You are viewing the documentation for an older COMSOL version. The latest version is available here.
PDF

Step Thrust Bearing
Introduction
In this example the pressure distribution in a step thrust bearing is analyzed. A step thrust bearing consists of a stepped bearing surface on which the end of the shaft rotates. The entire assembly is submerged in a lubricant. A six step thrust bearing is considered in this example. The shaft collar is assumed to be spinning without any axial motion in the bearing. The simulation is performed using the Rotordynamics Module’s Hydrodynamic Bearing interface. This interface solves the Reynolds equation to compute the pressure developed in a thin fluid film.
Model Definition
A six pad step thrust bearing is considered. Pad inner and outer diameters are 0.05 m and 0.1 m, respectively. Groove angle between the pads is 15° and its depth is 0.0002 m relative to the pad surface. Clearance between the pad and the collar surface is 0.00036 m.
The shaft is spinning with an angular speed Ω (1000 rad/s). However, It is not moving in axial direction. So the film thickness does not change due to the shaft motion.
The bearing geometry is shown in Figure 1 below.
Figure 1: Step thrust bearing geometry.
Effect of the cavitation is also included to compute the pressure distribution in the fluid film. Following fluid properties are needed — the dynamic viscosity, the density at cavitation pressure, and the compressibility. The fluid parameters, whose values are summarized in Table 1, are close to those of lubricating oils used in real bearings.
10-7 Pa-1
Results and Discussion
Figure 2 below shows the fluid pressure profile on the bearing.
Figure 2: Fluid film pressure profile.
For the above pressure distribution, the total vertical force on the collar is 7550.1 N. This is the load carrying capacity of the bearing at the specified speed.
Mass fraction of the lubricant which is a measure of the cavitation is shown in Figure 3. From the figure it is clear that amount of cavitation is very small and is localized near the trailing edge of the pad.
Figure 3: Mass fraction.
The pressure distribution on the pad in radial and circumferential directions are shown in Figure 4 and Figure 5. Pressure at the inner and outer radius locations are zero with the distribution marginally biased toward the outer side. The velocity of the collar varies linearly from inner radius to outer radius. Since the pressure distribution is proportional to the shear velocity in the film, it should have increased linearly from inner point to the outer point. However, at the ends the film pressure is set to zero. Therefore, maximum pressure occurs toward the outer side from the mid position. In the circumferential direction the pressure suddenly rises at the step location (leading edge of the pad) and drops down slowly toward the trailing edge.
Figure 4: Pressure profile in radial direction.
Figure 5: Pressure profile in circumferential direction.
Figure 6 shows bearing profile computed using the film thickness.
Figure 6: Bearing profile.
Application Library path: Rotordynamics_Module/Tutorials/step_thrust_bearing
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Structural Mechanics>Rotordynamics>Hydrodynamic Bearing (hdb).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select General Studies>Stationary.
6
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Click  Load from File.
4
Geometry 1
Work Plane 1 (wp1)
In the Geometry toolbar, click  Work Plane.
Work Plane 1 (wp1)>Plane Geometry
In the Model Builder window, click Plane Geometry.
Work Plane 1 (wp1)>Circle 1 (c1)
1
In the Work Plane toolbar, click  Circle.
2
In the Settings window for Circle, locate the Size and Shape section.
3
In the Radius text field, type Ro.
4
In the Sector angle text field, type gAng.
5
Click to expand the Layers section. In the table, enter the following settings:
Work Plane 1 (wp1)>Circle 2 (c2)
1
Right-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Circle 1 (c1) and choose Duplicate.
2
In the Settings window for Circle, locate the Size and Shape section.
3
In the Sector angle text field, type padAng.
4
Locate the Rotation Angle section. In the Rotation text field, type gAng.
Work Plane 1 (wp1)>Delete Entities 1 (del1)
1
In the Model Builder window, right-click Plane Geometry and choose Delete Entities.
2
Click the  Zoom Extents button in the Graphics toolbar.
3
In the Settings window for Delete Entities, locate the Entities or Objects to Delete section.
4
From the Geometric entity level list, choose Domain.
5
On the object c1, select Domain 1 only.
6
On the object c2, select Domain 1 only.
7
Click  Build Selected.
Disk Selection: Leading Edge
1
In the Work Plane toolbar, click  Selections and choose Disk Selection.
2
In the Settings window for Disk Selection, type Disk Selection: Leading Edge in the Label text field.
3
Locate the Geometric Entity Level section. From the Level list, choose Boundary.
4
Locate the Size and Shape section. In the Outer radius text field, type 1.01*Ro.
5
In the Inner radius text field, type 0.99*Ri.
6
In the Start angle text field, type gAng-1.
7
In the End angle text field, type gAng+1.
8
Locate the Output Entities section. From the Include entity if list, choose Entity inside disk.
9
Click  Build Selected.
Work Plane 1 (wp1)>Disk Selection: Leading Edge 1 (disksel2)
1
Right-click Disk Selection: Leading Edge and choose Duplicate.
2
In the Settings window for Disk Selection, locate the Size and Shape section.
3
In the Start angle text field, type secAng-1.
4
In the End angle text field, type secAng+1.
5
Click  Build Selected.
6
In the Label text field, type Disk Selection: Trailing Edge.
Disk Selection: Groove
1
In the Work Plane toolbar, click  Selections and choose Disk Selection.
2
In the Settings window for Disk Selection, locate the Size and Shape section.
3
In the Outer radius text field, type 1.01*Ro.
4
In the Inner radius text field, type 0.99*Ri.
5
In the End angle text field, type gAng.
6
Locate the Output Entities section. From the Include entity if list, choose Entity inside disk.
7
Click  Build Selected.
8
In the Label text field, type Disk Selection: Groove.
Work Plane 1 (wp1)>Disk Selection: Groove 1 (disksel4)
1
Right-click Disk Selection: Groove and choose Duplicate.
2
In the Settings window for Disk Selection, type Disk Selection: Pad in the Label text field.
3
Locate the Size and Shape section. In the Start angle text field, type gAng.
4
In the End angle text field, type 360/N.
5
Click  Build Selected.
Work Plane 1 (wp1)>Rotate 1 (rot1)
1
In the Work Plane toolbar, click  Transforms and choose Rotate.
2
Click in the Graphics window and then press Ctrl+A to select both objects.
3
In the Settings window for Rotate, locate the Rotation section.
4
In the Angle text field, type range(0,secAng,360-secAng).
5
Click  Build Selected.
6
Click the  Zoom Extents button in the Graphics toolbar.
Leading Edges of the Pads
1
In the Model Builder window, right-click Geometry 1 and choose Selections>Union Selection.
2
In the Settings window for Union Selection, type Leading Edges of the Pads in the Label text field.
3
Locate the Geometric Entity Level section. From the Level list, choose Edge.
4
Locate the Input Entities section. Click  Add.
5
In the Add dialog box, select Disk Selection: Leading Edge (Work Plane 1) in the Selections to add list.
6
Trailing Edges of the Pads
1
Right-click Leading Edges of the Pads and choose Duplicate.
2
In the Settings window for Union Selection, type Trailing Edges of the Pads in the Label text field.
3
Locate the Input Entities section. Click Build Preceding State.
4
In the Selections to add list, select Disk Selection: Leading Edge (Work Plane 1).
5
Click  Delete.
6
7
In the Add dialog box, select Disk Selection: Trailing Edge (Work Plane 1) in the Selections to add list.
8
9
In the Settings window for Union Selection, click  Build Selected.
Grooves
1
In the Geometry toolbar, click  Selections and choose Union Selection.
2
In the Settings window for Union Selection, locate the Geometric Entity Level section.
3
From the Level list, choose Boundary.
4
Locate the Input Entities section. Click  Add.
5
In the Add dialog box, select Disk Selection: Groove (Work Plane 1) in the Selections to add list.
6
7
In the Settings window for Union Selection, type Grooves in the Label text field.
Pads
1
Right-click Grooves and choose Duplicate.
2
In the Settings window for Union Selection, type Pads in the Label text field.
3
Locate the Input Entities section. Click Build Preceding State.
4
In the Selections to add list, select Disk Selection: Groove (Work Plane 1).
5
Click  Delete.
6
7
In the Add dialog box, select Disk Selection: Pad (Work Plane 1) in the Selections to add list.
8
9
In the Settings window for Union Selection, click  Build Selected.
Groove Edges
1
In the Geometry toolbar, click  Selections and choose Adjacent Selection.
2
In the Settings window for Adjacent Selection, locate the Input Entities section.
3
From the Geometric entity level list, choose Boundary.
4
5
In the Add dialog box, select Grooves in the Input selections list.
6
7
In the Settings window for Adjacent Selection, locate the Output Entities section.
8
From the Geometric entity level list, choose Adjacent edges.
9
In the Label text field, type Groove Edges.
Groove Inner Edges
1
In the Geometry toolbar, click  Selections and choose Cylinder Selection.
2
In the Settings window for Cylinder Selection, locate the Geometric Entity Level section.
3
From the Level list, choose Edge.
4
Locate the Input Entities section. From the Entities list, choose From selections.
5
6
In the Add dialog box, select Groove Edges in the Selections list.
7
8
In the Settings window for Cylinder Selection, locate the Size and Shape section.
9
In the Outer radius text field, type 1.01*Ri.
10
In the Inner radius text field, type 0.99*Ri.
11
Locate the Output Entities section. From the Include entity if list, choose Entity inside cylinder.
12
In the Label text field, type Groove Inner Edges.
Groove Edges (adjsel1), Groove Inner Edges (cylsel1)
1
In the Model Builder window, under Component 1 (comp1)>Geometry 1, Ctrl-click to select Groove Edges (adjsel1) and Groove Inner Edges (cylsel1).
2
Pad Edges
1
In the Settings window for Adjacent Selection, type Pad Edges in the Label text field.
2
Locate the Input Entities section. Click Build Preceding State.
3
In the Input selections list, select Grooves.
4
Click  Delete.
5
6
In the Add dialog box, select Pads in the Input selections list.
7
8
In the Settings window for Adjacent Selection, click  Build Selected.
Pad Inner Edges
1
In the Model Builder window, under Component 1 (comp1)>Geometry 1 click Groove Inner Edges 1 (cylsel2).
2
In the Settings window for Cylinder Selection, type Pad Inner Edges in the Label text field.
3
Locate the Input Entities section. In the Selections list, select Groove Edges.
4
Click  Delete.
5
6
In the Add dialog box, select Pad Edges in the Selections list.
7
Definitions
In the step bearing, the film thickness varies in steps with one value in the groove and another on the pad. Define a film thickness variable hf in two separate Variable nodes with complementary selections to specify different values in different regions.
Variables: Grooves
1
In the Model Builder window, expand the Component 1 (comp1)>Definitions node.
2
Right-click Definitions and choose Variables.
3
In the Settings window for Variables, locate the Geometric Entity Selection section.
4
From the Geometric entity level list, choose Boundary.
5
From the Selection list, choose Grooves.
6
Locate the Variables section. In the table, enter the following settings:
7
In the Label text field, type Variables: Grooves.
Variables: Pads
1
Right-click Variables: Grooves and choose Duplicate.
2
In the Settings window for Variables, locate the Geometric Entity Selection section.
3
From the Selection list, choose Pads.
4
Locate the Variables section. In the table, enter the following settings:
5
In the Label text field, type Variables: Pads.
Hydrodynamic Bearing (hdb)
1
Click the  Show More Options button in the Model Builder toolbar.
2
In the Show More Options dialog box, in the tree, select the check box for the node Physics>Advanced Physics Options.
3
Enable the Cavitation formulation in the bearing.
4
In the Model Builder window, under Component 1 (comp1) click Hydrodynamic Bearing (hdb).
5
In the Settings window for Hydrodynamic Bearing, locate the Physical Model section.
6
From the Fluid type list, choose Liquid with cavitation.
Reduce the Cavitation transition width for the sharper transition between the cavitated and non cavitated regions.
7
In the Δpsw text field, type 0.5[MPa].
Materials
Material 1 (mat1)
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
2
In the Settings window for Material, locate the Material Contents section.
3
Hydrodynamic Bearing (hdb)
Hydrodynamic Thrust Bearing 1
1
In the Physics toolbar, click  Boundaries and choose Hydrodynamic Thrust Bearing.
2
In the Settings window for Hydrodynamic Thrust Bearing, locate the Boundary Selection section.
3
From the Selection list, choose All boundaries.
Because the reference surface is assumed to be located on the collar, change the Reference normal orientation to align it with the collar normal.
4
Locate the Reference Surface Properties section. From the Reference normal orientation list, choose Opposite direction to geometry normal.
5
Locate the Bearing Properties section. From the Bearing type list, choose User defined.
6
In the hb1 text field, type hf.
7
Locate the Collar Properties section. In the Ω text field, type angSpeed.
8
Locate the Fluid Properties section. In the ρc text field, type rho_c.
Bearing Orientation 1
1
In the Model Builder window, click Bearing Orientation 1.
2
In the Settings window for Bearing Orientation, locate the Bearing Orientation section.
3
From the Axis list, choose z-axis.
4
Specify the Orientation vector defining local y direction vector as
Mesh 1
Mapped 1
1
In the Mesh toolbar, click  Boundary and choose Mapped.
2
In the Settings window for Mapped, locate the Boundary Selection section.
3
From the Selection list, choose All boundaries.
Create one element per degree in the azimuthal direction to capture the pressure accurately.
Distribution 1
1
Right-click Mapped 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Edge Selection section.
3
From the Selection list, choose Groove Inner Edges.
4
Locate the Distribution section. In the Number of elements text field, type gAng.
Distribution 2
1
In the Model Builder window, right-click Mapped 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Edge Selection section.
3
From the Selection list, choose Pad Inner Edges.
4
Locate the Distribution section. In the Number of elements text field, type padAng.
Distribution 3
1
Right-click Mapped 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Edge Selection section.
3
From the Selection list, choose Leading Edges of the Pads.
4
Locate the Distribution section. In the Number of elements text field, type 20.
5
In the Model Builder window, right-click Mesh 1 and choose Build All.
Study 1
Step 1: Stationary
1
In the Model Builder window, under Study 1 click Step 1: Stationary.
2
In the Settings window for Stationary, click to expand the Study Extensions section.
3
Select the Auxiliary sweep check box.
4
5
6
7
8
From the Sweep type list, choose All combinations.
9
In the Home toolbar, click  Compute.
Default plot shows the pressure distribution in the bearing. To generate the height plot for the pressure distribution shown in Figure 2 start by creating a Surface dataset.
Results
Surface 1
1
In the Results toolbar, click  More Datasets and choose Surface.
2
In the Settings window for Surface, locate the Selection section.
3
From the Selection list, choose All boundaries.
Pressure (Height)
1
In the Results toolbar, click  2D Plot Group.
2
In the Settings window for 2D Plot Group, type Pressure (Height) in the Label text field.
Surface 1
1
Right-click Pressure (Height) and choose Surface.
2
In the Settings window for Surface, locate the Expression section.
3
In the Expression text field, type hdb.p.
4
Locate the Coloring and Style section. Click  Change Color Table.
5
In the Color Table dialog box, select Traffic>Traffic in the tree.
6
Height Expression 1
1
Right-click Surface 1 and choose Height Expression.
2
In the Settings window for Height Expression, locate the Axis section.
3
Select the Scale factor check box. In the associated text field, type 2e-8.
4
Click the  Go to Default View button in the Graphics toolbar.
5
In the Pressure (Height) toolbar, click  Plot.
The following instructions are to plot the mass fraction of the lubricant shown in Figure 3.
Mass Fraction
1
In the Home toolbar, click  Add Plot Group and choose 3D Plot Group.
2
In the Settings window for 3D Plot Group, type Mass Fraction in the Label text field.
Contour 1
1
Right-click Mass Fraction and choose Contour.
2
In the Settings window for Contour, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Hydrodynamic Bearing>Cavitation>hdb.theta - Mass fraction.
3
Locate the Coloring and Style section. From the Contour type list, choose Filled.
4
Locate the Levels section. In the Total levels text field, type 5.
5
Locate the Coloring and Style section. Click  Change Color Table.
6
In the Color Table dialog box, select Aurora>JupiterAuroraBorealis in the tree.
7
8
Click the  Go to Default View button in the Graphics toolbar.
9
In the Mass Fraction toolbar, click  Plot.
Figure 6 shows the bearing profile. Follow the instructions below to replicate it.
2D Plot Group 4
In the Home toolbar, click  Add Plot Group and choose 2D Plot Group.
Surface 1
1
Right-click 2D Plot Group 4 and choose Surface.
2
In the Settings window for Surface, locate the Expression section.
3
In the Expression text field, type hg-hdb.h.
4
Locate the Coloring and Style section. From the Coloring list, choose Uniform.
5
From the Color list, choose Gray.
Height Expression 1
1
Right-click Surface 1 and choose Height Expression.
2
In the Settings window for Height Expression, locate the Axis section.
3
Select the Scale factor check box. In the associated text field, type 100.
Pad Profile
1
In the Model Builder window, under Results click 2D Plot Group 4.
2
In the Settings window for 2D Plot Group, type Pad Profile in the Label text field.
3
Locate the Plot Settings section. Clear the Plot dataset edges check box.
4
Click the  Go to Default View button in the Graphics toolbar.
5
In the Pad Profile toolbar, click  Plot.
You can also analyze the pressure distributions along the radial and circumferential directions of the bearing shown in Figure 4 and Figure 5. Start by creating a Cut line along the radial line.
Cut Line 3D: Radial Line
1
In the Results toolbar, click  Cut Line 3D.
2
In the Settings window for Cut Line 3D, locate the Line Data section.
3
In row Point 2, set X to 0.
4
In row Point 2, set Y to Ro.
5
6
In the Label text field, type Cut Line 3D: Radial Line.
Radial Distribution of Pressure (Film Thickness)
1
In the Results toolbar, click  1D Plot Group.
2
In the Settings window for 1D Plot Group, locate the Data section.
3
From the Dataset list, choose Cut Line 3D: Radial Line.
4
From the Parameter selection (angSpeed) list, choose Last.
5
In the Label text field, type Radial Distribution of Pressure (Film Thickness).
6
Click to expand the Title section. From the Title type list, choose Label.
Line Graph 1
1
Right-click Radial Distribution of Pressure (Film Thickness) and choose Line Graph.
2
In the Settings window for Line Graph, locate the y-Axis Data section.
3
In the Expression text field, type hdb.p.
4
Click to expand the Legends section. Select the Show legends check box.
5
From the Legends list, choose Evaluated.
6
In the Legend text field, type h = eval(h_film, um) \mu m.
7
In the Radial Distribution of Pressure (Film Thickness) toolbar, click  Plot.
Radial Distribution of Pressure (Film Thickness)
1
In the Model Builder window, click Radial Distribution of Pressure (Film Thickness).
2
In the Settings window for 1D Plot Group, locate the Legend section.
3
From the Position list, choose Upper left.
Radial Distribution of Pressure (Angular Speed)
1
Right-click Radial Distribution of Pressure (Film Thickness) and choose Duplicate.
2
In the Settings window for 1D Plot Group, locate the Data section.
3
From the Parameter selection (h_film) list, choose Last.
4
From the Parameter selection (angSpeed) list, choose All.
5
In the Label text field, type Radial Distribution of Pressure (Angular Speed).
Line Graph 1
1
In the Model Builder window, expand the Radial Distribution of Pressure (Angular Speed) node, then click Line Graph 1.
2
In the Settings window for Line Graph, locate the Legends section.
3
In the Legend text field, type \Omega = eval(angSpeed) rad/s.
4
In the Radial Distribution of Pressure (Angular Speed) toolbar, click  Plot.
Radial Distribution of Pressure (Film Thickness)
In the Model Builder window, collapse the Results>Radial Distribution of Pressure (Film Thickness) node.
Use the Parameterized Curve to create the circumferential sector line.
Parameterized Curve 3D: Circumferential Line
1
In the Results toolbar, click  More Datasets and choose Parameterized Curve 3D.
2
In the Settings window for Parameterized Curve 3D, locate the Parameter section.
3
In the Maximum text field, type 2*pi/N.
4
Locate the Expressions section. In the x text field, type 0.5*(Ro+Ri)*cos(s).
5
In the y text field, type 0.5*(Ro+Ri)*sin(s).
6
In the Label text field, type Parameterized Curve 3D: Circumferential Line.
7
Radial Distribution of Pressure (Angular Speed), Radial Distribution of Pressure (Film Thickness)
1
In the Model Builder window, under Results, Ctrl-click to select Radial Distribution of Pressure (Film Thickness) and Radial Distribution of Pressure (Angular Speed).
2
Circumferential Distribution of Pressure (Film Thickness)
1
In the Settings window for 1D Plot Group, type Circumferential Distribution of Pressure (Film Thickness) in the Label text field.
2
Locate the Data section. From the Dataset list, choose Parameterized Curve 3D: Circumferential Line.
3
In the Circumferential Distribution of Pressure (Film Thickness) toolbar, click  Plot.
Circumferential Distribution of Pressure (Angular Speed)
1
In the Model Builder window, under Results click Radial Distribution of Pressure (Angular Speed) 1.
2
In the Settings window for 1D Plot Group, type Circumferential Distribution of Pressure (Angular Speed) in the Label text field.
3
Locate the Data section. From the Dataset list, choose Parameterized Curve 3D: Circumferential Line.
4
In the Circumferential Distribution of Pressure (Angular Speed) toolbar, click  Plot.
Lift Force
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Lift Force in the Label text field.
3
Locate the Title section. From the Title type list, choose Label.
Global 1
1
Right-click Lift Force and choose Global.
2
In the Settings window for Global, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Hydrodynamic Bearing>Fluid loads>Fluid load on collar - N>hdb.htb1.Fcz - Fluid load on collar, z-component.
3
Click to expand the Legends section. Locate the y-Axis Data section. In the table, enter the following settings:
4
Locate the Legends section. From the Legends list, choose Evaluated.
5
In the Legend text field, type h = eval(h_film, um) \mu m.
6
In the Lift Force toolbar, click  Plot.
Lift Force
1
In the Model Builder window, click Lift Force.
2
In the Settings window for 1D Plot Group, locate the Legend section.
3
From the Position list, choose Upper left.
4
Locate the Plot Settings section.
5
Select the x-axis label check box. In the associated text field, type Angular speed of the shaft (rad/s).
6
In the Lift Force toolbar, click  Plot.