PDF

Schroeder Diffuser in 2D
Introduction
Sound diffusers are objects or surfaces that are designed to reflect incident sound energy evenly across angles. They are widely used in room acoustics as a way to influence the spatial distribution of the sound field without necessarily attenuating it. One common type of diffuser is the Schroeder diffuser, also called well-based diffuser, which consists of a series of wells of different depths. The depths are determined from a mathematical sequence, such as quadratic residue or primitive root. The principle behind this type of diffuser is that each well will re-emit the incident wave with a different phase shift, causing interferences between the waves emitted by the different wells. The mathematical sequence used to determine the depths of the wells will then dictate the interference pattern and, hence, the polar response of the diffuser.
This model demonstrates how to calculate the scattering coefficient with the Pressure Acoustics, Frequency Domain interface. This coefficient is one of the main inputs for expressing boundary conditions in typical room acoustic simulations. Its measurement procedure can be complicated to set up. Therefore. it is more efficient to determine the data numerically. In addition, the effect of periodicity is investigated by studying the responses from different arrangements of the same diffuser.
Model Definition
The model represents a primitive root diffuser, a type of Schroeder diffuser which aims at eliminating the specular component in the reflected energy polar response (see Ref. 1). The model at hand is based on the primitive root sequence with 7 as odd prime, resulting in a diffuser with 6 wells. The study is carried out in 2D in order to considerably reduce the number of degrees of freedom in the simulation. Three cases are taken into account as shown in Figure 1:
In the first two cases, a semicircle with radius r0 = 10 m is added to act as an integration line in the far field. The diffusers are surrounded by an air domain terminated by a Perfectly Matched Boundary, and the sound field outside of the calculation domain is obtained from Exterior Field Calculation. In the case of the infinite arrangement, Periodic Condition>Floquet periodicity is used to virtually extend the domain in both directions along the x-axis.
A plane wave with incidence angle θ0 from the y-axis is defined as incoming on the diffuser arrangements. When present, the specular reflection from the infinite baffle is also included in the Background Pressure Field; this allows the solver to only compute the effect of the diffuser relative to the ideal sound field from a single infinite baffle. The incidence angle is varied in an Auxiliary Sweep from θ0 = 80° to θ0 = 80° with an increment of 10°, resulting in 17 incidence angles. Octave bands from 125 Hz to 4000 Hz are taken into account with 6 frequencies per band by setting up a Parametric Sweep on the band number parameter n.
Figure 1: Geometries of the diffuser arrangements. Top left: single diffuser; Top right: 5-unit arrangement; Bottom: infinite arrangement.
Scattering coefficient
The scattering coefficient s is defined as the power ratio (see Ref. 1)
(1)
with Pspec the power reflected in the specular direction and Ptot the total reflected power. In this model, power is calculated by evaluating sound intensity on a semicircle Ω with radius r0 located in the far field. After defining the reflected sound pressure pr, the total power is obtained from the line integral (see Ref. 23)
(2)
This quantity can be evaluated directly with Component 1>Definitions>Nonlocal Couplings>Integration. For the specular power, sound intensity is integrated over a fraction of the semicircle centered around the specular direction θs. With ε an angular increment, the integration arc is defined as Γ: . This leads to
(3)
(4)
When ε tends to zero, the integral becomes
(5)
With δ the delta function. From convolving the absolute squared pressure with the delta function, it follows that the power reflected in the specular direction can be evaluated as
(6)
Recalling Equation 1, the scattering coefficient can then be expressed as
(7)
For the infinite arrangement, it is not possible to define a semicircle that would encompass the whole geometry. The scattering coefficient is therefore based on its intensity definition
(8)
with Ispec the reflected intensity magnitude in the specular direction and Itot the total reflected intensity magnitude. The reflected intensity Ir can be obtained in the model by checking the box Pressure Acoustics, Frequency Domain>Background Pressure Field>Calculate background and scattered field intensity. The specular magnitude can then be calculated by taking the dot product with the specular direction unit vector es, and the total magnitude is a straightforward calculation. However, since the geometry is infinite, every point on the x-axis is a valid option as the origin for the unit vector. Therefore, the values are integrated over the top boundary L of the domain to give the scattering coefficient
(9)
The coefficient in Equation 7 or Equation 9 gives a value for each incidence angle and frequency included in the study. To obtain the random incidence scattering coefficient in octave bands, the quantity calculated is averaged over angles and frequencies per band in Evaluation Group>Global Evaluation by selecting Data>Table columns>Outer solutions and Data series operation>Transformation>Average.
Results and Discussion
The sound pressure scattered by the diffuser arrangements and their infinite baffles is shown in Figure 2 for θ0 = 0° and f = 1335 Hz. In this case, the plane waves propagating in the wells of the Schroeder diffuser are clearly visible. Moreover, it is seen that the planar wavefront that would result from a perfectly specular reflection is disrupted by the presence of the wells. This is especially true in front of the diffuser arrangements, where the wavefront tends to a cylindrical wave. It also appears that destructive interferences create directions with greatly reduced energy. Although this effect is present in the single diffuser, it is seen to be more prominent in the 5-unit arrangement.
Figure 2: Scattered pressure for θ0 =  and 1335 Hz. Top left: single diffuser; Top right: 5-unit arrangement; Bottom: infinite arrangement.
Further investigation of the scattered sound field can be made from the SPL polar responses of the single diffuser in Figure 3 and the 5-unit arrangement in Figure 4. They are evaluated in the far field at a distance r0 = 10 m, for θ0 = 30° and the six frequencies composing the 250 Hz octave band in this study. This type of plot could not be generated for the infinite arrangement as it requires to evaluate sound pressure on a surrounding semicircle. It can be observed that the primitive root diffuser does reduce the energy reflected in the specular direction as intended. The difference between the SPL in the specular direction and the maximum SPL lies between 1 dB and 4 dB for the single diffuser, with energy being distributed rather evenly across angles. For the 5-unit arrangement, the SPL difference goes from 4 dB to 9 dB between the specular and maximum directions. However, it is seen that the reflected energy is concentrated between 15° and 45°, as the lobes exhibit large amplitudes for both peaks and dips in that region of the polar response. This confirms the idea that a periodic arrangement reinforces certain reflection and attenuation directions for a given diffuser.
Figure 3: Polar response of the single diffuser for θ0 = 30° in the 250 Hz octave band.
Figure 4: Polar response of the 5-unit arrangement for θ0 = 30° in the 250 Hz octave band.
The scattering coefficients of the three diffuser arrangements is shown in Figure 5. Despite the differences observed in their polar responses, it is seen that the single diffuser and the 5-unit arrangement return similar values for all frequencies. This illustrates one of the shortcomings of the scattering coefficient: it only quantifies non-specularly reflected energy without any consideration of the energy distribution over angles. Two diffusers could therefore have the same scattering coefficient and yet behave very differently. Nevertheless, this coefficient still provides valuable information in a simple manner. The infinite arrangement also gives interesting results. In this case, the scattering coefficient takes much lower values especially at low frequencies. This is a sign that scattering is dominated by diffraction from the finite size effect at low frequencies, and the wells’ influence is only effective at mid and high frequencies.
Figure 5: Random incidence scattering coefficient of the diffuser arrangements.
Notes About the COMSOL Implementation
This model was studied with the Pressure Acoustics, Frequency Domain interface. Alternatively, the Pressure Acoustics, Boundary Elements interface could also be used and return accurate results, but with the drawback that solving time would be larger for this small 2D model.
References
1. T.J. Cox and P. D’Antonio, Acoustics Absorbers and Diffusers: Theory, Design and Application, 2nd edition, Taylor & Francis, 2009.
2. F.A. Everest and K. C. Pohlmann, Master Handbook of Acoustics, 5th edition, McGraw Hill, 2009.
3. A.D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications, 2nd edition, Acoustical Society of America, 1991.
Application Library path: Acoustics_Module/Building_and_Room_Acoustics/diffuser_schroeder_2d
Modeling Instructions
This section contains the modeling instructions for the Schroeder Diffuser in 2D model. They are followed by the Geometry Modeling Instructions section.
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  2D.
2
In the Select Physics tree, select Acoustics>Pressure Acoustics>Pressure Acoustics, Frequency Domain (acpr).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select General Studies>Frequency Domain.
6
Start by importing the three geometry cases and the parameters needed for the study.
Single diffuser
1
In the Model Builder window, click Component 1 (comp1).
2
In the Settings window for Component, type Single diffuser in the Label text field.
Geometry 1
1
In the Geometry toolbar, click Insert Sequence and choose Insert Sequence.
2
3
In the Insert Sequence dialog box, click OK.
Geometry 1
1
In the Model Builder window, under Single diffuser (comp1) click Geometry 1.
2
In the Geometry toolbar, click  Build All.
Add Component
Right-click Single diffuser (comp1)>Geometry 1 and choose Add Component>2D.
5-unit arrangement
In the Settings window for Component, type 5-unit arrangement in the Label text field.
Geometry 2
1
In the Geometry toolbar, click Insert Sequence and choose Insert Sequence.
2
3
In the Insert Sequence dialog box, select Geometry 2 in the Select geometry sequence to insert list.
4
Geometry 2
1
In the Model Builder window, under 5-unit arrangement (comp2) click Geometry 2.
2
In the Geometry toolbar, click  Build All.
Add Component
Right-click 5-unit arrangement (comp2)>Geometry 2 and choose Add Component>2D.
Infinite arrangement
In the Settings window for Component, type Infinite arrangement in the Label text field.
Geometry 3
1
In the Geometry toolbar, click Insert Sequence and choose Insert Sequence.
2
3
In the Insert Sequence dialog box, select Geometry 3 in the Select geometry sequence to insert list.
4
Geometry 3
1
In the Model Builder window, under Infinite arrangement (comp3) click Geometry 3.
2
In the Geometry toolbar, click  Build All.
Add Material
1
In the Home toolbar, click  Add Material to open the Add Material window.
2
Go to the Add Material window.
3
4
Click the right end of the Add to Component split button in the window toolbar.
5
From the menu, choose Single diffuser (comp1).
6
Click 5-unit arrangement (comp2) in the window toolbar.
7
Click Infinite arrangement (comp3) in the window toolbar.
8
In the Home toolbar, click  Add Material to close the Add Material window.
Global Definitions
Parameters 1 - Geometry
In the Settings window for Parameters, type Parameters 1 - Geometry in the Label text field.
Parameters 2 - Physics
1
In the Home toolbar, click  Parameters and choose Add>Parameters.
2
In the Settings window for Parameters, type Parameters 2 - Physics in the Label text field.
3
Locate the Parameters section. Click  Load from File.
4
Proceed with setting up the physics and local variables. The incident plane wave is defined manually in order to include the specular reflection from the infinite baffle in the Background Pressure Field. This allows the solver to only compute the influence of the diffuser on the sound field.
Definitions (comp1)
In the Model Builder window, under Single diffuser (comp1) click Definitions.
Integration 1 (intop1)
1
In the Definitions toolbar, click  Nonlocal Couplings and choose Integration.
2
In the Settings window for Integration, locate the Source Selection section.
3
From the Geometric entity level list, choose Boundary.
4
Variables 1
1
Right-click Definitions and choose Variables.
2
In the Settings window for Variables, locate the Variables section.
3
Click  Load from File.
4
Pressure Acoustics, Frequency Domain (acpr)
Background Pressure Field 1
1
In the Model Builder window, expand the Single diffuser (comp1)>Pressure Acoustics, Frequency Domain (acpr) node.
2
Right-click Pressure Acoustics, Frequency Domain (acpr) and choose Background Pressure Field.
3
4
In the Settings window for Background Pressure Field, locate the Background Pressure Field section.
5
From the Pressure field type list, choose User defined.
6
In the pb text field, type p_inc+p_inf.
Perfectly Matched Boundary 1
1
In the Physics toolbar, click  Boundaries and choose Perfectly Matched Boundary.
2
Exterior Field Calculation 1
1
In the Physics toolbar, click  Boundaries and choose Exterior Field Calculation.
2
3
In the Settings window for Exterior Field Calculation, locate the Exterior Field Calculation section.
4
From the Condition in the y = y0 plane list, choose Symmetric/Infinite sound hard boundary.
Generate the mesh using the Physics-controlled mesh functionality. The frequency controlling the maximum element size is per default taken From study. Set the desired Frequencies in the study step. In general, 5 to 6 second-order elements per wavelength are needed to resolve the waves. For more details, see Meshing (Resolving the Waves) in the Acoustics Module User’s Guide. In this model we use the default Automatic option, which gives 5 elements per wavelength.
Study 1
Parametric Sweep
1
In the Study toolbar, click  Parametric Sweep.
2
In the Settings window for Parametric Sweep, locate the Study Settings section.
3
4
Step 1: Frequency Domain
1
In the Model Builder window, click Step 1: Frequency Domain.
2
In the Settings window for Frequency Domain, locate the Study Settings section.
3
In the Frequencies text field, type 10^{range(log10(fL[1/Hz])+df_log/2,df_log,log10(fU[1/Hz])-df_log/2)}.
4
Click to expand the Study Extensions section. Select the Auxiliary sweep check box.
5
6
Mesh 1
In the Model Builder window, under Single diffuser (comp1) right-click Mesh 1 and choose Build All.
Set up the physics and generate the mesh in a similar fashion for the second component with five diffuser units.
5-unit arrangement (comp2)
In the Model Builder window, click 5-unit arrangement (comp2).
Add Physics
1
In the Home toolbar, click  Add Physics to open the Add Physics window.
2
Go to the Add Physics window.
3
In the tree, select Acoustics>Pressure Acoustics>Pressure Acoustics, Frequency Domain (acpr).
4
Click Add to 5-unit Arrangement in the window toolbar.
5
In the Home toolbar, click  Add Physics to close the Add Physics window.
Definitions (comp2)
Integration 2 (intop2)
1
In the Definitions toolbar, click  Nonlocal Couplings and choose Integration.
2
In the Settings window for Integration, locate the Source Selection section.
3
From the Geometric entity level list, choose Boundary.
4
Variables 2
1
In the Model Builder window, right-click Definitions and choose Variables.
2
In the Settings window for Variables, locate the Variables section.
3
Click  Load from File.
4
Pressure Acoustics, Frequency Domain 2 (acpr2)
In the Model Builder window, under 5-unit arrangement (comp2) click Pressure Acoustics, Frequency Domain 2 (acpr2).
Background Pressure Field 1
1
In the Physics toolbar, click  Domains and choose Background Pressure Field.
2
3
In the Settings window for Background Pressure Field, locate the Background Pressure Field section.
4
From the Pressure field type list, choose User defined.
5
In the pb text field, type p_inc+p_inf.
Perfectly Matched Boundary 1
1
In the Physics toolbar, click  Boundaries and choose Perfectly Matched Boundary.
2
Exterior Field Calculation 1
1
In the Physics toolbar, click  Boundaries and choose Exterior Field Calculation.
2
3
In the Settings window for Exterior Field Calculation, locate the Exterior Field Calculation section.
4
From the Condition in the y = y0 plane list, choose Symmetric/Infinite sound hard boundary.
Mesh 2
In the Model Builder window, under 5-unit arrangement (comp2) right-click Mesh 2 and choose Build All.
Define the third component with a periodic condition to model an infinite arrangement of diffusers. As a consequence, the sound pressure in the exterior field cannot be evaluated on a circular arc in this case; the calculation of the energy reflected in the specular direction is thus based on sound intensity.
Infinite arrangement (comp3)
In the Model Builder window, click Infinite arrangement (comp3).
Add Physics
1
In the Physics toolbar, click  Add Physics to open the Add Physics window.
2
Go to the Add Physics window.
3
In the tree, select Acoustics>Pressure Acoustics>Pressure Acoustics, Frequency Domain (acpr).
4
Click Add to Infinite Arrangement in the window toolbar.
5
In the Physics toolbar, click  Add Physics to close the Add Physics window.
Definitions (comp3)
Integration 3 (intop3)
1
In the Definitions toolbar, click  Nonlocal Couplings and choose Integration.
2
In the Settings window for Integration, locate the Source Selection section.
3
From the Geometric entity level list, choose Boundary.
4
Variables 3
1
In the Model Builder window, right-click Definitions and choose Variables.
2
In the Settings window for Variables, locate the Variables section.
3
Click  Load from File.
4
Pressure Acoustics, Frequency Domain 3 (acpr3)
In the Model Builder window, under Infinite arrangement (comp3) click Pressure Acoustics, Frequency Domain 3 (acpr3).
Background Pressure Field 1
1
In the Physics toolbar, click  Domains and choose Background Pressure Field.
2
3
In the Settings window for Background Pressure Field, locate the Background Pressure Field section.
4
In the p0 text field, type 1.
5
In the c text field, type c0.
6
Specify the ek vector as
7
Select the Calculate background and scattered field intensity check box.
8
In the ρ text field, type rho0.
Perfectly Matched Boundary 1
1
In the Physics toolbar, click  Boundaries and choose Perfectly Matched Boundary.
2
3
In the Settings window for Perfectly Matched Boundary, locate the Geometry section.
4
From the Attenuation direction list, choose Normal.
Periodic Condition 1
1
In the Physics toolbar, click  Boundaries and choose Periodic Condition.
2
3
In the Settings window for Periodic Condition, locate the Periodicity Settings section.
4
From the Type of periodicity list, choose Floquet periodicity.
5
Specify the kF vector as
Mesh 3
In the Model Builder window, under Infinite arrangement (comp3) right-click Mesh 3 and choose Build All.
Results
1
In the Model Builder window, click Results.
2
In the Settings window for Results, locate the Update of Results section.
3
Select the Only plot when requested check box.
Proceed with solving the study. Generate the default plots for Component 1 only so as to avoid duplicate plot groups.
Study 1
Step 1: Frequency Domain
1
In the Model Builder window, under Study 1 click Step 1: Frequency Domain.
2
In the Settings window for Frequency Domain, locate the Physics and Variables Selection section.
3
4
Click to expand the Mesh Selection section. In the table, enter the following settings:
5
In the Study toolbar, click  Show Default Plots.
6
In the Model Builder window, click Study 1.
7
In the Settings window for Study, locate the Study Settings section.
8
Clear the Generate default plots check box.
9
In the Model Builder window, click Step 1: Frequency Domain.
10
In the Settings window for Frequency Domain, locate the Physics and Variables Selection section.
11
12
Locate the Mesh Selection section. In the table, enter the following settings:
13
In the Study toolbar, click  Compute.
Before investigating the results, remove the circular arcs from the datasets. They only serve a purpose for calculating integrals and do not need to be shown in the result plots.
Results
Study 1/Parametric Solutions 1 (4) - Single diffuser
1
In the Model Builder window, expand the Results>Datasets node, then click Study 1/Parametric Solutions 1 (4) (sol2).
2
In the Settings window for Solution, type Study 1/Parametric Solutions 1 (4) - Single diffuser in the Label text field.
Selection
1
In the Results toolbar, click  Attributes and choose Selection.
2
In the Settings window for Selection, locate the Geometric Entity Selection section.
3
From the Geometric entity level list, choose Domain.
4
Study 1/Parametric Solutions 1 (5) - 5-unit arrangement
1
In the Model Builder window, under Results>Datasets click Study 1/Parametric Solutions 1 (5) (sol2).
2
In the Settings window for Solution, type Study 1/Parametric Solutions 1 (5) - 5-unit arrangement in the Label text field.
Selection
1
Right-click Study 1/Parametric Solutions 1 (5) - 5-unit arrangement and choose Selection.
2
In the Settings window for Selection, locate the Geometric Entity Selection section.
3
From the Geometric entity level list, choose Domain.
4
Create an Array dataset to show multiple periods of the infinite arrangement of diffusers.
Study 1/Parametric Solutions 1 (6) - Infinite arrangement
1
In the Model Builder window, under Results>Datasets click Study 1/Parametric Solutions 1 (sol2).
2
In the Settings window for Solution, type Study 1/Parametric Solutions 1 (6) - Infinite arrangement in the Label text field.
Array 2D - 5 periods of the infinite arrangement
1
In the Results toolbar, click  More Datasets and choose Array 2D.
2
In the Settings window for Array 2D, locate the Data section.
3
From the Dataset list, choose Study 1/Parametric Solutions 1 (6) - Infinite arrangement (sol2).
4
In the Label text field, type Array 2D - 5 periods of the infinite arrangement.
5
Locate the Array Size section. In the X size text field, type 5.
6
Click to expand the Advanced section. Select the Floquet-Bloch periodicity check box.
7
Find the Wave vector subsection. In the X text field, type sin(theta0)*2*pi*freq/c0.
8
In the Y text field, type -cos(theta0)*2*pi*freq/c0.
Acoustic Pressure (acpr)
1
In the Model Builder window, under Results click Acoustic Pressure (acpr).
2
In the Settings window for 2D Plot Group, locate the Data section.
3
From the Parameter value (n) list, choose 3.
4
From the Parameter value (freq (Hz),theta0 (deg)) list, choose 94: freq=1334.8 Hz, theta0=0 deg.
Surface 1
1
In the Model Builder window, expand the Acoustic Pressure (acpr) node, then click Surface 1.
2
In the Settings window for Surface, locate the Expression section.
3
In the Expression text field, type p_scat.
4
In the Acoustic Pressure (acpr) toolbar, click  Plot.
5
Click the  Zoom Extents button in the Graphics toolbar.
Acoustic Pressure (acpr)
1
In the Model Builder window, click Acoustic Pressure (acpr).
2
In the Settings window for 2D Plot Group, locate the Data section.
3
From the Dataset list, choose Study 1/Parametric Solutions 1 (5) - 5-unit arrangement (sol2).
4
In the Acoustic Pressure (acpr) toolbar, click  Plot.
5
Click the  Zoom Extents button in the Graphics toolbar.
6
From the Dataset list, choose Array 2D - 5 periods of the infinite arrangement.
7
In the Acoustic Pressure (acpr) toolbar, click  Plot.
Sound Pressure Level (acpr)
1
In the Model Builder window, click Sound Pressure Level (acpr).
2
In the Settings window for 2D Plot Group, locate the Data section.
3
From the Parameter value (n) list, choose 3.
4
From the Parameter value (freq (Hz),theta0 (deg)) list, choose 94: freq=1334.8 Hz, theta0=0 deg.
Surface 1
1
In the Model Builder window, expand the Sound Pressure Level (acpr) node, then click Surface 1.
2
In the Settings window for Surface, locate the Expression section.
3
In the Expression text field, type Lp_scat.
4
In the Sound Pressure Level (acpr) toolbar, click  Plot.
5
Click the  Zoom Extents button in the Graphics toolbar.
Sound Pressure Level (acpr)
1
In the Model Builder window, click Sound Pressure Level (acpr).
2
In the Settings window for 2D Plot Group, locate the Data section.
3
From the Dataset list, choose Study 1/Parametric Solutions 1 (5) - 5-unit arrangement (sol2).
4
In the Sound Pressure Level (acpr) toolbar, click  Plot.
5
From the Dataset list, choose Array 2D - 5 periods of the infinite arrangement.
6
In the Sound Pressure Level (acpr) toolbar, click  Plot.
Exterior-Field Sound Pressure Level (acpr)
1
In the Model Builder window, click Exterior-Field Sound Pressure Level (acpr).
2
In the Settings window for Polar Plot Group, locate the Data section.
3
From the Parameter selection (n) list, choose From list.
4
In the Parameter values list, select 1.
5
From the Parameter selection (freq, theta0) list, choose Manual.
6
In the Parameter indices (1-102) text field, type range(12,17,102).
7
Locate the Axis section. Select the Symmetric angle range check box.
8
From the Zero angle list, choose Up.
9
Locate the Legend section. From the Position list, choose Manual.
10
In the x-position text field, type 0.5.
11
In the y-position text field, type 0.25.
Radiation Pattern 1
1
In the Model Builder window, expand the Exterior-Field Sound Pressure Level (acpr) node, then click Radiation Pattern 1.
2
In the Settings window for Radiation Pattern, locate the Expression section.
3
In the Expression text field, type Lp_ext.
4
Locate the Evaluation section. Find the Angles subsection. In the Number of angles text field, type 360.
5
From the Restriction list, choose Manual.
6
In the φ start text field, type -90.
7
In the φ range text field, type 180.
8
Find the Circle subsection. From the Circle list, choose Manual.
9
Find the Evaluation distance subsection. In the Radius text field, type r0.
10
Find the Reference direction subsection. In the x text field, type 0.
11
In the y text field, type 1.
12
In the Exterior-Field Sound Pressure Level (acpr) toolbar, click  Plot.
Exterior-Field Sound Pressure Level (acpr)
1
In the Model Builder window, click Exterior-Field Sound Pressure Level (acpr).
2
In the Settings window for Polar Plot Group, locate the Data section.
3
From the Dataset list, choose Study 1/Parametric Solutions 1 (5) - 5-unit arrangement (sol2).
4
In the Exterior-Field Sound Pressure Level (acpr) toolbar, click  Plot.
Exterior-Field Pressure (acpr)
1
In the Model Builder window, click Exterior-Field Pressure (acpr).
2
In the Settings window for Polar Plot Group, locate the Data section.
3
From the Parameter selection (n) list, choose From list.
4
In the Parameter values list, select 1.
5
From the Parameter selection (freq, theta0) list, choose Manual.
6
In the Parameter indices (1-102) text field, type range(12,17,102).
7
Locate the Axis section. Select the Symmetric angle range check box.
8
From the Zero angle list, choose Up.
9
Locate the Legend section. From the Position list, choose Manual.
10
In the x-position text field, type 0.5.
11
In the y-position text field, type 0.25.
Radiation Pattern 1
1
In the Model Builder window, expand the Exterior-Field Pressure (acpr) node, then click Radiation Pattern 1.
2
In the Settings window for Radiation Pattern, locate the Expression section.
3
In the Expression text field, type abs(p_scat_ext)^2.
4
Locate the Evaluation section. Find the Angles subsection. In the Number of angles text field, type 360.
5
From the Restriction list, choose Manual.
6
In the φ start text field, type -90.
7
In the φ range text field, type 180.
8
Find the Circle subsection. From the Circle list, choose Manual.
9
Find the Evaluation distance subsection. In the Radius text field, type r0.
10
Find the Reference direction subsection. In the x text field, type 0.
11
In the y text field, type 1.
12
In the Exterior-Field Pressure (acpr) toolbar, click  Plot.
Exterior-Field Pressure (acpr)
1
In the Model Builder window, click Exterior-Field Pressure (acpr).
2
In the Settings window for Polar Plot Group, locate the Data section.
3
From the Dataset list, choose Study 1/Parametric Solutions 1 (5) - 5-unit arrangement (sol2).
4
In the Exterior-Field Pressure (acpr) toolbar, click  Plot.
Evaluation Group 1
1
In the Results toolbar, click  Evaluation Group.
2
In the Settings window for Evaluation Group, locate the Data section.
3
From the Dataset list, choose Study 1/Parametric Solutions 1 (4) - Single diffuser (sol2).
4
Click to expand the Format section. From the Include parameters list, choose Off.
Global Evaluation 1
1
Right-click Evaluation Group 1 and choose Global Evaluation.
2
In the Settings window for Global Evaluation, locate the Data section.
3
From the Table columns list, choose Outer solutions.
4
Locate the Expressions section. In the table, enter the following settings:
5
Locate the Data Series Operation section. From the Transformation list, choose Average.
6
In the Evaluation Group 1 toolbar, click  Evaluate.
Evaluation Group 2
1
In the Model Builder window, under Results right-click Evaluation Group 1 and choose Duplicate.
2
In the Settings window for Evaluation Group, locate the Data section.
3
From the Dataset list, choose Study 1/Parametric Solutions 1 (5) - 5-unit arrangement (sol2).
4
In the Evaluation Group 2 toolbar, click  Evaluate.
Evaluation Group 3
1
Right-click Evaluation Group 2 and choose Duplicate.
2
In the Settings window for Evaluation Group, locate the Data section.
3
From the Dataset list, choose Study 1/Parametric Solutions 1 (6) - Infinite arrangement (sol2).
Global Evaluation 1
1
In the Model Builder window, expand the Evaluation Group 3 node, then click Global Evaluation 1.
2
In the Settings window for Global Evaluation, locate the Expressions section.
3
4
In the Evaluation Group 3 toolbar, click  Evaluate.
Scattering coefficients
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Scattering coefficients in the Label text field.
3
Locate the Data section. From the Dataset list, choose None.
4
Locate the Plot Settings section.
5
Select the x-axis label check box. In the associated text field, type Band center frequency (Hz).
6
Select the y-axis label check box. In the associated text field, type Scattering coefficient.
7
Locate the Axis section. Select the Manual axis limits check box.
8
In the x minimum text field, type 125.
9
In the x maximum text field, type 4000.
10
In the y minimum text field, type 0.
11
Select the x-axis log scale check box.
Table Graph 1
1
Right-click Scattering coefficients and choose Table Graph.
2
In the Settings window for Table Graph, locate the Data section.
3
From the Source list, choose Evaluation group.
4
Click to expand the Legends section. Select the Show legends check box.
5
From the Legends list, choose Manual.
6
Table Graph 2
1
In the Model Builder window, right-click Scattering coefficients and choose Table Graph.
2
In the Settings window for Table Graph, locate the Data section.
3
From the Source list, choose Evaluation group.
4
From the Evaluation group list, choose Evaluation Group 2.
5
Locate the Legends section. Select the Show legends check box.
6
From the Legends list, choose Manual.
7
Table Graph 3
1
Right-click Scattering coefficients and choose Table Graph.
2
In the Settings window for Table Graph, locate the Data section.
3
From the Source list, choose Evaluation group.
4
From the Evaluation group list, choose Evaluation Group 3.
5
Locate the Legends section. Select the Show legends check box.
6
From the Legends list, choose Manual.
7
8
In the Scattering coefficients toolbar, click  Plot.
 
Geometry Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Blank Model.
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Click  Load from File.
4
Add Component
In the Home toolbar, click  Add Component and choose 2D.
Single diffuser
1
In the Model Builder window, click Component 1 (comp1).
2
In the Settings window for Component, type Single diffuser in the Label text field.
Geometry 1
Rectangle 1 (r1)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type W.
4
In the Height text field, type d1.
5
In the Width text field, type Lw.
6
Locate the Position section. In the x text field, type -L/2+Li.
7
In the y text field, type -d1.
Rectangle 2 (r2)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type Lw.
4
In the Height text field, type d2.
5
Locate the Position section. In the x text field, type -L/2+2*Li+Lw.
6
In the y text field, type -d2.
Rectangle 3 (r3)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type Lw.
4
In the Height text field, type d3.
5
Locate the Position section. In the x text field, type -L/2+3*Li+2*Lw.
6
In the y text field, type -d3.
Rectangle 4 (r4)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type Lw.
4
In the Height text field, type d4.
5
Locate the Position section. In the x text field, type -L/2+4*Li+3*Lw.
6
In the y text field, type -d4.
Rectangle 5 (r5)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type Lw.
4
In the Height text field, type d5.
5
Locate the Position section. In the x text field, type -L/2+5*Li+4*Lw.
6
In the y text field, type -d5.
Rectangle 6 (r6)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type Lw.
4
In the Height text field, type d6.
5
Locate the Position section. In the x text field, type -L/2+6*Li+5*Lw.
6
In the y text field, type -d6.
Rectangle 1 (r1), Rectangle 2 (r2), Rectangle 3 (r3), Rectangle 4 (r4), Rectangle 5 (r5), Rectangle 6 (r6)
1
In the Model Builder window, under Single diffuser (comp1)>Geometry 1, Ctrl-click to select Rectangle 1 (r1), Rectangle 2 (r2), Rectangle 3 (r3), Rectangle 4 (r4), Rectangle 5 (r5), and Rectangle 6 (r6).
2
Wells
In the Settings window for Group, type Wells in the Label text field.
Circle 1 (c1)
1
In the Geometry toolbar, click  Circle.
2
In the Settings window for Circle, locate the Size and Shape section.
3
In the Radius text field, type r_air.
4
In the Sector angle text field, type 180.
Union 1 (uni1)
1
In the Geometry toolbar, click  Booleans and Partitions and choose Union.
2
Click in the Graphics window and then press Ctrl+A to select all objects.
3
In the Settings window for Union, locate the Union section.
4
Clear the Keep interior boundaries check box.
5
In the Geometry toolbar, click  Build All.
6
Click the  Zoom Extents button in the Graphics toolbar.
Circular Arc 1 (ca1)
1
In the Geometry toolbar, click  More Primitives and choose Circular Arc.
2
In the Settings window for Circular Arc, locate the Radius section.
3
In the Radius text field, type r0.
4
Locate the Angles section. In the End angle text field, type 180.
5
In the Geometry toolbar, click  Build All.
Add Component
In the Model Builder window, right-click Geometry 1 and choose Add Component>2D.
5-unit arrangement
In the Settings window for Component, type 5-unit arrangement in the Label text field.
Geometry 1
Wells
In the Model Builder window, under Single diffuser (comp1)>Geometry 1 right-click Wells and choose Copy.
Geometry 2
In the Model Builder window, under 5-unit arrangement (comp2) right-click Geometry 2 and choose Paste Group.
Wells 1 to the left
1
In the Model Builder window, right-click Wells and choose Duplicate.
2
In the Model Builder window, click Wells 1.
3
In the Settings window for Group, type Wells 1 to the left in the Label text field.
Rectangle 7 (r7)
1
In the Model Builder window, click Rectangle 7 (r7).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type -3*L/2+Li.
Rectangle 8 (r8)
1
In the Model Builder window, click Rectangle 8 (r8).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type -3*L/2+2*Li+Lw.
Rectangle 9 (r9)
1
In the Model Builder window, click Rectangle 9 (r9).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type -3*L/2+3*Li+2*Lw.
Rectangle 10 (r10)
1
In the Model Builder window, click Rectangle 10 (r10).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type -3*L/2+4*Li+3*Lw.
Rectangle 11 (r11)
1
In the Model Builder window, click Rectangle 11 (r11).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type -3*L/2+5*Li+4*Lw.
Rectangle 12 (r12)
1
In the Model Builder window, click Rectangle 12 (r12).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type -3*L/2+6*Li+5*Lw.
Wells 2 to the left
1
In the Model Builder window, right-click Wells and choose Duplicate.
2
In the Model Builder window, click Wells 1.
3
In the Settings window for Group, type Wells 2 to the left in the Label text field.
Rectangle 13 (r13)
1
In the Model Builder window, click Rectangle 13 (r13).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type -5*L/2+Li.
Rectangle 14 (r14)
1
In the Model Builder window, click Rectangle 14 (r14).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type -5*L/2+2*Li+Lw.
Rectangle 15 (r15)
1
In the Model Builder window, click Rectangle 15 (r15).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type -5*L/2+3*Li+2*Lw.
Rectangle 16 (r16)
1
In the Model Builder window, click Rectangle 16 (r16).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type -5*L/2+4*Li+3*Lw.
Rectangle 17 (r17)
1
In the Model Builder window, click Rectangle 17 (r17).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type -5*L/2+5*Li+4*Lw.
Rectangle 18 (r18)
1
In the Model Builder window, click Rectangle 18 (r18).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type -5*L/2+6*Li+5*Lw.
Wells 1 to the right
1
In the Model Builder window, right-click Wells and choose Duplicate.
2
In the Model Builder window, click Wells 1.
3
In the Settings window for Group, type Wells 1 to the right in the Label text field.
Rectangle 19 (r19)
1
In the Model Builder window, click Rectangle 19 (r19).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type L/2+Li.
Rectangle 20 (r20)
1
In the Model Builder window, click Rectangle 20 (r20).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type L/2+2*Li+Lw.
Rectangle 21 (r21)
1
In the Model Builder window, click Rectangle 21 (r21).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type L/2+3*Li+2*Lw.
Rectangle 22 (r22)
1
In the Model Builder window, click Rectangle 22 (r22).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type L/2+4*Li+3*Lw.
Rectangle 23 (r23)
1
In the Model Builder window, click Rectangle 23 (r23).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type L/2+5*Li+4*Lw.
Rectangle 24 (r24)
1
In the Model Builder window, click Rectangle 24 (r24).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type L/2+6*Li+5*Lw.
Wells 2 to the right
1
In the Model Builder window, right-click Wells and choose Duplicate.
2
In the Model Builder window, click Wells 1.
3
In the Settings window for Group, type Wells 2 to the right in the Label text field.
Rectangle 25 (r25)
1
In the Model Builder window, click Rectangle 25 (r25).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type 3*L/2+Li.
Rectangle 26 (r26)
1
In the Model Builder window, click Rectangle 26 (r26).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type 3*L/2+2*Li+Lw.
Rectangle 27 (r27)
1
In the Model Builder window, click Rectangle 27 (r27).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type 3*L/2+3*Li+2*Lw.
Rectangle 28 (r28)
1
In the Model Builder window, click Rectangle 28 (r28).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type 3*L/2+4*Li+3*Lw.
Rectangle 29 (r29)
1
In the Model Builder window, click Rectangle 29 (r29).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type 3*L/2+5*Li+4*Lw.
Rectangle 30 (r30)
1
In the Model Builder window, click Rectangle 30 (r30).
2
In the Settings window for Rectangle, locate the Position section.
3
In the x text field, type 3*L/2+6*Li+5*Lw.
Circle 1 (c1)
1
In the Geometry toolbar, click  Circle.
2
In the Settings window for Circle, locate the Size and Shape section.
3
In the Radius text field, type 3*r_air.
4
In the Sector angle text field, type 180.
Union 1 (uni1)
1
In the Geometry toolbar, click  Booleans and Partitions and choose Union.
2
Click in the Graphics window and then press Ctrl+A to select all objects.
3
In the Settings window for Union, locate the Union section.
4
Clear the Keep interior boundaries check box.
5
In the Geometry toolbar, click  Build All.
6
Click the  Zoom Extents button in the Graphics toolbar.
Circular Arc 1 (ca1)
1
In the Geometry toolbar, click  More Primitives and choose Circular Arc.
2
In the Settings window for Circular Arc, locate the Radius section.
3
In the Radius text field, type r0.
4
Locate the Angles section. In the End angle text field, type 180.
5
In the Geometry toolbar, click  Build All.
Add Component
In the Model Builder window, right-click Geometry 2 and choose Add Component>2D.
Infinite arrangement
In the Settings window for Component, type Infinite arrangement in the Label text field.
Geometry 1
Wells
In the Model Builder window, under Single diffuser (comp1)>Geometry 1 right-click Wells and choose Copy.
Geometry 3
In the Model Builder window, under Infinite arrangement (comp3) right-click Geometry 3 and choose Paste Group.
Rectangle 7 (r7)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type L.
4
In the Height text field, type Hair.
5
Locate the Position section. In the x text field, type -L/2.
Union 1 (uni1)
1
In the Geometry toolbar, click  Booleans and Partitions and choose Union.
2
Click in the Graphics window and then press Ctrl+A to select all objects.
3
In the Settings window for Union, locate the Union section.
4
Clear the Keep interior boundaries check box.
5
In the Geometry toolbar, click  Build All.
6
Click the  Zoom Extents button in the Graphics toolbar.