PDF

Resin Transfer Molding of a Wind Turbine Blade
Introduction
Resin Transfer Molding (RTM) is a manufacturing process for composite structures. The resin is injected under pressure into the mold cavity. Reinforcement materials like fiber structures can be placed into the empty mold before the resin is injected, which makes it easier to use any kind of reinforcement material and orientation. After the resin has been injected the curing takes place.
To avoid air bubbles that might be trapped within the resin several vents are placed at certain positions of the mold. Simulation can be used to optimize the vent positions.
In this example the RTM process of a wind turbine blade is investigated. The model geometry and setup was inspired by Ref. 1.
Model Definition
The blade consists of five parts of different composites, which have different anisotropic permeabilities. The colors in Figure 1 indicate the different permeabilities. The blade has a thickness of 1 cm. The geometry was constructed using COMSOL Multiphysics and the Design Module. However, in this example we just import the ready-made geometry file.
Figure 1: Geometry of the wind turbine blade. The colors indicate the different porous materials and different permeabilities.
Initially, the blade is filled with air. Resin is injected via the cylindrical inlet pipes at the top of the blade with a pressure of 800 kPa. The air can escape through the outlets which are defined at both short ends of the blade and at four additional vents along the blade rim which are marked by the outgoing arrows in Figure 1. All other boundaries are assumed as solid walls and the No Slip wall condition applies.
The model is set up using the combined multiphysics interface Two Phase Flow, Level Set, Brinkman Equations.
Model Equations
The flow through the porous media within the mold (due to the reinforcement material) is described by the Brinkman Equations for incompressible flow:
(1)
In these equations, where the inertial term has been neglected, μ (SI unit: kg/(m·s)) is the dynamic viscosity of the fluid, u (SI unit: m/s) is the velocity vector, ρ (SI unit: kg/m3) is the density of the fluid, p (SI unit: Pa) is the pressure, εp is the porosity, and κ (SI unit: m2) the permeability of the porous medium.
For the two-phase flow level-set method, an equation for the level-set function , which describes the interface between the two phases, is solved:
(2)
is a smoothed step function which is zero within one phase and one within the other, ε denotes the porosity, γ determines the amount of reinitialization, and εls describes the thickness of the interface.
Beside defining the interface between the two phases, the level-set function is used in the multiphysics coupling feature node Two-Phase Flow, Level Set to smooth the density and viscosity jumps across the interface through the definitions
(3)
Table 1 lists the parameters that are used in the model.
10-5 Pa·s
2.9·10-10, 8·10-11, 2.9·10-10 m2
2.5·10-10, 7·10-11, 2.5·10-10 m2
1.7·10-10, 8·10-11, 1.7·10-10 m2
Results and Discussion
Figure 2: Velocity magnitude in logarithmic scale plotted on a cross section in the middle of the mold.
After 1 hour of simulated time, the mold is filled with resin. Figure 2 shows the velocity magnitude in the middle of the mold. The highest velocity values appear near the inlets and the small vents, where the flow channel narrows.
Figure 3 shows the pressure at the external surfaces of the blade. The highest pressure appears at the inlets.
Figure 3: Pressure plotted on the external surfaces of the wind turbine blade.
Figure 4: Volume fraction of resin after 15 minutes simulated time.
The resin front advances as shown in Figure 4 and Figure 5. In Figure 4, the resin front is shown after 15 minutes, in Figure 5, the resin interface is plotted after 5, 10, 20, and 30 minutes of simulated time. After 1 hour, the mold is completely filled with resin. The position of the vents could be optimized to avoid air bubbles within the molding process.
Figure 5: The Resin front advancing during the filling process. The figures show the resin interface position after 5, 10, 20, and 30 minutes.
Reference
1. Y. Jung. An Efficient Analysis of Resin Transfer Molding Process using Extended Finite Element Method. Other. Ecole Nationale Superieure des Mines de Saint- Etienne; Seoul National University, 2013. English. (NNT: 2013EMSE0701). (tel-00937556, https://tel.archives-ouvertes.fr/tel-00937556/)
Application Library path: Polymer_Flow_Module/Tutorials/rtm_wind_turbine_blade
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Fluid Flow>Multiphase Flow>Two-Phase Flow, Level Set>Brinkman Equations.
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select Preset Studies for Selected Multiphysics>Time Dependent with Phase Initialization.
6
Geometry 1
Start creating this model by importing the model geometry.
1
In the Model Builder window, under Component 1 (comp1) click Geometry 1.
2
In the Settings window for Geometry, locate the Advanced section.
3
From the Geometry representation list, choose CAD kernel to make sure that the geometry, which was created using the COMSOL Multiphysics Design Module, can be imported properly.
Import 1 (imp1)
1
In the Home toolbar, click  Import.
2
In the Settings window for Import, locate the Import section.
3
Click  Browse.
4
5
Click  Import.
Global Definitions
The parameters needed for this model are stored in an external file. You can load them as follows:
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Click  Load from File.
4
Materials
Define the materials in the next step. Introduce them as empty material nodes first; as soon as the physics has been defined, the material node menu will show you which properties are needed for the simulation. You can then just fill in the values defined in the Parameters list.
Air
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Air in the Label text field.
Resin
1
Right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Resin in the Label text field.
Porous Material 1 (pmat1)
1
Right-click Materials and choose More Materials>Porous Material.
2
3
In the Settings window for Porous Material, locate the Porosity section.
4
In the εp text field, type epsilon_1.
Porous Material 2 (pmat2)
1
Right-click Materials and choose More Materials>Porous Material.
2
3
In the Settings window for Porous Material, locate the Porosity section.
4
In the εp text field, type epsilon_2.
Porous Material 3 (pmat3)
1
Right-click Materials and choose More Materials>Porous Material.
2
3
In the Settings window for Porous Material, locate the Porosity section.
4
In the εp text field, type epsilon_3.
Brinkman Equations (br)
1
In the Model Builder window, under Component 1 (comp1) click Brinkman Equations (br).
2
In the Settings window for Brinkman Equations, locate the Physical Model section.
3
Find the Porous treatment of no slip condition subsection. From the list, choose Porous slip. Using the new porous-slip wall treatment accounts for porous walls without resolving the full flow profile in the boundary layer. Instead, a stress condition is applied at the porous surfaces by utilizing an asymptotic solution.
Inlet 1
1
In the Physics toolbar, click  Boundaries and choose Inlet.
2
3
In the Settings window for Inlet, locate the Boundary Condition section.
4
5
Locate the Pressure Conditions section. In the p0 text field, type 800[kPa].
6
Locate the Boundary Selection section. Click  Create Selection.
7
In the Create Selection dialog box, type Inlet in the Selection name text field.
8

Create selections as you will need the selected groups of boundaries again when defining the boundary settings for the
Level-Set in Porous Media interface.
Outlet 1
1
In the Physics toolbar, click  Boundaries and choose Outlet.
2
3
In the Settings window for Outlet, locate the Boundary Selection section.
4
Click  Create Selection.
5
In the Create Selection dialog box, type Outlet in the Selection name text field.
6
Level Set in Porous Media (ls)
Level Set Model 1
1
In the Model Builder window, under Component 1 (comp1)>Level Set in Porous Media (ls)>Porous Medium 1 click Level Set Model 1.
2
In the Settings window for Level Set Model, locate the Level Set Model section.
3
In the γ text field, type 2e-4.
4
In the εls text field, type 2*d_i.
Initial Values, Fluid 2
1
In the Model Builder window, under Component 1 (comp1)>Level Set in Porous Media (ls) click Initial Values, Fluid 2.
2
Inlet 1
1
In the Physics toolbar, click  Boundaries and choose Inlet.
2
In the Settings window for Inlet, locate the Boundary Selection section.
3
From the Selection list, choose Inlet.
4
Locate the Level Set Condition section. From the list, choose Fluid 2 (ϕ = 1).
Outlet 1
1
In the Physics toolbar, click  Boundaries and choose Outlet.
2
In the Settings window for Outlet, locate the Boundary Selection section.
3
From the Selection list, choose Outlet.
Multiphysics
Two-Phase Flow, Level Set 1 (tpf1)
1
In the Model Builder window, under Component 1 (comp1)>Multiphysics click Two-Phase Flow, Level Set 1 (tpf1).
2
In the Settings window for Two-Phase Flow, Level Set, locate the Fluid 1 Properties section.
3
From the Fluid 1 list, choose Air (mat1).
4
Locate the Fluid 2 Properties section. From the Fluid 2 list, choose Resin (mat2).
Materials
Now fill in the material properties.
Air (mat1)
1
In the Model Builder window, under Component 1 (comp1)>Materials click Air (mat1).
2
In the Settings window for Material, locate the Material Contents section.
3
Resin (mat2)
1
In the Model Builder window, click Resin (mat2).
2
In the Settings window for Material, locate the Material Contents section.
3
Porous Material 1 (pmat1)
1
In the Model Builder window, click Porous Material 1 (pmat1).
2
In the Settings window for Porous Material, locate the Homogenized Properties section.
3
Porous Material 2 (pmat2)
1
In the Model Builder window, click Porous Material 2 (pmat2).
2
In the Settings window for Porous Material, locate the Homogenized Properties section.
3
Porous Material 3 (pmat3)
1
In the Model Builder window, click Porous Material 3 (pmat3).
2
In the Settings window for Porous Material, locate the Homogenized Properties section.
3
Definitions
Create a few more selections that are useful for meshing the geometry.
In the Model Builder window, expand the Component 1 (comp1)>Definitions node.
Upside Boundaries
1
In the Model Builder window, expand the Component 1 (comp1)>Definitions>Selections node.
2
Right-click Definitions and choose Selections>Explicit.
3
In the Settings window for Explicit, locate the Input Entities section.
4
From the Geometric entity level list, choose Boundary.
5
Select the Group by continuous tangent check box.
6
7
In the Label text field, type Upside Boundaries.
Vent Edges
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, locate the Input Entities section.
3
From the Geometric entity level list, choose Edge.
4
5
In the Label text field, type Vent Edges.
Mesh 1
Now mesh the geometry. This example uses a swept mesh. For thin geometries a swept mesh offers a good mesh quality with a moderate number of mesh elements.
Free Triangular 1
1
In the Mesh toolbar, click  Boundary and choose Free Triangular.
2
In the Settings window for Free Triangular, locate the Boundary Selection section.
3
From the Selection list, choose Upside Boundaries.
Size 1
1
Right-click Free Triangular 1 and choose Size.
2
In the Settings window for Size, locate the Geometric Entity Selection section.
3
From the Geometric entity level list, choose Edge.
4
From the Selection list, choose Vent Edges.
5
Locate the Element Size section. Click the Custom button.
6
Locate the Element Size Parameters section.
7
Select the Maximum element size check box. In the associated text field, type d_i/4.
8
Select the Minimum element size check box. In the associated text field, type d_i/5.
Size 2
1
In the Model Builder window, right-click Free Triangular 1 and choose Size.
2
In the Settings window for Size, locate the Element Size section.
3
Click the Custom button.
4
Locate the Element Size Parameters section.
5
Select the Maximum element size check box. In the associated text field, type 1.5*d_i.
6
Click  Build Selected.
Swept 1
1
In the Mesh toolbar, click  Swept.
First, mesh the blade leaving out the cylindrical inlet ports.
2
In the Settings window for Swept, locate the Domain Selection section.
3
From the Geometric entity level list, choose Domain.
4
Select Domains 1–8, 12, and 13 only. You can use the Zoom Box and Zoom Extents buttons to zoom into and out of the domain to select small boundaries.
Distribution 1
1
Right-click Swept 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Distribution section.
3
In the Number of elements text field, type 2.
4
Click  Build Selected.
Now mesh the cylindrical inlet ports separately.
Swept 2
1
In the Mesh toolbar, click  Swept.
2
In the Settings window for Swept, locate the Domain Selection section.
3
From the Geometric entity level list, choose Domain.
4
Distribution 1
1
Right-click Swept 2 and choose Distribution.
2
Right-click Distribution 1 and choose Build Selected.
Study 1
Before solving the model, specify the output times and make sure that the time step is sufficiently small to catch the advancement of the resin front properly.
Step 2: Time Dependent
1
In the Model Builder window, under Study 1 click Step 2: Time Dependent.
2
In the Settings window for Time Dependent, locate the Study Settings section.
3
From the Time unit list, choose min.
4
In the Output times text field, type range(0,1,60).
Solution 1 (sol1)
1
In the Study toolbar, click  Show Default Solver.
2
In the Model Builder window, expand the Solution 1 (sol1) node, then click Time-Dependent Solver 1.
3
In the Settings window for Time-Dependent Solver, click to expand the Time Stepping section.
4
From the Steps taken by solver list, choose Strict. This way the maximum time step is limited to the output interval of 1 minute.
5
In the Study toolbar, click  Compute.
Definitions
To get Figure 2 you have to modify the default plot as described below. First, however, define another selection to facilitate plotting the velocity on the midsurface of the geometry.
Midsurface
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, locate the Input Entities section.
3
From the Geometric entity level list, choose Boundary.
4
Select the Group by continuous tangent check box.
5
6
In the Label text field, type Midsurface.
Results
Slice
1
In the Model Builder window, expand the Velocity (br) node.
2
Right-click Slice and choose Disable.
Velocity (br)
1
In the Model Builder window, click Velocity (br).
2
In the Settings window for 3D Plot Group, click to expand the Selection section.
3
From the Geometric entity level list, choose Boundary.
4
From the Selection list, choose Midsurface.
Surface 1
1
Right-click Velocity (br) and choose Surface.
2
In the Settings window for Surface, locate the Coloring and Style section.
3
From the Scale list, choose Logarithmic.
Arrow Surface 1
1
Right-click Velocity (br) and choose Arrow Surface.
2
In the Settings window for Arrow Surface, locate the Expression section.
3
From the Components to plot list, choose Tangential.
4
Locate the Coloring and Style section. From the Arrow length list, choose Normalized.
5
From the Color list, choose White.
6
Select the Scale factor check box. In the associated text field, type 80.
Velocity (br)
1
In the Model Builder window, click Velocity (br).
2
In the Settings window for 3D Plot Group, locate the Color Legend section.
3
Select the Show maximum and minimum values check box.
4
In the Velocity (br) toolbar, click  Plot.
5
Click the  Zoom Extents button in the Graphics toolbar.
Pressure (br)
Change the default pressure plot to get Figure 3 by following the steps below.
Contour 1
1
In the Model Builder window, expand the Results>Pressure (br) node.
2
Right-click Pressure (br) and choose Contour.
3
In the Settings window for Contour, locate the Expression section.
4
In the Expression text field, type p.
5
Locate the Levels section. In the Total levels text field, type 40.
6
Clear the Round the levels check box.
7
Click to expand the Inherit Style section. From the Plot list, choose Surface.
8
Locate the Coloring and Style section. Clear the Color legend check box.
9
In the Pressure (br) toolbar, click  Plot.
Volume Fraction of Fluid 1 (ls)
The default plot shows the volume fraction of fluid 1. Do the following changes to get Figure 4.
Slice 1
1
In the Model Builder window, expand the Results>Volume Fraction of Fluid 1 (ls) node.
2
Right-click Slice 1 and choose Disable.
Isosurface 1
1
In the Model Builder window, click Isosurface 1.
2
In the Settings window for Isosurface, locate the Expression section.
3
In the Expression text field, type ls.Vf2.
4
Locate the Levels section. In the Levels text field, type 0 0.5 1.
5
Locate the Coloring and Style section. From the Isosurface type list, choose Filled.
6
From the Coloring list, choose Color table.
7
Click  Change Color Table.
8
In the Color Table dialog box, select Aurora>AuroraAustralisDark in the tree.
9
Volume Fraction of Fluid 2 (ls)
1
In the Model Builder window, click Volume Fraction of Fluid 1 (ls).
2
In the Settings window for 3D Plot Group, locate the Data section.
3
From the Time (min) list, choose 15.
4
In the Label text field, type Volume Fraction of Fluid 2 (ls).
5
In the Volume Fraction of Fluid 2 (ls) toolbar, click  Plot.
6
Click the  Zoom Extents button in the Graphics toolbar.
Volume Fraction of Fluid 2 - Array
Finally, to produce Figure 5 copy this plot and do the following.
1
Right-click Volume Fraction of Fluid 2 (ls) and choose Duplicate.
2
In the Model Builder window, click Volume Fraction of Fluid 2 (ls) 1.
3
In the Settings window for 3D Plot Group, type Volume Fraction of Fluid 2 - Array in the Label text field.
4
Click to expand the Plot Array section. Select the Enable check box.
5
From the Array shape list, choose Square.
Isosurface 1
1
In the Model Builder window, click Isosurface 1.
2
In the Settings window for Isosurface, click to expand the Plot Array section.
3
Locate the Data section. From the Dataset list, choose Study 1/Solution 1 (sol1).
4
From the Time (min) list, choose 5.
5
Locate the Plot Array section. Select the Manual indexing check box.
6
In the Row index text field, type 1.
Isosurface 2
1
Right-click Results>Volume Fraction of Fluid 2 - Array>Isosurface 1 and choose Duplicate.
2
In the Settings window for Isosurface, locate the Data section.
3
From the Time (min) list, choose 10.
4
Locate the Plot Array section. In the Column index text field, type 1.
Isosurface 1, Isosurface 2
1
In the Model Builder window, under Results>Volume Fraction of Fluid 2 - Array, Ctrl-click to select Isosurface 1 and Isosurface 2.
2
Isosurface 3
1
In the Settings window for Isosurface, locate the Data section.
2
From the Time (min) list, choose 20.
3
Locate the Plot Array section. In the Row index text field, type 0.
Isosurface 4
1
In the Model Builder window, click Isosurface 4.
2
In the Settings window for Isosurface, locate the Data section.
3
From the Time (min) list, choose 30.
4
Click the  Zoom Extents button in the Graphics toolbar.
5
Locate the Plot Array section. In the Row index text field, type 0.
6
In the Volume Fraction of Fluid 2 - Array toolbar, click  Plot.
Now add the annotations to the different plots within the plot array.
Volume Fraction of Fluid 2 - Array
In the Model Builder window, click Volume Fraction of Fluid 2 - Array.
Table Annotation 1
1
In the Volume Fraction of Fluid 2 - Array toolbar, click  More Plots and choose Table Annotation.
2
In the Settings window for Table Annotation, locate the Data section.
3
From the Source list, choose Local table.
4
Volume Fraction of Fluid 2 - Array
1
In the Model Builder window, click Volume Fraction of Fluid 2 - Array.
2
In the Settings window for 3D Plot Group, click to expand the Title section.
3
From the Title type list, choose Manual.
4
In the Title text area, type Isosurface: Volume fraction of fluid 2 at different output times.
5
Clear the Parameter indicator text field.
6
In the Volume Fraction of Fluid 2 - Array toolbar, click  Plot.
7
Click the  Zoom Extents button in the Graphics toolbar.