

Ideal Stirred Tank Reactor System

Introduction

In the chemical and biochemical industries, for instance in fermentation processes, reactors having well-mixed conditions and liquid level control are common.

This example shows how to use the Reaction Engineering interface to model a 0D ideal system of tank reactors in series, with controlled feed inlet and product outlet streams. The volume change in each reactor is monitored and controlled.

Model Definition

This model solves for a liquid-phase first order irreversible reaction $A \rightarrow B$ where

$$r = kc_A \tag{1}$$

In Equation 1, *r* is the reaction rate (SI unit: $mol/(m^3 \cdot s)$), *k* is the rate constant (SI unit: 1/s), and c_A is the concentration of A.

The reaction takes place in a system of two ideal reactors in series. The first reactor tank has a volume capacity of $v_{tank1} = 1 \text{ m}^3$ and the second $v_{tank2} = 1.5 \text{ m}^3$ initially.

Initially the reactors are charged only with solvent. A is fed with solvent to the first tank with a volumetric flow rate of $v_{f1} = 1 \text{ m}^3/\text{min}$. The volumetric flow rate at the outlet of the first tank is set to $v_{out1} = 0.9 \text{ m}^3/\text{min}$. This whole stream is fed to the second tank in the system, $v_{f2} = v_{out1}$. The second tank also has a fresh supply of A with solvent entering at a rate of $v_{f2} = 0.5 \text{ m}^3/\text{min}$. In a similar way as for the first reactor, the outlet flow is also set to $v_{out2} = 1 \text{ m}^3/\text{min}$. Figure 1 shows the reactor system in detail.

Figure 1: The reactor system.

The mass balance for species *i* in each reactor is shown in Equation 2:

$$\frac{d(V_r c_i)}{dt} = \sum_{j} v_{f,j} c_{f,ij} - \sum_{k} v_{out,k} c_i + R_i V_r$$
(2)

 V_r denotes the reactor volume (SI unit: m³), R_i is the species rate expression (SI unit: mol/(m³·s)). Subscripts f and out indicate the feed inlet and the outlet, respectively. *j* and *k* are the number of feed inlet and outlet streams, respectively.

The volume depends on the volumetric production rate v_p and the regulated inlet and outlet volumetric flow rates as shown in Equation 3:

$$\frac{dV_r}{dt} = \sum_j v_{f,j} - \sum_k v_{out,k} + v_p$$
(3)

The model incorporates two stop conditions: If any of the reactor volumes is 1 % or less of the initial volumes, the computations stop.

Results and Discussion

Figure 2: Concentrations of A and B in tank 1 and tank 2.

The variation of the tank volumes is shown in Figure 3. With a known diameter of the reactor, the liquid level can be calculated from this volume. Given the inlet and outlet flows, this system will fill up the tanks considerably.

Figure 3: Tank volumes.

The results show only some system aspects that can be investigated with the Reaction Engineering interface. This application can also be utilized as a starting point for studying, for instance, startup and steady-state process conditions.

Application Library path: Chemical_Reaction_Engineering_Module/ Ideal_Tank_Reactors/tank_flow_system

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click 🔗 Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click 0D.
- 2 In the Select Physics tree, select Chemical Species Transport>Reaction Engineering (re).
- 3 Click Add.
- 4 Click 🔿 Study.
- 5 In the Select Study tree, select General Studies>Time Dependent.
- 6 Click 🗹 Done.

GLOBAL DEFINITIONS

Add a set of global parameters by importing their definitions from a data text file.

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- 3 Click 📂 Load from File.
- **4** Browse to the model's Application Libraries folder and double-click the file tank_flow_system_parameters.txt.

Start with the first reactor. Select the **CSTR constant mass/generic** reactor type to model the first reactor.

REACTION ENGINEERING (RE)

- I In the Model Builder window, under Component I (compl) click Reaction Engineering (re).
- 2 In the Settings window for Reaction Engineering, locate the Reactor section.
- 3 From the Reactor type list, choose CSTR, constant mass/generic.
- 4 Click to expand the Mixture Properties section. From the Phase list, choose Liquid.

Reaction I

- I In the **Reaction Engineering** toolbar, click <u>A</u> **Reaction**.
- 2 In the Settings window for Reaction, locate the Reaction Formula section.
- **3** In the **Formula** text field, type A=>B.
- 4 Click Apply.
- 5 Locate the **Rate Constants** section. In the k^{f} text field, type kf reaction.

Species: A

- I In the Model Builder window, click Species: A.
- 2 In the Settings window for Species, locate the Chemical Formula section.
- **3** In the *M* text field, type Mn_A.

Species: B

- I In the Model Builder window, click Species: B.
- 2 In the Settings window for Species, locate the Chemical Formula section.
- **3** In the M text field, type Mn_B.

Add a solvent (water) to the first tank.

Species 1

- I In the **Reaction Engineering** toolbar, click 🛃 Species.
- 2 In the Settings window for Species, locate the Name section.
- **3** In the text field, type **S**.
- 4 Locate the Type section. From the list, choose Solvent.
- 5 Locate the Chemical Formula section. In the *M* text field, type Mn_S.
- **6** In the ρ text field, type density_S.

Generic in the **Mass Balance** section substitutes the constant mass condition. Choose this to set a constant value of the volumetric outlet rate, v.

- 7 In the Model Builder window, click Reaction Engineering (re).
- 8 In the Settings window for Reaction Engineering, locate the Reactor section.
- 9 Find the Mass balance subsection. From the Volumetric rate list, choose Generic.
- **IO** Click **Reset to Default**.

II In the *v* text field, type v_outlet1.

Initial Values 1

- I In the Model Builder window, click Initial Values I.
- 2 In the Settings window for Initial Values, locate the General Parameters section.
- **3** In the V_{r0} text field, type Vr_init_tank1.

Set only solvent in the first tank initially.

4 Locate the **Volumetric Species Initial Values** section. In the table, enter the following settings:

Species	Concentration (mol/m^3)	
S	cinit_S	

Feed Inlet I

Add one Feed Inlet stream to the first tank.

- I In the **Reaction Engineering** toolbar, click **Feed Inlet**.
- 2 In the Settings window for Feed Inlet, locate the Feed Inlet Properties section.
- **3** In the v_f text field, type v_inlet.
- **4** Locate the **Feed Inlet Concentration** section. In the **Feed inlet concentration** table, enter the following settings:

Species	Concentration (mol/m^3)	
A	cinlet_A1	
S	cinlet_S	

5 In the Model Builder window, right-click Reaction Engineering (re) and choose Copy.

REACTION ENGINEERING 2 (RE2)

- I In the Model Builder window, right-click Component I (comp1) and choose Paste Reaction Engineering.
- 2 In the Messages from Paste dialog box, click OK.

Duplicating the first reactor and changing the necessary parameters that distinguishes the first from the second reactor.

- 3 In the Model Builder window, click Reaction Engineering 2 (re2).
- 4 In the Settings window for Reaction Engineering, locate the Reactor section.
- **5** Find the **Mass balance** subsection. In the *v* text field, type v_outlet2.

Initial Values 1

- I In the Model Builder window, expand the Reaction Engineering 2 (re2) node, then click Initial Values I.
- 2 In the Settings window for Initial Values, locate the General Parameters section.
- **3** In the V_{r0} text field, type Vr_init_tank2.

The **Feed Inlet** stream to the second reactor is equal to the whole outlet stream from the first reactor.

Feed Inlet I - from Tank I

- I In the Model Builder window, click Feed Inlet I.
- 2 In the Settings window for Feed Inlet, type Feed Inlet 1 from Tank 1 in the Label text field.
- **3** Locate the **Feed Inlet Properties** section. In the *v*_f text field, type v_outlet1.
- **4** Locate the **Feed Inlet Concentration** section. In the **Feed inlet concentration** table, enter the following settings:

Species	Concentration (mol/m^3)
A	re.c_A
В	re.c_B
S	re.c_S

- Feed Inlet 2 Fresh
- I In the Reaction Engineering toolbar, click 🚽 Feed Inlet.

Add a second Feed Inlet stream to the second reactor to model the fresh feed.

- 2 In the Settings window for Feed Inlet, type Feed Inlet 2 Fresh in the Label text field.
- **3** Locate the **Feed Inlet Properties** section. In the v_{f} text field, type v_fresh2.
- **4** Locate the **Feed Inlet Concentration** section. In the **Feed inlet concentration** table, enter the following settings:

Species Concentration (mol/m^	
A	cfresh2_A
S	cinlet_S

STUDY I

Step 1: Time Dependent

- I In the Model Builder window, under Study I click Step I: Time Dependent.
- 2 In the Settings window for Time Dependent, locate the Study Settings section.
- **3** From the **Time unit** list, choose **min**.
- 4 In the **Output times** text field, type range(0,0.1,120).

Solution 1 (soll)

I In the Study toolbar, click The Show Default Solver.

Stop the computations if any of the two reactor volumes is empty.

- 2 In the Model Builder window, expand the Solution I (soll) node.
- 3 Right-click Study I>Solver Configurations>Solution I (solI)>Time-Dependent Solver I and choose Stop Condition.
- 4 In the Settings window for Stop Condition, locate the Stop Expressions section.
- 5 Click + Add.
- 6 In the table, enter the following settings:

Stop expression	Stop if	Active	Description
comp1.re.Vr<=Vr_init _tank1*0.01	True (>=1)	\checkmark	Stop expression 1

7 Click + Add.

8 In the table, enter the following settings:

Stop expression	Stop if	Active	Description
comp1.re2.Vr<=Vr_ini t_tank2*0.01	True (>=I)	\checkmark	Stop expression 2

9 Locate the **Output at Stop** section. From the **Add solution** list, choose

Steps before and after stop.

- **IO** Clear the **Add warning** check box.
- II In the **Study** toolbar, click **= Compute**.

RESULTS

Concentrations in Tanks

Follow these steps to create Figure 2.

- I In the **Settings** window for **ID Plot Group**, type Concentrations in Tanks in the **Label** text field.
- 2 Click to expand the Title section. From the Title type list, choose None.
- 3 Locate the Legend section. From the Layout list, choose Outside graph axis area.

Tank I

I In the Model Builder window, expand the Concentrations in Tanks node, then click Global I.

- 2 In the Settings window for Global, type Tank 1 in the Label text field.
- 3 Click to expand the Coloring and Style section. From the Width list, choose 2.
- 4 Click to expand the Legends section. From the Legends list, choose Manual.
- **5** In the table, enter the following settings:

Legends

A in tank 1

B in tank 1

Tank 2

- I Right-click Tank I and choose Duplicate.
- 2 In the Settings window for Global, type Tank 2 in the Label text field.
- 3 Click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component I (compl)>Reaction Engineering 2>re2.c_A Concentration mol/m³.
- 4 Click Add Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component I (compl)>Reaction Engineering 2>re2.c_B Concentration mol/m³.
- 5 Locate the Legends section. In the table, enter the following settings:

Legends

Α	in	tank	2
	T 11	cann	~

- B in tank 2
- 6 In the Concentrations in Tanks toolbar, click **O** Plot.

Follow these steps to create Figure 3.

Volume in Tanks

- I In the Model Builder window, under Results click Concentration (re2).
- 2 In the Settings window for ID Plot Group, type Volume in Tanks in the Label text field.
- **3** Locate the **Title** section. From the **Title type** list, choose **None**.
- 4 Locate the Legend section. From the Position list, choose Upper left.

Tank I

- I In the Model Builder window, expand the Volume in Tanks node, then click Global I.
- 2 In the Settings window for Global, type Tank 1 in the Label text field.

- 3 Click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component I (compl)>Reaction Engineering>re.Yr Reactor volume m³.
- 4 Locate the Coloring and Style section. From the Width list, choose 2.
- 5 Locate the Legends section. From the Legends list, choose Manual.
- 6 In the table, enter the following settings:

Legends

Tank 1

Tank 2

- I Right-click Tank I and choose Duplicate.
- 2 In the Settings window for Global, type Tank 2 in the Label text field.
- 3 Click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component I (compl)>Reaction Engineering 2>re2.Vr Reactor volume m³.
- 4 Locate the Legends section. In the table, enter the following settings:

Legends Tank 2

5 In the **Volume in Tanks** toolbar, click **O Plot**.