PDF

Stacking Sequence Optimization
Introduction
Composite laminates are synthetic structures and there is always a possibility to optimize its design it terms of number of layers, material of each layer, thickness of each layer, and stacking sequence for the specified loading conditions. Often, the number of layers, layer materials, and layer thicknesses are also governed by other factors. However, there is always a possibility to find the optimum stacking sequence which gives lower stresses in the structure for the specified loading conditions.
This example illustrates the optimization of stacking sequence in a composite laminate. The composite laminate considered for the analysis has six layers with symmetric layup. The Carbon-Epoxy material having orthotropic material properties is used as a lamina material. The optimization analysis is performed to find the optimum fiber orientation in each layer under specified loading conditions with an objective of minimizing maximum stress value in the laminate. The layup is assumed symmetric thus three ply angles are the control variables and BOBYQA method is applied to find the optimum stacking sequence.
Model Definition
Figure 1: Model geometry of a composite laminate.
Geometry and Boundary Conditions
The model geometry of a composite laminate with a side length of 0.5 m is shown in Figure 1. Boundary conditions and loading are:
A total load of 1 kN is applied to one of the corners of the right end of the laminate in the form of a line load as shown in Figure 2.
Figure 2: The 3D representation of model geometry together with the applied line load. Note that geometry is scaled by a factor of 10 in the thickness direction for the visualization purpose.
Stacking Sequence
The laminate considered for the analysis has 6 layers with symmetric layup. The original ply angles are assumed to be zero and are optimized for minimizing the maximum stress value in the laminate under given loading. The through-thickness view and the original layup of the laminate can be seen in Figure 3 and Figure 4.
Figure 3: Through-thickness view of the laminated material with six layers.
Figure 4: Stacking sequence [0]6 of the original layup of the composite laminate.
Material Properties
Each ply of composite panel is assumed to be made of carbon fibers in an epoxy resin. The homogenized orthotropic material properties (Young’s modulus, shear modulus, and Poisson’s ratio) are given below:
{E1, E2, E3}
{G12, G23, G13}
{υ12, υ23, υ13}
Layup Optimization
In the original layup, all plies are assumed to be aligned with the laminate coordinate system axis or in other words they have zero ply angles. The objective is to optimize the ply angles in order to minimize the maximum stress values in the entire laminate.
The laminate considered here has 6 plies with symmetric layup so effectively three ply angles are the control variables for the optimization problem. The initial value of the control variables is 0 degrees and lower and upper bounds are -90 degrees and 90 degrees respectively. A parametric optimization is performed using BOBYQA method in order to find the optimum stacking sequence.
Results and Discussion
The von Mises stress distribution in the composite laminate for original layup is shown in Figure 5. The layerwise distribution of von Mises stress at the middle of each layer can be seen in Figure 6. The corresponding plots for the optimized layup are shown in Figure 7 and Figure 8.
It can be seen here that the maximum stress values are reduced by 60% in the optimized layup case. If we look at the stress distribution, it is more even within the plies as well as across the plies in optimized layup case. This helps in distributing the high stresses generated around the constrained points closer to location of applied load.
Figure 5: von Mises stress distribution in the composite laminate for original layup.
Figure 6: Layerwise von Mises stress distribution in the composite laminate for the original layup.
Figure 7: von Mises stress distribution in the composite laminate for the optimized layup.
Figure 8: Layerwise von Mises stress distribution in the composite laminate for the optimized layup.
The original and optimized ply angles are shown in Figure 9. Similarly original and optimized principal material directions can be seen in Figure 10.
The original layup and optimized layup are as follows:
Optimized layup: [37/13/2]s (after round-off)
Figure 9: Original and optimized ply angles.
Figure 10: Original and optimized principal material directions.
Figure 11 shows the comparison of displacement and deformation profile of the laminate under given loading for original and optimized layup. Here original layup result is plotted in wireframe mode whereas optimized layup result is plotted as solid surface plot. It can be seen that the optimized layup has higher local stiffness at the loading point and predominantly goes in a bending mode compared to the original layup which goes in bending-twisting mode.
Figure 11: Displacement and deformation profile in a composite laminate for original layup (wireframe) and optimized layup (solid).
Notes About the COMSOL Implementation
The objective function for the optimization requires the computation of maximum stress values in the composite laminate. Under the given loading conditions, the bending would occur in the composite which would give maximum stresses in the outer layers. Hence, the maximum stress value in the outer interfaces of each layer is found out, and then the maximum value among all the layers is found out.
Application Library path: Composite_Materials_Module/Tutorials/stacking_sequence_optimization
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Structural Mechanics>Layered Shell (lshell).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select General Studies>Stationary.
6
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Click  Load from File.
4
Layered Shell (lshell)
Linear Elastic Material 1
1
In the Model Builder window, under Component 1 (comp1)>Layered Shell (lshell) click Linear Elastic Material 1.
2
In the Settings window for Linear Elastic Material, locate the Linear Elastic Material section.
3
Select the Transversely isotropic check box.
Global Definitions
Material: Carbon-Epoxy
1
In the Model Builder window, under Global Definitions right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Material: Carbon-Epoxy in the Label text field.
Define a layered material with ply rotations or stacking sequence as parameters to be optimized.
Layered Material: [th1/th2/th3]
1
Right-click Materials and choose Layered Material.
2
In the Settings window for Layered Material, locate the Layer Definition section.
3
4
5
6
7
8
In the Label text field, type Layered Material: [th1/th2/th3].
Geometry 1
Work Plane 1 (wp1)
In the Geometry toolbar, click  Work Plane.
Work Plane 1 (wp1)>Plane Geometry
In the Model Builder window, click Plane Geometry.
Work Plane 1 (wp1)>Square 1 (sq1)
1
In the Work Plane toolbar, click  Square.
2
In the Settings window for Square, locate the Size section.
3
In the Side length text field, type a.
4
Click the  Go to Default View button in the Graphics toolbar.
5
In the Home toolbar, click  Build All.
6
In the Model Builder window, collapse the Geometry 1 node.
Materials
Layered Material Link 1 (llmat1)
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Layers>Layered Material Link.
2
In the Settings window for Layered Material Link, locate the Layered Material Settings section.
3
From the Transform list, choose Symmetric.
4
Click to expand the Preview Plot Settings section. In the Thickness-to-width ratio text field, type 0.4.
5
Click Section_bar in the upper-right corner of the Layered Material Settings section. From the menu, choose Layer Cross-Section Preview.
6
Click Section_bar in the upper-right corner of the Layered Material Settings section. From the menu, choose Layer Stack Preview.
Global Definitions
Material: Carbon-Epoxy (mat1)
1
In the Model Builder window, under Global Definitions>Materials click Material: Carbon-Epoxy (mat1).
2
In the Settings window for Material, locate the Material Contents section.
3
Layered Shell (lshell)
Fixed Constraint 1
1
In the Physics toolbar, click  Edges and choose Fixed Constraint.
2
Line Load 1
1
In the Physics toolbar, click  Points and choose Line Load.
2
3
In the Settings window for Line Load, locate the Force section.
4
From the Load type list, choose Total force.
5
Specify the Ftot vector as
Define a global variable, corresponding to the maximum von Mises stress in the laminate, in order to use as the objective function in the optimization analysis.
Definitions (comp1)
Maximum 1 (maxop1)
1
In the Definitions toolbar, click  Nonlocal Couplings and choose Maximum.
2
In the Settings window for Maximum, locate the Source Selection section.
3
From the Geometric entity level list, choose Boundary.
4
Variables 1
1
In the Model Builder window, right-click Definitions and choose Variables.
2
In the Settings window for Variables, locate the Variables section.
3
Study 1: Original Layup
1
In the Model Builder window, click Study 1.
2
In the Settings window for Study, type Study 1: Original Layup in the Label text field.
3
In the Home toolbar, click  Compute.
Results
Global Evaluation 1
1
In the Results toolbar, click  Global Evaluation.
2
In the Settings window for Global Evaluation, locate the Expressions section.
3
4
Click  Evaluate.
Increase the through thickness scale factor in various layered material datasets for better visualization.
Layered Material
1
In the Model Builder window, expand the Results>Datasets node, then click Layered Material.
2
In the Settings window for Layered Material, locate the Layers section.
3
In the Scale text field, type 10.
Stress (Original)
1
In the Model Builder window, under Results click Stress (lshell).
2
In the Settings window for 3D Plot Group, type Stress (Original) in the Label text field.
3
Locate the Color Legend section. Select the Show maximum and minimum values check box.
4
In the Stress (Original) toolbar, click  Plot.
5
In the Home toolbar, click  Add Predefined Plot.
Add Predefined Plot
1
Go to the Add Predefined Plot window.
2
In the tree, select Study 1: Original Layup/Solution 1 (sol1)>Layered Shell>Stress, Slice (lshell).
3
Click Add Plot in the window toolbar.
Results
Stress, Slice (Original)
In the Settings window for 3D Plot Group, type Stress, Slice (Original) in the Label text field.
Layered Material Slice 1
1
In the Model Builder window, expand the Stress, Slice (Original) node, then click Layered Material Slice 1.
2
In the Settings window for Layered Material Slice, locate the Through-Thickness Location section.
3
From the Location definition list, choose Layer midplanes.
4
Locate the Layout section. From the Displacement list, choose Rectangular.
5
In the Relative x-separation text field, type 0.15*2.
6
In the Relative y-separation text field, type 0.15*2.
7
Select the Show descriptions check box.
8
In the Relative separation text field, type 0.2*2.
9
In the Stress, Slice (Original) toolbar, click  Plot.
10
Click the  Zoom Extents button in the Graphics toolbar.
Stress, Slice (Original)
1
In the Model Builder window, click Stress, Slice (Original).
2
In the Settings window for 3D Plot Group, locate the Plot Settings section.
3
From the View list, choose New view.
4
In the Stress, Slice (Original) toolbar, click  Plot.
5
Click the  Show Grid button in the Graphics toolbar.
Add Predefined Plot
1
Go to the Add Predefined Plot window.
2
In the tree, select Study 1: Original Layup/Solution 1 (sol1)>Layered Shell>Geometry and Layup (lshell)>Ply Angle (lshell).
3
Click Add Plot in the window toolbar.
4
In the tree, select Study 1: Original Layup/Solution 1 (sol1)>Layered Shell>Geometry and Layup (lshell)>First Principal Material Direction (lshell).
5
Click Add Plot in the window toolbar.
Results
Ply Angle (lshell)
1
In the Model Builder window, under Results click Ply Angle (lshell).
2
In the Settings window for 3D Plot Group, locate the Data section.
3
Click  Go to Source.
Layered Material 2 (Shell Geometry)
1
In the Model Builder window, under Results>Datasets click Layered Material 2 (Shell Geometry).
2
In the Settings window for Layered Material, locate the Layers section.
3
In the Scale text field, type 10.
Ply Angle (Original)
1
In the Model Builder window, under Results click Ply Angle (lshell).
2
In the Settings window for 3D Plot Group, type Ply Angle (Original) in the Label text field.
3
Click the  Go to Default View button in the Graphics toolbar.
4
In the Ply Angle (Original) toolbar, click  Plot.
First Principal Material Direction (lshell)
1
In the Model Builder window, click First Principal Material Direction (lshell).
2
In the Settings window for 3D Plot Group, locate the Data section.
3
Click  Go to Source.
Layered Material 2 (Material Direction)
1
In the Model Builder window, under Results>Datasets click Layered Material 2 (Material Direction).
2
In the Settings window for Layered Material, locate the Layers section.
3
In the Scale text field, type 40.
First Principal Material Direction (Original)
1
In the Model Builder window, under Results click First Principal Material Direction (lshell).
2
In the Settings window for 3D Plot Group, type First Principal Material Direction (Original) in the Label text field.
3
In the First Principal Material Direction (Original) toolbar, click  Plot.
Add Predefined Plot
1
Go to the Add Predefined Plot window.
2
In the tree, select Study 1: Original Layup/Solution 1 (sol1)>Layered Shell>Applied Loads (lshell)>Line Loads (lshell).
3
Click Add Plot in the window toolbar.
Results
Line Loads (Original)
1
In the Settings window for 3D Plot Group, type Line Loads (Original) in the Label text field.
2
In the Line Loads (Original) toolbar, click  Plot.
After solving the model for the original layup, add an optimization analysis for optimizing the layup for given loading conditions.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 2: Layup Optimization
1
In the Model Builder window, click Study 2.
2
In the Settings window for Study, type Study 2: Layup Optimization in the Label text field.
Optimization
1
In the Study toolbar, click  Optimization and choose Optimization.
2
In the Settings window for Optimization, locate the Optimization Solver section.
3
From the Method list, choose BOBYQA.
4
Locate the Objective Function section. In the table, enter the following settings:
5
Locate the Control Variables and Parameters section. Click  Add.
6
7
8
9
10
11
In the Study toolbar, click  Compute.
Results
Layered Material 2
1
In the Model Builder window, expand the Results>Datasets node, then click Layered Material 2.
2
In the Settings window for Layered Material, locate the Layers section.
3
In the Scale text field, type 10.
Stress (Optimized)
1
In the Model Builder window, under Results click Stress (lshell).
2
In the Settings window for 3D Plot Group, type Stress (Optimized) in the Label text field.
3
Locate the Color Legend section. Select the Show maximum and minimum values check box.
4
In the Stress (Optimized) toolbar, click  Plot.
Add Predefined Plot
1
Go to the Add Predefined Plot window.
2
In the tree, select Study 2: Layup Optimization/Parametric Solutions 1 (sol3)>Layered Shell>Stress, Slice (lshell).
3
Click Add Plot in the window toolbar.
Results
Stress, Slice (Optimized)
In the Settings window for 3D Plot Group, type Stress, Slice (Optimized) in the Label text field.
Layered Material Slice 1
1
In the Model Builder window, expand the Stress, Slice (Optimized) node, then click Layered Material Slice 1.
2
In the Settings window for Layered Material Slice, locate the Through-Thickness Location section.
3
From the Location definition list, choose Layer midplanes.
4
Locate the Layout section. From the Displacement list, choose Rectangular.
5
In the Relative x-separation text field, type 0.15*2.
6
In the Relative y-separation text field, type 0.15*2.
7
Select the Show descriptions check box.
8
In the Relative separation text field, type 0.2*2.
Stress, Slice (Optimized)
1
In the Model Builder window, click Stress, Slice (Optimized).
2
In the Settings window for 3D Plot Group, locate the Plot Settings section.
3
From the View list, choose View 3D 4.
4
In the Stress, Slice (Optimized) toolbar, click  Plot.
Add Predefined Plot
1
Go to the Add Predefined Plot window.
2
In the tree, select Study 2: Layup Optimization/Parametric Solutions 1 (sol3)>Layered Shell>Geometry and Layup (lshell)>Ply Angle (lshell).
3
Click Add Plot in the window toolbar.
4
In the tree, select Study 2: Layup Optimization/Parametric Solutions 1 (sol3)>Layered Shell>Geometry and Layup (lshell)>First Principal Material Direction (lshell).
5
Click Add Plot in the window toolbar.
6
In the Home toolbar, click  Add Predefined Plot.
Results
Ply Angle (lshell)
1
In the Model Builder window, under Results click Ply Angle (lshell).
2
In the Settings window for 3D Plot Group, locate the Data section.
3
Click  Go to Source.
Layered Material 3 (Shell Geometry)
1
In the Model Builder window, under Results>Datasets click Layered Material 3 (Shell Geometry).
2
In the Settings window for Layered Material, locate the Layers section.
3
In the Scale text field, type 40.
Ply Angle (Optimized)
1
In the Model Builder window, under Results click Ply Angle (lshell).
2
In the Settings window for 3D Plot Group, type Ply Angle (Optimized) in the Label text field.
3
Click the  Go to Default View button in the Graphics toolbar.
4
In the Ply Angle (Optimized) toolbar, click  Plot.
First Principal Material Direction (lshell)
1
In the Model Builder window, click First Principal Material Direction (lshell).
2
In the Settings window for 3D Plot Group, locate the Data section.
3
Click  Go to Source.
Layered Material 3 (Material Direction)
1
In the Model Builder window, under Results>Datasets click Layered Material 3 (Material Direction).
2
In the Settings window for Layered Material, locate the Layers section.
3
In the Scale text field, type 40.
First Principal Material Direction (Optimized)
1
In the Model Builder window, under Results click First Principal Material Direction (lshell).
2
In the Settings window for 3D Plot Group, type First Principal Material Direction (Optimized) in the Label text field.
3
In the First Principal Material Direction (Optimized) toolbar, click  Plot.
Create a plot to compare the deformation and displacement profile of the laminate for original and optimized layup.
Stress, Slice (Original) 1
In the Model Builder window, right-click Stress, Slice (Original) and choose Duplicate.
Layered Material Slice 1
1
In the Model Builder window, expand the Stress, Slice (Original) 1 node, then click Layered Material Slice 1.
2
In the Settings window for Layered Material Slice, locate the Data section.
3
From the Dataset list, choose Study 1: Original Layup/Solution 1 (sol1).
4
Locate the Expression section. In the Expression text field, type lshell.disp.
5
Locate the Through-Thickness Location section. From the Location definition list, choose Reference surface.
6
Locate the Layout section. From the Displacement list, choose None.
7
Clear the Show descriptions check box.
8
Locate the Coloring and Style section. Click  Change Color Table.
9
In the Color Table dialog box, select Aurora>Twilight in the tree.
10
11
In the Settings window for Layered Material Slice, locate the Coloring and Style section.
12
Select the Wireframe check box.
Layered Material Slice 2
1
Right-click Results>Stress, Slice (Original) 1>Layered Material Slice 1 and choose Duplicate.
2
In the Settings window for Layered Material Slice, locate the Data section.
3
From the Dataset list, choose Study 2: Layup Optimization/Parametric Solutions 1 (sol3).
4
Click to expand the Title section. From the Title type list, choose None.
5
Locate the Coloring and Style section. Clear the Wireframe check box.
6
Click to expand the Inherit Style section. From the Plot list, choose Layered Material Slice 1.
Deformation
1
In the Model Builder window, expand the Results>Stress, Slice (Original) 1>Layered Material Slice 1 node, then click Deformation.
2
In the Settings window for Deformation, locate the Scale section.
3
Select the Scale factor check box. In the associated text field, type 1.
Displacement: Original and Optimized
1
In the Model Builder window, under Results click Stress, Slice (Original) 1.
2
In the Settings window for 3D Plot Group, type Displacement: Original and Optimized in the Label text field.
3
Locate the Plot Settings section. From the View list, choose Automatic.
4
In the Displacement: Original and Optimized toolbar, click  Plot.
5
Click the  Zoom Extents button in the Graphics toolbar.