PDF

Maximizing the Buckling Load of a Diagonal Brace
Introduction
Buckling is a common failure mode for slender structures. One can distinguish between tensile and compressive modes, but it is rare to see buckling failure due to a tensile load. The buckling load can normally be increased by adding material, but oftentimes it is possible to achieve the same effect by relocating material.
Model Definition
The model studies a structural member, which provides diagonal stiffness in a larger structure. The buckling load of the member is maximized by changing two geometrical parameters, the thickness and the width. The case of a member with a length of 4 m as well as 6 m are studied. The member has a slender geometry as illustrated in Figure 1.
Figure 1: The computational domain is symmetric, but this is not exploited in the model.
The member is made of steel, and the thickness is small, so its structural response can be well characterized using a shell model. The brace is put in compression using a Rigid Connector boundary condition with an Applied Force feature. The initial critical load factor and volume is first calculated and then a second study dealing with the optimization is set up.
Results
The result of the optimization for a length of 6 m is shown in Figure 2.The Buckling load has been increased by 140%. The bound of the volume constraint is scaled with the brace length, so the 6 m brace is 50% heavier than the 4 m brace. This causes the optimization result for a 4 m brace to have a smaller width and larger thickness than the 6 m brace.
Figure 2: The optimized 6 m member is shown for the 1st buckling mode.
Application Library path: Optimization_Module/Design_Optimization/diagonal_brace_buckling_optimization
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Structural Mechanics>Shell (shell).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Linear Buckling.
6
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Geometry 1
Block 1 (blk1)
1
In the Geometry toolbar, click  Block.
2
In the Settings window for Block, locate the Size and Shape section.
3
In the Width text field, type Lxy.
4
In the Depth text field, type Lxy.
5
In the Height text field, type Lz.
6
Click to expand the Layers section. In the table, enter the following settings:
Boundaries to Delete
1
In the Geometry toolbar, click  Selections and choose Box Selection.
2
In the Settings window for Box Selection, type Boundaries to Delete in the Label text field.
3
Locate the Geometric Entity Level section. From the Level list, choose Boundary.
4
Locate the Box Limits section. In the x minimum text field, type Lxy*0.1.
5
In the y minimum text field, type Lxy*0.1.
Delete Entities 1 (del1)
1
In the Model Builder window, right-click Geometry 1 and choose Delete Entities.
2
In the Settings window for Delete Entities, locate the Entities or Objects to Delete section.
3
From the Selection list, choose Boundaries to Delete.
4
Locate the Selections of Resulting Entities section. Select the Resulting objects selection check box.
Cylinder 1 (cyl1)
1
In the Geometry toolbar, click  Cylinder.
2
In the Settings window for Cylinder, locate the Size and Shape section.
3
In the Radius text field, type Rhole.
4
In the Height text field, type Rhole.
5
Locate the Position section. In the x text field, type Lxy/2.
6
In the y text field, type -Rhole/2.
7
In the z text field, type Lz1/2.
8
Locate the Axis section. From the Axis type list, choose y-axis.
Cylinder 2 (cyl2)
1
Right-click Cylinder 1 (cyl1) and choose Duplicate.
2
In the Settings window for Cylinder, locate the Position section.
3
In the z text field, type Lz-Lz1/2.
Difference 1 (dif1)
1
In the Geometry toolbar, click  Booleans and Partitions and choose Difference.
2
In the Settings window for Difference, locate the Difference section.
3
Find the Objects to add subsection. Click to select the  Activate Selection toggle button.
4
From the Objects to add list, choose Delete Entities 1.
5
Find the Objects to subtract subsection. Click to select the  Activate Selection toggle button.
6
Select the objects cyl1 and cyl2 only.
7
Click the  Show Grid button in the Graphics toolbar.
The geometry should now look like that in Figure 1.
Internal Edges
1
In the Geometry toolbar, click  Selections and choose Box Selection.
2
In the Settings window for Box Selection, type Internal Edges in the Label text field.
3
Locate the Geometric Entity Level section. From the Level list, choose Edge.
4
Locate the Box Limits section. In the z minimum text field, type Lz1*0.999.
5
In the z maximum text field, type Lz1*1.001.
6
Locate the Output Entities section. From the Include entity if list, choose Entity inside box.
Cylinder Selection 1 (cylsel1)
1
In the Geometry toolbar, click  Selections and choose Cylinder Selection.
2
In the Settings window for Cylinder Selection, locate the Geometric Entity Level section.
3
From the Level list, choose Edge.
4
Locate the Size and Shape section. In the Outer radius text field, type Rhole*1.01.
5
Locate the Position section. In the x text field, type Lxy/2.
6
In the z text field, type Lz1/2.
7
Locate the Axis section. From the Axis type list, choose y-axis.
Cylinder Selection 2 (cylsel2)
1
Right-click Cylinder Selection 1 (cylsel1) and choose Duplicate.
2
In the Settings window for Cylinder Selection, locate the Position section.
3
In the z text field, type Lz-Lz1/2.
Add Material
1
In the Home toolbar, click  Add Material to open the Add Material window.
2
Go to the Add Material window.
3
In the tree, select Built-in>Structural steel.
4
Click Add to Component in the window toolbar.
5
In the Home toolbar, click  Add Material to close the Add Material window.
Shell (shell)
Thickness and Offset 1
1
In the Model Builder window, under Component 1 (comp1)>Shell (shell) click Thickness and Offset 1.
2
In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3
In the d0 text field, type thickness.
Rigid Connector 1
1
In the Physics toolbar, click  Edges and choose Rigid Connector.
2
In the Settings window for Rigid Connector, locate the Edge Selection section.
3
From the Selection list, choose Cylinder Selection 1.
4
Locate the Prescribed Displacement at Center of Rotation section. Select the Prescribed in x direction check box.
5
Select the Prescribed in y direction check box.
6
Select the Prescribed in z direction check box.
7
Locate the Prescribed Rotation section. From the By list, choose Constrained rotation.
8
Select the Constrain rotation around z-axis check box.
9
Select the Constrain rotation around x-axis check box.
Rigid Connector 2
1
Right-click Rigid Connector 1 and choose Duplicate.
2
In the Settings window for Rigid Connector, locate the Edge Selection section.
3
From the Selection list, choose Cylinder Selection 2.
4
Locate the Prescribed Displacement at Center of Rotation section. Clear the Prescribed in z direction check box.
Applied Force 1
1
In the Physics toolbar, click  Attributes and choose Applied Force.
2
In the Settings window for Applied Force, locate the Applied Force section.
3
Specify the F vector as
Mesh 1
Edge 1
1
In the Mesh toolbar, click  Boundary and choose Edge.
2
In the Settings window for Edge, locate the Edge Selection section.
3
From the Selection list, choose Internal Edges.
Distribution 1
Right-click Edge 1 and choose Distribution.
Mapped 1
1
In the Mesh toolbar, click  Boundary and choose Mapped.
2
Distribution 1
1
Right-click Mapped 1 and choose Distribution.
2
3
In the Settings window for Distribution, locate the Distribution section.
4
In the Number of elements text field, type 20.
Free Triangular 1
1
In the Mesh toolbar, click  Boundary and choose Free Triangular.
2
In the Settings window for Free Triangular, locate the Boundary Selection section.
3
From the Geometric entity level list, choose Remaining.
Size
1
In the Model Builder window, click Size.
2
In the Settings window for Size, locate the Element Size section.
3
From the Predefined list, choose Extra fine.
4
Click  Build All.
Definitions
Mass Properties 1 (mass1)
1
In the Model Builder window, under Component 1 (comp1) right-click Definitions and choose Physics Utilities>Mass Properties.
2
In the Settings window for Mass Properties, locate the Source Selection section.
3
From the Geometric entity level list, choose Boundary.
4
From the Selection list, choose All boundaries.
5
Locate the Density section. From the Density source list, choose From physics interface.
Initial Design
1
In the Model Builder window, click Study 1.
2
In the Settings window for Study, type Initial Design in the Label text field.
3
In the Home toolbar, click  Compute.
Results
Mass and Critical Load Factor
1
In the Results toolbar, click  Evaluation Group.
2
In the Settings window for Evaluation Group, type Mass and Critical Load Factor in the Label text field.
Global Evaluation 1
1
Right-click Mass and Critical Load Factor and choose Global Evaluation.
2
In the Settings window for Global Evaluation, click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Component 1 (comp1)>Definitions>Mass Properties 1>mass1.mass - Mass - kg.
3
Click Add Expression in the upper-right corner of the Expressions section. From the menu, choose Component 1 (comp1)>Shell>shell.LFcrit - Critical load factor.
4
In the Mass and Critical Load Factor toolbar, click  Evaluate.
Mode Shape, Initial Design
1
In the Model Builder window, under Results click Mode Shape (shell).
2
In the Settings window for 3D Plot Group, type Mode Shape, Initial Design in the Label text field.
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Linear Buckling.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 2
Parametric Sweep
1
In the Study toolbar, click  Parametric Sweep.
2
In the Settings window for Parametric Sweep, locate the Study Settings section.
3
4
5
In the Model Builder window, click Study 2.
6
In the Settings window for Study, type Optimization in the Label text field.
Optimization
1
In the Study toolbar, click  Optimization and choose Optimization.
2
In the Settings window for Optimization, locate the Optimization Solver section.
3
From the Method list, choose COBYLA.
4
Locate the Objective Function section. In the table, enter the following settings:
This means that both compressive and tensile failure modes are considered.
5
From the Type list, choose Maximization.
6
From the Solution list, choose Minimum of objectives.
7
Locate the Control Variables and Parameters section. Click  Add twice.
8
9
Click Add Expression in the upper-right corner of the Constraints section. From the menu, choose Component 1 (comp1)>Definitions>Mass Properties 1>comp1.mass1.mass - Mass - kg.
10
Locate the Constraints section. In the table, enter the following settings:
11
In the Study toolbar, click  Compute.
Results
Mode Shape, Optimization
1
In the Settings window for 3D Plot Group, type Mode Shape, Optimization in the Label text field.
2
In the Mode Shape, Optimization toolbar, click  Plot.
3
Click the  Zoom Extents button in the Graphics toolbar.
Global Evaluation 2
1
In the Model Builder window, under Results>Mass and Critical Load Factor right-click Global Evaluation 1 and choose Duplicate.
2
In the Settings window for Global Evaluation, locate the Data section.
3
From the Dataset list, choose Optimization/Parametric Solutions 1 (sol5).
4
In the Mass and Critical Load Factor toolbar, click  Evaluate.
The critical load factor has been improved with a factor of 2 for the 6 m brace.
Create a new plot for the model thumbnail.
Thumbnail
1
In the Home toolbar, click  Add Plot Group and choose 3D Plot Group.
2
In the Settings window for 3D Plot Group, type Thumbnail in the Label text field.
3
Locate the Data section. From the Dataset list, choose Shell.
Surface 1
Right-click Thumbnail and choose Surface.
Deformation 1
In the Model Builder window, right-click Surface 1 and choose Deformation.
Surface 2
1
In the Model Builder window, under Results>Thumbnail right-click Surface 1 and choose Duplicate.
2
In the Settings window for Surface, locate the Data section.
3
From the Dataset list, choose Shell 2.
4
Click to expand the Inherit Style section. From the Plot list, choose Surface 1.
Line 1
1
In the Model Builder window, right-click Thumbnail and choose Line.
2
In the Settings window for Line, locate the Data section.
3
From the Dataset list, choose Shell 2.
4
Locate the Expression section. In the Expression text field, type 1.
5
Locate the Coloring and Style section. From the Coloring list, choose Uniform.
6
From the Color list, choose Black.
Translation 1
1
In the Model Builder window, right-click Surface 2 and choose Translation.
2
In the Settings window for Translation, locate the Translation section.
3
In the x text field, type -0.25.
4
Clear the Apply to dataset edges check box.
5
Right-click Translation 1 and choose Copy.
Line 1
Click the  Go to XY View button in the Graphics toolbar.
Translation 1
1
In the Model Builder window, right-click Line 1 and choose Paste Translation.
2
In the Thumbnail toolbar, click  Plot.
3
Click the  Zoom Extents button in the Graphics toolbar.