section dependent correction factors:

 (8-4)

As the directions and positions of maximum shear stresses from shear and twist are not 
known in a general case, upper bounds to the shear-stress components are defined as

The maximum von Mises equivalent stress for the cross section is then defined as

Since the maximum values for the different stress components in general occur at 
different positions over the cross section, the equivalent stress thus computed is a 
conservative approximation.

Common Cross Sections

The cross-section data for the common cross sections can be computed internally in 
COMSOL Multiphysics. In this section, the expressions used are summarized.
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Figure 8-7: Geometry of a rectangular cross section. The diagram also displays in 
COMSOL Multiphysics when this option is selected.

TABLE 8-2:  RECTANGULAR SECTION CONSTANTS.
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Figure 8-8: Geometry of a box shaped cross section. The diagram also displays in COMSOL 
Multiphysics when this option is selected.
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TABLE 8-3:  BOX SECTION CONSTANTS.
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Figure 8-9: Geometry of a circular cross section. The diagram also displays in COMSOL 
Multiphysics when this option is selected.

C

p4

re

TABLE 8-4:  CIRCULAR SECTION CONSTANTS.

PROPERTY EXPRESSION REMARKS

A

Izz

ez 0

y

y 0.9

Iyy

ey 0

z y

TABLE 8-3:  BOX SECTION CONSTANTS.

PROPERTY EXPRESSION REMARKS

h– y
2

---------
hz
2
------ 

 

hy hz+

4
------------------

do
2

4
----------

do
4

64
----------

4
3
---

Izz
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P I P E  S E C T I O N

Figure 8-10: Geometry of a pipe cross section. The diagram also displays in COMSOL 
Multiphysics when this option is selected.

z y

J

Wt

p1

p2

p3

p4

re

TABLE 8-4:  CIRCULAR SECTION CONSTANTS.

PROPERTY EXPRESSION REMARKS

do
4

32
----------

do
3

16
----------

d– o
2

--------- 0 
 

0
d– o
2

--------- 
 

do
2
------ 0 
 

0
do
2
------ 

 

do
2
------
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TABLE 8-5:  PIPE SECTION CONSTANTS.

PROPERTY FORMULA REMARKS

A

Izz

ez 0

y

y

Iyy

ey 0

z y

z y

J

Wt

p1

p2

p3

 do
2 di

2
– 

4
---------------------------

 do
4 di

4
– 

64
---------------------------

do
3 di

3
– A

12 do di– Izz
-------------------------------------

1
di
do
------+

Izz

 do
4 di

4
– 

32
---------------------------

 do
4 di

4
– 

16do
---------------------------

d– o
2

--------- 0 
 

0
d– o
2

--------- 
 

do
2
------ 0 
 
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H - P R O F I L E  S E C T I O N

Figure 8-11: Geometry of an H-profile cross section. The diagram also displays in 
COMSOL Multiphysics when this option is selected.

p4

re

TABLE 8-6:  H-PROFILE SECTION CONSTANTS.

PROPERTY EXPRESSION REMARKS

A

Izz

ez 0

y

y

Iyy

TABLE 8-5:  PIPE SECTION CONSTANTS.

PROPERTY FORMULA REMARKS

0
do
2
------ 

 

do
2
------

2hzty tz hy 2ty– +

2hzty
3 tz hy 2ty– 3+

12
-------------------------------------------------------

tyhz hy ty– 2

2
------------------------------------+

4hzty hy ty–  t+ z hy 2ty– 2 A

8tzIzz
--------------------------------------------------------------------------------------

hytz
A

-----------

2tyhz
3 tz

3 hy 2ty– +

12
----------------------------------------------------
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ey 0

z

z

J Thin-walled 
approximation

Wt Thin-walled 
approximation

p1

p2

p3

p4

re

TABLE 8-6:  H-PROFILE SECTION CONSTANTS.

PROPERTY EXPRESSION REMARKS

hz
2 tz

2
– A

8Iyy
--------------------------

5hzty
3A

--------------

2ty
3hz tz

3 hy 2ty– +

3
----------------------------------------------------

J
max ty tz 
------------------------------

h– y
2

---------
h– z
2

--------- 
 

hy
2

------
h– z
2

--------- 
 

hy
2

------
hz
2
------ 

 

h– y
2

---------
hz
2
------ 

 

hy hz+

4
------------------
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Figure 8-12: Geometry of a U-profile cross section. Also displays in COMSOL Multiphysics 
when this option is selected.

TABLE 8-7:  U-PROFILE SECTION CONSTANTS.

PROPERTY EXPRESSION REMARKS

A

Izz

zCG

ez

y

y

Iyy

ey 0

hytz 2 hz tz– ty+

tzhy
3 2ty

3 hz tz– +

12
------------------------------------------------

ty hz tz–  hy ty– 2

2
----------------------------------------------------+

hytz 2hz tz–  2ty hz tz– 2+

2A
----------------------------------------------------------------------------

hz
tz
2
----

ty 2hz tz– 2 hy ty– 2

16Izz
---------------------------------------------------------- zCG–+–

hy
2hz hy 2ty– 2 hz tz– – A

8tzIzz
----------------------------------------------------------------------------

hytz
A

-----------

8tyhz
3 tz

3 hy 2ty–  3tz hy 2ty–  2hz tz– 2+ +

12
--------------------------------------------------------------------------------------------------------------------------

zCG
2A–
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T - P R O F I L E  S E C T I O N

Figure 8-13: Geometry of a T-profile cross section. Also displays in COMSOL Multiphysics 
when this option is selected.

z

z

J Thin-walled 
approximation

Wt Thin-walled 
approximation

p1

p2

p3

p4

re

TABLE 8-7:  U-PROFILE SECTION CONSTANTS.

PROPERTY EXPRESSION REMARKS

zCG
2A

2Iyy
-----------------

5hzty
3A

--------------

2ty
3hz tz

3 hy 2ty– +

3
----------------------------------------------------

J
max ty tz 
------------------------------

h– y
2

--------- zCG– 
 

hy
2

------ zCG– 
 

hy
2

------ hz zCG– 
 

h– y
2

--------- hz zCG– 
 

hy hz+

4
------------------
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TABLE 8-8:  T-PROFILE SECTION CONSTANTS.

PROPERTY EXPRESSION REMARKS

A

yCG

Izz

ez 0

y

y

Iyy

ey

z

z

J Thin-walled 
approximation

Wt Thin-walled 
approximation

p1

p2

hzty hy ty– tz+

tz hy ty– 2 tyhz 2hy ty– +

2A
-------------------------------------------------------------------------

4tz hy ty– 3 hzty
3 3tyhz 2hy ty– 2+ +

12
----------------------------------------------------------------------------------------------------- yCG

2A–

yCG
2A

2Izz
------------------

hytz
A

-----------

tyhz
3 tz

3 hy ty– +

12
---------------------------------------------

hy
ty
2
----– y– CG

hz
2 tz

2
– A

8Iyy
--------------------------

4hzty
3A

--------------

ty
3hz tz

3 hy ty– +

3
---------------------------------------------

J
max ty tz 
----------------------------

yCG–
t– z
2

------- 
 

hy yCG–
h– z
2

--------- 
 
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Figure 8-14: Geometry of a C-profile cross section. Also displays in COMSOL Multiphysics 
when this option is selected.

p3

p3

re

TABLE 8-9:  C-PROFILE SECTION CONSTANTS.

PROPERTY EXPRESSION REMARKS

A q

Izz q

zCG q

TABLE 8-8:  T-PROFILE SECTION CONSTANTS.

PROPERTY EXPRESSION REMARKS

hy yCG–
hz
2
------ 

 

yCG–
tz
2
---- 

 

hy hz+

4
------------------

hytz 2 hz tz– ty 2 wl ty– tl+ +

tzhy
3 2ty

3 hz tz–  2 wl ty– tl
3

+ +

12
------------------------------------------------------------------------------------- +

ty hz tz–  hy ty– 2 tl wl ty–  hy ty wl–– 2+

2
--------------------------------------------------------------------------------------------------------------------------

hytz 2hz tz–  2ty hz tz– 2 2 wl ty– tl
2

+ +

2A
------------------------------------------------------------------------------------------------------------------
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ez See below the 
table

y q

y q

Iyy

ey 0

z

z

J Thin-walled 
approximation

Wt Thin-walled 
approximation

p1

p2

p3

TABLE 8-9:  C-PROFILE SECTION CONSTANTS.

PROPERTY EXPRESSION REMARKS

hy
2tz 4 hz tz– ty hy ty– + +

4 wl ty– tl hy ty wl––   A
8tzIzz
----------------

hy 2ty– tz
A

------------------------------

tz
3hy 8 hz tz– 3ty 8tl

3 wl ty– + +

12
---------------------------------------------------------------------------------------- +

3tzhy 2hz tz– 2

12
------------------------------------------- zCG

2A–

tyzCG
2 wl ty– tl 2zCG tl– + A

2tyIyy
-----------------------------------------------------------------------------------------

5hzty

3A
--------------

tz
3hy 2+ ty

3
hz tz–  2tl

3 wl ty– +

3
--------------------------------------------------------------------------------------

J
max ty tz tl  
-------------------------------------

h– y
2

--------- zCG– 
 

hy
2

------ zCG– 
 

hy
2

------ hz zCG– 
 
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The expression for the shear center offset is valid only for the case when the thickness 
is constant, that is

Then

where

H A T  S E C T I O N

Figure 8-15: Geometry of a Hat cross section. Also displays in COMSOL Multiphysics when 
this option is selected.

p4

re

TABLE 8-9:  C-PROFILE SECTION CONSTANTS.

PROPERTY EXPRESSION REMARKS

h– y
2

--------- hz zCG– 
 

hy hz+

4
------------------

ty tz tl t= = =

ez hz
tz
2
---- N

D
---- zCG–+–=

N 2 hz t–  6 hy t– 2 hz t–  6 hy t– 2 2wl t–  2 2wl t– 3–+ =

D 4 hy t– 3 6 hy t– 2 hz t–  3 hy t– 2 2wl t–   2wl t– 3 + + + +=

12 hy t–  hz t– 2–
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TABLE 8-10:  HAT SECTION CONSTANTS.

PROPERTY EXPRESSION REMARKS

A

Izz

zCG

ez See below the 
table

y

y

Iyy

ey 0

z

z

J Thin-walled 
approximation

hctc 2 hw tc– tw 2 wf tw– tf+ +

tchc
3 2tw

3 hw tc–  2 wf tw– tf
3

+ +

12
----------------------------------------------------------------------------------------- +

tw hw tc–  hc tw– 2 tf wf tw–  hc wf+ 2+

2
-------------------------------------------------------------------------------------------------------------------

hctc 2hw tc–  2tw hw tc– 2 2 wf tw– tf
2

+ +

2A
----------------------------------------------------------------------------------------------------------------------

hc
2tc 4 hw tc– tw hc tw– + +

4 wf tw– tf hc wf+   A
8tcIzz
---------------

hc 2tw– tc
A

-------------------------------

tc
3hc 8 hw tc– 3tw 8tf

3 wf tw– + +

12
------------------------------------------------------------------------------------------- +

3tchc 2hw tc– 2

12
-------------------------------------------- zCG

2A–

twzCG
2 wf tw– tf 2zCG tf– + A

2twIyy
--------------------------------------------------------------------------------------------

5hwtw
3A

-----------------

tc
3hc 2+ tw

3
hw tc–  2tf

3 wf tw– +

3
-----------------------------------------------------------------------------------------
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The expression for the shear center offset is valid only for the case when the thickness 
is constant, that is

Then

where

Wt Thin-walled 
approximation

p1

p2

p3

p4

re

TABLE 8-10:  HAT SECTION CONSTANTS.

PROPERTY EXPRESSION REMARKS

J
max ty tz tf  
-------------------------------------

hc wf tw–+ –

2
-------------------------------------- zCG– 
 

hc wf tw–+ 
2

----------------------------------- zCG– 
 

hy
2

------ hz zCG– 
 

h– y
2

--------- hz zCG– 
 

hy hz+

4
------------------

tc tw tf t= = =

ez hw
tz
2
---- N

D
---- zCG–+–=

N 2 hw t–  6 hc t– 2 hw t–  6 hc t– 2 2wf t–  2 2wf t– 3–+ =

D 4 hc t– 3 6 hc t– 2 hw t–  3 hc t– 2 2wf t–   2wf t– 3 + + + +=

12 hc t–  hw t– 2
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T h e  Beam I n t e r f a c e

The Beam (beam) interface ( ), found under the Structural Mechanics branch ( ) 
when adding a physics interface, is used for modeling slender structural elements, 
having a significant bending stiffness. The formulation allows geometric nonlinearity, 
with large rotations and small strains, and beams can be modeled on 2D boundaries 
and 3D edges.

Two-noded straight elements with a Hermitian formulation are used. Two different 
assumptions about the physics can be used:

• Euler (or Euler-Bernoulli) theory. This formulation is intended for slender beams, 
and do not take shear deformations into account.

• Timoshenko theory. In this formulation that extends the beam theory to ‘thick’ 
beams, shear deformations are taken into account. In a dynamic analysis, inertial 
effects from rotation are also included.

Among the computed results are displacements, rotations, stresses, strains, and section 
forces. In addition to giving the beam properties explicitly in terms of area, moment 
of inertia, and so on, several predefined common cross-section types are available. 
Cross-section data to be used in Cross-Section Data settings can be computed using The 
Beam Cross Section Interface.

The Linear Elastic Material node is the only available material model.

When this physics interface is added, these default nodes are also added to the Model 
Builder: Linear Elastic Material, Cross-Section Data, Free (a condition where points are 
free, with no loads or constraints), and Initial Values. Then, from the Physics toolbar, 
add other nodes that implement, for example, loads and constraints. You can also 
right-click Beam to select physics features from the context menu.

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is beam.
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S T R U C T U R A L  T R A N S I E N T  B E H A V I O R

From the Structural transient behavior list, select Include inertial terms (the default) or 
Quasistatic. Use Quasistatic to treat the dynamic behavior as quasi static (with no mass 
effects; that is, no second-order time derivatives). Selecting this option gives a more 
efficient solution for problems where the variation in time is slow when compared to 
the natural frequencies of the system. The default solver for the time stepping is 
changed from Generalized alpha to BDF when Quasistatic is selected.

This is often the case when the time dependence exists only in some other physics, like 
a transient heat transfer problem causing thermal strains.

S K E T C H

In the Sketch section, a conceptual sketch of the degrees of freedom in the Beam 
interface is shown.

B E A M  F O R M U L A T I O N

Select Euler-Bernoulli or Timoshenko to use the appropriate beam theory. Timoshenko 
theory includes the effects of shear flexibility and rotary inertia, and is appropriate for 
beams with cross-section dimensions which are large relative to the length of the beam.

A U T O M A T E D  M O D E L  S E T U P

This section will only be displayed if a mesh on NASTRAN® format, containing RBE2 
elements, has been imported in an Import node under Mesh. The purpose is to 
automatically create rigid connectors from RBE2 elements in the NASTRAN file.

An RBE2 element represents a rigid connection between a set of mesh nodes. This 
means that it can, and often does, connect elements from different physics interfaces.

In the drop-down menu in the section title, you can select Create Rigid Connectors from 

RBE2. The effect is that one rigid connector will be created for each RBE2 element in 
the imported file. This will happen for all physics interfaces in the Interfaces list. 
Supported interfaces are: Solid Mechanics, Shell, Beam, and Multibody Dynamics. If 
there are RBE2 elements spanning more than one physics interface, they will be 
automatically connected.

The created rigid connectors will have point, edge, and boundary selections as inferred 
from the nodes in the RBE2 element and the mesh connectivity. The ‘independent 
node’ of the RBE2 element is used as center of rotation for the rigid connector.

The Automated Model Setup section is present in the Solid Mechanics, Shell, and Beam 
interfaces. In a model that contains several physics interfaces, you should use the 
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automated model setup from only one of them, and make sure that all the involved 
interfaces are selected in the Interfaces list.

A D V A N C E D  S E T T I N G S

You can chose how to group in the solver nodes the extra ODE variables added by 
some features.

Select the Rigid connectors check box to group in the solver node the variables added 
by the Rigid Connector feature.

The selection made in the Advanced Settings section can be overridden by the settings 
in the Advanced section of the Rigid Connector feature.

D I S C R E T I Z A T I O N

The discretization cannot be changed. The element has different shape functions for 
the axial and transversal degrees of freedom. The axial displacement and twist are 
represented by linear shape functions, while the bending is represented by a cubic 
shape function (“Hermitian element”).

D E P E N D E N T  V A R I A B L E S

The Beam interface has these dependent variables (fields):

• The displacement field u, which has two components (u, v) in 2D and three 
components (u, v, and w) in 3D.

• The rotation angle , which has one component in 2D (th) and three components 
in 3D (thx, thy, and thz).
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The names can be changed but the names of fields and dependent variables must be 
unique within a model.

Boundary, Edge, Point, and Pair Nodes for the Beam Interface

The Beam Interface has these boundary, edge, point, and pair nodes available from the 
Physics ribbon toolbar (Windows users), Physics context menu (Mac or Linux users), 
or right-click to access the context menu (all users).

The dependent variable names remain same in both a geometrically linear 
and a geometrically nonlinear analysis. Under geometric nonlinearity, the 
dependent variables are however not defined though shape functions. The 
equivalent shape function variables are (beam.uLinx, beam.uLiny, 
beam.uLinz) and (beam.thLinx, beam.thLiny, beam.thLinz). In this 
case, you will see the latter names under Dependent Variables in the Solver 

Configurations tree.

If needed, these shape variables can be used to write any extra 
contributions in the Beam interface.

If a physics interface that separates the material and spatial frame (Solid 
Mechanics is one such example) is added to the model, the coordinate 
indices change from (x, y, z) to (X, Y, Z) in the name of these variables.

• Boundary, Edge, Point, and Pair Nodes for the Beam Interface

• Theory for the Beam Interface

• Channel Beam: Application Library path Structural_Mechanics_Module/

Verification_Examples/channel_beam

• Instability of a Space Arc Frame: Application Library path 
Structural_Mechanics_Module/Verification_Examples/

space_frame_instability

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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F E A T U R E S  A V A I L A B L E  F R O M  S U B M E N U S

Many features for the Beam interface are added from submenus in the Physics toolbar 
groups or context menu (when you right-click the node). The submenu name is the 
same in both cases.

The submenus at the Edge level (3D) or Boundary level (2D) are

• Material Models

• Line and Volume Loads

• Mass, Spring, and Damper

• Line Constraints

The submenus at the Point level are

• Connections

• Mass, Spring, and Damper

• More Constraints

• Pairs

L I N K S  T O  F E A T U R E  N O D E  I N F O R M A T I O N

These nodes (and subnodes) are described in this section (listed in alphabetical order):

• Antisymmetry

• Attachment

• Beam End Release

• Cross-Section Data

• Edge Group

• Edge Load

• External Stress

• Hygroscopic Swelling

• Initial Stress and Strain

• Initial Values

• Linear Elastic Material

• No Rotation

• Pinned

• Point Load

• Point Load, Free

• Point Mass

• Point Mass Damping

• Prescribed Displacement/Rotation

• Prescribed Velocity

• Prescribed Acceleration

• Rigid Connector

• Section Orientation

• Section Stiffness

• Symmetry

• Thermal Expansion (for Materials)
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These nodes are described for the Solid Mechanics interface:

Initial Values

The Initial Values node adds an initial values for the displacement field, the velocity 
field, the rotations, and the angular velocity. It serves as initial conditions for a transient 
simulation or as an initial guess for a nonlinear analysis. In addition to the default Initial 

Values node always present in the interface, you can add more Initial Values nodes if 
needed.

I N I T I A L  V A L U E S

Enter values or expressions for the following based on space dimension:

• Displacement field u

• Velocity field 

• Added Mass

• Base Excitation

• Bolt Pretension

• Bolt Selection

• Center of Rotation Nodes

• Damping

• Fixed Constraint

• Free

• Gravity

• Linearly Accelerated Frame1

• Predeformation

• Rigid Material

• Rotating Frame1

• Safety

• Spring Foundation

• Spring-Damper

1 This is selected from the Line and Volume Loads submenu for this interface.

If there are subsequent constraints specified on the same geometrical 
entity, the last one takes precedence. The exception is that the “Pinned” 
and “No Rotation” boundary conditions do not override each other since 
the degrees of freedom that they constrain are mutually exclusive.

In the COMSOL Multiphysics Reference Manual see Table 2-4 for links 
to common sections and Table 2-5 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.

td
du
R  8 :  B E A M



• Rotation field 

• Angular velocity 

Context Menus
Beam>Initial Values

Pipe Mechanics>Initial Values

Ribbon
Physics tab with Beam or Pipe Mechanics selected:

Edges>Initial Values (3D)
Boundaries>Initial Values (2D)

Cross-Section Data

In the Cross-Section Data node you specify the geometric properties of the beam’s cross 
section. In addition, some stress evaluation properties can be defined.

For 3D models, a default Section Orientation subnode is added, in which you specify 
the orientation of the principal axes of the section. You can add any number of Section 

Orientation subnodes if the same section appears with different spatial orientations in 
the structure.

C R O S S - S E C T I O N  D E F I N I T I O N

The default is User defined. Select Common sections to choose from predefined sections.

For User defined go to Basic Section Properties and Stress Evaluation Properties to 
continue defining the cross section.

For Common sections select a Section type — Rectangle, Box, Circular, Pipe, H-profile, 
U-profile, T-profile, C-profile, or Hat. Then go to the relevant section below to continue 

td
d

This is required input data.

• Common Cross Sections

• Beam Cross Section
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defining the section. Each Section type also has a figure showing the section and its 
defining dimensions.

Rectangle
Enter values or expressions for the following.

• Width in local y direction hy

• Width in local z direction hz

Box
Enter values or expressions for the following.

• Width in local y direction hy

• Width in local z direction hz

• Wall thickness in local y direction ty

• Wall thickness in local z direction tz

Circular
Enter a value or expression for the Diameter do.

For equations and a figure see:

• Rectangular Section

• Box Section

• Circular Section

• Pipe Section

• H-Profile Section

• U-Profile Section

• T-Profile Section

• C-Profile Section

• Hat Section

Examples of how to work with cross sections: Application Library path 
Structural_Mechanics_Module/Verification_Examples/channel_beam and 
Structural_Mechanics_Module/Beams_and_Shells/pratt_truss_bridge
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Pipe
Enter values or expressions for the following.

• Outer diameter do

• Inner diameter di

H-profile, U-profile, or T-profile
Enter values or expressions for the following.

• Section height hy

• Flange width hz

• Flange thickness ty

• Web thickness tz

C-profile
Enter values or expressions for the following.

• Flange width hy

• Flange thickness tz

• Web height hz

• Web thickness ty

• Lip width wl

• Lip thickness tl

Hat
Enter values or expressions for the following.

• Crown width hv

• Crown thickness tc
• Web height hw

• Web thickness tw

• Flange width wf

• Flange thickness tf

B A S I C  S E C T I O N  P R O P E R T I E S

This section is only available if User defined is selected as the Cross-Section 

Definition.
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The following table lists the basic section properties (some apply in 3D only). Enter 
values for these properties in the associated fields. The default values correspond to a 
circular cross section with a diameter of 0.1 m:

S T R E S S  E V A L U A T I O N  P R O P E R T I E S

Select the Bending stress evaluation points — From section heights (the default) or From 

specified points.

Stress evaluation using only section heights is meaningful only when the cross section 
is symmetric.

COMMENT DESCRIPTION PARAMETER SI UNIT

2D and 3D Area of cross section A m2

2D and 3D Moment of inertia about local z-axis Izz m4

2D and 3D, 
Timoshenko 
beam

Shear correction factor along local y-axis y 1

3D only Distance to shear center in local z direction ez m

3D only Moment of inertia about local y-axis Iyy m4

3D only Distance to shear center in local y direction ey m

3D only Torsional constant J m4

3D only, 
Timoshenko 
beam

Shear correction factor along local z-axis z 1

For 3D models, the orientation of the cross section is given in Section 
Orientation. If the beam’s cross section is a square or circle (solid or tube), 
the area moments of inertia are the same independent of direction, so the 
beam is totally symmetric and the orientation of the principal axes of the 
cross section is not a problem unless you are interested in looking at 
results defined using the local coordinate system. Such results are bending 
moments, shear forces, local displacements and rotations.

This section is only available if User defined is selected as the Cross-Section 

Definition.
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The max shear stress factor determines the ratio between the peak and the average 
shear stress over the cross section as described by Equation 8-3 and Equation 8-4.

From Section Heights
For From section heights enter values in each field for the following parameters as 
needed for the space dimension:

From Specified Points
For From specified points enter values in the Evaluation points in local system table as 
needed for the space dimension. Then enter the following parameters in the applicable 
fields.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Cross-Section Data

Ribbon
Physics tab with Beam selected:

Edges>Beam>Cross-Section Data

Section Orientation

Use the Section Orientation subnode to define the orientation of a beam cross section 
using a reference point or an orientation vector. There is always one Section Orientation 
subnode for each cross section, and as many Section Orientation subnodes as needed 

COMMENT DESCRIPTION PARAMETER SI UNIT

2D and 3D Section height in local y direction hy m

2D and 3D Max shear stress factor in local y direction y 1

3D only Section height in local z direction hz m

3D only Torsional section modulus Wt m3

3D only Max shear stress factor in local z direction z 1

COMMENT DESCRIPTION PARAMETER SI UNIT

2D and 3D Max shear stress factor in local y direction y 1

3D only Torsional section modulus Wt m3

3D only Max shear stress factor in local z direction z 1
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can be added if the same section appears with different spatial orientations in the 
structure.

O R I E N T A T I O N  M E T H O D

Select the Reference point (the default) or Orientation vector. For Reference point enter 
a Reference point defining local y direction P.

The coordinate system is defined as follows:

The local x direction is in the edge direction. The positive edge direction can be 
checked by vector plotting the local edge tangent direction. The coordinates of the 
reference point define the local xy-plane together with the beam axis. The local 
coordinate system (exl, eyl, ezl) is formed using the following algorithm:

Here, p is the reference point, and m is the midpoint of the beam element. The 
definition of the local coordinate system is illustrated in Figure 8-16.

Figure 8-16: Local beam coordinate system defined by a reference point.

This node is available for 3D components.

vzl exl p m– =

ezl
vzl
vzl
----------=

eyl ezl exl=
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For the creation of a local coordinate system to be possible, the point cannot coincide 
with the edge or the edge extension. If this is attempted, an error message is generated.

Often a number of edges in a plane have the same orientation. It is then easy to select 
all edges and specify a point anywhere in the same plane, not coinciding with an edge 
or an edge extension.

For Orientation vector enter Orientation vector defining local y direction, V, and 
optionally the Rotation of vector around beam axis . The beam orientation is defined 
similarly to what is described above, with the difference that in this case the direction 
vector is explicitly defined whereas when an orientation point is used, the direction 
vector is obtained as the vector from the beam axis to the specified point. The local 
coordinate system (exl, eyl, ezl) is formed using the following algorithm:

The Rotation of vector around beam axis has the effect of rotating the given vector 
around the beam axis (using the right-hand rule) before it is used to define the local 
xy-plane. This simplifies the input for some cross sections, such as L-shaped profiles, 
where the principal axes have a direction which is skewed relative to a more natural 
modeling position. This can be written as

Here the directions denoted with a prime are unrotated beam axis orientations 
obtained by the procedure described above.

The settings for the global coordinates of the point are 
[1000,1000,1000]. This is useful only for symmetric cross sections.



vzl exl V=

ezl
vzl
vzl
----------=

eyl ezl exl=

eyl e'yl cos e'zl sin–=

ezl e'zl cos e'yl sin+=
T H E  B E A M  I N T E R F A C E  |  1583



1584 |  C H A P T E
L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Cross-Section Data>Section Orientation

Beam>Section Stiffness>Section Orientation

Ribbon
Physics tab with Cross-Section Data or Section Stiffness node selected in the model tree:

Attributes>Section Orientation

Linear Elastic Material

The Linear Elastic Material node adds the equations for a linear elastic beam and an 
interface for defining the elastic material properties.

By adding the following subnodes to the Linear Elastic Material node you can 
incorporate many other effects:

• Thermal Expansion (for Materials)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress

• Safety

• Damping

L I N E A R  E L A S T I C  M A T E R I A L

Define the linear elastic material properties.

Specification of Elastic Properties for Isotropic Materials
From the Specify list, select a pair of elastic properties for an isotropic material. Select:

• Young’s modulus and Poisson’s ratio to specify Young’s modulus (elastic modulus) E 
and Poisson’s ratio . Poisson’s ratio is used for computing the torsional stiffness, 
and is thus important only for 3D beams.

• Young’s modulus and shear modulus to specify Young’s modulus (elastic modulus) E 
and the shear modulus G. The shear modulus is used for computing the torsional 
stiffness, and is thus important only for 3D beams.

• Bulk modulus and shear modulus to specify the bulk modulus K and the shear 
modulus G.
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• Lamé parameters to specify the Lamé parameters  and .

• Pressure-wave and shear-wave speeds to specify the pressure-wave speed 
(longitudinal wave speed) cp and the shear-wave speed (transverse wave speed) cs.

For each pair of properties, select from the applicable list to use the value From material 
or enter a User defined value or expression.

Each of these pairs define the elastic properties, and it is possible to convert from one 
set of properties to another.

Density
Define the Density  of the material. Select From material to take the value from the 
material or User defined to enter a value for the density.

G E O M E T R I C  N O N L I N E A R I T Y

If a study step is geometrically nonlinear, the default behavior is to use a large rotation 
formulation for all edges. Select the Geometrically linear formulation check box to 
always use a small rotation formulation for the edges that have this material assigned, 
irrespective of the setting in the study step.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Material Models>Linear Elastic Material

This is the wave speed for a solid continuum. In a truss or beam element, 
the actual speed with which a longitudinal wave travels is lower than the 
value given. When using this type of input the density must also be given.

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).

Thermally Loaded Beam: Application Library path 
Structural_Mechanics_Module/Verification_Examples/thermally_loaded_beam
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Ribbon
Physics tab with Beam selected:

Edges>Material Models>Linear Elastic Material (3D)
Boundaries>Material Models>Linear Elastic Material (2D)

Thermal Expansion (for Materials)

Use the Thermal Expansion subnode to add an internal thermal strain caused by changes 
in temperature. The thermal strain depends on the coefficient of thermal expansion 
(CTE) , the temperature T, and the strain-free reference temperature Tref as

It is possible to model bending due to a temperature gradient in the transverse 
directions of the beam. The temperature is then assumed to vary linearly through the 
thickness.

M O D E L  I N P U T S

The Volume reference temperature Tref is the temperature at which there are no thermal 
strains. As a default, the value is obtained from a Common model input. You can also 
select User defined to enter a value or expression for the temperature locally.

From the Temperature T list, select an existing temperature variable from a heat transfer 
interface. For User defined enter a value or expression for the temperature (the default 
is 293.15 K). This is the centerline temperature of the beam, controlling the axial part 
of the thermal expansion.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain.

th  T Tref– =

See also

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.

• Temperature-Dependent Material Data
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From the Coefficient of thermal expansion, , list, select From material to use the 
coefficient of thermal expansion from the material, or User defined to enter a value or 
expression for .

T H E R M A L  B E N D I N G

Enter the Temperature gradient in local y direction Tgy (in 2D and 3D) and in the 
Temperature gradient in local z direction Tgz (in 3D), which affects the thermal 
bending. If beam cross-section dimensions have been defined at Bending stress 

evaluation points — From section heights, these could be used in an expression 
containing the temperature difference.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Linear Elastic Material>Thermal Expansion

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:

Attributes>Thermal Expansion

Hygroscopic Swelling

Hygroscopic swelling is an internal strain caused by changes in moisture content. This 
strain can be written as

where h is the coefficient of hygroscopic swelling, cmo is the moisture concentration, 
and cmo,ref is the strain-free reference concentration. It is possible to model bending 
due to a concentration gradient in the transverse directions of the beam. The 
concentration is then assumed to vary linearly through the thickness.

M O D E L  I N P U T S

From the Concentration c list, select an existing concentration variable from another 
physics interface, if any concentration variables exist. For User defined enter a value or 
expression for the concentration. This is the centerline concentration of the beam, 
controlling the axial part of the hygroscopic swelling.

hs h cmo cmo,ref– =
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The unit for the input depends on the setting of Concentration type in the Hygroscopic 

Swelling Properties section. Only concentration variables having the chosen physical 
dimension are available in the Concentration list.

H Y G R O S C O P I C  S W E L L I N G  P R O P E R T I E S

In the Concentration type list, select Molar concentration (the default) or Mass 

concentration, depending on the units used for the concentration.

Enter a Strain reference concentration cref. This is the concentration at which there are 
no strains due to hygroscopic swelling.

If Molar concentration is selected as Concentration type, also enter the Molar mass of the 
fluid, Mm. The default value is 0.018 kg/mol, which is the molar mass of water.

The default Coefficient of hygroscopic swelling h uses values From material. For 
User defined select Isotropic (the default), Diagonal, or Symmetric to enter one or more 
components for a general coefficient of hygroscopic swelling tensor h. The default 
value for the User defined case is 1.5e-4 m3/kg.

H Y G R O S C O P I C  B E N D I N G

Enter the Concentration gradient in local y direction cgy (in 2D and 3D) and in the 
Concentration gradient in local z direction cgz (in 3D), which affects the hygroscopic 
bending. If beam cross-section dimensions have been defined at Bending stress 

evaluation points — From section heights, these could be used in an expression 
containing the concentration difference.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Linear Elastic Material>Hygroscopic Swelling

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:

Attributes>Hygroscopic Swelling

Initial Stress and Strain

You can add the Initial Stress and Strain to a Linear Elastic Material, Section Stiffness, or 
Fluid and Pipe Properties node, in order to specify the stress or strain state in the 
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structure before applying any constraint or load. The values given are not initial values 
in the mathematical sense, but rather a contribution to the constitutive relation.

I N I T I A L  S T R E S S

Specify the initial stress as the:

• Initial axial force Ni.

• Initial bending moment Miz and for 3D models, Miy.

• For 3D models: Initial torsional moment Mix.

• For Timoshenko beam: Initial shear force Tiy and for 3D models, Tiz.

I N I T I A L  S T R A I N

Specify the initial strain as the:

• Initial axial strain eni.

• Initial curvature siz and for 3D models, and siy.

• For 3D models: Initial twist six.

• For Timoshenko beam: Initial shear strain siy and for 3D models, siz.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Linear Elastic Material>Initial Stress and Strain

Beam>Section Stiffness>Initial Stress and Strain

Pipe Mechanics>Fluid and Pipe Properties>Initial Stress and Strain

Ribbon
Physics tab with Linear Elastic Material, Section Stiffness, or Fluid and Pipe Properties 
node selected in the model tree:

Attributes>Initial Stress and Strain

In many cases Initial Stress and Strain and External Stress are 
interchangeable when prescribing stresses, but you can find some more 
options in the latter.

For details about initial stresses and strains, see Inelastic Strain 
Contributions and Initial Stresses and Strains.
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External Stress

You can add the External Stress subnode to a Linear Elastic Material, Section Stiffness, or 
Fluid and Pipe Properties node, in order to specify an additional stress contribution 
which is not part of the constitutive relation. The external stress can be added to the 
total stress tensor, or act only as an extra load contribution.

E X T E R N A L  S T R E S S

Specify the external stress as section forces:

• External axial force Next.

• External bending moment Mz,ext and for 3D models, My,ext.

• For 3D models: External torsional moment Mx,ext.

• For Timoshenko beam: External shear force Ty,ext and for 3D models, Tz,ext.

For each quantity, you can select User defined, in which case you enter values or 
expressions explicitly. The lists will also contain any section forces announced from a 
physics interface.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Linear Elastic Material>External Stress

Beam>Section Stiffness>External Stress

Pipe Mechanics>Fluid and Pipe Properties>External Stress

Ribbon
Physics tab with Linear Elastic Material, Section Stiffness, or Fluid and Pipe Properties 
node selected in the model tree:

In many cases External Stress and Initial Stress and Strain are 
interchangeable when prescribing stresses. In Initial Stress and Strain, the 
given stress is however always added to the stress tensor.

Selecting section forces announced by the same physics interface as where 
the External Stress node is added, will result in an error (‘Circular 
variable dependency detected’). This operation would imply that 
the computed force depends on itself.
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Attributes>External Stress

Section Stiffness

The Section Stiffness material model provides a way of directly entering the stiffness of 
a beam cross-section without direct knowledge of the geometry or materials used. It 
provides a method for entering data for complex geometries and cross-sections made 
of multiple materials. This is done by specifying the equivalent stiffness of the 
cross-section, as well as several other cross-sectional properties such as mass and mass 
moments of inertia.

Since only the stiffness is known, but not the cross-section geometry, it is not possible 
to deduce any sectional stresses. You can, however, provide an expression for stress 
computation based on the computed section forces.

For 3D models, a default Section Orientation subnode is added, in which you specify 
the orientation of the principal axes of the section. You can add any number of Section 

Orientation subnodes if the same section appears with different spatial orientations in 
the structure.

By adding the following subnodes to the Section Stiffness node you can incorporate 
other effects:

• Initial Stress and Strain

• External Stress

• Damping

S E C T I O N  P R O P E R T I E S

Specify the components of the Stiffness matrix, S. The matrix is always assumed to be 
symmetric, but the number of components required vary depending on the beam 
formulation and the space dimension:

• For a 3D Euler-Bernoulli beam, enter the 4-by-4 matrix. The columns, in order, 
correspond to the axial force N, torsional moment Mxl, and bending moments Myl 
and Mzl. The rows, in order, correspond to the axial strain n, axial twist xl, and 
bending curvatures yl and zl.

• For a 2D Euler-Bernoulli beam, enter the 2-by-2 matrix. The columns, in order, 
correspond to the axial force N and bending moments Mzl. The rows, in order, 
correspond to the axial strain n, and curvature zl.
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• For a 3D Timoshenko beam, enter the 6-by-6 matrix. The columns, in order, 
correspond to the axial force N, shear forces Tyl and Tzl, torsional moment Mxl, and 
bending moments Myl and Mzl. The rows, in order, correspond to the axial strain 
n, shear strains yl and zl, axial twist xl, and bending curvatures yl and zl.

• For a 2D Timoshenko beam, enter the 3-by-3 matrix. The columns, in order, 
correspond to the axial force N, shear force Tyl, and bending moment Mzl. The 
rows, in order, correspond to the axial strain n, shear strain yl, and bending 
curvature zl.

In 3D, enter also the Distance to shear in local z direction, ez, and the Distance to shear 

center in local y direction, ey. These two inputs can be used to specify a distance 
between the center of mass and the shear center of the cross-section. If the inputs are 
non-zero, an applied edge load will also create a twisting moment on the cross-section.

Specify the Mass per unit length, mL, and the Mass moment of inertia per unit length, 
Im, of the beam in order to define the inertial forces. In 2D, only the Mass moment of 

inertia per unit length, zz-component, Im,zz, is needed.

In addition, specify the First moment of mass per unit length, local y-component, m1y, 
and the First moment of mass per unit length, local z-component, m1z, if the modeled 
point does not coincide with the center of mass; otherwise keep these inputs equal to 
zero.

G E O M E T R I C  N O N L I N E A R I T Y

If a study step is geometrically nonlinear, the default behavior is to use a large rotation 
formulation for all edges. Select the Geometrically linear formulation check box to 
always use a small rotation formulation for the edges that have this material assigned, 
irrespective of the setting in the study step.

S T R E S S  E V A L U A T I O N  P R O P E R T I E S

If you want a certain stress value to be computed, you can enter a linear relation 
between section forces and stress here.

Enter the Evaluation factors in local system. In 3D, there are four evaluation points 
available in the cross-section. The second column in the table corresponds to the 
coefficient for the axial force N, the third to the bending moment around the local 

The inertia inputs are needed only for dynamic analysis. They are also used 
when computing mass forces for gravitational or rotating frame loads, and 
when computing mass properties (Computing Mass Properties).
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y-axis Myl, and the fourth to the bending moment around the local z-axis Mzl. In 2D, 
there are two evaluation points available in the cross-section. Only the coefficients for 
the normal force and the bending moment around the local z-axis Mzl are required.

In addition, in 3D enter a Twisting moment factor, ST, a Shear force factor, local y 

direction, SSy, and a Shear force factor, local z direction, SSz. In 2D, only the Shear force 

factor, local y direction is needed.

By default, the table and the additional stress evaluation factors are populated with 
coefficients that correspond to a fictitious rectangular cross-section made of a single 
homogeneous material. The evaluation points then correspond to the four corners of 
the cross-section.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Material Models>Section Stiffness

Ribbon
Physics tab with Beam selected:

Edges>Material Models>Section Stiffness (3D)
Boundaries>Material Models>Section Stiffness (2D)

Prescribed Displacement/Rotation

The Prescribed Displacement/Rotation node adds an edge (3D), boundary (2D), or 
point (2D and 3D) condition where the displacements and rotations are prescribed in 
one or more directions. It is also possible set maximum and minimum limits for the 
displacements, so that for example a one-sided support can be modeled.

• If a prescribed displacement is not activated in any direction, this is the 
same as a Free constraint.

• If zero displacements and rotations are prescribed, this is the same as a 
Fixed Constraint.

• If only zero displacements are prescribed, this is the same as a Pinned 
constraint.

• If only zero rotations are prescribed, this is the same as a No rotation 
constraint.
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the prescribed displacement/
rotation. See the section Coordinate System Selection for Edge Load.

P R E S C R I B E D  D I S P L A C E M E N T

For the displacement in each direction, select a setting from the list — Free, Prescribed, 
or Limited. Select:

• Free (the default) to leave the displacement component unconstrained

• Prescribed to constrain the displacement component to a given value. Enter a scalar 
value for the component of the prescribed displacement u0.

• Limited to set a maximum and a minimum limit for the displacement component. 
Enter a scalar value for the component of the maximum displacement u0,max and 
the minimum displacement u0,min. By default, they are set to Inf and -Inf, which 
corresponds to no active constraint.

If any displacement component is set to Limited, an additional section Limited 

displacement is visible. Select the Method used to implement the weak inequality 
constraint — Penalty or Augmented Lagrangian. For both methods, enter a Penalty 

factor kp.

By default, the Penalty method is suggested, which in principle enforces the maximum 
and minimum limits for the displacement by adding nonlinear springs with a stiffness 
equal to kp when the limits are exceeded. This method is usually robust, but the 
accuracy is directly dependent on the chosen penalty factor.

The Augmented Lagrangian method adds extra degrees of freedom to improve the 
accuracy of the constraint. Here, the penalty factor is a numerical parameter, and has 
less impact on the accuracy of the constraint compared to when using the penalty 
method. The implementation of the augmented Lagrangian method puts no 
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restrictions on the solver sequence, but for good convergence, proper scaling of the 
extra degrees of freedom can be important.

P R E S C R I B E D  R O T A T I O N

The default value for the Penalty factor kp depends on what type of entity 
the Prescribed Displacement/Rotation node is added to.

• For points, the default expression is 
100*beam.Eequ*beam.area*beam.re^2/beam.<tag>.charLen^3

• For edges, the default expression is 
100*beam.Eequ*beam.area*beam.re^2/beam.<tag>.charLen^4

In these expressions, beam is the tag of the Beam interface and <tag> is 
the tag of the Prescribed Displacement/Rotation node. The expressions are 
given as an estimation to the bending stiffness of the beam, where 
beam.Eequ is the equivalent Young’s modulus, beam.re is the equivalent 
radius of gyration, and beam.area is the cross-section area. The variable 
beam.<tag>.charLen is by default equal to the length of the mesh 
element. To improve the estimate of the penalty factor, replace 
beam.<tag>.charLen with the free length of the beam. The penalty 
factor can also be tuned by changing the multiplier at the beginning of 
each expression.

For details about maximum and minimum limits for the displacements, 
see Limited Displacement.

For 2D models, to define a prescribed rotation select the Prescribed in out 

of plane direction check box and enter a value or expression for 0z.
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1596 |  C H A P T E
C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

For 3D models, select a prescribed rotation from the list — Free or 
Rotation. Select:

• Free (the default) to leave the rotations unconstrained.

• Rotation to activate a prescribed rotation. Enter values or expressions 
for the prescribed rotation vector . When the study is geometrically 
linear, you directly prescribe the individual components of the rotation 
vector. Under For geometric linearity, select one or several of the Free 
rotation around x direction, Free rotation around y direction, and Free 
rotation around z direction check boxes to remove the constraint for the 
corresponding rotation component. If unchecked, the rotations are 
constrained to either the input value or to the default zero rotation. 
The status of the check boxes has no effect when geometric 
nonlinearity is activated under the study settings. This is because the 
constraints put on different rotation components are not independent 
of each other in the case of finite rotations. Here,  should be 
interpreted as a rotation vector in the given coordinate system. The 
norm of the vector is the angle of rotation, and the orientation of the 
axis of rotation is given by the vector components.

In a geometrically nonlinear analysis in 3D, you should prescribe all three 
components of the rotation vector. Prescribing only one or two 
components may not give unique results, since finite rotations are not 
commutative.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line Constraints>Prescribed Displacement

Beam>Prescribed Displacement (Point)
Pipe Mechanics>Line Constraints>Prescribed Displacement

Pipe Mechanics>Prescribed Displacement (Point)

Ribbon
Physics tab with Beam or Pipe Mechanics selected:

Edges>Line Constraints>Prescribed Displacement (3D)
Boundaries>Line Constraints>Prescribed Displacement (2D)
Points>Beam>Prescribed Displacement

Prescribed Velocity

The Prescribed Velocity node adds an edge (3D), boundary (2D), or point (2D and 
3D) that prescribes the translational or rotational velocity in one or more directions. 
The prescribed velocity condition is applicable for Time Dependent and Frequency 
Domain studies. With this condition it is possible to prescribe a velocity in one 
direction, leaving the beam free in the other directions.

The Prescribed Velocity node is a constraint, and overrides any other constraint on the 
same selection.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements in a 
frequency domain analysis of perturbation type.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.

• You can assign the value of the prescribed displacement to a load 
group. See Load Cases in the Structural Mechanics Modeling chapter.

For details about prescribed velocities and accelerations, see Prescribed 
Displacements, Velocities, and Accelerations.
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the prescribed translational/
rotational velocity. See the section Coordinate System Selection for Edge Load. 
Depending on the selected coordinate system, the velocity components change 
accordingly.

P R E S C R I B E D  V E L O C I T Y

Select one or all of the Prescribed in x direction, Prescribed in y direction, and for 3D 
models, Prescribed in z direction check boxes. Then enter a value or expression for vx, 
vy, and for 3D models, vz.

P R E S C R I B E D  A N G U L A R  V E L O C I T Y

Location in User Interface

Context Menus
Beam>Line Constraints>Prescribed Velocity

Beam>More Constraints>Prescribed Velocity (Point)

Coordinate systems with directions that change with time should not be 
used.

For 2D models, to define a prescribed angular velocity select the 
Prescribed in out of plane direction check box and enter a value or 
expression for 0zt.

For 3D models, to define a prescribed angular velocity for each space 
direction (x, y, and z), select one or all of the Prescribed around x direction, 
Prescribed around y direction, and Prescribed around z direction check 
boxes and enter a value or expression for in each 0xt, 0yt, or 0z
t field.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed velocity in a 
frequency domain analysis of perturbation type.

• Prescribed Velocity cannot be used as a weak constraint.
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Pipe Mechanics>Line Constraints>Prescribed Velocity

Pipe Mechanics>More Constraints>Prescribed Velocity (Point)

Ribbon
Physics tab with Beam or Pipe Mechanics selected:

Edges>Line Constraints>Prescribed Velocity (3D)
Boundaries>Line Constraints>Prescribed Velocity (2D)
Points>More Constraints>Prescribed Velocity

Prescribed Acceleration

The Prescribed Acceleration node adds a boundary or domain condition where the 
acceleration is prescribed in one or more directions. The prescribed acceleration 
condition is applicable for Time Dependent and Frequency Domain studies. With this 
boundary condition it is possible to prescribe an acceleration in one direction, leaving 
the beam free in the other directions.

The Prescribed Acceleration node is a constraint, and overrides any other constraint on 
the same selection.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the prescribed translational/
rotational acceleration. See the section Coordinate System Selection for Edge Load. 
Depending on the selected coordinate system, the acceleration components change 
accordingly.

P R E S C R I B E D  A C C E L E R A T I O N

Select one or all of the Prescribed in x direction, Prescribed in y direction, and for 3D 
models, Prescribed in z direction check boxes. Then enter a value or expression for ax, 
ay, and for 3D models, az.

For details about prescribed velocities and accelerations, see Prescribed 
Displacements, Velocities, and Accelerations.

Coordinate systems with directions that change with time should not be 
used.
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P R E S C R I B E D  A N G U L A R  A C C E L E R A T I O N

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line Constraints>Prescribed Acceleration

Beam>More Constraints>Prescribed Acceleration (Point)

Ribbon
Physics tab with Beam selected:

Edges>Line Constraints>Prescribed Acceleration

Points>More Constraints>Prescribed Acceleration

Context Menus
Beam>Line Constraints>Prescribed Acceleration

Beam>More Constraints>Prescribed Acceleration (Point)
Pipe Mechanics>Line Constraints>Prescribed Acceleration

Pipe Mechanics>More Constraints>Prescribed Acceleration (Point)

Ribbon
Physics tab with Beam or Pipe Mechanics selected:

Edges>Line Constraints>Prescribed Acceleration (3D)

For 2D models, to define a prescribed angular acceleration select the 
Prescribed in out of plane direction check box and enter a value or 
expression for 20zt2.

For 3D models, to define a prescribed angular acceleration for each space 
direction (x, y, and z), select one or all of the Prescribed around x direction, 
Prescribed around y direction, and Prescribed around z direction check 
boxes and enter a value or expression for in each 20xt2, 20yt2, or 
20zt2 field.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed acceleration in a 
frequency domain analysis of perturbation type.

• Prescribed Velocity cannot be used as a weak constraint.
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Boundaries>Line Constraints>Prescribed Acceleration (2D)
Points>More Constraints>Prescribed Acceleration

Pinned

The Pinned node adds an edge (3D), boundary (2D), or point (2D and 3D) condition 
that makes all nodes on the selected objects to have zero displacements; that is, all 
translations are fixed while still allowing rotations.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line Constraints>Pinned (Line)
Beam>Pinned (Point)
Pipe Mechanics>Line Constraints>Pinned (Line)
Pipe Mechanics>Pinned (Point)

Ribbon
Physics tab with Beam or Pipe Mechanics selected:

Edges>Line Constraints>Pinned (3D)
Boundaries>Line Constraints>Pinned (2D)
Points>Beam>Pinned

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
T H E  B E A M  I N T E R F A C E  |  1601



1602 |  C H A P T E
Thermal Expansion (for Constraints)

Add the Thermal Expansion subnode to a constraint (Fixed or Prescribed Displacement) 
to prescribe a deformation of the constraint caused by changes in temperature of the 
surroundings. This makes it possible to reduce stresses caused by the boundary 
conditions.

The thermal strain depends on the coefficient of thermal expansion , the temperature 
T, and the strain-free reference temperature Tref as

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain. This is a description of 
the thermal expansion of surroundings idealized by the constraints.

Select Inherit from edge to take the thermal expansion data from the edge being 
constrained. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual surrounding material has the same thermal expansion as the edge itself.

When Inherit from edge is not selected, enter:

• A value or expression for Temperature T, specifying the temperature distribution of 
the surrounding material. Any spatial variation must be an explicit function of the 
material frame coordinates. It is not possible to use a computed temperature 
distribution.

• The Coefficient of thermal expansion . As a default, values From material are used. 
This requires that a material has been assigned to the points where the constraint is 
active.
For User defined enter the coefficient of thermal expansion .

• A value or expression for the Volume reference temperature Tref which is the 
temperature at which there are no thermal displacements at the constraints.

Enter the coordinates of the Reference point, the point where the displacement and 
rotation are zero. The choice of reference point only affects the rigid body motion. If 

th  T Tref– =
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there are several different constraints with a Thermal Expansion subnode, the same 
reference point should usually be selected in all of them.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Fixed>Thermal Expansion

Beam>Prescribed Displacement>Thermal Expansion

Pipe Mechanics>Fixed>Thermal Expansion

Pipe Mechanics>Prescribed Displacement>Thermal Expansion

Ribbon
Physics tab with Fixed or Prescribed Displacement node selected in the model tree:

Attributes>Thermal Expansion

No Rotation

The No Rotation node adds an edge (3D), boundary (2D), or point (2D and 3D) 
condition that prevents all rotation at the selected objects while still allowing 
translational motion.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line Constraints>No Rotation (Line)
Beam>More Constraints>No Rotation (Point)
Pipe Mechanics>Line Constraints>No Rotation (Line)
Pipe Mechanics>More Constraints>No Rotation (Point)

Ribbon
Physics tab with Beam or Pipe Mechanics selected:

Edges>Line Constraints>No Rotation (3D)
Boundaries>Line Constraints>No Rotation (2D)
Points>More Constraints>No Rotation

Symmetry

The Symmetry node adds an edge (3D), boundary (2D), or point (2D and 3D) 
condition that defines asymmetry edge, boundary, or point.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the orientation of the symmetry 
plane. See the section Coordinate System Selection for Edge Load.

S Y M M E T R Y

Select an Axis to use as symmetry plane normal to specify the direction of the normal to 
the symmetry plane in the selected coordinate system.

• For 2D models, select 1 or 2 for the first or second axis, respectively.

• For 3D models, select 1, 2, or 3 for the first, second, or third axis, respectively.

N O R M A L  D I R E C T I O N  C O N D I T I O N

You can allow a symmetry plane to move along its normal direction. This can be used 
to model some situations where you want a plane to remain strictly planar but still relax 
the property of it being fixed.

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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From the list, select No displacement, Free Displacement, Prescribed force, or Prescribed 

displacement.

The value No displacement gives a standard symmetry condition.

Select Free Displacement to allow the symmetry plane to translate in the normal 
direction. The displacement is determined by the criterion that there is no resulting 
reaction force in the normal direction.

Select Prescribed force to prescribe the total reaction force acting on the direction 
normal to the symmetry plane. Enter the Normal force Fn. The force is defined as 
positive when acting along the outward normal of the symmetry plane. Setting the 
prescribed force to zero gives the same effect as using Free Displacement.

Select Prescribed displacement to prescribe the displacement in the direction normal to 
the symmetry plane. Enter the Normal displacement un0. Setting the prescribed 
displacement to zero gives the same effect as using No displacement.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

• Using Free Displacement, Prescribed force, or Prescribed displacement is 
only meaningful if the geometry selection corresponds to a single 
symmetry plane.

• When using Free Displacement or Prescribed force, an extra global 
degree of freedom is added for determining the displacement in the 
normal direction. This degree of freedom will have a name of the type 
<component>.<interface>.<symmetry_tag>.un, for example 
comp1.beam.sym1.un.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line Constraints>Symmetry

Beam>More Constraints>Symmetry (Point)
Pipe Mechanics>Line Constraints>Symmetry

Pipe Mechanics>More Constraints>Symmetry (Point)

Ribbon
Physics tab with Beam or Pipe Mechanics selected:

Edges>Line Constraints>Symmetry (3D)
Edges>Line Constraints>Symmetry (2D)
Points>More Constraints>Symmetry

Antisymmetry

The Antisymmetry node adds an edge (3D), boundary (2D), or point (2D and 3D) 
condition that defines an antisymmetry edge, boundary, or point.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the antisymmetry. See the section 
Coordinate System Selection for Edge Load.

A N T I S Y M M E T R Y

Select an Axis to use as anti-symmetry plane normal to specify the direction of the 
normal to the symmetry plane in the selected coordinate system.

• For 2D models, select 1 or 2 for the first or second axis, respectively.

• For 3D models, select 1, 2, or 3 for the first, second, or third axis, respectively.

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line Constraints>Antisymmetry

Beam>More Constraints>Antisymmetry (Point)
Pipe Mechanics>Line Constraints>Antisymmetry

Pipe Mechanics>More Constraints>Antisymmetry (Point)

Ribbon
Physics tab with Beam or Pipe Mechanics selected:

Edges>Line Constraints>Antisymmetry (3D)
Boundaries>Line Constraints>Antisymmetry (2D)
Points>More Constraints>Antisymmetry

Edge Load

Add an Edge Load as a force or moment distributed along an edge.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the load. From the Coordinate 

system list select from the following based on space dimension:

For 2D models (boundaries):

• Global coordinate system (the default)

• Boundary System (a predefined normal-tangential coordinate system)

• Any additional user-defined coordinate system

For 3D models (edges):

• Global coordinate system (the default; the standard global coordinate 
system).

• Local edge system. This is the coordinate system defined by the beam 
cross-section orientation as defined in the Section Orientation subnode 
under Cross Section Data. The local edge coordinate systems directions 
are available as variables for plotting using an Arrow Line plot, for 
example: Under Beam>Beam Local System in the plot settings lists of 
predefined expressions, select Base vector (beamsys) x, 
Base vector (beamsys) y, or Base vector (beamsys) z.

• Any additional user-defined coordinate system.
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F O R C E

Select a Load type — Force per unit length (the default), Force per unit volume, or Total 

force. Enter values or expressions for the components.

M O M E N T

Enter values or expressions for the components of the moment edge load ML (3D) or 
Mlz (2D).

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

TABLE 8-11:  

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY LEVEL

SPACE DIMENSION 
(COMPONENTS)

Force per unit length FL Nm edges

boundaries

3D (x, y, z)

2D (x, y)

Force per unit volume FV N/m3 edges

boundaries

3D (x, y, z)

2D (x, y)

Total force Ftot N edges

boundaries

3D (x, y, z)

2D (x, y)

• When Force per unit volume is selected, the given load is multiplied by 
the cross-section area. This option is useful for modeling body loads 
like gravity or centrifugal loads.

• After selecting a Load type, the Load list normally only contains User 

defined. When combining the Beam interface with another physics 
interface, it is also possible to choose a predefined load from this list.

For more information about live and dead loads, see Buckling Analysis.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line and Volume Loads>Edge Load

Pipe Mechanics>Line and Volume Loads>Edge Load

Beam Rotor>Edge Load

Ribbon
Physics tab with Beam or Pipe Mechanics selected:

Edges>Line and Volume Loads>Edge Load (3D)
Boundaries>Line and Volume Loads>Edge Load (2D)

Physics tab with Beam Rotor selected:

Edges>Edge Load

Point Load

Add a Point Load to points for concentrated forces or moments at points. The loads are 
defined in the given coordinate system.

P O I N T  L O A D

Enter values or expressions for the components (x, y, z for 3D models and x, y for 2D 
models) of the point load FP.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.

The FP list normally only contains User defined. When combining the 
Beam interface with another physics interface, it is also possible to choose 
a predefined load from this list.
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P O I N T  M O M E N T

Enter values or expressions for the components (x, y, z for 3D models and z for 2D 
models) of the point moment MP (3D) or Mlz (2D).

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Point Load

Pipe Mechanics>Point Load

Beam Rotor> Point Load

Ribbon
Physics tab with Beam, Pipe Mechanics, or Beam Rotor selected:

Points>Beam>Point Load

For more information about live and dead loads, see Buckling Analysis.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Point Load, Free

Add a Point Load, Free node to describe concentrated loads with locations specified by 
coordinates. Such loads do not have to be placed in a geometrical point or in a mesh 
node. This is particularly useful for the following cases:

• Moving loads

• Several point loads, in which case it may be impractical to create points at all load 
locations

L O C A T I O N  A N D  F O R C E

For each row in the table, enter the data for one load. If material frame input is used, 
then the location is specified in terms of the material coordinates (X, Y, Z). If spatial 
frame input is used, then the spatial coordinates (x, y, z) are used. Then, enter the force 
and moment values, Fxl, Fyl, Fzl, Mxl, Myl, and Mzl. The force and moment vectors are 
interpreted in the coordinate system selected in the Coordinate System Selection section.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

• For each free point load, there will be a search for the mesh element 
that is closest to the given location. For the load to be active, the 
location must be within a certain small distance from at least one 
element. The actual load location is taken as the point on the element 
that is closest to the given location. If no element is found, the load is 
silently ignored.

You can check the number of loads that were ignored through the 
variable <phys>.<load_tag>.num_ignored, for example 
beam.plf1.num_ignored.

• The local stress field in the element where a point load acts will not be 
reliable.
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If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

Context Menus
Beam>Point Load, Free

Pipe Mechanics>Point Load, Free

Ribbon
Physics tab with Beam selected:

Global>Beam>Point Load, Free

Physics tab with Pipe Mechanics selected:

Global>Pipe Mechanics>Point Load, Free

Point Mass

Use the Point Mass node to model a discrete mass or mass moment of inertia which is 
concentrated at a point.

The Point Mass Damping subnode can be added to specify a mass-proportional 
damping.

For more information about live and dead loads, see Buckling Analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.

Pratt Truss Bridge: Application Library path 
Structural_Mechanics_Module/Beams_and_Shells/pratt_truss_bridge
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1614 |  C H A P T E
C O O R D I N A T E  S Y S T E M  S E L E C T I O N

With the Coordinate system list, select the coordinate system in which the mass 
moment of inertia tensor is defined.

P O I N T  M A S S

Enter a Point mass m.

Enter a value or values for the Mass moment of inertia. For 2D models, enter one value 
for Jz. For 3D models, enter a single value for an isotropic moment of inertia tensor, 
or select Diagonal or Symmetric to enter a full moment of inertia tensor.

F R A M E  A C C E L E R A T I O N  F O R C E S

Select the Exclude contribution check box to switch off the loads generated by this node 
when the frame is accelerated when using a Gravity, Rotating Frame, Linearly 
Accelerated Frame, or Base Excitation feature. The setting will also determine whether 
the node will contribute when computing mass properties.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Mass, Spring, and Damper>Point Mass

Pipe Mechanics>Mass, Spring, and Damper>Point Mass

Ribbon
Physics tab with Beam or Pipe Mechanics, selected:

Points>Mass, Spring, and Damper>Point Mass

Point Mass Damping

Use the Point Mass Damping subnode to add damping to a Point Mass parent node.

P O I N T  M A S S  D A M P I N G

Enter a Mass damping parameter dM. This is the mass proportional term of a Rayleigh 
damping.

For more information, see Computing Mass Properties.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Point Mass>Point Mass Damping

Pipe Mechanics>Point Mass>Point Mass Damping

Ribbon
Physics tab with Point Mass node selected in the model tree:

Attributes>Point Mass Damping

Rigid Connector

The Rigid Connector is a boundary condition for modeling rigid regions and kinematic 
constraints such as prescribed rigid rotations. The selected points will move as a single 
rigid object.

You can add the Rigid Connector node at the edge (2D: boundary) and point levels.

• When added at the edge level you can connect edges and points as long as at least 
one edge is selected. Selecting points is optional.

• When added at the point level, you can connect a set of points to each other.

If the study step is geometrically nonlinear, the rigid connector takes finite rotations 
into account.

Rigid connectors are available in the Solid Mechanics, Multibody Dynamics, Shell, 
Beam, and Pipe Mechanics interfaces. Rigid connectors from different interfaces can 
be attached to each other.

You can add functionality to the rigid connector through the following subnodes:

• Applied Force (Rigid Connector) to apply a force in given point.

• Applied Moment (Rigid Connector) to apply a moment.

• Mass and Moment of Inertia (Rigid Connector) to add extra mass and moment of 
inertia in a given point.

• Spring Foundation (Rigid Connector) to add a translational or rotational spring or 
damper in a given point.
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When physics symbols are shown, a rigid connector is represented by a symbol at the 
center of rotation, together with a set of lines connecting the center of rotation with 
the centers of gravity of the selected entities.

P O I N T  S E L E C T I O N

This section is always present.

• When the Rigid Connector is added at the point level, select a number of points that 
form the rigid region.

• When the Rigid Connector is added at the edge (2D: boundary) level, this section is 
initially collapsed. Here, you can add optional points to the rigid region. The points 
cannot be adjacent to the selected boundaries or edges.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
all applicable coordinate systems in the model. Prescribed displacements or rotations 
are specified along the axes of this coordinate system. It is also used for defining the 

• When the rigid connector is added at the edge level, such symbols are 
shown only for the selected edges, but not for auxiliary selections of 
points.

• Because of the way physics symbols are evaluated, as a lightweight 
operation when moving between physics nodes in the model builder 
tree, it is sometimes not possible to determine the center of rotation. 
In particular, if an offset is supplied, it will not be taken into account.

E D G E  S E L E C T I O N

This section is present when the Rigid Connector node has been added at 
the edge level. Select one or more edges to be part of the rigid region.

B O U N D A R Y  S E L E C T I O N

This section is present when the Rigid Connector node has been added at 
the boundary level. Select one or more edges to be part of the rigid 
region.
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axis directions of the moment of inertia tensor of the Mass and Moment of Inertia 
subnode.

C E N T E R  O F  R O T A T I O N

The center of rotation serves two purposes.

• If you prescribe the displacement of the rigid connector, this is the place where it is 
fixed.

• Results are interpreted with respect to the center of rotation.

Select a Center of rotation — Automatic, Centroid of selected entities, or User defined.

• For Automatic the center of rotation is at the geometrical center of the selected 
points. The constraints are applied at the center of rotation.

• For Centroid of selected entities a subnode for selection of the points is added to the 
Model Builder.

• For User defined, in the Global coordinates of center of rotation XC table enter 
coordinates based on space dimension.

Select the Offset check box to add an optional offset vector to the definition of the 
center of rotation. Enter values for the offset vector Xoffset.

The center of rotation used is the sum of the vector obtained from any of the input 
methods and the offset vector.

In order to be applicable, a coordinate system must have axis directions 
that are independent of the location in space.

• Once Centroid of selected entities is chosen, a default Center of 
Rotation: Point subnode is added.

• The center of rotation is located at the centroid of the selected points, 
which do not need to be related to the objects to which the rigid 
connector is attached. The points do not even have to belong to the 
physics interface. As a special case, you can select a single point, and 
thus locate the center of rotation at a certain point.

XC XC,input Xoffset+=
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1618 |  C H A P T E
P R E S C R I B E D  D I S P L A C E M E N T  A T  C E N T E R  O F  R O T A T I O N

To define a prescribed displacement at the center of rotation for each space direction, 
select one or several of the available check boxes then enter values or expressions for 
the prescribed displacements. The direction coordinate names can vary depending on 
the selected coordinate system.

• Prescribed in x direction u0x

• Prescribed in y direction u0y

• For 3D components: Prescribed in z direction u0z

P R E S C R I B E D  R O T A T I O N

Specify the rotation at the center of rotation. Select from the By list: Free (the default), 
Constrained rotation, or Prescribed rotation.

Constrained Rotation (3D Components)
For Constrained rotation select one or more of the available check boxes to enforce zero 
rotation about the corresponding axis in the selected coordinate system:

• Constrain rotation about x-axis

• Constrain rotation about y-axis

• Constrain rotation about z-axis

 For 2D components, the Constrained rotation and Prescribed rotation is 
always about the z-axis, so no component selection is necessary.
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Prescribed Rotation
• For Prescribed rotation enter an Angle of rotation . For 3D components also enter 

an Axis of rotation  for the x, y, and z coordinates.

R E L E A S E D  D E G R E E S  O F  F R E E D O M

In some cases it can be useful to not constrain the displacement in a certain direction. 
To do so, select a local Coordinate system for specifying the directions in which the 
degree of freedom will be released. The Coordinate system list contains only applicable 
coordinate systems in the model.

Select one or more of the available check boxes to release the displacement in the 
corresponding axis in the selected coordinate system:

• Release displacement in x1 direction

• Release displacement in x2 direction

• For 3D components: Release displacement in x3 direction

• For 3D components: Release rotation around x1 direction

• For 3D components: Release rotation around x2 direction

• Release rotation around x3 direction

Note that the Rigid Connector solves for global displacement degrees of freedom 
(DOFs) and global rotational DOFs – unless they are explicitly prescribed. Since 

0

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements and 
rotations in a frequency domain analysis of perturbation type.

• You can activate and deactivate the rigid connector by assigning it to a 
constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.

• You can assign the value of the prescribed displacement and rotation to 
a load group. See Load Cases in the Structural Mechanics Modeling 
chapter.

• Rigid Connector

• Harmonic Perturbation

• Load Cases
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releasing certain displacement field components reduces the number of equations used 
to solve for the global DOFs, it may become necessary to constrain some global 
displacement or rotation components to achieve static determinacy.

The section Released Degrees of Freedom is only shown if the check box Use weak 

constraints for rigid-flexible connection in the section Constrain Settings is not enabled.

R E A C T I O N  F O R C E  S E T T I N G S

Select Evaluate reaction forces to compute the reaction force caused by a prescribed 
motion. The default is to not compute the reaction force. When selected, the 
prescribed motion is implemented as a weak constraint.

Select Apply reaction only on rigid body variables to use a unidirectional constraint for 
enforcing a prescribed motion. The default is that bidirectional constraints are used. 
This setting is useful in a situation where a bidirectional constraint would give an 
unwanted coupling in the equations. This would happen if the prescribed value of the 
motion is a variable solved for in other equations.

F O R M U L A T I O N

Some contributions from a rigid connector will, under geometric nonlinearity, result 
in a nonsymmetric local stiffness matrix. If all other aspects of the model are such that 
the global stiffness matrix would be symmetric, then such a nonsymmetric 
contribution may have a heavy impact on the total solution time and memory usage. 
In such cases, it is often more efficient to use an approximative local stiffness matrix 
that is symmetric.

Select Use symmetric formulation for geometric nonlinearity to force all matrix 
contributions from the rigid connector and its subnodes to be symmetric.

Using an approximative stiffness matrix will in general require more 
iterations. However, since the computational cost per iteration will be cut 
at least by a factor of two if a symmetric matrix can be used, it is usually 
more efficient to ignore a weak nonsymmetry.

In particular, if the rotation of the rigid connector per time step or 
parameter increment is small, there will in general be no increase in the 
number of iterations at all if this option is used.

When the global stiffness matrix is nonsymmetric for other reasons, then 
there is nothing to be gained from symmetrizing the contribution from 
the rigid connector.
R  8 :  B E A M



C O N S T R A I N T  S E T T I N G S

On the boundaries where the rigid connector is coupled to a flexible material, all nodes 
on such a boundary are constrained to move as a rigid body. As a default these 
constraints are implemented as pointwise constraints. If you want to use a weak 
constraint formulation, select Use weak constraints for rigid-flexible connection.

This formulation cannot be combined with the Flexible formulation of the rigid 
connector, which in itself is a special form of weak constraint.

C O N S T R A I N T  S E T T I N G S

On the points where the rigid connector is coupled to a flexible material, all nodes are 
constrained to move as a rigid body. As a default, these constraints are implemented as 
pointwise constraints. If you want to use a weak constraint formulation, select Use weak 

constraints for rigid-flexible connection.

A D V A N C E D

It is possible to couple rigid connectors to each other. In the Connect to list, you can 
select any rigid connector defined in the Solid Mechanics, Multibody Dynamics, or 
Shell interfaces as being rigidly connected to the current one.

Select Group dependent variables in solver — From physics interface (default), Yes, or No, 
to choose how to group in the solver sequence the dependent variables added by the 
Rigid Connector feature.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Line Constraints>Rigid Connector (3D: Edge, 2D: Boundary)
Beam>Connections>Rigid Connector (Point)
Pipe Mechanics>Line Constraints>Rigid Connector (3D: Edge, 2D: Boundary)

When coupling rigid connectors to each other, you must be careful not to 
add conflicting settings. Typically, you should only assign constraints to 
one of the connectors, and it is recommended to use a common center of 
rotation. It is, however, possible to deviate from these recommendations 
and create other meaningful combinations.

Rigid Connector
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Pipe Mechanics>Connections>Rigid Connector (Point)

Ribbon
Physics tab with Beam or Pipe Mechanics selected:

Boundaries>Line Constraints>Rigid Connector (2D)
Edges>Line Constraints>Rigid Connector (3D)
Points>Connections>Rigid Connector

Attachment

The Attachment node is used to define a point or a set of points on a flexible beam 
which can be used to connect it with other components through a joint in the 
Multibody Dynamics interface. All the selected points behave as if they were connected 
by a common rigid body.

Attachments can be added to boundaries in a Multibody Dynamics or a Solid 
Mechanics interface, to edges in a Shell or Layered Shell interface, or to points in a 
Beam interface. This makes it possible to use a joint in the Multibody Dynamics 
interface for connecting parts modeled in different physics interfaces.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Connections>Attachment

Ribbon
Physics tab with Beam selected:

Points>Connections>Attachment

Beam End Release

In cases where a joint between two or more beams is not perfectly rigid, you can add 
a Beam End Release node to specify the decoupled degrees of freedom.

If three or more beams meet at the same point, you may need to add an Edge Group 
subnode in order to specify how the beams are connected to each other. The default is 

The use of attachments is discussed in the Attachments section in the 
Structural Mechanics Modeling chapter.
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that all beams meeting at a point are independent from each other in the selected 
degrees of freedom.

E D G E  D E F I N I N G  T H E  L O C A L  O R I E N T A T I O N

In the case of a geometrically nonlinear analysis, the orientation of the axes along 
which one or more degrees of freedom are decoupled may change due to finite 
rotations.

For cases when rotational degrees of freedom are decoupled, the rotation will however 
not be the same in all beams attached to a joint. Often this is not an issue since the 
interesting orientation is still unique, but you have a possibility to explicitly select the 
edge from which the axis rotations are inferred. The default option is Point Evaluation. 
In this case, the rotation is averaged between all participating edges.

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

R E L E A S E  S E T T I N G S

Select the degrees of freedom which are to be decoupled at the selected point. The 
directions are interpreted along the axes of the selected coordinate system. In a 
geometrically nonlinear analysis, the coordinate system only gives the orientation in 
the original configuration. The actual orientation in which the degrees of freedom are 
decoupled rotates with the beam.

Adding loads or constraints to a degree of freedom that has been 
disconnected using Beam End Release may give unintuitive results. 
Essentially, the degree of freedom value at the point is defined as the 
average of the values in the disconnected beams. A prescribed 
displacement will thus act as a constraint equation, prescribing a weighted 
sum of the displacements or rotations in the connected beams, but not 
their individual values.

Nonrigid Joints

Stress Analysis of a Portal Crane: Application Library path 
Structural_Mechanics_Module/Beams_and_Shells/portal_crane
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Beam End Release

Ribbon
Physics tab with Beam selected:

Points>Beam End Release

Edge Group

Add one or more Edge Group subnodes to a Beam End Release node when you need 
to specify how beams are connected at a joint. All beams which are selected in an edge 
group will be fully connected at the joint. Each group of edges will be free to move 
relative to any other edge group in the degrees of freedom selected in the parent Beam 

End Release node.

A certain edge can only be part of one edge group. A selection in a later edge group 
will override a selection of the same edge in a previous group.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Beam End Release>Edge Group

Ribbon
Physics tab with Beam End Release selected:

Attributes>Edge Group

Phase

You can add a Phase subnode to nodes which define a load in order to prescribe the 
phase angle in a frequency domain analysis.

Nonrigid Joints
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For modeling the frequency response, the physics interface splits the harmonic load 
into two parameters:

• The amplitude, F, which is specified in the node for the load.

• The phase ( ), which is specified in the Phase subnode.

Together these define a harmonic load, for which the amplitude and phase shift can 
vary with the excitation frequency, f:

P H A S E

Add the phase load Fph for harmonic loads. Enter the phase for each component of 
the load in the corresponding fields.

M O M E N T  L O A D  P H A S E

Add the phase for the moment load Mph for harmonic loads. Enter the phase for each 
component of the moment load in the corresponding fields.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Edge Load>Phase

Beam>Point Load>Phase

Pipe Mechanics>Edge Load>Phase

Pipe Mechanics>Point Load>Phase

Ribbon
Physics tab with Edge Load or Point Load selected:

Attributes>Phase

Harmonic Perturbation

Use the Harmonic Perturbation subnode to specify the harmonic part of nonzero 
prescribed displacements or rotations. This node is used if the study step is frequency 
response of a perturbation type.



Ffreq F f  2ft + cos=
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The settings are the same as in the parent Prescribed Displacement/Rotation, 
Prescribed Velocity, or Prescribed Displacement/Rotation node. Only degrees of 
freedom selected as prescribed in the parent node can be assigned a value.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam>Prescribed Displacement/Rotation>Harmonic Perturbation

Beam>Prescribed Velocity>Harmonic Perturbation

Beam>Prescribed Acceleration>Harmonic Perturbation

Pipe Mechanics>Prescribed Displacement/Rotation>Harmonic Perturbation

Pipe Mechanics>Prescribed Velocity>Harmonic Perturbation

Pipe Mechanics>Prescribed Acceleration>Harmonic Perturbation

Ribbon
Physics tab with Prescribed Displacement/Rotation, Prescribed Velocity, or Prescribed 

Acceleration node selected in the model tree:

Attributes>Harmonic Perturbation

 See Harmonic Perturbation in the Structural Mechanics Modeling 
chapter.
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B e a m  C r o s s  S e c t i o n
This chapter describes the Beam Cross Section interface, which you find under the 
Structural Mechanics branch ( ) when adding a physics interface.

In this chapter:

• Using the Beam Cross Section Interface

• Theory for the Beam Cross Section Interface

• The Beam Cross Section Interface
 1627
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U s i n g  t h e  Beam C r o s s  S e c t i o n  
I n t e r f a c e

In this section:

• About Beams and Cross-Section Data

• Using the Beam Cross Section Interface

About Beams and Cross-Section Data

A beam is a slender structure that can be fully described by cross-section properties like 
area and moments of inertia. In COMSOL Multiphysics, there are two physics 
interfaces for analyzing beam structures, one in 2D and one in 3D. There are also two 
similar Pipe Mechanics interfaces, targeted at piping systems.

A P P R O A C H E S  F O R  O B T A I N I N G  T H E  C R O S S - S E C T I O N  D A T A

The values for the cross-section properties can be found in different ways. By:

• looking up tabulated values,

• inserting dimensions into handbook formulas,

• using the built-in common sections in The Beam Interface, and

• using The Beam Cross Section Interface.

For nonstandard cross sections with nontrivial shapes, using the Beam Cross Section 
interface is the only realistic alternative. This physics interface also provides you with 
more accurate data than the other methods, since it does not rely on common 
engineering approximations.

The cross-section data obtained from the different approaches can, in general, differ 
somewhat. Two common sources for this difference is that the influence of fillets in the 

For the common built-in cross sections available with the Beam interface 
(Rectangular, Box, Circular, Pipe, H-section, U-section, and T-section), 
using the Common sections option in the Cross-Section Data settings 
provides you with the most efficient input alternative. See Common 
Cross Sections for details.
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geometry can be excluded, and that approximations such as assuming thin walled 
sections can be used.

S T R E S S  C O M P U T A T I O N

Since a beam interface is only aware of the cross-section properties and not of the true 
stress distribution over the cross section, the stresses computed there can only be 
approximate. The approximations used by COMSOL are conservative in the sense that 
all stress contributions are assumed to interact in the worst possible way.

In the Beam Cross Section interface, the true stress distribution can be computed 
given a set of section forces. This can be important in cases where the stresses obtained 
in the Beam interface or the Pipe Mechanics interface exceed allowed values. Also, 
from a pedagogical point of view, it is an advantage to be able to display the full stress 
distribution.

With the Beam Cross Section interface in 2D, you can plot the stress distribution in a 
certain cross section. In 3D, the beam and its results can be plotted using a solid 
representation.

Using the Beam Cross Section Interface

The Beam Cross Section interface can be used in three different ways:

• In a separate model, to compute beam cross section data that is manually transferred 
as input to another model where a beam analysis is performed. Possibly, the cross 
section data is also used outside COMSOL Multiphysics.

• In the same model as beam interface, but with the Beam Cross Section interface 
placed in a separate component. Data can then be transferred between the two 
interfaces by entering variable names in input fields.

• In the same component as the beam interface. In this case, multiphysics couplings 
can be used to transfer data between the interfaces.

When the document refers to ‘beams’ in the following, the information is 
applicable to both the Beam and Pipe Mechanics interfaces.
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When using the Beam Cross Section interface and the beam interface in the same 
model, there are a number of things to pay attention to:

• Usually the determination of the cross-section data is computationally more 
expensive than the actual analysis of the beam structure. Thus, it is best to use either 
separate studies or separate study steps for the two tasks.

• If two separate studies or study steps are used, then the Values of variables not solved 

for must be set in the second study step, where only the beam problem is solved. 
Under Dependent Variables, you can also uncheck the Store in output check box for 
the beam cross section degrees of freedom in order to save space.

• You can transfer data between the two physics interfaces using the Beam Cross 
Section-Beam Coupling and Beam-Beam Cross Section Coupling multiphysics 
couplings if the interfaces belong to the same component.

• If you are using two different components, you must use a fully scoped variable 
name (like comp2.bcs3.A for the area) when referencing the beam cross-section 
properties in the input fields of the beam interface.

• If a beam interface is added either after or at the same time as a Beam Cross Section 
interface, the only study type shown when adding a physics interface is Stationary. 
In this case, under Custom Studies, select Preset Studies for Some Physics Interfaces to 
find the other study types available for the beam analysis.

For the Beam Cross Section interface in 2D, the cross sections are analyzed in the 
xy-plane. However, the beam interface uses a notation where the local x-axis is along 
the beam, and the cross section is described in a local yz-plane.

For the Beam Cross Section interface in 3D, the boundaries that represent cross 
sections can have arbitrary orientation. It is not related to the orientation of an actual 
beam.

In order to avoid confusion, the cross-section properties are described in the local x1- 
and x2-coordinates (see Figure 9-1). When data is transferred to a beam interface, you 
must keep track of the coordinates that correspond to the local y and z directions.

Values of Dependent Variables and Physics and Variables Selection in the 
COMSOL Multiphysics Reference Manual

Channel Beam: Application Library path Structural_Mechanics_Module/

Verification_Examples/channel_beam
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The 3D version of the interface is based on the layered material technology. The reason 
is that the extra dimension inherent in layered materials is used to extrude the cross 
section when the interface is used to create a fully 3D representation of the stress state. 
Thus, there are significant conceptual differences between the 2D and 3D versions of 
this physics interface.

C O M P U T I N G  T H E  C R O S S - S E C T I O N  D A T A

You can compute the properties for several different cross sections in the same Beam 
Cross Section interface.

In a 2D component, the geometry of the cross sections is drawn in the xy-plane. In a 
3D component, you can create one or more arbitrary work planes, in which the cross 
sections are drawn.

You need to attach material data to the cross section. The procedure is different in 2D 
and 3D.

If the section is not simply connected, add one Hole node for each internal hole. In 
that node, select all boundaries around the hole.

The default mesh density is tuned for thin-walled sections. For solid sections, an 
unnecessarily large model is obtained when using the default mesh.

The material properties can be assigned to the domain in a Material node, 
and then the option From material is used in the Homogeneous Cross Section 
node. Alternatively, you can also select User defined, and enter expressions 
for the material data manually.

Material data cannot be set locally in the Homogeneous Cross Section node. 
Usually, you would add a Single Layer Material node under Materials in the 
component to provide the material data. You can, however, also use a 
global Layered Material, which is then referenced from a Layered Material 

Link in the component. A boundary is not eligible for selection in the 
physics interface until a layered material has been assigned.

A layered material has, in addition the material data, three more inputs. 
The only one that may need to be changed is the Thickness, lth. It is not 
used as long as you are only computing cross-section properties, but if you 
are mapping results back from a beam interface, it should match the 
length of the beam.
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The computed cross-section data is stored in the variables listed in Table 9-1:

TABLE 9-1:  VARIABLES CONTAINING CROSS-SECTION DATA

VARIABLE DESCRIPTION INPUT TO BEAM INTERFACE LINK TO THEORY 
SECTION

bcs.A Area Area (A) Area

bcs.CGx Center of gravity, x 
coordinate

Implicit, since it affects the 
positioning of the beam 
centerline. Center of 

Gravity
bcs.CGx Center of gravity, y 

coordinate
As above

bcs.x1 First coordinate in 
principal axes system

Implicit, since it can be 
used for determining stress 
evaluation locations Local 

Coordinates
bcs.x2 Second coordinate in 

principal axes system
As above

bcs.I1 Largest principal moment 
of inertia

Moment of inertia around 
local y/z-axis (Izz/Iyy)

Moments of 
Inertia

bcs.I2 Smallest principal 
moment of inertia

As above

bcs.Ixx Moment of inertia around 
x-axis

-

bcs.Iyy Moment of inertia around 
y-axis

-

bcs.Ixy Deviatoric moment of 
inertia in xy system

-

bcs.rg Radius of gyration -

bcs.alpha Angle from x-axis to first 
principal axis

Rotation of vector around 
beam axis ()

Directions of 
Principal Axes
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C O M P U T I N G  D E T A I L E D  S T R E S S E S

If you have a set of section forces (axial force, shear forces, bending moments, and 
twisting moments), it is possible to display the stresses it causes. To do this, enter the 
values in the Section Forces section. You can also add your own acceptance criteria by 
adding one or more Safety nodes.

The stresses are available in the variables listed in Table 9-2.

bcs.mu1 Max shear stress factor, 
x1 direction

Max shear stress factor in 
local y/z direction (y/z)

Bending Shear 
Stresses

bcs.mu2 Max shear stress factor, 
x2 direction

As above

bcs.kappa1 Shear correction factor, 
x1 direction

-

bcs.kappa2 Shear correction factor, 
x2 direction

-

bcs.ei1 Shear center location, 
first local coordinate

Distance to shear center in 
local y/z direction.

bcs.ei2 Shear center location, 
second local coordinate

As above

bcs.J Torsional constant Torsional constant (J)
Torsionbcs.Wt Torsional section 

modulus
Torsional section modulus 
(Wt)

bcs.Cw Warping constant -

Warping
bcs.Kw Warping section modulus -

bcs.sw Nonuniform torsion 
parameter

-

TABLE 9-1:  VARIABLES CONTAINING CROSS-SECTION DATA

VARIABLE DESCRIPTION INPUT TO BEAM INTERFACE LINK TO THEORY 
SECTION

After changing data in this section, you do not need to compute the study 
for this physics interface again once is has been solved. It is sufficient to 
do an Update Solution to get the stress plots updated.

Studies and Solvers in the COMSOL Multiphysics Reference Manual
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C O M P U T I N G  W A R P I N G  D I S P L A C E M E N T

You can also compute the axial warping displacement by entering the axial twist of the 
beam in the Twist section. The theory is described under Warping. The axial 
displacement is stored in the variable bcs.u.

TABLE 9-2:  VARIABLES CONTAINING STRESS DISTRIBUTIONS

VARIABLE DESCRIPTION AND  LINK TO THEORY 
SECTION

bcs.sN Stress from axial force Axial Stress

bcs.sM1 Bending stress from moment around x1 axis
Bending Axial Stresses

bcs.sM2 Bending stress from moment around x2 axis

bcs.tT1x Shear stress from force in x1 direction, 
x-component

Bending Shear 
Stresses

bcs.tT1y Shear stress from force in x1 direction, 
y-component

bcs.resT1 Shear stress from force in x1 direction, 
resultant

bcs.tT2x Shear stress from force in x2 direction, 
x-component

bcs.tT2y Shear stress from force in x2 direction, 
y-component

bcs.resT2 Shear stress from force in x2 direction, 
resultant

bcs.tMtx Shear stress from twisting moment, 
x-component

Torsional Shear 
Stresses

bcs.tMty Shear stress from twisting moment, 
y-component

bcs.resMt Shear stress from twisting moment, 
resultant

bcs.mises von Mises equivalent stress Equivalent Stress

bcs.spN Principal stresses; N=1,2,3

bcs.INs N:th invariant of stress tensor; N=1,2,3

bcs.IINs N:th invariant of stress tensor deviator; 
N=2,3

bcs.thetaL Lode angle for stress tensor
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Th eo r y  f o r  t h e  Beam C r o s s  S e c t i o n  
I n t e r f a c e

In this section the theory for the Beam Cross Section interface is described:

• Cross-Section Properties

• Computation of Stresses

Cross-Section Properties

The following cross-section properties computed by the Beam Cross Section interface 
are described in this section:

A R E A

The area is computed as

C E N T E R  O F  G R A V I T Y

The center of gravity is computed as

M O M E N T S  O F  I N E R T I A

The moments of inertia in the XY coordinate system are

• Area

• Center of Gravity

• Moments of Inertia

• Directions of Principal Axes

• Local Coordinates

• Bending Shear Stresses

• Torsion

• Warping

A Ad
A
=

xCG
1
A
---- x Ad

A
=

yCG
1
A
---- y Ad

A
=
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Since the input data required by the Beam interface is the principal moments of inertia, 
these must also be computed. Using the radius of the Mohr’s circle:

the principal moments of inertia can be expressed as

As an auxiliary variable, the radius of gyration is computed, using the expression

D I R E C T I O N S  O F  P R I N C I P A L  A X E S

The angle needed to rotate the x-axis to the axis of the largest principal moment of 
inertia (x1) is denoted . From the definition of Mohr’s circle, the angle is

When implemented using the atan2 function, the angle can be correctly evaluated for 
all rotations, and returns in the interval .

Ixx y yCG– 2 Ad
A
=

Iyy x xCG– 2 Ad
A
=

Ixy x xCG–  y yCG–  Ad
A
=

R
Ixx Iyy–

2
---------------------- 
 

2
Ixy

2
+=

I1
Ixx Iyy+

2
---------------------- R+=

I2
Ixx Iyy+

2
---------------------- R–=

rg
I1 I2+

A
----------------=

 1
2
---

2Ixy–

Ixx Iyy–
---------------------- 
 atan=
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Figure 9-1: Local coordinate system and rotation angle.

L O C A L  C O O R D I N A T E S

The local coordinate system, having its origin in the center of gravity, and orientation 
given by the principal moments of inertia is given by:

B E N D I N G  S H E A R  S T R E S S E S

The shear stresses caused by bending cannot be given a simple closed form solution, 
but must be solved using two independent partial differential equations, one for the 
force in each direction. The complete derivation is given at the end of this section. First 
some quantities computed from the shear stresses are defined.

The following notation is used: . This is a shear stress in the x2 direction (acting 
on the plane with z as normal) caused by a unit shear force acting in the x1 direction.

x1 x xCG–  cos= y yCG–  sin+

x2 y yCG–  cos= x xCG– – sin

2z
1 
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Max Shear Stress Factor
The max shear stress factor is the ratio between the maximum shear stress in the cross 
section and the average shear stress. For a shear force in the x1 direction, the definition 
is

where

is the resulting shear stress from a unit load in the x1 direction. Similarly:

Shear Correction Factor
The shear correction factor is also computed. The shear correction factor is a 
multiplier which makes the strain energy from the average shear stress and shear strain 
in the cross section equal to the true shear energy in the cross section. The shear 
correction factor can be introduced through the concept shear area. The shear area is 
the reduced area which should replace the true area when computing the shear 
deformation of a beam. In terms of the shear correction factor it can be written as

where 1 is the shear correction factor for a shear force in the x1 direction. Thus, for a 
shear flexible beam, the constitutive relation for the average shear is

To compute the shear correction factor, the true strain energy based on the actual 
stress and strain distribution is set equal to the strain energy from the average shear 
stress, when acting over the shear area. The full energy expression is

The strain energy based on the averaged shear stress and shear strain is

1
max  1  

1
A
----

-------------------------- max  1   A= =

 1  1z
1  

2
2z

1  
2

+=

2 max  2   A=

As
1  1A=

 
G
-------- T

GA
------------ T

GAs
-----------= = =

1
2
--- 1z

1 1z
1  2z

1 2z
1 

+  Ad
A

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giving

Since T1 is a unit shear force, the shear correction factor can be computed as

Similarly:

Shear Center Distance
The shear center (or, equivalently, the center of rotation) is the point around which 
the shear stresses from bending has no torque. In COMSOL it is represented as the 
distance from the center of gravity of the cross section in the principal axes coordinate 
system. The torque can be computed as

Since there are two separate solutions for the shear stresses, it is possible to split the 
determination of the two shear center coordinates into

Here the fact that the shear force resultant has a unit value has been used.

1
2
---1z

1 1z
1 A 1

2
---

T1
A
------1z

1 A 1
21G
--------------

T1
A
------ 
 

2
A= =

1
2G
-------- 1z

1  
2

2z
1  

2
+  Ad

A


T1
2

2G1A
-------------------=

1 A  1  
2

Ad
A
 

 
  1–

=

2 A  2  
2

Ad
A
 

 
  1–

=

0 1z e2 x2– – 2z e1 x1– +  Ad
A
= =

1zx2 2z– x1+  Ad
A
 e1 2z Ad

A
 e2 1z Ad

A
–+

e1 1z
2 x2 2z

2 
– x1+  Ad

A
–=

e2 1z
1 x2 2z

1 
– x1+  Ad

A
=
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Derivation of the Equations for Computing the Shear Stresses
Basic beam theory assumptions give the following stress components:

 (9-1)

The shear forces are related to the bending moments through

The static equilibrium equations are

Insertion of the known stresses into the equilibrium equations gives

The two first equations simply state that the shear stresses are independent of z, 
whereas the third equation is the one on which to focus the interest. Assume that the 
shear stresses can be derived from a scalar stress potential, , through:

1 0=

2 0=

z
M1x2

I1
--------------

M2x1
I2

--------------–=

12 0=

T1
M2
z

-----------–=

T2
M1
z

-----------=

1 1 12 2 1z,z 0=+ +

12 1 2 2 2z,z 0=+ +

1z,1 2z,2 z,z 0=+ +

1z,z 0=

2z,z 0=

1z,1 2z,2
T2x2

I1
-------------

T1x1
I2

-------------+ 0=+ +

1z ,1
T1x2

2

2 1 + I2
---------------------------+=

2z ,2
T2x1

2

2 1 + I1
---------------------------+=
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Insertion of this assumption into the third equilibrium equation gives the Poisson type 
equation

 (9-2)

In addition to equilibrium, also compatibility must be fulfilled. The Beltrami–Michell 
form of compatibility equations includes the assumption of an isotropic linear elastic 
material, and then states that

Given the stress state from Equation 9-1, the only two nontrivial equations are

Inserting the assumed stress components gives

Integration of the first equation with respect to x1 and the second equation with 
respect to x2 gives

Combining these two equations results in


T2x2

I1
-------------

T1x1
I2

-------------+ 
 –=

ij
1

1 +
------------ trace   

xi xj
------------------------------+ 0=

1z
1

1 +
------------

T1
I2
------+ 0=

2z
1

1 +
------------

T2
I1
------+ 0=

,1
T1

1 + I2
-----------------------

1
1 +
------------

T1
I2
------ ,1

T1
I2
------+ 0= =+ +

,2
T2

1 + I1
-----------------------

1
1 +
------------

T2
I1
------ ,2

T2
I1
------+ 0= =+ +


T1x1

I2
------------- f2 x2 + + 0=


T2x2

I1
------------- f1 x1 + + 0=


T2x2

I1
-------------

T1x1
I2

-------------+ 
 –=
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This is the same equation as Equation 9-2. It is thus possible to fulfill equilibrium, 
compatibility, and the constitutive relation with a single equation of Poisson type.

On all free boundaries, the stress must be zero, giving the condition

Using the assumed shear stresses, this can be converted into the Neumann condition

It must also be determined that the resultant of the shear stresses actually match the 
applied shear forces, that is

The proofs for the two components are analogous, so it is shown only for the x1 
direction:

To compute the integral of the x1-derivative of , a term containing the differential 
equation itself is added. This is a zero contribution, but it makes further simplifications 
possible.

1zn1 2zn2+ 0=

 n
T1x2

2

2 1 + I2
---------------------------n1

T2x1
2

2 1 + I1
---------------------------n2+

 
 
 

–=

1z Ad
A
 T1=

2z Ad
A
 T2=

1z Ad
A
 ,1

T1x2
2

2 1 + I2
---------------------------+

 
 
 

Ad
A
 ,1 Ad

A


T1I1
2 1 + I2
---------------------------+= =
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In the transformations above these facts are used:

• The area integral of x1, x1, or x1x2 are zero since the coordinate system is positioned 
at the center of gravity and is oriented along the principal axes.

• The area integral of  is I1.

• The divergence theorem is used for transformation between area and surface 
integrals.

• The Neumann condition on the boundary is inserted into the integral along the 
boundary.

This proves that the assumed stress field also produces the correct resultants.

When internal holes are present, it is necessary ensure compatibility in the sense that 
the displacement is single valued when going around the hole:

The displacements can be derived from the strains, which are given by the stress state

,1 Ad
A
 ,1 x1 

T2x2
I1

-------------
T1x1

I2
-------------++ 

 + 
  Ad

A
= =

,1 x1+  Ad
A
 T1+

x1
 x1,1 

x2
 x1,2 + 

  Ad
A
 T1+= =

x1,1 n1 x1,2 n2+  ds

 T1+ x1  n ds


 T1+= =

x1
T1x2

2

2 1 + I2
---------------------------n1

T2x1
2

2 1 + I1
---------------------------n2+

 
 
 

–
 
 
 

ds

 T1+ =

T1x2
2

2 1 + I2
---------------------------–

 
 
 

Ad
A
 T1+

– T1I1
2 1 + I2
--------------------------- T1+=

x2
2

du1

 du2


 duz


 0= = =
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Integration of the direct strains gives

Since the only part of the displacement that is relevant for the bending shear stresses is 
independent of the z-coordinate, the functions g1 and g2 can be considered as 
independent of z:

In the last transformation Green’s theorem is used. The uniqueness of the 
u2 displacement can be shown in the same way.

1
u1
x1

--------- z–= =

2
u2
x2

--------- z–= =
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z
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M1x2
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M2x1
EI2

--------------–= =

12
u1
x2
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x1
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1z
u1
z
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uz
x1

---------+
1
G
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T1x2
2

2 1 + I2
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 
 
 
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2z
u2
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G
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T2x1
2
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2
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M1x2

2

2EI1
------------------–

M2x1x2
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


u1
x1

---------dx1
u1
x2

---------dx2+ 
 


= =

M1x2
EI1

------------------
M2x1

EI2
------------------– 
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The uniqueness of the out-of-plane component of the displacement is shown in 
Equation 9-3:

 (9-3)

In the last step of Equation 9-3, all integrals are zero since the coordinate system is 
located at the center of gravity of the section. This proves that all displacement 
components are unique.

When solving the problem, the shear stresses caused by a unit force in each of the two 
principal directions must be separated, so two separate problems are solved. For the 
force in the x1 direction it is formulated as

with

on all boundaries. The stresses are computed as
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The corresponding problem for the x2 direction is

T O R S I O N

The torsional properties cannot in general be computed using a closed form 
expression. Determining the torsional rigidity requires the solution of a PDE over the 
cross section. There are two ways to do this: Using a warping function or using the 
Prandtl stress function. The Prandtl stress function approach is used in COMSOL 
since it gives easier boundary conditions.

The general torsion theory includes the shear modulus and angle of twist, but these 
properties are not needed to determine the torsional rigidity, so both parameters are 
treated as having the value 1. In that case the equation to be solved can be simplified to

where  is the stress function. For a singly connected region the boundary condition 
is  along the whole boundary. Having solved this problem, the torsional rigidity 
can be computed as

The shear stresses are defined as

The torsional modulus can be determined as
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In the case that there are internal holes in the section the situation is slightly more 
complex. The  condition is now applicable only to the external boundary, 
whereas each boundary of an internal hole i needs a Dirichlet boundary condition:

where Hi is a constant to be determined. The constant value of the stress function 
fulfills the stress-free boundary conditions. There is also a compatible condition that 
must be fulfilled: the displacements must be single valued when going around each 
hole along its boundary i. This is trivially fulfilled for the in-plane displacements, but 
the out-of-plane displacement, w, generates the necessary equations to determine Hi:

Here, it has been used so that the strains are equal to the stresses since the shear 
modulus is set to 1. The kinematic assumption that the in-plane displacements can be 
written as

is employed. This assumption implies that the origin of the coordinate system is at the 
center of rotation. This is true only for doubly symmetric sections, but adding a 
constant offset to the x and y coordinates does not contribute to the integral.

The gradient of  depends linearly on the yet unknown variables Hi, the values of 
which can be solved by adding one equation,

for each hole.

The expression for the torsional rigidity must in this case be augmented to

Wt
J

max  
--------------------------=

 0=
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0 dw
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where Ai is the area of hole i.

W A R P I N G

The warping properties of the cross section are not used by the Beam interface in 
COMSOL Multiphysics, since an assumption of pure St. Venant torsion is used. The 
data can still be useful to do manual estimates.

The warping function x, y describes the out-of-plane deformation related to 
torsion. It fulfills Laplace’s equation   0.

The boundary conditions giving stress-free boundaries:

The offset by the shear center coordinates (ex, ey) is introduced because the torsion 
theory assumes that the coordinate system has its origin in the center of rotation 
(which is the same as the shear center).

The level of the warping function must also be fixed by adding a Dirichlet condition 
in a point. The actual value is however difficult to set. Instead it is easier to solve for a 
shifted warping function

The shifted warping function can be set to zero in an arbitrary point. The true warping 
function is then computed as

This criterion expresses that the average of the warping function must be zero since the 
axial stresses induced by torsion should not have a resultant.

The warping displacement, u, for a beam with unrestrained warping can be computed 
by providing the twist of the beam,  as input:

The warping constant, which is used in analysis of nonuniform torsion, is defined as

J 2  Ad
A
 2 HiAi

i
+=

 n x ex– tx y ey– ty+=

s x y( , )  x y( , ) C+=

 x y( , ) s x y( , )
1
A
---- s x y( , ) Ad

A
–=

xl

u x y( , ) xl x y( , )=
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The axial stress caused by nonuniform torsion is

where B is the bimoment. The maximum axial stress is

The warping modulus is then defined as

Given the warping constant, it is possible to compute a nondimensional number that 
can be used to characterize the influence of nonuniform torsion in a beam with a 
certain length L. This number is

Since the length is independent of the cross section, the sensitivity number is defined as

It has the physical dimension length squared.

Computation of Stresses

The stresses are computed using the following expressions:

• Axial Stress

• Bending Axial Stresses

• Bending Shear Stresses

• Torsional Shear Stresses

• Equivalent Stress

Cw  x y( , )
2 Ad

A
=

w x y( , ) B  x y( , )
Cw

---------------------=

w max,
B max  x y( , ) 

Cw
------------------------------------------- B

Kw
--------= =

Kw
max  x y( , ) 

Cw
------------------------------------=

2ECw

GJL2
-------------------

2 1 + 2Cw

JL2
------------------------------------=

sw
2 1 + 2Cw

J
------------------------------------=
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A X I A L  S T R E S S

The axial stress is computed as

where N is the axial force.

B E N D I N G  A X I A L  S T R E S S E S

The bending stresses are computed as

Where M1 is the moment around the first principal axis and M2 is the moment around 
the second principal axis.

B E N D I N G  S H E A R  S T R E S S E S

The components of the shear stresses caused by a shear force T1 along the x1-axis are

The components of the shear stresses caused by a shear force T2 along the x2-axis are

In both cases, the resultants are also computed as

 and

T O R S I O N A L  S H E A R  S T R E S S E S

The components of the shear stress caused by St. Venant torsion are

N
N
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1  sin+  T1=

T2x 1z
2  cos 2z
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2  cos 1z
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2
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where Mt is the twisting moment. The resultant is computed as

E Q U I V A L E N T  S T R E S S

The von Mises equivalent stress is computed from the stress components defined above 
using the expression

Mtx
Mt,y

J
---------------=

Mty
Mt,x

J
--------------–=

Mt Mtx
2 Mty

2
+=

vM N M1 M2+ + 2 3 T1x T2x Mtx+ + 2 3 T1y T2y Mty+ + 2+ +=
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Th e  Beam C r o s s  S e c t i o n  I n t e r f a c e

The Beam Cross Section (bcs) interface ( ), found under the Structural Mechanics 
branch ( ) when adding a physics interface, is used for computing cross-section 
properties for beams. It can be also used for a detailed evaluation of stresses in a beam 
when the section forces to which the beam is subjected are known. It is mainly used in 
conjunction with The Beam Interface.

As input, you give a 2D sketch of the cross section. The computed results are: area, 
moments of inertia, center of gravity, principal axis directions, torsional rigidity, shear 
center location, shear correction factors, warping constant, and stress distributions for 
different load types.

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is bcs.

D O M A I N  S E L E C T I O N

• Using the Beam Cross Section Interface

• Theory for the Beam Cross Section Interface

• Studies and Solvers in the COMSOL Multiphysics Reference Manual

For 2D components, select the domains that represent beam cross 
sections to be analyzed. The default setting is to include All domains in the 
model to define the cross section. To select specific domains, select Manual 
from the Selection list.
R  9 :  B E A M  C R O S S  S E C T I O N



B O U N D A R Y  S E L E C T I O N

B E A M  P R O P E R T I E S

D I S C R E T I Z A T I O N

Select the Element order — Linear, Quadratic (the default), Cubic, Quartic, or Quintic.

Homogeneous Cross Section

Add one Homogeneous Cross Section node for every cross section to be analyzed. One 
Homogeneous Cross Section node is automatically added when the physics interface is 
created.

M A T E R I A L  P R O P E R T I E S

For 3D components, select the boundaries that represent beam cross 
sections to be analyzed. The default setting is to include All domains in the 
model to define the cross section. To select specific domains, select Manual 
from the Selection list. Only boundaries that have an assigned a layered 
material can be selected.

For 3D components, this interface is based on the layered technology. 
The check box Use all layers is selected by default, and for all normal use, 
it does not have to be changed. The material selection is then implicit in 
the boundary selection.

Enter the material properties, Young's modulus, E and Poisson's ratio, . 
The default is to take the values From material. You can also select User 

defined, and enter expressions for the material data manually.

Currently only the value for  is used, and it only influences the detailed 
distribution of shear stresses caused by a transversal load.

Even though it is possible to override material data from this section, 
there would seldom be a reason to do it. The material data is part of the 
definition of the layered material.
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B E A M  P R O P E R T I E S

S E C T I O N  F O R C E S

If you want to perform a detailed computation of the stress state in a beam cross 
section, enter the section forces.

Enter values or expressions for the following:

• Axial force N (SI unit: N).

• Bending moment around 1-axis M1.

• Shear force along 2-axis T2.

• Bending moment around 2-axis M2.

• Shear force along 1-axis T1.

• Twisting moment Mt.

This section is only present in 3D, since in 3D the physics interface 
formally uses the layered technology. There is no need to make changes 
here.

• After changing data in this section, you do not need to compute the 
study for this physics interface again once is has been solved. It is 
sufficient to do an Update Solution to get the stress plots updated.

• If this interface is referenced in a Beam-Beam Cross Section Coupling, 
the inputs in this section are not accessible, since the cross section 
forces are transferred from a Beam interface or Pipe Mechanics 
interface.
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T W I S T

Enter a value or expression for the Axial twist, . The twist is used in the computation 
of the axial warping displacement.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam Cross Section>Homogeneous Cross Section

Ribbon
Physics tab with Beam Cross Section interface selected

Boundaries>Homogeneous Cross Section (3D)

Domains>Homogeneous Cross Section (2D)

Hole

Use the Hole subnode to define internal holes for a beam cross section. One Hole 
feature must be added for each internal hole in the parent Homogeneous Cross 
Section.

B E A M  P R O P E R T I E S

If you use the Beam Cross Section interface coupled to a Pipe Mechanics interface, the 
two interfaces have to agree on the type of cross section. Since circular pipes are very 
common in piping systems, they are to some extent treated as a special case in the Pipe 
Mechanics interface.

xl

• After changing data in this section, you do not need to compute the 
study for this physics interface again once is has been solved. It is 
sufficient to do an Update Solution to get the stress plots updated.

• If this interface is referenced in a Beam-Beam Cross Section Coupling, 
the inputs in this section are not accessible, since the cross section 
forces are transferred from a Beam interface or Pipe Mechanics 
interface.
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Select the Pipe shape — Circular or Noncircular. This setting is ignored for all cases, 
except in a coupled analysis with the Pipe Mechanics interface.

F L U I D  L O A D S

The fluid loads are used for computing the stress from internal pressure. These inputs 
have a purpose analogous to the entries in the Section Forces and Twist sections in the 
Homogeneous Cross Section node.

Enter the Internal pressure, pi, and the External pressure, po.

B O U N D A R Y  S E L E C T I O N

You should select all boundaries around a certain hole from the Selection list (Manual). 
The All boundaries option is not relevant.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam Cross Section>Homogeneous Cross Section>Hole

Ribbon
Physics tab with Homogeneous Cross Section selected

Attributes>Hole

The settings for layers only present in 3D, since in 3D the physics interface 
formally uses the layered technology. There is no need to make changes 
here.

• After changing data in this section, you do not need to compute the 
study for this physics interface again once is has been solved. It is 
sufficient to do an Update Solution to get the stress plots updated.

• If this interface is referenced in a Beam-Beam Cross Section Coupling, 
the inputs in this section are not accessible, since the cross section 
forces are transferred from a Pipe Mechanics interface.

• Using the Beam Cross Section Interface

• Theory for the Beam Cross Section Interface
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Safety

Use the Safety node to set up variables that can be used to check the risk of failure 
according to various criteria. Four different variables describing the failure risk will be 
defined as described in Table 9-3. You can add any number of Safety nodes.

B E A M  P R O P E R T I E S

F A I L U R E  M O D E L

Select a Failure Criterion — von Mises Isotropic, Tresca Isotropic, Rankine Isotropic, 
Bresler-Pister, Willam-Warnke, or Ottosen.

• When Failure Criterion is von Mises Isotropic, enter Tensile strength ts.

• When Failure Criterion is Tresca Isotropic, enter Tensile strength ts.

• When Failure Criterion is Rankine Isotropic, enter Tensile strength ts and Compressive 

strength cs.

• When Failure Criterion is Bresler-Pister Isotropic, enter Tensile strength ts, 
Compressive strength cs, and Biaxial compressive strength bc.

• When Failure Criterion is Willam-Warnke Isotropic, enter Tensile strength ts, 
Compressive strength cs, and Biaxial compressive strength bc.

TABLE 9-3:  VARIABLES FOR SAFETY FACTOR EVALUATION

VARIABLE DESCRIPTION CRITERION 
FULFILLED

CRITERION 
VIOLATED

Failure index, FI For a linear criterion, this is the 
ratio between the computed value 
and the given limit.

FI<1 FI>1

Damage index, DI A binary value, indicating whether 
failure is predicted or not. DI is 
based on the value of FI.

DI=0 DI=1

Safety factor, SF For a linear criterion, this is 1/FI. SF>1 SF<1

Margin of safety, MoS SF-1 MoS>0 MoS<0

This section is only present in 3D, since in 3D the physics interface 
formally uses the layered technology. There is no need to make changes 
here.
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• When Failure Criterion is Ottosen Isotropic, enter the Compressive strength cs, 
Ottosen parameters a and b, the Size factor k1, and the Shape factor k2.

• When Failure Criterion is User defined, you enter two expressions describing the 
Failure criterion g(S), used in the failure index, and the Safety factor sf(S). As an 
example, if you would like to replicate the von Mises Isotropic criterion with tensile 
strength 350 MPa, you could enter g(S) as solid.mises/350[MPa]-1 and sf(S) as 
350[MPa]/(solid.mises+eps).

For all input fields, the default is to take the value From material. Change to User 

defined to enter other values or expressions.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam Cross Section>Homogeneous Cross Section>Safety

Ribbon
Physics tab with Physics tab with Homogeneous Cross Section selected

Attributes>Safety

For a detailed description of the various criteria, see Safety Factor 
Evaluation in the Structural Mechanics Theory chapter.
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T r u s s
This chapter describes the Truss interface, which is found under the Structural 

Mechanics branch ( ) when adding a physics interface.

In this chapter:

• Modeling with Truss Elements

• Theory for the Truss Interface

• The Truss Interface
 1659
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Mode l i n g  w i t h  T r u s s  E l emen t s

Truss elements are elements that can only sustain axial forces. They have displacements 
as degrees of freedom. Truss elements are sometimes referred to as bars or spars. They 
live on boundaries in 2D and edges in 3D. Typical uses of truss elements are:

• Trusses

• Cables and wires, given that they are in tension only

• Reinforcement bars

• Two-point springs and dashpots. A special material model called Spring-Damper 
Material is available for this purpose.

• Thin ‘strain gauges’ attached to for example solid elements

The Truss interface supports the same study types as the Solid Mechanics interface.

Dependent Variables
The degrees of freedom (dependent variables) are the global displacements u, v, and 
w (3D only) in the global x, y, and z directions, respectively.

M O D E L I N G  W I R E S  A N D  C A B L E S

You can use the Truss interface for modeling wires and cables, possibly sagging under 
gravity or other external loads. However, the Wire interface is specifically designed for 
this purpose, and should be the primary choice.

Below are some suggestions for how to model such structures efficiently using the 
Truss interface:

• It is generally recommended that you use first order shape functions when modeling 
wire-like structures. This is the default in the Truss interface.

• If the cable is to be allowed to sag, you must not use the Straight Edge Constraint 
for those edges. When using first order shape functions, this constraint is disabled 
as default, so this is an issue only if you use higher order shape functions.

• Most cable problems are geometrically nonlinear. A wire which is not in tension is 
not numerically stable. Physically, it wrinkles in an unpredictable manner. In order 
to start the analysis, you either have to add an initial stress or some weak springs.

• If there are no line or volume loads, the wire is straight, as long as it is in tension. 
In this case, only one element is needed for the whole wire, since you can handle the 
zero-stiffness in compression in the material data. Enter the modulus of elasticity so 
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that it depends on the axial stress, and has very small value in compression. Such an 
expression could for example be E0*(1-0.9999*(truss.en<0)).

• In some problems, there are large deformations, but low tensile stresses. This would 
for example be the case if you model a wire hanging free under self-weight (‘the 
catenary problem’). Such problems are numerically ill-conditioned, but can still be 
solved as long as you use linear shape functions for the truss elements, and use tight 
tolerances for the nonlinear solver.
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Th eo r y  f o r  t h e  T r u s s  I n t e r f a c e

Theory Background for the Truss Interface

Trusses are modeled using Lagrange shape function. The Lagrange shape function 
makes it possible to specify both normal strains and Green-Lagrange strains to handle 
small strains as well as large deformations.

S T R A I N - D I S P L A C E M E N T  R E L A T I O N

The axial strain n is calculated by expressing the global strains in tangential derivatives 
and projecting the global strains on the edge.

where t is the edge tangent vector and gT is defined as

The strains can be expressed as either engineering strains for small displacements or 
Green-Lagrange strains for large displacements. The Green-Lagrange strain tensor 
used for large displacements is defined as

The engineering strain tensor used for small displacements is defined as

 (10-1)

The axial strain written out becomes

n ttgTt=
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S T R E S S - S T R A I N  R E L A T I O N

The constitutive relation for a truss is uniaxial. The axial stress, n, is computed as

where

• E is the modulus of elasticity

• n is the total axial strain

• n,el is the elastic axial strain

• inel is the sum of all inelastic strain contributions:

- Initial strain, 0

- Thermal strain, th

- Hygroscopic strain, hs

- Plastic strain, pl

• ex is the sum of all extra stress contributions:

- Initial stress 0

- External stress ext

In a geometrically nonlinear analysis, this equation should be interpreted as a relation 
between Second Piola-Kirchhoff stresses and Green-Lagrange strains.

n tx xTtx xyTty xzTtz+ +  +=

ty xyTtx yTty yzTtz+ +  +

tz xzTtx yzTty zTtz+ + 

In the Truss interface, the coordinates are usually denoted with lowercase 
letters (x, y, z). If a Solid Mechanics or Membrane interface is present in 
the same model, then it becomes necessary to make a difference between 
the material frame and the spatial frame (Material and Spatial 
Coordinates). In this case the coordinates in the Truss interface change 
to (X, Y, Z).

n ex En el,+ ex E n inel– += =

inel 0 th hs pl+ + +=

ex 0 ext+=
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For output, the First Piola-Kirchhoff stress Pn is computed from the Second 
Piola-Kirchhoff stress using

where s’ is the ratio between current and initial length. The axial force in the element 
is then computed as

where A0 is the undeformed cross-section area. The engineering (Cauchy) stress is 
defined by

where A is the deformed area of the element. For a geometrically linear analysis, the 
change in area is ignored, so that A = A0.

For a geometrically nonlinear analysis, the area change is computed based on an 
assumption about a linear elastic material with Poisson’s ratio . The area change is

This is the only occasion where the Truss interface makes use of the value of .

In a geometrically linear analysis all the stress representations have the same value.

I M P L E M E N T A T I O N

Using the principle of virtual work results in the following weak formulation

where the summation stands for summation over all points in the geometry. Replacing 
the integration over the cross section with the cross-sectional area (A) and the volume 
forces with line forces, the equation becomes

Pn Sn s'=

N Pn A0=

n Pn
A0
A
-------=

A0
A
------- 1 2n–  1–

=

W d nn– utFV+  Vd
V
 utFPi

i
+=

W ntestnA– utest
t FL+  Ld

L
 utest

t FPi

i
+=
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In the case of geometric nonlinearity, the stress and strain should be interpreted as 
Second Piola-Kirchhoff stress and Green-Lagrange strains

T H E O R Y  F O R  S T R A I G H T  E D G E  C O N S T R A I N T

The optional constraint to enforce the nodes to lie on the straight line between the 
endpoints of the edge are formulated as follows:

Starting with the large displacement case, let xd1 and xd2 be the deformed position of 
the two endpoints of the edge

 (10-2)

where ui is the displacement, and xi is the coordinate (undeformed position) at 
endpoint i. The equation for the straight line through the endpoints is

 (10-3)

where t is a parameter along the line, and a is the direction vector for the line. a is 
calculated from the deformed position of the endpoints as

The constraints for the edge are derived by substituting the parameter t from one of 
the scalar equations in Equation 10-3 into the remaining ones. In 2D the constraint 
equations become

In 3D the two constraints equations become

To avoid problems when the edge is directed in one of the coordinate axes directions, 
a third constraint is added. This constraint is a linear combination of the two earlier 
constraints:

This constraint is nonlinear, since a depends on the displacement.

A linear constraint is needed in the case of a geometrically linear problem to become 
independent of the solver. The linear relation for the displacement is

xdi ui xi+=

x u+ xd1 ta+=

a xd2 xd1–=

x u xd1–+ ay y v yd1–+ ax– 0=

x u xd1–+ az z w zd1–+ ax– 0=

y v yd1–+ az z w zd1–+ ay– 0=

y v yd1–+ ax x u xd1–+ ay– 0=
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 (10-4)

where uax is the axial displacement along the edge, and xn is a linear parameter along 
the edge

Eliminating uax from Equation 10-4 results in the following linear constraint in 2D

and the following three linear constraints in 3D:

 (10-5)

T H E O R Y  F O R  S P R I N G - D A M P E R  M A T E R I A L

Introduction
You can use a Spring-Damper Material to connect two points by an elastic spring, a 
viscous damper, or both. Such springs can be used in any structural mechanics physics 
interface, by adding a Truss interface. You can then set the degree of freedom names 
in the two interfaces to the same name, in order to share the same displacement fields.

u
u1 xn2 xn–  u2 xn xn1– +

xn2 xn1– 
------------------------------------------------------------------------ uax x2 x1– +=

xn
x x2 x1–  y y2 y1–  z z2 z1– + +

x2 x1– 2 y2 y1– 2 z2 z1– 2+ +
--------------------------------------------------------------------------------------------=

u1 xn2 xn–  u2 xn xn1– +

xn2 xn1– 
------------------------------------------------------------------------ u– y2 y1–  –

v1 xn2 xn–  v2 xn xn1– +

xn2 xn1– 
---------------------------------------------------------------------- v– x2 x1–  0=

u1 xn2 xn–  u2 xn xn1– +

xn2 xn1– 
------------------------------------------------------------------------ u– z2 z1–  –

w1 xn2 xn–  w2 p xn1– +

xn2 xn1– 
----------------------------------------------------------------------- w– x2 x1–  0=

v1 xn2 xn–  v2 xn xn1– +

xn2 xn1– 
---------------------------------------------------------------------- v– z2 z1–  –

w1 xn2 xn–  w2 xn xn1– +

xn2 xn1– 
-------------------------------------------------------------------------- w– y2 y1–  0=

v1 xn2 xn–  v2 xn xn1– +

xn2 xn1– 
---------------------------------------------------------------------- v– x2 x1–  –

u1 xn2 xn–  u2 xn xn1– +

xn2 xn1– 
------------------------------------------------------------------------ u– y2 y1–  0=
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The two points can move relative to each other in an arbitrary way as long as they do 
not coincide. The spring and damping forces act along the line between the current 
positions of the two connection points.

Figure 10-1: Conceptual sketch of the Spring-Damper Material.

Connection Points and Spring Length
The current position of the two endpoints, x1 and x2 can be written as

where X1 and X1 are the original positions of the two points, and u1 and u2 are their 
respective displacements. The initial spring length, l0, is

The current spring length, l, is

In the case of a geometrically linear analysis, the current spring length is linearized to

In addition to the initial geometrical distance between the two points you can specify 
an initial spring extension l0, so that the free length of the spring is

You can also specify the free length of the spring explicitly.

x1 X1 u1+=

x2 X2 u2+=

l0 X2 X1– X2 X1–  X2 X1– = =

l x2 x1–=

l
x2 x1–  X2 X1– 

l0
-----------------------------------------------------=

lf l0 l0–=
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The spring extension l is computed as the difference between the current spring 
length and the free length,

Deactivation
You can specify that the Spring-Damper Material should be deactivated under certain 
conditions. It can for example be active only in tension, or break at a certain 
elongation. In terms of implementation, this means that many expressions are 
multiplied by an activation indicator, iac. The activation indicator has the value 1 
when the component is active, and 0 when deactivated.

Spring and Damping Forces
The spring force is proportional to the spring constant k:

If k depends on the extension, so that the spring is nonlinear, it should be interpreted 
as a secant stiffness, that is

You can also specify the spring force as function of extension explicitly as

To create the expression for the function, use the built-in variable for the spring 
extension. It has the form <physicsTag>.<SpringNodeTag>.dl, for example 
truss.spd1.dl.

In a dynamic analysis, the viscous damping force is computed as

where c is the viscous damping coefficient. In frequency domain, it is also possible to 
specify a loss factor , and the total damping force will then be

The magnitude of the total force is

l l lf–=

Fs kl=

Fs k l  l=

Fs Fs l =

Fd c
td

d l =

Fd icl iFs+=

F Fs Fd+=
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The total forces in the global coordinate system, acting on the connection points are

In a geometrically linear case, the orientation of the force is kept fixed, so that

The contribution to the virtual work is

Spring and Damping Energies
In stationary and time-dependent analysis, the elastic energy in the spring is computed 
as

In a time-dependent analysis, the energy dissipated in the damper, Wd, is computed 
using an extra degree of freedom. The following equation is added:

In a frequency domain analysis, the elastic energy in the spring and the energy 
dissipated in the damper are computed as

These energy quantities represent the cycle average, and only the perturbation terms 
are included.

L O C A L  B U C K L I N G

In a truss model, each individual mesh element is assumed to be straight. A linear 
buckling analysis gives the buckling load for entire truss structure, but it cannot detect 
local buckling of individual members.

F2 F– 1 F–
x2 x1– 

l
-----------------------= =

F2 F– 1 F–
X2 X1– 

l
-------------------------= =

F2 u 2 u 1– 

Ws iac Fs l d

0

l

=

Wdd
td

------------ iacFd
l d
td

--------------=

Ws
1
4
---iacRe lindev Fs  conj lindev l   =

Wd
1
4
---iacRe lindev Fd  conj lindev l   =
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The buckling load for each member can however be directly computed from material 
and geometrical properties, and variables for this are available.

The critical load of an individual bar can be expressed as

 (10-6)

Here, E is Young’s modulus, Imin is the area moment of inertia in the weakest 
orientation of the cross section, and L is the length of the bar. K is called the effective 
length factor, and can be used to compensate for non-ideal end conditions. The value 
1 corresponds to the Euler 2 buckling case, in which both ends are pinned.

The failure index is computed as the ratio between the compressive axial force N and 
the critical load:

 (10-7)

A failure index exceeding 1 means that the buckling load is exceeded. A set of variables 
providing different measures of the utilization is listed in Table 10-1.

TABLE 10-1:  VARIABLES FOR LOCAL BUCKLING

DEFINITION DESCRIPTION

truss.lbFc Equation 10-6 Local buckling 
critical force

truss.lbf_i Equation 10-7 Local buckling 
failure index

truss.lbs_f 1/truss.lbf_i Local buckling 
safety factor

truss.lbm_s truss.lbs_f - 1 Local buckling 
margin of safety

truss.lbd_i if(truss.lbf_i>1, 1, 
0)

Local buckling 
damage index

Fc
2EImin

KL 2
-----------------------=

fi
N–

Fc
--------=
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Th e  T r u s s  I n t e r f a c e

The Truss (truss) interface ( ), found under the Structural Mechanics branch ( ) 
when adding a physics interface, is used for modeling slender elements that can only 
sustain axial forces. It can be used for analyzing truss works where the edges are 
straight, or to model sagging cables like the deformation of a wire exposed to gravity. 
It is available in 3D and 2D. Geometric nonlinearity can be taken into account.

The Truss interface can also be used for modeling springs and dashpots.

The default material model is Linear Elastic Material. With the Nonlinear Structural 
Materials Module, you can also model Plasticity and Shape Memory Alloys.

When this physics interface is added, these default nodes are also added to the Model 
Builder: Linear Elastic Material, Cross-Section Data, Free (a condition where points are 
free, with no loads or constraints), Straight Edge Constraint (to ensure that the points 
lie on a straight line between the endpoints of the edge or boundary), and Initial Values. 
Then, from the Physics toolbar, you can add other nodes that implement, for example, 
loads and constraints. You can also right-click Truss to select physics features from the 
context menu.

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is truss.

S T R U C T U R A L  T R A N S I E N T  B E H A V I O R

From the Structural transient behavior list, select Include inertial terms (the default) or 
Quasistatic. Use Quasistatic to treat the dynamic behavior as quasi static (with no mass 
effects; that is, no second-order time derivatives). Selecting this option gives a more 

For a detailed overview of the functionality available in each product, visit 
https://www.comsol.com/products/specifications/
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efficient solution for problems where the variation in time is slow when compared to 
the natural frequencies of the system. The default solver for the time stepping is 
changed from Generalized alpha to BDF when Quasistatic is selected.

D I S C R E T I Z A T I O N

The default is to use linear shape functions. If the truss elements share an edge with 
another structural mechanics interface, you may want to use quadratic shape functions 
instead, in order to get displacement compatibility.

D E P E N D E N T  V A R I A B L E S

The dependent variable (field variable) is for the Displacement field u which has two 
components (u, v) in 2D and three components (u, v, and w) in 3D. The name can be 
changed but the names of fields and dependent variables must be unique within a 
model.

Boundary, Edge, Point, and Pair Nodes for the Truss Interface

The Truss Interface has these boundary, edge, point, and pair nodes are available from 
the Physics ribbon toolbar (Windows users), Physics context menu (Mac or Linux 
users), or right-click to access the context menu (all users).

• Boundary, Edge, Point, and Pair Nodes for the Truss Interface

• Edge Load

• Theory for the Truss Interface

• Vibrating String: Application Library path 
Structural_Mechanics_Module/Verification_Examples/vibrating_string

• In-Plane and Space Truss: Application Library path 
Structural_Mechanics_Module/Verification_Examples/

inplane_and_space_truss

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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F E A T U R E S  A V A I L A B L E  F R O M  S U B M E N U S

Many features for the Truss interface are added from submenus in the Physics toolbar 
groups or context menu (when you right-click the node). The submenu name is the 
same in both cases. The submenus at the Edge level (3D) or Boundary level (2D) are

• Material Models

• Line and Volume Loads

• Mass, Spring, and Damper

• Line Constraints

The submenus at the Point level are

• Mass, Spring, and Damper

• More Constraints

• Pairs

L I N K S  T O  F E A T U R E  N O D E  I N F O R M A T I O N

These nodes (and subnodes) are described in this section (listed in alphabetical order):

• Antisymmetry

• Cross-Section Data

• Edge Load

• External Stress

• Hygroscopic Swelling

• Initial Stress and Strain

• Linear Elastic Material

• Pinned

• Point Mass

• Point Mass Damping

• Set Variables

• Spring-Damper Material

• Straight Edge Constraint

• Symmetry

• Thermal Expansion (for 
Constraints)

• Thermal Expansion (for Linear 
Elastic Material)
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These nodes are described for the Solid Mechanics or Beam interface:

Cross-Section Data

Use the Cross-Section Data node to describe the section for the truss elements on the 
selected edges.

C R O S S - S E C T I O N  D E F I N I T I O N

The default is User defined. Select Common sections to choose from predefined sections.

For User defined go to Basic Section Properties to continue defining the cross section.

For Common sections select a Section type — Rectangle, Box, Circular, Pipe, H-profile, 
U-profile, T-profile, C-profile, or Hat. Then go to the relevant section below to continue 

• Activation

• Added Mass

• Average Rotation

• Base Excitation

• Damping

• Free

• Gravity

• Harmonic Perturbation

• Initial Values

• Linearly Accelerated Frame1

• Phase

• Plasticity

• Point Load

• Point Load, Free

• Predeformation

• Prescribed Acceleration

• Prescribed Displacement

• Prescribed Velocity

• Rotating Frame1

• Shape Memory Alloy

• Spring Foundation

• Spring-Damper

1 This is selected from the Line and Volume Loads submenu for this interface.

If there are subsequent constraints on the same geometrical entity, the last 
one takes precedence.

In the COMSOL Multiphysics Reference Manual see Table 2-4 for links 
to common sections and Table 2-5 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.
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defining the section. Each Section type also has a figure showing the section and its 
defining dimensions.

Rectangle
Enter values or expressions for the following.

• Width in local y direction hy

• Width in local z direction hz

Box
Enter values or expressions for the following.

• Width in local y direction hy

• Width in local z direction hz

• Wall thickness in local y direction ty
• Wall thickness in local z direction tz

Circular
Enter a value or expression for the Diameter do.

Pipe
Enter values or expressions for the following.

• Outer diameter do

• Inner diameter di

For equations and a figure see:

• Rectangular Section

• Box Section

• Circular Section

• Pipe Section

• H-Profile Section

• U-Profile Section

• T-Profile Section

• C-Profile Section

• Hat Section
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H-profile, U-profile, or T-profile
Enter values or expressions for the following.

• Section height hy

• Flange width hz

• Flange thickness ty
• Web thickness tz

C-profile
Enter values or expressions for the following.

• Flange width hy

• Flange thickness tz

• Web height hz

• Web thickness ty

• Lip width wl

• Lip thickness tl

Hat
Enter values or expressions for the following.

• Crown width hv

• Crown thickness tc

• Web height hw

• Web thickness tw

• Flange width wf

• Flange thickness tf

B A S I C  S E C T I O N  P R O P E R T I E S

This section is only visible for a user-defined cross section.

Enter the cross-section Area A.

L O C A L  B U C K L I N G

Optionally, you can also provide data that makes it possible to assess the risk of local 
buckling of the individual bars in the structure.

Enter the Smallest principal moment of inertia, Imin. This is the area moment of inertia 
in the weakest direction of the cross section. This input is only required for a 
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user-defined cross section. For one of the predefined cross sections, the moment of 
inertia is computed from the geometrical properties.

Enter the Effective length factor, K. This is a multiplier to the physical length of the 
bars, intended for compensating for end conditions. The default value, 1, corresponds 
to a pure Euler 2 buckling case.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Cross-Section Data

Ribbon
Physics tab with Truss selected:

Edges>Truss>Cross-Section Data

Straight Edge Constraint

The Straight Edge Constraint controls the addition of an additional constraint, forcing 
the edge to be straight. The default is to add this constraint to all edges unless linear 
shape functions have been chosen in the Discretization section of the interface. Using 
this additional constraint removes the need to use a mesh with only one element per 
edge. Internal nodes will make the model singular because the truss element only has 
stiffness in the axial direction in a geometrically linear problem. The same problem is 
present also when using higher-order shape functions, even if there is only one element 
along an edge since there are internal nodes.

In the case of geometric nonlinearity, there is a stiffness in the transverse directions as 
long as the axial force is tensile.

The additional constraints increase the solution time, especially for large 3D and 
transient problems. The default mesh, when using Physics-controlled mesh in the Mesh 
node, is to use one element per edge only, so that the extra constraints are not needed 
unless the shape functions are of higher order.

See also Local Buckling.
T H E  T R U S S  I N T E R F A C E  |  1677



1678 |  C H A P T E
C O N S T R A I N T  A C T I V A T I O N

Select the Disable for linear discretization order check box to suppress the addition of 
the straight edge constraints when linear shape functions are used. This is the default 
state.

The Straight Edge Constraint is not applicable to edges that are embedded in a solid 
domain through the Embedded Reinforcement multiphysics coupling.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Line Constraints>Straight Edge Constraint

Ribbon
Physics tab with Truss selected:

Edges>Line Constraints>Straight Edge Constraint

Linear Elastic Material

The Linear Elastic Material node adds the equations for a linear elastic truss element, 
and an interface for defining the elastic material properties.

By adding the following subnodes to the Linear Elastic Material node you can 
incorporate many other effects:

• Thermal Expansion (for Linear Elastic Material)

• Hygroscopic Swelling

• Initial Stress and Strain

• External Stress

• Damping

• Plasticity

• Activation

• Safety

See also Theory for Straight Edge Constraint and Modeling Wires and 
Cables.
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L I N E A R  E L A S T I C  M A T E R I A L

Define the linear elastic material properties. These settings are the same as described 
under Linear Elastic Material for the beam interface.

G E O M E T R I C  N O N L I N E A R I T Y

In this section there is always one check box. Either Geometrically linear formulation or 
Include geometric nonlinearity is shown.

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation for all boundaries or edges. There are however some cases when you 
would still want to use a small strain formulation in a part of the structure. In those 
cases, select the Geometrically linear formulation check box. When selected, a small 
strain formulation is always used, independently of the setting in the study step. The 
default value is that the check box is cleared, except when opening a model created in 
a version prior to 4.3.

E N E R G Y  D I S S I P A T I O N

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

Select the Calculate dissipated energy check box as needed to compute the energy 
dissipated by Plasticity.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Material Models>Linear Elastic Material

Ribbon
Physics tab with Truss selected:

Edges>Material Models>Linear Elastic Material

Set Variables

Use the Set Variables subnode to Plasticity of a Linear Elastic Material to reset plasticity 
variables according to a Setting condition that you define. When the Setting condition is 
satisfied, the plasticity variables are reset to the specified values.
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S E T  V A R I A B L E S

Enter the Setting condition. This is a Boolean expression that will determine when the 
plastic variables are reset.

From the Equivalent plastic strain list, select Do not set or User defined. The default User 

defined value is zero. Depending on the type of plasticity model, set additional 
plasticity variables.

From the Plastic axial strain list, select Do not set or User defined. The default User 

defined values is zero.

If Armstrong-Frederick or Chaboche is selected from the Kinematic Hardening Model 
list, specify the values for the Back strain. From the Back strain list, select Do not set or 
User defined. The default User defined values is zero.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Material Models>Plasticity>Set Variables

Ribbon
Physics tab with Plasticity node selected in the model tree:

Attributes>Set Variables

Thermal Expansion (for Linear Elastic Material)

Use the Thermal Expansion subnode to add an internal thermal strain caused by changes 
in temperature.

M O D E L  I N P U T S

The Volume reference temperature Tref is the temperature at which there are no thermal 
strains. As a default, the value is obtained from a Common model input. You can also 
select User defined to enter a value or expression for the temperature locally.
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From the Temperature T list, select an existing temperature variable from another 
physics interface, if any such temperature variables exist, or select User defined to enter 
a value or expression for the temperature.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Select an Input type to specify how the thermal strain is defined. The default is Secant 

coefficient of thermal expansion, in which case the thermal strain is given by

where is the secant coefficient of thermal expansion, which can be temperature 
dependent. As a default, the Common model input. You can also select User defined to 
enter a value or expression.

When Input type is Tangent coefficient of thermal expansion, the thermal strain is given 
by

where t is the tangential coefficient of thermal expansion.

When Input type is Thermal strain, enter the thermal strain dL as function of 
temperature explicitly.

In all three cases, the default is to take values From material. Select User defined to enter 
an expression for the coefficient of thermal expansion or thermal strain.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Linear Elastic Material>Thermal Expansion

See also

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.

• Temperature-Dependent Material Data

th  T Tref– =

th t   d
Tref

T

 
 
 

exp 1–=
T H E  T R U S S  I N T E R F A C E  |  1681



1682 |  C H A P T E
Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:

Attributes>Thermal Expansion

Thermal Expansion (for Shape Memory Alloy)

Use the Thermal Expansion subnode to add an internal thermal strain caused by changes 
in temperature.

M O D E L  I N P U T S

The Volume reference temperature Tref is the temperature at which there are no thermal 
strains. As a default, the value is obtained from a Common model input. You can also 
select User defined to enter a value or expression for the temperature locally.

The current Temperature T of the alloy is defined in the parent Shape Memory Alloy 
node.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Select an Input type to specify how the thermal strain is defined. The default is Secant 

coefficient of thermal expansion, in which case the thermal strain is given by

here,  AA  MM is the volume average secant coefficient of thermal expansion, 
and A and M are the austenite and martensite volume fractions. The default Secant 

coefficient of thermal expansion for Austenite A and Secant coefficient of thermal 

expansion for Martensite M use values From material.

When Input type is Tangent coefficient of thermal expansion, the thermal strain is given 
by

See also

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.

th  T Tref– =

th t   d
Tref

T

 
 
 

exp 1–=
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where t  AtA  MtM is the volume average tangential coefficient of thermal 
expansion. The default Tangent coefficient of thermal expansion for Austenite tA and 
Tangent coefficient of thermal expansion for Martensite tM use values From material.

When Input type is Thermal strain, enter the Thermal strain for Austenite dLA and the 
Thermal strain for Martensite dLM as function of temperature explicitly. Then the temal 
strain of the alloy is computed from dL  AdLA  MdLM.

In all three cases, the default is to take values From material. Select User defined to enter 
a value or expression for the coefficient of thermal expansion or thermal strain.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Shape Memory Alloy>Thermal Expansion

Ribbon
Physics tab with Shape Memory Alloy node selected in the model tree:

Attributes>Thermal Expansion

Hygroscopic Swelling

Hygroscopic swelling is an internal strain caused by changes in moisture content. This 
strain can be written as

where h is the coefficient of hygroscopic swelling, cmo is the moisture concentration, 
and cmo,ref is the strain-free reference concentration. The temperature is assumed to 
be constant over the cross section of the truss element.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Linear Elastic Material>Hygroscopic Swelling

hs h cmo cmo,ref– =

The settings for the Truss interface are the same as described for the Beam 
interface (excluding the hygroscopic bending options). See Hygroscopic 
Swelling in the documentation for the Beam interface.
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Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:

Attributes>Hygroscopic Swelling

Initial Stress and Strain

You can add the Initial Stress and Strain subnode to the Linear Elastic Material, in order 
to specify the stress or strain state in the structure before applying any constraint or 
load. The values given are not initial values in the mathematical sense, but rather a 
contribution to the constitutive relation

I N I T I A L  S T R E S S  A N D  S T R A I N

Enter an Initial axial strain eni and Initial axial stress ni.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Linear Elastic Material>Initial Stress and Strain

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:

Attributes>Initial Stress and Strain

External Stress

You can add the External Stress subnode to the Linear Elastic Material, in order to 
specify an additional stress contribution which is not part of the constitutive relation. 

In many cases Initial Stress and Strain and External Stress are 
interchangeable when prescribing stresses, but you can find some more 
options in the latter.

For details about initial stresses and strains, see Inelastic Strain 
Contributions and Initial Stresses and Strains.
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The external stress can be added to the total stress tensor, or act only as an extra load 
contribution.

E X T E R N A L  S T R E S S

Select a Stress input — Stress tensor or Axial stress.

• When Stress tensor is selected, you enter the external stress in the form of Second 
Piola-Kirchhoff stress tensors. In the External stress tensor list, stress tensors 
announced by any physics interface will be shown, and also the entry User defined. 
When User defined is selected, you can enter the data for the External stress tensor 
Sext as Isotropic, Diagonal, or Symmetric depending on the properties of the tensor. 
The tensor components are interpreted in the global coordinate system, and are 
projected onto the tangential direction of the truss element. If a stress tensor 
announced by a physics interface is selected, the coordinate system setting is ignored 
— the orientation is handled internally. Choose a Contribution type — Add to stress 

tensor, Load contribution only, or Residual stress to determine the effect of the 
contribution.

• When Axial stress is selected, you enter a value or an expression for the Axial stress 
Sn,ext. Choose a Contribution type — Add to stress tensor, Load contribution only, or 
Residual stress or to determine the effect of the contribution.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Linear Elastic Material>External Stress

In many cases External Stress and Initial Stress and Strain are 
interchangeable when prescribing stresses. In Initial Stress and Strain, the 
given stress is however always added to the stress tensor.

Selecting a stress tensor announced by the same physics interface as where 
the External Stress node is added, will result in an error (‘Circular 
variable dependency detected’). This operation would imply that 
the computed stress depends on itself.

For theory, see External Stress.
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Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:

Attributes>External Stress

Spring-Damper Material

Use a Spring-Damper Material to model — between two points — an elastic spring, a 
viscous damper, or both. By adding a Truss interface with this material model, you can 
add springs and dashpots to any other structural mechanics physics interface.

S P R I N G - D A M P E R

Select a Spring type — Spring constant or Force as function of extension.

• For Spring constant enter a value for the spring constant k.

• For Force as function of extension enter an expression for the spring force Fs. The 
expression must be a function of the extension of the spring. The built-in variable 
for the spring extension has the form <physicsName>.<SpringNodeTag>.dl, for 
example truss.spd1.dl. The default expression is (1[N/m])*truss.spd1.dl, 
which corresponds to a linear spring with the stiffness 1 N/m.

To add viscous damping in a dynamic analysis, enter a value or expression for the 
Damping coefficient c.

To add loss factor damping, enter a value for the Loss factor damping .

F R E E  L E N G T H

The free length is the distance between the connection points when there is no force 
in the spring. Select an option from the list — Specify initial extension or Specify free 

length.

• For Specify initial extension enter a value for l0. The free length is computed as 
lf  l0  l0, where l0 is the initial distance between the connection points.

• For Specify free length enter a value for lf.

A C T I V A T I O N  C O N D I T I O N S

Select a Spring action — Bidirectional, Tension only, or Compression only.

Select the Deactivation check box to enter a Deactivation expression idac. The expression 
is treated as a Boolean expression, so that when it is evaluated to a nonzero value, the 
spring or damper is deactivated.
R  1 0 :  T R U S S



Select the Permanently deactivate check box if the spring is supposed to be removed 
permanently from the simulation once the deactivation condition is fulfilled for the 
first time.

As an example, if the spring should break at a certain extension, you can write an 
expression like truss.spd1.dl>0.12[m], and select the Permanently deactivate check 
box. If the check box is not selected, the spring would become active again when its 
connection points come close enough to each other.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Material Models>Spring-Damper Material

Ribbon
Physics tab with Truss selected:

Edges>Material Models>Spring-Damper Material

Prescribed Displacement

The Prescribed Displacement node adds an edge (3D), boundary (2D), or point (2D 
and 3D) condition where the displacements are prescribed in one or more directions. 
It is also possible set maximum and minimum limits for the displacements, so that for 
example a one-sided support can be modeled.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Specify the coordinate system to use for specifying the prescribed displacement.

P R E S C R I B E D  D I S P L A C E M E N T

Select a Notation — Standard or General.

• If a prescribed displacement is not activated in any direction, this is the 
same as a Free constraint.

• If only zero displacements are prescribed, this is the same as a Pinned 
constraint.
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Standard Notation
For the displacement in each direction, select a setting from the list — Free, Prescribed, 
or Limited. Select:

• Free (the default) to leave the displacement component unconstrained

• Prescribed to constrain the displacement component to a given value. Enter a scalar 
value for the component of the prescribed displacement u0.

• Limited to set a maximum and a minimum limit for the displacement component. 
Enter a scalar value for the component of the maximum displacement u0,max and 
the minimum displacement u0,min. By default, they are set to Inf and -Inf, which 
corresponds to no active constraint.

If any displacement component is set to Limited, an additional section Limited 

displacement is visible. Select the Method used to implement the weak inequality 
constraint — Penalty or Augmented Lagrangian. For both methods, enter a Penalty 

factor kp.

By default, the Penalty method is suggested, which in principle enforces the maximum 
and minimum limits for the displacement by adding nonlinear springs with a stiffness 
equal to kp when the limits are exceeded. This method is usually robust, but the 
accuracy is directly dependent on the chosen penalty factor.

The Augmented Lagrangian method adds extra degrees of freedom to improve the 
accuracy of the constraint. Here, the penalty factor is a numerical parameter, and has 
less impact on the accuracy of the constraint compared to when using the penalty 
method. The implementation of the augmented Lagrangian method puts no 
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restrictions on the solver sequence, but for good convergence, proper scaling of the 
extra degrees of freedom can be important.

General Notation
In 3D, 2D, or 2D axisymmetry, click the General notation to specify the displacements 
using a general notation that includes any linear combination of displacement 
components. For example, for 2D components, use the relationship

For H matrix H select Isotropic, Diagonal, Symmetric, or Full and then enter values as 
needed in the field or matrix. Enter values or expressions for the R vector R.

For example, to achieve the condition u = v, use the settings

The default value for the Penalty factor kp depends on what type of entity 
the Prescribed Displacement node is added to. In the Truss interface:

• For points, the default expression is 100*truss.Eequ*truss.area/
truss.<tag>.charLen

• For edges, the default expression is 100*truss.Eequ*truss.area/
truss.<tag>.charLen^2

In these expressions, truss is the tag of the Truss interface and <tag> is 
the tag of the Prescribed Displacement node. The variable 
truss.<tag>.charLen is by default equal to the length of the mesh 
element. 

Similarly, for the Wire interface:

• For points, the default expression is 100*wire.k_A/
wire.<tag>.charLen

• For edges, the default expression is 100*wire.k_A/
wire.<tag>.charLen^2

For details about setting maximum and minimum limits for the 
displacements, see Limited Displacement

H u
v

R=
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,

which force the domain to move only diagonally in the xy-plane.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Line Constraints>Prescribed Displacement

Truss>Prescribed Displacement (Point)
Wire>Line Constraints>Prescribed Displacement

Wire>Prescribed Displacement (Point)

Ribbon
Physics tab with Truss or Wire selected:

Edges>Line Constraints>Prescribed Displacement (3D)
Boundaries>Line Constraints>Prescribed Displacement (2D)
Points>Truss>Prescribed Displacement

H 1 1–

0 0
= R 0

0
=

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements in a 
frequency domain analysis of perturbation type.

• You can activate and deactivate this boundary condition by assigning it 
to a constraint group. See Load Cases in the Structural Mechanics 
Modeling chapter.

• You can assign the value of the prescribed displacement to a load 
group. See Load Cases in the Structural Mechanics Modeling chapter.
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Pinned

The Pinned node adds an edge (3D), boundary (2D), or point (2D and 3D) condition 
that makes the edge, boundary, or point fixed; that is, the displacements are zero in all 
directions.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Line Constraints>Pinned (Line)
Truss>Pinned (Point)

Ribbon
Physics tab with Truss selected:

Edges>Line Constraints>Pinned

Points>Truss>Pinned

Thermal Expansion (for Constraints)

Add the Thermal Expansion subnode to a constraint (Pinned or Prescribed Displacement) 
to prescribe a deformation of the constraint caused by changes in temperature of the 
surroundings. This makes it possible to reduce stresses caused by the boundary 
conditions.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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The thermal strain depends on the coefficient of thermal expansion , the temperature 
T, and the strain-free reference temperature Tref as

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain. This is a description of 
the thermal expansion of surroundings idealized by the constraints.

Select Inherit from edge to take the thermal expansion data from the domain being 
constrained. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual surrounding material has the same thermal expansion as the edge itself.

When Inherit from domain is not selected, enter:

• A value or expression for Temperature T, specifying the temperature distribution of 
the surrounding material. Any spatial variation must be an explicit function of the 
material frame coordinates. It is not possible to use a computed temperature 
distribution.

• The Coefficient of thermal expansion . As a default, values From material are used. 
This requires that a material has been assigned to the points where the constraint is 
active.
For User defined enter the coefficient of thermal expansion .

• A value or expression for the Volume reference temperature Tref which is the 
temperature at which there are no thermal displacements at the constraints.

Enter the coordinates of the Reference point, the point where the displacement is zero. 
The choice of reference point only affects the rigid body motion. If there are several 
different constraints with a Thermal Expansion subnode, the same reference point 
should usually be selected in all of them.

th  T Tref– =

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Pinned>Thermal Expansion

Truss>Prescribed Displacement>Thermal Expansion

Ribbon
Physics tab with Pinned or Prescribed Displacement node selected in the model tree:

Attributes>Thermal Expansion

Symmetry

The Symmetry node adds an edge (3D), boundary (2D), or point (2D and 3D) 
condition that defines a symmetry edge, boundary, or point.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes. The coordinate system is 
used in conjunction with the Axis to use as normal direction setting.

S Y M M E T R Y

Select an Axis to use as normal direction. This specifies the direction of the normal to 
the symmetry plane. Select 1, 2, or 3 for the first, second, or third axis in the selected 
coordinate system.

N O R M A L  D I R E C T I O N  C O N D I T I O N

You can allow a symmetry plane to move along its normal direction. This can be used 
to model some situations where you want a plane to remain strictly planar but still relax 
the property of it being fixed.

From the list, select No displacement, Free Displacement, Prescribed force, or Prescribed 

displacement.

The value No displacement gives a standard symmetry condition.

Select Free Displacement to allow the symmetry plane to translate in the normal 
direction. The displacement is determined by the criterion that there is no resulting 
reaction force in the normal direction.

Select Prescribed force to prescribe the total reaction force acting on the direction 
normal to the symmetry plane. Enter the Normal force Fn. The force is defined as 
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positive when acting along the outward normal of the symmetry plane. Setting the 
prescribed force to zero gives the same effect as using Free Displacement.

Select Prescribed displacement to prescribe the displacement in the direction normal to 
the symmetry plane. Enter the Normal displacement un0. Setting the prescribed 
displacement to zero gives the same effect as using No displacement.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

• Using Free Displacement, Prescribed force, or Prescribed displacement is 
only meaningful if the geometry selection corresponds to a single 
symmetry plane.

• When using Free Displacement or Prescribed force, an extra global 
degree of freedom is added for determining the displacement in the 
normal direction. This degree of freedom will have a name of the type 
<component>.<interface>.<symmetry_tag>.un, for example 
comp1.truss.sym1.un.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Line Constraints>Symmetry (Line)
Truss>More Constraints>Symmetry (Point)

Ribbon
Physics tab with Truss selected:

Edges>Line Constraints>Symmetry

Points>More Constraints>Symmetry

Antisymmetry

The Antisymmetry node adds an edge (3D), boundary (2D), or point (2D and 3D) 
condition that defines an antisymmetry edge, boundary, or point.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes. The coordinate system is 
used in conjunction with the Axis to use as normal direction setting.

A N T I S Y M M E T R Y

Select an Axis to use as normal direction. This specifies the direction of the normal to 
the antisymmetry plane.

• For 2D models, select 1 or 2 for the first or second axis, respectively.

• For 3D models, select 1, 2, or 3 for the first, second, or third axis, respectively.

When 
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Line Constraints>Antisymmetry (Line)
Truss>More Constraints>Antisymmetry (Point)

Ribbon
Physics tab with Truss selected:

Edges>Line Constraints>Antisymmetry

Points>More Constraints>Antisymmetry

Edge Load

Add an Edge Load as a force distributed along an edge (3D models) or boundary (2D 
models).

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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F O R C E

Select a Load type — Force per unit length, Force per unit volume, or Total force. Enter 
values or expressions for the components.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

TABLE 10-2:  

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY LEVEL

SPACE DIMENSION 
(COMPONENTS)

Force per unit length FL Nm edges

boundaries

3D (x, y, z)

2D (x, y)

Force per unit volume FV N/m3 edges

boundaries

3D (x, y, z)

2D (x, y)

Total force Ftot N edges

boundaries

3D (x, y, z)

2D (x, y)

• When Force per unit volume is selected, the given load is multiplied by 
the cross-section area. This option is useful for modeling body loads 
like gravity or centrifugal loads.

• After selecting a Load type, the Load list normally only contains User 

defined. When combining the Truss interface with another physics 
interface, it is also possible to choose a predefined load from this list.

For more information about live and dead loads, see Buckling Analysis.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Line and Volume Loads>Edge Load

Ribbon
Physics tab with Truss selected:

Edges>Line and Volume Loads>Edge Load

Point Mass

Use the Point Mass node to add a discrete mass that is concentrated at a point.

The Point Mass Damping subnode can be added to specify a mass-proportional 
damping.

P O I N T  M A S S

Enter a Point mass m.

F R A M E  A C C E L E R A T I O N  F O R C E S

Select the Exclude contribution check box to switch off the loads generated by this node 
when the frame is accelerated when using a Gravity, Rotating Frame, Linearly 
Accelerated Frame, or Base Excitation feature. The setting will also determine whether 
the node will contribute when computing mass properties.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.

For more information, see Computing Mass Properties.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Mass, Spring, and Damper>Point Mass

Wire>Mass, Spring, and Damper>Point Mass

Ribbon
Physics tab with Truss or Wire selected:

Points>Mass, Spring, and Damper>Point Mass

Point Mass Damping

Use the Point Mass Damping subnode to add damping to a Point Mass parent node.

P O I N T  M A S S  D A M P I N G

Enter a Mass damping parameter dM. This is the mass proportional term of a Rayleigh 
damping.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Truss>Point Mass>Point Mass Damping

Wire>Point Mass>Point Mass Damping

Ribbon
Physics tab with Point Mass node selected in the model tree:

Attributes>Point Mass Damping
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 11
W i r e
This chapter describes the Wire interface, which is found under the Structural 

Mechanics branch ( ) when adding a physics interface.

In this chapter:

• Modeling Wires and Cables

• Theory for the Wire Interface

• The Wire Interface
 1701
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Mode l i n g  W i r e s  and Cab l e s

Wires are thin one-dimensional structures with no bending stiffness. Ideal wires can 
only sustain tensile axial forces. Typically, wires act in a prestressed state. It is however 
also possible to model for example wires that are sagging under self-weight.

The wire elements have displacements as degrees of freedom and live on boundaries in 
2D and edges in 3D. Typical uses of the wire elements are:

• Prestressed cables.

• Drive belts.

• Cables that hang free, subjected to for example gravity.

The Wire interface supports the same study types as the Solid Mechanics interface.

Dependent Variables
The degrees of freedom (dependent variables) are the global displacements u, v, and 
w (3D only) in the global x, y, and z directions, respectively.

M O D E L I N G  W I R E S  A N D  C A B L E S

You use the Wire interface for modeling wires and cables, possibly sagging under 
gravity or other external loads. Below are some suggestions for how to model such 
structures efficiently:

• Most cable problems are geometrically nonlinear. The Wire interface will force any 
study to be geometrically nonlinear. A wire which is not in tension is not numerically 
stable. Physically, it wrinkles in an unpredictable manner. In order to start the 
analysis, you either have to add an initial stress or some weak springs.

• If there are no line or volume loads, the wire is straight. In this case, only one 
element is needed for the whole wire, since the force is constant.

• In some problems, there are large deformations, but low tensile stresses. This would 
for example be the case if you model a wire hanging free under self-weight (‘the 
catenary problem’). Such problems are numerically ill-conditioned. They can be 
solved, but you may have to use tight tolerances for the nonlinear solver and allow 
many iterations.
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Th eo r y  f o r  t h e  W i r e  I n t e r f a c e

Theory Background for the Wire Interface

The displacements in the Wire interface are represented by Lagrange shape functions.

S T R A I N - D I S P L A C E M E N T  R E L A T I O N

The axial strain n is calculated by expressing the global strains in tangential derivatives 
and projecting the global strains on the edge.

where t is the edge tangent vector and gT is defined as

The strains is expressed as Green-Lagrange strains, allowing large displacements and 
rotations.

The axial strain written out becomes

S T R E S S - S T R A I N  R E L A T I O N

The constitutive relation for a wire is uniaxial. Since wires in most cases do not have a 
homogeneous cross section, it is not meaningful to compute a stress. Rather, a force 
vs. strain relation is used. The axial force in tension, N, is computed as

n ttgTt=

gT

xT xyT xzT

xyT yT yzT

xzT yzT zT

=

ijT
1
2
---

xj
ui

T
xi

uj

T
xi

uk

T
xj

uk

T

+ +
 
 
 

=

n tx xTtx xyTty xzTtz+ +  +=

ty xyTtx yTty yzTtz+ +  +

tz xzTtx yzTty zTtz+ + 

N Nex kAn el,+ Nex kA n inel– += =

inel 0 th hs+ +=
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where

• kA is the axial stiffness of the wire

• n is the total axial strain

• n,el is the elastic axial strain

• inel is the sum of all inelastic strain contributions, such as:

- Initial strain, 0

- Thermal strain, th

- Hygroscopic strain, hs

• Nex is the sum of all extra axial force contributions such as:

- Initial axial force Ni

- External axial force Next

In a geometrically nonlinear analysis, the strains are interpreted as Green-Lagrange 
strains. It should be noted that while Green-Lagrange strains are formally not additive, 
it assumed that even if displacements and rotations are large, the axial strains are small.

The ideal wire will not be able to sustain compressive forces. In practice, it may wrinkle 
in an unpredictable manner when tension is lost. In order to maintain numerical 
stability, a small stiffness is instead used when in compression. The following 
expression is used for the force in this case:

where  is a stiffness reduction factor, and

The reduced compressive stiffness is constant, kA, below a certain compressive strain 
n,c. Between the two domains of constant stiffness, there is a transition region in 
which the stiffness drops exponentially, so that the strain-force relation always has a 
continuous derivative.

ex 0 ext+=

N kA n el, n c,–  1 1

---– 

 +         = n el, n c,

N kA e

n el,


--------------

1–
 
 
 
 

= n c, n el, 0 


n c,

ln
----------=
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I M P L E M E N T A T I O N

Using the principle of virtual work results in the following weak formulation

where the summation stands for summation over all points in the geometry. Here, 
stresses are not directly accessible. The volume integration must be replaced by a line 
integration.

W d nn– utFV+  Vd
V
 utFPi

i
+=

W ntestN– utest
t FL+  Ld

L
 utest

t FPi

i
+=
T H E O R Y  F O R  T H E  W I R E  I N T E R F A C E  |  1705



1706 |  C H A P T E
Th e  W i r e  I n t e r f a c e

The Wire (wire) interface ( ), found under the Structural Mechanics branch ( ) 
when adding a physics interface, is used for modeling cables or wires that can only 
sustain tensile axial forces. Geometric nonlinearity is always active for this interface, 
since the transverse stiffness of a wire is caused by its prestress.

The default material model is Elastic Wire.

When this physics interface is added, these default nodes are also added to the Model 
Builder: Elastic Wire, Free (a condition where points are free, with no loads or 
constraints), and Initial Values. Then, from the Physics toolbar, you can add other nodes 
that implement, for example, loads and constraints. You can also right-click Wire to 
select physics features from the context menu.

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is wire.

S T R U C T U R A L  T R A N S I E N T  B E H A V I O R

From the Structural transient behavior list, select Include inertial terms (the default) or 
Quasistatic. Use Quasistatic to treat the dynamic behavior as quasi static (with no mass 
effects; that is, no second-order time derivatives). Selecting this option gives a more 
efficient solution for problems where the variation in time is slow when compared to 
the natural frequencies of the system. The default solver for the time stepping is 
changed from Generalized alpha to BDF when Quasistatic is selected.

For a detailed overview of the functionality available in each product, visit 
https://www.comsol.com/products/specifications/
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D I S C R E T I Z A T I O N

The only available discretization is linear shape functions.

D E P E N D E N T  V A R I A B L E S

The dependent variable (field variable) is for the Displacement field u which has two 
components (u, v) in 2D and three components (u, v, and w) in 3D. The name can be 
changed but the names of fields and dependent variables must be unique within a 
model.

Boundary, Edge, Point, and Pair Nodes for the Wire Interface

The Wire Interface has these boundary, edge, point, and pair nodes are available from 
the Physics ribbon toolbar (Windows users), Physics context menu (Mac or Linux 
users), or right-click to access the context menu (all users).

F E A T U R E S  A V A I L A B L E  F R O M  S U B M E N U S

Many features for the Wire interface are added from submenus in the Physics toolbar 
groups or context menu (when you right-click the node). The submenu name is the 
same in both cases. The submenus at the Edge level (3D) or Boundary level (2D) are:

• Line and Volume Loads

• Mass, Spring, and Damper

• Line Constraints

• Boundary, Edge, Point, and Pair Nodes for the Wire Interface

• Edge Load

• Theory for the Wire Interface

Vibrating String: Application Library path Structural_Mechanics_Module/

Verification_Examples/vibrating_string

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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The submenus at the Point level are

• Mass, Spring, and Damper

• More Constraints

• Pairs

L I N K S  T O  F E A T U R E  N O D E  I N F O R M A T I O N

These nodes (and subnodes) are described in this section (listed in alphabetical order):

These nodes are described for the Solid Mechanics, Truss, Wire, or Beam interface:

• Antisymmetry

• Edge Load

• Elastic Wire

• Hygroscopic Swelling

• Initial Stress and Strain

• Pinned

• Symmetry

• Thermal Expansion (for 
Constraints)

• Thermal Expansion (for Elastic 
Wire)

• Activation

• Added Mass

• Average Rotation

• Base Excitation

• Damping

• Free

• Gravity

• Harmonic Perturbation

• Initial Values

• Linearly Accelerated Frame1

• Phase

• Point Load

• Point Load, Free

• Point Mass

• Point Mass Damping

• Predeformation

• Prescribed Acceleration

• Prescribed Displacement

• Prescribed Velocity

• Rotating Frame1

• Spring Foundation

• Spring-Damper

1 This is selected from the Line and Volume Loads submenu for this interface.

If there are subsequent constraints on the same geometrical entity, the last 
one takes precedence.
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Elastic Wire

The Elastic Wire node adds the equations for a linear elastic wire element, and an 
interface for defining the elastic material properties.

By adding the following subnodes to the Elastic Wire node you can incorporate many 
other effects:

• Thermal Expansion (for Elastic Wire)

• Hygroscopic Swelling

• Initial Stress and Strain

• Damping

• Activation

W I R E  P R O P E R T I E S

Enter the Axial Stiffness, kA, and Mass per unit length, L.

A D V A N C E D

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

In this section, you can tune how the stiffness is reduced under compression.

Enter the Compressive stiffness reduction factor, . The asymptotic stiffness under 
significant compressive strains is kA.

Enter the Transition region strain limit, c. The stiffness is reduced from the full stiffness 
at zero strain, to the value kA at the negative strain c. An exponential decay function 
is used.

In the COMSOL Multiphysics Reference Manual see Table 2-4 for links 
to common sections and Table 2-5 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.

For details, see also Stress-Strain Relation
T H E  W I R E  I N T E R F A C E  |  1709
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B A S I C  S E C T I O N  P R O P E R T I E S

Enter the Cross section area, A. The cross section area as such is not essential to the 
analysis. It is only used during result presentation. Note that wires sometimes have 
non-homogeneous cross sections, so the definition of a cross section area may not be 
obvious.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Wire>Elastic Wire

Ribbon
Physics tab with Wire selected:

Edges>Elastic Wire

Thermal Expansion (for Elastic Wire)

Use the Thermal Expansion subnode to add an internal thermal strain caused by changes 
in temperature.

M O D E L  I N P U T S

The Volume reference temperature Tref is the temperature at which there are no thermal 
strains. As a default, the value is obtained from a Common model input. You can also 
select User defined to enter a value or expression for the temperature locally.

From the Temperature T list, select an existing temperature variable from another 
physics interface, if any such temperature variables exist, or select User defined to enter 
a value or expression for the temperature.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Select an Input type to specify how the thermal strain is defined. The default is Secant 

coefficient of thermal expansion, in which case the thermal strain is given by

See also

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.

• Temperature-Dependent Material Data
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where is the secant coefficient of thermal expansion, which can be temperature 
dependent. As a default, the Common model input. You can also select User defined to 
enter a value or expression.

When Input type is Tangent coefficient of thermal expansion, the thermal strain is given 
by

where t is the tangential coefficient of thermal expansion.

When Input type is Thermal strain, enter the thermal strain dL as function of 
temperature explicitly.

In all three cases, the default is to take values From material. Select User defined to enter 
an expression for the coefficient of thermal expansion or thermal strain.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Wire>Linear Elastic Material>Thermal Expansion

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:

Attributes>Thermal Expansion

Hygroscopic Swelling

Hygroscopic swelling is an internal strain caused by changes in moisture content. This 
strain can be written as

th  T Tref– =

th t   d
Tref

T

 
 
 

exp 1–=

hs h cmo cmo,ref– =
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where h is the coefficient of hygroscopic swelling, cmo is the moisture concentration, 
and cmo,ref is the strain-free reference concentration. The temperature is assumed to 
be constant over the cross section of the wire element.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Wire>Elastic Wire>Hygroscopic Swelling

Ribbon
Physics tab with Elastic Wire node selected in the model tree:

Attributes>Hygroscopic Swelling

Initial Stress and Strain

You can add the Initial Stress and Strain subnode to the Elastic Wire, in order to specify 
the force or strain state in the structure before applying any constraint or load. The 
values given are not initial values in the mathematical sense, but rather a contribution 
to the constitutive relation

I N I T I A L  S T R E S S  A N D  S T R A I N

Enter an Initial axial strain en0 and Initial axial force Ni.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Wire>Elastic Wire>Initial Stress and Strain

Ribbon
Physics tab with Linear Elastic Material node selected in the model tree:

Attributes>Initial Stress and Strain

The settings for the Wire interface are the same as described for the Beam 
interface (excluding the hygroscopic bending options). See Hygroscopic 
Swelling in the documentation for the Beam interface.

For details about initial stresses and strains, see Stress-Strain Relation.
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Pinned

The Pinned node adds an edge (3D), boundary (2D), or point (2D and 3D) condition 
that makes the edge, boundary, or point fixed; that is, the displacements are zero in all 
directions.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Wire>Line Constraints>Pinned (Line)
Wire>Pinned (Point)

Ribbon
Physics tab with Wire selected:

Edges>Line Constraints>Pinned

Points>Wire>Pinned

Thermal Expansion (for Constraints)

Add the Thermal Expansion subnode to a constraint (Pinned or Prescribed Displacement) 
to prescribe a deformation of the constraint caused by changes in temperature of the 
surroundings. This makes it possible to reduce stresses caused by the boundary 
conditions.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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The thermal strain depends on the coefficient of thermal expansion , the temperature 
T, and the strain-free reference temperature Tref as

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain. This is a description of 
the thermal expansion of surroundings idealized by the constraints.

Select Inherit from edge to take the thermal expansion data from the domain being 
constrained. This should only be used when:

• The temperature and the thermal expansion coefficient do not have a spatial 
variation.

• The virtual surrounding material has the same thermal expansion as the edge itself.

When Inherit from domain is not selected, enter:

• A value or expression for Temperature T, specifying the temperature distribution of 
the surrounding material. Any spatial variation must be an explicit function of the 
material frame coordinates. It is not possible to use a computed temperature 
distribution.

• The Coefficient of thermal expansion . As a default, values From material are used. 
This requires that a material has been assigned to the points where the constraint is 
active.
For User defined enter the coefficient of thermal expansion .

• A value or expression for the Volume reference temperature Tref which is the 
temperature at which there are no thermal displacements at the constraints.

Enter the coordinates of the Reference point, the point where the displacement is zero. 
The choice of reference point only affects the rigid body motion. If there are several 
different constraints with a Thermal Expansion subnode, the same reference point 
should usually be selected in all of them.

th  T Tref– =

• Constraints and Thermal Expansion in the Structural Mechanics 
Modeling chapter.

• Thermal Expansion of Constraints in the Structural Mechanics Theory 
chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Wire>Pinned>Thermal Expansion

Wire>Prescribed Displacement>Thermal Expansion

Ribbon
Physics tab with Pinned or Prescribed Displacement node selected in the model tree:

Attributes>Thermal Expansion

Symmetry

The Symmetry node adds a point condition that defines a symmetry point.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes. The coordinate system is 
used in conjunction with the Axis to use as normal direction setting.

S Y M M E T R Y

Select an Axis to use as normal direction. This specifies the direction of the normal to 
the symmetry plane. Select 1, 2, or 3 for the first, second, or third axis in the selected 
coordinate system.

N O R M A L  D I R E C T I O N  C O N D I T I O N

You can allow a symmetry plane to move along its normal direction. This can be used 
to model some situations where you want a plane to remain strictly planar but still relax 
the property of it being fixed.

From the list, select No displacement, Free Displacement, Prescribed force, or Prescribed 

displacement.

The value No displacement gives a standard symmetry condition.

Select Free Displacement to allow the symmetry plane to translate in the normal 
direction. The displacement is determined by the criterion that there is no resulting 
reaction force in the normal direction.

Select Prescribed force to prescribe the total reaction force acting on the direction 
normal to the symmetry plane. Enter the Normal force Fn. The force is defined as 
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positive when acting along the outward normal of the symmetry plane. Setting the 
prescribed force to zero gives the same effect as using Free Displacement.

Select Prescribed displacement to prescribe the displacement in the direction normal to 
the symmetry plane. Enter the Normal displacement un0. Setting the prescribed 
displacement to zero gives the same effect as using No displacement.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

• Using Free Displacement, Prescribed force, or Prescribed displacement is 
only meaningful if the geometry selection corresponds to a single 
symmetry plane.

• When using Free Displacement or Prescribed force, an extra global 
degree of freedom is added for determining the displacement in the 
normal direction. This degree of freedom will have a name of the type 
<component>.<interface>.<symmetry_tag>.un, for example 
comp1.wire.sym1.un.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry Constraints

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Wire>More Constraints>Symmetry

Ribbon
Physics tab with Wire selected:

Points>More Constraints>Symmetry

Antisymmetry

The Antisymmetry node adds a point condition that defines an antisymmetry point.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes. The coordinate system is 
used in conjunction with the Axis to use as normal direction setting.

A N T I S Y M M E T R Y

Select an Axis to use as normal direction. This specifies the direction of the normal to 
the antisymmetry plane.

• For 2D models, select 1 or 2 for the first or second axis, respectively.

• For 3D models, select 1, 2, or 3 for the first, second, or third axis, respectively.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

Symmetry Constraints
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Wire>More Constraints>Antisymmetry

Ribbon
Physics tab with Wire selected:

Points>More Constraints>Antisymmetry

Edge Load

Add an Edge Load as a force distributed along an edge (3D models) or boundary (2D 
models).

F O R C E

Select a Load type — Force per unit length, or Total force. Enter values or expressions 
for the components.

L I N E A R  B U C K L I N G

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

You can activate and deactivate this boundary condition by assigning it to 
a constraint group. See Load Cases in the Structural Mechanics Modeling 
chapter.

TABLE 11-1:  

LOAD TYPE VARIABLE SI UNIT GEOMETRIC 
ENTITY LEVEL

SPACE DIMENSION 
(COMPONENTS)

Force per unit length FL Nm edges

boundaries

3D (x, y, z)

2D (x, y)

Total force Ftot N edges

boundaries

3D (x, y, z)

2D (x, y)

After selecting a Load type, the Load list normally only contains 
User defined. When combining the Wire interface with another physics 
interface, it is also possible to choose a predefined load from this list.
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If you are performing a linear buckling analysis with a combination of live and dead 
loads, select the Treat as dead load check box to indicate that the load contributions 
from this node are constant. The default is that a load is proportional to the load factor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Wire>Line and Volume Loads>Edge Load

Ribbon
Physics tab with Wire selected:

Edges>Line and Volume Loads>Edge Load

For more information about live and dead loads, see Buckling Analysis.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.

• You can specify this load to be a Harmonic Perturbation in a frequency 
domain analysis.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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 12
P i p e  M e c h a n i c s
This chapter describes the Pipe Mechanics interface, which you find under the 
Structural Mechanics branch ( ) when adding a physics interface.

In this chapter:

• Theory for the Pipe Mechanics Interface

• The Pipe Mechanics Interface
 1721
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Th eo r y  f o r  t h e  P i p e  Me chan i c s  
I n t e r f a c e

The Pipe Mechanics Interface theory is described in this section:

About Pipes

The Pipe Mechanics interface is intended for modeling slender pipes with arbitrary 
cross sections. It is based on beam theory, and the similarities with the Beam interface 
are large. The most important features that make the Pipe Mechanics interface 
different from the Beam interface are:

• In a pipe, the hoop stress caused by the internal pressure gives a significant 
contribution to the stress state.

• The hoop stress will cause a contraction of the pipe in the axial direction due to 
Poisson’s ratio effects.

• The mass of the enclosed fluid must be taken into account when computing gravity 
loads and dynamic properties. This effect is active only in the transverse direction of 
the pipe, but not in the axial direction.

• When working with thermal expansion, the temperature is assumed to have one 
value at the inside of the pipe and another value at the outside. There is thus no 
global bending temperature gradient causing a net moment over the cross section. 
Rather, there is local thermal stress gradient through the pipe wall.

• About Pipes

• Effects of Internal Pressure

• Effects of Thermal Expansion

• Stress Evaluation

• Connection Between Pipes and 
Structures

• Cross Sections
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Most of the theory of the Pipe Mechanics interface is shared with the Beam Interface.

Only the parts of the theory which is specific to pipes will be covered here. Since the 
by far most common cross section is a circular pipe, this geometry is on several 
occasions given a special treatment.

Effects of Internal Pressure

H O O P  S T R E S S

When an internal pressure is present in a pipe, it must be balanced by a net force in the 
circumferential direction. For a circular pipe, this stress component is often called hoop 
stress. For a thin-walled circular pipe, it is given by the well-known expression

where p is the pressure, R is the radius of the pipe, and t is the wall thickness.

In the documentation for the Beam interface:

• Shape Functions

• Geometric Nonlinearity

• Strain-Displacement/Rotation Relation

• Stress-Strain Relation

• Initial Load and Strain

• Geometric Variables

h
pR
t

--------=

The pressure p here is the gauge pressure, assumed to be positive. If the 
pressure in the pipe is given as an absolute pressure, then the external 
pressure (usually 1 atm) must also be supplied. It is assumed that the 
external pressure is small relative to the internal pressure, so that the stress 
distribution through the pipe wall is given only by the gauge pressure 
p = pinternal - pexternal.

In particular, the Pipe Flow interface operates with absolute pressures, so 
when running a combined analysis, it is important to include also the 
external pressure.
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For stress evaluation in a general cross section, the average (or membrane) hoop stress 
can be written as

where m is a dimensionless factor multiplying the pressure.

For a general thick-walled circular pipe, the average hoop stress is given by

where the inner and outer diameters have been introduced.

For a thick circular pipe, the hoop stress may however have a significant variation 
through the thickness (Figure 12-1).

Figure 12-1: Hoop stress distribution in a thick-walled pipe.

The peak circumferential stress is

The difference between the peak circumferential stress and the mean circumferential 
stress is

h m mp=

The average hoop stress is available in the variable pipem.shm.

m
R
t
----

di
do di–
-----------------= =

h max p
1

di
do
------ 
 

2
+

1
di
do
------ 
 

2
–

------------------------=
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Here, b is a cross section dependent factor, which is used to compute the peak stress 
due to internal pressure.

For noncircular pipe sections, the nonuniform stress distribution is more prominent. 
For such sections, the bending stress in the pipe wall can be much larger than the mean 
stress which balances the internal pressure. This is indicated in Figure 12-2.

Figure 12-2: Bending stress caused by internal pressure in rectangular pipe section.

For a rectangular pipe section, the bending stress can be estimated using beam theory. 
If the cross section is considered as a rectangular frame with constant thickness t, then 
the moment (per unit length) at the corner will be

Here, the length in the horizontal direction is Ly and the length in the vertical 
direction is Lz.

The nominal bending stress at the corner is thus

h b
p

1
di
do
------+

---------------- bp= =

The bending part of the hoop stress is available in the variable 
pipem.shb.

M p
12
------

Ly
3 Lz

3
+

Ly Lz+
--------------------=
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For normal values of wall thickness to section width ratios and corner fillet radii, this 
will give a good approximation.

The average stress, which is given by the force balance, is

Thus,

For rectangular pipe sections, the bending stress is thus always larger than the 
membrane stress.

P O I S S O N ’ S  R A T I O  E F F E C T

Due to the stresses and corresponding strains in the circumferential direction, there 
will be a coupling to axial deformation through Poisson’s ratio. The bending stresses 
within the pipe wall are self-equilibrating, and does not have a net effect. For a 
cylindrical pipe, it can actually be shown the radial and hoop stresses together cause a 
homogeneous axial strain throughout the wall. Thus, no local axial stresses are 
introduced. For a general cross section, the local axial stress caused by is assumed to be

h b
6M

t2
---------

p

2t2
--------

Ly
3 Lz

3
+

Ly Lz+
--------------------= =

The bending part of the hoop stress is available in the variable 
pipem.shb.

h m p
max Ly Lz 

t
-------------------------------=

The average hoop stress is available in the variable pipem.shm.

m
max Ly Lz 

t
-------------------------------=

b
1

2t2
--------

Ly
3 Lz

3
+

Ly Lz+
--------------------=
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The average hoop stress will however always cause an axial strain. Since the diameter 
of the pipe increases under an internal pressure, the pipe must, if the ends are free, 
contract. Equivalently, if the ends of the pipe are kept fixed, a tensile axial force is 
introduced. It can be shown that for any pipe cross section, this force is

where Af is the cross-section area of the fluid. Note that the force is independent of the 
geometry of the wall itself.

The corresponding axial strain in the case of free axial deformation is

This term is added as an initial strain to the constitutive relation.

Fluid Flow Forces

In addition to the pressure expanding the pipe, there can be loads caused by 
momentum transfer. These loads are of several types:

• Drag forces due to friction between the fluid and the pipe wall

• Centrifugal forces due to redirection of the flow in pipe bends

• Pressure forces in pipe bends

• Point forces caused by for example pressure drops in valves and changes in pipe cross 
section

D R A G  F O R C E

The drag force, Fd, always acts along the tangent of the pipe in the direction of the 
flow, t. Its contribution to the edge load per unit length is

n b h b=

The axial stress contribution from the bending part of the hoop stress is 
available in the variable pipem.shbn.

N 2pAf=

ap
2– pAf
EA

--------------------=

Fd
1
2
---f

D
fAfuf uf t=
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where the subscript 'f' stands for fluid properties. The Darcy friction factor fD is a 
dimensionless coefficient that is specified on the Fluid Properties feature under Pipe 
Flow interface. For most friction models, it is effectively proportional to 1/Re, where 

 is the local Reynolds number in the flow. Thus, the resulting 
magnitude of the drag force becomes proportional to the velocity.

In the Pipe Flow interface, Fd is computed and is made available for the Pipe 
Mechanics interface.

C E N T R I F U G A L  F O R C E

The centrifugal force contribution to the edge load per unit length is

where the curvature vector is computed as a derivative of the edge tangent with respect 
to the length parameter

This vector is perpendicular to the tangent, and it points toward the local center of 
curvature. The centrifugal force acts in the direction opposite to the vector.

In the Pipe Flow interface, Fc is computed and is made available for the Pipe 
Mechanics interface.

P R E S S U R E  F O R C E

In curved pipes, the pressure force contribution to the edge load per unit length is

where po is the exterior pressure on the outside of the pipe.

In the Pipe Flow interface, Fp is computed and is made available for the Pipe 
Mechanics interface.

J U N C T I O N  P O I N T  F O R C E S

Point loads are related to the momentum change due to the flow alteration at junction 
points. For each junction, the force can be computed as a jump in the quantity 

. Thus, the resulting point load can be written as

Re f uf dh f=

Fc fAfuf
2kn–=

kn
t
s
-----=

Fp pf po– Afkn–=

pf po– fuf
2

+ Aft
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where the summation is performed over all pipe-ends at the junction point, and sn 
stands for either plus or minus sign depending on the flow direction.

Effects of Thermal Expansion

Temperature changes in the pipe has several effects. A homogeneous change in 
temperature will cause the pipe to extend or shrink in the axial direction. When there 
is a temperature gradient through the pipe wall, the mean temperature will control this 
deformation in an average sense. There will however also be local strain and stress 
states caused by the temperature variation. These stresses can be significant.

For analysis of cases with thermal expansion, it is assumed that the inside of the pipe 
has a temperature Ti, which is constant along the perimeter. As a first approximation, 
this would be the temperature of the fluid. In reality, there is a temperature jump given 
by the heat transfer coefficient. Similarly, it is assumed that the outside of the pipe has 
a temperature To, which is constant along the perimeter. Note that if there is insulation 
around the pipe, To represents the temperature of the pipe wall inside the insulation.

The variation of the temperature through the wall is treated slightly differently for 
circular cross section and in the general case. In the circular pipe, the temperature has 
a distribution which can be determined from analytically.

G E N E R A L  C R O S S  S E C T I O N

For a general cross section, it is assumed that the temperature varies linearly through 
the pipe wall, and that the average temperature is

If the coefficient of thermal expansion is temperature dependent, it is assumed that its 
variation through the pipe wall is linear.

Define

Fjp sn pf po– fuf
2

+ Aft n
n
=

One needs to use the functionality available on the Fluid-Pipe Interaction 
coupling node to apply the junction forces.

Tm
Ti To+

2
------------------=
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The average axial thermal strain is then

C I R C U L A R  P I P E

For a circular pipe, the heat transfer problem can be solved analytically. The radial 
temperature distribution is given by

As long as the wall thickness is small, the temperature distribution through the 
thickness is close to linear.

If the coefficient of thermal expansion is temperature dependent, the exact axial strain 
has to be computed using an integral through the thickness of the material. In order 
to avoid performing such integration in runtime, a linear variation of the coefficient of 
thermal expansion with the radial coordinate is assumed,

The averaged axial thermal strain is then

Evaluation of the integral gives

i  Ti =

o  To =

 o i–=

T To Ti–=

th i Ti Tref–  1
2
---  Ti Tref–  iT+  1

3
---T+ +=

T r  Ti T

r
ri
----ln

ro
ri
-----ln

-----------+=

 r  i
 r ri– 

ro ri–
--------------------------+=

th
2

ro
2 ri

2
–

----------------  r  T r  Tref– r rd

ri

ro

=
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B E N D I N G  T H E R M A L  S T R E S S

The temperature gradient through the pipe wall causes a local bending stress state, 
both in the axial direction and in the hoop direction. This contribution to the stress is 
taken into account only for the circular pipe section.

The peak value of the bending stress is calculated as

Stress Evaluation

Since the basic result quantities for beams are the integrated stresses in terms of section 
forces and moment, special considerations are needed for the evaluation of actual 
stresses. When combining various stress contributions, a conservative approach is taken 
in every step.

A X I A L  S T R E S S

The axial stress in the pipe has the following contributions:

• Axial force

• Bending moment

• Local bending stress caused by internal pressure

• Local bending stress caused by temperature gradient through the wall.

th i Ti Tref–  1
3
--- Ti Tref–  1

ro
ro ri+
---------------+ 

 + +=

iT
ro

2

ro
2 ri

2
–

---------------- 1

2
ro
ri
----- 
 log

-----------------------–

 
 
 
 
 

+

T
ro

2 2ro 3ri– 

3 ro ri– 2 ro ri+ 
------------------------------------------------

4ro
2 5ri

2
– 5rori–

18 ro
2 ri

2
– 

ro
ri
----- 
 log

------------------------------------------------–

 
 
 
 
 

t,nb t,hb
i o+ T
2 1 – 

-------------------------------
ro

2

ro
2 ri

2
–

---------------- 1

2
ro
ri
----- 
 log

-----------------------–= =
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Normal Force
The normal stress from axial force is constant over the section, and computed as

Bending Moments
The normal stress from bending is computed in four user-selected points (ylk, zlk) in 
the cross section as

In 2D, only two points, specified by their local y-coordinates are used.

Internal Pressure
The effects of internal pressure are described in detail in Effects of Internal Pressure 
above. The axial bending stress component n,b is always positive due to the 
assumption that the gauge pressure is positive. In reality, it represents a bending stress, 
so the true sign differs between the inside and the outside of the pipe.

Thermal Expansion
The effects of thermal expansion are described in detail in Effects of Thermal 
Expansion above. The axial bending stress component t,b is always positive due its 
definition. In reality, it represents a bending stress, so the true sign differs between the 
inside and the outside of the pipe.

Total Axial Stress
The total axial stress in evaluation point k is defined as

If the true distributions of n,b and t,b have opposite signs, this will be conservative.

The peak normal stress in the section is defined as

A special method is used for the Pipe cross section. Since there are no extreme 
positions around a circle, a maximum bending stress is computed as

n
N
A
----=

bk
Mlyzlk

Iyy
-----------------

Mlzylk
Izz

-----------------–=

k = bk n n,b t,nb+ sign bk n+ + +

n max, max k =

b max,
do Mly

2 Mlz
2

+

2Izz
------------------------------------=
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where do is the outer diameter. This value replaces the stress from the stress evaluation 
points (bk) in maximum stress expressions, thus ensuring that the correct peak stress 
is evaluated irrespective of where it appears along the circumference.

H O O P  S T R E S S

The hoop stress acts in a direction which is orthogonal to the axial stress. Hoop stresses 
can be caused by the internal pressure and by a temperature gradient through the 
thickness.

Internal Pressure
The hoop stress caused by the pressure is

where m and b are defined in Effects of Internal Pressure. The bending part is defined 
as positive. In reality, it represents a bending stress, so the true sign differs between the 
inside and the outside of the pipe. Under the assumption of a positive gauge pressure, 
the positive sum will however exist on either the inner or the outer boundary.

Thermal Expansion
The temperature gradient stress is caused by difference in thermal strain between the 
inside and the outside. The details are discussed in Effects of Thermal Expansion.

The total hoop stress is computed as

The following variables are used for the axial stress:

• Stress caused by axial force, n: pipem.sn

• Stress caused by bending moments, bk(evaluation points 1-4): 
pipem.sb1, …, pipem.sb4

• Axial stress from gauge pressure, n,b: pipem.shb

• Axial stress from temperature gradient, t,b: pipem.shb

• Total axial stress in evaluation points, k: pipem.s1, …, pipem.sb4

• Maximum axial stress, max: pipem.smax

h p h m h b+ p m b+ = =

h.max h p t,hb+=
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S H E A R  S T R E S S

The shear stress from twist in general has a complex distribution over the cross section. 
The maximum shear stress due to torsion is defined as

where Wt is the torsional section modulus. This result is available only in 3D.

The section shear forces are computed in two different ways depending on the beam 
formulation. For Euler-Bernoulli theory, the section forces proportional to the third 
derivative of displacement, or equivalently, the second derivative of the rotation.

where Tlz is available only in 3D. In the case of Timoshenko theory shear force is 
computed directly from the shear strain.

The average shear stresses are computed from the shear forces as

 (12-1)

Since the shear stresses are not constant over the cross section, the maximum shear 
stresses are also available, using section dependent correction factors:

 (12-2)

As the directions and positions of maximum shear stresses from shear and twist are not 
known in a general case, upper bounds to the shear stress components are defined as

t max,
Mlx
Wt

-------------=

Tlz EIyy
2ly

s2
-------------=

Tly E– Izz
2lz

s2
-------------=

sz ave,
Tlz
A

--------=

sy ave,
Tly
A

--------=

sz max, zsz ave,=

sy max, ysy ave,=

xz max, sz max, t max,+=

xy max, sy max, t max,+=
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E Q U I V A L E N T  S T R E S S

The maximum von Mises equivalent stress for the cross section is then defined as

Since the maximum values for the different stress components in general occur at 
different positions in the cross section, the equivalent stress thus computed is a 
conservative approximation.

The Tresca equivalent stress is computed from the principal stresses. Determining the 
principal stresses is however a nontrivial operation. The first assumption is that the 
through-thickness direction is a principal orientation with zero principal stress. This is 
consistent with ignoring the radial stress in the von Mises stress expression.

For the remaining axial-hoop plane a Mohr’s circle argument is used. The two 
non-zero principal stresses in that plane are computed for evaluation point k as

The principal stresses are ordered in descending order, and the Tresca stress is obtained 
as the highest value in any of the evaluation points.

mises n max
2 h max

2 3xy max,
2 3xz max,

2
+ + +=

1 2
k 1

2
--- k h,max k h,max– 2 4 xy max,

2 xz max,
2

+ ++ =

tresca max 1
k 3

k
– =

The following variables are used for the equivalent and principal stresses:

• von Mises equivalent stress, mises: pipem.mises

• Tresca equivalent stress, tresca: pipem.tresca

• First principal stress, 1k (evaluation points 1-4): pipem.sp1_1, …, 
pipem.sp1_4

• First principal stress, 2k (evaluation points 1-4): pipem.sp2_1, …, 
pipem.sp2_4

• First principal stress, 3k (evaluation points 1-4): pipem.sp3_1, …, 
pipem.sp3_4
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Connection Between Pipes and Structures

This section describes the theory and assumption behind the Structure-Pipe 
Connection multiphysics coupling. The coupling is an extension of the transition type 
couplings in Solid-Beam Connection and Shell-Beam Connection to also account for 
radial deformation of the pipe caused by the fluid pressure and the temperature 
distribution over the cross section. For a more general background to the coupling of 
beam type elements to solids and shells, see Connection Between Shells and Solids and 
Connection Between Shells and Beams in the Shell documentation.

When connecting a pipe to a solid domain it is assumed that the pipe cross section is 
circular, and that no warping occurs. The connection thus, on the intersecting 
boundaries of the solid domain, adds the following constraint equation

 (12-3)

where us is the displacement of the solid, s is Poisson’s ratio of the solid, up is the 
displacement of the pipe, p is the rotation of the pipe, r the distance from the center 
of the pipe, and eyl and ezl are the base vectors of the local yl-axis and zl-axis. The first 
four terms in Equation 12-3 are identical to the transition type coupling in the 
Solid-Beam Connection, while the last one is added to account for the fluid pressure 
and the temperature difference in the pipe. The radial displacement uradial included 
in Equation 12-3 is computed from the radial deformation ur of the pipe as

where T is a matrix the describes the transformation from the local coordinates of the 
pipe to global coordinates. Above, dy and dz are the distances, in local coordinates, 
and R is the radial distance from the center of the pipe. The radial displacement is given 
by

 (12-4)

where Es is Young’s modulus of the solid, p is its coefficient of thermal expansion, Ri 
and Ro are its inner and outer radii, and Tref is its volume reference temperature. The 

us up p r s xl,s yld 
 – eyl s xl,s zld 

 ezl– uradial–+=

uradial TT 0
urdy

R
------------

urdz
R

------------ 
 
 
 
=

ur
R
Es
------ S s SR SZ+ –  Rp Tin Tref– Tout Tin– 

R
Ri
------ 
 log

Ro
Ri
------- 
 log

---------------------++=
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stresses in the pipe due to the temperature difference between the inside and outside 
temperatures Tin and Tout, and the fluid pressure p on the inside surface of the pipe 
are given by the following analytical expressions

When the structure comes from a Shell interface, additional constraints are added for 
the rotational degrees of freedom as is done for the Shell-Beam connection, so that

where a is the shell normal displacement, and t1 and t1 are the shell tangents. Also, 
the expression for the radial deformation ur in Equation 12-4 is simplified, and it is for 
a shell connection given by

Moreover, the expressions for stresses in the pipe simplifies to the thin pressure vessel 
approximation, so that

SR

p
Ri
Ro
------- 
 

2

1
Ri
Ro
------- 
 

2
–

------------------------ 1
Ro

2

R2
-------–

 
 
 

Tout Tin– p
Es

2 1 s– 
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1
Ri
R
------ 
 

2
–

1
Ri
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------- 
 

2
–
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R
Ri
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 log

Ro
Ri
------- 
 log

---------------------–+=

S

p
Ri
Ro
------- 
 

2

1
Ri
Ro
------- 
 

2
–
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2

R2
-------+

 
 
 

Tout Tin– p
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2 1 s– 
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1
Ri
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 
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+

1
Ri
Ro
------- 
 
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–
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 log
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 log
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 
 
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 
 
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 

2
–
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 
 
 
 
 

–=

p t1 a t2 0=+

p t2 a t1 0=–

ur
R
Es
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Here sp and sT are scaling factors, which are necessary to avoid abrupt changes in 
uradial.

Cross Sections

C I R C U L A R  S E C T I O N

Figure 12-3: Geometry of a circular cross section. The diagram also displays in COMSOL 
Multiphysics when this option is selected.

TABLE 12-1:  CIRCULAR SECTION CONSTANTS

PROPERTY FORMULA REMARKS

A

Izz

S sp
pRi
d

--------- sT Tout Tin– 
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2 1 s– 
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–
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TABLE 12-1:  CIRCULAR SECTION CONSTANTS
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S Q U A R E  S E C T I O N

Figure 12-4: Geometry of a square shaped cross section. The diagram also displays in 
COMSOL Multiphysics when this option is selected.

TABLE 12-2:  SQUARE SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS

A

Izz

ez 0

y

y

Iyy Izz

ey 0

z y

z y

J Thin-walled 
approximation

Wt Thin-walled 
approximation
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– A
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---------------------------
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Figure 12-5: Geometry of a rectangular cross section. The diagram also displays in 
COMSOL Multiphysics when this option is selected.

p1

p2

p3

p4

re

TABLE 12-3:  RECTANGULAR SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS

A

Izz

ez 0

TABLE 12-2:  SQUARE SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS

hi 2t+ –

2
-------------------------

hi 2t+ –

2
------------------------- 

 

hi 2t+ 
2

----------------------
hi 2t+ –

2
------------------------- 

 

hi 2t+ 
2

----------------------
hi 2t+ 

2
---------------------- 

 

hi 2t+ –

2
-------------------------

hi 2t+ 
2

---------------------- 
 

hi
2
-----

2 hitz wi+ ty  4tytz+

tzhi
3 ty

3 wi 2tz+ +

6
-------------------------------------------------

ty wi 2tz+  hi ty+ 2

2
-------------------------------------------------------+
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y

y

Iyy

ey 0

z

z

J Thin-walled 
approximation

Wt Thin-walled 
approximation

p1

p2

p3

p4

re

TABLE 12-3:  RECTANGULAR SECTION CONSTANTS

PROPERTY EXPRESSION REMARKS

hi 2ty+ 2 wi 2tz+  hi
2wi– A

16tzIzz
----------------------------------------------------------------------------------

2 hi 2ty+ tz
A

---------------------------------

tywi
3 tz

3 hi 2ty+ +

6
-------------------------------------------------

tz hi 2ty+  wi tz+ 2

2
-------------------------------------------------------+

wi 2tz+ 2 hi 2ty+  wi
2hi– A

16tyIyy
----------------------------------------------------------------------------------

2 wi 2tz+ ty
A

----------------------------------

2 hi ty+ 2 wi tz+ 2

hi ty+

tz
----------------

wi tz+

ty
-----------------+

-----------------------------------------------------

2 hi ty+  wi tz+  min ty tz 

hi 2ty+

2
--------------------–

wi 2tz+

2
---------------------– 

 

hi 2ty+

2
--------------------

wi 2tz+

2
---------------------– 

 

hi 2ty+

2
--------------------

wi 2tz+

2
--------------------- 

 

hi 2ty+

2
--------------------–

wi 2tz+

2
--------------------- 

 

hi 2ty+ wi 2tz++

4
-----------------------------------------------
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Th e  P i p e  Me chan i c s  I n t e r f a c e

The Pipe mechanics (pipem) interface ( ), found under the Structural Mechanics 
branch ( ) when adding a physics interface, is used for analysis of stresses and 
deformation in pipes. It can be modeled on 2D boundaries and 3D edges.

Two-noded straight elements with a Hermitian formulation are used. Two different 
assumptions about the physics can be used:

• Euler (or Euler-Bernoulli) theory. This formulation is intended for slender pipes, 
and do not take shear deformations into account.

• Timoshenko theory. In this formulation that extends the beam theory to ‘thick’ 
beams, shear deformations are taken into account. In a dynamic analysis, inertial 
effects from rotation are also included.

Among the computed results are displacements, rotations, stresses, strains, and section 
forces. In addition to giving the pipe properties explicitly in terms of area, moment of 
inertia, and so on, predefined common cross-section types are available. Cross section 
data to be used in Pipe Cross Section settings can be computed using The Beam Cross 
Section Interface.

The material in the pipe is assumed to be linear elastic.

When this physics interface is added, these default nodes are also added to the Model 
Builder: Fluid and Pipe Materials, Pipe Cross Section, Fluid Load, Free (a condition 
where points are free, with no loads or constraints), and Initial Values. Then, from the 
Physics toolbar, add other nodes that implement, for example, loads and constraints. 
You can also right-click Pipe Mechanics to select physics features from the context 
menu.

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 

The formulation in this physics interface is valid only for straight pipes. In 
pipe bends, the ovalization of the cross section will cause a reduction in 
stiffness and increase in stresses. These effects are not accounted for.
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<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is pipem.

B E A M  F O R M U L A T I O N

Select Euler-Bernoulli or Timoshenko to use the appropriate beam theory. Timoshenko 
theory, which is the default, includes the effects of shear flexibility and rotary inertia. 
Euler-Bernoulli theory is appropriate for pipes with cross section dimensions which are 
small relative to the length of the pipe, whereas Timoshenko theory can be used both 
for thick and slender pipes.

S T R U C T U R A L  T R A N S I E N T  B E H A V I O R

From the Structural transient behavior list, select Include inertial terms (the default) or 
Quasistatic. Use Quasistatic to treat the dynamic behavior as quasi static (with no mass 
effects; that is, no second-order time derivatives). Selecting this option gives a more 
efficient solution for problems where the variation in time is slow when compared to 
the natural frequencies of the system. The default solver for the time stepping is 
changed from Generalized alpha to BDF when Quasistatic is selected.

This is often the case when the time dependence exists only in some other physics, like 
a transient heat transfer problem causing thermal strains.

A D V A N C E D  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box. Normally these settings do not 
need to be changed.

You can chose how to group in the solver nodes the extra ODE variables added by 
some features.

Select the Rigid connectors check box to group in the solver node the variables added 
by the Rigid Connector feature.

The selection made in the Advanced Settings section can be overridden by the settings 
in the Advanced section of the Rigid Connector feature.

D I S C R E T I Z A T I O N

The discretization cannot be changed. The element has different shape functions for 
the axial and transversal degrees of freedom. The axial displacement and twist are 
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represented by linear shape functions, while the bending is represented by a cubic 
shape function (“Hermitian element”).

D E P E N D E N T  V A R I A B L E S

The Pipe Mechanics interface has these dependent variables (fields):

• The displacement field u, which has two components (u, v) in 2D and three 
components (u, v, and w) in 3D.

• The rotation angle , which has one component in 2D (th) and three components 
in 3D (thx, thy, and thz).

The names can be changed but the names of fields and dependent variables must be 
unique within a model.

The dependent variable names remain same in both a geometrically linear 
and a geometrically nonlinear analysis. Under geometric nonlinearity, the 
dependent variables are however not defined though shape functions. The 
equivalent shape function variables are (pipem.uLinx, pipem.uLiny, 
pipem.uLinz) and (pipem.thLinx, pipem.thLiny, pipem.thLinz). In 
this case, you will see the latter names under Dependent Variables in the 
Solver Configurations tree.

If needed, these shape variables can be used to write any extra 
contributions in the Pipe Mechanics interface.

If a physics interface that separates the material and spatial frame (Solid 
Mechanics is one such example) is added to the model, the coordinate 
indices change from (x, y, z) to (X, Y, Z) in the names of these variables.

• Boundary, Edge, Point, and Pair Nodes for the Pipe Mechanics 
Interface

• Theory for the Pipe Mechanics Interface

• Coupled Analysis of Flow and Stress in a Pipe: Application Library path 
Structural_Mechanics_Module/Pipe_Mechanics/pipe_flow_stress
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Boundary, Edge, Point, and Pair Nodes for the Pipe Mechanics 
Interface

The Pipe Mechanics Interface has these boundary, edge, point, and pair nodes 
available from the Physics ribbon toolbar (Windows users), Physics context menu (Mac 
or Linux users), or right-click to access the context menu (all users).

F E A T U R E S  A V A I L A B L E  F R O M  S U B M E N U S

Many features for the Pipe Mechanics interface are added from submenus in the 
Physics toolbar groups or context menu (when you right-click the node). The 
submenu name is the same in both cases.

The submenus at the Edge level (3D) or Boundary level (2D) are

• Material Models

• Line and Volume Loads

• Mass, Spring, and Damper

• Line Constraints

The submenus at the Point level are

• Connections

• Mass, Spring, and Damper

• More Constraints

• Pairs

L I N K S  T O  F E A T U R E  N O D E  I N F O R M A T I O N

These nodes (and subnodes) are described in this section (listed in alphabetical order):

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.

• Bend

• Fluid and Pipe Materials

• Fluid Load

• Gravity

• Pipe Cross Section

• Rigid Material

• Section Orientation

• Thermal Expansion (for Materials)
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These nodes are described for the Beam interface:

These nodes are described for the Solid Mechanics interface:

• Antisymmetry

• Edge Load

• External Stress

• Initial Stress and Strain

• Initial Values

• No Rotation

• Pinned

• Point Load

• Point Load, Free

• Point Mass

• Point Mass Damping

• Prescribed Acceleration

• Prescribed Displacement/Rotation

• Prescribed Velocity

• Rigid Connector

• Symmetry

• Thermal Expansion (for Constraints)

• Added Mass

• Center of Rotation Nodes

• Damping

• Fixed Constraint

• Free

• Predeformation

• Safety

• Spring Foundation

• Spring-Damper

If there are subsequent constraints specified on the same geometrical 
entity, the last one takes precedence. The exception is that the “Pinned” 
and “No Rotation” boundary conditions do not override each other since 
the degrees of freedom that they constrain are mutually exclusive.

In the COMSOL Multiphysics Reference Manual see Table 2-4 for links 
to common sections and Table 2-5 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.
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Pipe Cross Section

In the Pipe Cross Section node, you specify the geometric properties of the pipe’s cross 
section. In addition, some stress evaluation properties can be defined.

For 3D models, a default Section Orientation subnode is added, in which you specify 
the orientation of the principal axes of the section. You can add any number of Section 

Orientation subnodes if the same section appears with different spatial orientations in 
the structure.

P I P E  S H A P E

The default is Not Set. Select Circular, Square, Rectangular, or User defined. Then go to 
the relevant section below to continue defining the section

For User defined go to Wall Cross Section Properties and Stress Evaluation Properties 
to continue defining the cross section.

Circular
Enter values or expressions for the following.

• Outer diameter do

• Inner diameter di

Piping standards may require stresses to be evaluated using a reduced thickness to 
account for possible corrosion or erosion effects on the pipe’s wall. The thickness 
changes can occur on both the inner and the outer side of the wall. In the section 

This is required input data.

• Cross Sections

• Beam Cross Section

For equations and a figure see:

• Circular Section

• Square Section

• Rectangular Section
R  1 2 :  P I P E  M E C H A N I C S



Thickness reduction for stress evaluation enter values or expressions for the thickness 
reduction on the inner or outer sides:

• Thickness reduction, outside to

• Thickness reduction, inside ti

For both sides the default value is 0[%]*pipem.t_nom, where the variable 
pipem.t_nom is the nominal wall thickness given by do and di. The reduced inner and 
outer diameters are then defined as

Note that the reduced wall thickness only has an effect on the stress evaluation. That 
is, the flexibility of the piping system is still computed using nominal thicknesses. 
Internally, COMSOL Multiphysics creates separate variables for stiffness properties 
such as the cross-section area or the 2nd moment of inertia. All stress measures that 
can be evaluated in postprocessing are computed using the reduced wall diameters.

Square
Enter values or expressions for the following.

• Inner width hi

• Wall thickness t

Rectangular
Enter values or expressions for the following.

• Width in local y direction hi

• Width in local z direction wi

• Wall thickness in local y direction ty
• Wall thickness in local z direction tz

W A L L  C R O S S  S E C T I O N  P R O P E R T I E S

di s di 2ti+=

do s do 2to–=

This section is only available if User defined is selected as the Cross-Section 

Definition.
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The following table lists the basic section properties (some apply in 3D only). Enter 
values for these properties in the associated fields. The default values correspond to a 
circular cross section with a diameter of 0.1 m:

F L U I D  C R O S S  S E C T I O N  P R O P E R T I E S

Enter the Fluid cross section area, Af. This is the same as the internal cross section of 
the pipe.

S T R E S S  E V A L U A T I O N  P R O P E R T I E S

Select the Bending stress evaluation points — From section heights (the default) or From 

specified points.

COMMENT DESCRIPTION PARAMETER SI UNIT

2D and 3D Area of cross section A m2

2D and 3D Moment of inertia about local z-axis Izz m4

2D and 3D, 
Timoshenko 
beam

Shear correction factor along local y-axis y 1

3D only Distance to shear center in local z direction ez m

3D only Moment of inertia about local y-axis Iyy m4

3D only Distance to shear center in local y direction ey m

3D only Torsional constant J m4

3D only, 
Timoshenko 
beam

Shear correction factor along local z-axis z 1

For 3D models, the orientation of the cross section is given in Section 
Orientation. If the beam’s cross section is a square or circle (solid or tube), 
the area moments of inertia are the same independent of direction, so the 
beam is totally symmetric and the orientation of the principal axes of the 
cross section is not a problem unless you are interested in looking at 
results defined using the local coordinate system. Such results are bending 
moments, shear forces, local displacements and rotations.

This section is only available if User defined is selected as the Cross-Section 

Definition.
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Stress evaluation using only section heights is meaningful only when the cross section 
is symmetric.

The max shear stress factor determines the ratio between the peak and the average 
shear stress over the cross section as described by Equation 12-1 and Equation 12-2.

From Section Heights
For From section heights enter values in each field for the following parameters as 
needed for the space dimension:

From Specified Points
For From specified points enter values in the Evaluation points in local system table as 
needed for the space dimension. Then enter the following parameters in the applicable 
fields.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Pipe Mechanics>Pipe Cross Section

Ribbon
Physics tab with Pipe Mechanics selected:

Edges>Pipe Mechanics>Pipe Cross Section

COMMENT DESCRIPTION PARAMETER SI UNIT

2D and 3D Section height in local y direction hy m

2D and 3D Max shear stress factor in local y direction y 1

3D only Section height in local z direction hz m

3D only Torsional section modulus Wt m3

3D only Max shear stress factor in local z direction z 1

2D and 3D Pressure membrane stress factor m 1

2D and 3D Pressure bending stress factor b 1

COMMENT DESCRIPTION PARAMETER SI UNIT

2D and 3D Max shear stress factor in local y direction y 1

3D only Torsional section modulus Wt m3

3D only Max shear stress factor in local z direction z 1

2D and 3D Pressure membrane stress factor m 1

2D and 3D Pressure bending stress factor b 1
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Section Orientation

Use the Section Orientation subnode to define the orientation of a pipe cross section 
using a reference point or an orientation vector. There is always one Section Orientation 
subnode for each cross section, and as many Section Orientation subnodes as needed 
can be added if the same section appears with different spatial orientations in the 
structure.

The most common pipe sections are symmetric. In this case, the only effect of the 
section orientation specification is to simplify the interpretation of section forces. This 
means that you in many cases can keep the default settings in this node.

O R I E N T A T I O N  M E T H O D

Select the Reference point (the default) or Orientation vector. For Reference point, enter 
a Reference point defining local y direction P.

The coordinate system is defined as follows:

The local x direction is in the edge direction. The positive edge direction can be 
checked by vector plotting the local edge tangent direction. The coordinates of the 
reference point define the local xy-plane together with the beam axis. The local 
coordinate system (exl, eyl, ezl) is formed using the following algorithm:

This node is available for 3D components.

vzl exl p m– =

ezl
vzl
vzl
----------=

eyl ezl exl=
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Here, p is the reference point, and m is the midpoint of the pipe element. The 
definition of the local coordinate system is illustrated in Figure 12-6.

Figure 12-6: Local beam coordinate system defined by a reference point.

For the creation of a local coordinate system to be possible, the point cannot coincide 
with the edge or the edge extension. If this is attempted, an error message is generated.

Often a number of edges in a plane have the same orientation. It is then easy to select 
all edges and specify a point anywhere in the same plane, not coinciding with an edge 
or an edge extension.

For Orientation vector enter Orientation vector defining local y direction, V, and 
optionally the Rotation of vector around beam axis . The beam orientation is defined 
similarly to what is described above, with the difference that in this case the direction 
vector is explicitly defined whereas when an orientation point is used, the direction 
vector is obtained as the vector from the beam axis to the specified point. The local 
coordinate system (exl, eyl, ezl) is formed using the following algorithm:

The settings for the global coordinates of the point are 
[1000,1000,1000]. This is useful only for symmetric cross sections.



vzl exl V=

ezl
vzl
vzl
----------=

eyl ezl exl=
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The Rotation of vector around beam axis has the effect of rotating the given vector 
around the beam axis (using the right-hand rule) before it is used to define the local 
xy-plane. This simplifies the input for some cross sections, such as L-shaped profiles, 
where the principal axes have a direction which is skewed relative to a more natural 
modeling position. This can be written as

Here the directions denoted with a prime are unrotated beam axis orientations 
obtained by the procedure described above.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Pipe Mechanics>Pipe Cross Section>Section Orientation

Ribbon
Physics tab with Pipe Cross Section node selected in the model tree:

Attributes>Section Orientation

Bend

Use the Bend subnode to account for a local stiffness reduction and a local stress 
increase in a bent pipe. Curved pipe segments with a circular cross section tend to 
ovalize when loaded in bending. This three-dimensional effect cannot be resolved with 
classical beam theory, but it may have a significant effect on flexibility and stress results. 
It is therefore common practice to reduce the pipe stiffness in a bend with so-called 
flexibility factors. Similarly, to account for the stress increase due to shape changes of 
the cross section so-called stress intensification factors (SIFs) are applied. Both 
flexibility factors and SIFs often depend on geometric properties of the pipe such as 
the bend radius, mean wall radius, and the wall thickness. Sometimes also the internal 
pressure is accounted for, which tends to counteract the ovalization.

The Bend feature assumes that the bend is modeled with a circular arc. The local 
y direction of the bend points in the direction of the curvature vector; that is, bending 
about the y-axis is defined as out-of-plane bending, and bending about the z-axis is 

eyl e'yl cos e'zl sin–=

ezl e'zl cos e'yl sin+=
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defined as in-plane bending. Since Bend defines its own coordinate system, it overrides 
the Section Orientation node.

Figure 12-7: Local beam coordinate system for a bend.

In the Bend feature enter one or more of the following correction factors:

• Flexibility factor, in-plane bending ki

• Flexibility factor, out-of-plane bending ko

• Flexibility factor, torsion kt

• Flexibility factor, axial load ka

• Stress intensification factor, in-plane bending ii
• Stress intensification factor, out-of-plane bending io
• Stress intensification factor, torsion it
• Stress intensification factor, axial load ia

All flexibility factors and SIFs are by default equal to 1, that is, they have no effect on 
the calculation of displacements or stresses. All factors must by definition be greater or 
equal to 1. The truncation at the lower limit is automatically taken care of.

The flexibility factors do not directly reduce the stiffness properties, such as the 
moment of inertia Iyy and Izz, as this would affect the stress evaluation as well. Instead, 
the stiffness reduction is effectively performed when assembling the global stiffness 
matrix, where the element matrices of bent sections use reduced stiffness properties.
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Since the application of SIFs often differs between different standards, SIFs are applied 
only to a set of special stress quantities available for postprocessing. They are:

Other stress quantities must be modified manually if needed.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Pipe Mechanics>Pipe Cross Section>Bend

Ribbon
Physics tab with Pipe Cross Section node selected in the model tree:

Attributes>Bend

Fluid and Pipe Materials

The Fluid and Pipe Materials node is the main node in the Pipe Mechanics interface. 
This is where you enter the material data for both the pipe itself and the fluid contained 
in the pipe.

It is common that the material data for the fluid and the pipe material are in located in 
different Material nodes. Only one material can however be assigned to a certain edge. 
For this reason, the assignment of material data can be made not only using the 
material assigned to the edge, but by accessing any Material node present in the 
component.

By adding the following subnodes to the Fluid and Pipe Materials node you can 
incorporate many other effects:

• Thermal Expansion (for Materials)

• Initial Stress and Strain

• External Stress

.

Maximum in-plane bending stress: pipem.sbi_SIF.

Maximum out-of-plane bending stress: pipem.sbo_SIF.

Axial stress at centerline: pipem.sa_SIF.

Maximum torsional shear stress: pipem.ttmax_SIF.
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• Safety

• Damping

F L U I D  P R O P E R T I E S

For the structural analysis point of view, the only required property of the fluid is its 
mass density.

For input of the Density, f, select either From material or User defined. When using 
From material, also select the material to use in the Fluid material list. This list contains 
all materials present in the component, as well as the default choice Edge material. 
When Edge material is selected, the material currently assigned to the edge (2D: 
boundary) is used.

For User defined, enter a value or expression.

P I P E  P R O P E R T I E S

In this section, you define the linear elastic material properties.

If the option From material used for any of the material properties below, you must 
select a material from the Pipe material list. This list contains all materials present in the 
component, as well as the default choice Edge material. When Edge material is selected, 
the material currently assigned to the edge (2D: boundary) is used.

Specification of Elastic Properties for Isotropic Materials
From the Specify list, select a pair of elastic properties for an isotropic material. Select:

• Young’s modulus and Poisson’s ratio to specify Young’s modulus (elastic modulus) E 
and Poisson’s ratio .

• Young’s modulus and shear modulus to specify Young’s modulus (elastic modulus) E 
and the shear modulus G.

• Bulk modulus and shear modulus to specify the bulk modulus K and the shear 
modulus G.

• Lamé parameters to specify the Lamé parameters  and .

• Pressure-wave and shear-wave speeds to specify the pressure-wave speed 
(longitudinal wave speed) cp and the shear-wave speed (transverse wave speed) cs.

This is the wave speed for a solid continuum. In a pipe element, the actual 
speed with which a longitudinal wave travels is lower than the value given. 
When using this type of input the density must also be given.
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For each pair of properties, select from the applicable list to use the value From material 
or enter a User defined value or expression.

Each of these pairs define the elastic properties, and it is possible to convert from one 
set of properties to another.

Density
Define the Density  of the material. Select From material to take the value from the 
material or User defined to enter a value for the density.

G E O M E T R I C  N O N L I N E A R I T Y

If a study step is geometrically nonlinear, the default behavior is to use a large rotation 
formulation for all edges. Select the Geometrically linear formulation check box to 
always use a small rotation formulation for the edges that have this material assigned, 
irrespective of the setting in the study step.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Pipe Mechanics>Material Models>Fluid and Pipe Materials

Ribbon
Physics tab with Pipe Mechanics selected:

Edges>Material Models>Fluid and Pipe Materials (3D)
Boundaries>Material Models>Fluid and Pipe Materials (2D)

Rigid Material

Add the Rigid Material node and select one or more edges (2D: boundaries) to make 
them a rigid body. Rigid Material is a material model, with only two material properties: 
the mass densities of the pipe and the fluid.

It is common that the material data for the fluid and the pipe material are in located in 
different Material nodes. Only one material can however be assigned to a certain edge. 
For this reason, the assignment of material data can be made not only using the 

The density is needed for dynamic analysis or when the elastic data is given 
in terms of wave speed. It is also used when computing mass forces for 
gravitational or rotating frame loads, and when computing mass 
properties (Computing Mass Properties).
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material assigned to the edge, but by accessing any Material node present in the 
component.

By default, an Initial Values node is added (see Initial Values (Rigid Material)).

You can add functionality to the rigid domain through the following subnodes:

• Fixed Constraint (Rigid Material) to fully constrain the rigid domain.

• Prescribed Displacement/Rotation to prescribe the displacement of individual 
degrees of freedom.

• Applied Force (Rigid Material) to apply a force in given point.

• Applied Moment (Rigid Material) to apply a moment.

• Mass and Moment of Inertia (Rigid Material) to add extra mass and moment of 
inertia in a given point.

• Spring Foundation (Rigid Material) to add a translational or rotational spring or 
damper in a given point.

F L U I D  P R O P E R T I E S

In this section, you enter the density of the fluid.

For input of the Density, f, select either From material or User defined. When using 
From material, also select the material to use in the Fluid material list. This list contains 
all materials present in the component, as well as the default choice Edge material. 
When Edge material is selected, the material currently assigned to the edge (2D: 
boundary) is used.

For User defined, enter a value or expression.

P I P E  P R O P E R T I E S

In this section, you enter the density of the pipe material.

For input of the Density, , select either From material or User defined. When using From 

material, also select the material to use in the Fluid material list. This list contains all 
materials present in the component, as well as the default choice Edge material. When 
Edge material is selected, the material currently assigned to the edge (2D: boundary) 
is used.
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For User defined, enter a value or expression.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Pipe Mechanics>Material Models>Rigid Material

Ribbon
Physics tab with Pipe Mechanics selected:

Edges>Material Models>Rigid Material (3D)
Boundaries>Material Models>Rigid Material (2D)

Thermal Expansion (for Materials)

Use the Thermal Expansion subnode to add an internal thermal strain caused by changes 
in temperature. The thermal strain depends on the coefficient of thermal expansion 
(CTE) , the temperature T, and the strain-free reference temperature Tref as

The average increase in temperature will cause a global extension of the pipe, whereas 
a difference between the internal and internal temperature will cause local bending 
stresses.

M O D E L  I N P U T S

The Volume reference temperature Tref is the temperature at which there are no thermal 
strains. As a default, the value is obtained from a Common model input. You can also 
select User defined to enter a value or expression for the temperature locally.

The Temperature, T, input is not used. All temperature information is taken from the 
inputs in the Thermal Expansion Properties section. This field will, for formal reasons, 

All other settings for the Rigid Material node are described in the 
documentation for Rigid Material in the Solid Mechanics interface.

th  T Tref– =

The effects of a thermal gradient through the pipe wall is only taken into 
account for the Circular Section.
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be visible in the GUI indicating when the selected material has a temperature 
dependent coefficient of thermal expansion.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Specify the thermal properties that define the thermal strain.

From the Coefficient of thermal expansion  list, select From material to use the 
coefficient of thermal expansion from a material, or User defined to enter a value or 
expression for . When From material is used, then you need to specify which material 
to use by selecting a Pipe material. This list contains all materials present in the 
component, as well as the default choice Edge material. When Edge material is selected, 
the material currently assigned to the edge (2D: boundary) is used.

Enter the Inside temperature, Tin, and Outside temperature, Tout.

If the temperature is computed in the Heat Transfer in Pipes interface, 
there are two fundamentally different cases:

• The temperature gradient in the thickness direction is ignored. In this 
case you can use the temperature of the fluid as both inner and outer 
temperature, assuming that the temperature of the pipe is the same as 
that of the fluid. You can then select the temperature degree of 
freedom from the drop-down menus, typically Temperature (htp).

• The temperature difference in the thickness direction is computed, 
using Wall Heat Transfer in the Heat Transfer in Pipes interface. In this 
case, use the User defined option, and enter the variables defined in the 
Wall Layer node the for the inner and outer temperatures. These 
variables typically have names like htp.wht1.wall1.Tin and 
htp.wht1.wall1.Tout.

See also

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Pipe Mechanics>Fluid and Pipe Materials>Thermal Expansion

Ribbon
Physics tab with Fluid and Pipe Materials node selected in the model tree:

Attributes>Thermal Expansion

Gravity

When you add a Gravity node, gravity forces are applied to features in the physics 
interface with a density, mass, or mass distribution.

The fluid in the pipe is included in the direction transverse to the pipe, but not in the 
axial direction. To include the gravity load in the axial direction caused by mass of the 
fluid, you will typically have to add extra point loads at discontinuities like pipe bends.

The gravity acts in a fixed spatial direction. The load intensity is ggeg where g as a 
default is the acceleration of gravity (a predefined physical constant).

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a coordinate system in which the gravity field vector is represented. Only systems 
with space-independent axis directions are consistent with the assumptions of this 
feature. The Global coordinate system is selected by default.

G R A V I T Y

Enter the components for Gravity g. The default value is g_const, which is the 
gravitational acceleration constant at mean sea level having the value 9.80665 m/s2.

For 2D components, the default is that the gravity acts in the negative y direction. For 
3D components, the default is that the gravity acts in the negative z direction.

Only features that have a geometrical selection contribute to the mass 
forces. The Mass and Moment of Inertia nodes are global features and will 
not get any contribution from Gravity. You may need to add extra force 
contributions if such nodes are present.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Pipe Mechanics>Gravity

Ribbon
Physics tab with Pipe Mechanics selected:

Global>Gravity

Base Excitation

The Base Excitation node is used to represent an acceleration that is applied at all 
constraints. The main use case is for modal based analyses, in which case it is not 
possible to directly prescribe non-zero displacements at constrained degrees of 
freedom. It is however possible to use Base Excitation in any type of dynamic analysis.

Frame Acceleration Forces

In versions earlier than 6.1, the Gravity node was a feature with domain 
selection. In a model created in an earlier version, the old Gravity node 
remains unchanged. For such a model, it is recommended to use the 
newer functionality. There are different options:

• In most cases, switching to the new version of Gravity is appropriate.

• If the current Gravity node has a selection, which is not the entire 
model, or if it contains expressions that depends on the spatial 
coordinates, you can replace it by a Linearly Accelerated Frame node.

• If the current Gravity node is used to represent an acceleration imposed 
by the foundation, consider replacing it by a Base Excitation node.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed displacements and 
rotations in a frequency domain analysis of perturbation type.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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The fluid in the pipe is included in the direction transverse to the pipe, but not in the 
axial direction. To include the inertial load in the axial direction caused by mass of the 
fluid, you will typically have to add extra point loads at discontinuities like pipe bends.

When a structure is subjected to a base excitation, displacements, velocities, and 
accelerations are measured relative to a space fixed coordinate system.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

Select a coordinate system in which the base acceleration vector is represented. Only 
systems with space-independent axis directions are consistent with the assumptions of 
the base excitation.

B A S E  E X C I T A T I O N

Enter the Base acceleration, ab.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Pipe Mechanics>Base Excitation

Ribbon
Physics tab with Pipe Mechanics selected:

Global>Base Excitation

Linearly Accelerated Frame

When you add a Linearly Accelerated Frame node, inertial forces are applied to all 
selected features in the physics interface with a density, mass, or mass distribution. You 

A degree of freedom should either be constrained or free in the direction 
where the base excitation acts. Having a constraint acting in a local 
direction that is not either aligned or orthogonal to the excitation may 
produce unexpected results.

Only features that have a geometrical selection contribute to the mass 
forces. The Mass and Moment of Inertia nodes are global features and will 
not get any contribution from Base Excitation. You may need to add extra 
force contributions if such nodes are present.
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select objects having the highest geometrical dimension of the interface, and all objects 
with a lower dimensionality that belong to the selection are automatically included.

The fluid in the pipe is included in the direction transverse to the pipe, but not in the 
axial direction. To include the inertial load in the axial direction caused by mass of the 
fluid, you will typically have to add extra point loads at discontinuities like pipe bends.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes. It can be used when 
prescribing the direction of the frame acceleration.

L I N E A R L Y  A C C E L E R A T E D  F R A M E

Enter the components of the linear Frame acceleration, af. The force is computed as 
f  af and acts in a fixed spatial direction.

T I M E - D E P E N D E N T  S T U D Y

For a time-dependent study, you can compute the absolute velocity and absolute 
displacement postprocessing variables by checking the corresponding check boxes.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Pipe Mechanics>Line and Volume Loads>Linearly Accelerated Frame

Frame Acceleration Forces

Only features that have a geometrical selection contribute to the mass 
forces. The Mass and Moment of Inertia nodes are global features and will 
not get any contribution from Linearly Accelerated Frame. You may need 
to add extra force contributions if such nodes are present.

• You can add a Harmonic Perturbation subnode for specifying a 
harmonic variation of the values of the prescribed acceleration.

• You can assign this load to a load group. See Load Cases in the 
Structural Mechanics Modeling chapter.
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Ribbon
Physics tab with Pipe Mechanics selected:

Edges>Line and Volume Loads>Linearly Accelerated Frame

Fluid Load

Add a Fluid Load node to describe loads from the fluid on the pipe. Three types of loads 
can be entered: Internal pressure, drag force from the fluid, and centrifugal forces in 
pipe bends.

When computing the effect of the pressure loads, only the internal gauge pressure is 
important, as discussed in Effects of Internal Pressure. You can thus use two 
approaches:

• Enter the gauge pressure as internal pressure, and set the external pressure to zero. 
This is a common approach when the Pipe Mechanics interface is used standalone.

• Enter absolute pressures for both the internal and external pressures. When 
combining with the Pipe Flow interface this is the common case, since the pressure 
in that interface is often interpreted as being absolute.

F L U I D  L O A D S

Enter the Internal pressure, pi. The list contains any pressure variables announced by 
other physics interfaces, as well as the option User defined. For User defined, enter a 
value or an expression for the internal pressure.

Select a method for entering the External pressure, po, — User defined or Common model 

input.

For User defined, enter a value or an expression for the external pressure.

Select a method for entering the Drag force per unit length, Fd. The choice User defined 
is always available, in which case you enter a value or expression in the text field. A 
positive load acts in the same direction as the positive direction of the edge to which 

Since pressure loads are almost invariably part of a piping analysis, one 
Fluid Load node with all edges selected is included as default when the 
physics interface is created. It is however not mandatory to use it, and it 
will not give any contributions to the solution unless you have entered 
data in it. You can add any number of Fluid Load nodes.
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the load is applied. To visualize edge orientations, select Show edge direction arrows in 
the appropriate View node.

The Drag force per unit length list can also contain drag force variables announced by 
the Pipe Flow interface.

Select a method for entering the Centrifugal force per unit length, Fc. The choice User 

defined is always available, in which case you enter values or expressions in the text 
fields. In the User defined case, the input is similar to using an Edge Load.

The Centrifugal force per unit length list can also contain drag force variables announced 
by the Pipe Flow interface.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Pipe Mechanics>Line and Volume Loads>Edge Load

Ribbon
Physics tab with Pipe Mechanics selected:

Edges>Line and Volume Loads>Fluid Load (3D)
Boundaries>Line and Volume Loads>Fluid Load (2D)

See also

• Effects of Internal Pressure and Fluid Flow Forces in the Theory for 
the Pipe Mechanics Interface section

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.

You can assign this load to a load group. See Load Cases in the Structural 
Mechanics Modeling chapter.
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 13
M u l t i p h y s i c s  I n t e r f a c e s  a n d  C o u p l i n g s
The Structural Mechanics Module contains predefined multiphysics interfaces to 
facilitate easy setup of models with the most commonly occurring couplings. When 
adding a multiphysics interface, two or more physics interfaces are added to the 
model, together with one or more multiphysics couplings.

Given that your model already contains two interfaces that support a certain 
multiphysics coupling, you can also add this coupling separately. Some multiphysics 
couplings can only be added this way, and are not part of a multiphysics interface.

In this chapter:

• The Thermal Stress, Solid Interface

• The Thermal Stress, Shell Interface

• The Thermal Stress, Layered Shell Interface

• The Thermal Stress, Membrane Interface

• The Joule Heating and Thermal Expansion Interface

• Hygroscopic Swelling Coupling
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• Overview of Fluid-Structure Interaction Interfaces

- The Fluid-Solid Interaction Interface

- The Fluid-Solid Interaction, Fixed Geometry Interface

- The Fluid-Shell Interaction Interface

- The Fluid-Shell Interaction, Fixed Geometry Interface

- The Fluid-Membrane Interaction Interface

- The Fluid-Membrane Interaction, Fixed Geometry Interface

- The Fluid-Pipe Interaction, Fixed Geometry Interface

- The Solid Thin-Film Damping Interface

- The Shell Thin-Film Damping Interface

- The Fluid-Solid Interaction, Viscoelastic Flow Interface

- The Fluid-Solid Interaction, Viscoelastic Flow, Fixed Geometry Interface

- The Fluid-Solid Interaction, Conjugate Heat Transfer Interface

- The Fluid-Solid Interaction, Two-Phase Flow, Phase Field Interface

- The Fluid-Solid Interaction, Two-Phase Flow, Phase Field, Fixed Geometry 
Interface

• Overview of Electromagnetics-Structure Interaction Interfaces

- The Piezoelectricity Interface, Solid

- The Piezoelectricity, Layered Shell Interface

- The Piezoelectricity and Pyroelectricity Interface

- The Electrostriction Interface

- The Ferroelectroelasticity Interface

- The Magnetomechanics Interface

- The Magnetomechanics, No Currents Interface

- The Piezomagnetism Interface

- The Nonlinear Magnetostriction Interface

- Hygroscopic Swelling Coupling
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• Multiphysics Couplings

- Thermal Expansion

- Layered Thermal Expansion

- Hygroscopic Swelling

- Piezoelectric Effect

- Layered Piezoelectric Effect

- Electrostriction

- Magnetomechanical Forces

- Magnetic Forces

- Piezomagnetic Effect

- Nonlinear Magnetostriction

- Lorentz Coupling

- Fluid-Structure Interaction

- Fluid-Structure Interaction, Pair

- Fluid-Structure Interaction, Fixed Geometry

- Fluid-Pipe Interaction

- Structure Thin-Film Flow Interaction

- Shell Thin-Film Flow Interaction

• Couplings Between Structural Mechanics Interfaces

- Solid-Thin Structure Connection

- Solid-Beam Connection

- Shell-Beam Connection

- Layered Shell-Structure Transition

- Layered Shell-Structure Cladding

- Layered Shell-Shell Connection

- Structure-Pipe Connection

- Embedded Reinforcement

- Beam Cross Section-Beam Coupling

- Beam-Beam Cross Section Coupling
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Th e  Th e rma l  S t r e s s ,  S o l i d  I n t e r f a c e

The Thermal Stress, Solid( ) interface combines a Solid Mechanics interface with a 
Heat Transfer in Solids interface. The coupling occurs on the domain level, where the 
temperature from the Heat Transfer interface acts as a thermal load for the Solid 
Mechanics interface, causing thermal expansion.

When a predefined Thermal Stress, Solid interface is added from the Structural Mechanics 
branch ( ) of the Model Wizard or Add Physics windows, Solid Mechanics and Heat 

Transfer in Solids interfaces are added to the Model Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Thermal Expansion.

On the Constituent Physics Interfaces
• The Solid Mechanics interface is described in The Solid Mechanics Interface.

• The Heat Transfer in Solids interface is described in The Heat Transfer in Solids 
Interface.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings (for example, 
Thermal Stress, Solid), specific settings are included with the physics interfaces and the 
coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

In previous versions of COMSOL Multiphysics, a specific physics 
interface called Thermal Stress was added to the Model Builder. Now, a 
predefined multiphysics coupling approach is used, improving the 
flexibility and design options for your modeling. For specific details, see 
The Multiphysics Branch and Multiphysics Modeling Workflow in the 
COMSOL Multiphysics Reference Manual.

For information about the constitutive equations including thermal 
expansion in the section dealing with the theory background, see 
Structural Mechanics Theory.
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For example, if single Solid Mechanics and Heat Transfer in Solids interfaces are 
added, an empty Multiphysics node appears in the model tree. You can choose from the 
available coupling features, but the settings in the constituent interfaces are not 
modified.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Thermal Expansion is used to couple the interfaces.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 

menu.

TABLE 13-1:  MODIFIED SETTINGS FOR A THERMAL STRESS, SOLID INTERFACE

PHYSICS INTERFACE OR 
COUPLING FEATURE

MODIFIED SETTINGS

Solid Mechanics For the Solid Mechanics interface, under Structural 
Transient Behavior the Structural transient behavior is 
set to Quasi static.

Thermal Expansion The Domain Selection is the same as that of the 
participating physics interfaces.

The corresponding Solid Mechanics and Heat Transfer in 
Solids interfaces are preselected in the Coupled 
Interfaces section.

• Fuel Cell Bipolar Plate: Application Library path 
Structural_Mechanics_Module/Thermal-Structure_Interaction/bipolar_plate

• Thermal Expansion in a MEMS Device: Application Library path 
MEMS_Module/Sensors/thermal_expansion
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Th e  Th e rma l  S t r e s s ,  S h e l l  I n t e r f a c e

The Thermal Stress, Shell ( ) interface combines a Shell interface with a Heat 
Transfer in Shells interface. The coupling occurs on boundaries, where the 
temperature from the Heat Transfer interface acts as a thermal load for the Shell 
interface, causing thermal expansion.

When a predefined Thermal Stress, Shell interface is added from the Structural Mechanics 
branch ( ) of the Model Wizard or Add Physics windows, Shell and Heat Transfer in 

Shells interfaces are added to the Model Builder.

In addition, the Multiphysics node is added which automatically includes the 
multiphysics coupling feature Layered Thermal Expansion.

On the Constituent Physics Interfaces
• The Shell interface is described in The Shell and Plate Interfaces.

• The Heat Transfer in Shells interface is described in The Heat Transfer in Shells 
Interface.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, for example Thermal 

Stress, Shell, specific settings are included with the physics interfaces and the coupling 
features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

For example, if single Shell and Heat Transfer in Shells interfaces are added, an empty 
Multiphysics node appears in the model tree. You can choose from the available 
coupling features, but the settings in the constituent interfaces are not modified.

For information about the constitutive equations including thermal 
expansion in the section dealing with the theory background, see Theory 
for the Shell and Plate Interfaces.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 

menu.
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C O U P L I N G  F E A T U R E S

The Layered Thermal Expansion is used to couple the interfaces.

TABLE 13-2:  MODIFIED SETTINGS FOR A THERMAL STRESS, SHELL INTERFACE

PHYSICS INTERFACE OR 
COUPLING FEATURE

MODIFIED SETTINGS

Shell For the Shell interface, under Structural Transient 
Behavior the Structural transient behavior is set to 
Quasi static.

Heat Transfer in Shells For the Heat Transfer in Shell interface, under 
Discretization, the shape function order for the 
temperature is set to Linear.

Layered Thermal 
Expansion

The Boundary Selection is the same as that of the 
participating physics interfaces.

The corresponding Shell and Heat Transfer in Shells 
interfaces are preselected in the Coupled Interfaces 
section.
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Th e  Th e rma l  S t r e s s ,  L a y e r e d  S h e l l  
I n t e r f a c e

The Thermal Stress, Layered Shell ( ) interface combines a Layered Shell interface 
with a Heat Transfer in Shells interface. The coupling occurs on boundaries, where the 
temperature from the Heat Transfer interface acts as a thermal load for the Layered 
Shell interface, causing thermal expansion.

When a predefined Thermal Stress, Layered Shell interface is added from the Structural 

Mechanics branch ( ) of the Model Wizard or Add Physics windows, Layered Shell and 
Heat Transfer in Shells interfaces are added to the Model Builder.

In addition, the Multiphysics node is added which automatically includes the 
multiphysics coupling node Layered Thermal Expansion

On the Constituent Physics Interfaces
• The Layered Shell interface is described in The Layered Shell Interface.

• The Heat Transfer in Shells interface is described in The Heat Transfer in Shells 
Interface.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, for example Thermal 

Stress, Layered Shell, specific settings are included with the physics interfaces and the 
coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

For example, if single Layered Shell and Heat Transfer in Shells interfaces are added, 
an empty Multiphysics node appears in the model tree. You can choose from the 

For information about the constitutive equations including thermal 
expansion in the section dealing with the theory background, see Theory 
for the Layered Shell Interface.
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available coupling features, but the settings in the constituent interfaces are not 
modified.

C O U P L I N G  F E A T U R E S

The Layered Thermal Expansion is used to couple the interfaces.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 

menu.

TABLE 13-3:  MODIFIED SETTINGS FOR A THERMAL STRESS, LAYERED SHELL INTERFACE

PHYSICS INTERFACE OR 
COUPLING FEATURE

MODIFIED SETTINGS

Layered Shell For the Layered Shell interface, under Structural 
Transient Behavior the Structural transient behavior is 
set to Quasi static.

Heat Transfer in Shells For the Heat Transfer in Shell interface, under 
Discretization, the shape function order for the 
temperature is set to Linear.

Layered Thermal 
Expansion

The Boundary Selection is the same as that of the 
participating physics interfaces.

The corresponding Layered Shell and Heat Transfer in 
Shells interfaces are preselected in the Coupled 
Interfaces section.
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Th e  Th e rma l  S t r e s s ,  Memb r an e  
I n t e r f a c e

The Thermal Stress, Membrane ( ) interface combines a Membrane interface with a 
Heat Transfer in Shells interface. The coupling occurs on boundaries, where the 
temperature from the Heat Transfer interface acts as a thermal load for the Membrane 
interface, causing thermal expansion.

When a predefined Thermal Stress, Membrane interface is added from the Structural 

Mechanics branch ( ) of the Model Wizard or Add Physics windows, Membrane and 
Heat Transfer in Shells interfaces are added to the Model Builder.

In addition, the Multiphysics node is added which automatically includes the 
multiphysics coupling node Layered Thermal Expansion.

On the Constituent Physics Interfaces
• The Membrane interface is described in The Membrane Interface.

• The Heat Transfer in Shells interface is described in The Heat Transfer in Shells 
Interface.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings (for example, 
Thermal Stress, Membrane), specific settings are included with the physics interfaces and 
the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

For information about the constitutive equations including thermal 
expansion in the section dealing with the theory background, see Theory 
for the Membrane Interface.
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For example, if single Membrane and Heat Transfer in Shells interfaces are added, an 
empty Multiphysics node appears in the model tree. You can choose from the available 
coupling features, but the settings in the constituent interfaces are not modified.

C O U P L I N G  F E A T U R E S

The Layered Thermal Expansion is used to couple the interfaces.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 

menu.

TABLE 13-4:  MODIFIED SETTINGS FOR A THERMAL STRESS, MEMBRANE INTERFACE

PHYSICS INTERFACE OR 
COUPLING FEATURE

MODIFIED SETTINGS

Membrane For the Membrane interface, under Structural Transient 
Behavior the Structural transient behavior is set to 
Quasi static.

Heat Transfer in Shells For the Heat Transfer in Shell interface, under 
Discretization, the shape function order for the 
temperature is set to Linear.

Layered Thermal 
Expansion

The Boundary Selection is the same as that of the 
participating physics interfaces.

The corresponding Membrane and Heat Transfer in 
Shells interfaces are preselected in the Coupled 
Interfaces section.
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The Joule Heating and Thermal Expansion interface ( ) combines thermal, electric, 
and structural multiphysics effects. The predefined interaction adds the 
electromagnetic losses from the electric current as a heat source. In addition, the 
temperature from the Heat Transfer in Solids interface acts as a thermal load for the 
Solid Mechanics interface, causing thermal expansion.

You can use this multiphysics coupling for coupled thermal, electrical, and structural 
analysis of, for example, the movement of some actuator, where an electric current 
causes a temperature increase, which in turn leads to a displacement through thermal 
expansion.

When a predefined Joule Heating and Thermal Expansion interface is added from the 
Structural Mechanics branch ( ) of the Model Wizard or Add Physics windows, Solid 

Mechanics, Electric Currents, and Heat Transfer in Solids interfaces are added to the 
Model Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling nodes Thermal Expansion and Electromagnetic Heating.

On the Constituent Physics Interfaces
• The Electric Currents interface is described in The Electric Currents Interface.

• The Solid Mechanics interface is described in The Solid Mechanics Interface.

• The Heat Transfer in Solids interface is described in The Heat Transfer in Solids 
Interface.

In previous versions of COMSOL Multiphysics, a specific physics 
interface called Joule Heating and Thermal Expansion was added to the 
Model Builder. Now, a predefined multiphysics coupling approach is 
used, improving the flexibility and design options for your modeling. For 
specific details, see The Multiphysics Branch and Multiphysics Modeling 
Workflow in the COMSOL Multiphysics Reference Manual.
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S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, for example Joule 

Heating and Thermal Expansion, specific settings are included with the physics interfaces 
and the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

For example, if single Solid Mechanics, Electric Currents, and Heat Transfer in Solids 
interfaces are added, COMSOL Multiphysics adds an empty Multiphysics node. You 
can then choose from the available coupling features, Thermal Expansion, and 
Electromagnetic Heating, but the modified settings are not included.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 

menu.

TABLE 13-5:  MODIFIED SETTINGS FOR A JOULE HEATING AND THERMAL EXPANSION INTERFACE

PHYSICS INTERFACE OR 
COUPLING FEATURE

MODIFIED SETTINGS

Solid Mechanics For the Solid Mechanics interface, under Structural 
Transient Behavior, the Structural transient behavior is set 
to Quasi static.

Electric Currents No changes.

Heat Transfer in Solids No changes.

Thermal Expansion The Domain Selection is the same as that of the 
participating physics interfaces.

The corresponding Solid Mechanics and Heat Transfer in 
Solids interfaces are preselected in the Thermal Expansion 
section.

Electromagnetic Heating The Domain Selection is the same as that of the 
participating physics interfaces.

The corresponding Electric Currents and Heat Transfer in 
Solids interfaces are preselected in the Electromagnetic 
Heating section.
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Coupling Features
• Thermal Expansion coupling feature node is described for The Thermal Stress, Solid 

Interface.

• The Electromagnetic Heating multiphysics coupling nodes is described for The 
Joule Heating Interface in the COMSOL Multiphysics Reference Manual.

Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (macOS or Linux users), or right-click to access the context menu (all 
users).

• The available physics features for The Solid Mechanics Interfaceare listed in the 
section Domain, Boundary, Edge, Point, and Pair Nodes for Solid Mechanics.

• The available physics features for The Heat Transfer in Solids Interface are listed in 
the section Feature Nodes for the Heat Transfer in Solids Interface.

• The available physics features for The Electric Currents Interface are listed in the 
section Domain, Boundary, Edge, Point, and Pair Nodes for the Electric Currents 
Interface in the COMSOL Multiphysics Reference Manual.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.

If you have an add-on module, such as the Heat Transfer Module or AC/
DC Module, there are additional specialized physics nodes available and 
described in the individual module documentation.
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Ove r v i ew o f  F l u i d - S t r u c t u r e  
I n t e r a c t i o n  I n t e r f a c e s

The Model Wizard and the Add Physics window contain a number of multiphysics 
interfaces for modeling fluid-structure interaction (FSI), all available under the 
Fluid-Structure Interaction branch ( ). The multiphysics interfaces for FSI are 
described in the subsequent sections:

• The Fluid-Solid Interaction Interface: For fluid-structure interaction between a 
fluid and a solid.

• The Fluid-Solid Interaction, Fixed Geometry Interface: For fluid-structure 
interaction between a fluid and a solid where the displacements of the solid are 
assumed to be small enough for the geometry of the fluid domain to be considered 
as fixed during the interaction.

• The Fluid-Shell Interaction Interface: For fluid-structure interaction between a fluid 
and a shell structure.

• The Fluid-Shell Interaction, Fixed Geometry Interface: For fluid-structure 
interaction between a fluid and a shell structure where the displacements of the shell 
are assumed to be small enough for the geometry of the fluid domain to be 
considered as fixed during the interaction.

• The Fluid-Membrane Interaction Interface: For fluid-structure interaction between 
a fluid and a membrane structure.

• The Fluid-Membrane Interaction, Fixed Geometry Interface: For fluid-structure 
interaction between a fluid and a membrane structure where the displacements of 
the membrane are assumed to be small enough for the geometry of the fluid domain 
to be considered as fixed during the interaction.

• The Fluid-Pipe Interaction, Fixed Geometry Interface: This multiphysics interface 
provides a connection between the Pipe Flow interface and the Pipe Mechanics 
interface. The coupling is unidirectional, so that various types of loads from the fluid 
loads can be transferred to structural analysis.

• The Solid Thin-Film Damping Interface: For fluid-structure interaction between a 
thin-film fluid and a solid under isothermal conditions.

• The Shell Thin-Film Damping Interface: For fluid-structure interaction between a 
thin-film fluid and a shell under isothermal conditions.
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• The Fluid-Multibody Interaction Interface: For fluid-structure interaction between 
a fluid and mechanical parts. See Multiphysics Couplings in the Multibody 
Dynamics Module User’s Guide.

• The Fluid-Multibody Interaction, Assembly Interface: For fluid-structure 
interaction between a fluid and mechanical parts. An ALE formulation is used for 
incorporating the geometrical changes of the fluid domain. See Multiphysics 
Couplings in the Multibody Dynamics Module User’s Guide.

• The Fluid-Solid Interaction, Conjugate Heat Transfer Interface: For fluid-structure 
interaction between a fluid and a solid under nonisothermal conditions.

• The Fluid-Solid Interaction, Two-Phase Flow, Phase Field Interface: For 
fluid-structure interaction between two immiscible fluids and a deformable solid. An 
ALE formulation is used for incorporating the geometrical changes of the fluid 
domain. The interface between the two fluids is tracked by the phase field method.

• The Fluid-Solid Interaction, Two-Phase Flow, Phase Field, Fixed Geometry 
Interface: For fluid-structure interaction between two immiscible fluids and a solid 
where the displacements of the solid are assumed to be small enough to be 
considered as fixed during the interaction. The interface between the two fluids is 
tracked by the phase field method.
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Th e  F l u i d - S o l i d  I n t e r a c t i o n  I n t e r f a c e

Using the Fluid-Solid Interaction ( ) interface, you can model phenomena where a 
fluid and a deformable solid affect each other. The interface includes a predefined 
condition for the interaction at the fluid-solid boundaries. Arbitrary 
Lagrangian-Eulerian Formulation (ALE) is used for incorporating the geometrical 
changes of the fluid domain.

Using a stationary or a time-dependent study, the Fluid-Solid Interaction interface 
models bidirectional coupling between solids and fluids. There are, however, special 
study steps available in order to model one-way fluid-structure interaction.

You add a predefined Fluid-Solid Interaction interface from the Fluid-Structure 

Interaction ( ) group in either the Structural Mechanics branch ( ) or the Fluid Flow 

branch ( ) of the Model Wizard or Add Physics windows. Laminar Flow and Solid 

Mechanics interfaces are then added to the Model Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Fluid-Structure Interaction.

At the same time, a Moving Mesh node with a Deforming Domain subnode is created 
under Definitions. For more information, see Deforming Fluid Domains.

On the Constituent Physics Interfaces
• The Deforming Domain feature is described in the Moving Mesh Features.

• The Laminar Flow interface is described in The Single-Phase Flow, Laminar Flow 
Interface. When the CFD Module is available, turbulent flow is supported through 
the inclusion of a number of turbulence models

• The Solid Mechanics interface is described in The Solid Mechanics Interface.

In 2D, plane stress or plane strain assumptions can be selected in the Solid 
Mechanics interface. Only the plane strain (default) should be used 
together with the FSI coupling.
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When physics interfaces are added using the predefined couplings, all specific settings 
are included with the physics interfaces and the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

For example, if single Laminar Flow and Solid Mechanics interfaces are added, 
COMSOL Multiphysics adds an empty Multiphysics node. You can choose from the 
available coupling features, but the modified settings are not included.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Fluid-Structure Interaction coupling feature is used to couple the interfaces.

In previous versions of COMSOL Multiphysics (up to version 5.3), a 
specific physics interface called Fluid-Structure Interaction was added to 
the Model Builder. Now, a predefined multiphysics coupling approach is 
used, improving the flexibility and design options for your modeling. For 
specific details, see The Multiphysics Branch and Multiphysics Modeling 
Workflow in the COMSOL Multiphysics Reference Manual.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.
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Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (macOS or Linux users), or right-click to access the context menu (all 
users).

• The available physics features for The Single-Phase Flow, Laminar Flow Interface 
are listed in the section Domain, Boundary, Pair, and Point Nodes for Single-Phase 
Flow in the COMSOL Multiphysics Reference Manual.

• The available physics features for The Solid Mechanics Interface are listed in the 
Domain, Boundary, Edge, Point, and Pair Nodes for Solid Mechanics section.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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Th e  F l u i d - S o l i d  I n t e r a c t i o n ,  F i x e d  
Geome t r y  I n t e r f a c e

The Fluid-Solid Interaction, Fixed Geometry ( ) interface can be used to model 
phenomena where a fluid and a deformable solid structure affect each other. Both the 
fluid loading on the structure and the structural velocity transmission to the fluid can 
be taken into account. The interface models situations where the displacements of the 
solid are assumed to be small enough for the geometry of the fluid domain to be 
considered as fixed during the interaction.

You add a predefined Fluid-Solid Interaction, Fixed Geometry interface from the 
Fluid-Structure Interaction ( ) group in either the Structural Mechanics branch ( ) 
or the Fluid Flow branch ( ) of the Model Wizard or Add Physics windows. Laminar 

Flow and Solid Mechanics interfaces are then added to the Model Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Fluid-Structure Interaction.

On the Constituent Physics Interfaces
• The Laminar Flow interface is described in The Single-Phase Flow, Laminar Flow 

Interface. When the CFD Module is available, turbulent flow is supported through 
the inclusion of a number of turbulence models.

• The Solid Mechanics interface is described in The Solid Mechanics Interface.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, all specific settings 
are included with the physics interfaces and the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

You can add a Stationary, One-Way FSI or Time Dependent, One-Way FSI 

studies. See Stationary and Time Dependent One-Way Studies for 
Fluid-Structure Interaction in the COMSOL Multiphysics Reference 
Manual for more information.
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For example, if single Laminar Flow and Solid Mechanics interfaces are added, 
COMSOL Multiphysics adds an empty Multiphysics node. You can choose from the 
available coupling features, but the modified settings are not included.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Fluid-Structure Interaction coupling feature is used to couple the interfaces.

Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (macOS or Linux users), or right-click to access the context menu (all 
users).

• The available physics features for The Single-Phase Flow, Laminar Flow Interface 
are listed in the section Domain, Boundary, Pair, and Point Nodes for Single-Phase 
Flow in the COMSOL Multiphysics Reference Manual.

• The available physics features for The Solid Mechanics Interface are listed in the 
Domain, Boundary, Edge, Point, and Pair Nodes for Solid Mechanics section.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 

menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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Using the Fluid-Shell Interaction ( ) interface, you can model phenomena where a 
fluid and a deformable shell affect each other. The interface includes a predefined 
condition for the interaction at the fluid-solid boundaries. Arbitrary 
Lagrangian-Eulerian Formulation (ALE) is used for incorporating the geometrical 
changes of the fluid domain.

Using a stationary or a time-dependent study, the Fluid-Shell Interaction interface 
models bidirectional coupling between solids and fluids. There are, however, special 
study steps available in order to model one-way fluid-structure interaction.

You add a predefined Fluid-Shell Interaction interface from the Fluid-Structure 

Interaction ( ) group in either the Structural Mechanics branch ( ) or the Fluid Flow 

branch ( ) of the Model Wizard or Add Physics windows. Laminar Flow and Shell 

interfaces are then added to the Model Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Fluid-Structure Interaction.

At the same time, a Moving Mesh node with a Deforming Domain subnode is created 
under Definitions. For more information, see Deforming Fluid Domains.

On the Constituent Physics Interfaces
• The Laminar Flow interface is described in The Single-Phase Flow, Laminar Flow 

Interface. When the CFD Module is available, turbulent flow is supported through 
the inclusion of a number of turbulence models.

• The Shell interface is described in The Shell and Plate Interfaces.

• The Deforming Domain feature is described in the Moving Mesh Features.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, all specific settings 
are included with the physics interfaces and the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.
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For example, if single Laminar Flow and Shell interfaces are added, COMSOL 
Multiphysics adds an empty Multiphysics node. You can choose from the available 
coupling features, but the modified settings are not included.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Fluid-Structure Interaction coupling feature is used to couple the interfaces.

Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (macOS or Linux users), or right-click to access the context menu (all 
users).

• The available physics features for The Single-Phase Flow, Laminar Flow Interface 
are listed in the section Domain, Boundary, Pair, and Point Nodes for Single-Phase 
Flow in the COMSOL Multiphysics Reference Manual.

• The available physics features for The Shell and Plate Interfaces are listed in the 
Domain, Boundary, Edge, Point, and Pair Nodes for the Shell and Plate Interfaces 
section.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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Geome t r y  I n t e r f a c e

The Fluid-Shell Interaction, Fixed Geometry ( ) interface can be used to model 
phenomena where a fluid and a deformable shell structure affect each other. Both the 
fluid loading on the structure and the structural velocity transmission to the fluid can 
be taken into account. The interface models situations where the displacements of the 
shell are assumed to be small enough for the geometry of the fluid domain to be 
considered as fixed during the interaction.

You add a predefined Fluid-Shell Interaction, Fixed Geometry interface from the 
Fluid-Structure Interaction ( ) group in either the Structural Mechanics branch ( ) 
or the Fluid Flow branch ( ) of the Model Wizard or Add Physics windows. Laminar 

Flow and Shell interfaces are then added to the Model Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Fluid-Structure Interaction.

On the Constituent Physics Interfaces
• The Laminar Flow interface is described in The Single-Phase Flow, Laminar Flow 

Interface. When the CFD Module is available, turbulent flow is supported through 
the inclusion of a number of turbulence models.

• The Shell interface is described in The Shell and Plate Interfaces.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, all specific settings 
are included with the physics interfaces and the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

You can add a Stationary, One-Way FSI or Time Dependent, One-Way FSI 

studies. See Stationary and Time Dependent One-Way Studies for 
Fluid-Structure Interaction in the COMSOL Multiphysics Reference 
Manual for more information.
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For example, if single Laminar Flow and Shell interfaces are added, COMSOL 
Multiphysics adds an empty Multiphysics node. You can choose from the available 
coupling features, but the modified settings are not included.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Fluid-Structure Interaction coupling feature is used to couple the interfaces.

Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (macOS or Linux users), or right-click to access the context menu (all 
users).

• The available physics features for The Single-Phase Flow, Laminar Flow Interface 
are listed in the section Domain, Boundary, Pair, and Point Nodes for Single-Phase 
Flow in the COMSOL Multiphysics Reference Manual.

• The available physics features for The Shell and Plate Interfaces are listed in the 
Domain, Boundary, Edge, Point, and Pair Nodes for the Shell and Plate Interfaces 
section.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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Using the Fluid-Membrane Interaction ( ) interface, you can model phenomena 
where a fluid and a deformable membrane affect each other. The interface includes a 
predefined condition for the interaction at the fluid-solid boundaries. Arbitrary 
Lagrangian-Eulerian Formulation (ALE) is used for incorporating the geometrical 
changes of the fluid domain.

Using a stationary or a time-dependent study, the Fluid-Membrane Interaction interface 
models bidirectional coupling between solids and fluids. There are, however, special 
study steps available in order to model one-way fluid-structure interaction.

You add a predefined Fluid-Membrane Interaction interface from the Fluid-Structure 

Interaction ( ) group in either the Structural Mechanics branch ( ) or the Fluid Flow 

branch ( ) of the Model Wizard or Add Physics windows. Laminar Flow and Membrane 
interfaces are then added to the Model Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Fluid-Structure Interaction.

At the same time, a Moving Mesh node with a Deforming Domain subnode is created 
under Definitions. For more information, see Deforming Fluid Domains.

On the Constituent Physics Interfaces
• The Laminar Flow interface is described in The Single-Phase Flow, Laminar Flow 

Interface. When the CFD Module is available, turbulent flow is supported through 
the inclusion of a number of turbulence models.

• The Membrane interface is described in The Membrane Interface.

• The Deforming Domain feature is described in the Moving Mesh Features.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, all specific settings 
are included with the physics interfaces and the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.
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For example, if single Laminar Flow and Membrane interfaces are added, COMSOL 
Multiphysics adds an empty Multiphysics node. You can choose from the available 
coupling features, but the modified settings are not included.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Fluid-Structure Interaction coupling feature is used to couple the interfaces.

Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (macOS or Linux users), or right-click to access the context menu (all 
users).

• The available physics features for The Single-Phase Flow, Laminar Flow Interface 
are listed in the section Domain, Boundary, Pair, and Point Nodes for Single-Phase 
Flow in the COMSOL Multiphysics Reference Manual.

• The available physics features for The Membrane Interface are listed in the 
Boundary, Edge, Point, and Pair Nodes for the Membrane Interface section.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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Th e  F l u i d -Memb r an e  I n t e r a c t i o n ,  
F i x e d  Geome t r y  I n t e r f a c e

The Fluid-Membrane Interaction, Fixed Geometry ( ) interface can be used to model 
phenomena where a fluid and a deformable membrane structure affect each other. 
Both the fluid loading on the structure and the structural velocity transmission to the 
fluid can be taken into account. The interface models situations where the 
displacements of the membrane are assumed to be small enough for the geometry of 
the fluid domain to be considered as fixed during the interaction.

You add a predefined Fluid-Membrane Interaction, Fixed Geometry interface from the 
Fluid-Structure Interaction ( ) group in either the Structural Mechanics branch ( ) 
or the Fluid Flow branch ( ) of the Model Wizard or Add Physics windows. Laminar 

Flow and Membrane interfaces are then added to the Model Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Fluid-Structure Interaction.

On the Constituent Physics Interfaces
• The Laminar Flow interface is described in The Single-Phase Flow, Laminar Flow 

Interface. When the CFD Module is available, turbulent flow is supported through 
the inclusion of a number of turbulence models.

• The Membrane interface is described in The Membrane Interface.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, all specific settings 
are included with the physics interfaces and the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

You can add a Stationary, One-Way FSI or Time Dependent, One-Way FSI 

studies. See Stationary and Time Dependent One-Way Studies for 
Fluid-Structure Interaction in the COMSOL Multiphysics Reference 
Manual for more information.
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For example, if single Laminar Flow and Membrane interfaces are added, COMSOL 
Multiphysics adds an empty Multiphysics node. You can choose from the available 
coupling features, but the modified settings are not included.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Fluid-Structure Interaction, Fixed Geometry coupling feature is used to couple 
the interfaces.

Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (macOS or Linux users), or right-click to access the context menu (all 
users).

• The available physics features for The Single-Phase Flow, Laminar Flow Interface 
are listed in the section Domain, Boundary, Pair, and Point Nodes for Single-Phase 
Flow in the COMSOL Multiphysics Reference Manual.

• The available physics features for The Membrane Interface are listed in the 
Boundary, Edge, Point, and Pair Nodes for the Membrane Interface section.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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Th e  F l u i d - P i p e  I n t e r a c t i o n ,  F i x e d  
Geome t r y  I n t e r f a c e

The Fluid-Pipe Interaction, Fixed Geometry ( ) interface can be used to model 
problems where the forces from the fluid in a piping system act as structural loads. The 
structural deformations do not affect the flow.

You add a predefined Fluid-Pipe Interaction, Fixed Geometry interface from the 
Fluid-Structure Interaction ( ) group in either the Structural Mechanics branch ( ) 
or the Fluid Flow branch ( ) of the Model Wizard or Add Physics windows. Pipe Flow 
and Pipe Mechanics interfaces are then added to the Model Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling node Fluid-Pipe Interaction.

On the Constituent Physics Interfaces
• The Pipe Flow interface is described in The Pipe Flow Interface in the Pipe Flow 

Module User’s Guide.

• The Pipe Mechanics interface is described in The Pipe Mechanics Interface.
R  1 3 :  M U L T I P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G S



Th e  S o l i d  T h i n - F i lm Damp i n g  
I n t e r f a c e

The Solid Thin-Film Damping ( ) interface can be used to model phenomena where a 
thin-film fluid and a deformable solid affect each other. The fluid can be either a liquid 
or a gas, with the possibility to include cavitation in liquids.

Use the Solid Thin-Film Damping interface to apply boundary loads to the surface of a 
resonator that result from squeeze-film or slide-film damping. Examples of common 
situations in which these types of damping are appropriate are parallel-plate capacitive 
and comb-drive actuators for squeeze-film and slide-film damping, respectively. 

You add a predefined Solid Thin-Film Damping interface from the Fluid-Structure 

Interaction ( ) group in the Structural Mechanics branch ( ) of the Model Wizard or 
Add Physics windows. Solid Mechanics and Thin-Film Flow interfaces are then added to 
the Model Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Structure Thin-Film Flow Interaction.

On the Constituent Physics Interfaces
• The Solid Mechanics interface is described in The Solid Mechanics Interface

• The Thin-Film Flow interface is described in The Thin-Film Flow Interfaces. 

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, all specific settings 
are included with the physics interfaces and the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

For example, if Thin-Film Flow and Solid Mechanics interfaces are added, COMSOL 
Multiphysics adds an empty Multiphysics node. You can choose from the available 
coupling features, but the modified settings are not included.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.
T H E  S O L I D  T H I N - F I L M  D A M P I N G  I N T E R F A C E  |  1799



1800 |  C H A P T E
P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Structure Thin-Film Flow Interaction coupling feature is used to couple the 
interfaces.

Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (macOS or Linux users), or right-click to access the context menu (all 
users).

• The available physics features for The Solid Mechanics Interface are listed in the 
Domain, Boundary, Edge, Point, and Pair Nodes for Solid Mechanics section.

• The available physics features for The Thin-Film Flow Interfaces are listed in the 
Domain, Boundary, Edge, Point, and Pair Nodes for the Thin-Film Flow Interfaces 
section in the CFD Module User’s Guide.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.

See Theory for the Thin-Film Flow Interfaces in the CFD Module User’s 
Guide.
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Th e  S h e l l  T h i n - F i lm Damp i n g  
I n t e r f a c e

The Shell Thin-Film Damping ( ) interface can be used to model phenomena where a 
thin-film fluid and a shell affect each other. The fluid can be either a liquid or a gas, 
with the possibility to include cavitation in liquids.

Using a frequency domain or a time-dependent study, the interface can model 
fluid-induced damping in shells.

You add a predefined Shell Thin-Film Damping interface from the Fluid-Structure 

Interaction ( ) group in the Structural Mechanics branch ( ) of the Model Wizard or 
Add Physics windows. Shell and Thin-Film Flow interfaces are then added to the Model 
Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Shell Thin-Film Flow Interaction.

On the Constituent Physics Interfaces
• The Shell interface is described in The Shell and Plate Interfaces.

• The Thin-Film Flow interface is described in The Thin-Film Flow Interfaces. 

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, all specific settings 
are included with the physics interfaces and the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

For example, if Thin-Film Flow and Shell interfaces are added, COMSOL 
Multiphysics adds an empty Multiphysics node. You can choose from the available 
coupling features, but the modified settings are not included.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.
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P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Shell Thin-Film Flow Interaction coupling feature is used to couple the interfaces.

Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (macOS or Linux users), or right-click to access the context menu (all 
users).

• The available physics features for The Shell and Plate Interfaces are listed in the 
Domain, Boundary, Edge, Point, and Pair Nodes for the Shell and Plate Interfaces 
section.

• The available physics features for The Thin-Film Flow Interfaces are listed in the 
Domain, Boundary, Edge, Point, and Pair Nodes for the Thin-Film Flow Interfaces 
section in the CFD Module User’s Guide.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.

See Theory for the Thin-Film Flow Interfaces in the CFD Module User’s 
Guide.
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T h e  F l u i d - S o l i d  I n t e r a c t i o n ,  
V i s c o e l a s t i c  F l ow I n t e r f a c e

Using the Fluid-Solid Interaction, Viscoelastic Flow( ) interface, you can model 
phenomena where a deformable solid and a fluid exhibiting a combination of viscous 
and elastic behavior affect each other. The interface includes a predefined condition for 
the interaction at the fluid-solid boundaries. Arbitrary Lagrangian-Eulerian 
Formulation (ALE) is used for incorporating the geometrical changes of the fluid 
domain.

Using a time-dependent study, the Fluid-Solid Interaction, Viscoelastic Flow interface 
models bidirectional coupling between solids and the fluids. There are, however, 
special study steps available in order to model one-way fluid-structure interaction.

You add a predefined Fluid-Solid Interaction, Viscoelastic Flow interface from the 
Fluid-Structure Interaction ( ) group in either the Structural Mechanics branch ( ) 
or the Fluid Flow branch ( ) of the Model Wizard or Add Physics windows. Viscoelastic 

Flow and Solid Mechanics interfaces are then added to the Model Builder.

In addition, the Multiphysics node is added to the Model Builder, which automatically 
includes the multiphysics coupling feature Fluid-Structure Interaction.

At the same time, a Moving Mesh node with a Deforming Domain subnode is created 
under Definitions. For more information, see Deforming Fluid Domains.

The Viscoelastic Flow interface solves the continuity equation for conservation of mass 
and the Navier-Stokes equations for the conservation of momentum with an additional 
elastic stress term. To calculate the extra stress tensor, a number of constitutive 
relations are available.

The solid domain has all functionality available in the Solid Mechanics interface, 
including contact conditions and also nonlinear materials if the Nonlinear Structural 
Materials Module or Geomechanics Module is available.

On the Constituent Physics Interfaces
• The Solid Mechanics interface is described in The Solid Mechanics Interface.

• The Viscoelastic Flow interface is described in The Viscoelastic Flow Interface.

• The Deforming Domain feature is described in the Moving Mesh Features.
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S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, all specific settings 
are included with the physics interfaces and the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

For example, if single Laminar Flow and Solid Mechanics interfaces are added, 
COMSOL Multiphysics adds an empty Multiphysics node. You can choose from the 
available coupling features, but the modified settings are not included.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Fluid-Structure Interaction feature is used to couple the interfaces.

Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (macOS or Linux users), or right-click to access the context menu (all 
users).

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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T h e  F l u i d - S o l i d  I n t e r a c t i o n ,  
V i s c o e l a s t i c  F l ow ,  F i x e d  Geome t r y  
I n t e r f a c e

Using the Fluid-Solid Interaction, Viscoelastic Flow, Fixed Geometry ( ) interface, you 
can model phenomena where a deformable solid and a fluid exhibiting a combination 
of viscous and elastic behavior affect each other. Both the fluid loading on the structure 
and the structural velocity transmission to the fluid can be taken into account. The 
interface models situations where the displacements of the solid are assumed to be 
small enough for the geometry of the fluid domain to be considered as fixed during 
the interaction.

You add a predefined Fluid-Solid Interaction, Viscoelastic Flow, Fixed Geometry interface 
from the Fluid-Structure Interaction ( ) group in either the Structural Mechanics 
branch ( ) or the Fluid Flow branch ( ) of the Model Wizard or Add Physics 
windows. Viscoelastic Flow and Solid Mechanics interfaces are then added to the Model 
Builder.

In addition, the Multiphysics node is added to the Model Builder, which automatically 
includes the multiphysics coupling feature Fluid-Structure Interaction.

The Viscoelastic Flow interface solves the continuity equation for conservation of mass 
and the Navier-Stokes equations for the conservation of momentum with an additional 
elastic stress term. To calculate the extra stress tensor, a number of constitutive 
relations are available.

The solid domain has all functionality available in the Solid Mechanics interface, 
including contact conditions and also nonlinear materials if the Nonlinear Structural 
Materials Module or Geomechanics Module is available.

On the Constituent Physics Interfaces
• The Solid Mechanics interface is described in The Solid Mechanics Interface.

• The Viscoelastic Flow interface is described in The Viscoelastic Flow Interface.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, all specific settings 
are included with the physics interfaces and the coupling features.
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However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

For example, if single Laminar Flow and Solid Mechanics interfaces are added, 
COMSOL Multiphysics adds an empty Multiphysics node. You can choose from the 
available coupling features, but the modified settings are not included.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Fluid-Structure Interaction feature is used to couple the interfaces.

Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (macOS or Linux users), or right-click to access the context menu (all 
users).

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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T h e  F l u i d - S o l i d  I n t e r a c t i o n ,  
C on j u g a t e  Hea t  T r a n s f e r  I n t e r f a c e

Using the Fluid-Solid Interaction, Conjugate Heat Transfer( ) interface, you can model 
phenomena where a fluid and a deformable solid affect each other at the same time as 
heat is transferred through and between the domains. The interface includes a 
predefined condition for the interaction at the fluid-solid boundaries. Arbitrary 
Lagrangian-Eulerian Formulation (ALE) is used for incorporating the geometrical 
changes of the fluid domain.

Using a stationary or a time-dependent study, the Fluid-Solid Interaction, Conjugate Heat 

Transfer interface models bidirectional coupling between solids and fluids. You can, 
however, by modifying the solver sequences also model various types of 
one-directional couplings.

You add this interface from the Conjugate Heat Transfer ( ) subgroup within the 
Fluid-Structure Interaction ( ) group in either the Structural Mechanics branch ( ) 
or the Fluid Flow branch ( ) of the Model Wizard or Add Physics windows. Three 
physics interfaces are then added to the Model Builder: Laminar Flow, Heat Transfer 
in Solids and Fluids, and Solid Mechanics.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling nodes Fluid-Structure Interaction, Nonisothermal Flow, and 
Thermal Expansion.

At the same time, a Moving Mesh node with a Deforming Domain subnode is created 
under Definitions. For more information, see Deforming Fluid Domains.

On the Constituent Physics Interfaces
• The Laminar Flow interface is described in The Single-Phase Flow, Laminar Flow 

Interface. When the CFD Module is available, turbulent flow is supported through 
the inclusion of a number of turbulence models.

• The Solid Mechanics interface is described in The Solid Mechanics Interface.

In 2D, plane stress or plane strain assumptions can be selected in the Solid 
Mechanics interface. Only the plane strain (default) should be used 
together with an FSI coupling.
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• The Heat Transfer in Solids and Fluids interface is described in The Heat Transfer 
in Solids and Fluids Interface. A Solid feature is active by default in all domains, and 
a Fluid feature is added without a domain selection. All functionality for including 
other domain types is also available.

• The Deforming Domain feature is described in the Moving Mesh Features.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, all specific settings 
are included with the physics interfaces and the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

For example, if single Laminar Flow and Solid Mechanics interfaces are added, 
COMSOL Multiphysics adds an empty Multiphysics node. You can choose from the 
available coupling features, but the modified settings are not included.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Fluid-Structure Interaction, Nonisothermal Flow, and Thermal Expansion 
coupling features are used to couple the interfaces.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.
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Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (macOS or Linux users), or right-click to access the context menu (all 
users).

• The available physics features for The Single-Phase Flow, Laminar Flow Interface 
are listed in the section Domain, Boundary, Pair, and Point Nodes for Single-Phase 
Flow in the COMSOL Multiphysics Reference Manual.

• The available physics features for The Solid Mechanics Interface are listed in the 
Domain, Boundary, Edge, Point, and Pair Nodes for Solid Mechanics section.

• The available physics features for The Heat Transfer in Solids and Fluids Interface 
are listed in the Domain Features, Boundary Features, and Edge and Point Features, 
sections.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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Th e  F l u i d - S o l i d  I n t e r a c t i o n ,  
Two -Pha s e  F l ow ,  Pha s e  F i e l d  
I n t e r f a c e

Using the Fluid-Solid Interaction, Two-Phase Flow, Phase Field ( ) interface, you can 
model phenomena where two immiscible fluids and a deformable solid affect each 
other. The interface includes a predefined condition for the interaction at the 
fluid-solid boundaries. Arbitrary Lagrangian-Eulerian Formulation (ALE) is used for 
incorporating the geometrical changes of the fluid domain. The interface between the 
two fluids is tracked by solving two additional transport equations, one for the phase 
field variable and one for the mixing energy density.

Using a time-dependent study, the Fluid-Solid Interaction, Two-Phase Flow, Phase Field 

interface models bidirectional coupling between solids and the fluids. There are, 
however, special study steps available in order to model one-way fluid-structure 
interaction. Simulations using the interface are always time-dependent since the 
position of the interface between the two fluids is almost always dependent of its 
history.

You add a predefined Fluid-Solid Interaction, Two-Phase Flow, Phase Field interface from 
the Fluid-Structure Interaction ( ) group in either the Structural Mechanics branch 
( ) or the Fluid Flow branch ( ) of the Model Wizard or Add Physics windows. 
Laminar Flow, Solid Mechanics and Phase Field interfaces are then added to the Model 
Builder.

In addition, the Multiphysics node is added to the Model Builder, which automatically 
includes the multiphysics coupling features Fluid-Structure Interaction and Two-Phase 

Flow, Phase Field.

At the same time, a Moving Mesh node with a Deforming Domain subnode is created 
under Definitions. For more information, see Deforming Fluid Domains.

The flow regime can be laminar or turbulent (if the CFD Module is available). The 
solid domain has all functionality available in the Solid Mechanics interface, including 
contact conditions and also nonlinear materials if the Nonlinear Structural Materials 
Module or Geomechanics Module is available.
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On the Constituent Physics Interfaces
• The Solid Mechanics interface is described in The Solid Mechanics Interface.

• The Two-Phase Flow interface is described in The Two-Phase Flow, Level Set and 
Phase Field Interfaces.

• The Deforming Domain feature is described in the Moving Mesh Features.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, all specific settings 
are included with the physics interfaces and the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

For example, if single Laminar Flow and Solid Mechanics interfaces are added, 
COMSOL Multiphysics adds an empty Multiphysics node. You can choose from the 
available coupling features, but the modified settings are not included.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Two-Phase Flow, Phase Field Coupling Feature and the Fluid-Structure 
Interaction feature are used to couple the interfaces.

Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (macOS or Linux users), or right-click to access the context menu (all 
users).

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.
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In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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Th e  F l u i d - S o l i d  I n t e r a c t i o n ,  
Two -Pha s e  F l ow ,  Pha s e  F i e l d ,  F i x e d  
Geome t r y  I n t e r f a c e

Using the Fluid-Solid Interaction, Two-Phase Flow, Phase Field, Fixed Geometry ( ) 
interface, you can model phenomena where two immiscible fluids and a deformable 
solid affect each other. The interface includes a predefined condition for the 
interaction at the fluid-solid boundaries. The interface between the two fluids is 
tracked by solving two additional transport equations, one for the phase field variable 
and one for the mixing energy density.

Using a time-dependent study, the Fluid-Solid Interaction, Two-Phase Flow, Phase Field, 

Fixed Geometry interface models bidirectional coupling between solids and the fluids. 
There are, however, special study steps available in order to model one-way 
fluid-structure interaction. Simulations using the interface are always time-dependent 
since the position of the interface between the two fluids is almost always dependent 
of its history.

You add a predefined Fluid-Solid Interaction, Two-Phase Flow, Phase Field, Fixed 

Geometry interface from the Fluid-Structure Interaction ( ) group in either the 
Structural Mechanics branch ( ) or the Fluid Flow branch ( ) of the Model Wizard 
or Add Physics windows. Laminar Flow, Solid Mechanics and Phase Field interfaces are 
then added to the Model Builder.

In addition, the Multiphysics node is added to the Model Builder, which automatically 
includes the multiphysics coupling features Fluid-Structure Interaction and Two-Phase 

Flow, Phase Field.

The flow regime can be laminar or turbulent (if the CFD Module is available). The 
solid domain has all functionality available in the Solid Mechanics interface, including 
contact conditions and also nonlinear materials if the Nonlinear Structural Materials 
Module or Geomechanics Module is available.

On the Constituent Physics Interfaces
• The Solid Mechanics interface is described in The Solid Mechanics Interface.
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• The Two-Phase Flow interface is described in The Two-Phase Flow, Level Set and 
Phase Field Interfaces.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, all specific settings 
are included with the physics interfaces and the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

For example, if single Laminar Flow and Solid Mechanics interfaces are added, 
COMSOL Multiphysics adds an empty Multiphysics node. You can choose from the 
available coupling features, but the modified settings are not included.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Two-Phase Flow, Phase Field Coupling Feature and the Fluid-Structure 
Interaction feature are used to couple the interfaces.

Physics Interface Features
Physics nodes are available from the Physics ribbon toolbar (Windows users), Physics 
context menu (macOS or Linux users), or right-click to access the context menu (all 
users).

You can add a Stationary, One-Way FSI or Time Dependent, One-Way FSI 

studies. See Stationary and Time Dependent One-Way Studies for 
Fluid-Structure Interaction in the COMSOL Multiphysics Reference 
Manual for more information.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.
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In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.
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Ove r v i ew o f  
E l e c t r omagne t i c s - S t r u c t u r e  
I n t e r a c t i o n  I n t e r f a c e s

The Model Wizard and the Add Physics window contain a number of multiphysics 
interfaces for modeling of structure interaction with magnetic and electric fields, all 
available under the Electromagnetics-Structure Interaction ( ) branch within the 
Structural Mechanics branch ( ). The multiphysics interfaces are listed here and also 
described in more details in the subsequent sections.

• Electromechanics ( ) branch

- The Electromechanics Interface ( )

- The Electromechanics, Boundary Elements Interface ( )

• Piezoelectricity ( ) branch

- The Piezoelectricity Interface, Solid ( )

- The Piezoelectricity, Layered Shell Interface ( )

• The Electrostriction Interface ( )

• The Ferroelectroelasticity Interface ( )

• Magnetostriction ( ) branch

- The Piezomagnetism Interface ( )

- The Nonlinear Magnetostriction Interface ( )

• Magnetomechanics ( ) branch

- The Magnetomechanics Interface ( )

- The Magnetomechanics, No Currents Interface ( )

• Piezoresistivity ( ) branch

- The Piezoresistivity, Domain Currents Interface ( )

- The Piezoresistivity, Boundary Currents Interface ( )

- The Piezoresistivity, Shell Interface ( )
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Th e  P i e z o e l e c t r i c i t y  I n t e r f a c e ,  S o l i d

The Piezoelectricity interface ( ) combines Solid Mechanics and Electrostatics 
together with the constitutive relationships required to model piezoelectric 
phenomena. Both the direct and inverse piezoelectric effects can be modeled, and the 
piezoelectric coupling can be formulated using either the strain-charge or stress-charge 
forms.

When a predefined Piezoelectricity interface is added from the Structural Mechanics 
branch ( ) of the Model Wizard or from Add Physics windows, Solid Mechanics and 
Electrostatics interfaces are added to the Model Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Piezoelectric Effect.

The participating Solid Mechanics interface includes the default Piezoelectric Material 
feature with its selection set to all domains. The Electrostatics interface has a default 
Charge Conservation, Piezoelectric feature with similar settings.

Such features can be also added manually to their corresponding interfaces similar to 
any other material model therein.

The Piezoelectric Effect multiphysics coupling node can be active only on the 
selection, where both features Piezoelectric Material and Charge Conservation, 
Piezoelectric are active.

You input both the mechanical and electrical material data under the Piezoelectric 
Material node. The data can be presented in either stress-charge or strain-charge form.

When it is used without an active Piezoelectric Effect coupling feature, the 
Piezoelectric Material node works similarly to a Linear Elastic Material feature with the 
material data input limited to anisotropic form using Voigt notations. All the electric 
material data has no effect.

You use the Charge Conservation, Piezoelectric feature under Electrostatics to select 
those domains, where the material is supposed to experience piezoelectric coupling. 
When used without a counterpart under the Solid Mechanics interface (or without the 
coupling feature), the Charge Conservation, Piezoelectric node acts as an ordinary 
Charge Conservation feature with its material data input limited to the electric 
permittivity only.
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All solid mechanics and electrostatics functionality for modeling is also accessible to 
include surrounding elastic solids or air domains. For example, add any solid 
mechanics material for other solid domain, a dielectric model for air (via Charge 
Conservation feature), or a combination. Note that in order to model a nonsolid 
dielectric domain, you need to remove such domain from the domain selection for the 
entire Solid Mechanics interface. This is because all material models under that 
interface represent solid materials (with the Linear Elastic Material node being always 
present and active in all those domains, where it is not explicitly overridden by any 
other material model).

In 2D and 2D axial symmetry, adding a Piezoelectricity interface also adds predefined 
base-vector coordinate systems for the material’s (in the plane 2D case) XY-, YZ-, ZX-, 
YX-, XZ-, and XY-planes. These additional coordinate systems are useful for 
simplifying the material orientation for the piezoelectric material.

On the Constituent Physics Interfaces
• The Solid Mechanics interface is described in The Solid Mechanics Interface.

• The Electrostatics interface is described in The Electrostatics Interface in the AC/
DC Module User’s Guide.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, for example 
Piezoelectricity, specific settings are included with the physics interfaces and the 
coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

In previous versions of COMSOL Multiphysics, a specific physics 
interface called Piezoelectric Devices was added to the Model Builder. Now, 
a predefined multiphysics coupling approach is used, improving the 
flexibility and design options for your modeling. For specific details, see 
The Multiphysics Branch and Multiphysics Modeling Workflow in the 
COMSOL Multiphysics Reference Manual.
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For example, if both Solid Mechanics and Electrostatics interfaces are added, COMSOL 
Multiphysics adds an empty Multiphysics node. You can choose the available coupling 
feature Piezoelectric Effect but the modified settings are not included.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Feature
The Piezoelectric Effect coupling node is used to couple the interfaces.

Additional Features
Additional nodes and subnodes available with this multiphysics interface are described 
with the interfaces where they are available. Coupling Loss, Dielectric Loss, Mechanical 

Damping, and Conduction Loss (Time-Harmonic) subnodes are available for Piezoelectric 
Material under the Solid Mechanics interface. The Charge Conservation, Piezoelectric 
feature is described for the Electrostatics interface.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.

• Piezoelectricity

• Modeling Piezoelectric Problems

Piezoelectric Shear-Actuated Beam: Application Library path 
Structural_Mechanics_Module/Piezoelectric_Effects/shear_bender

Surface Acoustic Wave Gas Sensor: Application Library path 
MEMS_Module/Sensors/saw_gas_sensor
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Coupling Piezoelectricity with Acoustics

Using piezoelectric materials for an acoustic application is common, such as in sonars, 
microphones, sensors, and so forth. This is why coupling piezoelectricity with acoustic 
domains is of particular interest for these applications.

Compared to a single piezoelectric model, you need to add a pressure acoustics physics 
interface, for example, Pressure Acoustics, Frequency Domain or Pressure Acoustics, 

Transient (depending on which study type you want to use) plus an Acoustic-Structure 

Boundary coupling under the Multiphysics node. You can also directly create the nodes 
that are needed for coupling by adding an Acoustic-Piezoelectric Interaction interface 
from the Model Wizard or Add Physics windows. If solid and acoustic domains are 
correctly defined, then the right coupling boundaries are automatically selected. Then 
specify domains of application for each physics.

• Select solid domains and Piezoelectric Material domains in Solid Mechanics.

• Select electrostatic domains and Charge Conservation, Piezoelectric domains in 
Electrostatics.

• Select acoustic domains in a Pressure Acoustics node.

• Under the Multiphysics branch, confirm that selections for Piezoelectric Effect and 
Acoustic-Structure Boundary are the right ones. If several Pressure Acoustics, Solid 

Mechanics, or Electrostatics interfaces are present, select the right ones that need to 
be coupled in the multiphysics interfaces.

• Continue the modeling process by entering the settings for each physics interface 
and feature and define materials.

The multiphysics couplings between Solid Mechanics and the acoustics 
interfaces require the Acoustics Module.
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Th e  P i e z o e l e c t r i c i t y ,  L a y e r e d  S h e l l  
I n t e r f a c e

The Piezoelectricity, Layered Shell interface ( ) combines structural layered shells and 
electric currents in shells together with the constitutive relationships required to model 
the direct and inverse piezoelectric effects. The piezoelectric coupling can be 
formulated using either the strain-charge or stress-charge forms.

When a predefined Piezoelectricity, Layered Shell interface is added from the Structural 

Mechanics branch ( ) of the Model Wizard or from Add Physics windows, Layered Shell 

and Electric Currents in Layered Shells interfaces are added to the Model Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Layered Piezoelectric Effect.

The Layered Shell interface includes a Piezoelectric Material feature. The Electric 

Currents in Layered Shells interface includes a Piezoelectric Layer feature with similar 
settings. Such features can be also added manually to their corresponding interfaces 
similar to any other material model therein.

The Layered Piezoelectric Effect multiphysics coupling node can be active only on the 
selection, where both features Piezoelectric Material and Piezoelectric Layer are active.

You input both the mechanical and electrical material data under the Piezoelectric 
Material node. The data can be presented in either stress-charge or strain-charge form.

When it is used without an active Layered Piezoelectric Effect coupling feature, the 
Piezoelectric Material node works similarly to a Linear Elastic Material feature with the 
material data input limited to anisotropic form using Voigt notations. All the electric 
material data has no effect.

You use the Piezoelectric Layer feature under Electric Currents in Shells to select those 
domains, where the material is supposed to experience piezoelectric coupling. When 
used without a counterpart under the Layered Shell interface (or without the coupling 
feature), the Piezoelectric Layer node acts as an ordinary Dielectric Layer feature with 
its material data input limited to the electric permittivity only.

All structural and electrostatics functionality for modeling is also accessible to include 
surrounding elastic solids or air domains. For example, add any s material model for 
other solid domain, a dielectric model for air, or a combination. Note that in order to 
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model a nonsolid dielectric domain, you need to remove such domain from the 
domain selection for the entire Layered Shell interface. This is because all material 
models under that interface represent solid materials (with the Linear Elastic Material 
node being always present and active in all those domains, where it is not explicitly 
overridden by any other material model).

On the Constituent Physics Interfaces
• The Layered Shell interface is described in The Layered Shell Interface.

• The Electric Currents in Layered Shells interface is described in The Electric 
Currents, Layered Shell Interface in the AC/DC Module User’s Guide.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, for example 
Piezoelectricity, Layered Shell, specific settings are included with the physics interfaces 
and the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

For example, if both Layered Shell and Electric Currents in Layered Shells interfaces are 
added, COMSOL Multiphysics adds an empty Multiphysics node. You can add the 
available coupling feature Layered Piezoelectric Effect but the modified settings are not 
included.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Feature
The Layered Piezoelectric Effect coupling node is used to couple the interfaces.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.
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Additional Features
Additional nodes and subnodes available with this multiphysics interface are described 
with the interfaces where they are available. Coupling Loss, Dielectric Loss, and 
Mechanical Damping subnodes are available for Piezoelectric Material under the Layered 
Shell interface. The Piezoelectric Layer feature is described for the Electric Currents in 
Layered Shells interface.

• Piezoelectricity

• Modeling Piezoelectric Problems
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Th e  E l e c t r o s t r i c t i o n  I n t e r f a c e

The Electrostriction interface ( ) combines Solid Mechanics and Electrostatics 
together with the constitutive relationships required to model electrostriction in 
electrostatically actuated structures in regimes when the electric polarization can be 
assumed to vary linear with the applied electric field. Both the direct and inverse 
electrostrictive effects can be modeled.

The Electrostriction interface is available for 3D, planar 2D, and axisymmetric 2D 
geometries.

When this multiphysics interface is added using the Model Wizard, a Solid Mechanics 
interface and an Electrostatics interface are added to the Model Builder.

In addition, the Multiphysics Couplings node is added, which automatically includes the 
multiphysics coupling feature Electrostriction.

The full functionality of the Solid Mechanics and Electrostatics interfaces is accessible 
under the corresponding interfaces at the domain, boundary line, or point level in the 
geometry. The participating Electrostatics interface by default adds the Charge 

Conservation node with its selection set to all domains, and the material type set to 
Solid. This node serves to represent solid dielectric material domains. Any number of 
Charge Conservation nodes can be also added manually to the interface and configured 
to represent either solid or nonsolid (for example, air or free space) materials.
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Th e  F e r r o e l e c t r o e l a s t i c i t y  I n t e r f a c e

The Ferroelectroelasticity interface ( ) combines Solid Mechanics and Electrostatics 
together with the constitutive relationships required to model nonlinear 
electromechanical interaction in ferroelectric and piezoelectric materials. Electric 
polarization in such materials depends nonlinearly on the applied electric field 
including possible hysteresis and saturation effects. In addition, the polarization and 
mechanical deformations in such materials can be strongly coupled due to the 
electrostriction effect.

The Ferroelectroelasticity interface is available for 3D, planar 2D, and axisymmetric 2D 
geometries.

When this multiphysics interface is added using the Model Wizard, a Solid Mechanics 
interface and an Electrostatics interface are added to the Model Builder.

In addition, the Multiphysics Couplings node is added, which automatically includes the 
multiphysics coupling feature Electrostriction.

The full functionality of the Solid Mechanics and Electrostatics interfaces is accessible 
under the corresponding interfaces at the domain, boundary line, or point level in the 
geometry. The participating Electrostatics interface includes the default Charge 

Conservation, Ferroelectric feature with its selection set to all domains. Such features can 
be also added manually to any Electrostatics interface in the model.

• Ferroelectroelasticity

• Ferroelectricity

Hysteresis in Piezoelectric Ceramics: Application Library path 
MEMS_Module/Piezoelectric_Devices/piezoelectric_hysteresis
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Th e  Magn e t ome chan i c s  I n t e r f a c e

The Magnetomechanics ( ) interface combines Solid Mechanics and Magnetic Fields 
interfaces together with a moving mesh functionality. The interface can be used for 
modeling deformation of magnetically actuated structures, which includes interaction 
of magnetic fields with magnetic materials and current carrying elements such as coils 
and wires.

The Magnetomechanics interface is available for 3D, planar 2D, and axisymmetric 2D 
geometries. It is found under the Electromagnetics-Structure Interaction ( ) branch 
within the Structural Mechanics ( ) branch. When this multiphysics interface is added 
using the Model Wizard, a Solid Mechanics interface and a Magnetic Fields interface are 
added to the Model Builder.

In addition, the Multiphysics Couplings node is added, which automatically includes the 
multiphysics coupling feature Magnetomechanical Forces.

The full functionality of the Solid Mechanics and Magnetic Fields interfaces is 
accessible under the respective interface at the domain, boundary, edge, or point level 
in the geometry. The participating Magnetic Fields interface by default adds the 
Ampère’s Law node with its selection set to all domains, and the Material type set to 
Solid. This node serves to represent solid magnetic material domains. Any number of 
Ampère’s Law nodes can also be added manually to the interface and configured to 
represent either solid or nonsolid (for example, air or free space) materials.

M O V I N G  M E S H

When a Magnetomechanics multiphysics interface is added using the Model Wizard, a 
Deforming Domain node and a Symmetry node are added automatically in Model Builder 

under the Definitions node. These nodes serve to represent domains and boundaries 
where the mesh can deform. By default, both nodes have empty selections. Under the 
Deforming Domain, you can select domain that represent nonsolid magnetic materials 
such as air, fluid, and free space. However, this is only needed if the boundaries of such 
domains experience significant changes due to the deformation or rotation of the 
adjacent solid domains. Otherwise, the moving mesh computations could just 
introduce unnecessary overhead and nonlinearity in the model (see Deformed Mesh 
Fundamentals). Domains selected in the Solid Mechanics interface are not applicable.
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Under the Deforming Domain, you can also choose the Mesh smoothing type which is by 
default set to Hyperelastic. More information of the smoothing type can be found in 
the Deforming Domain chapter in the COMSOL Multiphysics Reference Manual.

By default, the mesh is fixed at all external boundaries of the geometry. Use the 
Symmetry node to select the external boundaries, where the mesh can slide along the 
boundary. You can also add other types of boundary conditions for the mesh motion, 
for details see Moving Mesh Features in the COMSOL Multiphysics Reference 
Manual.
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Th e  Magn e t ome chan i c s ,  No Cu r r e n t s  
I n t e r f a c e

The Magnetomechanics, No Currents ( ) interface combines Solid Mechanics and 
Magnetic Fields, No Currents interfaces with a moving mesh functionality to model 
the deformation of magnetostatically actuated structures. The interface is suitable in 
cases when induction and conduction effects such as eddy currents are negligible 
within the structure.

The Magnetomechanics, No Currents interface is available for 3D, planar 2D, and 
axisymmetric 2D geometries. The interface is found under the 
Electromagnetics-Structure Interaction ( ) branch within the Structural Mechanics 

( ) branch. When this multiphysics interface is added using the Model Wizard, a Solid 

Mechanics interface and a Magnetic Fields, No Currents interface are added to the Model 

Builder.

In addition, the Multiphysics Couplings node is added, which automatically includes the 
multiphysics coupling feature Magnetic Forces.

The full functionality of the Solid Mechanics and Magnetic Fields, No Currents 
interfaces is accessible under the respective interfaces at the domain, boundary, edge, 
or point level in the geometry. The participating Magnetic Fields, No Currents interface 
by default adds the Magnetic Flux Conservation node with its selection set to all domains, 
and the Material type set to Solid. This node serves to represent solid magnetic material 
domains. Any number of Magnetic Flux Conservation nodes can also be added manually 
to the interface and configured to represent either solid or nonsolid (for example, air 
or free space) materials.

M O V I N G  M E S H

When a Magnetomechanics, No Currents multiphysics interface is added using the Model 

Wizard, a Deforming Domain node and a Symmetry node are added automatically in 
Model Builder under the Definitions node. These nodes serve to represent domains and 
boundaries, where the mesh can deform. By default, both nodes have empty selections. 
Under the Deforming Domain, you can select domain that represent nonsolid magnetic 
materials such as air, fluid, and free space. However, this is only needed if the 
boundaries of such domains experience significant changes due to the deformation or 
rotation of the adjacent solid domains. Otherwise, the moving mesh computations 
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could just introduce unnecessary overhead and nonlinearity in the model (see 
Deformed Mesh Fundamentals). Domains selected in the Solid Mechanics interface 
are not applicable.

Under the Deforming Domain, you can also choose the Mesh smoothing type which is by 
default set to Hyperelastic. More information of the smoothing type can be found in 
the Deforming Domain chapter in the COMSOL Multiphysics Reference Manual.

By default, the mesh is fixed at all external boundaries of the geometry. Use the 
Symmetry node to select the external boundaries, where the mesh can slide along the 
boundary. You can also add other types of boundary conditions for the mesh motion, 
for details see Moving Mesh Features in the COMSOL Multiphysics Reference 
Manual.
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Th e  P i e z omagne t i sm I n t e r f a c e

The Piezomagnetism interface ( ) combines Solid Mechanics and Magnetic Fields 
together with the constitutive relationships required to model linear magnetostrictive 
materials and devices. Both the direct and inverse piezomagnetic effects can be 
modeled.

When a predefined Piezomagnetism interface is added from the Structural Mechanics 
branch ( ) of the Model Wizard or from Add Physics windows, Solid Mechanics and 
Magnetic Fields interfaces are added to the Model Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Piezomagnetic Effect.

The participating Solid Mechanics interface includes the default Piezomagnetic Material 
feature with its selection set to all domains. The Magnetic Fields interface gets a default 
Ampère’s Law, Piezomagnetic feature with similar settings.

Such features can be also added manually to their corresponding interfaces similar to 
any other material models therein.

The Piezomagnetic Effect multiphysics coupling node can be active only on the 
selection where the features Piezomagnetic Material and Ampère’s Law, 
Piezomagnetic are both active.

Input the mechanical and magnetic material data under the Piezomagnetic Material, 
and the electrical properties under Ampère’s Law, Piezomagnetic.

When used without an active Piezomagnetic Effect coupling feature, the 
Piezomagnetic Material node works similarly to a Linear Elastic Material feature with 
some limitations on the format for the elastic material data input. The magnetic 
material data and coupling data will have no effect.

Use the Ampère’s Law, Piezomagnetic feature under Magnetic Fields to select the 
domains where the material is supposed to experience linear magnetostrictive 
coupling. When used without a counterpart under the Solid Mechanics interface 
(and/or without the coupling feature) Ampère’s Law, Piezomagnetic node acts as an 
ordinary Ampère’s Law feature with its material data input limited to the electric 
properties only. The magnetic permittivity of free space will be assumed.

All solid mechanics and magnetics functionalities for modeling are also accessible to 
include surrounding elastic solids or air domains. For example, add any solid 
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mechanics material for other solid domain, a nonsolid model for air (via Ampère’s Law 
feature), or a combination. Note that in order to model a nonsolid magnetic material, 
you need to remove such domain from the domain selection for the entire Solid 
Mechanics interface. This is because all material models under that interface represent 
solid materials (with the Linear Elastic Material node being always present and active 
in all those domains, where it is not explicitly overridden by any other material model).

In 2D and 2D axial symmetry, adding a Piezomagnetism interface also adds predefined 
base-vector coordinate systems for the material’s (in the plane 2D case) XY-, YZ-, ZX-, 
YX-, XZ-, and XY-planes. These additional coordinate systems are useful for 
simplifying the material orientation for nonisotropic materials.

On the Constituent Physics Interfaces
• The Solid Mechanics interface is described in The Solid Mechanics Interface.

• The Magnetic Fields interface is described in The Magnetic Fields Interface.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined multiphysics interface, for 
example Piezomagnetism, specific settings are included with the physics interfaces and 
the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

For example, if both Solid Mechanics and Magnetic Fields interfaces are added, 
COMSOL Multiphysics adds an empty Multiphysics node. You can choose the available 
coupling feature Piezomagnetic Effect but the modified settings are not included.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.
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Coupling Feature
The Piezomagnetic Effect coupling node is used to couple the interfaces.

Additional Features
Additional nodes and subnodes available with this multiphysics interface are described 
with the interfaces where they are available. Mechanical Damping and Thermal Expansion 

subnodes are available for Piezomagnetic Material under the Solid Mechanics interface. 
The Ampère’s Law, Piezomagnetic feature is described for the Magnetic Fields interface.

• Magnetostriction and Piezomagnetism

• Ampère’s Law, Piezomagnetic

• Modeling Magnetostrictive Materials
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Th e  Non l i n e a r  Magn e t o s t r i c t i o n  
I n t e r f a c e

The Nonlinear Magnetostriction interface ( ) combines Solid Mechanics and 
Magnetic Fields together with the constitutive relationships required to model 
magnetostrictive materials and devices. Both the direct and inverse magnetostriction 
effects can be modeled.

When a predefined Magnetostriction interface is added from the Structural Mechanics 
branch ( ) of the Model Wizard or from Add Physics windows, Solid Mechanics and 
Magnetic Fields interfaces are added to the Model Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Magnetostriction.

The participating Solid Mechanics interface will use the default Linear Elastic Material 
feature with its selection set to all domains. The Magnetic Fields interface gets a default 
Ampère’s Law, Nonlinear Magnetostrictive feature with similar settings.

Such features can be also added manually to their corresponding interfaces similar to 
any other material models therein.

Input the mechanical material data in the corresponding node under Solid Mechanics, 
the magnetic and electrical properties under Ampère’s Law, Nonlinear 
Magnetostrictive, and the coupling data in the Nonlinear Magnetostriction 

multiphysics coupling node.

Use the Ampère’s Law, Nonlinear Magnetostrictive feature under Magnetic Fields to 
select the domains where the material is supposed to experience magnetostrictive 
coupling. When used without a counterpart under the Solid Mechanics interface 
(and/or without the coupling feature) Ampère’s Law, Nonlinear Magnetostrictive 
node acts as an ordinary Ampère’s Law feature set to use Analytic Magnetization 
Curve. The coupling data will have no effect.

All solid mechanics and magnetics functionalities for modeling are also accessible to 
include surrounding elastic solids or air domains. For example, add any solid 
mechanics material for other solid domain, a nonsolid model for air (via Ampère’s Law 
feature), or a combination. Note that in order to model a nonsolid magnetic material, 
you need to remove such domain from the domain selection for the entire Solid 
Mechanics interface. This is because all material models under that interface represent 
T H E  N O N L I N E A R  M A G N E T O S T R I C T I O N  I N T E R F A C E  |  1833



1834 |  C H A P T E
solid materials (with the Linear Elastic Material node being always present and active 
in all those domains, where it is not explicitly overridden by any other material model).

On the Constituent Physics Interfaces
• The Solid Mechanics interface is described in The Solid Mechanics Interface.

• The Magnetic Fields interface is described in The Magnetic Fields Interface.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined multiphysics interfaces such as 
Nonlinear Magnetostriction, specific settings are included with the physics interfaces and 
the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.

For example, if both Solid Mechanics and Magnetic Fields interfaces are added, 
COMSOL Multiphysics adds an empty Multiphysics node. You can choose the available 
coupling feature Nonlinear Magnetostriction but the modified settings are not included.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Feature
The Nonlinear Magnetostriction coupling node is used to couple the interfaces.

Additional Features
Additional nodes and subnodes available with this multiphysics interface are described 
with the interfaces where they are available. Mechanical Damping and Thermal Expansion 

subnodes are available for Nonlinear Magnetostrictive Material under the Solid 
Mechanics interface. The Ampère’s Law, Nonlinear Magnetostrictive feature is described 
for the Magnetic Fields interface.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics Couplings 
menu.

Use the online help in COMSOL Multiphysics to locate and search all the 
documentation. All these links also work directly in COMSOL 
Multiphysics when using the Help system.
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• Magnetostriction and Piezomagnetism

• Ampère’s Law, Nonlinear Magnetostrictive

• Modeling Magnetostrictive Materials

Nonlinear Magnetostrictive Transducer: Application Library path 
Structural_Mechanics_Module/Magnetomechanics/

nonlinear_magnetostriction
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Hyg r o s c op i c  Swe l l i n g  Coup l i n g

The Hygroscopic Swelling multiphysics coupling node is used for moisture 
concentration coupling between the Solid Mechanics interface and either the 
Transport of Diluted Species or Transport of Diluted Species in Porous Media 
interfaces. It is described in Hygroscopic Swelling.
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Mu l t i p h y s i c s  C oup l i n g s

Thermal Expansion

The Thermal Expansion coupling is similar to the Thermal Expansion (for Materials) 
node ( ) that can be added under, for example, the Linear Elastic Material or 
Hyperelastic Material for the Solid Mechanics interface. The purpose is the same, and if 
both nodes are used for the same selection, the settings in the coupling node takes 
precedence.

S E T T I N G S

The Label is the multiphysics coupling feature name. The default Label (for the first 
multiphysics coupling feature in the model) is Thermal Expansion 1.

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is te1.

D O M A I N  S E L E C T I O N

When nodes are added from the context menu, you can select Manual (the default) 
from the Selection list to choose specific domains to define the coefficient of thermal 
expansion and the different temperatures that cause thermal stress, or select All domains 
as needed.

When Thermal Expansion is added, the selection is the same as for the participating 
physics interfaces. Only domains that are active in the physics interfaces selected in the 
Coupled Interfaces section can be chosen.

C O U P L E D  I N T E R F A C E S

This section defines the physics involved in the multiphysics coupling. The Heat 

transfer and Solid mechanics lists include all applicable physics interfaces.
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The default values depend on how the coupling node is created.

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(macOS and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default.

• If it is added automatically when a multiphysics interface is selected in the Model 

Wizard or Add Physics window, then the two participating physics interfaces are 
selected.

You can also select None from either list to uncouple the Thermal Expansion node from 
a physics interface. If the physics interface is removed from the Model Builder, for 
example Heat Transfer in Solids is deleted, then the Heat transfer list defaults to None as 
there is nothing to couple to.

M O D E L  I N P U T

The Volume reference temperature Tref is the temperature at which there are no thermal 
strains. As a default, the value is obtained from a Common model input. You can also 
select User defined to enter a value or expression for the temperature locally.

The computed thermal strains are automatically made consistent with the 
structural strain. Hence, any discretization order can be used in the Heat 
Transfer in Solids interface.

If a physics interface is deleted and then added to the model again, then 
in order to reestablish the coupling, you need to choose the physics 
interface again from the Heat transfer or Solid mechanics lists. This is 
applicable to all multiphysics coupling nodes that would normally default 
to the once present interface. See Multiphysics Modeling Workflow in the 
COMSOL Multiphysics Reference Manual.

See also

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.
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T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Select an Input type to select how the thermal strain is specified. The default is Secant 

coefficient of thermal expansion, in which case the thermal strain is given by

where is the secant coefficient of thermal expansion.  can be temperature 
dependent.

When Input type is Tangent coefficient of thermal expansion, the thermal strain is given 
by

where t is the tangential coefficient of thermal expansion.

When Input type is Thermal strain, enter the thermal strain dL as function of 
temperature explicitly.

In all three cases, the default is to take values From material. When entering data as 
User defined, select Isotropic, Diagonal or Symmetric to enter one or more components 
for a general coefficient of the thermal expansion tensor or the thermal strain tensor. 
When a nonisotropic input is used, the axis orientations are given by the coordinate 
system selection in the parent node.

H E A T  S O U R C E S

Select Thermoelastic damping to include the reverse coupling where the changes in 
stress act as a heat source in the heat transfer analysis. Thermoelastic damping is only 
used when Structural Transient Behavior is set to Include inertial terms.

Select Mechanical Losses to make any energy dissipation computed in the structural 
interface act as a heat source in the heat transfer interfaces. Examples of such 
contributions are work done by plastic deformation, and viscous damping.

th  T Tref– =

th t   d
Tref

T

 
 
 

exp 1–=

You need to select Calculate dissipated energy in the Energy Dissipation 
section of the settings for the material model in Solid Mechanics to add 
the variables for energy dissipation. To display this section, click the Show 

More Options button ( ) and select Advanced Physics Options in the Show 

More Options dialog box.
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Layered Thermal Expansion

Use the Layered Thermal Expansion multiphysics coupling ( ) to add an internal 
thermal strain caused by changes in temperature and account for the corresponding 
mechanical losses in the heat balance in layered materials represented by boundaries.

The Layered Thermal Expansion node is only available with some COMSOL products 
(see https://www.comsol.com/products/specifications/).

S E T T I N G S

The Label is the multiphysics coupling feature name. The default Label (for the first 
multiphysics coupling feature in the model) is Layered Thermal Expansion 1.

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is tel1.

B O U N D A R Y  S E L E C T I O N

When nodes are added from the context menu, you can select Manual (the default) 
from the Selection list to choose specific boundaries to define the coefficient of thermal 
expansion and the different temperatures that cause thermal stress, or select All 

boundaries as needed.

Only boundaries that are active in the physics interfaces selected in the Coupled 

Interfaces section can be selected.

C O U P L E D  I N T E R F A C E S

This section defines the physics involved in the multiphysics coupling. The Heat 

transfer and Structure lists include all applicable physics interfaces. The first physics 
interface of each type in the component is selected as the default.

• Temperature-Dependent Material Data

• Thermoelastic Damping

• Entropy and Thermoelasticity
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You can also select None from either list to uncouple the Layered Thermal Expansion 

node from a physics interface. If the physics interface is removed from the Model 

Builder, for example Heat Transfer in Shells is deleted, then the Heat transfer list defaults 
to None as there is nothing to couple to.

S H E L L  P R O P E R T I E S

Select the applicable layers (the default setting is Use all layers) defining the required 
material properties for the node.

If no layered materials have been included yet, there is a shorthand available for 
creating a Single Layer Material, a Layered Material Link, or a Layered Material Stack (the 
plus symbol next to the Layer list).

When a layered material stack or link is selected from the Layer list, clear the check 
boxes corresponding to layers where the node should not be applied in the Selection 
table.

You can visualize the selected layered materials and layers in each layered material by 
clicking the Layer cross section preview and Layer 3D preview buttons.

Thermal strains are proportional to the temperature, while structural 
strains are computed from the gradient of the displacement field. It is a 
good practice to match the discretization order of thermal and structural 
strains.

When manually adding a Layered Thermal Expansion multiphysics 
coupling, use a discretization one order lower for the temperature field 
than what is used for the displacement field.

This is automatically taken care of when you use The Thermal Stress, 
Shell Interface, The Thermal Stress, Layered Shell Interface, or The 
Thermal Stress, Membrane Interface.

See The Shell Properties and Interface Selection Sections.
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M O D E L  I N P U T

The Volume reference temperature Tref is the temperature at which there are no thermal 
strains. As a default, the value is obtained from a Common model input. You can also 
select User defined to enter a value or expression for the temperature locally.

T H E R M A L  E X P A N S I O N  P R O P E R T I E S

Select an Input type to select how the thermal strain is specified. The default is Secant 

coefficient of thermal expansion, in which case the thermal strain is given by

where is the secant coefficient of thermal expansion.  can be temperature 
dependent.

When Input type is Tangent coefficient of thermal expansion, the thermal strain is given 
by

The desired selection for the node may correspond to boundaries with 
different layered materials. The All layered materials option allows to 
gather these materials to make the desired selection applicable for the 
node on the union of the boundaries where the layered materials are 
defined.

See Layered Material, Layered Material Link, Layered Material Stack, 
Layered Material Link (Subnode), and Single Layer Materials in the 
COMSOL Multiphysics Reference Manual for details on the definition 
of layered materials.

See Thermal Expansion for a description of the corresponding 
multiphysics coupling in domains.

See also

• Using Common Model Input

• Default Model Inputs and Model Input in the COMSOL Multiphysics 
Reference Manual.

th  T Tref– =
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where t is the tangential coefficient of thermal expansion.

When Input type is Thermal strain, enter the thermal strain dL as function of 
temperature explicitly.

In all three cases, the default is to take values From material. When entering data as 
User defined, select Isotropic, Diagonal or Symmetric to enter one or more components 
for a general coefficient of the thermal expansion tensor or the thermal strain tensor. 
When a nonisotropic input is used, the axis orientations are given by the coordinate 
system selection in the parent node.

H E A T  S O U R C E S

Select Thermoelastic damping to include the reverse coupling where the changes in 
stress act as a heat source in the heat transfer analysis. Thermoelastic damping is only 
used when Structural Transient Behavior is set to Include inertial terms.

Select Mechanical losses to make any energy dissipation computed in the structural 
interface act as a heat source in the heat transfer interfaces. Examples of such 
contributions are work done by plastic deformation, and viscous damping.

Hygroscopic Swelling

The Hygroscopic Swelling multiphysics coupling node ( ) is for moisture 
concentration coupling between the Solid Mechanics interface and either the 

th t   d
Tref

T

 
 
 

exp 1–=

You need to select Calculate dissipated energy in the Energy Dissipation 
section of the settings for the material model in Solid Mechanics to add 
the variables for energy dissipation. To display this section, click the Show 

More Options button ( ) and select Advanced Physics Options in the Show 

More Options dialog box.

• Temperature-Dependent Material Data

• Thermoelastic Damping

• Entropy and Thermoelasticity
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Transport of Diluted Species or Transport of Diluted Species in Porous Media 
interfaces.

Hygroscopic swelling is an internal strain caused by changes in moisture content. This 
strain can be written as

where h is the coefficient of hygroscopic swelling, cmo is the moisture concentration, 
and cmo,ref is the strain-free reference concentration.

S E T T I N G S

The Label is the multiphysics coupling feature name. The default Label (for the first 
multiphysics coupling feature in the model) is Hygroscopic Swelling 1.

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is hs1.

D O M A I N  S E L E C T I O N

The domain selection is empty by default. Only domains that have either Transport 

Properties, Porous Media Transport Properties, or Partially Saturated Porous Media 

selected in the Transport of Diluted Species interface; and either Linear Elastic Material, 
Nonlinear Elastic Material, or Hyperelastic Material selected in the Solid Mechanics 

interface are available.

C O U P L E D  I N T E R F A C E S

This section defines the physics involved in the Hygroscopic Swelling multiphysics 
coupling. The Moisture concentration and Structure lists include all applicable physics 
interfaces.

hs h cmo cmo,ref– =
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You can select None from either list to uncouple the coupling node from a physics 
interface. If the physics interface is removed from the Model Builder (for example, Solid 

Mechanics is deleted), then the list defaults to None as there is nothing to couple to.

H Y G R O S C O P I C  S W E L L I N G  P R O P E R T I E S

Enter a Strain reference concentration cmo,ref . This is the concentration at which there 
are no strains due to hygroscopic swelling.

Enter the Molar mass of the fluid, Mm. The default value is 0.018 kg/mol, which is the 
molar mass of water.

The default Coefficient of hygroscopic swelling h uses values From material. For 
User defined select Isotropic (the default), Diagonal, or Symmetric from the list to enter 
one or more components for a general coefficient of hygroscopic swelling tensor 
h.The default value for the User defined case is 1.5e-4 m3/kg. When an anisotropic 
coefficient of hygroscopic swelling is used, the axis orientations are given by the 
coordinate system selection in the structural mechanics material node to which it 
contributes.

The Include moisture as added mass check box is selected by default. When selected, 
the mass of the fluid is included in a dynamic analysis, and when using mass 
proportional loads. It will also contribute when computing mass properties.

Piezoelectric Effect

The Piezoelectric Effect multiphysics coupling node ( ) passes the appropriate 
relative permittivity from the Piezoelectric Material node in the Solid Mechanics interface 
(where it is specified together with the other material properties of the piezoelectric) 
to the Charge Conservation, Piezoelectric node in the Electrostatics interface. The 
Charge Conservation, Piezoelectric node implements the domain level electrostatics 
equations and does not require any user settings when it is coupled with the 
multiphysics coupling node.

If a physics interface is deleted and then added to the model again, then 
in order to reestablish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present interface. 
See Multiphysics Modeling Workflow in the COMSOL Multiphysics 
Reference Manual.
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S E T T I N G S

The Label is the multiphysics coupling feature name. The default Label (for the first 
multiphysics coupling feature in the model) is Piezoelectric Effect 1.

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is pze1.

D O M A I N  S E L E C T I O N

The domain selection is locked so that all applicable domains are selected. Only 
domains that have both Charge Conservation, Piezoelectric selected in the Electrostatics 
interface and Piezoelectric Material selected in the Solid Mechanics interface are selected.

C O U P L E D  I N T E R F A C E S

This section defines the physics involved in the Piezoelectric Effect multiphysics 
coupling. The Solid mechanics and Electrostatics lists include all applicable physics 
interfaces.

The default values depend on how the Piezoelectric Effect node is created.

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(macOS and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default.

• If it is added automatically when a Piezoelectricity interface is selected in the Model 

Wizard or Add Physics window, then the participating Solid Mechanics and 
Electrostatics interfaces are selected.

You can also select None from either list to uncouple the Piezoelectric Effect node from 
a physics interface. If the physics interface is removed from the Model Builder, for 
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example Solid Mechanics is deleted, then the list defaults to None as there is nothing to 
couple to.

Layered Piezoelectric Effect

The Layered Piezoelectric Effect multiphysics node ( ) passes the appropriate relative 
permittivity from the Piezoelectric Material node in the Layered Shell interface (where it 
is specified together with the other material properties of the piezoelectric) to the 
Piezoelectric Layer node in the Electric Currents in Layered Shells interface. The 
Piezoelectric Layer node implements the equations for the charge balance in shells, and 
it does not require any user settings when the interface is coupled through the 
multiphysics coupling node.

S E T T I N G S

The Label is the multiphysics coupling feature name. The default Label (for the first 
multiphysics coupling feature in the model) is Layered Piezoelectric Effect 1.

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is pzel1.

B O U N D A R Y  S E L E C T I O N

The boundary selection is locked so that all applicable boundaries are selected. Only 
boundaries that have both Piezoelectric Layer selected in the Electric Currents in Layered 

Shells interface and Piezoelectric Material selected in the Layered Shell interface are 
selected.

If a physics interface is deleted and then added to the model again, then 
in order to reestablish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present interface. 
See Multiphysics Modeling Workflow in the COMSOL Multiphysics 
Reference Manual.
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C O U P L E D  I N T E R F A C E S

This section defines the physics involved in the Layered Piezoelectric Effect 
multiphysics coupling. The Layered shell and Electric Currents in Layered Shells lists 
include all applicable physics interfaces.

The default values depend on how the Layered Piezoelectric Effect node is created.

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(macOS and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default.

• If it is added automatically when a Piezoelectricity, Layered Shell interface is selected 
in the Model Wizard or Add Physics window, then the participating Layered Shell and 
Electric Currents in Layered Shells interfaces are selected.

You can also select None from either list to uncouple the Layered Piezoelectric Effect 
node from a physics interface. If the physics interface is removed from the Model 

Builder, for example Layered Shell is deleted, then the list defaults to None as there is 
nothing to couple to.

Electrostriction

The Electrostriction multiphysics node ( ) passes the electric polarization 
contribution to strain from Electrostatics interface to Solid Mechanics interface. In 
contrast to linear piezoelectricity, the electrostrictive strain is quadratic in polarization.

It also passes the mechanical stress contribution to polarization from Solid Mechanics 

interface to Electrostatics interface, which is called the inverse electrostrictive effect.

S E T T I N G S

The Label is the multiphysics coupling feature name. The default Label (for the first 
multiphysics coupling feature in the model) is Electrostriction 1.

If a physics interface is deleted and then added to the model again, then 
in order to reestablish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present interface. 
See Multiphysics Modeling Workflow in the COMSOL Multiphysics 
Reference Manual.
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The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is efe1.

C O U P L E D  I N T E R F A C E S

This section defines the physics involved in the Electrostriction multiphysics coupling. 
The Solid mechanics and Electrostatics lists include all applicable physics interfaces.

The default values depend on how the Electrostriction node is created.

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(macOS and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default.

• If it is added automatically when either Electrostriction or Ferroelectroelasticity 
multiphysics interface has been selected in the Model Wizard or Add Physics window, 
then the participating Solid Mechanics and Electrostatics interfaces are selected.

You can also select None from either list to uncouple the Electrostriction node from a 
physics interface. If the physics interface is removed from the Model Builder, for 
example Solid Mechanics is deleted, then the list defaults to None as there is nothing to 
couple to.

D O M A I N  S E L E C T I O N

The domain selection is set by default to all domains, so that all applicable domains are 
selected automatically. Such domains represent an intersection of the applicable 
domains under the corresponding Electrostatics and Solid Mechanics interfaces selected 
in the coupling feature.

If a physics interface is deleted and then added to the model again, then 
in order to reestablish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present interface. 
See Multiphysics Modeling Workflow in the COMSOL Multiphysics 
Reference Manual.
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In Electrostatics interface, the following two domains are applicable:

• Charge Conservation, if its material type input is set to Solid. Use this domain feature 
for solid dielectric materials, for which a linear dependency can be assumed for the 
electric polarization with respect to the applied electric field.

• Charge Conservation, Ferroelectric. Use this domain feature for solid ferroelectric or 
nonlinear piezoelectric materials.

In the Solid Mechanics interface, the following domain material feature are applicable:

• Linear Elastic Material

• Nonlinear Elastic Material (with the Nonlinear Structural Materials Module)

• Hyperelastic Material (with the Nonlinear Structural Materials Module).

C O U P L I N G  T Y P E

From the list, choose one of these coupling types:

• Polarization contribution to strain (the default) also known as direct electrostrictive 
effect, include only the deformation of the material caused by its polarization in 
response to the applied electric field.

• Stress contribution to polarization, also known as inverse electrostrictive effect, to 
include only the change in the material polarization as a result of applied mechanical 
stress or strain.

• Fully coupled to include both the direct and inverse electrostrictive effects.

E L E C T R O S T R I C T I O N

From the list, choose one of these forms for the electrostrictive strain tensor:

• Quadratic (default)

• Quadratic, deviatoric. Use this form if the solid deformation due to the 
electrostrictive effect is volume-preserving.

• User defined. Any valid expression can be entered for the electrostrictive strain tensor 
components. It is recommended to use coupling feature scoped variables for the 
polarization components, for example: efe1.PX.

For nonsolid dielectric domains, remove them from the Solid Mechanics 
interface selection but keep them selected in the Electrostatics interface 
selection.
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When the Electrostrictive strain tensor is set to Quadratic, one of the following options 
can be selected from the Material symmetry drop down menu:

• Isotropic (default)

• Cubic crystal

• Anisotropic

For Anisotropic choice, component of a 6x6 symmetric electrostrictive coupling matrix 
can be entered using either Voigt (default) or Standard option for the Material data 

ordering.

For Cubic crystal choice, only three independent components of the electrostrictive 
coupling matrix need to be entered.

For Isotropic choice, you can enter two independent components of the electrostrictive 
coupling matrix using either Q-matrix (default) or M-matrix notations. Alternatively, 
you can enter values for the Electrostrictive constant a1 and Electrostrictive constant a2 
(SI units: F/m) using the definitions according to either Ref. 1 or Ref. 2.

You can neglect the terms quadratic in the reversible polarization components in the 
expression for the electrostrictive strain by checking the check box Small reversible 

polarization. This functionality is applicable only when this coupling node is used as a 
part of either Ferroelectroelasticity or Electrostriction multiphysics interface, and the 
corresponding Electrostatics interface is configured for hysteresis modeling.

When the Electrostrictive strain tensor is set to Quadratic, deviatoric, the material is 
assumed to be isotropic, and you can enter the saturation electrostriction and 
polarization.

R E F E R E N C E S

1. J.A. Stratton, Electromagnetic Theory, Cambridge, MA, 1941.

2. L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, Pergamon 
Press, pp. 69–73, 1960.

If this coupling node is used as a part of Ferroelectroelasticity 
multiphysics interface, the Charge conservation, Ferroelectric feature under 
the corresponding Electrostatics interface also contains an input for the 
saturation polarization. That input will then become inaccessible (grayed 
out), and the value entered at this coupling node will be used in all 
computations.
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Magnetomechanical Forces

Use Magnetomechanical Forces ( ) coupling to model interaction between 
deformable solids and magnetic fields, particularly in case when the deformations of 
the structure can significantly affect the magnetic field distribution.

S E T T I N G S

The Label is the default multiphysics coupling feature name.

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is eme1.

D O M A I N  S E L E C T I O N

The domain selection includes by default all applicable domains. Such domains 
represent an intersection of the applicable domains under the corresponding Magnetic 

Fields and Solid Mechanics interfaces selected in the coupling feature.

In Magnetic Fields interface, the following domain features are applicable:

• Ampère’s Law, if its material type input is set to Solid. Use this domain feature for 
solid magnetic materials.

• Ampère’s Law, Nonlinear Magnetostrictive

• Coil, if its material type input is set to Solid. You can use this feature to represent 
current carrying solid domains such as coils and wires.

In Solid Mechanics interface, the following domain material feature are applicable:

• Linear Elastic Material

• Nonlinear Magnetostrictive Material

The presence of such multiphysics node in the model will enforce the 
Include geometric nonlinearity option on all applicable study nodes.
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• Nonlinear Elastic Material (with the Nonlinear Structural Materials Module)

• Hyperelastic Material (with the Nonlinear Structural Materials Module).

C O U P L E D  I N T E R F A C E S

This section defines the physics interfaces involved in this Magnetomechanical Forces 
coupling. The Solid mechanics and Magnetic Fields lists include all applicable physics 
interfaces.

The default values depend on how the node is created.

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(Mac and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default.

• If it is added automatically when the physics interface is chosen in the Model Wizard 
or Add Physics window, then the two participating physics interfaces are selected.

You can also select None from either list to uncouple the coupling from a physics 
interface. If the physics interface is removed from the Model Builder, for example Solid 

• For nonsolid magnetic domains, remove them from the Solid Mechanics 
interface selection but keep them selected in the Magnetic Fields 
interface selection.

• Ampère’s Law, Nonlinear Magnetostrictive is a part of The Nonlinear 
Magnetostriction Interface. The corresponding multiphysics coupling 
feature, Nonlinear Magnetostriction, can be combined with 
Magnetomechanical Forces.

See also

• Magnetomechanics
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Mechanics is deleted, then the Solid mechanics list defaults to None as there is nothing 
to couple to.

Magnetic Forces

Use Magnetic Forces ( ) coupling to model interaction between deformable solids 
and magnetic fields without induction current effects, particularly in case when the 
deformations of the structure can significantly affect the magnetic field distribution.

S E T T I N G S

The Label is the default multiphysics coupling feature name.

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is eme1.

D O M A I N  S E L E C T I O N

The domain selection includes by default all applicable domains. Such domains 
represent an intersection of the applicable domains under the corresponding Magnetic 

Fields, No Currents and Solid Mechanics interfaces selected in the coupling feature.

In Magnetic Fields, No Currents interface, the following domains are applicable:

• Magnetic Flux Conservation, if its material type input is set to Solid. Use this domain 
feature for solid magnetic materials.

If a physics interface is deleted and then added to the model again, then 
in order to reestablish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present physics 
interface. See Multiphysics Modeling Workflow in the COMSOL 
Multiphysics Reference Manual.

The presence of such multiphysics node in the model will enforce the 
Include geometric nonlinearity option on all applicable study nodes.
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In Solid Mechanics interface, the following domain material feature are applicable:

• Linear Elastic Material

• Nonlinear Elastic Material (with the Nonlinear Structural Materials Module)

• Hyperelastic Material (with the Nonlinear Structural Materials Module).

E L E C T R O M A G N E T I C  S T R E S S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

Here, you can select the Electromagnetic Stress Tensor to be used in the coupling. The 
following options are available:

• Minkowsky (default)

• Einstein-Laub

• Chu

C O U P L E D  I N T E R F A C E S

This section defines the physics interfaces involved in this Magnetomechanical Forces 
coupling. The Solid mechanics and Magnetic Fields, No Currents lists include all 
applicable physics interfaces.

The default values depend on how the node is created.

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(Mac and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default.

• If it is added automatically when the physics interface is chosen in the Model Wizard 
or Add Physics window, then the two participating physics interfaces are selected.

You can also select None from either list to uncouple the coupling from a physics 
interface. If the physics interface is removed from the Model Builder, for example Solid 

For nonsolid magnetic domains, remove them from the Solid Mechanics 
interface selection but keep them selected in the Magnetic Fields, No 

Currents interface selection.

For more details, see

• Magnetomechanics
M U L T I P H Y S I C S  C O U P L I N G S  |  1855



1856 |  C H A P T E
Mechanics is deleted, then the Solid mechanics list defaults to None as there is nothing 
to couple to.

Piezomagnetic Effect

The Piezomagnetic Effect multiphysics node ( ) passes the appropriate magnetization 
contribution from the Piezomagnetic Material node in the Solid Mechanics interface 
(where it is defined together with the magnetoelastic properties of the material) to the 
Ampère’s Law, Piezomagnetic node in the Magnetic Fields interface. It also passes the 
mechanics stress contribution due to the applied magnetic field back to the 
Piezomagnetic Material node.

S E T T I N G S

The Label is the multiphysics coupling feature name. The default Label (for the first 
multiphysics coupling feature in the model) is Piezomagnetic Effect 1.

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is pzm1.

C O U P L E D  I N T E R F A C E S

This section defines the physics involved in the Piezomagnetic Effect multiphysics 
coupling. The Solid mechanics and Magnetic fields lists include all applicable physics 
interfaces.

If a physics interface is deleted and then added to the model again, then 
in order to reestablish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present physics 
interface. See Multiphysics Modeling Workflow in the COMSOL 
Multiphysics Reference Manual.

Instead of Magnetic Fields interface, you can also use Rotating Machinery, 

Magnetic interface.
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The default values depend on how the Piezomagnetic Effect node is created.

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(macOS and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default.

• If it is added automatically when The Piezomagnetism Interface is selected in the 
Model Wizard or Add Physics window, then the participating Solid Mechanics and 
Magnetic Fields interfaces are selected.

You can also select None from either list to uncouple the Piezomagnetic Effect node 
from a physics interface. If the physics interface is removed from the Model Builder, for 
example Solid Mechanics is deleted, then the list defaults to None as there is nothing to 
couple to.

D O M A I N  S E L E C T I O N

The domain selection includes by default all applicable domains. Such domains 
represent an intersection of the applicable domains under the corresponding Magnetic 

Fields and Solid Mechanics interfaces selected in the coupling feature.

In Magnetic Fields interface, the following domain feature is applicable:

• Ampère’s Law, Piezomagnetic

In Solid Mechanics interface, the following domain feature is applicable:

• Piezomagnetic Material.

If a physics interface is deleted and then added to the model again, then 
in order to reestablish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present interface. 
See Multiphysics Modeling Workflow in the COMSOL Multiphysics 
Reference Manual.

For nonsolid magnetic domains, remove them from the Solid Mechanics 
interface selection but keep them selected in the Magnetic Fields interface 
selection.
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C O U P L I N G  T Y P E

From the list, choose one of these coupling types:

• Fully coupled (the default) to include both the direct and inverse piezomagnetic 
effects.

• Joule effect, also known as direct piezomagnetic effect, to include only the 
deformation of the material caused by its magnetization in response to the applied 
magnetic field.

Villari effect, also known as inverse piezomagnetic effect, to include only the change in 
the material magnetization as a result of applied mechanical stress or strain.

Nonlinear Magnetostriction

The Nonlinear Magnetostriction multiphysics node ( ) passes the appropriate 
magnetization contribution from the Linear Elastic Material node in the Solid Mechanics 
interface to the Ampère’s Law, Nonlinear Magnetostrictive node in the Magnetic Fields 

interface. It also passes the inelastic strain contribution due to the applied magnetic 
field back to the Linear Elastic Material node. The strains are quadratic in terms of the 
material magnetization.

S E T T I N G S

The Label is the multiphysics coupling feature name. The default Label (for the first 
multiphysics coupling feature in the model) is Nonlinear Magnetostriction 1.

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is pzm1.

C O U P L E D  I N T E R F A C E S

This section defines the physics involved in the Nonlinear Magnetostriction 
multiphysics coupling. The Solid mechanics and Magnetic fields lists include all 
applicable physics interfaces.

Instead of Magnetic Fields interface, you can also use Rotating Machinery, 

Magnetic interface.
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The default values depend on how the Nonlinear Magnetostriction node is created.

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(macOS and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default.

• If it is added automatically when The Nonlinear Magnetostriction Interface is 
selected in the Model Wizard or Add Physics window, then the participating Solid 
Mechanics and Magnetic Fields interfaces are selected.

You can also select None from either list to uncouple the Nonlinear Magnetostriction 
node from a physics interface. If the physics interface is removed from the Model 

Builder, for example Solid Mechanics is deleted, then the list defaults to None as there is 
nothing to couple to.

D O M A I N  S E L E C T I O N

The domain selection includes by default all applicable domains. Such domains 
represent an intersection of the applicable domains under the corresponding Magnetic 

Fields and Solid Mechanics interfaces selected in the coupling feature.

In Magnetic Fields interface, the following domain feature is applicable:

• Ampère’s Law, Nonlinear Magnetostrictive

In Solid Mechanics interface, the following domain material feature are applicable:

• Linear Elastic Material

• Hyperelastic Material (with the Nonlinear Structural Materials Module).

If a physics interface is deleted and then added to the model again, then 
in order to reestablish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present interface. 
See Multiphysics Modeling Workflow in the COMSOL Multiphysics 
Reference Manual.

For nonsolid magnetic domains, remove them from the Solid Mechanics 
interface selection but keep them selected in the Magnetic Fields interface 
selection.
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C O U P L I N G  T Y P E

From the list, choose one of these coupling types:

• Fully coupled (the default) to include both the direct and inverse magnetostrictive 
effects.

• Joule effect, also known as direct magnetostrictive effect, to include only the 
deformation of the material caused by its magnetization in response to the applied 
magnetic field.

Villari effect, also known as inverse magnetostrictive effect, to include only the change 
in the material magnetization as a result of applied mechanical stress or strain.

M A G N E T O S T R I C T I O N

From the Magnetostriction model drop down menu, choose one of the following 
options:

• Isotropic (default)

• Cubic crystal

For Isotropic choice, you can enter one dimensionless value of the Saturation 

magnetostriction, s.

For Cubic crystal choice, you can enter two dimensionless values of the Magnetostriction 

constants, 100 and 111 corresponding to different crystallographic planes.

In both cases, the default is to take the values From material. Also enter the magnitude 
of the Saturation magnetization, Ms.

A D V A N C E D  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Option in the Show More Options dialog box.

You can select how the structural contribution due to the magnetostriction is 
accounted for. Two options are the Inelastic contribution to: Stress (default) or Strain.

When this coupling node is used as a part of The Nonlinear 
Magnetostriction Interface multiphysics interface, the Ampère’s Law, 

Nonlinear Magnetostrictive feature under the corresponding Magnetic Fields 

interface also contains an input for the saturation magnetization. That 
input will then become inaccessible (grayed out), and the value entered at 
this coupling node will be used in all computations.
R  1 3 :  M U L T I P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G S



This setting is effective only when the coupling type is set to either Joule effect or fully 
coupled. In the case of the contribution to stress, you can select which deviatoric stress 
will contribute to the effective field. The options are: Include elastic stress (default) or 
Include total stress.

Magnetostriction

Lorentz Coupling

The Lorentz Coupling ( ) is a multiphysics coupling feature between the Magnetic 

Fields interface and the Solid Mechanics interface. It passes the Lorentz force F  J  B 
from the Magnetic Fields interface to the Solid Mechanics interface and, passes the 
induced electric field E  v  B from the Solid Mechanics interface to the Magnetic Fields 
interface. The Lorentz force effect on a moving structure is similar to that of the 
Rayleigh alpha-damping, where the damping coefficient is proportional to the 
background magnetic field and the material electric conductivity.

The Lorentz force and induced electric field can also be added separately from the 
interfaces, for instance, by using the Body Load feature from the Solid Mechanics 
interface and the Velocity (Lorentz term) feature (in 2D and 2D axisymmetric) from the 
Magnetic Fields interface. Once the Lorentz Coupling feature is applied, those interface 
features with the same purpose should not be used to avoid double counting. When 
modeling electroacoustic transducers, like loudspeakers, the coupling is typically added 
in the voice coil domain.

The Lorentz Coupling feature is available in 2D, 2D axisymmetric, and 3D geometries 
and is allowed for both time-dependent and frequency-domain studies (including 

The second option was the default behavior for the magnetostriction in 
COMSOL versions prior to 6.1.

The Magnetostriction coupling feature is obsolete and cannot be added in 
version 6.1 and later. It may be present in models created by earlier 
versions of the software.

You are advised to update your model to use one of the new multiphysics 
coupling features instead, either Nonlinear Magnetostriction or 
Piezomagnetic Effect (for modeling linear magnetostrictive effects).
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frequency domain perturbation and eigenfrequency studies). The coupling feature 
handles frames as well as the correct formulation for transient and frequency domain 
problems. When the displacement of the vibrating or moving part of the model cannot 
be neglected (when topology changes are important), the Moving Mesh feature (added 
from the Definitions) is usually used together with the Lorentz Coupling feature. In this 
case, the Material Type of the moving part in the Magnetic Fields interface has to set to 
Solid. In the Moving Mesh setting, the Prescribed Mesh Displacement is usually set as the 
dependent variables of the Solid Mechanics interface.

S E T T I N G S

The Label is the multiphysics coupling feature name. The default Label (for the first 
multiphysics coupling feature in the model) is Lorentz Coupling 1.

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is ltzc1.

• When the Lorentz Coupling feature is applied to a domain with magnetic 
materials such as a magnetizable armature, the Lorentz force is no 
longer the only force contribution. In this case, the force contribution 
from the magnetic polarization might need to be considered. This can 
be done by adding a Force Calculation feature from the Magnetic Fields 
interface and adding a Body Load feature from the Solid Mechanics 
interface. Note that the Force Calculation feature includes the force 
contribution not only from magnetic polarization but also from the 
Lorentz force, that is, the total electromagnetic force. Therefore, when 
the coupling between the Magnetic Fields interface and Solid Mechanics 
interface is implemented with the Force Calculation feature and Body 

Load feature, the Lorentz Coupling feature should not be used at the 
same domain.

• The Magnetomechanics multiphysics interface ( ) can be used for 
modeling deformation of magnetically actuated structures, which 
includes interaction of magnetic fields with magnetic materials and 
current carrying elements such as coils and wires.
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C O U P L E D  I N T E R F A C E S

This section defines the physics involved in the multiphysics coupling. The Magnetic 

fields and Solid mechanics lists include all applicable physics interfaces.

When the Lorentz Coupling node is added from the Physics ribbon (Windows users), 
Physics contextual toolbar (macOS and Linux users), or context menu (all users), then 
the first physics interface of each type in the component is selected as the default.

You can also select None from either list to uncouple the Lorentz Coupling node from 
a physics interface. If the physics interface is removed from the Model Builder, for 
example Solid Mechanics is deleted, then the list defaults to None as there is nothing to 
couple to.

There are several library examples that demonstrate its usage:

Fluid-Structure Interaction

The Fluid-Structure Interaction ( ) multiphysics node provides a coupling on a 
boundary between a fluid domain and a solid material. The solid material can be 
modeled either in a neighboring domain, or on the boundary itself. In the former case, 
the Solid Mechanics or Multibody Dynamics interface is used; in the latter one of the 
Layered Shell, Shell or Membrane interfaces is used.

If a physics interface is deleted and then added to the model again, then 
in order to reestablish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present interface. 
See Multiphysics Modeling Workflow in the COMSOL Multiphysics 
Reference Manual.

Loudspeaker Driver — Frequency-Domain Analysis: Application 
Library path Acoustics_Module/Electroacoustic_Transducers/

loudspeaker_driver

Loudspeaker Driver — Transient Analysis: Application Library path 
Acoustics_Module/Electroacoustic_Transducers/loudspeaker_driver_transient

Magnetic Damping of Vibrating Conducting Solids: Application 
Library path ACDC_Module/Electromagnetics_and_Mechanics/

magnetic_damping
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The effect of the coupling depends on whether a Deforming Domain is active in the fluid 
domain or not. For cases when the structural deformations are so small that the change 
in the geometry of the fluid can be ignored, you do not have to use a deforming 
domain. This is called a fixed geometry. Domains with a fixed geometry have fewer 
degrees of freedom and are less nonlinear and are thus computationally less expensive

S E T T I N G S

The Label is the multiphysics coupling feature name. The default Label (for the first 
multiphysics coupling feature in the model) is Fluid-Structure Interaction 1.

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is fsi1.

B O U N D A R Y  S E L E C T I O N

By default, the selection is set to All boundaries. However, only boundaries between 
fluid and solid domains are applicable. This is deduced automatically using the 
selections made on the coupled physics interfaces.

C O U P L E D  I N T E R F A C E S

This section defines the physics interfaces involved in the Fluid-Structure Interaction 
coupling. The Fluid and Structure lists include all applicable physics interfaces.

The default values depend on how the node is created.

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(macOS and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default.

• If it is added automatically when the physics interface is chosen in the Model Wizard 
or Add Physics window, then the two participating physics interfaces are selected.

You can also select None from either list to uncouple the Fluid-Structure Interaction 
node from a physics interface. If the physics interface is removed from the Model 

If Deforming Domain is active in any domain, the Include geometric 

nonlinearity option is automatically selected in all applicable study nodes.
R  1 3 :  M U L T I P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G S



Builder, for example Solid Mechanics is deleted, then the Structure list defaults to None 
as there is nothing to couple to.

F I X E D  G E O M E T R Y

In the case when the coupling is of the fixed geometry type, you can select which 
aspect of the interaction you want to model. From the Fixed geometry coupling type list, 
select Fully coupled, Fluid loading on structure, or Velocity transmission to fluid.

In the case Fluid loading on structure, pressure and viscous forces in the fluid affect the 
structure, but the structure does not affect the fluid flow.

In the case Velocity transmission to fluid, the structural velocity acts as boundary 
condition for the fluid, but the fluid does not affect the structure.

For Fully coupled, both effects are taken into account.

When a boundary is adjacent to an active deforming domain, the settings is this section 
are ignored.

Fluid-Structure Interaction, Pair

The Fluid-Structure Interaction, Pair ( ) multiphysics node provides a coupling 
between a pair of boundaries, where one is the boundary of a fluid domain and the 
other is part of solid structure. The solid material can be modeled either in a 
neighboring domain or on the boundary itself. In the former case, the Solid Mechanics 

If a physics interface is deleted and then added to the model again, then 
in order to re-establish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present physics 
interface. See Multiphysics Modeling Workflow in the COMSOL 
Multiphysics Reference Manual.

See also:

• Fluid-Structure Interaction in the Structural Mechanics Modeling 
chapter

• Fluid-Structure Interaction
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or Multibody Dynamics interface is used; in the latter, one of the Shell or Membrane 
interfaces is used.

You need to use this type of coupling if the geometry sequence is set up to form an 
assembly. In the more common case of a union when the boundary is shared, use the 
Fluid-Structure Interaction multiphysics coupling.

The effect of the coupling depends on whether a Deforming Domain is active in the fluid 
domain or not. For cases when the structural deformations are so small that the change 
in the geometry of the fluid can be ignored, you do not have to use a deforming 
domain. This is called a fixed geometry. Domains with a fixed geometry have fewer 
degrees of freedom and are less nonlinear and are thus computationally less expensive

S E T T I N G S

The Label is the multiphysics coupling feature name. The default Label (for the first 
multiphysics coupling feature in the model) is Fluid-Structure Interaction, 
Pair 1.

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is fsip1.

B O U N D A R Y  S E L E C T I O N

The boundary selection cannot be edited manually. The contents are obtained from 
the Pair Selection.

C O U P L E D  I N T E R F A C E S

This section defines the physics interfaces involved in the Fluid-Structure Interaction 
coupling. The Fluid and Structure lists include all applicable physics interfaces.

If Deforming Domain is active in any domain, the Include geometric 

nonlinearity option is automatically selected in all applicable study nodes.
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The default values depend on how the node is created.

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(macOS and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default.

• If it is added automatically when the physics interface is chosen in the Model Wizard 
or Add Physics window, then the two participating physics interfaces are selected.

You can also select None from either list to uncouple the Fluid-Structure Interaction, Pair 

node from a physics interface. If the physics interface is removed from the Model 

Builder, for example Solid Mechanics is deleted, then the Structure list defaults to None 
as there is nothing to couple to.

P A I R  S E L E C T I O N

Select pairs for which this coupling is to be used. The pairs must be defined under 
Definitions in the component.

F I X E D  G E O M E T R Y

In the case when the coupling is of the fixed geometry type, you can select which 
aspect of the interaction you want to model. From the Fixed geometry coupling type list, 
select Fully coupled, Fluid loading on structure, or Velocity transmission to fluid.

In the case Fluid loading on structure, pressure and viscous forces in the fluid affect the 
structure, but the structure does not affect the fluid flow.

In the case Velocity transmission to fluid, the structural velocity acts as boundary 
condition for the fluid, but the fluid does not affect the structure.

For Fully coupled, both effects are taken into account.

When a boundary is adjacent to an active deforming domain, the settings is this section 
are ignored.

If a physics interface is deleted and then added to the model again, then 
in order to re-establish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present physics 
interface. See Multiphysics Modeling Workflow in the COMSOL 
Multiphysics Reference Manual.
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Fluid-Structure Interaction, Fixed Geometry

The Fluid-Structure Interaction, Fixed Geometry multiphysics node could be added in 
versions earlier than 5.4. It has been superseded by an augmented version of the 
Fluid-Structure Interaction multiphysics coupling. The node will still be present and 
functional in models originally created in previous versions. It is, however, 
recommended that you update to the new way of modeling fixed geometry problems, 
as the Fluid-Structure Interaction, Fixed Geometry node may not be supported in the 
future.

Fluid-Pipe Interaction

The Fluid-Pipe Interaction ( ) multiphysics node provides a way to transfer fluid loads 
from the Pipe Flow interface to the Pipe Mechanics interface.

S E T T I N G S

The Label is the multiphysics coupling feature name. The default Label (for the first 
multiphysics coupling feature in the model) is Fluid-Pipe Interaction 1.

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is fpipe1.

E D G E  S E L E C T I O N

By default, the selection is set to All edges. However, only edges that belong to both 
the Pipe Flow and Pipe Mechanics interfaces are applicable. This is deduced 
automatically using the selections made on the coupled physics interfaces.

C O U P L E D  I N T E R F A C E S

This section defines the physics interfaces involved in the coupling. The Fluid and 
Structure lists include all applicable physics interfaces.
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The default values depend on how the node is created.

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(macOS and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default.

• If it is added automatically when the physics interface is chosen in the Model Wizard 
or Add Physics window, then the two participating physics interfaces are selected.

You can also select None from either list to uncouple the Fluid-Pipe Interaction node 
from a physics interface. If the physics interface is removed from the Model Builder, for 
example Pipe Mechanics is deleted, then the Structure list defaults to None as there is 
nothing to couple to.

F L U I D  L O A D

In this section, you specify the load contributions that are transferred from the Pipe 
Flow interface to the Pipe Mechanics interface.

Select the Drag Force check box to include the forces from viscous drag along the pipe.

Select the Centrifugal Force check box to include centrifugal forces from the fluid in 
curved pipes.

Select the Pipe flow pressure check box to include effects of the internal pressure in the 
pipe. When Pipe flow pressure is selected, you can also enter an external pressure. Select 
a method for entering the External pressure, po, — User defined or Common model input.

For User defined, enter a value or an expression for the external pressure.

If a physics interface is deleted and then added to the model again, then 
in order to re-establish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present physics 
interface. See Multiphysics Modeling Workflow in the COMSOL 
Multiphysics Reference Manual.
M U L T I P H Y S I C S  C O U P L I N G S  |  1869



1870 |  C H A P T E
Select the Junction forces check box to include local forces occurring at various 
connections and components in the piping system.

Structure Thin-Film Flow Interaction

The Structure Thin-Film Flow Interaction ( ) multiphysics node provides a coupling 
on a boundary between a thin fluid film and a solid material.

The Structure Thin-Film Flow Interaction node is only available with some COMSOL 
products (see https://www.comsol.com/products/specifications/). 

S E T T I N G S

The Label is the multiphysics coupling feature name. The default Label (for the first 
multiphysics coupling feature in the model) is Structure Thin-Film Flow 
Interaction 1.

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is stfi1.

B O U N D A R Y  S E L E C T I O N

By default, the selection is set to All boundaries. However, only boundaries between 
fluid and solid domains are applicable. This is deduced automatically using the 
selections made on the coupled physics interfaces.

The check boxes in this section interact with any Fluid Load node on the 
same selection. When a check box is selected, the corresponding entry in 
the Fluid Load node is made unavailable.

See also:

• Effects of Internal Pressure and Fluid Flow Forces in the Theory for 
the Pipe Mechanics Interface section.

• Fluid Load in the The Pipe Mechanics Interface section.
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C O U P L E D  I N T E R F A C E S

This section defines the physics interfaces involved in the Structure Thin-Film Flow 
Interaction coupling. The Structure and the Thin film lists include all applicable physics 
interfaces.

The default values depend on how the node is created.

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(macOS and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default.

• If it is added automatically when the physics interface is chosen in the Model Wizard 
or Add Physics window, then the two participating physics interfaces are selected.

You can also select None from either list to uncouple the Structure Thin-Film Flow 

Interaction node from a physics interface. If the physics interface is removed from the 
Model Builder, for example Solid Mechanics is deleted, then the Structure list defaults to 
None as there is nothing to couple to.

Shell Thin-Film Flow Interaction

The Shell Thin-Film Flow Interaction ( ) multiphysics node provides a coupling on a 
boundary between a thin fluid film and a shell.

The Shell Thin-Film Flow Interaction node is only available with some COMSOL 
products (see https://www.comsol.com/products/specifications/). 

S E T T I N G S

The Label is the multiphysics coupling feature name. The default Label (for the first 
multiphysics coupling feature in the model) is Shell Thin-Film Flow Interaction 
1.

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 

If a physics interface is deleted and then added to the model again, then 
in order to re-establish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present physics 
interface. See Multiphysics Modeling Workflow in the COMSOL 
Multiphysics Reference Manual.
M U L T I P H Y S I C S  C O U P L I N G S  |  1871

https://www.comsol.com/products/specifications/


1872 |  C H A P T E
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is shtfi1.

B O U N D A R Y  S E L E C T I O N

By default, the selection is set to All boundaries. However, only boundaries between 
fluid and solid domains are applicable. This is deduced automatically using the 
selections made on the coupled physics interfaces.

C O U P L E D  I N T E R F A C E S

This section defines the physics interfaces involved in the Structure Thin-Film Flow 
Interaction coupling. The Structure and the Thin film lists include all applicable physics 
interfaces.

The default values depend on how the node is created.

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(macOS and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default.

• If it is added automatically when the physics interface is chosen in the Model Wizard 
or Add Physics window, then the two participating physics interfaces are selected.

You can also select None from either list to uncouple the Shell Thin-Film Flow Interaction 
node from a physics interface. If the physics interface is removed from the Model 

Builder, for example Shell is deleted, then the Structure list defaults to None as there is 
nothing to couple to.

F I L M  L O C A T I O N

In this section, you specify the load contributions that are transferred from the 
Thin-Film Flow interface to the Shell interface.

If a physics interface is deleted and then added to the model again, then 
in order to re-establish the coupling, you need to choose the physics 
interface again from the lists. This is applicable to all multiphysics 
coupling nodes that would normally default to the once present physics 
interface. See Multiphysics Modeling Workflow in the COMSOL 
Multiphysics Reference Manual.
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Select Top to include the load from the fluid on the top side of the shell.

Select Bottom to include the load from the fluid on the bottom side of the shell.
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Coup l i n g s  B e twe en S t r u c t u r a l  
Me chan i c s  I n t e r f a c e s

Some of the structural mechanics interfaces are formulated using different types of 
degrees of freedom. This needs to be considered in models where such interfaces 
interact. You can set up common transitions using the following predefined 
multiphysics couplings:

• Solid-Thin Structure Connection

• Solid-Beam Connection

• Shell-Beam Connection

• Layered Shell-Structure Transition

• Layered Shell-Structure Cladding

• Structure-Pipe Connection

• Embedded Reinforcement

• Beam Cross Section-Beam Coupling

• Beam-Beam Cross Section Coupling

Solid-Thin Structure Connection

Add the Solid-Thin Structure Connection multiphysics node ( ) to create transitions 
between domains modeled using the Solid Mechanics or Multibody Dynamics 
interfaces and boundaries modeled using the Shell or Membrane interfaces.

The Solid-Thin Structure Connection node is only available with some COMSOL 
products (see https://www.comsol.com/products/specifications/).

C O U P L E D  I N T E R F A C E S

Select Solid mechanics — Solid Mechanics or Multibody Dynamics.

Select Thin structure — Shell or Membrane.

C O N N E C T I O N  S E T T I N G S

When Membrane is selected from the Thin structure list, the Connection type is set to 
Shared boundaries. See settings in Shared Boundaries.
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When Shell is selected from the Thin structure list, select the Connection type — Solid 

boundaries to shell edges, Shared boundaries, or Parallel boundaries.

For the first two options, there is an automatic search for possible adjacent geometrical 
objects. If you want to modify the selections, select the Manual control of selections 
check box. If you clear it, the selections will be replaced by the automatic ones.

Solid Boundaries to Shell Edges
If the automatic selection is not sufficient, select the Manual control of selections check 
box. Then, select the connected solid boundaries in the Boundary Selection, Solid 

section and the corresponding shell edges in the Edge Selection, Shell section.

Select Connected area defined by — Shell thickness, Selected solid boundaries, or Distance 

from shell midsurface. This parameter determines how much of the selected solid 
boundaries that are connected to the shell. The default is that a distance from the shell 
edge having the size of the half the shell thickness in both perpendicular directions is 
connected.

• Using Selected solid boundaries connects the selected boundaries in their entirety to 
the shell.

• If you select Distance from shell midsurface, enter a Distance d. This value is used 
instead of the half the shell thickness for defining the connection distance.

Select a Method — Rigid or Flexible.

• The Rigid version of the coupling only adds constraints to the boundary of the solid, 
which in general causes local disturbances of the stress field, since the thickness 
cannot change.

• When using the Flexible coupling, three extra degrees of freedom are added along 
the shell edge. This allows for a more accurate description of the transition, but the 
model can in some cases become unconstrained if the mesh on the solid is very 
coarse.

When either of the Shell thickness or Distance from shell midsurface options are used, 
the connected area is slightly extended by the distance . Select how to determine this 
Connection tolerance — Automatic or User defined. For Automatic, the tolerance  is set 
to 0.5% of the shell thickness, which allows for small inaccuracies on for example a 
curved geometry. By selecting User defined, you can modify the value of 

Shared Boundaries
If the automatic selection is not sufficient, select the Manual control of selections check 
box. Then, select the connected boundaries in the Boundary Selection section.
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The connected area is slightly extended by a distance . Select how to determine this 
Connection tolerance — Automatic or User defined. For Automatic, the tolerance  is set 
to 0.5% of the shell thickness, which allows for small inaccuracies on for example a 
curved geometry. By selecting User defined, you can modify the value of 

Parallel Boundaries
Select the connected solid boundaries in the Boundary Selection, Solid section and the 
corresponding shell boundaries in the Boundary Selection, Shell section.

Select Distance evaluation — Shell properties, Solid-shell geometrical distance, or User 

defined. This parameter controls how the coupling determines the connection distance, 
used when expressing the coupling between translation and rotation.

• When Shell properties is selected, the distance is based on the shell thickness and 
offset, so that a distance equal to half the shell thickness is used.

• If you select Solid-shell geometrical distance, the connection distance is computed 
from the geometrical distance between the selected boundaries.

• For User defined, enter a Distance d, which defines the connection distance.

The connected area is slightly extended by a distance . Select how to determine this 
Connection tolerance — Automatic or User defined. For Automatic, the tolerance  is set 
to 0.5% of the shell thickness, which allows for small inaccuracies on for example a 
curved geometry. By selecting User defined, you can modify the value of 

A D V A N C E D

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

When Shared boundaries or Parallel Boundaries is selected from the Connection type 
list, select where to place the Constraints on — Thin structure boundaries or Solid 

boundaries.

By default the constraints are placed on the thin structure (Shell or Membrane) side of 
the connection, but it is also possible to enforce the constraints on the solid side.

• For more information about coupling different element types, see 
Coupling Techniques.

• For details about the formulation of this coupling, see Connection 
Between Shells and Solids
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C O N S T R A I N T  S E T T I N G S

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Options in the Show More Options dialog box.

Solid-Beam Connection

Add the Solid-Beam Connection multiphysics coupling node ( ) to create transitions 
between domains modeled using the Solid Mechanics or Multibody Dynamics 
interfaces and edges modeled using the Beam interface.

The 2D and 3D versions of the Solid-Beam Connection are fundamentally different, and 
are treated separately below.

C O U P L E D  I N T E R F A C E S

Select Solid mechanics — Solid Mechanics or Multibody Dynamics.

Select the Beam interface to couple.

In the COMSOL Multiphysics Reference Manual:

• Constraint Reaction Terms

• Weak Constraints

• Constraint Settings

These types of couplings will commonly generate many constraints, 
possibly even conflicting with other constraints coming from ordinary 
boundary conditions. For methods of resolving potential problems, see

• Elemental and Nodal Constraints

• Suppressing Constraints on Lower Dimensions

When there are many interconnected constraints, it may also be useful to 
change Null-Space Function to Orthonormal or Explicit — Orthonormal, 
but doing so may increase the memory consumption significantly.

An example of couplings between shells and solids is shown in 
Connecting Shells and Solids: Application Library path 
Structural_Mechanics_Module/Beams_and_Shells/shell_solid_connection
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C O N N E C T I O N  S E T T I N G S  2 D

Select the Connection type — Solid boundaries to beam points, Solid and beam shared 

boundaries, Solid and beam parallel boundaries, or Solid edges to beam points.

In first two cases, there is an automatic search for possible adjacent geometrical objects. 
If you want to modify the selections, select the Manual control of selections check box. 
If you clear it again, the selections will be replaced by the automatic ones.

Solid Boundaries to Beam Points
For a manual selection, select the connected solid boundaries in the Boundary Selection, 

Solid section and the corresponding beam points in the Point Selection, Beam section.

Select Connected area defined by — Section height, Selected boundaries, or Distance from 

beam axis. This parameter determines how much of the selected solid boundaries that 
are actually connected to the beam. The default is that a distance from the beam point 
having the size of the half the beam section height in each direction is connected. 
Using Selected boundaries connects the entire selected boundaries to the beam. If you 
select Distance from beam axis, enter a Distance d. This is used instead of the section 
height for defining the connection distance.

Select a Method — Rigid or Flexible. The Rigid version of the coupling only adds 
constraints to the boundary of the solid, which in general causes local disturbances of 
the stress field, since the thickness cannot change. When using the Flexible coupling, 
three extra degrees of freedom are added to each beam point. This allows for a more 
accurate description of the transition, but the model can in some cases become 
unconstrained if the mesh on the solid is very coarse.

When the connected area is determined by either the Section height or Distance from 

beam axis options, the connected area is slightly extended by a distance . Select how 
to determine this Connection tolerance — Automatic or User defined. For Automatic, the 
tolerance  is set to 0.5% of the beam height, which allows for small inaccuracies on 
for example a curved geometry. By selecting User defined, you can modify the value 
of 

Solid and Beam Shared Boundaries
If the automatic selection is not sufficient, select the Manual control of selections check 
box. Then, select the connected boundaries in the Boundary Selection section.

The connected area is slightly extended by the distance . Select how to determine this 
Connection tolerance — Automatic or User defined. The Automatic option sets the value 
of the tolerance  to 0.5% of section height of the beam. By selecting the User defined 
option, you can modify the value of the tolerance 
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Solid and Beam Parallel Boundaries
Select the connected solid boundaries in the Boundary Selection, Solid section and the 
corresponding beam edges in the Boundary Selection, Beam section.

Select Distance evaluation — Section height, Geometrical distance, or User defined. This 
parameter determines how the coupling treats the determination of the connection 
distance, used when expressing the coupling between translation and rotation. The 
default is that a distance equal to half the section height is used. If you select 
Geometrical distance, the connection distance is computed from the geometrical 
distance between the solid boundary and the beam boundary. For User defined enter a 
Distance d. This defines the connection distance.

The connected area is slightly extended by a distance . Select how to determine this 
Connection tolerance — Automatic or User defined. For Automatic, the tolerance  is set 
to 0.5% of the beam height, which allows for small inaccuracies on, for example, a 
curved geometry. By selecting User defined, you can modify the value of 

C O N N E C T I O N  S E T T I N G S  3 D

Select the Connection type — Solid boundaries to beam points, general, Solid boundaries 

to beam points, transition, Solid boundaries to beam edges, or Solid edges to beam points. 
For the connections to beam points, there is an automatic search for possible adjacent 
geometrical objects. If you want to modify the selections, select the Manual control of 

selections check box. If you clear it again, the selections will be replaced by the 
automatic ones.

Solid Boundaries to Beam Points, General
Select this when the end of a beam is to be “welded” to part of the face of a solid 
domain.

If the automatic selection is not sufficient, select the Manual control of selections check 
box. Then, select the connected solid boundaries in the Boundary Selection, Solid 

section and select the corresponding beam points in the Point Selection, Beam section.

Select a Connected region — Selected boundaries, Distance (automatic), 
Distance (manual), or Connection criterion.

• Using Selected boundaries makes all selected boundaries to be rigidly connected to 
the point on the beam.

• For Distance (automatic), all parts on the solid boundary, which are within the 
default distance from the beam point, are connected. This distance is determined by 
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the cross section properties of the beam. It is contained in the variable beam.re as 
described in the documentation for The Beam Interface.

• For Distance (manual) enter a Connection radius rc. All parts on the solid boundary, 
which are within the given distance from the beam point, are connected.

• For Connection criterion enter a Boolean expression in the text field. The beam is 
connected to the selected solid boundaries, wherever the expression has a nonzero 
value. The default value is 1, which is equivalent to using the Selected boundaries 
option.

Solid Boundaries to Beam Points, Transition
Use this option if you want to model a transition from a beam modeled by solid 
elements to the same beam modeled using beam elements. It is assumed that the solid 
part is truncated by a set of boundaries which are perpendicular to the beam axes. No 
settings other than the selections are needed in this case.

If the automatic selection is not sufficient, select the Manual control of selections check 
box. Then, select the connected solid boundaries in the Boundary Selection, Solid 

section and select the corresponding beam points in the Point Selection, Beam section.

The coupling can introduce a set of extra degrees of freedom on the solid boundary 
for computing the warping displacement over the cross section. Select Include warping 
— Automatic, Yes, or No, to control this behavior. If Automatic is selected, warping will 
be included, unless the beam cross section is one of the predefined sections Circular or 
Pipe. To explicitly control the behavior, select Yes or No.

The warping degrees of freedom should preferably be solved for only once, and 
separately. If they are solved at the same time as the general problem, you can expect 
that the solution time increases by a factor of two. For more details, see Beam Point to 
Solid (3D) in the Structural Mechanics Modeling chapter.

Solid Boundaries to Beam Edges
Use this option when you want to model a beam that is parallel to the solid boundary 
and is “welded” to it.

Select a Connected region — Selected boundaries, Beam width, or Connection criterion.

• Using Selected boundaries makes all selected boundaries to be rigidly connected to 
the point on the beam. This is mainly useful if the boundary has approximately the 
same shape as the physical size of the beam, such as a rectangle with the same width 
as a beam flange.
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• For Beam width, enter a Width w. All parts on the solid boundary, which are within 
the given distance from the projection of the beam axis on the solid, are connected. 
For cases when the beam is asymmetric, that is when the connection distance from 
the beam axis is not the same in both directions, enter also an Offset d. The positive 
orientation of the offset is , where n is the outward normal of the solid, and t 
is the positive orientation of the beam edge.

• For Connection criterion enter a Boolean expression in the text field. The beam is 
connected to the selected solid boundary, wherever the expression has a nonzero 
value. The default value is 1, which is equivalent to using the Selected boundaries 
option.

Solid edges to beam points
Select this when the end of a beam is to be “welded” to an edge of a solid domain. One 
important use case is when modeling bolts using beams, and this coupling acts as an 
abstract bolt head.

Select the connected solid edges in the Edge Selection, Solid section and select the 
corresponding beam points in the Point Selection, Beam section.

Select a Connected region — Selected edges, Distance (automatic), Distance (manual), or 
Connection criterion.

• Using Selected edges makes all selected edges to be rigidly connected to the point 
on the beam.

• For Distance (automatic), all parts on the solid edges, which are within the default 
distance from the beam point, are connected. The distance is determined by the 
cross section properties of the beam. It is contained in the variable beam.re as 
described in the documentation for The Beam Interface.

• For Distance (manual) enter a Connection radius rc. All parts on the solid edges, which 
are within the given distance from the beam point, are connected.

• For Connection criterion enter a Boolean expression in the text field. The beam is 
connected to the selected solid edges, wherever the expression has a nonzero value. 
The default value is 1, which is equivalent to using the Selected edges option.

n t

• For more information about coupling different element types, see 
Coupling Techniques.

• For details about the formulation of this coupling, see Connection 
Between Shells and Solids
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Shell-Beam Connection

Add the Shell-Beam Connection multiphysics node ( ) to create transitions between 
boundaries or edges modeled using the Shell interface and edges or points modeled 
using the Beam interface.

The Shell-Beam Connection node is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/).

C O N N E C T I O N  S E T T I N G S

Select the Connection type — Shell edges to beam points, Shared edges, Parallel edges, or 
Shell boundaries to beam points.

For all options except Parallel edges, there is an automatic search for possible adjacent 
geometrical objects. If you want to modify the selections, select the 
Manual control of selections check box. If you clear it again, the selections will be 
replaced by the automatic ones.

Shell Edges to Beam Points
If the automatic selection is not sufficient, select the Manual control of selections check 
box. Then, select the connected shell edges in the Edge Selection, Shell section and the 
corresponding beam points in the Point Selection, Beam section.

Select a Connected region — Selected edges, Distance (automatic), Distance (manual), or 
Connection criterion.

• Using Selected edges makes all selected edges rigidly connected to the point on the 
beam.

• For Distance (automatic), all parts on the shell edge, which are within the default 
distance from the beam point, are connected. This distance is determined by the 

These types of couplings will commonly generate many constraints, 
possibly even conflicting with other constraints coming from ordinary 
boundary conditions. For methods of resolving potential problems, see

• Elemental and Nodal Constraints

• Suppressing Constraints on Lower Dimensions

When there are many interconnected constraints, it may also be useful to 
change Null-Space Function to Orthonormal or Explicit — Orthonormal, 
but doing so may increase the memory consumption significantly.
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cross section properties of the beam. It is contained in the variable beam.re as 
described in the documentation for The Beam Interface.

• For Distance (manual) enter a Connection radius rc. All parts on the shell edge, which 
are within the given distance from the beam point, are connected.

• For Connection criterion enter a Boolean expression in the text field. The beam is 
connected to the selected shell edge wherever the expression has a nonzero value. 
The default value is 1, which is equivalent to using the Selected edges option.

Shared Edges
If the automatic selection is not sufficient, select the Manual control of selections check 
box. Then, select the connected edges in the Edge Selection section.

Select an Offset definition — Along shell normal or Offset vector.

• For Along shell normal enter an Offset .

• For Offset vector enter values for d0 in the table. The offset is the vector from the 
reference surface of the shell to the actual position of the beam.

Parallel Edges
Enter a value for the Parallelism tolerance . The default is 1 degree. The two edges 
are connected only where they are parallel within the specified tolerance.

Shell Boundaries to Beam Points
If the automatic selection is not sufficient, select the Manual control of selections check 
box. Then, select the connected shell boundaries in the Boundary Selection, Shell 

section and the corresponding beam points in the Point Selection, Beam section.

Select an option from the Connected region list — Selected boundaries, 
Distance (automatic), Distance (manual), or Connection criterion.

• Using Selected boundaries makes all selected boundaries rigidly connected to the 
point on the beam.

• For Distance (automatic), all parts on the shell boundary, which are within a default 
distance from the beam point, are connected. This distance is determined by the 
cross section properties of the beam. It is contained in the variable beam.re as 
described in the documentation for The Beam Interface.

• For Distance (manual) enter a Connection radius rc. All parts on the shell edge, which 
are within the given distance from the beam point, are connected.

• For Connection criterion enter a Boolean expression in the text field. The beam is 
connected to the selected shell boundary wherever the expression has a nonzero 
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value. The default value is 1, which is equivalent to using the Selected boundaries 
option.

Layered Shell-Structure Transition

Add the Layered Shell-Structure Transition multiphysics node ( ) to create transitions 
between boundaries modeled using the Layered Shell and domains or boundaries 
modeled using the Solid Mechanics or Shell interfaces.

The Layered Shell-Structure Transition node is only available with some COMSOL 
products (see https://www.comsol.com/products/specifications/)

C O U P L E D  I N T E R F A C E S

Select the Layered Shell interface to couple.

Select the Structure — Solid Mechanics or Shell.

• For more information about coupling different element types, see 
Coupling Techniques.

• For details about the formulation of this coupling, see Connection 
Between Shells and Beams

These types of couplings will commonly generate many constraints, 
possibly even conflicting with other constraints coming from ordinary 
boundary conditions. For methods of resolving potential problems, see

• Elemental and Nodal Constraints

• Suppressing Constraints on Lower Dimensions

When there are many interconnected constraints, it may also be useful to 
change Null-Space Function to Orthonormal or Explicit — Orthonormal, 
but doing so may increase the memory consumption significantly.

Examples of all types of couplings between shells and beams are shown in 
Connecting Shells and Beams: Application Library path 
Structural_Mechanics_Module/Beams_and_Shells/shell_beam_connection
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S H E L L  P R O P E R T I E S

Clear the Use all layers check box to apply the Layered Shell-Structure Transition 
coupling on some layers only. Select a Layer from the list (the coupling is then 
applicable only on the boundaries where this latter material is defined). Under the 
Selection table clear the check boxes corresponding to layers where the coupling should 
not be applied.

C O N N E C T I O N  S E T T I N G S

There is an automatic search for possible adjacent geometrical objects. If you want to 
modify the selections, select the Manual control of selections check box. Then, select the 
connected solid boundaries in the Boundary Selection, Solid section and the 
corresponding shell edges in the Edge Selection section.

The connected area is slightly extended by a distance . Select how to determine this 
Connection tolerance — Automatic or User defined. For Automatic, the tolerance  is set 
to 0.5% of the shell thickness, which allows for small inaccuracies on, for example, a 
curved geometry. By selecting User defined, you can modify the value of 

Layered Shell-Structure Cladding

Add the Layered Shell-Structure Cladding multiphysics node ( ) to create claddings 
between boundaries modeled using the Layered Shell and domains or boundaries 
modeled using the Solid Mechanics, Membrane, or Shell interfaces.

The Layered Shell-Structure Cladding node is only available with some COMSOL 
products (see https://www.comsol.com/products/specifications/)

C O U P L E D  I N T E R F A C E S

Select the Layered Shell interface to couple.

Select the Structure — Solid Mechanics, Shell, or Membrane.

C O N N E C T I O N  S E T T I N G S

Select the Connection type — Shared boundaries or Parallel boundaries.

Shared boundaries
There is an automatic search for possible adjacent geometrical objects. If you want to 
modify the selections, select the Manual control of selections check box. Select the 
boundaries where the cladding is applied in the Boundary Selection section. If you clear 
it, the selections will be replaced by the automatic ones.
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Select the Layered shell boundary — Top or Bottom to apply the cladding.

The connected area is slightly extended by a distance . Select how to determine this 
Connection tolerance — Automatic or User defined. For Automatic, the tolerance  is set 
to 0.5% of the shell thickness, which allows for small inaccuracies on for example a 
curved geometry. By selecting User defined, you can modify the value of 

Parallel Boundaries
Select the connected solid boundaries in the Boundary Selection, Layered Shell section 
and the corresponding structural boundaries in the Boundary Selection, Structure 
section.

Select the Layered shell boundary — Top or Bottom to apply the cladding.

In case of a shell structure, select the Shell boundary — Top or Bottom to apply the 
cladding.

The connected area is slightly extended by a distance . Select how to determine this 
Connection tolerance — Automatic or User defined. For Automatic, the tolerance  is set 
to 0.5% of the shell thickness, which allows for small inaccuracies on, for example, a 
curved geometry. By selecting User defined, you can modify the value of 

Layered Shell-Shell Connection

Add the Layered Shell-Shell Connection multiphysics node ( ) to create models where 
a combination of the Layered Shell interface and the Shell interface are used for 
different layers in the same layup. Thus, both interfaces are active on the same 
boundary. This type of modeling (multiple model method) is efficient in components, 
where some layers are thin, while other layers are significantly thicker.

The Layered Shell-Shell Connection node is only available with some COMSOL 
products (see https://www.comsol.com/products/specifications/)

C O U P L E D  I N T E R F A C E S

Select the Layered Shell interface and Shell interfaces to couple.

I N T E R F A C E  S E L E C T I O N

Select Apply to — Interior Interfaces or Selected Interfaces.

For Interior Interfaces, any interface shared between the two type of element 
formulations will be bonded.
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For Selected Interfaces, you have the possibility to select the interfaces to be bonded. 
In this case, select the applicable interfaces from the Layer list.

Structure-Pipe Connection

Add the Structure-Pipe Connection multiphysics coupling node ( ) to create 
transitions between edges modeled using the Pipe Mechanics interface and domains or 
boundaries modeled using the Solid Mechanics or Shell interfaces in 3D.

The multiphysics coupling is intended for situations where the cross-sectional 
properties match on both sides of the connection. It can be considered as an extension 
to the transition type couplings in Solid-Beam Connection and Shell-Beam 
Connection that also accounts for radial deformation of the pipe caused by the fluid 
pressure and the temperature difference over the cross section.

C O U P L E D  I N T E R F A C E S

Select Structure — Solid Mechanics or Shell.

Select the Pipe Mechanics interface to couple.

Analysis of a Composite Blade Using a Multiple Model Method: 
Application Library path Composite_Materials_Module/Tutorials/

composite_blade_multiple_model_method

• The connection assumes that the pipe cross section is circular. If 
another cross section is used, it is converted to an equivalent circular 
cross section

• For user defined pipe cross sections, the effects of fluid pressure and 
temperature are not considered

• Warping is not considered

For more information about coupling different element types, see 
Coupling Techniques.
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Embedded Reinforcement

Add an Embedded Reinforcement multiphysics node ( ) to create a coupling where 
elements from the Truss, Beam, or Membrane interface are embedded in solid 
elements. The meshes used in the coupled interfaces do not have to coincide; the 
displacements inside the solid elements at the locations where the nodes of the 
lower-dimension element are located are automatically identified.

The Embedded Reinforcement node is only available with some COMSOL products (see 
https://www.comsol.com/products/specifications/)

C O U P L E D  I N T E R F A C E S

Select the Solid interface to couple.

Select the Embedded structure to couple — Truss, Beam, or Membrane.

These types of couplings will commonly generate many constraints, 
possibly even conflicting with other constraints coming from ordinary 
boundary conditions. For methods of resolving potential problems, see

• Elemental and Nodal Constraints

• Suppressing Constraints on Lower Dimensions

When there are many interconnected constraints, it may also be useful to 
change Null-Space Function to Orthonormal or Explicit — Orthonormal, 
but doing so may increase the memory consumption significantly.

See Embedded Elements in the Structural Mechanics Theory Chapter.

When coupling the Beam interface to a Solid Mechanics interface, only 
the displacement degrees of freedom of the beam are constrained.
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C O N N E C T I O N  S E T T I N G S

Select the Connection type — Rigid, Spring constant per unit length, or Spring constant 

per unit surface area. The available types of spring connections depend on the selected 
Embedded Structure interface.

Rigid Connection
The Rigid connection type couples the selected interfaces using pointwise constraints 
applied to the selection of the embedded structure. The constraints are only active for 
the parts of the selection that lies within the solid.

Spring connection
All spring connection types couple the selected interfaces by inserting springs between 
the Embedded structure and the Solid. The properties of the spring connection are 
determined by user defined spring constants.

When the Embedded structure is a Beam interface, select whether to 
Suppress rotation around beam axis or not. The default is to suppress axial 
rotation, to avoid rigid body rotation around the beam axis.

When the Embedded structure is a Truss interface, enter the Axial spring 

constant ka, and the Transverse spring constant kt. The default unit and 
expression for the spring constants depend on the Connection type:

• For Spring constant per unit length, the default expression for both ka 
and kt is 1e3*<tag>.Eequ*<tag>.area/h^2.

• For Spring constant per unit surface area, the default expression for both 
ka and kt is 1e3*<tag>.Eequ*<tag>.perimeter/h^2.

The variable <tag>.Eequ is a placeholder for the equivalent stiffness of 
the Truss interface, and <tag>.area and <tag>.perimeter for the 
cross-sectional area and perimeter, respectively. The multiplier 1e3 can be 
modified to tune the stiffness of the connection. Both connection types 
internally use the same formulation, and the spring constant per unit area 
is converted to a spring constant per unit length.
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Bond Slip Model
When a spring connection type is selected, it is also possible to also include a Bond slip 

model. By default, a No bond slip model is added. If Friction is selected, it is also possible 
to model sliding between the Solid and the Embedded Structure.

By selecting Friction, the bond slip behavior of the interface is defined by using a 
plasticity model. Enter a value for the Cohesion c0 to define the initial resistance to 
sliding. You can also specify a Hardening model — None, Linear, or User defined.

• For Linear, enter the Hardening coefficient kp. This option defines a linear hardening 
function kpupe, where upe is the accumulated slip. The current sliding resistance is 
then c = c0 + kpupe.

• For User defined, enter an expression for the Hardening function ch. The default 
expression is 0[unit]*<tag>.upe. The unit depends on the Embedded structure 

When the Embedded structure is a Beam interface and Spring constant per 

unit length is selected, enter the Axial spring constant ka, and two 
Transverse spring constants in the local coordinate system of the beam, kyl 
and kzl. The default expression for the spring constants is 
1e3*<tag>.Eequ*<tag>.area/h^2.

The variable <tag>.Eequ is a placeholder for the equivalent stiffness of 
the Beam interface, and <tag>.area for the cross-sectional area. The 
multiplier 1e3 can be modified to tune the stiffness of the connection.

When the Embedded structure is a Membrane interface and Spring 

constant per unit surface area is selected, enter the three components of 
the stiffness vector in the boundary system coordinates, kt1, kt2, and kn. 
The default expression for each component is 
1e5*<tag>.Eequ*<tag>.d/h^2.

The variable <tag>.Eequ is a placeholder for the equivalent stiffness of 
the Membrane interface, and <tag>.d for the thickness. The multiplier 
1e5 can be modified to tune the stiffness of the connection.
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interface, and the variable <tag>.upe is the accumulated slip. The current sliding 
resistance is then c = c0 + ch

A D V A N C E D

To display this section, click the Show More Options button ( ) and select Advanced 

Physics Option in the Show More Options dialog box.

Enter a scalar positive value in the Extrapolation tolerance; the default is 0.3. This 
tolerance is used by an internal general extrusion operator that maps expressions from 
the Solid (source) to the Embedded Structure (destination). If a point of the embedded 
structure is within a distance of the extrapolation tolerance times the mesh element 
size, the point is considered to be within the solid. Otherwise, the mapping fails.

Select the Calculate dissipated energy check box as needed to compute the energy 
dissipated when including a Bond slip model in the connection.

Beam Cross Section-Beam Coupling

Use the Beam Cross Section-Beam Coupling to transfer the cross section data from a 
Beam Cross Section interface to either a Beam Interface or a Pipe Mechanics interface. 
You need to use one such Beam Cross Section-Beam Coupling node for each type of cross 
section.

The bond slip friction model formally describes the so-called Tresca 
friction, that is, the sliding resistance does not depend on the normal 
force acting on the interface between the Solid and the Embedded 

Structure. However, a Coulomb type friction model can by implemented 
by adding a dependence with respect to a “normal force” in the expression 
for the Cohesion c0. The difficulty lies in estimating the normal force

• For more information about coupling different element types, see 
Coupling Techniques.

• For details about how work with embedded structures, see Modeling 
Embedded Structures and Reinforcements.

• For details about the formulation of this coupling, see Embedded 
Elements.
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The Beam Cross Section-Beam Coupling node is only available with some COMSOL 
products (see https://www.comsol.com/products/specifications/)

B O U N D A R Y  S E L E C T I O N

Select the boundaries that represent the current cross section in the Beam Cross 
Section interface. This means that the selection should be identical to the selection in 
a corresponding Homogeneous Cross Section node.

E D G E  S E L E C T I O N ,  B E A M

Select the edges of the beams that have the intended cross section.

C O U P L E D  I N T E R F A C E S

Select the Beam Cross Section interface to couple.

Select the Beam interface to couple. This can be either a Beam interface or a Pipe 
Mechanics Interface.

Beam-Beam Cross Section Coupling

Use the Beam-Beam Cross Section Coupling to transfer the results from a Beam Interface 
or a Pipe Mechanics interface to a Beam Cross Section interface for visualization. You 
can add more than one Beam Cross Section-Beam Coupling node, but they should have 
different selections of cross sections in the Beam Cross Section interface.

The location, the orientation of the cross section, and the direction of its extrusion 
along the beam axis are independent of how the actual beam is located.

The Beam-Beam Cross Section Coupling node is only available with some COMSOL 
products (see https://www.comsol.com/products/specifications/)

B O U N D A R Y  S E L E C T I O N

Select the boundaries that represent the current cross section in the Beam Cross 
Section interface. This means that the selection should be identical to the selection in 
a corresponding Homogeneous Cross Section node.

This multiphysics coupling is only available in 3D.
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E D G E  S E L E C T I O N ,  B E A M

Select the edges of the beams, for which the stress plots are to be made. Normally, 
these beams should have the same cross section as in the selected boundaries. It is 
however only the section forces that are transferred to the Beam Cross Section 
interface. It is thus possible to view the stress distribution for any cross section, with a 
given set of section forces.

The selected edges must form a straight line. In the Beam Cross Section, the thickness 
property of the layered material must be set equal to the total length of the selected 
edges, in order for the results to be mapped.

B E A M  O R I G I N

Select the point on the beam edge that should be treated as start point when mapping 
the results to the Beam Cross Section interface.

C O U P L E D  I N T E R F A C E S

Select the Beam Cross Section interface to couple.

Select the Beam interface to couple. This can be either a Beam interface or a Pipe 
Mechanics Interface.

B E A M  P R O P E R T I E S

This section is related to the fact that the Beam Cross Section interface uses the layered 
technology. You will typically not need to change the settings.

A D V A N C E D

Enter an Extrapolation tolerance. This is the tolerance used in the extrusion coupling 
operator that maps between the physical beam and the axial coordinate in the Beam 
Cross Section interface.
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G l o s s a r y
This Glossary of Terms contains finite element modeling terms in a structural 
mechanics context. For mathematical terms, and geometry and CAD terms specific 
to the COMSOL Multiphysics® software and documentation, see the glossary in 
the COMSOL Multiphysics Reference Manual. For references to more 
information about a term, see the index.
 1895
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G l o s s a r y  o f  T e rm s
anisotropy Variation of material properties with direction. Both global and local 
user-defined coordinate systems can be used to define anisotropic material properties.

arbitrary Lagrangian–Eulerian (ALE) method A technique to formulate equations in a 
mixed kinematic description. An ALE referential coordinate system is typically a mix 
between the material (Lagrangian) and spatial (Eulerian) coordinate systems.

augmented Lagrangian method A method for solving contact problems. 
Augmentation components are introduced for the contact pressure and the 
components of the friction traction vector. Additional iteration levels are added where 
the displacement, contact pressure and traction variables are solved separately. The 
algorithm repeats this procedure until it fulfills a convergence criterion.

axial symmetry Symmetry in both load and geometry, solves for the radial (r) and 
axial (z) displacement.

bar A line element that only has translational degrees of freedom, capable of 
sustaining axial forces, with no bending moments, torsional moments, or shear forces. 
Can be used on lines in 2D and 3D. Also called spar or truss element. In COMSOL 
Multiphysics the term truss element is used.

beam A line element having both translational and rotational degrees of freedom. 
Capable of sustaining axial forces, bending moments, torsional moments, and shear 
forces. Can be used on lines in 2D and 3D.

body forces Forces distributed through the volume of a body.

buckling The sudden collapse or reduction in stiffness of a structure under a critical 
combination of applied loads.

cable A tension-only truss member used to model large deformation including sag.

Cauchy stress The most fundamental stress measure defined as force/deformed area 
in fixed directions not following the body.

compliance matrix The inverse of the elasticity matrix. See elasticity matrix.
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constitutive equations The equations formulating the stress-strain relationship of a 
material.

constraint Constrains the displacement or rotations to zero or a specified value.

contact model The mathematical method to model bodies that come into contact 
with each other.

contact pair A pair that consists of some source boundaries and destination 
boundaries and is used for contact modeling.

coordinate system Global Cartesian, local geometrical, application specific, and 
user-defined coordinate systems. Loads, constraints, material properties, and variables 
are defined in a specific coordinate system.

damping Dissipation of energy in a vibrating structure. A common assumption is 
viscous damping where the damping is proportional to the velocity. See also Rayleigh 
damping.

deformation gradient Tensor containing the complete information about the local 
straining and rotation of the material. It is a positive definite second rank tensor.

destination boundary One side of a contact pair; the destination boundary is 
prohibited to penetrate the source boundary.

double dogleg solver The default nonlinear solver for mechanical contact. This solver 
is also useful for highly nonlinear simulations such as large plastic deformation or 
hyperelastic materials.

eigenfrequency study Solving for the damped or undamped natural frequencies and 
vibration modes of a structure.

elasticity matrix The matrix D relating strain to stresses:

equilibrium equation The equation expressing the equilibrium formulated in the stress 
components.

Eulerian Model described and solved in a coordinate system that is fixed (spatial 
frame). See also Lagrangian and arbitrary Lagrangian-Eulerian method.

 D=
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first Piola–Kirchhoff stress A stress measure used when geometric nonlinearities arise. 
All forces in COMSOL Multiphysics in case of geometric nonlinearity are of this type.

flexibility matrix The inverse of the elasticity matrix. See elasticity matrix.

free vibration The undamped vibration of a structure after it is displaced from the 
equilibrium position and released. See also eigenfrequency analysis.

frequency response A harmonic analysis solving for the steady-state response from a 
harmonic excitation. Typically a frequency sweep is performed, solving for many 
excitation frequencies at one time.

geometric nonlinearity In solid mechanics, the deformation state characterized by 
finite (or large displacements) but small to moderate strains. Not all material models 
are suitable for large strain analysis, even though the displacement and rotation can be 
large.

Green–Lagrange strain Nonlinear strain measure used in large-deformation analysis. 
In a small strain, large rotation analysis, the Green–Lagrange strain corresponds to 
the engineering strain, with the strain values interpreted in the original directions. The 
Green–Lagrange strain is a natural choice when formulating a problem in the 
undeformed state. The conjugate stress is the second Piola–Kirchhoff stress.

initial strain The strain in a stress-free structure before it is loaded.

initial stress The stress in a nondeformed structure before it is loaded.

isotropic material A material where the material properties are independent of 
direction.

Lagrangian Model described and solved in a coordinate system that moves with the 
material. See also Eulerian and arbitrary Lagrangian–Eulerian method.

large deformation The deformations are so large so the nonlinear effect of the change 
in geometry or stress stiffening need to be accounted for. See also geometric 
nonlinearity.

linear buckling analysis Solves for the linear buckling load using the eigenvalue solver.

linear viscoelasticity See viscoelastic material.
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load multiplier A load used in linearized buckling analysis for estimating the critical 
load at which a structure becomes unstable.

mass damping parameter Rayleigh damping parameter, the coefficient in front of the 
mass matrix.

mass participation factors A measure of the sensitivity of a certain eigenmode to a 
uniform acceleration.

 mixed formulation A formulation used for nearly incompressible materials, where the 
mean stress have been added as a dependent variable to avoid numerical problems.

nonlinear geometry See large deformations.

orthotropic material An orthotropic material has at least two orthogonal planes of 
symmetry, where material properties are independent of direction within each plane. 
Such materials require nine elastic constants in the constitutive equations.

parametric study A study that finds the solution dependence due to the variation of a 
specific parameter.

pinned A constraint condition where the displacement degrees of freedom are fixed 
but the rotational degrees of freedom are free, typically used for frames modeled using 
beam and truss elements.

plane strain An assumption on the strain field where all out-of-plane strain 
components are assumed to be zero.

plane stress An assumption on the stress field, all out-of-plane stress components are 
assumed to be zero.

plate Thin plane structure loaded in the normal direction.

principle of virtual work States that the variation in internal strain energy is equal to 
the work done by external forces.

principal stresses/strains Normal stresses/strains with no shear components that act 
on the principal planes. The magnitude of the principal stresses/strains are 
independent of the coordinate system used.
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rate of strain tensor The rate at which the strain tensor changes with respect to time 
in time-dependent studies.

quasistatic transient study The loads vary slow enough for the inertia terms to be 
negligible. A transient thermal study coupled with a structural analysis can often be 
treated as quasi static.

Rayleigh damping A viscous damping model where the damping is proportional to the 
mass and stiffness through the mass and stiffness damping parameters.

rotational degrees of freedom Degrees of freedom associated with a rotation around 
an axis. Beams, rigid connectors, rigid domains, and shells have rotational degrees of 
freedom.

second Piola–Kirchhoff stress Conjugate stress to Green–Lagrange strain used in 
large deformation analysis. The orientations of the stress components follow the 
material directions.

shell elements A thin element where both bending and membrane effects are 
included.

source boundary One side of a contact pair; the destination boundary is prohibited 
to penetrate the source boundary.

spar see bar.

spin tensor The skew-symmetric part of the velocity gradient tensor.

stationary study A study where the loads and constraints are constant in time. Also 
called static.

strain Relative change in length, a fundamental concept in structural mechanics.

stress Internal forces in the material, normal stresses are defined as forces/area normal 
to a plane, and shear stresses are defined as forces/area in the plane. A fundamental 
concept in structural mechanics.

stress stiffening The geometrically nonlinear effect which supplies the out-of-plane 
stiffness for membranes, for example.
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stiffness damping parameter Rayleigh damping parameter, the coefficient in front of 
the stiffness matrix.

strain energy The energy stored by a structure as it deforms under load. Also called 
elastic energy.

time dependent study A time-dependent or transient study shows how the solution 
varies over time, taking into account mass, mass moment of inertia, and damping.

Tresca stress An equivalent stress measure that is equal to the maximum shear stress.

truss See bar.

viscoelastic material Viscoelastic materials have a time-dependent response, even if 
the loading is constant. Many polymers and biological tissues exhibit such a behavior. 
Linear viscoelasticity is a commonly used approximation where the stress depends 
linearly on the strain and its time derivatives.
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one-way FSI 269

piezoelectric devices 1819, 1825, 1835
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plasticity models 906

portal crane 1538

pressure acoustics, frequency domain 

1863

prestressed bolts 78, 298

response spectrum analysis 79–80, 234, 

335, 343

rigid connector 298, 1103, 1152, 1156

self-contact 234

sharing edges 1877, 1884

shell-beam connection 99

shells 1246

soil plasticity 932

solid mechanics 838

solid-shell connection 99

spring foundation 250

thermal bending of beam 1585

thermal expansion 942

thermal expansion at constraints 263

thermal stress 1773

transient contact 231

trusses 1672, 1707

viscoelastic material 898

viscoplastic material 917

applied force (node) 993, 1106

theory 641

applied moment (node) 995, 1108

theory 641

applying

loads 102

moments 108

arbitrary Lagrangian-Eulerian (ALE) 

method 197

area scale factor, layered shell 1371

area, beam cross sections 1635

Arruda-Boyce material 499

associated flow rule 547
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layered shell interface 1469

shell and plate interfaces 1360

shells 1622

solid mechanics 1113

theory 640

attachments

theory 122

augmented Lagrangian method 34, 211, 

751

average rotation (node) 1185

axial stress 1650

axial symmetry

constraints and 116

initial stress and strain 415

axisymmetric models

solid mechanics 84

azimuthal mode number 403

azimuthal wave number 735

B back stress 543, 589

base excitation (node) 1030, 1763

beam

coupling to a solid 96

beam cross section interface 1652

theory 1635

beam cross section-beam coupling 

(node) 1891

beam end release (node) 1622

beam interface 1571

theory 1528, 1540

beam-beam cross section coupling 

(node) 1892

beams

cross-section data 1577

initial loads and strains 1547

initial stresses and strains 1588

linear elastic material 1584

loads applied 1613

prescribed acceleration 1599



prescribed displacement/rotation 

1593, 1687

prescribed velocity 1597

section orientation 1581

strain-displacement/rotation 1545

stress evaluation 1552

thermal expansion 1586

thermal strain 1546

Beltrami-Michell 1641

bending shear stress 1650

bending shear stresses 1637

bending stress 1650

biaxial compression 553

biaxial data 555

biaxial tension 933

bimoment 1649

Blatz-Ko material 502

body load (node)

layered shell interface 1444

shell and plate interfaces 1313

solid mechanics 1026

bolt pretension (node) 1150

bolt pre-tension, theory 290

bolt selection (node) 1153

bolt thread contact (node) 1156

bolted joints 290

boundary conditions

contact pairs 219

shell and plate interfaces 1208

boundary load (node) 1036

for thin layer 1059

layered shell interface 1449

boundary nodes

beam interface 1574, 1746

layered shell 1386

membrane interface 1488

shell and plate interfaces 1247

solid mechanics 838

truss interface 1672, 1707

boundary pair (node) 1092

boundary to boundary (node) 1344

box sections, beams 1577, 1674

Bresler-Pister criterion 552

buckling 32

built-in couplings 94

bulk modulus

elastic moduli 427, 848, 1065

C calcite 556

calculating stress and strain 1210

Cam-clay model 558

canonical systems 382

carbonate rocks 556

Cauchy stress 409

Cauchy stress tensor 195

Cayley-Hamilton theorem 393, 412

cell periodicity 1092

cell periodicity (node)

solid mechanics 1088

center of gravity, beam cross sections 

1635

center of mass

boundary (node) 999

edge (node) 999

point (node) 999

rigid domains 634

center of rotation 1639

attachments 124

boundary (node) 1104

edge (node) 1104

point (node) 1104

rigid domains 637

ceramics 553

change cross section (node)

solid mechanics 844

change thickness (node)

solid mechanics 844
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charge conservation, piezoelectric 

(node) 883

circle, Mohr 523

circular sections, beams 1577, 1674

circumferential mode number 403

Coble creep 578

coefficient of thermal expansion

beams 1587

shells and plates 1271

cohesion 523, 930

cohesionless soils 530

cohesive zone model 225

cohesive-frictional materials 553

common sections, beam interface 1577

common sections, truss interface 1674

common settings 43

complementarity 547

complex mechanical energy flux 811

complex modulus 188

compressive meridians 412, 524, 554

concrete 552, 554

concrete (node) 933

conduction loss (time-harmonic) (node) 

981

connection

beam edge to shell edge 1222

beam perpendicular to solid 1221

beam point to shell boundary 1223

beam point to shell edge 1224

connections

beams, shells 1222

beams, shells, solids 1215

shell perpendicular to solid 1216

consistency parameter 546

constitutive relation, membranes 1481

constraints 113

contact (node) 1122

contact formulation 230

continuity (node)

layered shell interface 1471

continuity, layered shell 1376

converse piezoelectric effect 151

coordinate system, beam cross sections 

1637

coordinate systems

constraints and 114

loads and 102

local edge system 1301
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Coulomb friction 1135
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beam to a shell 97

beam to a solid 96

membrane to a solid 95

shell to a solid 95

coupling loss (node) 978

layered shell interface 1426

coupling operator 99

crack (node) 1158

crack closure (node) 1160

Craig-Bampton method 270

creep (node) 909

layered shell interface 1404

membrane interface 1502

shell and plate interfaces 1265

creep dissipation rate density 593

creep strain rate 574

critical load factor 77, 319

cross section data (node) 1674

cross-section data (node) 1577

crystal cleavage 556

crystal cut standards 154

crystals

elastic properties 850

curvature 1547



cyclic symmetry, theory 734

cylindrical coordinate systems 84

D damage (node) 958

damped eigenfrequency study 187

damping

equation of motion, and 182

loss factors 186

losses and 181

point mass 1614, 1699

solid mechanics 972

viscoelastic materials, and 478

damping (node)

layered shell interface 1423

membrane interface 1517

shell and plate interfaces 1287

solid mechanics 970

damping models 186

decohesion (node) 1143

defining

anisotropic materials 431

constraints 113

isotropic materials 426

multiphysics models 251

orthotropic materials 429

thermoelastic materials 435

deformation gradient 385

deformation resistance 588

saturation coefficient 588

sensitivity 588

delamination (node) 1419

destination filter (node) 1121

destination point

boundary (node) 1080

edge (node) 1080

point (node) 1080

destination point (node) 1079

destinations and sources 216

deviatoric stress 518

dielectric loss (node) 979

layered shell interface 1427

dielectric loss factor 167

diffusional creep 578

dilatational contributions 486

direct piezoelectric effect 151, 600

discretization, layered shell 1372

dislocation creep 578

dispersion curves 63

displacement field, defining 191

displacement gradients 385

displacement variables

element types and 93

dissipated energy 810

dissipated energy density 550, 593

dissipated energy density rate 458

dissipation, piezoelectric materials 606

distortional contributions 486

disturbance factor 558

documentation 44

dolomite 556

domain nodes

solid mechanics 838

double dogleg nonlinear solver 236

Drucker-Prager criterion 525

ductile materials 520

Dulong-Petit law 435

dynamic cyclic symmetry 734

dynamic frictional coefficients 763

dynamic substructure 270

E edge group (node) 1624

edge load (node)

beam interface 1607

layered shell interface 1451

shell and plate interfaces 1317

solid mechanics 1040

truss interface 1696, 1718

edge nodes
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beam interface 1574, 1746

membrane interface 1488

solid mechanics 838

truss interface 1672, 1707

edge to boundary (node) 1345

edge to edge (node) 1348

effective stress 1651

effective stress tensor 557

eigenfrequency study 57

solid mechanics 679

eigenvalue solvers 57

eight-chain model 500

elastic deformation tensor 395

elastic energy 808

elastic Green-Lagrange strain tensor 397

elastic material properties 848–850, 

1491–1493

elastic moduli 426

elastic predeformation (node) 1170

elastic right Cauchy–Green tensor 397

elastic strain energy 508

elastic wire (node) 1709

elasticity matrix 426

elastoplastic materials 516

electromechanics interface

theory 610

electrostriction (node) 1848

electrostriction multiphysics interface 

1824

element types 93

elliptic cap 527

elplastic 547–548

emailing COMSOL 46

embedded reinforcement (node) 1888

energy dissipation 810

energy function 483

energy quantities 808

equation of motion, damping and 182

equivalent plastic strain rate 517

equivalent single layer shell theory 1226

equivalent viscous damping 187

evanescent modes 62

excitation frequency 187

explicit damping 188
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1209

external strain (node) 952

layered shell interface 1414

external stress (node) 948, 1590, 1684

layered shell interface 1412

membrane interface 1513

shell and plate interfaces 1279

external stress-strain relation (node) 982

F face load (node) 1162

layered shell interface 1446

shell and plate interfaces 1315
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failure surfaces 516
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face 1825

fiber (node) 937

Filter 248

first order shear deformation laminate 
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first Piola-Kirchhoff stress 409

fixed constraint (node) 989, 1011

for thin layer 1055

layered shell interface 1437

shell and plate interfaces 1291

fixed constraint, interface (node) 1438

fixed constraint, theory 640

fixed joint (node) 1120

Floquet periodicity, theory 734

flow rule 546

fluid and pipe materials (node) 1756



fluid load (node) 1766

fluid pore pressure 530

fluid-membrane interaction, fixed geom-

etry 1796

fluid-pipe interaction 1868

fluid-pipe interaction, fixed geometry 

1798

fluid-shell interaction 1790

fluid-solid interaction 1785, 1794, 1807

fluid-structure interaction 1788, 1863, 

1868

fluid-structure interaction interface

theory 740

fluid-structure interaction, fixed geome-

try 1792

fluid-structure interaction, pair 1865

fold lines 1206

foldline connection, layered shell 1375

fold-line limit angle 1244, 1382

follower loads 1485

free (node) 1002

layered shell interface 1429

free-free modes 59

frequency domain study

solid mechanics 675

frequency domain, prestressed study 202

frequency response study

loss factor damping 187

friction (node) 1134

friction forces 1137

friction models 1135

friction, angle 523, 531, 930

frictionless materials 524, 526

G Gao material 503

Garofalo law 577

Gauss points 547–548

general extrusion operator 99

generalized Hoek-Brown criterion 557

Generalized Kelvin–Voigt viscoelastic 

model 460

generalized Maxwell model 453

Gent material 500

geological strength index (GSI) 557

geometric nonlinearity 198

membranes 1476

micromechanics, and 190

piezoelectric devices 203

geometrically linear formulation (check 

box) 850, 857, 864, 881, 886, 889, 983, 

1398, 1493, 1497, 1585, 1592, 1758

glass transition temperature 476

global

coordinate systems 382

GMRES iterative solvers 352

gradient displacements 385

gravity (node) 1028

pipe mechanics interface 1762

Green’s theorem 1644

Green-Lagrange strain 191

Green-Lagrange tensor 388

H Haigh–Westergaard coordinates 413

hardening models

theory 538

harmonic loads 675

harmonic perturbation 70

harmonic perturbation (node)

shell and plate interfaces 1363

truss interface 1174, 1625
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hear correction factor 1638

heat dissipation 188

Hencky plastic strain 549

Hencky strain 390

Hermitian matrices 351
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Hill orthotropic plasticity 521
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Hill’s effective stress 523

Hoek-Brown criterion 556

hole (node) 1655

homogeneous cross section (node) 1653

H-profile sections, beams 1577, 1674

hydrostatic axis 413

hydrostatic pressure 410, 523

hydrostatic stress 531

hygroscopic swelling 109

hygroscopic swelling (node) 943

layered shell interface 1409

membrane interface 1509

hygroscopic swelling (node), multiphys-
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hyperbolic sinus 577
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hyperelastic material (node) 866

layered shell interface 1393
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theory 483
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152
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imperfection sensitivity 322

implementation

beams 1548

trusses 1664, 1705

inelastic deformation tensor 396

inertial effects, contact modeling 230

inertial forces 635
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beam interface 1588
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Green-Lagrange strain tensor 487

right Cauchy-Green tensor 486

isotropic hardening 539

isotropic materials

defining 426

elastic properties 848, 1491

isotropic plasticity 516

isotropic rocks 557

iterative solvers 351

J j-integral (node) 1163

joints, bolted 290

Joule heating and thermal expansion in-



terface 252, 1780

K k coefficient 931

Kelvin–Voigt viscoelastic model 464

kinematic constraints 122

kinematic hardening 542

kinematics, rigid domain 633

kinetic energy 810

knowledge base, COMSOL 47

Kuhn-Tucker conditions 547

L Lade-Duncan criterion 530

Lagrange elements 90

Lagrange shape functions, trusses and 

1662

Lagrangian formulations 384

Lamé parameters 427, 848

lamina constitutive law 1229

laminate constitutive law 1232

large deformation modeling 384

large deformations 33

piezoelectric materials 203

large plastic strain 546

large strain plasticity 485

layered linear elastic material (node)

membrane interface 1494

shell and plate interfaces 1255

layered shell interface 1381

theory 1366

layered shell-shell connection (node) 

1886

layered shell-structure cladding (node) 

1885

left Cauchy-Green tensor 389

Lie derivative 547

limestone 556

limiting chain extensibility 500

line load (node) 1452

linear buckling study 32, 202

linear elastic material (node) 845

beam interface 1584

layered shell interface 1391

membrane interface 1490

shell and plate interfaces 1253, 1259

truss interface 1678

linear elastic materials 132

linear viscoelasticity 451

linearized buckling analysis 77, 319

linearly accelearted frame (node)

layered shell interface 1448

linearly accelerated frame (node) 1034, 

1764

linper operator 70

load cases 104

load multiplier 319
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singular 106

total 110

local coordinate systems 383

local edge system 1301

local system results (node) 1183
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boundary (node) 995

edge (node) 995

point (node) 995

locking 489

Lode angle 412

Hoek-Brown criterion 556

Mohr-Coulomb criterion 524

Tresca criterion 519

Willam-Warnke criterion 553
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logarithmic plastic strain 549

long-term shear modulus 453

loss factor damping

solid mechanics and 186
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solid mechanics theory 186

springs, and 250

loss modulus 188, 478

losses and damping 181

low-reflecting boundary (node) 1093

low-reflecting boundary, theory 733

M macroscopic shear modulus 499

magnetic forces 1854

magnetically actuated structures 1826

magnetomechanical forces 1852

magnetomechanics interface 1826

magnetomechanics, no currents inter-

face 1828

magnetostatically actuated structures 

1828

magnetostriction 614

marble 556

mass and moment of inertia (node) 997, 
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mass density 386

mass matrix scaling 74

mass moment of inertia 1613
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material frame 191

material models 129

materials

nearly incompressible 133, 437

piezoelectric 600

viscoelastic 451

materials, hyperelastic 483

Matsuoka-Nakai criterion 530

max scaling 74

max shear stress factor 1638

Maxwell stress tensor 610

mechanical damping (node) 976

layered shell interface 1425

mechanical energy flux 811

membrane

coupling to a solid 95

membrane interface 1486

theory 1476

meridians, tensile and compressive 412, 

524, 554

metal plasticity 517

metals 520, 525

Mindlin plate theory 1216

Mindlin-Reissner type shell 1195

MITC shell formulation 1195, 1205

mixed formulations 134, 438

mobilized planes 530

mode analysis study 62

modeling, large deformations 384

modified Cam-clay model 558

modified Mohr-Coulomb criterion 532

modified tensors 487

Mohr’s circle 1636

Mohr-Coulomb criterion 523

moments 635

beams 1580, 1750

shells and plates 1209

solid mechanics and 108

moments of inertia 1528, 1628

moments of inertia, beam cross sections 

1635

Mooney-Rivlin material

five parameters 494

nine parameters 495

two parameters 493

moving mesh interface, piezoelectric de-

vices and 205

MPH-files 46

mu coefficient 931

mullins effect (node) 898

layered shell interface 1400

multiaxial stress states 552



multibody dynamics interface 1113

multiphysics

electrostriction 1824, 1848

ferroelectroelasticity 1825

hygroscopic swelling 1843

nonlinear magnetostriction 1833, 1858

piezoelectric effect 1845

piezoelectricity 1817

piezomagnetic effect 1856

piezomagnetism 1830

multiphysics coupling

fluid-membrane interaction, fixed ge-

ometry 1796

fluid-pipe interaction 1868

fluid-pipe interaction, fixed geometry 

1798

fluid-shell interaction 1790

fluid-solid interaction 1785, 1794, 1807

fluid-structure interaction 1788, 1863, 

1868

fluid-structure interaction, fixed ge-

ometry 1792

fluid-structure interaction, pair 1865

Joule heating and thermal expansion 

1780

thermal expansion (node) 1837

thermal stress 1772

multiphysics modeling 251

MUMPS direct solvers 351

Murnaghan material 504

N Navarro-Herring creep 578

Navier-Stokes equations 740

nearly incompressible hyperelastic mate-

rials 490

nearly incompressible materials 133, 415, 

437

Neo-Hookean material 492

Neumann boundary conditions

applied force 993

applied moment 995

no rotation (node)

beam interface 1603

shell and plate interfaces 1304

nodes, common settings 43

nominal stress 419

nonassociated flow rule 547

nonlinear elastic material 809

nonlinear elastic material (node) 853

nonlinear magnetostriction (node), mult-

iphysics 1858

nonlinear magnetostriction multiphysics 

interface 1833

Norton equation 577

O octahedral plane 413

Ogden material 496

one-way model formulations 741

orientation, piezoelectric material 152

orthotropic materials

defining 429

elastic properties 849, 1492

Ottosen criterion 554

over-consolidation pressure 563

overpressure 1723

P pair nodes

beam interface 1574, 1746

membrane interface 1488

solid mechanics 838

truss interface 1672, 1707

parametric analysis 32

PARDISO direct solvers 351

penalty factors

contact node, and 1127

contact pairs and 220

penalty method 751

perfectly elastoplastic materials 538

perfectly plastic hardening 538
I N D E X | 1913



1914 | I N D E X
periodic boundary conditions 1083, 1088

periodic condition (node)

shell and plate interfaces 1337

solid mechanics 1083

periodic conditions, theory 734

phase (node) 1172

beam interface 1624

layered shell interface 1454

shell and plate interfaces 1362

solid mechanics 1172

physics interfaces

connecting to DOF 93

physics interfaces, common settings 43

piezoelectric coupling 1817

piezoelectric crystal cut 152

piezoelectric effect (node) 1845

piezoelectric losses 160

piezoelectric material (node) 883

layered shell 1395

piezoelectricity multiphysics interface 

1817

piezomagnetic coupling 888

piezomagnetic coupling matrices 616

piezomagnetic effect (node), multiphys-

ics 1856

piezomagnetic material 887

piezomagnetic material (node) 887
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