PDF

Micromechanics and Stress Analysis of a Composite Cylinder
Introduction
Fiber composites are widely used in industrial applications. Compared to more traditional metallic engineering materials, fiber composites often have superior specific stiffness and strength properties, and they are often more corrosion resistant. Also, properties like strength, stiffness, and toughness can often be tailored to specific applications. A fiber composite consists of load carrying fibers embedded in a polymer resin. The composite material is typically a laminate of individual layers, where the fibers in each layer are unidirectional. This model demonstrates how to perform a stress analysis of a laminated composite cylinder.
Modeling individual fibers in every layer in the laminate is unfeasible. A simplified micromechanics model of a single carbon fiber in epoxy is instead used to estimate the elastic properties of a single layer. These properties are then used in the homogenized model of the laminated composite cylinder. Two approaches are used to model the laminate, namely the Layerwise (LW) theory and the Equivalent Single Layer (ESL) theory.
Model Definition
This model performs different types of analyses of a laminated composite cylinder. The model is divided into three parts:
Eigenfrequencies and mode shapes are computed and compared using both theories.
Micromechanics analysis
A micromechanics analysis of a single layer is performed in order to obtain its homogenized material properties. The composite layer is assumed to be made of carbon fibers unidirectionally embedded in epoxy resin. A representative volume element (RVE) having a cylindrical fiber surrounded by resin is shown in Figure 1. The fiber radius is computed assuming a fiber volume fraction of 0.6.
Figure 1: Geometry of the unit cell with a carbon fiber in an epoxy resin.
Fiber and Resin Properties
The layers of the laminate are made of T300 carbon fiber and 914C epoxy. The carbon fiber is assumed to be transversely isotropic, and the epoxy resin is assumed to be isotropic. The material properties of fiber and resin are given in Table 1 and Table 2, respectively.
{E1, E2}
G12
15 GPa
{υ12, υ23}
ρ
1800 kg/m3
υ
ρ
Cell Periodicity
In order to perform a micromechanics analysis, the Cell Periodicity node in the Solid Mechanics interface is used. The Cell Periodicity node is used to apply periodic boundary conditions to the three pairs of faces of the unit cell.
In order to extract the homogenized elasticity matrix for a layer, the unit cell needs to be analyzed for six different load cases. The Average Strain periodicity type needs to be selected to obtain the homogenized elasticity matrix. This is automatically done with the help of the action buttons in the Cell Periodicity node. The Cell Periodicity node has two action buttons in the tool bar of section called Periodicity Type: Create Load Groups and Study and Create Material. The action button Create Load Groups and Study generates six different load groups and a stationary study with six load cases. The action button Create Material generates a Global Material with an elasticity matrix corresponding to that of the homogenized material. The generated global material can be used to define the properties of individual layers in a composite laminate.
Stress Analysis using the layerwise theory
Layerwise (LW) Theory
In the layerwise theory, the degrees of freedom are the displacements (u, v, w) available on the reference surface (or modeled surface) as well as in the through-thickness direction. From a constitutive equation point of view, this theory is similar to 3D solid elasticity. The layerwise theory is useful for detailed modeling of thick composite laminates because it can capture interlaminar shear stresses. It could therefore be used to also study delamination.
Geometry and Boundary Conditions
The model geometry of a composite cylinder with a length of 0.5 m and a radius of 0.1 m is shown in Figure 2. Boundary conditions and loading are:
A load of 1 kN is applied to a quarter of the cylinder outer surface.
Figure 2: Geometry of the cylinder showing boundary conditions and loading.
Figure 3: Through-thickness view of the laminated material with five layers.
Stacking Sequence and Material Properties
The laminate consists of five layers of 1 mm thickness, as shown in Figure 3. The orientations of the layers are different. The orientations, starting from the bottom of the laminate, are taken as 0, 45, 90, 45, and 0 degrees, as shown in Figure 4. The orientation of a layer is specified with respect to the laminate coordinate system as shown in Figure 5. The material properties for each layer are given by the homogenized material computed in the micromechanics analysis.
The first principal material direction showing the fiber orientation in each layer of the physical geometry are shown in Figure 6.
Figure 4: Stacking sequence [0/45/90/-45/0] for the laminate showing the fiber orientation of each layer, from bottom to top.
Figure 5: The laminate coordinate system showing the first principal direction along the cylinder axis.
Figure 6: First principal material direction showing the fiber orientation in each layer of the physical geometry. The ply angle is used as a color for each layer.
Stress Analysis using THE ESL theory
Equivalent Single Layer (ESL) Theory
In the equivalent single layer (ESL) theory, the degrees of freedom are the displacements and rotations on the midplane of the laminate. From a constitutive equation point of view, this theory is similar to 3D shell elasticity. Through-thickness homogenized material properties of the laminate are used. It is therefore computationally less expensive than the layerwise theory. It can be used for the modeling of thin to moderately thick laminates with good accuracy. An aim of this analysis is to compare the results to the results obtained from the layerwise theory.
The model setup, including geometry, boundary conditions, material properties, and so on, is the same as described in the previous section.
Results and Discussion
In the micromechanics analysis, six load cases are used to evaluate the elasticity matrix. The distribution of effective (von Mises) stress for four of the load cases is shown in Figure 7.
Figure 7: Von Mises stress distribution in the unit cell for four load cases.
The von Mises stress distribution in the composite cylinder obtained from the two theories is presented in Figure 8. Both theories give similar results.
The through-thickness variation of the axial second Piola-Kirchhoff stress at a particular point on the cylinder is shown in Figure 9. We see that the stress variation is discontinuous between layers, but that the two theories predict similar distributions.
Figure 8: Von Mises stress distribution in the composite cylinder obtained using the Layerwise and ESL theories.
Figure 9: Through-thickness stress variation in the axial direction at a particular point on the cylinder.
Figure 10: Von Mises stress distribution in the five layers of the laminate.
Figure 10 shows the distribution of von Mises stress in each layer of the laminate using the layerwise theory. The distributions of stress in the individual layers are remarkably different. The middle layer, with fibers perpendicular to the first principal laminate direction, shows the lowest stresses.
The first six eigenfrequencies of the constrained cylinder are shown in Table 3, and the corresponding mode shapes are shown in Figure 11. The eigenfrequencies obtained using the LW and ESL theories match within 0.2%.
Figure 11: The first six mode shapes and corresponding eigenfrequencies of the cylinder.
Notes About the COMSOL Implementation
The micromechanics analysis of a single fiber in a resin can be performed using the Cell Periodicity node available in the Solid Mechanics interface. Using this functionality, the elasticity matrix of the homogenized material can be computed for the given fiber and resin properties, and the fiber volume fraction.
The Cell Periodicity node has two action buttons on the tool bar of section called Periodicity Type: Create Load Groups and Study and Create Material. The action button Create Load Groups and Study generates load groups and a stationary study with load cases. The action button Create Material generate a Global Material with homogenized material properties. The action buttons are active depending on the choices in the Periodicity Type and Calculate Average Properties lists.
Modeling a composite laminated shell requires a surface geometry (2D), in general called a base surface, and a Layered Material node which adds an extra dimension (1D) to the base surface geometry in the surface normal direction. Using the Layered Material functionality, you can model several layers of different thickness, material properties, and fiber orientations. You can optionally specify the interface materials between the layers and the control mesh elements in each layer.
The Layered Material Link and Layered Material Stack have an option to transform the given Layered Material into a symmetric or antisymmetric laminate. A repeated laminate can also be constructed using a transform option.
You can either use the Layerwise (LW) theory based Layered Shell interface or the Equivalent Single Layer (ESL) theory based Layered Linear Elastic Material node in Shell interface.
To analyze the results in a composite shell, you can either create a slice plot using the Layered Material Slice plot for in-plane variation of a quantity, or you can create a Through Thickness plot for out-of-plane variation of a quantity at a point. To visualize the results as a 3D solid object, you can use the Layered Material dataset which creates a virtual 3D solid object combining the surface geometry (2D) and the extra dimension (1D).
Application Library path: Composite_Materials_Module/Tutorials/composite_cylinder_micromechanics_and_stress_analysis
Modeling Instructions (Micromechanics)
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3
Click Add.
4
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Click  Load from File.
4
Browse to the model’s Application Libraries folder and double-click the file composite_cylinder_micromechanics_and_stress_analysis_parameters.txt.
Geometry 1
Next, create a representative volume element (RVE) for a unidirectional fiber composite with square fiber packing. This RVE like many others can be found in the built-in Part Libraries.
Part Libraries
1
In the Home toolbar, click  Windows and choose Part Libraries.
2
In the Model Builder window, under Component 1 (comp1) click Geometry 1.
3
In the Part Libraries window, select COMSOL Multiphysics>Representative Volume Elements>3D>unidirectional_fiber_square_packing in the tree.
4
Right-click Component 1 (comp1)>Geometry 1 and choose Add to Geometry.
5
In the Select Part Variant dialog box, select Specify fiber volume fraction in the Select part variant list.
6
Geometry 1
Unidirectional Fiber Composite, Square Packing 1 (pi1)
1
In the Model Builder window, under Component 1 (comp1)>Geometry 1 click Unidirectional Fiber Composite, Square Packing 1 (pi1).
2
In the Settings window for Part Instance, locate the Input Parameters section.
3
Form Union (fin)
1
In the Model Builder window, click Form Union (fin).
2
In the Settings window for Form Union/Assembly, click  Build Selected.
Solid Mechanics (solid)
Cell Periodicity 1
1
In the Model Builder window, under Component 1 (comp1) right-click Solid Mechanics (solid) and choose the domain setting More>Cell Periodicity.
2
In the Settings window for Cell Periodicity, locate the Periodicity Type section.
3
From the list, choose Average strain.
4
From the Calculate average properties list, choose Elasticity matrix, Standard (XX, YY, ZZ, XY, YZ, XZ).
Boundary Pair 1
1
In the Physics toolbar, click  Attributes and choose Boundary Pair.
2
In the Settings window for Boundary Pair, locate the Boundary Selection section.
3
Click  Clear Selection.
4
Boundary Pair 2
1
Right-click Boundary Pair 1 and choose Duplicate.
2
In the Settings window for Boundary Pair, locate the Boundary Selection section.
3
Click  Clear Selection.
4
Boundary Pair 3
1
Right-click Boundary Pair 2 and choose Duplicate.
2
In the Settings window for Boundary Pair, locate the Boundary Selection section.
3
Click  Clear Selection.
4
In the upper-right corner of the Periodicity type section, you can find three buttons Create Load Groups and Study, Create Material by Reference and Create Material by Value. When the Average strain option is selected for the computation of the elasticity matrix, you can automatically generate load groups, a study, and a material by clicking on these buttons.
Cell Periodicity 1
1
In the Model Builder window, click Cell Periodicity 1.
2
In the Settings window for Cell Periodicity, click Study and Material Generation in the upper-right corner of the Periodicity Type section. From the menu, choose Create Load Groups and Study to generate load groups and a study node.
Materials
Material 1: Epoxy Resin
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
Before adding the fiber material data, set the solid model to orthotropic in the Linear Elastic Material node since the fiber material is assumed to have orthotropic properties. The isotropic resin material data will be automatically converted into an orthotropic format.
2
In the Settings window for Material, type Material 1: Epoxy Resin in the Label text field.
3
4
Locate the Material Contents section. In the table, enter the following settings:
Solid Mechanics (solid)
Linear Elastic Material 1
1
In the Model Builder window, under Component 1 (comp1)>Solid Mechanics (solid) click Linear Elastic Material 1.
2
In the Settings window for Linear Elastic Material, locate the Linear Elastic Material section.
3
From the Material symmetry list, choose Orthotropic.
4
Select the Transversely isotropic check box.
Materials
Material 2: Carbon Fiber
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Material 2: Carbon Fiber in the Label text field.
3
Locate the Geometric Entity Selection section. Click  Paste Selection.
4
In the Paste Selection dialog box, type 2 in the Selection text field.
5
6
In the Settings window for Material, locate the Material Contents section.
7
Mesh 1
Free Triangular 1
1
In the Mesh toolbar, click  Boundary and choose Free Triangular.
2
3
In the Settings window for Free Triangular, click  Build Selected.
Swept 1
1
In the Mesh toolbar, click  Swept.
2
In the Settings window for Swept, click  Build Selected.
Cell Periodicity Study
In the Home toolbar, click  Compute.
Results
Stress, Unit Cell
Use the following instructions to plot the von Mises stress in the unit cell as shown in Figure 7.
1
In the Settings window for 3D Plot Group, type Stress, Unit Cell in the Label text field.
2
In the Stress, Unit Cell toolbar, click  Plot.
Before you add another physics, create a homogenized material from the Cell Periodicity feature.
The homogenized material can be created by using either of the two action buttons in the Periodicity type section, Create Material by Reference or Create Material by Value. Choose the second action button in order to generate the material with numbers.
Solid Mechanics (solid)
Cell Periodicity 1
1
In the Model Builder window, under Component 1 (comp1)>Solid Mechanics (solid) click Cell Periodicity 1.
2
In the Settings window for Cell Periodicity, click Study and Material Generation in the upper-right corner of the Periodicity Type section. From the menu, choose Create Material by Value to generate a global material node with computed elastic properties.
Modeling Instructions (Stress Analysis using the Layerwise (LW) Theory)
This section describes how to model a laminated composite cylinder using the Layered Shell interface based on the layerwise theory.
Add Component
In the Model Builder window, right-click the root node and choose Add Component>3D.
Geometry 2
Cylinder 1 (cyl1)
1
In the Geometry toolbar, click  Cylinder.
2
In the Settings window for Cylinder, locate the Object Type section.
3
From the Type list, choose Surface.
4
Locate the Size and Shape section. In the Radius text field, type rc.
5
In the Height text field, type hc.
6
Locate the Axis section. From the Axis type list, choose x-axis.
7
Click  Build Selected.
Definitions (comp2)
Boundary System 2 (sys2)
1
In the Model Builder window, expand the Component 2 (comp2)>Definitions node, then click Boundary System 2 (sys2).
2
In the Settings window for Boundary System, locate the Settings section.
3
Find the Coordinate names subsection. From the Axis list, choose x.
Add Physics
1
In the Home toolbar, click  Add Physics to open the Add Physics window.
2
Go to the Add Physics window.
3
In the tree, select Structural Mechanics>Layered Shell (lshell).
4
Find the Physics interfaces in study subsection. In the table, clear the Solve check box for Cell Periodicity Study.
5
Click Add to Component 2 in the window toolbar.
6
In the Home toolbar, click  Add Physics to close the Add Physics window.
Global Definitions
The laminate is antisymmetric when the middle layer is excluded. Therefore, it is sufficient to define only a part of it in the Layered Material node. The transformation into the full laminate is performed through layered material settings in the Layered Material Link node.
Layered Material: [0/45/90/-45/0]
1
In the Model Builder window, under Global Definitions right-click Materials and choose Layered Material.
2
In the Settings window for Layered Material, type Layered Material: [0/45/90/-45/0] in the Label text field.
3
Locate the Layer Definition section. In the table, enter the following settings:
4
Click Add two times.
5
Materials
Layered Material Link 1 (llmat1)
1
In the Model Builder window, under Component 2 (comp2) right-click Materials and choose Layers>Layered Material Link.
The laminate, partially defined in the Layered Material node, can be transformed into a full laminate using a transform option in the layered material settings. The middle layer is merged in order to create a five layer laminate.
2
In the Settings window for Layered Material Link, locate the Layered Material Settings section.
3
From the Transform list, choose Antisymmetric.
4
Select the Merge middle layers check box.
5
Click to expand the Preview Plot Settings section. In the Thickness-to-width ratio text field, type 0.4.
6
Locate the Layered Material Settings section. Click Layer Cross-Section Preview in the upper-right corner of the section to enable the through-thickness view of the laminated material as in Figure 3.
7
Click Layer Stack Preview in the upper-right corner of the Layered Material Settings section to show the stacking sequence including the fiber orientation as in Figure 4.
Global Definitions
Homogeneous Material (solidcp1mat)
1
In the Model Builder window, under Global Definitions>Materials click Homogeneous Material (solidcp1mat).
2
In the Settings window for Material, locate the Material Contents section.
3
Layered Shell (lshell)
Linear Elastic Material 1
1
In the Model Builder window, under Component 2 (comp2)>Layered Shell (lshell) click Linear Elastic Material 1.
2
In the Settings window for Linear Elastic Material, locate the Linear Elastic Material section.
3
From the Material symmetry list, choose Anisotropic.
Fixed Constraint 1
1
In the Physics toolbar, click  Edges and choose Fixed Constraint.
2
Roller 1
1
In the Physics toolbar, click  Edges and choose Roller.
2
Body Load 1
1
In the Physics toolbar, click  Boundaries and choose Body Load.
2
3
In the Settings window for Body Load, locate the Force section.
4
From the Load type list, choose Total force.
5
Specify the Ftot vector as
Mesh 2
Mapped 1
1
In the Mesh toolbar, click  Boundary and choose Mapped.
2
In the Settings window for Mapped, locate the Boundary Selection section.
3
From the Selection list, choose All boundaries.
Distribution 1
1
Right-click Mapped 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Edge Selection section.
3
From the Selection list, choose All edges.
4
Locate the Distribution section. In the Number of elements text field, type 20.
5
Click  Build All.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4
Find the Physics interfaces in study subsection. In the table, clear the Solve check box for Solid Mechanics (solid).
5
Click Add Study in the window toolbar.
6
In the Home toolbar, click  Add Study to close the Add Study window.
Study 1: Stationary (Layerwise Theory)
1
In the Model Builder window, click Study 1.
2
In the Settings window for Study, type Study 1: Stationary (Layerwise Theory) in the Label text field.
3
In the Home toolbar, click  Compute.
Results
Layered Material
1
In the Model Builder window, expand the Results>Datasets node, then click Layered Material.
2
In the Settings window for Layered Material, locate the Layers section.
3
In the Scale text field, type 5.
Cut Point 3D 1
1
In the Results toolbar, click  Cut Point 3D.
2
In the Settings window for Cut Point 3D, locate the Data section.
3
From the Dataset list, choose Study 1: Stationary (Layerwise Theory)/Solution 1 (3) (sol1).
4
Locate the Point Data section. In the X text field, type hc/2.
5
In the Y text field, type rc.
6
In the Z text field, type rc.
7
From the Snapping list, choose Snap to closest boundary.
Use the following instructions to plot the von Mises stress in the cylinder as shown in Figure 8.
Stress (mises)
1
In the Model Builder window, under Results click Stress (lshell).
2
In the Settings window for 3D Plot Group, type Stress (mises) in the Label text field.
3
In the Stress (mises) toolbar, click  Plot.
Use the following instructions to plot the von Mises stress in different layers of the cylinder as shown in Figure 10.
4
In the Home toolbar, click  Add Predefined Plot.
Add Predefined Plot
1
Go to the Add Predefined Plot window.
2
In the tree, select Study 1: Stationary (Layerwise Theory)/Solution 1 (3) (sol1)>Layered Shell>Stress, Slice (lshell).
3
Click Add Plot in the window toolbar.
Results
Stress, Slice (mises)
1
In the Settings window for 3D Plot Group, type Stress, Slice (mises) in the Label text field.
2
Locate the Plot Settings section. Clear the Plot dataset edges check box.
Layered Material Slice 1
1
In the Model Builder window, expand the Stress, Slice (mises) node, then click Layered Material Slice 1.
2
In the Settings window for Layered Material Slice, locate the Through-Thickness Location section.
3
From the Location definition list, choose Layer midplanes.
4
Locate the Layout section. From the Displacement list, choose Rectangular.
5
From the Orientation list, choose zx.
6
In the Relative x-separation text field, type 0.3.
7
In the Relative z-separation text field, type 0.7.
8
Select the Show descriptions check box.
9
In the Relative separation text field, type 0.6.
10
Click to expand the Range section. Select the Manual color range check box.
11
In the Minimum text field, type 0.
12
In the Maximum text field, type 5e6.
13
Click to expand the Quality section. From the Resolution list, choose No refinement.
Deformation
1
In the Model Builder window, expand the Layered Material Slice 1 node.
2
Right-click Deformation and choose Disable.
Stress, Slice (mises)
1
In the Model Builder window, under Results click Stress, Slice (mises).
2
In the Stress, Slice (mises) toolbar, click  Plot.
Use the following instructions to plot the axial through-thickness stress variation at a particular point on the cylinder as shown in Figure 9.
Add Predefined Plot
1
Go to the Add Predefined Plot window.
2
In the tree, select Study 1: Stationary (Layerwise Theory)/Solution 1 (3) (sol1)>Layered Shell>Stress, Through Thickness (lshell).
3
Click Add Plot in the window toolbar.
Results
Stress, Through Thickness (Slm11)
1
In the Settings window for 1D Plot Group, type Stress, Through Thickness (Slm11) in the Label text field.
2
Locate the Plot Settings section.
3
Select the x-axis label check box. In the associated text field, type Slm11 (MPa).
Through Thickness 1
1
In the Model Builder window, expand the Stress, Through Thickness (Slm11) node, then click Through Thickness 1.
2
In the Settings window for Through Thickness, locate the Data section.
3
From the Dataset list, choose Cut Point 3D 1.
4
Locate the x-Axis Data section. In the Expression text field, type lshell.Slm11.
5
From the Unit list, choose MPa.
6
Click to expand the Legends section. From the Legends list, choose Manual.
7
8
In the Stress, Through Thickness (Slm11) toolbar, click  Plot.
Add Predefined Plot
1
Go to the Add Predefined Plot window.
2
In the tree, select Study 1: Stationary (Layerwise Theory)/Solution 1 (3) (sol1)>Layered Shell>Stress, Through Thickness (lshell).
3
Click Add Plot in the window toolbar.
4
In the tree, select Study 1: Stationary (Layerwise Theory)/Solution 1 (3) (sol1)>Layered Shell>Geometry and Layup (lshell)>Thickness and Orientation (lshell).
5
Click Add Plot in the window toolbar.
6
In the tree, select Study 1: Stationary (Layerwise Theory)/Solution 1 (3) (sol1)>Layered Shell>Geometry and Layup (lshell)>First Principal Material Direction (lshell).
7
Click Add Plot in the window toolbar.
8
In the Home toolbar, click  Add Predefined Plot.
Results
First Principal Material Direction (lshell)
1
In the Model Builder window, under Results click First Principal Material Direction (lshell).
2
In the First Principal Material Direction (lshell) toolbar, click  Plot.
3
Click the  Zoom Extents button in the Graphics toolbar.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Eigenfrequency.
4
Find the Physics interfaces in study subsection. In the table, clear the Solve check box for Solid Mechanics (solid).
5
Click Add Study in the window toolbar.
6
In the Home toolbar, click  Add Study to close the Add Study window.
Study 2: Eigenfrequency (Layerwise Theory)
1
In the Model Builder window, click Study 2.
2
In the Settings window for Study, type Study 2: Eigenfrequency (Layerwise Theory) in the Label text field.
Step 1: Eigenfrequency
1
In the Model Builder window, under Study 2: Eigenfrequency (Layerwise Theory) click Step 1: Eigenfrequency.
2
In the Settings window for Eigenfrequency, locate the Study Settings section.
3
Select the Desired number of eigenfrequencies check box. In the associated text field, type 12.
4
In the Home toolbar, click  Compute.
Results
Mode Shape (Layerwise Theory)
Use the following instructions to plot mode shapes and eigenfrequencies as shown in Figure 11.
1
In the Settings window for 3D Plot Group, type Mode Shape (Layerwise Theory) in the Label text field.
2
Locate the Plot Settings section. From the View list, choose New view.
3
Click the  Zoom Extents button in the Graphics toolbar.
4
In the Mode Shape (Layerwise Theory) toolbar, click  Plot.
Modeling Instructions (Stress Analysis using the Equivalent Single Layer (ESL) Theory)
This section describes how to model a laminated composite cylinder using the Shell interface based on the equivalent single layer (ESL) theory.
Geometry 2
In the Model Builder window, under Component 2 (comp2) click Geometry 2.
Move 1 (mov1)
1
In the Geometry toolbar, click  Transforms and choose Move.
2
3
In the Settings window for Move, locate the Input section.
4
Select the Keep input objects check box.
5
Locate the Displacement section. In the y text field, type hc.
6
Click  Build Selected.
Layered Shell (lshell)
1
In the Model Builder window, under Component 2 (comp2) click Layered Shell (lshell).
2
In the Settings window for Layered Shell, locate the Boundary Selection section.
3
In the list, choose 5 (llmat1), 6 (llmat1), 7 (llmat1), and 8 (llmat1).
4
Click  Remove from Selection.
5
Add Physics
1
In the Home toolbar, click  Add Physics to open the Add Physics window.
2
Go to the Add Physics window.
3
In the tree, select Structural Mechanics>Shell (shell).
4
Find the Physics interfaces in study subsection. In the table, clear the Solve check boxes for Cell Periodicity Study, Study 1: Stationary (Layerwise Theory), and Study 2: Eigenfrequency (Layerwise Theory).
5
Click Add to Component 2 in the window toolbar.
6
In the Home toolbar, click  Add Physics to close the Add Physics window.
Shell (shell)
1
Click the  Show More Options button in the Model Builder toolbar.
2
In the Show More Options dialog box, in the tree, select the check box for the node Physics>Advanced Physics Options.
3
4
In the Settings window for Shell, locate the Boundary Selection section.
5
In the list, choose 1, 2, 3, and 4.
6
Click  Remove from Selection.
7
8
Click to expand the Advanced Settings section. Clear the Use MITC interpolation check box.
Layered Linear Elastic Material 1
1
Right-click Component 2 (comp2)>Shell (shell) and choose Material Models>Layered Linear Elastic Material.
2
In the Settings window for Layered Linear Elastic Material, locate the Boundary Selection section.
3
From the Selection list, choose All boundaries.
4
Locate the Linear Elastic Material section. From the Material symmetry list, choose Anisotropic.
Fixed Constraint 1
1
In the Physics toolbar, click  Edges and choose Fixed Constraint.
2
Symmetry 1
1
In the Physics toolbar, click  Edges and choose Symmetry.
2
Face Load 1
1
In the Physics toolbar, click  Boundaries and choose Face Load.
2
Click the  Go to Default View button in the Graphics toolbar.
3
4
In the Settings window for Face Load, locate the Force section.
5
From the Load type list, choose Total force.
6
Specify the Ftot vector as
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
4
Find the Physics interfaces in study subsection. In the table, clear the Solve check boxes for Solid Mechanics (solid) and Layered Shell (lshell).
5
Click Add Study in the window toolbar.
6
In the Home toolbar, click  Add Study to close the Add Study window.
Study 3: Stationary (ESL Theory)
1
In the Model Builder window, click Study 3.
2
In the Settings window for Study, type Study 3: Stationary (ESL Theory) in the Label text field.
3
Locate the Study Settings section. Clear the Generate default plots check box.
4
In the Home toolbar, click  Compute.
Results
Layered Material 1
1
In the Results toolbar, click  More Datasets and choose Layered Material.
2
In the Settings window for Layered Material, locate the Data section.
3
From the Dataset list, choose Study 3: Stationary (ESL Theory)/Solution 3 (7) (sol3).
Cut Point 3D 2
1
In the Model Builder window, under Results>Datasets right-click Cut Point 3D 1 and choose Duplicate.
2
In the Settings window for Cut Point 3D, locate the Point Data section.
3
In the Y text field, type hc+rc.
4
Locate the Data section. From the Dataset list, choose Study 3: Stationary (ESL Theory)/Solution 3 (7) (sol3).
Use the following instructions to plot the von Mises stress obtained using the ESL theory as shown in Figure 8.
Surface 2
1
In the Model Builder window, expand the Stress (mises) node.
2
Right-click Results>Stress (mises)>Surface 1 and choose Duplicate.
3
In the Settings window for Surface, locate the Expression section.
4
In the Expression text field, type shell.mises.
5
Locate the Data section. From the Dataset list, choose Layered Material 1.
6
Click to expand the Title section. From the Title type list, choose None.
7
Click to expand the Inherit Style section. From the Plot list, choose Surface 1.
Deformation
1
In the Model Builder window, expand the Surface 2 node, then click Deformation.
2
In the Settings window for Deformation, locate the Expression section.
3
In the x-component text field, type u3.
4
In the y-component text field, type v3.
5
In the z-component text field, type w3.
Stress (mises)
In the Model Builder window, under Results click Stress (mises).
Table Annotation 1
1
In the Stress (mises) toolbar, click  More Plots and choose Table Annotation.
2
In the Settings window for Table Annotation, locate the Data section.
3
From the Source list, choose Local table.
4
5
Locate the Coloring and Style section. Clear the Show point check box.
6
From the Anchor point list, choose Lower middle.
7
In the Stress (mises) toolbar, click  Plot.
Use the following instructions to plot the through-thickness stress variation as shown in Figure 9.
Through Thickness 2
1
In the Model Builder window, under Results>Stress, Through Thickness (Slm11) right-click Through Thickness 1 and choose Duplicate.
2
In the Settings window for Through Thickness, locate the Data section.
3
From the Dataset list, choose Cut Point 3D 2.
4
Locate the x-Axis Data section. In the Expression text field, type shell.Sl11.
5
Click to expand the Title section. From the Title type list, choose None.
6
Click to expand the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dashed.
7
Locate the Legends section. In the table, enter the following settings:
8
In the Stress, Through Thickness (Slm11) toolbar, click  Plot.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Eigenfrequency.
4
Find the Physics interfaces in study subsection. In the table, clear the Solve check boxes for Solid Mechanics (solid) and Layered Shell (lshell).
5
Click Add Study in the window toolbar.
6
In the Home toolbar, click  Add Study to close the Add Study window.
Study 4: Eigenfrequency (ESL Theory)
1
In the Model Builder window, click Study 4.
2
In the Settings window for Study, type Study 4: Eigenfrequency (ESL Theory) in the Label text field.
3
Locate the Study Settings section. Clear the Generate default plots check box.
Step 1: Eigenfrequency
1
In the Model Builder window, under Study 4: Eigenfrequency (ESL Theory) click Step 1: Eigenfrequency.
2
In the Settings window for Eigenfrequency, locate the Study Settings section.
3
Select the Desired number of eigenfrequencies check box. In the associated text field, type 12.
4
In the Home toolbar, click  Compute.
Results
Layered Material 2a
1
In the Results toolbar, click  More Datasets and choose Layered Material.
2
In the Settings window for Layered Material, locate the Data section.
3
From the Dataset list, choose Study 4: Eigenfrequency (ESL Theory)/Solution 4 (9) (sol4).
Selection
1
Right-click Layered Material 2a and choose Selection.
2
In the Settings window for Selection, locate the Geometric Entity Selection section.
3
From the Geometric entity level list, choose Boundary.
4
Use the following instructions to plot mode shapes and eigenfrequencies obtained using the ESL theory.
Mode Shape (ESL Theory)
1
In the Model Builder window, right-click Mode Shape (Layerwise Theory) and choose Duplicate.
2
In the Settings window for 3D Plot Group, type Mode Shape (ESL Theory) in the Label text field.
3
Locate the Data section. From the Dataset list, choose None.
Surface 1
1
In the Model Builder window, expand the Mode Shape (ESL Theory) node, then click Surface 1.
2
In the Settings window for Surface, locate the Expression section.
3
In the Expression text field, type shell.disp.
Deformation
1
In the Model Builder window, expand the Surface 1 node, then click Deformation.
2
In the Settings window for Deformation, locate the Expression section.
3
In the x-component text field, type u3.
4
In the y-component text field, type v3.
5
In the z-component text field, type w3.
Mode Shape (ESL Theory)
1
In the Model Builder window, under Results click Mode Shape (ESL Theory).
2
In the Settings window for 3D Plot Group, locate the Data section.
3
From the Dataset list, choose Layered Material 2a.
4
From the Eigenfrequency (Hz) list, choose 1273.8.
5
Locate the Plot Settings section. From the View list, choose New view.
6
Click the  Zoom Extents button in the Graphics toolbar.
7
In the Mode Shape (ESL Theory) toolbar, click  Plot.