PDF

Shape Memory Alloy Self-Expanding Stent
Introduction
This model studies an arterial stent made of shape memory alloy (SMA). The main benefit of SMA stents compared to usual metallic stents is their ability to self-expand, so they do not require the insertion and inflation of a balloon to give them the desired shape.
The SMA stent is manufactured with a diameter higher than the diameter of the destination artery. It is then crimped to the diameter of the artery at low temperature. Due to the low operating temperature, the material partially transforms from austenite to martensite at low stress levels. When the stent is inserted in the artery, its temperature increases to the human body temperature. Then the yield stress increases so the force applied by the stent on the inner wall of the artery increases.
Model Definition
The stent is made of 4 levels of SMA wire. Each level is made of 18 “V” sections (Figure 1). Thanks to symmetry and periodicity, only half of a “V” is modeled; that is, a 10 degrees sector (Figure 2).
Figure 1: Entire geometry of the stent
Figure 2: Geometry of the modeled domain of the stent.
The material is nickel-titanium alloy (nitinol), and it is modeled with Lagoudas SMA model. The material properties for each phase are given by:
The phase transformation parameters are:
Results and Discussion
Figure 3 shows that after crimping the stress is concentrated at the inner face of the bend. The locations where the stress is maximal are the locations where the martensite volume fraction is higher as well. Nonzero martensite volume fraction means that transformation occurred, so residual strain remains. Comparison with Figure 4 shows that heating to body temperature has two effects: the maximum stress becomes far higher because the limit stress has increased, and the zone of transformation has reduced, which shows that reverse transformation has partially occurred. Those effects can be noticed on the figures of whole stent as well, see Figure 5 to Figure 8. The development of the martensite during the different steps of the solution is shown in Figure 9, and pressure on the inner wall of the artery during the release of the stent in Figure 10.
.
Figure 3: Stress and transformation state of one arm of the stent after crimping.
Figure 4: Stress and transformation state of one arm of the stent in the human body.
Figure 5: Stress in the stent after crimping.
Figure 6: Stress in the stent in the human body.
Figure 7: Martensite volume fraction in the stent after crimping.
Figure 8: Martensite volume fraction in the stent in human body.
Figure 9: Maximum and average volume fraction history during crimping and release.
Figure 10: Pressure applied on the inner wall of the artery during stent release.
Notes About the COMSOL Implementation
The stent is crimped and maintained in position with a boundary load condition. The applied pressure is driven by the desired outer radius with a Global Equations feature. It adds the pressure as a DOF and adds a new global equation on the displacement.
The Shape Memory Alloy model requires local computations at each Gauss point during the assembly process which is expensive. By using Reduced Integration, the number of Gauss points are reduced by approximately a factor three for the given displacement shape function order and mesh element type. This setting speed up the computational time significantly.
Reference
1. D.C. Lagoudas, ed., Shape Memory Alloys, Modeling and Engineering Applications, Springer, p. 219, 2008.
Application Library path: Nonlinear_Structural_Materials_Module/Shape_Memory_Alloys/sma_stent
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select General Studies>Stationary.
6
Geometry 1
The geometry sequence for the model is available in a file. If you want to create it from scratch yourself, you can follow the instructions in the Appendix — Geometry Modeling Instructions section. Otherwise, insert the geometry sequence as follows:
1
In the Geometry toolbar, click Insert Sequence and choose Insert Sequence.
2
3
In the Geometry toolbar, click  Build All.
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Definitions
Add functions to prescribe the outer radius and temperature.
Interpolation 1 (int1)
1
In the Home toolbar, click  Functions and choose Global>Interpolation.
2
In the Settings window for Interpolation, locate the Definition section.
3
In the Function name text field, type ro.
4
5
Locate the Units section. In the Function table, enter the following settings:
Interpolation 2 (int2)
1
In the Home toolbar, click  Functions and choose Global>Interpolation.
2
In the Settings window for Interpolation, locate the Definition section.
3
In the Function name text field, type temperature.
4
5
Locate the Units section. In the Function table, enter the following settings:
Since the study has two distinct phases, a first one with forward transformation and a second one with reverse transformation, use a function to specify the transformation direction. This will improve the time and robustness of the computation.
Piecewise 1 (pw1)
1
In the Home toolbar, click  Functions and choose Global>Piecewise.
2
In the Settings window for Piecewise, locate the Definition section.
3
Find the Intervals subsection. In the table, enter the following settings:
Create three material nodes: one for each austenite and martensite phase, and one for common properties. For now, just add the material nodes to make them available, the data required will be filled in later.
Materials
General
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
2
In the Settings window for Material, type General in the Label text field.
Austenite
1
Right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Austenite in the Label text field.
Martensite
1
Right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Martensite in the Label text field.
Solid Mechanics (solid)
Shape Memory Alloy 1
1
In the Model Builder window, under Component 1 (comp1) right-click Solid Mechanics (solid) and choose Material Models>Shape Memory Alloy.
2
In the Settings window for Shape Memory Alloy, locate the Domain Selection section.
3
From the Selection list, choose All domains.
4
Locate the Model Input section. From the T list, choose User defined. In the associated text field, type temperature(para).
5
Locate the Shape Memory Alloy section. Find the Austenite subsection. From the list, choose Austenite (mat2).
6
Find the Martensite subsection. From the list, choose Martensite (mat3).
7
Locate the Geometric Nonlinearity section. Select the Geometrically linear formulation check box.
The local computations at Gauss points during assembly are expensive for the SMA model. Using a reduced integration scheme will reduce the overall simulation time.
8
Locate the Quadrature Settings section. Select the Reduced integration check box.
Phase Transformation Direction 1
1
In the Model Builder window, expand the Shape Memory Alloy 1 node, then click Phase Transformation Direction 1.
2
In the Settings window for Phase Transformation Direction, locate the Phase Transformation Direction section.
3
From the Transformation direction list, choose User defined.
4
Shape Memory Alloy 1
In the Model Builder window, click Shape Memory Alloy 1.
Thermal Expansion 1
1
In the Physics toolbar, click  Attributes and choose Thermal Expansion.
2
In the Settings window for Thermal Expansion, locate the Model Input section.
3
Click  Go to Source for Volume reference temperature.
Global Definitions
Default Model Inputs
1
In the Model Builder window, under Global Definitions click Default Model Inputs.
2
In the Settings window for Default Model Inputs, locate the Browse Model Inputs section.
3
Find the Expression for remaining selection subsection. In the Volume reference temperature text field, type -27[degC].
Solid Mechanics (solid)
Thermal Expansion 1
1
In the Model Builder window, under Component 1 (comp1)>Solid Mechanics (solid)>Shape Memory Alloy 1 click Thermal Expansion 1.
2
In the Settings window for Thermal Expansion, locate the Thermal Expansion Properties section.
3
Find the Austenite subsection. From the list, choose Austenite (mat2).
4
Find the Martensite subsection. From the list, choose Martensite (mat3).
Symmetry 1
1
In the Physics toolbar, click  Boundaries and choose Symmetry.
2
Prescribe zero displacement in the z direction on one point to avoid rigid body motion.
Prescribed Displacement 1
1
In the Physics toolbar, click  Points and choose Prescribed Displacement.
2
3
In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.
4
Select the Prescribed in z direction check box.
Boundary Load 1
1
In the Physics toolbar, click  Boundaries and choose Boundary Load.
2
3
In the Settings window for Boundary Load, locate the Force section.
4
From the Load type list, choose Pressure.
5
In the p text field, type pload.
Definitions
Use point integration to make the displacement available in expressions.
Integration 1 (intop1)
1
In the Definitions toolbar, click  Nonlocal Couplings and choose Integration.
2
In the Settings window for Integration, locate the Advanced section.
3
From the Frame list, choose Material  (X, Y, Z).
4
Locate the Source Selection section. From the Geometric entity level list, choose Point.
5
Solid Mechanics (solid)
Now add a global equation for the applied pressure, so that the outer radius equals the prescribed one. For that, you need to show advanced physics options.
1
Click the  Show More Options button in the Model Builder toolbar.
2
In the Show More Options dialog box, in the tree, select the check box for the node Physics>Equation-Based Contributions.
3
Global Equations 1
1
In the Physics toolbar, click  Global and choose Global Equations.
2
In the Settings window for Global Equations, locate the Global Equations section.
3
4
Locate the Units section. Click  Define Dependent Variable Unit.
5
In the Dependent variable quantity table, enter the following settings:
6
Click  Define Source Term Unit.
7
In the Source term quantity table, enter the following settings:
Materials
General (mat1)
1
In the Model Builder window, under Component 1 (comp1)>Materials click General (mat1).
2
In the Settings window for Material, locate the Material Contents section.
3
Austenite (mat2)
1
In the Model Builder window, click Austenite (mat2).
2
In the Settings window for Material, locate the Material Contents section.
3
Martensite (mat3)
1
In the Model Builder window, click Martensite (mat3).
2
In the Settings window for Material, locate the Material Contents section.
3
Mesh 1
Mapped 1
1
In the Mesh toolbar, click  Boundary and choose Mapped.
2
Distribution 1
1
Right-click Mapped 1 and choose Distribution.
2
3
In the Settings window for Distribution, locate the Distribution section.
4
In the Number of elements text field, type 4.
Distribution 2
1
In the Model Builder window, right-click Mapped 1 and choose Distribution.
2
3
In the Settings window for Distribution, locate the Distribution section.
4
In the Number of elements text field, type 3.
Swept 1
In the Mesh toolbar, click  Swept.
Distribution 1
1
Right-click Swept 1 and choose Distribution.
2
3
In the Settings window for Distribution, locate the Distribution section.
4
In the Number of elements text field, type 20.
Distribution 2
1
In the Model Builder window, right-click Swept 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Domain Selection section.
3
Click  Clear Selection.
4
5
Locate the Distribution section. From the Distribution type list, choose Predefined.
6
In the Number of elements text field, type 40.
7
In the Element ratio text field, type 8.
8
Select the Symmetric distribution check box.
9
In the Model Builder window, right-click Mesh 1 and choose Build All.
Add maximum and average operators that will be used in postprocessing.
Definitions
Maximum 1 (maxop1)
1
In the Definitions toolbar, click  Nonlocal Couplings and choose Maximum.
2
In the Settings window for Maximum, locate the Source Selection section.
3
From the Geometric entity level list, choose Boundary.
4
Average 1 (aveop1)
1
In the Definitions toolbar, click  Nonlocal Couplings and choose Average.
2
In the Settings window for Average, locate the Source Selection section.
3
From the Selection list, choose All domains.
4
Locate the Advanced section. From the Frame list, choose Material  (X, Y, Z).
Study 1
Step 1: Stationary
1
In the Model Builder window, under Study 1 click Step 1: Stationary.
2
In the Settings window for Stationary, locate the Study Settings section.
3
Select the Include geometric nonlinearity check box.
4
Click to expand the Study Extensions section. Select the Auxiliary sweep check box.
5
6
7
8
Click  Range.
9
In the Range dialog box, type 0 in the Start text field.
10
In the Step text field, type 0.05.
11
In the Stop text field, type 2.
12
Click Replace.
13
In the Model Builder window, click Study 1.
14
In the Settings window for Study, locate the Study Settings section.
15
Clear the Generate default plots check box.
16
In the Home toolbar, click  Compute.
Add a predefined plot of the von Mises stress.
Results
Click  Add Predefined Plot.
Add Predefined Plot
1
Go to the Add Predefined Plot window.
2
In the tree, select Study 1/Solution 1 (sol1)>Solid Mechanics>Stress (solid).
3
Click Add Plot in the window toolbar.
4
In the Home toolbar, click  Add Predefined Plot.
Results
Stress (solid)
1
In the Model Builder window, under Results click Stress (solid).
2
In the Settings window for 3D Plot Group, locate the Plot Settings section.
3
From the Frame list, choose Spatial  (x, y, z).
Volume 1
1
In the Model Builder window, expand the Stress (solid) node, then click Volume 1.
2
In the Settings window for Volume, locate the Expression section.
3
From the Unit list, choose MPa.
Stress (solid)
1
In the Model Builder window, click Stress (solid).
2
In the Settings window for 3D Plot Group, locate the Plot Settings section.
3
From the View list, choose New view.
4
In the Stress (solid) toolbar, click  Plot.
Use the mouse and zoom buttons to get similar view as Figure 4.
Now show the results at the end of crimping.
5
Locate the Data section. From the Parameter value (para) list, choose 1.
6
In the Stress (solid) toolbar, click  Plot.
7
From the Parameter value (para) list, choose 2.
Reproduce Figure 9 to show the evolution of martensite volume fraction.
Martensite Volume Fraction
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Martensite Volume Fraction in the Label text field.
Global 1
1
In the Martensite Volume Fraction toolbar, click  Global.
2
In the Settings window for Global, locate the y-Axis Data section.
3
4
In the Martensite Volume Fraction toolbar, click  Plot.
Martensite Volume Fraction
1
In the Model Builder window, click Martensite Volume Fraction.
2
In the Settings window for 1D Plot Group, click to expand the Title section.
3
From the Title type list, choose Manual.
4
In the Title text area, type Martensite Volume Fraction.
5
Locate the Legend section. From the Position list, choose Upper left.
Reproduce Figure 10 to show the increase of pressure with temperature.
Pressure vs. Temperature
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Pressure vs. Temperature in the Label text field.
3
Locate the Data section. From the Parameter selection (para) list, choose From list.
4
In the Parameter values list, select the solution steps from 1 to 2.
Global 1
1
Right-click Pressure vs. Temperature and choose Global.
2
In the Settings window for Global, locate the y-Axis Data section.
3
4
Locate the x-Axis Data section. From the Parameter list, choose Expression.
5
In the Expression text field, type temperature(para).
6
From the Unit list, choose degC.
7
Select the Description check box. In the associated text field, type Temperature.
Pressure vs. Temperature
1
In the Model Builder window, click Pressure vs. Temperature.
2
In the Settings window for 1D Plot Group, locate the Legend section.
3
Clear the Show legends check box.
4
In the Pressure vs. Temperature toolbar, click  Plot.
Create new datasets to build the entire geometry of the stent and reproduce Figure 5 to Figure 8.
Sector 3D 1
1
In the Results toolbar, click  More Datasets and choose Sector 3D.
2
In the Settings window for Sector 3D, locate the Symmetry section.
3
In the Number of sectors text field, type 2*Ns.
4
From the Transformation list, choose Rotation and reflection.
Array 3D 1
1
In the Results toolbar, click  More Datasets and choose Array 3D.
2
In the Settings window for Array 3D, locate the Data section.
3
From the Dataset list, choose Sector 3D 1.
4
Locate the Array Size section. In the Z size text field, type 4.
5
Locate the Displacement section. From the Method list, choose Manual.
6
In the Z text field, type hs*1.1.
Stress, Whole Stent
1
In the Model Builder window, right-click Stress (solid) and choose Duplicate.
2
In the Settings window for 3D Plot Group, type Stress, Whole Stent in the Label text field.
3
Locate the Data section. From the Dataset list, choose Array 3D 1.
4
In the Stress, Whole Stent toolbar, click  Plot.
5
Locate the Plot Settings section. From the View list, choose New view.
6
In the Stress, Whole Stent toolbar, click  Plot.
7
8
Locate the Data section. From the Parameter value (para) list, choose 1.
9
In the Stress, Whole Stent toolbar, click  Plot.
10
11
From the Parameter value (para) list, choose 2.
Transformation, Whole Stent
1
Right-click Stress, Whole Stent and choose Duplicate.
2
In the Settings window for 3D Plot Group, type Transformation, Whole Stent in the Label text field.
Volume 1
1
In the Model Builder window, expand the Transformation, Whole Stent node, then click Volume 1.
2
In the Settings window for Volume, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Shape memory alloy>solid.xi_M - Martensite volume fraction.
3
Locate the Coloring and Style section. Click  Change Color Table.
4
In the Color Table dialog box, select Linear>Viridis in the tree.
5
6
In the Settings window for Volume, locate the Coloring and Style section.
7
From the Color table transformation list, choose Reverse.
Transformation, Whole Stent
1
In the Model Builder window, click Transformation, Whole Stent.
2
In the Transformation, Whole Stent toolbar, click  Plot.
3
In the Settings window for 3D Plot Group, locate the Data section.
4
From the Parameter value (para) list, choose 1.
5
In the Transformation, Whole Stent toolbar, click  Plot.
6
7
From the Parameter value (para) list, choose 2.
Create animations of the last two plots.
Stress
1
In the Results toolbar, click  Animation and choose Player.
2
In the Settings window for Animation, type Stress in the Label text field.
3
Locate the Scene section. From the Subject list, choose Stress, Whole Stent.
4
Locate the Frames section. From the Frame selection list, choose All.
5
Locate the Playing section. In the Display each frame for text field, type 0.2.
6
Click the  Play button in the Graphics toolbar.
Transformation
1
Right-click Stress and choose Duplicate.
2
In the Settings window for Animation, type Transformation in the Label text field.
3
Locate the Scene section. From the Subject list, choose Transformation, Whole Stent.
4
Click the  Play button in the Graphics toolbar.
Appendix — Geometry Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Geometry 1
1
In the Model Builder window, under Component 1 (comp1) click Geometry 1.
2
In the Settings window for Geometry, locate the Units section.
3
From the Length unit list, choose mm.
Work Plane 1 (wp1)
1
In the Geometry toolbar, click  Work Plane.
2
In the Settings window for Work Plane, locate the Plane Definition section.
3
From the Plane list, choose yz-plane.
Work Plane 1 (wp1)>Plane Geometry
In the Model Builder window, click Plane Geometry.
Work Plane 1 (wp1)>Circle 1 (c1)
1
In the Work Plane toolbar, click  Circle.
2
In the Settings window for Circle, locate the Object Type section.
3
From the Type list, choose Curve.
4
Locate the Size and Shape section. In the Radius text field, type radius-th/2.
5
In the Sector angle text field, type 180.
6
Locate the Position section. In the xw text field, type -Ri*sin(alpha/2).
7
In the yw text field, type hs/2-radius.
8
Locate the Rotation Angle section. In the Rotation text field, type 270.
9
Locate the Selections of Resulting Entities section. Select the Resulting objects selection check box.
10
From the Show in 3D list, choose Off.
11
Find the Cumulative selection subsection. Click New.
12
In the New Cumulative Selection dialog box, type union1 in the Name text field.
13
Work Plane 1 (wp1)>Circle 2 (c2)
1
In the Work Plane toolbar, click  Circle.
2
In the Settings window for Circle, locate the Object Type section.
3
From the Type list, choose Curve.
4
Locate the Size and Shape section. In the Radius text field, type radius+th/2.
5
In the Sector angle text field, type 180.
6
Locate the Position section. In the xw text field, type Ri*sin(alpha/2).
7
In the yw text field, type -(hs/2-radius).
8
Locate the Rotation Angle section. In the Rotation text field, type 90.
9
Locate the Selections of Resulting Entities section. Select the Resulting objects selection check box.
10
From the Show in 3D list, choose Off.
11
Find the Cumulative selection subsection. From the Contribute to list, choose union1.
12
Click  Build Selected.
13
Click the  Zoom Extents button in the Graphics toolbar.
Work Plane 1 (wp1)>Tangent 1 (tan1)
1
In the Work Plane toolbar, click  Tangent.
2
In the Settings window for Tangent, locate the Tangent section.
3
From the Edge to tangent list, choose Circle 1.
4
From the Second edge to tangent list, choose Circle 2.
5
Locate the Selections of Resulting Entities section. Find the Cumulative selection subsection. From the Contribute to list, choose union1.
Work Plane 1 (wp1)>Union 1 (uni1)
1
In the Work Plane toolbar, click  Booleans and Partitions and choose Union.
2
In the Settings window for Union, locate the Union section.
3
From the Input objects list, choose union1.
Work Plane 1 (wp1)>Circle 1 (c1), Work Plane 1 (wp1)>Circle 2 (c2), Work Plane 1 (wp1)>Tangent 1 (tan1), Work Plane 1 (wp1)>Union 1 (uni1)
1
In the Model Builder window, under Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry, Ctrl-click to select Circle 1 (c1), Circle 2 (c2), Tangent 1 (tan1), and Union 1 (uni1).
2
Work Plane 1 (wp1)>Circle 3 (c3)
1
In the Settings window for Circle, locate the Size and Shape section.
2
In the Radius text field, type radius+th/2.
3
Locate the Selections of Resulting Entities section. Find the Cumulative selection subsection. Click New.
4
In the New Cumulative Selection dialog box, type union2 in the Name text field.
5
Work Plane 1 (wp1)>Circle 4 (c4)
1
In the Model Builder window, click Circle 4 (c4).
2
In the Settings window for Circle, locate the Size and Shape section.
3
In the Radius text field, type radius-th/2.
4
Locate the Selections of Resulting Entities section. Find the Cumulative selection subsection. From the Contribute to list, choose union2.
5
Click  Build Selected.
Work Plane 1 (wp1)>Tangent 2 (tan2)
1
In the Model Builder window, click Tangent 2 (tan2).
2
In the Settings window for Tangent, locate the Tangent section.
3
From the Edge to tangent list, choose Circle 3.
4
From the Second edge to tangent list, choose Circle 4.
5
Locate the Selections of Resulting Entities section. Find the Cumulative selection subsection. From the Contribute to list, choose union2.
6
Click  Build Selected.
Work Plane 1 (wp1)>Union 2 (uni2)
1
In the Model Builder window, click Union 2 (uni2).
2
In the Settings window for Union, locate the Union section.
3
From the Input objects list, choose union2.
4
In the Work Plane toolbar, click  Build All.
Work Plane 1 (wp1)>Line Segment 1 (ls1)
1
In the Work Plane toolbar, click  More Primitives and choose Line Segment.
2
On the object uni1, select Point 4 only.
3
In the Settings window for Line Segment, locate the Endpoint section.
4
Find the End vertex subsection. Click to select the  Activate Selection toggle button.
5
On the object uni2, select Point 4 only.
Work Plane 1 (wp1)>Line Segment 2 (ls2)
1
In the Work Plane toolbar, click  More Primitives and choose Line Segment.
2
On the object uni1, select Point 7 only.
3
In the Settings window for Line Segment, locate the Endpoint section.
4
Find the End vertex subsection. Click to select the  Activate Selection toggle button.
5
On the object uni2, select Point 7 only.
6
Click  Build Selected.
Work Plane 1 (wp1)>Rectangle 1 (r1)
1
In the Work Plane toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Object Type section.
3
From the Type list, choose Curve.
4
Locate the Size and Shape section. In the Width text field, type 0.2.
5
In the Height text field, type th.
6
Locate the Position section. From the Base list, choose Center.
7
In the xw text field, type -(Ri*sin(alpha/2)+0.1).
8
In the yw text field, type hs/2.
Work Plane 1 (wp1)>Rectangle 2 (r2)
1
Right-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Rectangle 1 (r1) and choose Duplicate.
2
In the Settings window for Rectangle, locate the Position section.
3
In the xw text field, type Ri*sin(alpha/2)+0.1.
4
In the yw text field, type -hs/2.
Work Plane 1 (wp1)>Box Selection 1 (boxsel1)
1
In the Work Plane toolbar, click  Selections and choose Box Selection.
2
In the Settings window for Box Selection, locate the Geometric Entity Level section.
3
From the Level list, choose Boundary.
4
Locate the Box Limits section. In the xw maximum text field, type -Ri*sin(alpha/2)+0.001.
5
In the yw maximum text field, type hs/2-th.
6
Locate the Resulting Selection section. Find the Cumulative selection subsection. Click New.
7
In the New Cumulative Selection dialog box, type Delete in the Name text field.
8
Work Plane 1 (wp1)>Box Selection 2 (boxsel2)
1
In the Work Plane toolbar, click  Selections and choose Box Selection.
2
In the Settings window for Box Selection, locate the Geometric Entity Level section.
3
From the Level list, choose Boundary.
4
Locate the Box Limits section. In the xw minimum text field, type Ri*sin(alpha/2)-0.001.
5
In the yw minimum text field, type -(hs/2-th).
6
Locate the Resulting Selection section. Find the Cumulative selection subsection. From the Contribute to list, choose Delete.
Work Plane 1 (wp1)>Disk Selection 1 (disksel1)
1
In the Work Plane toolbar, click  Selections and choose Disk Selection.
2
In the Settings window for Disk Selection, locate the Geometric Entity Level section.
3
From the Level list, choose Boundary.
4
Locate the Input Entities section. From the Entities list, choose From selections.
5
6
In the Add dialog box, in the Selections list, choose Circle 1 and Circle 3.
7
8
In the Settings window for Disk Selection, locate the Disk Center section.
9
In the xw text field, type -Ri*sin(alpha/2).
10
In the yw text field, type hs/2-radius.
11
Locate the Size and Shape section. In the Outer radius text field, type radius+th.
12
In the Inner radius text field, type 1e-2.
13
In the Start angle text field, type -15.
14
In the End angle text field, type 15.
15
Locate the Output Entities section. From the Include entity if list, choose Entity inside disk.
16
Locate the Input Entities section. In the Selections list, select Circle 3.
17
Locate the Resulting Selection section. Clear the Keep selection check box.
18
Find the Cumulative selection subsection. From the Contribute to list, choose Delete.
Work Plane 1 (wp1)>Disk Selection 2 (disksel2)
1
Right-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Disk Selection 1 (disksel1) and choose Duplicate.
2
In the Settings window for Disk Selection, locate the Input Entities section.
3
Click Build Preceding State.
4
In the Selections list, choose Circle 1 and Circle 3.
5
Click  Delete.
6
7
In the Add dialog box, in the Selections list, choose Circle 2 and Circle 4.
8
9
In the Settings window for Disk Selection, locate the Disk Center section.
10
In the xw text field, type Ri*sin(alpha/2).
11
In the yw text field, type -(hs/2-radius).
12
Locate the Size and Shape section. In the Start angle text field, type 165.
13
In the End angle text field, type 195.
14
Click  Build Selected.
Work Plane 1 (wp1)>Box Selection 3 (boxsel3)
1
In the Work Plane toolbar, click  Selections and choose Box Selection.
2
In the Settings window for Box Selection, locate the Geometric Entity Level section.
3
From the Level list, choose Boundary.
4
Locate the Box Limits section. In the xw minimum text field, type -Ri*sin(alpha/2)-0.01.
5
In the xw maximum text field, type -Ri*sin(alpha/2)+0.01.
6
Locate the Output Entities section. From the Include entity if list, choose Entity inside box.
7
Locate the Resulting Selection section. Find the Cumulative selection subsection. From the Contribute to list, choose Delete.
8
Clear the Keep selection check box.
Work Plane 1 (wp1)>Box Selection 4 (boxsel4)
1
Right-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Box Selection 3 (boxsel3) and choose Duplicate.
2
In the Settings window for Box Selection, locate the Box Limits section.
3
In the xw minimum text field, type Ri*sin(alpha/2)-0.01.
4
In the xw maximum text field, type Ri*sin(alpha/2)+0.01.
Work Plane 1 (wp1)>Delete Entities 1 (del1)
1
In the Model Builder window, right-click Plane Geometry and choose Delete Entities.
2
In the Settings window for Delete Entities, locate the Entities or Objects to Delete section.
3
From the Selection list, choose Delete.
4
Click  Build Selected.
Work Plane 1 (wp1)>Convert to Solid 1 (csol1)
1
In the Work Plane toolbar, click  Conversions and choose Convert to Solid.
2
Click in the Graphics window and then press Ctrl+A to select all objects.
3
In the Work Plane toolbar, click  Build All.
Work Plane 1 (wp1)
In the Model Builder window, collapse the Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1) node.
Extrude 1 (ext1)
1
In the Model Builder window, right-click Geometry 1 and choose Extrude.
2
In the Settings window for Extrude, locate the Distances section.
3
4
Click  Build Selected.
Rotate 1 (rot1)
1
In the Geometry toolbar, click  Transforms and choose Rotate.
2
3
In the Settings window for Rotate, locate the Rotation section.
4
In the Angle text field, type alpha/2.
5
Click  Build Selected.
Work Plane 2 (wp2)
1
In the Geometry toolbar, click  Work Plane.
2
In the Settings window for Work Plane, locate the Plane Definition section.
3
From the Plane list, choose xz-plane.
Work Plane 2 (wp2)>Plane Geometry
In the Model Builder window, click Plane Geometry.
Work Plane 2 (wp2)>Rectangle 1 (r1)
1
In the Work Plane toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type wr.
4
In the Height text field, type hs*1.1.
5
Locate the Position section. From the Base list, choose Center.
6
In the xw text field, type (Ri+Ro)/2.
7
Click  Build Selected.
Work Plane 2 (wp2)
In the Model Builder window, collapse the Component 1 (comp1)>Geometry 1>Work Plane 2 (wp2) node.
Revolve 1 (rev1)
1
In the Model Builder window, right-click Geometry 1 and choose Revolve.
2
In the Settings window for Revolve, locate the Revolution Angles section.
3
Click the Angles button.
4
In the End angle text field, type alpha.
5
Click  Build Selected.
Intersection 1 (int1)
1
In the Geometry toolbar, click  Booleans and Partitions and choose Intersection.
2
Click in the Graphics window and then press Ctrl+A to select both objects.
Ignore Edges 1 (ige1)
1
In the Geometry toolbar, click  Virtual Operations and choose Ignore Edges.
2
On the object fin, select Edges 4, 7, 19, and 21 only.
3
In the Geometry toolbar, click  Build All.
4
Click the  Go to Default View button in the Graphics toolbar.