PDF

Electrode Utilization in a Large Format Lithium-Ion Battery Pouch Cell
Introduction
Large lithium-ion batteries are widely employed in electric vehicles and for stationary energy storage applications. In the (stacked) pouch battery cell design, all current exits the cell on the cell “tabs”, and as the cell size and power increases, the voltage gradients in the highly conductive metal foil current collectors may come into play, resulting in a non-uniform current distribution and electrode utilization in the cell.
A non-uniform utilization results in sub-optimal use of the battery electrodes and may also result in non-uniform and accelerated electrode aging.
This tutorial models the current distribution and electrode utilization in a large format lithium-ion battery pouch cell, and how it depends on the cell current.
The model is in 3D. Note that all plots are scaled 100 times in the z direction due to the high aspect ratio of the geometric features.
Model Definition
Figure 1 shows the model geometry. The geometry defines one foil-to-foil unit cell, stacking 5 layers in the z direction:
Negative metal current collector foil: 10 μm, Cu (due to symmetry, half of this thickness is used in the model geometry)
Positive metal current collector foil: 10 μm, Al (due to symmetry, half of this thickness is used in the model geometry)
The positive and negative current terminals are located opposite to each other (but may easily be placed on the same side by altering the Geometry node in the model).
Figure 1: Model geometry, scaled 100 times in the z direction.
The Lithium-Ion Battery interface is used to set up the physics, using Material data from the Battery Material Library.
The Particle Intercalation subnodes to the Porous Electrode nodes model the solid lithium concentration in an additional particle dimension (extra dimension). The model hence defines a fully coupled “pseudo-4D” model.
The battery is charged from 20% to 80% cell state-of-charge (SOC). The Initial Cell Charge Distribution node is used to set the initial cell state-of-charge.
An Electrode Ground boundary condition is used on the negative tab whereas an Electrode Current boundary condition defines the cell current exiting the cell on the positive tab.
A Parametric Sweep is used to solve for two different charge rates (1C and 4C).
Results and Discussion
Figure 2 and Figure 3 show the potential distribution in the negative and positive metal foils (current collector and tab), respectively, at the beginning of the 4C charge. The potential variation is about 6 mV in the negative current collector and 10 mV in the positive current collector at a 4C charge current.
For a 1C charge current the corresponding potential variation is below 2 mV (results not shown here).
Figure 2: Potential distribution in the negative metal foil (current collector and tab) at the beginning of the 4C charge.
Figure 3: Potential distribution in the positive metal foil (current collector and tab) at the beginning of the 4C charge.
Figure 4 and Figure 5 show the current distribution for a cross section in the middle of the separator at the beginning and end of the 4C charge, respectively. This provides a measure of the instantaneous electrode utilization. The current distribution varies about 6% in the separator plane over time. For 1C, the variation is generally smaller (results not shown here). Initially, the separator current density is higher close to the tabs whereas toward the end of the charge, the current density is higher in the central parts of the cell.
Figure 4: Current distribution in the middle of the separator at the beginning of the 4C charge.
Figure 5: Current distribution in the middle of the separator at the end of the 4C charge.
To get a measure of the utilization over the charge period, General Projection operators are used to integrate the amount of lithium along the electrode depth (the z direction). Dividing the projected change of lithium by the average for the whole electrode gives a measure of the relative utilization (capacity thruput). Figure 6 and Figure 7 show the relative utilization over the whole charge period for the 1C and 4C charges, respectively for the positive electrode. The utilization varies around 2.5% for the 4C charge and 1% for the 1C charge. The cycle-averaged utilization is lower than the instantaneous utilization shown in Figure 4 and Figure 5.
Figure 6: Relative electrode utilization during the 1C charge.
Figure 7: Relative electrode utilization during the 4C charge.
The tutorial demonstrates that the local electrode utilization along the metal foil (current collector and tab) changes over the course of a charge cycle. For this configuration, utilization is fairly uniform during a 1C charge, but a higher charge of 4C results in a slightly non-uniform utilization.
Application Library path: Battery_Design_Module/Batteries,_Lithium-Ion/pouch_cell_utilization
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Electrochemistry>Batteries>Lithium-Ion Battery (liion).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Time Dependent with Initialization.
6
Global Definitions
Parameters 1
Import the parameter file.
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Click  Load from File.
4
Geometry 1
Set up the model geometry using the following steps.
Work Plane 1 (wp1)
In the Geometry toolbar, click  Work Plane.
Work Plane 1 (wp1)>Plane Geometry
In the Model Builder window, click Plane Geometry.
Work Plane 1 (wp1)>Rectangle 1 (r1)
1
In the Work Plane toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type W_cell.
4
In the Height text field, type H_cell.
Extrude 1 (ext1)
1
In the Model Builder window, right-click Geometry 1 and choose Extrude.
2
In the Settings window for Extrude, locate the Distances section.
3
Block 1 (blk1)
1
In the Geometry toolbar, click  Block.
2
In the Settings window for Block, locate the Size and Shape section.
3
In the Width text field, type W_tab.
4
In the Depth text field, type H_tab.
5
In the Height text field, type L_neg_cc/2.
6
Locate the Position section. In the y text field, type H_cell.
7
Click  Build Selected.
8
Click the  Zoom Extents button in the Graphics toolbar.
Block 2 (blk2)
1
In the Geometry toolbar, click  Block.
2
In the Settings window for Block, locate the Size and Shape section.
3
In the Width text field, type W_tab.
4
In the Depth text field, type H_tab.
5
In the Height text field, type L_neg_cc/2.
6
Locate the Position section. In the y text field, type -H_tab.
7
In the z text field, type L_neg_cc/2+L_neg+L_sep+L_pos.
8
Click  Build Selected.
Form Union (fin)
In the Geometry toolbar, click  Build All.
Definitions
Scale the geometry in the z direction to make it easier to see the different layers in the model geometry.
View 1
In the Model Builder window, expand the Component 1 (comp1)>Definitions node.
Camera
1
In the Model Builder window, expand the View 1 node, then click Camera.
2
In the Settings window for Camera, locate the Camera section.
3
From the View scale list, choose Manual.
4
In the z scale text field, type 100.
5
Click  Update.
6
Click the  Zoom Extents button in the Graphics toolbar.
The finalized geometry should now look like as follows.
Positive Tab
Create named selections of the different battery domains for ease of selection later in the model.
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, type Positive Tab in the Label text field.
3
Positive Current Collector
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, type Positive Current Collector in the Label text field.
3
Positive Electrode
1
In the Definitions toolbar, click  Explicit.
2
3
In the Settings window for Explicit, type Positive Electrode in the Label text field.
Negative Tab
1
In the Definitions toolbar, click  Explicit.
2
3
In the Settings window for Explicit, type Negative Tab in the Label text field.
Negative Current Collector
1
In the Definitions toolbar, click  Explicit.
2
3
In the Settings window for Explicit, type Negative Current Collector in the Label text field.
Negative Electrode
1
In the Definitions toolbar, click  Explicit.
2
3
In the Settings window for Explicit, type Negative Electrode in the Label text field.
Separator
1
In the Definitions toolbar, click  Explicit.
2
3
In the Settings window for Explicit, type Separator in the Label text field.
Negative Tab End
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, type Negative Tab End in the Label text field.
3
Locate the Input Entities section. From the Geometric entity level list, choose Boundary.
4
Click  Paste Selection.
5
In the Paste Selection dialog box, type 29 in the Selection text field.
6
Positive Tab End
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, locate the Input Entities section.
3
From the Geometric entity level list, choose Boundary.
4
Click  Paste Selection.
5
In the Paste Selection dialog box, type 2 in the Selection text field.
6
7
In the Settings window for Explicit, type Positive Tab End in the Label text field.
Negative Current Collector and Tab
1
In the Definitions toolbar, click  Union.
2
In the Settings window for Union, locate the Input Entities section.
3
Under Selections to add, click  Add.
4
In the Add dialog box, in the Selections to add list, choose Negative Tab and Negative Current Collector.
5
6
In the Settings window for Union, type Negative Current Collector and Tab in the Label text field.
Positive Current Collector and Tab
1
In the Definitions toolbar, click  Union.
2
In the Settings window for Union, locate the Input Entities section.
3
Under Selections to add, click  Add.
4
In the Add dialog box, in the Selections to add list, choose Positive Tab and Positive Current Collector.
5
6
In the Settings window for Union, type Positive Current Collector and Tab in the Label text field.
Metal Foil Domains
1
In the Definitions toolbar, click  Union.
2
In the Settings window for Union, locate the Input Entities section.
3
Under Selections to add, click  Add.
4
In the Add dialog box, in the Selections to add list, choose Negative Current Collector and Tab and Positive Current Collector and Tab.
5
6
In the Settings window for Union, type Metal Foil Domains in the Label text field.
Cell Voltage
1
In the Definitions toolbar, click  Probes and choose Global Variable Probe.
2
In the Settings window for Global Variable Probe, type Cell Voltage in the Label text field.
3
Locate the Expression section. In the Expression text field, type liion.phis0_ec1.
4
In the Table and plot unit field, type V.
5
Select the Description check box. In the associated text field, type Cell Voltage.
General Projection - Negative
Now add General Projection operators that will be used to integrate the amount of lithium along the electrode depth (the z direction).
1
In the Definitions toolbar, click  Nonlocal Couplings and choose General Projection.
2
In the Settings window for General Projection, type General Projection - Negative in the Label text field.
3
In the Operator name text field, type genproj_neg.
4
Locate the Source Selection section. From the Selection list, choose Negative Electrode.
General Projection - Positive
1
Right-click General Projection - Negative and choose Duplicate.
2
In the Settings window for General Projection, type General Projection - Positive in the Label text field.
3
In the Operator name text field, type genproj_pos.
4
Locate the Source Selection section. From the Selection list, choose Positive Electrode.
Materials
Add Copper and Aluminum from the built-in materials.
Add Material
1
In the Home toolbar, click  Add Material to open the Add Material window.
2
Go to the Add Material window.
3
In the tree, select Built-in>Aluminum and Built-in>Copper.
4
Click Add to Component in the window toolbar.
Add Material
Use the Battery Material Library to set up the material properties for the electrolyte and electrode materials in the pouch cell.
1
Go to the Add Material window.
2
In the tree, select Battery>Electrodes>Graphite, LixC6 MCMB (Negative, Li-ion Battery) and Battery>Electrodes>LMO, LiMn2O4 Spinel (Positive, Li-ion Battery).
3
Click Add to Component in the window toolbar.
4
In the tree, select Battery>Electrolytes>LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery).
5
Click Add to Component in the window toolbar.
6
In the Home toolbar, click  Add Material to close the Add Material window.
Materials
Aluminum (mat1)
Assign the materials to the corresponding battery domains.
1
In the Model Builder window, click Aluminum (mat1).
2
In the Settings window for Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Positive Current Collector and Tab.
Copper (mat2)
1
In the Model Builder window, click Copper (mat2).
2
In the Settings window for Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Negative Current Collector and Tab.
Graphite, LixC6 MCMB (Negative, Li-ion Battery) (mat3)
1
In the Model Builder window, click Graphite, LixC6 MCMB (Negative, Li-ion Battery) (mat3).
2
In the Settings window for Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Negative Electrode.
LMO, LiMn2O4 Spinel (Positive, Li-ion Battery) (mat4)
1
In the Model Builder window, click LMO, LiMn2O4 Spinel (Positive, Li-ion Battery) (mat4).
2
In the Settings window for Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Positive Electrode.
LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery) (mat5)
1
In the Model Builder window, click LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery) (mat5).
2
In the Settings window for Material, locate the Geometric Entity Selection section.
3
From the Selection list, choose Separator.
Lithium-Ion Battery (liion)
Start by adding the separator domain to the battery.
Separator 1
1
In the Model Builder window, under Component 1 (comp1) right-click Lithium-Ion Battery (liion) and choose Separator.
2
In the Settings window for Separator, locate the Domain Selection section.
3
From the Selection list, choose Separator.
Now set up the physics in the porous electrodes and current collectors.
Porous Electrode - Negative
1
In the Physics toolbar, click  Domains and choose Porous Electrode.
2
In the Settings window for Porous Electrode, type Porous Electrode - Negative in the Label text field.
3
Locate the Domain Selection section. From the Selection list, choose Negative Electrode.
4
Locate the Electrolyte Properties section. From the Electrolyte material list, choose LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery) (mat5).
5
Locate the Porous Matrix Properties section. In the εs text field, type epss_neg.
6
In the εl text field, type 1-epss_neg.
Particle Intercalation 1
1
In the Model Builder window, click Particle Intercalation 1.
2
In the Settings window for Particle Intercalation, locate the Particle Transport Properties section.
3
In the rp text field, type rp_neg.
Porous Electrode Reaction 1
1
In the Model Builder window, click Porous Electrode Reaction 1.
2
In the Settings window for Porous Electrode Reaction, locate the Electrode Kinetics section.
3
In the i0,ref(T) text field, type i0ref_neg.
Porous Electrode - Positive
1
In the Physics toolbar, click  Domains and choose Porous Electrode.
2
In the Settings window for Porous Electrode, type Porous Electrode - Positive in the Label text field.
3
Locate the Domain Selection section. From the Selection list, choose Positive Electrode.
4
Locate the Electrolyte Properties section. From the Electrolyte material list, choose LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery) (mat5).
5
Locate the Porous Matrix Properties section. In the εs text field, type epss_pos.
6
In the εl text field, type 1-epss_pos.
Particle Intercalation 1
1
In the Model Builder window, click Particle Intercalation 1.
2
In the Settings window for Particle Intercalation, locate the Particle Transport Properties section.
3
In the rp text field, type rp_pos.
Porous Electrode Reaction 1
1
In the Model Builder window, click Porous Electrode Reaction 1.
2
In the Settings window for Porous Electrode Reaction, locate the Electrode Kinetics section.
3
In the i0,ref(T) text field, type i0ref_pos.
Electrode 1
1
In the Physics toolbar, click  Domains and choose Electrode.
2
In the Settings window for Electrode, locate the Domain Selection section.
3
From the Selection list, choose Metal Foil Domains.
Electric Ground 1
1
In the Physics toolbar, click  Boundaries and choose Electric Ground.
2
In the Settings window for Electric Ground, locate the Boundary Selection section.
3
From the Selection list, choose Negative Tab End.
Electrode Current 1
1
In the Physics toolbar, click  Boundaries and choose Electrode Current.
2
In the Settings window for Electrode Current, locate the Boundary Selection section.
3
From the Selection list, choose Positive Tab End.
4
Locate the Electrode Current section. In the Is,total text field, type I_1C*C_rate.
5
In the φs,bnd,init text field, type 4[V].
Initial Cell Charge Distribution 1
1
In the Physics toolbar, click  Global and choose Initial Cell Charge Distribution.
2
In the Settings window for Initial Cell Charge Distribution, locate the Battery Cell Parameters section.
3
From the Initial battery cell setting list, choose Initial cell state-of-charge.
4
In the SOCcell,0 text field, type SOC_start.
5
In the Qcell,0 text field, type Q_cell.
Negative Electrode Selection 1
1
In the Model Builder window, expand the Initial Cell Charge Distribution 1 node, then click Negative Electrode Selection 1.
2
In the Settings window for Negative Electrode Selection, locate the Domain Selection section.
3
From the Selection list, choose Negative Electrode.
Positive Electrode Selection 1
1
In the Model Builder window, click Positive Electrode Selection 1.
2
In the Settings window for Positive Electrode Selection, locate the Domain Selection section.
3
From the Selection list, choose Positive Electrode.
Set up the mesh for the model. Use a mapped mesh on boundary and swept mesh for rest of the geometry.
Mesh 1
Mapped 1
1
In the Mesh toolbar, click  Boundary and choose Mapped.
2
Swept 1
1
In the Mesh toolbar, click  Swept.
2
In the Settings window for Swept, locate the Domain Selection section.
3
Click to clear the  Activate Selection toggle button.
Distribution 1
1
Right-click Swept 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Domain Selection section.
3
From the Selection list, choose Negative Electrode.
4
Locate the Distribution section. From the Distribution type list, choose Predefined.
5
In the Number of elements text field, type 15.
6
In the Element ratio text field, type 3.
Distribution 2
1
In the Model Builder window, right-click Swept 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Domain Selection section.
3
From the Selection list, choose Separator.
4
Locate the Distribution section. In the Number of elements text field, type 4.
Distribution 3
1
Right-click Swept 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Domain Selection section.
3
From the Selection list, choose Positive Electrode.
4
Locate the Distribution section. From the Distribution type list, choose Predefined.
5
In the Number of elements text field, type 15.
6
In the Element ratio text field, type 3.
7
Select the Reverse direction check box.
8
Click  Build All.
The finalized mesh should now look as follows.
Study 1
Parametric Sweep
1
In the Study toolbar, click  Parametric Sweep.
2
In the Settings window for Parametric Sweep, locate the Study Settings section.
3
4
Step 2: Time Dependent
1
In the Model Builder window, click Step 2: Time Dependent.
2
In the Settings window for Time Dependent, locate the Study Settings section.
3
In the Output times text field, type range(0,sim_time/2,sim_time).
4
In the Study toolbar, click  Compute.
Results
Global 1
In the Model Builder window, expand the Results>Boundary Electrode Potential with Respect to Ground (liion) node.
Global 1
1
In the Model Builder window, expand the Results>Average Electrode State-of-Charge (liion) node, then click Results>Boundary Electrode Potential with Respect to Ground (liion)>Global 1.
2
In the Settings window for Global, locate the x-Axis Data section.
3
From the Axis source data list, choose Time.
4
In the Boundary Electrode Potential with Respect to Ground (liion) toolbar, click  Plot.
Global 1
1
In the Model Builder window, under Results>Average Electrode State-of-Charge (liion) click Global 1.
2
In the Settings window for Global, locate the x-Axis Data section.
3
From the Axis source data list, choose Time.
4
In the Average Electrode State-of-Charge (liion) toolbar, click  Plot.
Potential in Negative Current Collector and Tab
The following steps create the plot of the potential at the negative current collector and tab.
1
In the Home toolbar, click  Add Plot Group and choose 3D Plot Group.
2
In the Settings window for 3D Plot Group, type Potential in Negative Current Collector and Tab in the Label text field.
3
Locate the Data section. From the Dataset list, choose Study 1/Parametric Solutions 1 (sol3).
4
From the Time (s) list, choose 0.
5
Locate the Color Legend section. Select the Show maximum and minimum values check box.
6
Click to expand the Number Format section. Select the Manual color legend settings check box.
7
In the Precision text field, type 4.
Volume 1
1
Right-click Potential in Negative Current Collector and Tab and choose Volume.
2
In the Settings window for Volume, locate the Expression section.
3
In the Expression text field, type phis.
Selection 1
1
Right-click Volume 1 and choose Selection.
2
In the Settings window for Selection, locate the Selection section.
3
From the Selection list, choose Negative Current Collector and Tab.
4
In the Potential in Negative Current Collector and Tab toolbar, click  Plot.
5
Click the  Zoom Extents button in the Graphics toolbar.
Potential in Negative Current Collector and Tab
Duplicate the plot to get the potential at the positive current collector and tab.
Potential in Positive Current Collector and Tab
1
In the Model Builder window, right-click Potential in Negative Current Collector and Tab and choose Duplicate.
2
In the Settings window for 3D Plot Group, type Potential in Positive Current Collector and Tab in the Label text field.
3
In the Model Builder window, expand the Results>Potential in Positive Current Collector and Tab node.
Selection 1
1
In the Model Builder window, expand the Results>Potential in Positive Current Collector and Tab>Volume 1 node, then click Selection 1.
2
In the Settings window for Selection, locate the Selection section.
3
From the Selection list, choose Positive Current Collector and Tab.
4
In the Potential in Positive Current Collector and Tab toolbar, click  Plot.
5
Click the  Zoom Extents button in the Graphics toolbar.
Relative Current Density Across Separator
Plot the relative current density across the separator using a slice plot.
1
In the Home toolbar, click  Add Plot Group and choose 3D Plot Group.
2
In the Settings window for 3D Plot Group, type Relative Current Density Across Separator in the Label text field.
3
Locate the Data section. From the Dataset list, choose Study 1/Parametric Solutions 1 (sol3).
4
From the Time (s) list, choose 0.
Slice 1
1
Right-click Relative Current Density Across Separator and choose Slice.
2
In the Settings window for Slice, locate the Expression section.
3
In the Expression text field, type liion.IlMag/(I_1C*C_rate/(H_cell*W_cell)).
4
Locate the Plane Data section. From the Plane list, choose XY-planes.
5
From the Entry method list, choose Coordinates.
6
In the Z-coordinates text field, type L_neg_cc/2+L_neg+L_sep/2.
7
In the Relative Current Density Across Separator toolbar, click  Plot.
8
Click the  Zoom Extents button in the Graphics toolbar.
Relative Current Density Across Separator
1
In the Model Builder window, click Relative Current Density Across Separator.
2
In the Settings window for 3D Plot Group, locate the Data section.
3
From the Time (s) list, choose 630.
4
In the Relative Current Density Across Separator toolbar, click  Plot.
Utilization (Relative Capacity Throughput)
1
In the Home toolbar, click  Add Plot Group and choose 3D Plot Group.
2
In the Settings window for 3D Plot Group, type Utilization (Relative Capacity Throughput) in the Label text field.
3
Locate the Data section. From the Dataset list, choose Study 1/Parametric Solutions 1 (sol3).
4
From the Parameter value (C_rate) list, choose 1.
5
Locate the Color Legend section. Select the Show maximum and minimum values check box.
Surface 1
1
Right-click Utilization (Relative Capacity Throughput) and choose Surface.
2
In the Settings window for Surface, locate the Expression section.
3
In the Expression text field, type genproj_pos(at(0,liion.cs_average)-liion.cs_average)*epss_pos*F_const*H_cell*W_cell/(I_1C*C_rate*t).
Selection 1
1
Right-click Surface 1 and choose Selection.
2
3
In the Utilization (Relative Capacity Throughput) toolbar, click  Plot.
4
Click the  Zoom Extents button in the Graphics toolbar.
Utilization (Relative Capacity Throughput)
1
In the Model Builder window, under Results click Utilization (Relative Capacity Throughput).
2
In the Settings window for 3D Plot Group, locate the Data section.
3
From the Parameter value (C_rate) list, choose 4.
4
In the Utilization (Relative Capacity Throughput) toolbar, click  Plot.
Battery Voltage Probe Plot
1
In the Model Builder window, under Results click Probe Plot Group 8.
2
In the Settings window for 1D Plot Group, type Battery Voltage Probe Plot in the Label text field.
3
In the Battery Voltage Probe Plot toolbar, click  Plot.
4
Click the  Zoom Extents button in the Graphics toolbar.