You are viewing the documentation for an older COMSOL version. The latest version is available here.
PDF

Mechanical Multiport System: Elastic Wave Propagation in a Small Aluminum Plate
Introduction
In this tutorial, the vibrational behavior of a small aluminum plate with four waveguide structures is analyzed. This is an example of a structural component located in any device where elastic waves are propagating, like a smart speaker, an electric motor, or a MEMS device. The plate can be thought of as a mechanical multiport system. The model uses the port boundary condition at the inlet/outlet of the waveguide structures. The port conditions consistently capture and treat the different propagating elastic modes, like longitudinal, transverse, and torsional waves. The transmission and reflection of the various modes is characterized through the scattering matrix of the system, which is automatically computed. This allows the vibrational behavior of the component to be characterized in great detail, for example, for subsequent use in a system simulation.
Figure 1: Model geometry layout, location of the inlet/outlets of the four waveguides, and the port numbers associated with each inlet/outlet.
Model Definition
The model consists of a small 16 mm by 12 mm by 0.5 mm aluminum piece that has four waveguide structures with an inlet/outlet (connection to other components), see Figure 1. The plate is fixed on one surface. The structure is meant to represent a small subcomponent in a device or system where vibrations are generated, for example, by a transducer. In order to control and understand transmission, such as feedback phenomena, it is necessary to understand how elastic waves (vibrations) propagate through the structure when excited. A compact lumped representation is given by the scattering or S-matrix of the system. The scattering matrix relates the incident and reflected mode amplitudes at all the inlet/outlets. Component Sij, represents the amplitude of the outgoing mode at port i when the system is excited at port j. The the system is excited at 10 kHz.
In this model, each inlet/outlet has four Port features added. Each port describes one specific propagating mode, either the longitudinal, the torsional, the transverse 1, or the transverse 2 mode. The modes are depicted in Figure 2. The scattering matrix elements are automatically computed when solving a model with a port feature; all the elements can be computed when the Port Sweep functionality is used. Using a combination of ports (representing all propagating modes) at an elastic waveguide outlet will also act as a perfect nonreflecting condition that is superior to a perfectly matched layer (PML) configuration.
Figure 2: The four propagating modes captured by the ports located at the four inlet/outlets of the mechanical system.
Results and Discussion
The displacement of the multiport aluminum structure, when the four different modes are excited at inlet/outlet 1, is depicted in Figure 3, Figure 4, Figure 5, and Figure 6.
Figure 3: Displacement when the longitudinal mode is excited at the inlet/outlet 1.
Figure 4: Displacement when the torsional mode is excited at the inlet/outlet 1.
Figure 5: Displacement when the traverse 1 mode is excited at the inlet/outlet 1.
Figure 6: Displacement when the traverse 2 mode is excited at the inlet/outlet 1.
The power transmitted or reflected by the excitation of a given port can be assessed by plotting the absolute value of the scattering parameters squared |Sij|2. Note that the mode shapes are always scaled to unit power in the mechanical port formulation. For the acoustic ports, both amplitude and power scaling options exist.
The power of the various outgoing modes at all inlet/outlets, when the system is excited with a specific port, is depicted in Figure 7. The graphs show how energy is transmitted and reflected in the system and how energy is converted from one propagating mode to another.
Figure 7: Power of the various outgoing modes at all inlet/outlets when the system is excited with a specific port.
Application Library path: Acoustics_Module/Elastic_Waves/mechanical_multiport_system
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Acoustics>Elastic Waves>Solid Mechanics (Elastic Waves).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select Empty Study.
6
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Click  Load from File.
4
Geometry 1
1
In the Model Builder window, under Component 1 (comp1) click Geometry 1.
2
In the Settings window for Geometry, locate the Units section.
3
From the Length unit list, choose mm.
Import 1 (imp1)
1
In the Home toolbar, click  Import.
2
In the Settings window for Import, locate the Import section.
3
Click  Browse.
4
5
Click  Import.
6
In the Home toolbar, click  Build All.
Create selections for the inlet/outlet boundary of the four waveguide structures. On each waveguide inlet/outlet boundary several Port features will be added, each capturing one specific propagating mode.
Definitions
input/output 1
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, type input/output 1 in the Label text field.
3
Locate the Input Entities section. From the Geometric entity level list, choose Boundary.
4
input/output 2
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, type input/output 2 in the Label text field.
3
Locate the Input Entities section. From the Geometric entity level list, choose Boundary.
4
input/output 3
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, type input/output 3 in the Label text field.
3
Locate the Input Entities section. From the Geometric entity level list, choose Boundary.
4
input/output 4
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, type input/output 4 in the Label text field.
3
Locate the Input Entities section. From the Geometric entity level list, choose Boundary.
4
Add Material
1
In the Home toolbar, click  Add Material to open the Add Material window.
2
Go to the Add Material window.
3
In the tree, select Built-in>Aluminum 6063-T83.
4
Click Add to Component in the window toolbar.
5
In the Home toolbar, click  Add Material to close the Add Material window.
Solid Mechanics (solid)
Fixed Constraint 1
1
In the Model Builder window, under Component 1 (comp1) right-click Solid Mechanics (solid) and choose Fixed Constraint.
2
Now, proceed and add four port conditions per input/output boundary. First add the ports that represent the longitudinal modes, group them, and then duplicate them. Then add the ports that represent the torsional and the two translational modes.
Port 1
1
In the Physics toolbar, click  Boundaries and choose Port.
2
In the Settings window for Port, locate the Boundary Selection section.
3
From the Selection list, choose input/output 1.
4
Locate the Incident Mode Settings section. From the Incident wave excitation at this port list, choose Off.
Note that per default the first port added has the excitation turned on. We will turn it off here; you can then select any port as source and run the model. Here we will use a port sweep to excite the desired ports. When a port sweep is performed, all ports are (automatically) one by one used as the excitation source. If all ports are excited, the full scattering matrix is computed.
Port 2
1
In the Physics toolbar, click  Boundaries and choose Port.
2
In the Settings window for Port, locate the Boundary Selection section.
3
From the Selection list, choose input/output 2.
Port 3
1
In the Physics toolbar, click  Boundaries and choose Port.
2
In the Settings window for Port, locate the Boundary Selection section.
3
From the Selection list, choose input/output 3.
Port 4
1
In the Physics toolbar, click  Boundaries and choose Port.
2
In the Settings window for Port, locate the Boundary Selection section.
3
From the Selection list, choose input/output 4.
Port 1, Port 2, Port 3, Port 4
1
In the Model Builder window, under Component 1 (comp1)>Solid Mechanics (solid), Ctrl-click to select Port 1, Port 2, Port 3, and Port 4.
2
Longitudinal Mode
In the Settings window for Group, type Longitudinal Mode in the Label text field.
Torsional Mode
1
Right-click Longitudinal Mode and choose Duplicate.
2
In the Settings window for Group, type Torsional Mode in the Label text field.
Translational Mode 1
1
Right-click Torsional Mode and choose Duplicate.
2
In the Settings window for Group, type Translational Mode 1 in the Label text field.
Translational Mode 2
1
Right-click Translational Mode 1 and choose Duplicate.
2
In the Settings window for Group, type Translational Mode 2 in the Label text field.
Torsional Mode
In the Model Builder window, expand the Component 1 (comp1)>Solid Mechanics (solid)>Torsional Mode node.
Translational Mode 1
In the Model Builder window, expand the Component 1 (comp1)>Solid Mechanics (solid)>Translational Mode 1 node.
Mesh 1
1
In the Model Builder window, expand the Component 1 (comp1)>Solid Mechanics (solid)>Translational Mode 2 node, then click Component 1 (comp1)>Mesh 1.
2
In the Settings window for Mesh, locate the Sequence Type section.
3
From the list, choose User-controlled mesh.
Size
1
In the Model Builder window, under Component 1 (comp1)>Mesh 1 click Size.
2
In the Settings window for Size, locate the Element Size section.
3
Click the Custom button.
4
Locate the Element Size Parameters section. In the Maximum element size text field, type 1.
5
In the Minimum element size text field, type 0.05.
6
In the Curvature factor text field, type 0.3.
7
In the Resolution of narrow regions text field, type 5.
Free Tetrahedral 1
In the Model Builder window, under Component 1 (comp1)>Mesh 1 right-click Free Tetrahedral 1 and choose Delete.
Free Triangular 1
1
In the Mesh toolbar, click  Boundary and choose Free Triangular.
2
3
In the Settings window for Free Triangular, click  Build Selected.
Copy Face 1
1
In the Mesh toolbar, click  Copy and choose Copy Face.
2
3
In the Settings window for Copy Face, locate the Destination Boundaries section.
4
Click to select the  Activate Selection toggle button.
5
6
Click  Build Selected.
Swept 1
In the Mesh toolbar, click  Swept.
Distribution 1
1
Right-click Swept 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Distribution section.
3
In the Number of elements text field, type 3.
4
Click  Build All.
Before solving the full model, perform a single Boundary Mode Analysis study to compute the propagating modes and identify their mode wave numbers. Note that the values for this specific setup are already found in the Parameters list.
Study 1 - Modes
1
In the Model Builder window, click Study 1.
2
In the Settings window for Study, type Study 1 - Modes in the Label text field.
3
Locate the Study Settings section. Clear the Generate default plots check box.
Boundary Mode Analysis
1
In the Study toolbar, click  Study Steps and choose Other>Boundary Mode Analysis.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Mode analysis frequency text field, type f0.
4
Select the Desired number of modes check box. In the associated text field, type 4.
5
Select the Search for modes around check box. In the associated text field, type 0.8*kp.
6
From the Mode search method around shift list, choose Larger real part.
7
In the Study toolbar, click  Compute.
8
In the Home toolbar, click  Add Predefined Plot.
Add Predefined Plot
1
Go to the Add Predefined Plot window.
2
In the tree, select Study 1 - Modes/Solution 1 (sol1)>Solid Mechanics>Mode Shape (solid).
3
Click Add Plot in the window toolbar.
4
In the Home toolbar, click  Add Predefined Plot.
Results
Arrow Surface 1
1
In the Model Builder window, right-click Mode Shape (solid) and choose Arrow Surface.
2
In the Settings window for Arrow Surface, locate the Arrow Positioning section.
3
In the Number of arrows text field, type 20.
4
Locate the Coloring and Style section. From the Arrow length list, choose Logarithmic.
5
From the Color list, choose Black.
Selection 1
1
Right-click Arrow Surface 1 and choose Selection.
2
Mode Shape (solid)
1
In the Model Builder window, under Results click Mode Shape (solid).
2
In the Settings window for 3D Plot Group, locate the Plot Settings section.
3
Clear the Plot dataset edges check box.
4
In the Mode Shape (solid) toolbar, click  Plot.
5
Click the  Zoom Extents button in the Graphics toolbar.
6
Locate the Data section. From the Out-of-plane wave number (rad/m) list, choose 27.342.
7
In the Mode Shape (solid) toolbar, click  Plot.
8
From the Out-of-plane wave number (rad/m) list, choose 208.25.
9
In the Mode Shape (solid) toolbar, click  Plot.
10
From the Out-of-plane wave number (rad/m) list, choose 293.95.
11
In the Mode Shape (solid) toolbar, click  Plot.
Proceed to do the full system analysis. This requires setting up a study with one Boundary Mode Analysis per port feature. In each step, it should be ensured that the correct mode is computed (longitudinal, torsional, transverse). The search uses the values of the mode wave numbers computed in the previous study (also found in the Parameters list).
For simplicity, one inlet/outlet boundary will be selected as the source of excitations (here the inlet/outlet 1). The desired modes will be activated one at a time using the port sweep functionality. It is activated in the Port Sweep Settings section and ports 1, 5, 9, and 13 are used as sources.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Empty Study.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 2 - Frequency Domain (Port Sweep)
1
In the Settings window for Study, type Study 2 - Frequency Domain (Port Sweep) in the Label text field.
2
Locate the Study Settings section. Clear the Generate default plots check box.
3
Clear the Generate convergence plots check box.
Boundary Mode Analysis
1
In the Study toolbar, click  Study Steps and choose Other>Boundary Mode Analysis.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Mode analysis frequency text field, type f0.
4
Select the Desired number of modes check box.
5
Select the Search for modes around check box. In the associated text field, type 0.9*k_lo.
6
From the Mode search method around shift list, choose Larger real part.
Step 2: Boundary Mode Analysis 1
1
Right-click Study 2 - Frequency Domain (Port Sweep)>Step 1: Boundary Mode Analysis and choose Duplicate.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Port name text field, type 2.
Step 3: Boundary Mode Analysis 2
1
Right-click Step 2: Boundary Mode Analysis 1 and choose Duplicate.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Port name text field, type 3.
Step 4: Boundary Mode Analysis 3
1
Right-click Step 3: Boundary Mode Analysis 2 and choose Duplicate.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Port name text field, type 4.
Step 5: Boundary Mode Analysis 4
1
Right-click Step 4: Boundary Mode Analysis 3 and choose Duplicate.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Port name text field, type 5.
4
In the Search for modes around text field, type 0.9*k_to.
Step 6: Boundary Mode Analysis 5
1
Right-click Step 5: Boundary Mode Analysis 4 and choose Duplicate.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Port name text field, type 6.
Step 7: Boundary Mode Analysis 6
1
Right-click Step 6: Boundary Mode Analysis 5 and choose Duplicate.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Port name text field, type 7.
Step 8: Boundary Mode Analysis 7
1
Right-click Step 7: Boundary Mode Analysis 6 and choose Duplicate.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Port name text field, type 8.
Step 9: Boundary Mode Analysis 8
1
Right-click Step 8: Boundary Mode Analysis 7 and choose Duplicate.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Port name text field, type 9.
4
In the Search for modes around text field, type 0.9*k_tr1.
Step 10: Boundary Mode Analysis 9
1
Right-click Step 9: Boundary Mode Analysis 8 and choose Duplicate.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Port name text field, type 10.
Step 11: Boundary Mode Analysis 10
1
Right-click Step 10: Boundary Mode Analysis 9 and choose Duplicate.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Port name text field, type 11.
Step 12: Boundary Mode Analysis 11
1
Right-click Step 11: Boundary Mode Analysis 10 and choose Duplicate.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Port name text field, type 12.
Step 13: Boundary Mode Analysis 12
1
Right-click Step 12: Boundary Mode Analysis 11 and choose Duplicate.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Port name text field, type 13.
4
In the Search for modes around text field, type 0.9*k_tr2.
Step 14: Boundary Mode Analysis 13
1
Right-click Step 13: Boundary Mode Analysis 12 and choose Duplicate.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Port name text field, type 14.
Step 15: Boundary Mode Analysis 14
1
Right-click Step 14: Boundary Mode Analysis 13 and choose Duplicate.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Port name text field, type 15.
Step 16: Boundary Mode Analysis 15
1
Right-click Step 15: Boundary Mode Analysis 14 and choose Duplicate.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Port name text field, type 16.
Frequency Domain
1
In the Study toolbar, click  Study Steps and choose Frequency Domain>Frequency Domain.
2
In the Settings window for Frequency Domain, locate the Study Settings section.
3
In the Frequencies text field, type f0.
Solid Mechanics (solid)
1
In the Model Builder window, under Component 1 (comp1) click Solid Mechanics (solid).
2
In the Settings window for Solid Mechanics, click to collapse the Port Sweep Settings section.
3
Click to expand the Port Sweep Settings section. Select the Activate port sweep check box.
Remember to add the PortName parameter to the Parameters list.
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Study 2 - Frequency Domain (Port Sweep)
Parametric Sweep
1
In the Study toolbar, click  Parametric Sweep.
2
In the Settings window for Parametric Sweep, locate the Study Settings section.
3
4
5
In the Study toolbar, click  Compute.
6
In the Home toolbar, click  Add Predefined Plot.
Add Predefined Plot
1
Go to the Add Predefined Plot window.
2
In the tree, select Study 2 - Frequency Domain (Port Sweep)/Parametric Solutions 1 (sol19)>Solid Mechanics>Displacement (solid).
3
Click Add Plot in the window toolbar.
4
In the Home toolbar, click  Add Predefined Plot.
Results
Displacement (solid)
1
Click the  Zoom Extents button in the Graphics toolbar.
2
In the Model Builder window, under Results click Displacement (solid).
3
In the Settings window for 3D Plot Group, locate the Data section.
4
From the Parameter value (PortName) list, choose 1.
5
In the Displacement (solid) toolbar, click  Plot.
6
From the Parameter value (PortName) list, choose 5.
7
In the Displacement (solid) toolbar, click  Plot.
8
From the Parameter value (PortName) list, choose 9.
9
In the Displacement (solid) toolbar, click  Plot.
10
From the Parameter value (PortName) list, choose 13.
11
In the Displacement (solid) toolbar, click  Plot.
Included in the solution, when using the port feature, is the automatic computation of the scattering parameter S_ij. This represents the amplitude of the outgoing wave at port i when excited at port j. The variable S11 is, for example, called solid.Smatrix11, if the port number has two digits the format is, for example, solid.Smatrix1_12.
Now, set up 4 plots that show the outgoing energy of the various modes (proportional to abs(S_ij)^2) at the four inlet/outlets. Each plot corresponds to exciting a specific mode at the inlet/outlet number 1. Setting up the plots is a bit time consuming but can be simplified using Duplicate as well as copy/paste of expressions. The instructions are omitted here as they are long. For details, open the model and inspect the plots.