References for the Particle Tracing for Fluid Flow Interface
1. E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics, Butterworth, 1981.
2. E.M. Lifshitz and L.P. Pitaevskii, Fluid Mechanics, Butterworth, 1987.
3. T.B. Jones, Electromechanics of Particles, Cambridge, 1995.
4. R. Clift, J.R. Grace, and M.E. Weber, Bubbles, Drops, and Particles, Dover, 1978.
5. J. Happel and H. Brenner. Low Reynolds number hydrodynamics: with special applications to particulate media, vol. 1. Springer Science & Business Media, 2012.
6. S.G. Jennings, “The mean free path in air”, Journal of Aerosol Science, vol. 19, no. 2 (1988), pp. 159–166.
7. M.D. Allen and O. G. Raabe, “Re-evaluation of Millikan’s oil drop data for the motion of small particles in air”, Journal of Aerosol Science, vol. 13, no. 6 (1982), pp. 537–547.
8. R.A. Millikan, “Coefficients of slip in gases and the law of reflection of molecules from the surfaces of solids and liquids.” Physical review, vol. 21, no. 3 (1923), pp. 217–238.
9. R.A. Millikan, “The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces”, Physical review, vol. 22, no. 1 (1923), pp.  1–23.
10. P.S. Epstein, “On the resistance experienced by spheres in their motion through gases”, Physical Review, vol. 23, no. 6 (1924), pp. 710–733.
11. W.F. Phillips, “Drag on a small sphere moving through a gas”, The Physics of Fluids, vol. 18, No. 9 (1975), pp. 1089–1093.
12. L. Tian and G. Ahmadi, “Particle deposition in turbulent duct flows–comparisons of different model predictions”, Aerosol Science, vol. 38, 2007, pp. 377–397.
13. P.G.T. Saffman, “The lift on a small sphere in a slow shear flow”, J. Fluid Mech. 22, no. 02 (1965), pp. 385–400. Corrigendum, ibid. 31, no. 03 (1968), p. 624.
14. B.P. Ho and L.G. Leal, “Inertial migration of rigid spheres in two-dimensional unidirectional flows”, J. Fluid Mech. 65, no. 02 (1974), pp. 365–400.
15. D.J. Thomson, “Criteria for the selection of stochastic models of particle trajectories in turbulent flows”, J. Fluid Mech., vol. 180, 1987, pp. 529–556.
16. A. Dehbi, “Turbulent particle dispersion in arbitrary wall-bounded geometries: A coupled CFD-Langevin-equation based approach”, International Journal of Multiphase Flow, vol. 34, 2008, pp. 819–828.
17. P.A. Durbin, “Stochastic Differential Equations and Turbulent Dispersion”, NASA Reference Publication 1103, 1983.
18. A.D. Gosman and E. Ioannides, “Aspects of computer simulation of liquid-fueled combustors”, Journal of Energy, vol. 7, no. 6, 1983, pp. 482–490.
19. M.R. Maxey and J.J. Riley, “Equation of motion for a small rigid sphere in a nonuniform flow”, The Physics of Fluids, vol. 26, no. 4, 1983, pp. 883–889.
20. P. Hutchinson, G.F. Hewitt, and A.E. Dukler, “Deposition of liquid or solid dispersions from turbulent gas streams: a stochastic model”, Chemical Engineering Science, vol. 26, 1971, pp. 419–439.
21. B. Zhao, C. Yang, X. Yang, and S. Liu, “Particle dispersion and deposition in ventilated rooms: Testing and evaluation of different Eulerian and Lagrangian models”, Building and Environment, vol. 43, 2008, pp. 388–397.
22. L.P. Gorkov, Sov. Phys. Doklady, vol. 6, p. 773, 1962.
23. J.T. Karlsen and H. Bruus, Forces acting on a small particle in an acoustical field in a viscous fluid, Phys. Rev. E, vol. 85, no. 1, 2012: 016327.
24. J.T. Karlsen and H. Bruus, Forces acting on a small particle in an acoustical field in a thermoviscous fluid, Phys. Rev. E, vol. 92, no. 4, 2015: 043010.
25. M. Kim and A.L. Zydney, “Effect of Electrostatic, Hydrodynamic, and Brownian Forces on Particle Trajectories and Sieving in Normal Flow Filtration”, J. Colloid and Interface Science, vol. 269, pp. 425–431, 2004.
26. S. Beresnev and V. Chernyak, “Thermophoresis of a Spherical Particle in a Rarefied Gas: Numerical Analysis Based on the Model Kinetic Equations”, Phys. Fluids, vol. 7, pp. 1743–1756, 1995.
27. F. Zheng, “Thermophoresis of Spherical and Non-Spherical Particles: a Review of Theories and Experiments”, Advances in Colloid and Interface Science, vol. 97, pp. 255–278, 2002.
28. I. Finnie, “Some Observations on the Erosion of Ductile Metals”, Wear, vol. 19, pp. 81–90, 1972.
29. Y. Zhang, E.P. Reuterfors, B.S. McLaury, S.A. Shirazi, and E.F. Rybicki, “Comparison of computed and measured particle velocities and erosion in water and air flows”, Wear, vol. 263, pp. 330–338, 2007.
30. M.A. Patterson and R.D. Reitz, Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission, SAE Paper 980131, 1998.
31. R.D. Reitz, Modeling Atomization Processes in High-Pressure Vaporizing Sprays, Atomization and Spray Technology, vol. 3, pp. 309–337, 1987.
32. C.K. Law, “Recent Advances in Droplet Vaporization and Combustion”, Progress in Energy and Combustion Science, vol. 8, no. 3, pp. 171-201, 1982.
33. G.M. Faeth, “Evaporation and Combustion of Sprays”, Progress in Energy and Combustion Science, vol. 9, no. 1-2, pp. 1-76, 1983.
34. S. Sazhin, Droplets and Sprays, Springer-Verlag, London, 2014.
35. A.H. Lefebvre and V.G. McDonell, Atomization and Sprays, CRC Press, 2017.
36. N.A. Fuchs, Evaporation and Droplet Growth in Gaseous Media, Pergamon Press, 1959.
37. S. Tonini and G.E. Cossali, “An Analytical Model of Liquid Drop Evaporation in Gaseous Environment”, International Journal of Thermal Sciences, vol  57, pp. 45-53, 2012.
38. S.K. Aggarwal, A.Y. Tong, and W.A. Sirignano, “A Comparison of Vaporization Models in Spray Calculations”, AIAA Journal, vol. 22, no. 10, pp. 1448-1457, 1984.
39. G.A.E. Godsave, “Studies of the Combustion of Drops in a Fuel Spray—the Burning of Single Drops of Fuel”, Fourth Symposium (International) on Combustion, pp. 818-830, 1953.
40. D.B. Spalding, “The Combustion of Liquid Fuels”, Fourth Symposium (International) on Combustion, pp. 847-864, 1953.
41. G.L. Hubbard, V.E. Denny, and A.F. Mills, “Droplet evaporation: effects of transients and variable properties”, International Journal of heat and mass transfer, vol. 18, no. 9, pp. 1003-1008, 1975.
42. W.C. Hinds, Aerosol Technology, Wiley, 1999.
43. R.C. Flanagan and J.H. Seinfeld, Fundamental of Air Pollution Engineering, Prentice Hall, 1998.
44. P.A. Lawless, Particle Charging Bounds, Symmetry Relations, and an Analytic Charging Rate Model for the Continuum Regime, J. Aerosol Sci., vol. 27, pp.191–215, 1996.