PDF

Lemaitre–Chaboche Viscoplastic Model
Introduction
Most metals and alloys undergo viscoplastic deformation at high temperatures. In case of cyclic loading, a constitutive law with both isotropic and kinematic hardening is necessary to describe effects such as ratcheting, cyclic softening/hardening, and stress relaxation. The Lemaitre–Chaboche viscoplastic model combines isotropic hardening with nonlinear kinematic hardening to model these effects.
This tutorial model demonstrates the uniaxial deformation of an indium IN 100 test specimen submitted to cyclic tension-compression loading at high temperature, as described in Ref. 1
Figure 1: Specimen used for the uniaxial tension-compression tests.
Model Definition
The test specimen consists of a small cylinder with a thin central section to ensure uniform stress and strain distributions. Thick parts are added to the ends of the specimen to ease the mounting in a universal testing machine. The loading for the tension-compression cycle is directed in the axial direction. For shortening the computation time, half of the specimen is modeled in a 2D axisymmetric geometry.
Governing equations
The strain tensor consists of the sum of the elastic strain tensor εel and the viscoelastic strain tensor εvp:
The constitutive law between stress and strain is given by Hooke’s law
The viscoplastic strain tensor is defined by Lemaitre–Chaboche viscoplastic rule
where σb is the back-stress tensor, derived by the nonlinear kinematic hardening rule; and σ' and σb' are the deviatoric parts of the stress and back-stress tensors σ and σb.
The equivalent viscoplastic strain rate is defined by the expression
where A is the viscoplastic rate coefficient, σref is a reference stress, n is the stress exponent, and σy is the yield stress given by the nonlinear isotropic hardening rule.
Mixed Hardening
The isotropic hardening model represents the change in yield stress as a function of the equivalent viscoplastic strain. Lemaitre and Chaboche (Ref. 1) derived a nonlinear isotropic hardening relation of the type
where σys0 is the initial yield stress, and σsat and β are material parameters.
The kinematic hardening rule represents the translation of the yield surface as a function of the back-stress σb and the equivalent viscoplastic strain εvp. Lemaitre and Chaboche (Ref. 1) derived a nonlinear kinematic hardening relation where the back-stress tensor is calculated from the ordinary differential equation
where Ck and γk are material parameters. The kinematic hardening parameter γk also depends exponentially on the equivalent viscoplastic strain:
where γs, γ0, and βk are material parameters.
Material data
The material parameters of the indium alloy IN 100 at a temperature of 900 K are given in Ref. 1.
σy0
σy0+σsat
Ck
γ0
γs
βk
In Ref. 1, the parameter K is given in units of MPa·s1/n. The parameters K, A, and σref are related by the expression
Use the values A = 1/s and σref = 490 MPa to obtain similar results as in given in Ref. 1.
Results and Discussion
Stress vs. Time
After the first tensile cycle the axial stress (blue line in Figure 2) increases linearly, exceeding the yield strength (cyan line). Because of viscous effects, the onset of plasticity starts once the viscous stress (green line) reaches the yield strength. At this point, the relation between stress and strain is no longer linear, kinematic/isotropic hardening evolves, and the back-stress (red line) increases.
When the maximum allowed tensile strain is reached, the prescribed axial velocity turns negative to prescribe axial unloading. The axial stress then decreases linearly, and the back stress remains constant to account for kinematic hardening and the Bauschinger effect. The yield strength in compression after a tensile cycle is lower than the initial yield strength.
In the compressive cycle, the viscoplastic flow starts earlier and lasts for a longer period. When the maximum allowed compressive strain is reached, the prescribed axial velocity becomes positive to prescribe tensile unloading. This procedure is repeated for each load cycle.
.
Figure 2: Evolution of the axial stress variables with time.
Four studies are performed to prescribe four different types of loading cycles: prescribed symmetric strain, prescribed symmetric stress, prescribed nonsymmetric strain, and prescribed nonsymmetric stress. The stress-strain graph for each type of loading cycle highlights material properties of the Lemaitre–Chaboche viscoplastic model.
symmetric Cycles
Symmetric loading aims to show the stabilization effect of the hysteresis cycle. This emphasizes the softening or hardening effect during cyclic loadings for a given hardening rule.
For the symmetric prescribed axial strain cycle shown in Figure 3, there is a periodic response to the periodic load and a stabilized state is reached after few cycles. A closer view shows that the stress amplitude decreases during the first cycles due to material softening.
A similar effect can be seen in for the symmetric prescribed stress cycle in Figure 4, but more cycles are needed to reach a stabilized state when compared to the prescribed strain loading. Lastly, the axial strain amplitude increases with the number of cycles. This is an effect of the isotropic hardening rule. With kinematic hardening only, the stabilized state is reached after the first cycle of prescribed stress. Thus, a mixed hardening formulation is needed to model both cyclic softening/hardening and Bauschinger effects.
Figure 3: Axial stress versus axial strain for a symmetric prescribed strain loading.
Figure 4: Axial stress versus axial strain for a symmetric prescribed stress loading.
Nonsymmetric Strain Cycles
When the average strain is not zero in a prescribed strain cycle as in Figure 5, the initial asymmetry in the axial stress gradually disappears over the cycles: This happens because of the stress relaxation effect, which is observed in many alloys.
Once a stabilized cycle is reached, the tensile and compressive stresses are equal in absolute value. This is an effect of the nonlinear kinematic hardening rule. Applying linear kinematic hardening only (or isotropic hardening) would not allow to observe the relaxation of the mean stress, so a nonlinear kinematic hardening rule is needed to model stress relaxation.
Figure 5: Axial stress versus axial strain for a nonsymmetric prescribed strain loading.
Nonsymmetric Stress Cycles
The gradual deformation that occurs in tension-compression cycles when the mean stress is nonzero is called the ratcheting effect. The ratcheting effect is most pronounced when the lower stress limit is −σys0. This behavior is possible to observe thanks to the nonlinear kinematic hardening rule.
Figure 6: Axial stress versus axial strain for a nonsymmetric prescribed stress loading.
Notes About the COMSOL Implementation
Several yield functions and plastic potentials are available in the Viscoplasticity node. Use von Mises equivalent stress to reproduce the results described in Ref. 1.
Solve four studies to account for the different types of load cycles: the load cycle can be symmetric or nonsymmetric, and the control can be done by prescribing either the axial strain or the axial stress.
Apply a constant axial velocity on one end of the test specimen to avoid using complicate loading functions. Multiply this axial velocity by 1 to represent axial tension, or by 1 to represent axial compression.
To achieve this, define a discrete state called LoadingType in an Events interface. Add Indicator States in the Events interface to define tension and compression limits based on the stress or strain state. For instance, for a symmetric loading cycle with a prescribed strain of 0.4 % the following Indicator States are used:
Then add two Implicit Event nodes to define the discrete state LoadingType: when Tension > 0, then LoadingType is set to 1, and when Compression < 0, LoadingType is set to 1.
Reference
1. J. Lemaitre and J.-L. Chaboche, Mécanique des matériaux solides, 2nd ed., Dunod, 2001 (in French).
Application Library path: Nonlinear_Structural_Materials_Module/Viscoplasticity/lemaitre_chaboche_viscoplastic_model
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  2D Axisymmetric.
2
In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3
Click Add.
4
In the Select Physics tree, select Mathematics>ODE and DAE Interfaces>Events (ev).
5
Click Add.
6
Click  Study.
7
In the Select Study tree, select General Studies>Time Dependent.
8
Global Definitions
Parameters 1
Define the parameters that will be needed in the model.
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Add a step function to apply the load smoothly.
Step 1 (step1)
1
In the Home toolbar, click  Functions and choose Global>Step.
2
In the Settings window for Step, locate the Parameters section.
3
In the Location text field, type 5[ms].
4
Click to expand the Smoothing section. In the Size of transition zone text field, type 0.01.
5
Geometry 1
1
In the Model Builder window, under Component 1 (comp1) click Geometry 1.
2
In the Settings window for Geometry, locate the Units section.
3
From the Length unit list, choose mm.
Rectangle 1 (r1)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type 7/2.
4
In the Height text field, type 35/2.
Rectangle 2 (r2)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type 5.
4
In the Height text field, type 10.
5
Locate the Position section. In the z text field, type 21.5.
Rectangle 3 (r3)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type 8.
4
In the Height text field, type 10.
5
Locate the Position section. In the z text field, type 31.5.
Circular Arc 1 (ca1)
1
In the Geometry toolbar, click  More Primitives and choose Circular Arc.
2
In the Settings window for Circular Arc, locate the Properties section.
3
From the Specify list, choose Endpoints and start angle.
4
Locate the Starting Point section. In the r text field, type 3.5.
5
In the z text field, type 17.5.
6
Locate the Endpoint section. In the r text field, type 5.
7
In the z text field, type 21.5.
8
Locate the Angles section. In the Start angle text field, type 180.
9
Select the Clockwise check box.
10
Click  Build Selected.
Polygon 1 (pol1)
1
In the Geometry toolbar, click  Polygon.
2
In the Settings window for Polygon, locate the Object Type section.
3
From the Type list, choose Open curve.
4
Locate the Coordinates section. From the Data source list, choose Vectors.
5
In the r text field, type 5 0 0 3.5 .
6
In the z text field, type 21.5 21.5 17.5 17.5 .
Convert to Solid 1 (csol1)
1
In the Geometry toolbar, click  Conversions and choose Convert to Solid.
2
Select the objects pol1 and ca1 only.
3
In the Settings window for Convert to Solid, click  Build All Objects.
Add conditions to toggle the boundary conditions between tension and compression. This is controlled by the Events interface. First create a nonlocal integration coupling to get variable from a point.
Definitions
Integration 1 (intop1)
1
In the Definitions toolbar, click  Nonlocal Couplings and choose Integration.
2
In the Settings window for Integration, locate the Source Selection section.
3
From the Geometric entity level list, choose Point.
4
5
Locate the Advanced section. Clear the Compute integral in revolved geometry check box.
Events (ev)
Discrete States 1
1
In the Model Builder window, under Component 1 (comp1) right-click Events (ev) and choose Discrete States.
2
In the Settings window for Discrete States, locate the Discrete States section.
3
The LoadingType variable is 1 when tension is applied, and -1 when compression is applied.
The first indicator state is used to control the loading with a strain measure. The tension and compression limits are symmetric.
Indicator States: Strain, Symmetric
1
In the Physics toolbar, click  Global and choose Indicator States.
2
In the Settings window for Indicator States, type Indicator States: Strain, Symmetric in the Label text field.
3
Locate the Indicator Variables section. In the table, enter the following settings:
The second indicator state is used to control the loading with a stress measure. The tension and compression limits are symmetric.
Indicator States: Stress, Symmetric
1
In the Physics toolbar, click  Global and choose Indicator States.
2
In the Settings window for Indicator States, type Indicator States: Stress, Symmetric in the Label text field.
3
Locate the Indicator Variables section. In the table, enter the following settings:
The third indicator state is used to control the loading with a strain measure. The tension and compression limits are not symmetric.
Indicator States: Strain, Nonsymmetric
1
In the Physics toolbar, click  Global and choose Indicator States.
2
In the Settings window for Indicator States, type Indicator States: Strain, Nonsymmetric in the Label text field.
3
Locate the Indicator Variables section. In the table, enter the following settings:
The fourth indicator state is used to control the loading with a stress measure. The tension and compression limits are not symmetric.
Indicator States: Stress, Nonsymmetric
1
In the Physics toolbar, click  Global and choose Indicator States.
2
In the Settings window for Indicator States, type Indicator States: Stress, Nonsymmetric in the Label text field.
3
Locate the Indicator Variables section. In the table, enter the following settings:
Implicit Event 1
1
In the Physics toolbar, click  Global and choose Implicit Event.
2
In the Settings window for Implicit Event, locate the Event Conditions section.
3
In the Condition text field, type Tension>0.
4
Locate the Reinitialization section. In the table, enter the following settings:
Implicit Event 2
1
In the Physics toolbar, click  Global and choose Implicit Event.
2
In the Settings window for Implicit Event, locate the Event Conditions section.
3
In the Condition text field, type Compression<0.
4
Locate the Reinitialization section. In the table, enter the following settings:
Solid Mechanics (solid)
1
In the Model Builder window, under Component 1 (comp1) click Solid Mechanics (solid).
2
In the Settings window for Solid Mechanics, locate the Structural Transient Behavior section.
3
Symmetry Plane 1
1
In the Physics toolbar, click  Boundaries and choose Symmetry Plane.
2
Prescribed Velocity 1
1
In the Physics toolbar, click  Boundaries and choose Prescribed Velocity.
2
3
In the Settings window for Prescribed Velocity, locate the Prescribed Velocity section.
4
Select the Prescribed in z direction check box.
5
In the vz text field, type e0t*L0*step1(t)*LoadingType.
Linear Elastic Material 1
Add viscoplasticity with combined isotropic and kinematic hardening.
1
In the Model Builder window, click Linear Elastic Material 1.
Viscoplasticity 1
1
In the Physics toolbar, click  Attributes and choose Viscoplasticity.
2
3
In the Settings window for Viscoplasticity, locate the Viscoplasticity Model section.
4
From the Material model list, choose Chaboche.
5
Find the Isotropic hardening model subsection. From the list, choose Voce.
6
Find the Kinematic hardening model subsection. From the list, choose Armstrong-Frederick.
Set the material properties.
Materials
Material 1 (mat1)
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
2
In the Settings window for Material, locate the Material Contents section.
3
The kinematic hardening parameter gammak is nonlinear and a function of the equivalent viscoplastic strain. Add the latter from the model input list to make it available.
4
In the Model Builder window, expand the Material 1 (mat1) node, then click Armstrong-Frederick (ArmstrongFrederick).
5
In the Settings window for Armstrong-Frederick, locate the Model Inputs section.
6
Click  Select Quantity.
7
In the Physical Quantity dialog box, type viscoplastic in the text field.
8
Click  Filter.
9
In the tree, select Solid Mechanics>Equivalent viscoplastic strain (1).
10
11
In the Settings window for Armstrong-Frederick, locate the Output Properties section.
12
Create a mapped mesh.
Mesh 1
Mapped 1
In the Mesh toolbar, click  Mapped.
Distribution 1
1
Right-click Mapped 1 and choose Distribution.
2
3
In the Settings window for Distribution, locate the Distribution section.
4
In the Number of elements text field, type 4.
Distribution 2
1
In the Model Builder window, right-click Mapped 1 and choose Distribution.
2
3
In the Settings window for Distribution, locate the Distribution section.
4
In the Number of elements text field, type 2.
Distribution 3
1
Right-click Mapped 1 and choose Distribution.
2
3
In the Settings window for Distribution, locate the Distribution section.
4
In the Number of elements text field, type 16.
5
Distribution 4
1
Right-click Mapped 1 and choose Distribution.
2
3
In the Settings window for Distribution, locate the Distribution section.
4
In the Number of elements text field, type 4.
Distribution 5
1
Right-click Mapped 1 and choose Distribution.
2
Distribution 6
1
Right-click Mapped 1 and choose Distribution.
2
3
In the Settings window for Distribution, locate the Distribution section.
4
In the Number of elements text field, type 3.
5
Click  Build All.
Study 1
Step 1: Time Dependent
1
In the Model Builder window, under Study 1 click Step 1: Time Dependent.
2
In the Settings window for Time Dependent, locate the Study Settings section.
3
In the Output times text field, type 0 40.
For the first study, control the loading with symmetric strain cycles.
4
Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.
5
In the tree, select Component 1 (comp1)>Events (ev)>Indicator States: Stress, Symmetric, Component 1 (comp1)>Events (ev)>Indicator States: Strain, Nonsymmetric, and Component 1 (comp1)>Events (ev)>Indicator States: Stress, Nonsymmetric.
6
Click  Disable.
Solution 1 (sol1)
1
In the Study toolbar, click  Show Default Solver.
2
In the Model Builder window, expand the Solution 1 (sol1) node, then click Time-Dependent Solver 1.
3
In the Settings window for Time-Dependent Solver, click to expand the Time Stepping section.
4
In the Event tolerance text field, type 0.001.
5
Click to expand the Output section. Locate the General section. From the Times to store list, choose Steps taken by solver.
Only the start and end times are defined in the time step node. The solver sets the time steps automatically. Store results for all solved time steps.
6
Locate the Output section. Clear the Store time derivatives check box.
7
In the Model Builder window, click Study 1.
8
In the Settings window for Study, type Study 1, Prescribed Symmetric Strain in the Label text field.
9
Locate the Study Settings section. Clear the Generate default plots check box.
10
In the Study toolbar, click  Compute.
Create a first group of plot groups for the results of the first study.
Results
Prescribed Symmetric Strain
1
In the Model Builder window, right-click Results and choose Node Group.
2
In the Settings window for Group, type Prescribed Symmetric Strain in the Label text field.
3
Right-click Prescribed Symmetric Strain and choose Move to Plot Groups.
Add a first plot group to reproduce Figure 3.
Stress vs. Strain 1
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
Add a plot group to reproduce Figure 2.
2
In the Settings window for 1D Plot Group, type Stress vs. Strain 1 in the Label text field.
3
Locate the Plot Settings section.
4
Select the x-axis label check box. In the associated text field, type Axial strain (1).
5
Select the y-axis label check box. In the associated text field, type Axial stress (MPa).
6
Click to expand the Title section. From the Title type list, choose Manual.
7
In the Title text area, type Axial stress vs. axial strain.
Point Graph 1
1
In the Stress vs. Strain 1 toolbar, click  Point Graph.
2
3
In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Stress>Stress tensor, local coordinate system - N/m²>solid.sl33 - Stress tensor, local coordinate system, 33-component.
4
Locate the y-Axis Data section. From the Unit list, choose MPa.
5
Locate the x-Axis Data section. From the Parameter list, choose Expression.
6
Click Replace Expression in the upper-right corner of the x-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Strain>Strain tensor, local coordinate system>solid.el33 - Strain tensor, local coordinate system, 33-component.
7
In the Stress vs. Strain 1 toolbar, click  Plot.
Stresses vs. Time 1
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Stresses vs. Time 1 in the Label text field.
3
Locate the Title section. From the Title type list, choose Manual.
4
In the Title text area, type Stresses vs. time.
Point Graph 1
1
Right-click Stresses vs. Time 1 and choose Point Graph.
2
3
In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Stress>Stress tensor, local coordinate system - N/m²>solid.sl33 - Stress tensor, local coordinate system, 33-component.
4
Locate the y-Axis Data section. From the Unit list, choose MPa.
5
Click to expand the Title section. From the Title type list, choose None.
6
Click to expand the Legends section. Select the Show legends check box.
7
From the Legends list, choose Manual.
8
Point Graph 2
1
Right-click Point Graph 1 and choose Duplicate.
2
In the Settings window for Point Graph, locate the y-Axis Data section.
3
In the Expression text field, type max(0,solid.lemm1.vpl1.Fyield).
4
Locate the Legends section. In the table, enter the following settings:
Point Graph 3
1
Right-click Point Graph 2 and choose Duplicate.
2
In the Settings window for Point Graph, locate the y-Axis Data section.
3
In the Expression text field, type solid.lemm1.vpl1.Sl_back33.
4
Locate the Legends section. In the table, enter the following settings:
Point Graph 4
1
Right-click Point Graph 3 and choose Duplicate.
2
In the Settings window for Point Graph, locate the y-Axis Data section.
3
In the Expression text field, type solid.lemm1.vpl1.sY.
4
Locate the Legends section. In the table, enter the following settings:
Stresses vs. Time 1
1
In the Model Builder window, click Stresses vs. Time 1.
2
In the Settings window for 1D Plot Group, locate the Plot Settings section.
3
Select the y-axis label check box. In the associated text field, type Stress (MPa).
4
In the Stresses vs. Time 1 toolbar, click  Plot.
Plot the equivalent viscoplastic strain on the whole geometry.
Revolution 2D 1
In the Results toolbar, click  More Datasets and choose Revolution 2D.
Mirror 3D 1
1
In the Results toolbar, click  More Datasets and choose Mirror 3D.
2
In the Settings window for Mirror 3D, locate the Plane Data section.
3
From the Plane list, choose XY-planes.
Equivalent Viscoplastic Strain 1
1
In the Results toolbar, click  3D Plot Group.
2
In the Settings window for 3D Plot Group, type Equivalent Viscoplastic Strain 1 in the Label text field.
3
Locate the Data section. From the Dataset list, choose Mirror 3D 1.
Surface 1
1
Right-click Equivalent Viscoplastic Strain 1 and choose Surface.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Strain (Gauss points)>solid.evpeGp - Equivalent viscoplastic strain.
3
Locate the Coloring and Style section. Click  Change Color Table.
4
In the Color Table dialog box, select Aurora>AuroraAustralisDark in the tree.
5
Deformation 1
Right-click Surface 1 and choose Deformation.
Surface 2
1
In the Model Builder window, right-click Equivalent Viscoplastic Strain 1 and choose Surface.
2
In the Settings window for Surface, locate the Expression section.
3
In the Expression text field, type 0.
4
Click to expand the Title section. From the Title type list, choose None.
5
Click to expand the Inherit Style section. From the Plot list, choose Surface 1.
Deformation 1
Right-click Surface 2 and choose Deformation.
Filter 1
1
In the Model Builder window, right-click Surface 2 and choose Filter.
2
In the Settings window for Filter, locate the Element Selection section.
3
In the Logical expression for inclusion text field, type z>=31.5[mm].
4
In the Equivalent Viscoplastic Strain 1 toolbar, click  Plot.
Equivalent Viscoplastic Strain 1
Add a study to compute loading controlled by symmetric stress cycles.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Time Dependent.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 2
Step 1: Time Dependent
1
In the Settings window for Time Dependent, locate the Study Settings section.
2
In the Output times text field, type 0 40.
3
Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.
4
In the tree, select Component 1 (comp1)>Events (ev)>Indicator States: Strain, Symmetric, Component 1 (comp1)>Events (ev)>Indicator States: Strain, Nonsymmetric, and Component 1 (comp1)>Events (ev)>Indicator States: Stress, Nonsymmetric.
5
Click  Disable.
6
In the Model Builder window, click Study 2.
7
In the Settings window for Study, type Study 2, Prescribed Symmetric Stress in the Label text field.
8
Locate the Study Settings section. Clear the Generate default plots check box.
Solution 2 (sol2)
1
In the Study toolbar, click  Show Default Solver.
2
In the Model Builder window, expand the Solution 2 (sol2) node, then click Time-Dependent Solver 1.
3
In the Settings window for Time-Dependent Solver, locate the Time Stepping section.
4
In the Event tolerance text field, type 0.001.
5
Locate the General section. From the Times to store list, choose Steps taken by solver.
6
Locate the Output section. Clear the Store time derivatives check box.
7
In the Study toolbar, click  Compute.
Results
Revolution 2D 2
1
In the Results toolbar, click  More Datasets and choose Revolution 2D.
2
In the Settings window for Revolution 2D, locate the Data section.
3
From the Dataset list, choose Study 2, Prescribed Symmetric Stress/Solution 2 (sol2).
Mirror 3D 2
1
In the Results toolbar, click  More Datasets and choose Mirror 3D.
2
In the Settings window for Mirror 3D, locate the Data section.
3
From the Dataset list, choose Revolution 2D 2.
4
Locate the Plane Data section. From the Plane list, choose XY-planes.
Prescribed Symmetric Stress
1
In the Model Builder window, right-click Prescribed Symmetric Strain and choose Duplicate.
2
In the Settings window for Group, type Prescribed Symmetric Stress in the Label text field.
Stress vs. Strain 2
1
In the Model Builder window, expand the Prescribed Symmetric Stress node, then click Stress vs. Strain 1.1.
2
In the Settings window for 1D Plot Group, type Stress vs. Strain 2 in the Label text field.
3
Locate the Data section. From the Dataset list, choose Study 2, Prescribed Symmetric Stress/Solution 2 (sol2).
4
In the Stress vs. Strain 2 toolbar, click  Plot.
Stresses vs. Time 2
1
In the Model Builder window, under Results>Prescribed Symmetric Stress click Stresses vs. Time 1.1.
2
In the Settings window for 1D Plot Group, type Stresses vs. Time 2 in the Label text field.
3
Locate the Data section. From the Dataset list, choose Study 2, Prescribed Symmetric Stress/Solution 2 (sol2).
Equivalent Viscoplastic Strain 2
1
In the Model Builder window, under Results>Prescribed Symmetric Stress click Equivalent Viscoplastic Strain 1.1.
2
In the Settings window for 3D Plot Group, type Equivalent Viscoplastic Strain 2 in the Label text field.
3
Locate the Data section. From the Dataset list, choose Mirror 3D 2.
4
Locate the Plot Settings section. From the View list, choose View 3D 3.
5
In the Equivalent Viscoplastic Strain 2 toolbar, click  Plot.
Add a study to compute loading controlled by nonsymmetric strain cycles.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Time Dependent.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 3
Step 1: Time Dependent
1
In the Settings window for Time Dependent, locate the Study Settings section.
2
In the Output times text field, type 0 40.
3
Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.
4
In the tree, select Component 1 (comp1)>Events (ev)>Indicator States: Strain, Symmetric, Component 1 (comp1)>Events (ev)>Indicator States: Stress, Symmetric, and Component 1 (comp1)>Events (ev)>Indicator States: Stress, Nonsymmetric.
5
Click  Disable.
Solution 3 (sol3)
1
In the Study toolbar, click  Show Default Solver.
2
In the Model Builder window, expand the Solution 3 (sol3) node, then click Time-Dependent Solver 1.
3
In the Settings window for Time-Dependent Solver, locate the Time Stepping section.
4
In the Event tolerance text field, type 0.001.
5
Locate the General section. From the Times to store list, choose Steps taken by solver.
6
Locate the Output section. Clear the Store time derivatives check box.
7
In the Model Builder window, click Study 3.
8
In the Settings window for Study, type Study 3, Prescribed Nonsymmetric Strain in the Label text field.
9
Locate the Study Settings section. Clear the Generate default plots check box.
10
In the Study toolbar, click  Compute.
Results
Revolution 2D 3
1
In the Results toolbar, click  More Datasets and choose Revolution 2D.
2
In the Settings window for Revolution 2D, locate the Data section.
3
From the Dataset list, choose Study 3, Prescribed Nonsymmetric Strain/Solution 3 (sol3).
Mirror 3D 3
1
In the Results toolbar, click  More Datasets and choose Mirror 3D.
2
In the Settings window for Mirror 3D, locate the Data section.
3
From the Dataset list, choose Revolution 2D 3.
4
Locate the Plane Data section. From the Plane list, choose XY-planes.
Prescribed Nonsymmetric Strain
1
In the Model Builder window, right-click Prescribed Symmetric Strain and choose Duplicate.
2
In the Settings window for Group, type Prescribed Nonsymmetric Strain in the Label text field.
Stress vs. Strain 3
1
In the Model Builder window, expand the Prescribed Nonsymmetric Strain node, then click Stress vs. Strain 1.1.
2
In the Settings window for 1D Plot Group, type Stress vs. Strain 3 in the Label text field.
3
Locate the Data section. From the Dataset list, choose Study 3, Prescribed Nonsymmetric Strain/Solution 3 (sol3).
4
In the Stress vs. Strain 3 toolbar, click  Plot.
Stresses vs. Time 3
1
In the Model Builder window, under Results>Prescribed Nonsymmetric Strain click Stresses vs. Time 1.1.
2
In the Settings window for 1D Plot Group, type Stresses vs. Time 3 in the Label text field.
3
Locate the Data section. From the Dataset list, choose Study 3, Prescribed Nonsymmetric Strain/Solution 3 (sol3).
Equivalent Viscoplastic Strain 3
1
In the Model Builder window, under Results>Prescribed Nonsymmetric Strain click Equivalent Viscoplastic Strain 1.1.
2
In the Settings window for 3D Plot Group, type Equivalent Viscoplastic Strain 3 in the Label text field.
3
Locate the Data section. From the Dataset list, choose Mirror 3D 3.
4
Locate the Plot Settings section. From the View list, choose View 3D 3.
5
In the Equivalent Viscoplastic Strain 3 toolbar, click  Plot.
Add a study to compute loading controlled by nonsymmetric stress cycles.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Time Dependent.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 4
Step 1: Time Dependent
1
In the Settings window for Time Dependent, locate the Study Settings section.
2
In the Output times text field, type 0 30.
3
Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.
4
In the tree, select Component 1 (comp1)>Events (ev)>Indicator States: Strain, Symmetric, Component 1 (comp1)>Events (ev)>Indicator States: Stress, Symmetric, and Component 1 (comp1)>Events (ev)>Indicator States: Strain, Nonsymmetric.
5
Click  Disable.
Solution 4 (sol4)
1
In the Study toolbar, click  Show Default Solver.
2
In the Model Builder window, expand the Solution 4 (sol4) node, then click Time-Dependent Solver 1.
3
In the Settings window for Time-Dependent Solver, locate the Time Stepping section.
4
In the Event tolerance text field, type 0.001.
5
Locate the General section. From the Times to store list, choose Steps taken by solver.
6
Locate the Output section. Clear the Store time derivatives check box.
7
In the Model Builder window, click Study 4.
8
In the Settings window for Study, type Study 4, Prescribed Nonsymmetric Stress in the Label text field.
9
Locate the Study Settings section. Clear the Generate default plots check box.
10
In the Study toolbar, click  Compute.
Results
Revolution 2D 4
1
In the Results toolbar, click  More Datasets and choose Revolution 2D.
2
In the Settings window for Revolution 2D, locate the Data section.
3
From the Dataset list, choose Study 4, Prescribed Nonsymmetric Stress/Solution 4 (sol4).
Mirror 3D 4
1
In the Results toolbar, click  More Datasets and choose Mirror 3D.
2
In the Settings window for Mirror 3D, locate the Data section.
3
From the Dataset list, choose Revolution 2D 4.
4
Locate the Plane Data section. From the Plane list, choose XY-planes.
Prescribed Nonsymmetric Stress
1
In the Model Builder window, right-click Prescribed Symmetric Strain and choose Duplicate.
2
In the Settings window for Group, type Prescribed Nonsymmetric Stress in the Label text field.
Stress vs. Strain 4
1
In the Model Builder window, expand the Prescribed Nonsymmetric Stress node, then click Stress vs. Strain 1.1.
2
In the Settings window for 1D Plot Group, type Stress vs. Strain 4 in the Label text field.
3
Locate the Data section. From the Dataset list, choose Study 4, Prescribed Nonsymmetric Stress/Solution 4 (sol4).
4
In the Stress vs. Strain 4 toolbar, click  Plot.
Stresses vs. Time 4
1
In the Model Builder window, under Results>Prescribed Nonsymmetric Stress click Stresses vs. Time 1.1.
2
In the Settings window for 1D Plot Group, type Stresses vs. Time 4 in the Label text field.
3
Locate the Data section. From the Dataset list, choose Study 4, Prescribed Nonsymmetric Stress/Solution 4 (sol4).
Equivalent Viscoplastic Strain 4
1
In the Model Builder window, under Results>Prescribed Nonsymmetric Stress click Equivalent Viscoplastic Strain 1.1.
2
In the Settings window for 3D Plot Group, type Equivalent Viscoplastic Strain 4 in the Label text field.
3
Locate the Data section. From the Dataset list, choose Mirror 3D 4.
4
Locate the Plot Settings section. From the View list, choose View 3D 3.
5
In the Equivalent Viscoplastic Strain 4 toolbar, click  Plot.
Add an animation to show the increase of equivalent viscoplastic strain over time.
Equivalent Viscoplastic Strain
1
In the Results toolbar, click  Animation and choose Player.
2
In the Settings window for Animation, type Equivalent Viscoplastic Strain in the Label text field.
3
Locate the Scene section. From the Subject list, choose Equivalent Viscoplastic Strain 1.
4
Locate the Frames section. In the Number of frames text field, type 50.
5
Click the  Play button in the Graphics toolbar.