PDF

Inflation of a Square Hyperelastic Airbag
Introduction
The numerical treatment of thin structures with a membrane model is much simpler than with a shell model due to the assumption of zero bending stiffness. However, for some load cases this assumption is disadvantageous. For instance, the zero bending stiffness triggers wrinkling when a membrane is subjected to compressive stresses, which result in an equilibrium instability. This limitation can be overcome by the incorporation of a wrinkling model based on the tension field theory.
In this example, a square airbag made of a neo-Hookean hyperelastic material is inflated using pressurized air. The results are compared with the example presented in Ref. 1.
The example is similar to the model Inflation of a Square Airbag in the Structural Mechanics Module Application Library, where a linear elastic material model is used.
Model Definition
A square airbag, 1 mm in thickness and 1.2 m in diagonal length, is inflated using pressurized air. The membrane is modeled as a compressible neo-Hookean hyperelastic material. The material properties given in Table 1 are taken from Ref. 1.
Only a quarter of the airbag is analyzed due to the intrinsic symmetry of the model.
Results and Discussions
Figure 1 shows the wrinkled regions in the inflated airbag. Apart from the central region, wrinkles develop everywhere.
The transverse displacement of the inflated airbag is shown in Figure 2. The distribution of the first and second principal stress at the end of the inflation process is shown in Figure 3 and Figure 4, respectively. The minimum value of the second principal stress is almost zero. Both figures show tensile principal stresses after inflation.
Figure 5 shows the displacement of three different material points as a function of the inflation pressure. These displacements are compared with the results given in Ref. 1. At the final pressure, the values match the reference values well. Figure 6 shows the variation in the first principal (tensile) stress in the midpoint of the airbag with the inflation pressure.
Figure 1: Wrinkled region in the inflated airbag.
Figure 2: Transverse displacement after inflation.
Figure 3: First principal stress after inflation.
Figure 4: Second principal stress after inflation.
Figure 5: Displacements at different material points during inflation.
Figure 6: First principal stress in the airbag center during inflation.
Notes About the COMSOL Implementation
A wrinkling model based on the modified deformation gradient is incorporated within the membrane theory using the Wrinkling feature, which solves a set of nonlinear equations with the Newton–Raphson method.
Since the unstressed membrane does not have any stiffness in the normal direction, a very small spring support is added to stabilize the model. To further improve the numerical stability, a load support is provided in the form of an edge load that decreases parametrically as the model becomes stable when the membrane is under tension.
Constant strain triangle (CST) elements are numerically stable for wrinkling problems. CST elements give constant strains, which in turn give constant stresses for homogeneous material properties, ensuring that the whole element is either wrinkled, slack, or taut. This type of elements are used for the analysis.
Reference
1. A. Diaby, A.L. Van, and C. Wielgosz, “Wrinkling and buckling of prestressed membranes,” Finite Elem. Anal. Des., vol. 42, no. 11, pp. 992–1001, 2006.
Application Library path: Nonlinear_Structural_Materials_Module/Hyperelasticity/membrane_airbag_inflation_hyperelastic
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Structural Mechanics>Membrane (mbrn).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select General Studies>Stationary.
6
Global Definitions
Model Parameters
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, type Model Parameters in the Label text field.
3
Locate the Parameters section. Click  Load from File.
4
Browse to the model’s Application Libraries folder and double-click the file membrane_airbag_inflation_hyperelastic_parameters.txt.
Definitions
Interpolation 1 (int1)
1
In the Home toolbar, click  Functions and choose Local>Interpolation.
2
In the Settings window for Interpolation, locate the Definition section.
3
In the Function name text field, type F.
4
5
Locate the Units section. In the Function table, enter the following settings:
6
In the Argument table, enter the following settings:
Variables 1
1
In the Model Builder window, right-click Definitions and choose Variables.
2
In the Settings window for Variables, locate the Variables section.
3
Due to symmetry, only a quarter of the geometry is constructed.
Geometry 1
Work Plane 1 (wp1)
1
In the Model Builder window, expand the Component 1 (comp1)>Geometry 1 node.
2
Right-click Geometry 1 and choose Work Plane.
Work Plane 1 (wp1)>Square 1 (sq1)
1
In the Work Plane toolbar, click  Square.
2
In the Settings window for Square, locate the Size section.
3
In the Side length text field, type L/2.
4
Locate the Position section. In the xw text field, type L/2.
5
In the Work Plane toolbar, click  Build All.
Materials
Material 1 (mat1)
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
When modeling wrinkling, constant strain triangular (CST) elements are a good choice due to their numerical stability. Use a triangular mesh and change the default Quadratic discretization to Linear.
Membrane (mbrn)
1
In the Settings window for Membrane, click to expand the Discretization section.
2
From the Displacement field list, choose Linear.
Hyperelastic Material 1
1
Right-click Component 1 (comp1)>Membrane (mbrn) and choose Material Models>Hyperelastic Material.
2
In the Settings window for Hyperelastic Material, locate the Boundary Selection section.
3
From the Selection list, choose All boundaries.
4
Locate the Hyperelastic Material section. From the Specify list, choose Young’s modulus and Poisson’s ratio.
Wrinkling 1
In the Physics toolbar, click  Attributes and choose Wrinkling.
Wrinkling 1
1
In the Model Builder window, expand the Component 1 (comp1)>Membrane (mbrn)>Hyperelastic Material 1 node, then click Wrinkling 1.
2
In the Settings window for Wrinkling, locate the Wrinkling section.
3
From the Termination criterion for local method list, choose Step size or residual.
Thickness and Offset 1
1
In the Model Builder window, under Component 1 (comp1)>Membrane (mbrn) click Thickness and Offset 1.
2
In the Settings window for Thickness and Offset, locate the Thickness and Offset section.
3
In the d0 text field, type th.
Symmetry 1
1
In the Physics toolbar, click  Edges and choose Symmetry.
2
Prescribed Displacement 1
1
In the Physics toolbar, click  Edges and choose Prescribed Displacement.
2
3
In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.
4
Select the Prescribed in z direction check box.
Face Load 1
1
In the Physics toolbar, click  Boundaries and choose Face Load.
2
3
In the Settings window for Face Load, locate the Force section.
4
From the Load type list, choose Pressure.
5
In the p text field, type -Pmax*para.
Add a parametrically decreasing edge load on the outer edges in the lateral direction in form of a spring force in order to increase the numerical stability. Note that the local edge coordinate system is used.
Edge Load 1
1
In the Physics toolbar, click  Edges and choose Edge Load.
2
3
In the Settings window for Edge Load, locate the Coordinate System Selection section.
4
From the Coordinate system list, choose Local edge system.
5
Locate the Force section. Specify the FL vector as
Add a spring support in the thickness direction in order to improve numerical stability.
Spring Foundation 1
1
In the Physics toolbar, click  Boundaries and choose Spring Foundation.
2
In the Settings window for Spring Foundation, locate the Boundary Selection section.
3
From the Selection list, choose All boundaries.
4
Locate the Spring section. From the list, choose Symmetric.
5
In the kA table, enter the following settings:
Materials
Material 1 (mat1)
1
In the Model Builder window, under Component 1 (comp1)>Materials click Material 1 (mat1).
2
In the Settings window for Material, locate the Material Contents section.
3
Mesh 1
Mapped 1
1
In the Mesh toolbar, click  Boundary and choose Mapped.
2
In the Settings window for Mapped, locate the Boundary Selection section.
3
From the Selection list, choose All boundaries.
Distribution 1
1
Right-click Mapped 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Edge Selection section.
3
From the Selection list, choose All edges.
4
Locate the Distribution section. In the Number of elements text field, type 25.
Convert 1
1
In the Mesh toolbar, click  Modify and choose Convert.
2
In the Settings window for Convert, locate the Element Split Method section.
3
From the Element split method list, choose Insert centerpoints.
4
Click  Build All.
Customize the study settings in order to achieve better convergence.
Study 1
Step 1: Stationary
1
In the Model Builder window, under Study 1 click Step 1: Stationary.
2
In the Settings window for Stationary, click to expand the Study Extensions section.
3
Select the Auxiliary sweep check box.
4
5
6
In the Model Builder window, click Study 1.
7
In the Settings window for Study, locate the Study Settings section.
8
Clear the Generate default plots check box.
Solution 1 (sol1)
1
In the Study toolbar, click  Show Default Solver.
2
In the Model Builder window, expand the Solution 1 (sol1) node.
3
In the Model Builder window, expand the Study 1>Solver Configurations>Solution 1 (sol1)>Stationary Solver 1 node, then click Parametric 1.
4
In the Settings window for Parametric, click to expand the Continuation section.
5
Select the Tuning of step size check box.
6
In the Maximum step size text field, type 0.001.
7
From the Predictor list, choose Linear.
8
In the Model Builder window, under Study 1>Solver Configurations>Solution 1 (sol1)>Stationary Solver 1 click Fully Coupled 1.
9
In the Settings window for Fully Coupled, click to expand the Method and Termination section.
10
From the Nonlinear method list, choose Constant (Newton).
11
In the Maximum number of iterations text field, type 100.
12
In the Model Builder window, click Study 1.
13
In the Settings window for Study, locate the Study Settings section.
14
Clear the Generate default plots check box.
15
In the Study toolbar, click  Compute.
Add a plot of the transverse displacement. Use Mirror operations to create a dataset of the entire airbag.
Results
In the Model Builder window, expand the Results node.
Mirror 3D 1
1
In the Model Builder window, expand the Results>Datasets node.
2
Right-click Results>Datasets and choose More 3D Datasets>Mirror 3D.
3
In the Settings window for Mirror 3D, locate the Plane Data section.
4
From the Plane list, choose XZ-planes.
5
In the Y-coordinate text field, type 0.5*L.
Mirror 3D 2
1
Right-click Mirror 3D 1 and choose Duplicate.
2
In the Settings window for Mirror 3D, locate the Data section.
3
From the Dataset list, choose Mirror 3D 1.
4
Locate the Plane Data section. From the Plane list, choose yz-planes.
5
In the x-coordinate text field, type 0.5*L.
6
In the Results toolbar, click  Add Predefined Plot.
Add Predefined Plot
1
Go to the Add Predefined Plot window.
2
In the tree, select Study 1/Solution 1 (sol1)>Membrane>Displacement (mbrn).
3
Click Add Plot in the window toolbar.
4
In the Results toolbar, click  Add Predefined Plot.
Results
Transverse Displacement
1
In the Model Builder window, under Results click Displacement (mbrn).
2
In the Settings window for 3D Plot Group, type Transverse Displacement in the Label text field.
3
Locate the Data section. From the Dataset list, choose Mirror 3D 2.
Surface 1
1
In the Model Builder window, expand the Transverse Displacement node, then click Surface 1.
2
In the Settings window for Surface, locate the Expression section.
3
In the Expression text field, type w.
4
From the Unit list, choose cm.
5
Locate the Coloring and Style section. Click  Change Color Table.
6
In the Color Table dialog box, select Rainbow>SpectrumLight in the tree.
7
8
In the Settings window for Surface, click to expand the Quality section.
9
From the Smoothing threshold list, choose None.
10
Click the  Zoom Extents button in the Graphics toolbar.
11
In the Transverse Displacement toolbar, click  Plot.
First Principal Stress
1
In the Model Builder window, right-click Transverse Displacement and choose Duplicate.
2
In the Settings window for 3D Plot Group, type First Principal Stress in the Label text field.
3
Locate the Color Legend section. Select the Show maximum and minimum values check box.
Surface 1
1
In the Model Builder window, expand the First Principal Stress node, then click Surface 1.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Membrane>Stress>Principal stresses>mbrn.sp1 - First principal stress - N/m².
3
Locate the Expression section. From the Unit list, choose MPa.
4
Locate the Coloring and Style section. Click  Change Color Table.
5
In the Color Table dialog box, select Rainbow>Prism in the tree.
6
First Principal Stress
1
In the Model Builder window, click First Principal Stress.
2
In the Settings window for 3D Plot Group, locate the Plot Settings section.
3
From the View list, choose New view.
4
In the First Principal Stress toolbar, click  Plot.
5
Click the  Go to XY View button in the Graphics toolbar.
6
Click the  Show Grid button in the Graphics toolbar.
Second Principal Stress
1
Right-click First Principal Stress and choose Duplicate.
2
In the Settings window for 3D Plot Group, type Second Principal Stress in the Label text field.
Surface 1
1
In the Model Builder window, expand the Second Principal Stress node, then click Surface 1.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Membrane>Stress>Principal stresses>mbrn.sp2 - Second principal stress - N/m².
Second Principal Stress
1
In the Model Builder window, click Second Principal Stress.
2
In the Second Principal Stress toolbar, click  Plot.
Wrinkled Region
1
Right-click Second Principal Stress and choose Duplicate.
2
In the Settings window for 3D Plot Group, type Wrinkled Region in the Label text field.
3
Locate the Color Legend section. Clear the Show maximum and minimum values check box.
Surface 1
1
In the Model Builder window, expand the Wrinkled Region node, then click Surface 1.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Membrane>Wrinkling>mbrn.iswrinkled - Is wrinkled.
3
Locate the Coloring and Style section. Click  Change Color Table.
4
In the Color Table dialog box, select Rainbow>Rainbow in the tree.
5
6
In the Settings window for Surface, locate the Quality section.
7
From the Smoothing list, choose None.
8
In the Wrinkled Region toolbar, click  Plot.
Point Displacements
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Point Displacements in the Label text field.
Point Graph 1
1
Right-click Point Displacements and choose Point Graph.
2
3
In the Settings window for Point Graph, locate the y-Axis Data section.
4
In the Expression text field, type w.
5
From the Unit list, choose cm.
6
Locate the x-Axis Data section. From the Parameter list, choose Expression.
7
In the Expression text field, type Pmax*para.
8
From the Unit list, choose kPa.
9
Click to expand the Legends section. Select the Show legends check box.
10
From the Legends list, choose Manual.
11
Point Graph 2
1
Right-click Point Graph 1 and choose Duplicate.
2
In the Settings window for Point Graph, locate the Selection section.
3
Click  Clear Selection.
4
5
Locate the y-Axis Data section. In the Expression text field, type -u.
6
Locate the Legends section. In the table, enter the following settings:
Point Graph 3
1
Right-click Point Graph 2 and choose Duplicate.
2
In the Settings window for Point Graph, locate the Selection section.
3
Click  Clear Selection.
4
5
Locate the Legends section. In the table, enter the following settings:
Global 1
1
In the Model Builder window, right-click Point Displacements and choose Global.
2
In the Settings window for Global, locate the Data section.
3
From the Dataset list, choose Study 1/Solution 1 (sol1).
4
From the Parameter selection (para) list, choose Last.
5
Locate the y-Axis Data section. In the table, enter the following settings:
6
Locate the x-Axis Data section. From the Parameter list, choose Expression.
7
In the Expression text field, type Pmax*para.
8
From the Unit list, choose kPa.
9
Click to expand the Coloring and Style section. From the Color list, choose Magenta.
10
Find the Line markers subsection. From the Marker list, choose Square.
11
From the Positioning list, choose Interpolated.
12
Set the Number value to 12.
13
Click to expand the Legends section. From the Legends list, choose Manual.
14
Global 2
1
Right-click Global 1 and choose Duplicate.
2
In the Settings window for Global, locate the y-Axis Data section.
3
4
Locate the Legends section. Clear the Show legends check box.
Global 3
1
Right-click Global 2 and choose Duplicate.
2
In the Settings window for Global, locate the y-Axis Data section.
3
Point Displacements
1
In the Model Builder window, click Point Displacements.
2
In the Settings window for 1D Plot Group, click to expand the Title section.
3
From the Title type list, choose Manual.
4
In the Title text area, type Point displacements.
5
Locate the Plot Settings section.
6
Select the x-axis label check box. In the associated text field, type Inflation pressure (kPa).
7
Select the y-axis label check box. In the associated text field, type Displacement (cm).
8
Locate the Axis section. Select the Manual axis limits check box.
9
In the y maximum text field, type 30.
10
In the Point Displacements toolbar, click  Plot.
11
Locate the Legend section. From the Position list, choose Upper left.
12
In the Point Displacements toolbar, click  Plot.
Point Stress
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Point Stress in the Label text field.
3
Locate the Plot Settings section.
4
Select the x-axis label check box. In the associated text field, type Inflation pressure (kPa).
5
Locate the Legend section. From the Position list, choose Upper left.
Point Graph 1
1
Right-click Point Stress and choose Point Graph.
2
3
In the Settings window for Point Graph, locate the y-Axis Data section.
4
In the Expression text field, type mbrn.sp1.
5
In the Unit field, type kN/cm^2.
6
Locate the x-Axis Data section. From the Parameter list, choose Expression.
7
In the Expression text field, type Pmax*para.
8
From the Unit list, choose kPa.
9
Locate the Legends section. Select the Show legends check box.
10
From the Legends list, choose Manual.
11
Point Stress
1
In the Model Builder window, click Point Stress.
2
In the Point Stress toolbar, click  Plot.