

Microlithography Lens

Introduction

Microlithography is the process of imprinting small patterns (feature sizes less than $10 \,\mu$ m) onto a surface. It is an invaluable method in the production of integrated circuits due to the constantly increasing demand for smaller feature sizes and greater transistor density.

In photolithography, a wafer is first coated with a layer of photoresist, a special material that becomes more soluble in a certain liquid (called the developer) when exposed to radiation. The photoresist is then illuminated with a beam that has been sent through a photomask, a plate that selectively obstructs light in a specific pattern. The image of the mask is projected onto the surface of the photoresist. Thus, when the developer solution is applied to the photoresist, only the illuminated parts of the photoresist layer are washed away. The exposed parts of the underlying wafer can then be etched while the photoresist shields other parts of the wafer. Finally, the remaining photoresist is washed off.

An image of the photomask is thus etched into the surface of the wafer. Usually the light from the photomask is focused by a lens system with a magnification less than unity, so the projected image of the circuit pattern is smaller than it appears on the mask.

In order to manufacture devices with ever-decreasing feature size, the wavelengths of radiation used in photolithography have decreased over time. Krypton fluoride (KrF, 248 nm wavelength) and argon fluoride (ArF, 193 nm) lasers have been successfully used in photolithography for the production of microchips. Since these wavelengths are in the ultraviolet part of the electromagnetic spectrum, photolithography at these wavelengths is sometimes called UV photolithography, DUV (deep ultraviolet) photolithography, UV microlithography, or DUV microlithography.

The choice of material in a microlithography lens system is more limited than in camera or telescope lenses, because many optical glasses have reduced transmittance to UV light compared to visible light. DUV systems often use glasses composed of fused silica (quartz) or calcium fluoride (CaF) which have high transmittance in this wavelength range.

Lens systems for UV microlithography tend to have a rather large number of elements, each of which can be quite heavy and must be machined and positioned very accurately, so these lens systems can become quite expensive.

This tutorial demonstrates how to perform geometrical optics simulation in a 21-element fused silica microlithography lens with a numerical aperture (NA) of 0.56, to be used at a wavelength of 248 nm (KrF laser). The lens, which has a total length of 1 meter, has a magnification of -0.25 with excellent image quality over a 23.4 mm image circle.

Model Definition

The optical prescription of the UV microlithography lens consists of 21 spherical lens elements. For each element, the radii of curvature of the two surfaces, the center thickness, and the lens diameter must be defined, as well as the spacing between successive elements. The distance to the object plane and the image plane must also be specified. Altogether the optical prescription includes $2 \times 21 + 2$ or 44 rows of data.

The detailed optical prescription, given in Ref. 1, is shown in Table 1.

The geometry is constructed using parts from the Ray Optics Module Part Library. All of the lenses were constructed using the Spherical Lens 3D part. The object and image planes are instances of the Circular Planar Annulus part with an inner radius of zero.

When constructing a geometry in COMSOL to be used in a Geometrical Optics ray trace, it is important to appreciate that the order in which optical elements are placed in a geometry sequence does not affect the results of the trace. However, it is convenient to place optical elements relative to one another. This can be achieved by taking one of the built-in work planes in a Part Instance as the reference for the placement of the next Part Instance. The resulting lens geometry sequence is shown in Figure 1. Detailed instructions for creating the geometry can be found in Appendix — Geometry Instructions.

SURFACE	RADIUS OF CURVATURE	THICKNESS	DIAMETER	MATERIAL
0	0.0000[mm]	107.954[mm]	46.80[mm]	Vacuum
I	-617.8800[mm]	30.375[mm]	61.30[mm]	Silica
2	-207.0830[mm]	0.934[mm]	64.20[mm]	Vacuum
3	+201.9739[mm]	68.636[mm]	64.75[mm]	Silica
4	-416.6217[mm]	0.865[mm]	59.60[mm]	Vacuum
5	+460.0439[mm]	7.061[mm]	55.25[mm]	Silica
6	+179.6999[mm]	15.608[mm]	55.25[mm]	Vacuum
7	-373.0162[mm]	6.952[mm]	54.90[mm]	Silica
8	+249.4960[mm]	30.983[mm]	54.35[mm]	Vacuum
9	-2591.2000[mm]	11.541[mm]	55.90[mm]	Silica
10	+229.2357[mm]	33.165[mm]	56.85[mm]	Vacuum
11	-82.3025[mm]	11.524[mm]	57.45[mm]	Silica
12	+569.8191[mm]	9.159[mm]	74.85[mm]	Vacuum
13	+5523.6000[mm]	36.703[mm]	79.45[mm]	Silica

TADIE I.		DESCRIPTION		THE MICROLITHOGRAPHY LENS
TADLE I:	OFTICAL	LUCKILLION	FUK	THE PIICKULTHUGKAPHT LENS

SURFACE	RADIUS OF CURVATURE	THICKNESS	DIAMETER	MATERIAL
14	-156.8200[mm]	0.889[mm]	85.05[mm]	Vacuum
15	+610.3354[mm]	41.168[mm]	100.20[mm]	Silica
16	-221.8862[mm]	0.883[mm]	101.90[mm]	Vacuum
17	+528.5938[mm]	26.903[mm]	104.20[mm]	Silica
18	-570.2004[mm]	0.883[mm]	104.05[mm]	Vacuum
19	+423.5775[mm]	21.883[mm]	101.00[mm]	Silica
20	-1396.3000[mm]	0.883[mm]	100.00[mm]	Vacuum
21	+203.9075[mm]	22.715[mm]	91.85[mm]	Silica
22	+835.4548[mm]	67.972[mm]	89.70[mm]	Vacuum
23	-735.8990[mm]	8.386[mm]	57.50[mm]	Silica
24	+104.6386[mm]	23.616[mm]	50.55[mm]	Vacuum
25	-184.6683[mm]	11.034[mm]	49.95 [mm]	Silica
26	+288.7053[mm]	58.171[mm]	46.10[mm]	Vacuum
27	-74.5663[mm]	11.343[mm]	51.85[mm]	Silica
28	+2319.0000[mm]	11.371[mm]	63.05[mm]	Vacuum
29	-283.4504[mm]	22.211[mm]	64.75[mm]	Silica
30	-142.5176[mm]	1.323[mm]	69.90[mm]	Vacuum
31	-5670.5000[mm]	39.484[mm]	81.85[mm]	Silica
32	-146.6908[mm]	0.883[mm]	86.45[mm]	Vacuum
33	+654.7531[mm]	37.168[mm]	94.75[mm]	Silica
34	-347.7071[mm]	0.883[mm]	96.35[mm]	Vacuum
35	+254.9142[mm]	31.600[mm]	96.45[mm]	Silica
36	+2133.2000[mm]	0.883[mm]	94.50[mm]	Vacuum
37	+164.8042[mm]	27.885[mm]	89.95[mm]	Silica
38	+349.3775[mm]	0.884[mm]	86.00[mm]	Vacuum
39	+108.9816[mm]	73.045[mm]	77.70[mm]	Silica
40	+75.6698[mm]	54.069[mm]	46.50[mm]	Vacuum
41	+46.2841[mm]	16.956[mm]	25.70[mm]	Silica
42	+99.3161[mm]	13.168[mm]	19.85[mm]	Vacuum
43	0.0000[mm]	0.000[mm]	11.70[mm]	Vacuum

TABLE I: OPTICAL PRESCRIPTION FOR THE MICROLITHOGRAPHY LENS

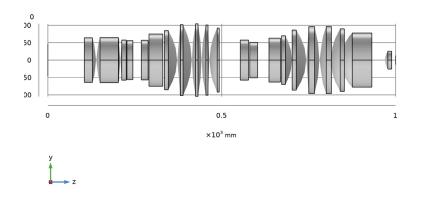


Figure 1: Microlithography lens geometry sequence. The rays propagate from left to right.

Results and Discussion

The ray diagram of the microlithography lens for three different field angles is shown in Figure 2. For each of the three field angles, the average ray position in the image plane is computed, and then the distance from each ray's final position to this average position is computed, forming the color expression along the rays.

A spot diagram of rays in the image plane is shown in Figure 3. Here the color expression indicates the angle of incidence of each ray at the image plane.

References

1. J. Brian Caldwell. "All-fused silica 248-nm lithographic projection lens." Optics and Photonics News, vol. 9, no. 11, pp. 40-41, 1998.

2. W. Smith, Modern Lens Design, 2nd ed., McGraw-Hill, 2005.

Ray trajectories Surface: (1)

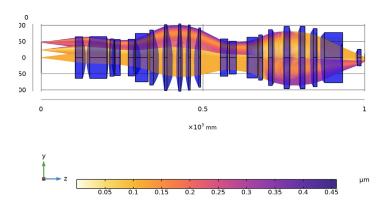


Figure 2: Ray diagram of the microlithography lens.

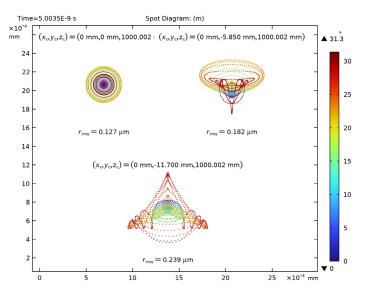


Figure 3: Spot diagram of the microlithography lens.

6 | MICROLITHOGRAPHY LENS

Application Library path: Ray_Optics_Module/Lenses_Cameras_and_Telescopes/ microlithography_lens

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click 🔗 Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click 间 3D.
- 2 In the Select Physics tree, select Optics>Ray Optics>Geometrical Optics (gop).
- 3 Click Add.
- 4 Click \bigcirc Study.

5 In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Ray Tracing.

6 Click 🗹 Done.

GLOBAL DEFINITIONS

Parameters 2

- I In the Home toolbar, click Pi Parameters and choose Add>Parameters.
- 2 In the Settings window for Parameters, locate the Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description
NA	0.56	0.56	Numerical aperture
mag	0.25	0.25	Magnification
alpha	atan(NA)*mag	0.12762 rad	Cone angle
nhex	25	25	Number of hexapolar rings

MICROLITHOGRAPHY LENS GEOMETRY SEQUENCE

Insert the prepared geometry sequence from file. You can read the instructions for creating the geometry in the appendix. Following insertion, the lens definitions will be available in the **Parameters** node.

- I In the Model Builder window, under Component I (compl) click Geometry I.
- 2 In the Settings window for Geometry, locate the Units section.
- 3 From the Length unit list, choose mm.
- 4 In the Label text field, type Microlithography Lens Geometry Sequence.
- 5 In the Geometry toolbar, click Insert Sequence and choose Insert Sequence.
- 6 Browse to the model's Application Libraries folder and double-click the file microlithography_lens_geom_sequence.mph.
- 7 In the Geometry toolbar, click 📗 Build All.
- 8 Click the **1** Orthographic Projection button in the Graphics toolbar.
- 9 In the **Graphics** window toolbar, click ▼ next to √ **Go to Default View**, then choose **Go to ZY View**. This will orient the view to place the optical axis (*z*-axis) horizontal and the *y*-axis vertical. Compare the resulting geometry to Figure 1.

GEOMETRICAL OPTICS (GOP)

- I In the Model Builder window, under Component I (compl) click Geometrical Optics (gop).
- 2 In the Settings window for Geometrical Optics, locate the Ray Release and Propagation section.
- **3** In the Maximum number of secondary rays text field, type 0.
- 4 Locate the Material Properties of Exterior and Unmeshed Domains section. From the Optical dispersion model list, choose Absolute vacuum.
- **5** Locate the **Additional Variables** section. Select the **Compute optical path length** check box.

Medium Properties I

- I In the Model Builder window, under Component I (compl)>Geometrical Optics (gop) click Medium Properties I.
- 2 In the Settings window for Medium Properties, locate the Medium Properties section.
- **3** From the *n* list, choose **User defined**. In the associated text field, type **1.5084**.

Material Discontinuity I

- I In the Model Builder window, click Material Discontinuity I.
- 2 In the Settings window for Material Discontinuity, locate the Rays to Release section.
- 3 From the Release reflected rays list, choose Never.

Ray Properties 1

I In the Model Builder window, click Ray Properties I.

- 2 In the Settings window for Ray Properties, locate the Ray Properties section.
- **3** In the λ_0 text field, type 248[nm].

Obstructions

- I In the Physics toolbar, click 🔚 Boundaries and choose Wall.
- 2 In the Settings window for Wall, type Obstructions in the Label text field.
- **3** Locate the **Boundary Selection** section. From the **Selection** list, choose **Obstructions**.
- 4 Locate the Wall Condition section. From the Wall condition list, choose Disappear.

Image

- I In the Physics toolbar, click 🔚 Boundaries and choose Wall.
- 2 In the Settings window for Wall, type Image in the Label text field.
- 3 Locate the Boundary Selection section. From the Selection list, choose All (Image).

Release from Grid I

- I In the Physics toolbar, click 💥 Global and choose Release from Grid.
- 2 In the Settings window for Release from Grid, locate the Ray Direction Vector section.
- 3 From the Ray direction vector list, choose Conical.
- 4 From the Conical distribution list, choose Hexapolar.
- **5** In the N_{θ} text field, type nhex.
- 6 Specify the **r** vector as
- 0 x
- 0 y
- 1 7
- 1 z

7 In the α text field, type alpha.

Release from Grid 2

- I Right-click Release from Grid I and choose Duplicate.
- 2 In the Settings window for Release from Grid, locate the Initial Coordinates section.
- **3** In the $q_{y,0}$ text field, type D_0/4.

Release from Grid 3

- I Right-click Release from Grid 2 and choose Duplicate.
- 2 In the Settings window for Release from Grid, locate the Initial Coordinates section.
- **3** In the $q_{y,0}$ text field, type D_0/2.

MESH I

Size 1

- I In the Mesh toolbar, click A Sizing and choose Size.
- 2 In the Settings window for Size, locate the Geometric Entity Selection section.
- 3 From the Geometric entity level list, choose Boundary.
- 4 From the Selection list, choose Clear Apertures.
- 5 Locate the Element Size section. Click the Custom button.
- 6 Locate the Element Size Parameters section.
- 7 Select the Maximum element size check box. In the associated text field, type 5[mm].

Size 2

- I In the Mesh toolbar, click 🔬 Sizing and choose Size.
- 2 In the Settings window for Size, locate the Geometric Entity Selection section.
- **3** From the **Geometric entity level** list, choose **Boundary**.
- **4** From the **Selection** list, choose **Obstructions**.
- 5 Locate the Element Size section. From the Predefined list, choose Extra fine.

Free Tetrahedral I

- I In the Mesh toolbar, click \land Free Tetrahedral.
- 2 In the Settings window for Free Tetrahedral, click 📗 Build All.

STUDY I

Step 1: Ray Tracing

- I In the Model Builder window, under Study I click Step I: Ray Tracing.
- 2 In the Settings window for Ray Tracing, locate the Study Settings section.
- 3 From the Time-step specification list, choose Specify maximum path length.
- 4 In the **Lengths** text field, type 0 1.5.
- **5** In the **Home** toolbar, click **= Compute**.

RESULTS

Ray Trajectories (gop)

- I In the Settings window for 3D Plot Group, locate the Color Legend section.
- 2 From the **Position** list, choose **Bottom**.
- 3 Select the Show units check box.

Surface 1

- I In the Ray Trajectories (gop) toolbar, click T Surface.
- 2 In the Settings window for Surface, locate the Coloring and Style section.
- 3 From the Coloring list, choose Uniform.
- **4** From the **Color** list, choose **Blue**.

Transparency I

In the **Ray Trajectories (gop)** toolbar, click 🔲 **Transparency**.

Color Expression 1

- In the Model Builder window, expand the Results>Ray Trajectories (gop)>
 Ray Trajectories I node, then click Color Expression I.
- 2 In the Settings window for Color Expression, locate the Expression section.
- 3 In the Expression text field, type at('last',gop.rrel).
- 4 From the **Unit** list, choose µm.
- 5 Locate the Coloring and Style section. Click Change Color Table.
- 6 In the Color Table dialog box, select Thermal>HeatCameraLight in the tree.
- 7 Click OK.
- 8 In the Settings window for Color Expression, locate the Coloring and Style section.
- 9 From the Color table transformation list, choose Reverse.
- **10** In the **Ray Trajectories (gop)** toolbar, click **ID Plot**. Compare the resulting image to Figure 2.

Spot Diagram

- I In the Home toolbar, click 🚛 Add Plot Group and choose 2D Plot Group.
- 2 In the Settings window for 2D Plot Group, type Spot Diagram in the Label text field.
- **3** Locate the **Color Legend** section. Select the **Show maximum and minimum values** check box.
- 4 Select the Show units check box.

Spot Diagram 1

- I In the Spot Diagram toolbar, click More Plots and choose Spot Diagram.
- 2 In the Settings window for Spot Diagram, click to expand the Annotations section.
- 3 Select the Show spot coordinates check box.
- 4 From the Coordinate system list, choose Global.
- 5 In the Display precision text field, type 7.

6 In the Spot Diagram toolbar, click 💿 Plot.

Color Expression I

- I In the Spot Diagram toolbar, click 🔊 Color Expression.
- 2 In the Settings window for Color Expression, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I (compl)> Geometrical Optics>Ray properties>gop.phii Acute angle of incidence rad.
- 3 Locate the Expression section. From the Unit list, choose °.
- 4 In the Spot Diagram toolbar, click i Plot. Compare the resulting image to Figure 3.

Appendix — Geometry Instructions

From the File menu, choose New.

NEW

In the New window, click 🔗 Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click 间 3D.
- 2 Click M Done.

MICROLITHOGRAPHY LENS GEOMETRY SEQUENCE

- I In the Model Builder window, under Component I (compl) click Geometry I.
- 2 In the Settings window for Geometry, type Microlithography Lens Geometry Sequence in the Label text field.
- 3 Locate the Units section. From the Length unit list, choose mm.

GLOBAL DEFINITIONS

Parameters 1: Thicknesses

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, type Parameters 1: Thicknesses in the Label text field.
- 3 Locate the Parameters section. Click 📂 Load from File.
- 4 Browse to the model's Application Libraries folder and double-click the file microlithography_lens_geom_sequence_thicknesses.txt.

Parameters 2: Radii

- I In the Home toolbar, click Pi Parameters and choose Add>Parameters.
- 2 In the Settings window for Parameters, type Parameters 2: Radii in the Label text field.
- **3** Locate the **Parameters** section. Click *b* Load from File.
- 4 Browse to the model's Application Libraries folder and double-click the file microlithography_lens_geom_sequence_radii.txt.

Parameters 3: Diameters

- I In the Home toolbar, click Pi Parameters and choose Add>Parameters.
- 2 In the Settings window for Parameters, type Parameters 3: Diameters in the Label text field.
- 3 Locate the Parameters section. Click 📂 Load from File.
- 4 Browse to the model's Application Libraries folder and double-click the file microlithography_lens_geom_sequence_diameters.txt.

PART LIBRARIES

- I In the Home toolbar, click 📑 Windows and choose Part Libraries.
- 2 In the Model Builder window, under Component I (compl) click Microlithography Lens Geometry Sequence.
- 3 In the Part Libraries window, select Ray Optics Module>3D>Apertures and Obstructions> circular_planar_annulus in the tree.
- 4 Click 🔚 Add to Geometry.

MICROLITHOGRAPHY LENS GEOMETRY SEQUENCE

Object

- I In the Model Builder window, under Component I (compl)> Microlithography Lens Geometry Sequence click Circular Planar Annulus I (pil).
- 2 In the Settings window for Part Instance, type Object in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
d0	D_0	93.6 mm	Diameter, outer
dl	0	0 m	Diameter, inner

- 4 Click to expand the **Boundary Selections** section. In the table, select the **Keep** check box for **All**.
- 5 Click 📑 Build All Objects.
- 6 Click the 🚺 Orthographic Projection button in the Graphics toolbar.
- 7 In the Graphics window toolbar, click ▼ next to ↓ Go to Default View, then choose Go to ZY View.
- 8 Click the **F** Zoom Extents button in the **Graphics** toolbar.
- 9 In the Graphics window toolbar, click ▼ next to Clipping, then choose Add Clip Plane.
- 10 In the Graphics window toolbar, click ▼ next to Clipping Active, then choose Show Gizmos.

II In the Graphics window toolbar, click ▼ next to Clipping Active, then choose Show Frames.

PART LIBRARIES

- I In the Home toolbar, click 📑 Windows and choose Part Libraries.
- 2 In the Model Builder window, click Microlithography Lens Geometry Sequence.
- 3 In the Part Libraries window, select Ray Optics Module>3D>Spherical Lenses> spherical_lens_3d in the tree.
- 4 Click 🔚 Add to Geometry.
- 5 In the Select Part Variant dialog box, select Specify clear aperture diameter in the Select part variant list.
- 6 Click OK.

MICROLITHOGRAPHY LENS GEOMETRY SEQUENCE

Lens I (Surfaces I and 2)

- I In the Model Builder window, under Component I (compl)> Microlithography Lens Geometry Sequence click Spherical Lens 3D I (pi2).
- 2 In the Settings window for Part Instance, type Lens 1 (Surfaces 1 and 2) in the Label text field.

Name	Expression	Value	Description
RI	R_1	-617.88 mm	Radius of curvature, surface 1 (+ convex/-concave)
R2	R_2	-207.08 mm	Radius of curvature, surface 2 (- convex/+concave)
Tc	T_1	30.375 mm	Center thickness
d0	max(D_1,D_2)	128.4 mm	Lens full diameter
dl	D_1	122.6 mm	Diameter, surface I
d2	D_2	128.4 mm	Diameter, surface 2
d1_clear	0	0 m	Clear aperture diameter, surface I
d2_clear	0	0 m	Clear aperture diameter, surface 2

3 Locate the Input Parameters section. In the table, enter the following settings:

4 Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Object (pil).

- 5 From the Work plane list, choose Surface (wpl).
- 6 Find the **Displacement** subsection. In the **zw** text field, type T_0.
- 7 Locate the **Boundary Selections** section. Click to select row number 2 in the table.
- 8 Click New Cumulative Selection.
- **9** In the **New Cumulative Selection** dialog box, type Clear Apertures in the **Name** text field.
- IO Click OK.
- II In the Settings window for Part Instance, locate the Boundary Selections section.

12 In the table, enter the following settings:

Name	Кеер	Physics	Contribute to	
Surface I			Clear Apertures	
Surface 2			Clear Apertures	

I3 Click to select row number 4 in the table.

I4 Click **New Cumulative Selection**.

15 In the New Cumulative Selection dialog box, type Obstructions in the Name text field.

I6 Click OK.

17 In the Settings window for Part Instance, locate the Boundary Selections section.

I8 In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

19 Click 틤 Build Selected.

20 Click the **Zoom Extents** button in the **Graphics** toolbar.

Lens 2 (Surfaces 3 and 4)

- I In the Geometry toolbar, click 🛆 Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 2 (Surfaces 3 and 4) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_3	201.97 mm	Radius of curvature, surface 1 (+ convex/-concave)
R2	R_4	-416.62 mm	Radius of curvature, surface 2 (- convex/+concave)
Тс	T_3	68.636 mm	Center thickness
d0	max(D_3,D_4)	129.5 mm	Lens full diameter
dl	0	0 m	Diameter, surface 1
d2	0	0 m	Diameter, surface 2
d I_clear	0	0 m	Clear aperture diameter, surface I
d2_clear	D_4	119.2 mm	Clear aperture diameter, surface 2

4 Locate the Position and Orientation of Output section. Find the
 Coordinate system to match subsection. From the Take work plane from list, choose
 Lens I (Surfaces I and 2) (pi2).

- 5 From the Work plane list, choose Surface 2 vertex intersection (wp2).
- 6 Find the **Displacement** subsection. In the **zw** text field, type T_2.

7 Locate the **Boundary Selections** section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

- 8 Click 틤 Build Selected.
- **9** Click the **Comextents** button in the **Graphics** toolbar.

Lens 3 (Surfaces 5 and 6)

- I In the Geometry toolbar, click 🛆 Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 3 (Surfaces 5 and 6) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_5	460.04 mm	Radius of curvature, surface 1 (+ convex/-concave)
R2	R_6	179.7 mm	Radius of curvature, surface 2 (- convex/+concave)
Tc	T_5	7.061 mm	Center thickness
d0	max(D_5,D_6)	115.2 mm	Lens full diameter
dl	0	0 m	Diameter, surface I
d2	0	0 m	Diameter, surface 2
d I_clear	0	0 m	Clear aperture diameter, surface I
d2_clear	0	0 m	Clear aperture diameter, surface 2

 4 Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 2 (Surfaces 3 and 4) (pi3).

- 5 From the Work plane list, choose Surface 2 vertex intersection (wp2).
- 6 Find the **Displacement** subsection. In the **zw** text field, type T_4.

7 Locate the **Boundary Selections** section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

- 8 Click 틤 Build Selected.
- **9** Click the **Comextents** button in the **Graphics** toolbar.

Lens 4 (Surfaces 7 and 8)

- I In the Geometry toolbar, click 🛆 Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 4 (Surfaces 7 and 8) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_7	-373.02 mm	Radius of curvature, surface I (+convex/- concave)
R2	R_8	249.5 mm	Radius of curvature, surface 2 (-convex/+ concave)
Tc	T_7	6.952 mm	Center thickness
d0	1.02*max(D_7,D_8)	II2 mm	Lens full diameter
dl	D_7	109.8 mm	Diameter, surface I
d2	D_8	108.7 mm	Diameter, surface 2
d I_clear	0	0 m	Clear aperture diameter, surface I
d2_clear	0	0 m	Clear aperture diameter, surface 2

4 Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 3 (Surfaces 5 and 6) (pi4).

6 Find the Displacement subsection. In the zw text field, type T_6.

7 Locate the Boundary Selections section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

8 Click 틤 Build Selected.

9 Click the 🕂 Zoom Extents button in the Graphics toolbar.

Lens 5 (Surfaces 9 and 10)

- I In the Geometry toolbar, click riangle Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 5 (Surfaces 9 and 10) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_9	-2591.2 mm	Radius of curvature, surface 1 (+ convex/-concave)
R2	R_10	229.24 mm	Radius of curvature, surface 2 (- convex/+concave)
Тс	Т_9	11.541 mm	Center thickness
d0	max(D_9,D_10)	113.7 mm	Lens full diameter
dl	D_9	111.8 mm	Diameter, surface I
d2	0	0 m	Diameter, surface 2
d1_clear	0	0 m	Clear aperture diameter, surface
d2_clear	0	0 m	Clear aperture diameter, surface 2

 4 Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 4 (Surfaces 7 and 8) (pi5).

6 Find the **Displacement** subsection. In the **zw** text field, type T_8.

7 Locate the Boundary Selections section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

8 Click 틤 Build Selected.

9 Click the 🕂 Zoom Extents button in the Graphics toolbar.

Lens 6 (Surfaces 11 and 12)

- I In the Geometry toolbar, click \bigtriangleup Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 6 (Surfaces 11 and 12) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_11	-82.303 mm	Radius of curvature, surface I (+convex/-concave)
R2	R_12	569.82 mm	Radius of curvature, surface 2 (-convex/+concave)
Tc	T_11	11.524 mm	Center thickness
d0	max(D_11,D_12)	149.7 mm	Lens full diameter
dl	D_11	114.9 mm	Diameter, surface I
d2	0	0 m	Diameter, surface 2
dl_clear	0	0 m	Clear aperture diameter, surface I
d2_clear	0	0 m	Clear aperture diameter, surface 2

 4 Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 5 (Surfaces 9 and 10) (pi6).

6 Find the **Displacement** subsection. In the **zw** text field, type T_10.

7 Locate the Boundary Selections section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

8 Click 틤 Build Selected.

9 Click the 🕂 Zoom Extents button in the Graphics toolbar.

Lens 7 (Surfaces 13 and 14)

- I In the Geometry toolbar, click \bigtriangleup Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 7 (Surfaces 13 and 14) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_13	5523.6 mm	Radius of curvature, surface I (+convex/-concave)
R2	R_14	-156.82 mm	Radius of curvature, surface 2 (-convex/+concave)
Tc	T_13	36.703 mm	Center thickness
d0	max(D_13,D_14)	170.1 mm	Lens full diameter
dl	0	0 m	Diameter, surface I
d2	0	0 m	Diameter, surface 2
dl_clear	D_13	158.9 mm	Clear aperture diameter, surface I
d2_clear	0	0 m	Clear aperture diameter, surface 2

 4 Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 6 (Surfaces 11 and 12) (pi7).

6 Find the **Displacement** subsection. In the **zw** text field, type T_12.

7 Locate the Boundary Selections section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

8 Click 틤 Build Selected.

9 Click the 🕂 Zoom Extents button in the Graphics toolbar.

Lens 8 (Surfaces 15 and 16)

- I In the Geometry toolbar, click \bigtriangleup Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 8 (Surfaces 15 and 16) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_15	610.34 mm	Radius of curvature, surface I (+convex/-concave)
R2	R_16	-221.89 mm	Radius of curvature, surface 2 (-convex/+concave)
Tc	T_15	41.168 mm	Center thickness
d0	max(D_15,D_16)	203.8 mm	Lens full diameter
dl	0	0 m	Diameter, surface I
d2	0	0 m	Diameter, surface 2
dl_clear	D_15	200.4 mm	Clear aperture diameter, surface I
d2_clear	0	0 m	Clear aperture diameter, surface 2

 4 Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 7 (Surfaces 13 and 14) (pi8).

6 Find the Displacement subsection. In the zw text field, type T_14.

7 Locate the Boundary Selections section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

8 Click 틤 Build Selected.

9 Click the 🕂 Zoom Extents button in the Graphics toolbar.

Lens 9 (Surfaces 17 and 18)

- I In the Geometry toolbar, click \bigtriangleup Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 9 (Surfaces 17 and 18) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_17	528.59 mm	Radius of curvature, surface 1 (+ convex/-concave)
R2	R_18	-570.2 mm	Radius of curvature, surface 2 (- convex/+concave)
Tc	T_17	26.903 mm	Center thickness
d0	max(D_17,D_18)	208.4 mm	Lens full diameter
dl	0	0 m	Diameter, surface I
d2	0	0 m	Diameter, surface 2
d1_clear	0	0 m	Clear aperture diameter, surface
d2_clear	D_18	208.1 mm	Clear aperture diameter, surface 2

 4 Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 8 (Surfaces 15 and 16) (pi9).

6 Find the Displacement subsection. In the zw text field, type T_16.

7 Locate the Boundary Selections section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

8 Click 틤 Build Selected.

9 Click the 🕂 Zoom Extents button in the Graphics toolbar.

Lens 10 (Surfaces 19 and 20)

- I In the Geometry toolbar, click \bigtriangleup Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 10 (Surfaces 19 and 20) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_19	423.58 mm	Radius of curvature, surface I (+convex/-concave)
R2	R_20	-1396.3 mm	Radius of curvature, surface 2 (-convex/+concave)
Tc	T_19	21.883 mm	Center thickness
d0	max(D_19,D_20)	202 mm	Lens full diameter
dl	0	0 m	Diameter, surface I
d2	0	0 m	Diameter, surface 2
dl_clear	0	0 m	Clear aperture diameter, surface I
d2_clear	D_20	200 mm	Clear aperture diameter, surface 2

 4 Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 9 (Surfaces 17 and 18) (pi10).

6 Find the Displacement subsection. In the zw text field, type T_18.

7 Locate the Boundary Selections section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

8 Click 틤 Build Selected.

9 Click the 🕂 Zoom Extents button in the Graphics toolbar.

Lens II (Surfaces 21 and 22)

- I In the Geometry toolbar, click \land Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 11 (Surfaces 21 and 22) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_21	203.91 mm	Radius of curvature, surface 1 (+ convex/-concave)
R2	R_22	835.45 mm	Radius of curvature, surface 2 (- convex/+concave)
Tc	T_21	22.715 mm	Center thickness
d0	max(D_21,D_22)	183.7 mm	Lens full diameter
dl	0	0 m	Diameter, surface I
d2	0	0 m	Diameter, surface 2
d1_clear	0	0 m	Clear aperture diameter, surface I
d2_clear	D_22	179.4 mm	Clear aperture diameter, surface 2

4 Locate the Position and Orientation of Output section. Find the
 Coordinate system to match subsection. From the Take work plane from list, choose
 Lens 10 (Surfaces 19 and 20) (pill).

6 Find the Displacement subsection. In the zw text field, type T_20.

7 Locate the Boundary Selections section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

8 Click 틤 Build Selected.

9 Click the **Com Extents** button in the **Graphics** toolbar.

Lens 12 (Surfaces 23 and 24)

- I In the Geometry toolbar, click \bigtriangleup Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 12 (Surfaces 23 and 24) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_23	-735.9 mm	Radius of curvature, surface 1 (+ convex/-concave)
R2	R_24	104.64 mm	Radius of curvature, surface 2 (- convex/+concave)
Тс	T_23	8.386 mm	Center thickness
d0	max(D_23,D_24)	115 mm	Lens full diameter
dl	0	0 m	Diameter, surface I
d2	D_24	101.1 mm	Diameter, surface 2
dl_clear	0	0 m	Clear aperture diameter, surface I
d2_clear	0	0 m	Clear aperture diameter, surface 2

4 Locate the Position and Orientation of Output section. Find the
 Coordinate system to match subsection. From the Take work plane from list, choose
 Lens II (Surfaces 21 and 22) (pi12).

6 Find the Displacement subsection. In the zw text field, type T_22.

7 Locate the Boundary Selections section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

8 Click 틤 Build Selected.

Lens 13 (Surfaces 25 and 26)

- I In the Geometry toolbar, click A Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 13 (Surfaces 25 and 26) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_25	-184.67 mm	Radius of curvature, surface I (+convex/- concave)
R2	R_26	288.71 mm	Radius of curvature, surface 2 (-convex/+ concave)
Tc	T_25	11.034 mm	Center thickness
d0	1.02*max(D_25,D_26)	101.9 mm	Lens full diameter
dl	D_25	99.9 mm	Diameter, surface I
d2	D_26	99.2 mm	Diameter, surface 2
dl_clear	0	0 m	Clear aperture diameter, surface I
d2_clear	0	0 m	Clear aperture diameter, surface 2

Locate the Position and Orientation of Output section. Find the
 Coordinate system to match subsection. From the Take work plane from list, choose
 Lens 12 (Surfaces 23 and 24) (pi13).

⁹ Click the 🕂 Zoom Extents button in the Graphics toolbar.

- 5 From the Work plane list, choose Surface 2 vertex intersection (wp2).
- 6 Find the Displacement subsection. In the zw text field, type T_24.
- 7 Locate the **Boundary Selections** section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

9 Click the \leftarrow **Zoom Extents** button in the **Graphics** toolbar.

Lens 14 (Surfaces 27 and 28)

- I In the Geometry toolbar, click A Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 14 (Surfaces 27 and 28) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_27	-74.566 mm	Radius of curvature, surface I (+convex/-concave)
R2	R_28	2319 mm	Radius of curvature, surface 2 (-convex/+concave)
Tc	T_27	11.343 mm	Center thickness
d0	max(D_27,D_28)	126.1 mm	Lens full diameter
dl	D_27	103.7 mm	Diameter, surface I
d2	0	0 m	Diameter, surface 2
d I_clear	0	0 m	Clear aperture diameter, surface I
d2_clear	0	0 m	Clear aperture diameter, surface 2

4 Locate the Position and Orientation of Output section. Find the
 Coordinate system to match subsection. From the Take work plane from list, choose
 Lens 13 (Surfaces 25 and 26) (pi14).

- 5 From the Work plane list, choose Surface 2 vertex intersection (wp2).
- 6 Find the Displacement subsection. In the zw text field, type T_26.
- 7 Locate the **Boundary Selections** section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

9 Click the \leftarrow **Zoom Extents** button in the **Graphics** toolbar.

Lens 15 (Surfaces 29 and 30)

- I In the Geometry toolbar, click A Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 15 (Surfaces 29 and 30) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_29	-283.45 mm	Radius of curvature, surface I (+convex/-concave)
R2	R_30	-142.52 mm	Radius of curvature, surface 2 (-convex/+concave)
Tc	T_29	22.211 mm	Center thickness
d0	max(D_29,D_30)	139.8 mm	Lens full diameter
dl	D_29	129.5 mm	Diameter, surface I
d2	0	0 m	Diameter, surface 2
d I_clear	0	0 m	Clear aperture diameter, surface I
d2_clear	0	0 m	Clear aperture diameter, surface 2

 4 Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 14 (Surfaces 27 and 28) (pi15).

- 5 From the Work plane list, choose Surface 2 vertex intersection (wp2).
- 6 Find the Displacement subsection. In the zw text field, type T_28.
- 7 Locate the **Boundary Selections** section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

9 Click the \leftarrow **Zoom Extents** button in the **Graphics** toolbar.

Lens 16 (Surfaces 31 and 32)

- I In the Geometry toolbar, click A Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 16 (Surfaces 31 and 32) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_31	-5670.5 mm	Radius of curvature, surface I (+convex/-concave)
R2	R_32	-146.69 mm	Radius of curvature, surface 2 (-convex/+concave)
Tc	T_31	39.484 mm	Center thickness
d0	max(D_31,D_32)	172.9 mm	Lens full diameter
dl	D_31	163.7 mm	Diameter, surface I
d2	0	0 m	Diameter, surface 2
d I_clear	0	0 m	Clear aperture diameter, surface I
d2_clear	0	0 m	Clear aperture diameter, surface 2

4 Locate the Position and Orientation of Output section. Find the
 Coordinate system to match subsection. From the Take work plane from list, choose
 Lens 15 (Surfaces 29 and 30) (pi16).

- 5 From the Work plane list, choose Surface 2 vertex intersection (wp2).
- 6 Find the **Displacement** subsection. In the **zw** text field, type T_30.
- 7 Locate the **Boundary Selections** section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

9 Click the \leftarrow **Zoom Extents** button in the **Graphics** toolbar.

Lens 17 (Surfaces 33 and 34)

- I In the Geometry toolbar, click A Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 17 (Surfaces 33 and 34) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_33	654.75 mm	Radius of curvature, surface I (+convex/-concave)
R2	R_34	-347.71 mm	Radius of curvature, surface 2 (-convex/+concave)
Tc	Т_33	37.168 mm	Center thickness
d0	max(D_33,D_34)	192.7 mm	Lens full diameter
dl	0	0 m	Diameter, surface I
d2	0	0 m	Diameter, surface 2
dl_clear	D_33	189.5 mm	Clear aperture diameter, surface I
d2_clear	0	0 m	Clear aperture diameter, surface 2

4 Locate the Position and Orientation of Output section. Find the
 Coordinate system to match subsection. From the Take work plane from list, choose
 Lens 16 (Surfaces 31 and 32) (pi17).

- 5 From the Work plane list, choose Surface 2 vertex intersection (wp2).
- 6 Find the Displacement subsection. In the zw text field, type T_32.
- 7 Locate the **Boundary Selections** section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

9 Click the \leftarrow **Zoom Extents** button in the **Graphics** toolbar.

Lens 18 (Surfaces 35 and 36)

- I In the Geometry toolbar, click A Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 18 (Surfaces 35 and 36) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_35	254.91 mm	Radius of curvature, surface 1 (+ convex/-concave)
R2	R_36	2133.2 mm	Radius of curvature, surface 2 (- convex/+concave)
Tc	T_35	31.6 mm	Center thickness
d0	max(D_35,D_36)	192.9 mm	Lens full diameter
dl	0	0 m	Diameter, surface I
d2	0	0 m	Diameter, surface 2
d1_clear	0	0 m	Clear aperture diameter, surface I
d2_clear	D_36	189 mm	Clear aperture diameter, surface 2

4 Locate the Position and Orientation of Output section. Find the
 Coordinate system to match subsection. From the Take work plane from list, choose
 Lens 17 (Surfaces 33 and 34) (pi18).

- 5 From the Work plane list, choose Surface 2 vertex intersection (wp2).
- 6 Find the Displacement subsection. In the zw text field, type T_34.
- 7 Locate the **Boundary Selections** section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

9 Click the \leftarrow **Zoom Extents** button in the **Graphics** toolbar.

Lens 19 (Surfaces 37 and 38)

- I In the Geometry toolbar, click \bigwedge Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 19 (Surfaces 37 and 38) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_37	164.8 mm	Radius of curvature, surface 1 (+ convex/-concave)
R2	R_38	349.38 mm	Radius of curvature, surface 2 (- convex/+concave)
Tc	T_37	27.885 mm	Center thickness
d0	max(D_37,D_38)	179.9 mm	Lens full diameter
dl	0	0 m	Diameter, surface I
d2	D_38	172 mm	Diameter, surface 2
d1_clear	0	0 m	Clear aperture diameter, surface I
d2_clear	0	0 m	Clear aperture diameter, surface 2

4 Locate the Position and Orientation of Output section. Find the
 Coordinate system to match subsection. From the Take work plane from list, choose
 Lens 18 (Surfaces 35 and 36) (pi19).

- 5 From the Work plane list, choose Surface 2 vertex intersection (wp2).
- 6 Find the Displacement subsection. In the zw text field, type T_36.
- 7 Locate the **Boundary Selections** section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

9 Click the \leftarrow **Zoom Extents** button in the **Graphics** toolbar.

Lens 20 (Surfaces 39 and 40)

- I In the Geometry toolbar, click \bigtriangleup Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 20 (Surfaces 39 and 40) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_39	108.98 mm	Radius of curvature, surface 1 (+ convex/-concave)
R2	R_40	75.67 mm	Radius of curvature, surface 2 (- convex/+concave)
Tc	Т_39	73.045 mm	Center thickness
d0	max(D_39,D_40)	155.4 mm	Lens full diameter
dl	0	0 m	Diameter, surface I
d2	D_40	93 mm	Diameter, surface 2
d1_clear	0	0 m	Clear aperture diameter, surface
d2_clear	0	0 m	Clear aperture diameter, surface 2

4 Locate the Position and Orientation of Output section. Find the
 Coordinate system to match subsection. From the Take work plane from list, choose
 Lens 19 (Surfaces 37 and 38) (pi20).

- 5 From the Work plane list, choose Surface 2 vertex intersection (wp2).
- 6 Find the Displacement subsection. In the zw text field, type T_38.
- 7 Locate the **Boundary Selections** section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

9 Click the \leftarrow **Zoom Extents** button in the **Graphics** toolbar.

Lens 21 (Surfaces 41 and 42)

- I In the Geometry toolbar, click 🔶 Parts and choose Spherical Lens 3D.
- 2 In the Settings window for Part Instance, type Lens 21 (Surfaces 41 and 42) in the Label text field.
- 3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
RI	R_41	46.284 mm	Radius of curvature, surface 1 (+ convex/-concave)
R2	R_42	99.316 mm	Radius of curvature, surface 2 (- convex/+concave)
Tc	T_41	16.956 mm	Center thickness
d0	max(D_41,D_42)	51.4 mm	Lens full diameter
dl	0	0 m	Diameter, surface I
d2	D_42	39.7 mm	Diameter, surface 2
d1_clear	0	0 m	Clear aperture diameter, surface I
d2_clear	0	0 m	Clear aperture diameter, surface 2

4 Locate the Position and Orientation of Output section. Find the
 Coordinate system to match subsection. From the Take work plane from list, choose
 Lens 20 (Surfaces 39 and 40) (pi21).

- 5 From the Work plane list, choose Surface 2 vertex intersection (wp2).
- 6 Find the **Displacement** subsection. In the **zw** text field, type T_40.
- 7 Locate the **Boundary Selections** section. In the table, enter the following settings:

Name	Кеер	Physics	Contribute to
Surface I		\checkmark	Clear Apertures
Surface 2		\checkmark	Clear Apertures
Surface I obstruction		\checkmark	Obstructions
Surface 2 obstruction		\checkmark	Obstructions
Edges		\checkmark	Obstructions

9 Click the 4 **Zoom Extents** button in the **Graphics** toolbar.

Image

I In the Geometry toolbar, click \bigtriangleup Parts and choose Circular Planar Annulus.

2 In the Settings window for Part Instance, type Image in the Label text field.

3 Locate the Input Parameters section. In the table, enter the following settings:

Name	Expression	Value	Description
d0	D_43	25 mm	Diameter, outer
dl	0	0 m	Diameter, inner

4 Locate the Position and Orientation of Output section. Find the
 Coordinate system to match subsection. From the Take work plane from list, choose
 Lens 21 (Surfaces 41 and 42) (pi22).

- 5 From the Work plane list, choose Surface 2 vertex intersection (wp2).
- 6 Find the Displacement subsection. In the zw text field, type T_42.
- 7 Locate the Boundary Selections section. In the table, select the Keep check box for All.
- 8 Click 🟢 Build All Objects.
- 9 Click the 🕂 Zoom Extents button in the Graphics toolbar.