PDF

Magnetohydrodynamics Pump
Introduction
When an electrically conducting media is exposed to a time-varying magnetic field, eddy currents are induced that will counteract the change of magnetic flux and create a repelling force on the material. This magnetohydrodynamical principle can be utilized to create pumping action on a conducting liquid in a hermetically sealed column, without having to use moving parts.
Model Definition
The model is set up in a 2D axisymmetric geometry using the Magnetic Fields and Laminar Flow physics interfaces, coupled via the Magnetohydrodynamics multiphysics interface.
The model coupling relies on separate study types for the two physics interfaces, where the Magnetic Fields is solved in the frequency domain and the Laminar Flow is solved in the stationary domain. The cycle-averaged Lorentz force is employed in the fluid flow, and conversely the phase-dependent electromotive force is employed in the electromagnetic calculation. The cycle-averaged force on the liquid will be in the direction of the phase velocity of the magnetic field, where the latter is induced with a 3-phase coil setup. At both ends of the flow column there is a periodic condition for the pressure, fluid velocity, and magnetic vector potential, emulating an infinitely extended pump setup.
Results
Figure 1 shows the magnetic flux density norm on the 2D axisymmetric cross section of the pump.
Figure 2 shows the magnetic flux density as well as the fluid velocity norm on the partially revolved 2D axisymmetric geometry, with domain deformation illustrating the magnitude and direction of the fluid flow in the liquid column.
Figure 1: The magnetic flux density norm plotted on the 2D axisymmetric cross section of the pump.
Figure 2: The velocity norm and the magnetic flux density norm plotted on the partially revolved 2D axisymmetric geometry.
Application Library path: ACDC_Module/Electromagnetics_and_Fluids/magnetohydrodynamics_pump
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  2D Axisymmetric.
2
In the Select Physics tree, select AC/DC>Electromagnetics and Fluids>Magnetohydrodynamics, Out-of-Plane Currents.
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select Preset Studies for Selected Multiphysics>Frequency-Stationary.
6
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Geometry 1
1
In the Model Builder window, under Component 1 (comp1) click Geometry 1.
2
In the Settings window for Geometry, locate the Units section.
3
From the Length unit list, choose mm.
4
Locate the Advanced section. From the Default repair tolerance list, choose Relative.
Rectangle 1 (r1)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type 175.
4
In the Height text field, type 200.
5
Locate the Position section. In the z text field, type -100.
6
Click to expand the Layers section. In the table, enter the following settings:
7
Select the Layers to the right check box.
8
Clear the Layers on bottom check box.
9
Click  Build Selected.
Rectangle 2 (r2)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type 100.
4
In the Height text field, type 200.
5
Locate the Position section. In the z text field, type -100.
6
Click  Build Selected.
Rectangle 3 (r3)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type 20.
4
In the Height text field, type 200.
5
Locate the Position section. In the r text field, type 25.
6
In the z text field, type -100.
7
Click  Build Selected.
Rectangle 4 (r4)
1
In the Geometry toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type 20.
4
In the Height text field, type 40.
5
Locate the Position section. From the Base list, choose Center.
6
In the r text field, type 55.
7
Click  Build Selected.
Copy 1 (copy1)
1
In the Geometry toolbar, click  Transforms and choose Copy.
2
3
In the Settings window for Copy, locate the Displacement section.
4
In the z text field, type 2*100/3.
5
Click  Build Selected.
Copy 2 (copy2)
1
In the Geometry toolbar, click  Transforms and choose Copy.
2
3
In the Settings window for Copy, locate the Displacement section.
4
In the z text field, type -2*100/3.
5
Click  Build Selected.
Definitions
Infinite Element Domain 1 (ie1)
1
In the Definitions toolbar, click  Infinite Element Domain.
2
3
In the Settings window for Infinite Element Domain, locate the Geometry section.
4
From the Type list, choose Cylindrical.
Laminar Flow (spf)
1
In the Model Builder window, under Component 1 (comp1) click Laminar Flow (spf).
2
In the Settings window for Laminar Flow, locate the Domain Selection section.
3
Click  Clear Selection.
4
Materials
Air
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Air in the Label text field.
3
4
Locate the Material Contents section. In the table, enter the following settings:
Iron
1
Right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Iron in the Label text field.
3
4
Locate the Material Contents section. In the table, enter the following settings:
Add Material
1
In the Home toolbar, click  Add Material to open the Add Material window.
2
Go to the Add Material window.
3
In the tree, select AC/DC>Liquid Metals>Lithium, 200 °C.
4
Click Add to Component in the window toolbar.
5
In the Home toolbar, click  Add Material to close the Add Material window.
Materials
Lithium, 200 °C (mat3)
Select Domain 2 only.
Magnetic Fields (mf)
In the Model Builder window, under Component 1 (comp1) click Magnetic Fields (mf).
Periodic Condition 1
1
In the Physics toolbar, click  Boundaries and choose Periodic Condition.
2
In the Settings window for Periodic Condition, locate the Boundary Selection section.
3
Click  Paste Selection.
4
In the Paste Selection dialog box, type 2, 3, 5, 6, 8, 21, 26, 27, 29, 30 in the Selection text field.
5
Multi- Turn Coil 1
1
In the Physics toolbar, click  Domains and choose Coil.
2
In the Settings window for Coil, type Multi- Turn Coil 1 in the Label text field.
3
Locate the Domain Selection section. Click  Paste Selection.
4
In the Paste Selection dialog box, type 6 in the Selection text field.
5
6
In the Settings window for Coil, locate the Coil section.
7
From the Conductor model list, choose Homogenized multiturn.
8
In the Icoil text field, type I1.
9
Locate the Homogenized Multiturn Conductor section. In the N text field, type N.
Multi- Turn Coil 2
1
Right-click Multi- Turn Coil 1 and choose Duplicate.
2
In the Settings window for Coil, type Multi- Turn Coil 2 in the Label text field.
3
Locate the Domain Selection section. Click  Clear Selection.
4
5
Locate the Coil section. In the Icoil text field, type I2.
Multi- Turn Coil 3
1
Right-click Multi- Turn Coil 2 and choose Duplicate.
2
In the Settings window for Coil, type Multi- Turn Coil 3 in the Label text field.
3
Locate the Domain Selection section. Click  Clear Selection.
4
5
Locate the Coil section. In the Icoil text field, type I3.
Laminar Flow (spf)
Fluid Properties 1
1
In the Model Builder window, under Component 1 (comp1)>Laminar Flow (spf) click Fluid Properties 1.
2
In the Settings window for Fluid Properties, locate the Model Input section.
3
From the T list, choose User defined. In the associated text field, type T.
Pressure Point Constraint 1
1
In the Physics toolbar, click  Points and choose Pressure Point Constraint.
2
In the Settings window for Pressure Point Constraint, locate the Point Selection section.
3
Click  Paste Selection.
4
In the Paste Selection dialog box, type 4 in the Selection text field.
5
Periodic Flow Condition 1
1
In the Physics toolbar, click  Boundaries and choose Periodic Flow Condition.
2
In the Settings window for Periodic Flow Condition, locate the Boundary Selection section.
3
Click  Paste Selection.
4
In the Paste Selection dialog box, type 5-6 in the Selection text field.
5
Multiphysics
Magnetohydrodynamics 1 (mhd1)
1
In the Model Builder window, under Component 1 (comp1)>Multiphysics click Magnetohydrodynamics 1 (mhd1).
2
In the Settings window for Magnetohydrodynamics, locate the Domain Selection section.
3
Click  Clear Selection.
4
Mesh 1
1
In the Model Builder window, under Component 1 (comp1) click Mesh 1.
2
In the Settings window for Mesh, locate the Sequence Type section.
3
From the list, choose User-controlled mesh.
Size
1
In the Model Builder window, under Component 1 (comp1)>Mesh 1 click Size.
2
In the Settings window for Size, locate the Element Size section.
3
From the Predefined list, choose Finer.
4
Click  Build Selected.
Size 1
1
In the Model Builder window, click Size 1.
2
In the Settings window for Size, locate the Element Size section.
3
From the Predefined list, choose Extra fine.
4
Click  Build Selected.
Size 2
In the Model Builder window, under Component 1 (comp1)>Mesh 1 right-click Size 2 and choose Delete.
Size 3
In the Model Builder window, right-click Size 3 and choose Delete.
Distribution 1
In the Model Builder window, right-click Distribution 1 and choose Delete.
Edge 1
1
In the Model Builder window, under Component 1 (comp1)>Mesh 1 click Edge 1.
2
In the Settings window for Edge, locate the Boundary Selection section.
3
Click  Clear Selection.
4
Click  Paste Selection.
5
In the Paste Selection dialog box, type 5-6 in the Selection text field.
6
7
In the Settings window for Edge, click to expand the Control Entities section.
8
In the Number of iterations text field, type 8.
9
In the Maximum element depth to process text field, type 8.
Distribution 1
1
Right-click Edge 1 and choose Distribution.
2
In the Settings window for Distribution, locate the Distribution section.
3
From the Distribution type list, choose Predefined.
4
In the Number of elements text field, type 40.
5
In the Element ratio text field, type 25.
6
Select the Symmetric distribution check box.
Edge 1
Right-click Edge 1 and choose Build Selected.
Edge 2
1
In the Mesh toolbar, click  Edge.
2
In the Settings window for Edge, locate the Boundary Selection section.
3
Click  Paste Selection.
4
In the Paste Selection dialog box, type 7, 9, 11, 13, 15, 17, 19 in the Selection text field.
5
6
In the Settings window for Edge, locate the Control Entities section.
7
In the Number of iterations text field, type 8.
8
In the Maximum element depth to process text field, type 8.
Size 1
1
Right-click Edge 2 and choose Size.
2
In the Settings window for Size, locate the Element Size section.
3
From the Predefined list, choose Extremely fine.
Edge 2
In the Model Builder window, right-click Edge 2 and choose Build Selected.
Copy Edge 1
1
In the Mesh toolbar, click  Copy and choose Copy Edge.
2
In the Settings window for Copy Edge, locate the Source Boundaries section.
3
Click  Paste Selection.
4
In the Paste Selection dialog box, type 7, 9, 11, 13, 15, 17, 19 in the Selection text field.
5
6
In the Settings window for Copy Edge, locate the Destination Boundaries section.
7
Click to select the  Activate Selection toggle button.
8
9
Click to expand the Control Entities section. In the Number of iterations text field, type 8.
10
In the Maximum element depth to process text field, type 8.
11
Click  Build Selected.
Mapped 2
1
In the Mesh toolbar, click  Mapped.
2
In the Settings window for Mapped, locate the Domain Selection section.
3
From the Geometric entity level list, choose Domain.
4
5
Click to expand the Control Entities section. In the Number of iterations text field, type 8.
6
In the Maximum element depth to process text field, type 8.
7
Click  Build Selected.
Copy 1
In the Model Builder window, under Component 1 (comp1)>Mesh 1 right-click Copy 1 and choose Delete.
Corner Refinement 1
In the Model Builder window, right-click Corner Refinement 1 and choose Delete.
Free Triangular 1
1
In the Model Builder window, under Component 1 (comp1)>Mesh 1 click Free Triangular 1.
2
In the Settings window for Free Triangular, locate the Domain Selection section.
3
4
Click  Remove from Selection.
5
6
Click to expand the Control Entities section. In the Number of iterations text field, type 8.
7
In the Maximum element depth to process text field, type 8.
8
Click  Build Selected.
Mapped 1
1
In the Model Builder window, click Mapped 1.
2
In the Settings window for Mapped, locate the Domain Selection section.
3
From the Geometric entity level list, choose Remaining.
4
Locate the Control Entities section. In the Number of iterations text field, type 8.
5
In the Maximum element depth to process text field, type 8.
6
Click  Build Selected.
Boundary Layers 1
In the Model Builder window, under Component 1 (comp1)>Mesh 1 right-click Boundary Layers 1 and choose Delete.
Study 1
Step 1: Frequency-Stationary
1
In the Model Builder window, under Study 1 click Step 1: Frequency-Stationary.
2
In the Settings window for Frequency-Stationary, locate the Study Settings section.
3
In the Frequency text field, type 50.
4
Click to expand the Study Extensions section. Select the Auxiliary sweep check box.
5
6
7
From the Run continuation for list, choose No parameter.
8
From the Reuse solution from previous step list, choose Yes.
Solution 1 (sol1)
1
In the Study toolbar, click  Show Default Solver.
2
In the Model Builder window, expand the Solution 1 (sol1) node.
3
In the Model Builder window, expand the Study 1>Solver Configurations>Solution 1 (sol1)>Stationary Solver 1 node.
4
Right-click Study 1>Solver Configurations>Solution 1 (sol1)>Stationary Solver 1 and choose Segregated.
5
In the Model Builder window, expand the Study 1>Solver Configurations>Solution 1 (sol1)>Stationary Solver 1>Segregated 1 node, then click Segregated Step.
6
In the Settings window for Segregated Step, locate the General section.
7
In the Variables list, choose Pressure (comp1.p) and Velocity field (comp1.u).
8
Under Variables, click  Delete.
9
In the Model Builder window, under Study 1>Solver Configurations>Solution 1 (sol1)>Stationary Solver 1 right-click Segregated 1 and choose Segregated Step.
10
In the Settings window for Segregated Step, locate the General section.
11
Under Variables, click  Add.
12
In the Add dialog box, in the Variables list, choose Pressure (comp1.p) and Velocity field (comp1.u).
13
14
In the Settings window for Segregated Step, click to expand the Method and Termination section.
15
In the Damping factor text field, type 0.5.
16
In the Study toolbar, click  Compute.
Results
Study 1/Solution 1 (sol1)
1
In the Model Builder window, expand the Results>Datasets node, then click Study 1/Solution 1 (sol1).
2
In the Settings window for Solution, locate the Solution section.
3
From the Frame list, choose Material  (R, PHI, Z).
Magnetic Flux Density Norm (mf)
1
In the Model Builder window, expand the Results>Magnetic Flux Density Norm (mf) node, then click Magnetic Flux Density Norm (mf).
2
In the Settings window for 2D Plot Group, locate the Plot Settings section.
3
From the Frame list, choose Material  (R, PHI, Z).
Streamline 1
In the Model Builder window, under Results>Magnetic Flux Density Norm (mf) right-click Streamline 1 and choose Delete.
Contour 1
In the Model Builder window, right-click Contour 1 and choose Delete.
Magnetic Flux Density Norm (mf)
1
In the Model Builder window, under Results click Magnetic Flux Density Norm (mf).
2
In the Magnetic Flux Density Norm (mf) toolbar, click  Plot.
3
Click the  Go to Default View button in the Graphics toolbar.
Magnetic Flux Density Norm, Revolved Geometry (mf)
In the Model Builder window, under Results right-click Magnetic Flux Density Norm, Revolved Geometry (mf) and choose Delete.
Velocity (spf)
1
In the Model Builder window, under Results click Velocity (spf).
2
In the Settings window for 2D Plot Group, locate the Color Legend section.
3
Select the Show maximum and minimum values check box.
4
In the Velocity (spf) toolbar, click  Plot.
5
Click the  Go to Default View button in the Graphics toolbar.
Pressure (spf)
1
In the Model Builder window, expand the Velocity (spf) node, then click Results>Pressure (spf).
2
In the Settings window for 2D Plot Group, locate the Color Legend section.
3
Select the Show maximum and minimum values check box.
4
In the Pressure (spf) toolbar, click  Plot.
5
Click the  Go to Default View button in the Graphics toolbar.
Velocity (spf) 1
1
In the Model Builder window, expand the Pressure (spf) node, then click Results>Velocity, 3D (spf).
2
In the Settings window for 3D Plot Group, type Velocity (spf) 1 in the Label text field.
3
Locate the Color Legend section. Select the Show maximum and minimum values check box.
4
In the Velocity (spf) 1 toolbar, click  Plot.
5
Click the  Go to Default View button in the Graphics toolbar.
Velocity and Magnetic Flux Density
1
In the Model Builder window, expand the Velocity (spf) 1 node.
2
Right-click Results>Velocity (spf) 1 and choose 2D Plot Group.
3
In the Settings window for 2D Plot Group, type Velocity and Magnetic Flux Density in the Label text field.
4
Locate the Plot Settings section. Clear the Plot dataset edges check box.
5
Locate the Color Legend section. Select the Show maximum and minimum values check box.
Contour 1
1
Right-click Velocity and Magnetic Flux Density and choose Contour.
2
In the Settings window for Contour, locate the Expression section.
3
In the Expression text field, type r*Aphi.
4
Locate the Levels section. Clear the Round the levels check box.
5
Locate the Coloring and Style section. From the Coloring list, choose Uniform.
6
From the Color list, choose Black.
7
Clear the Color legend check box.
8
Click to expand the Title section. From the Title type list, choose None.
Arrow Surface 1
1
In the Model Builder window, right-click Velocity and Magnetic Flux Density and choose Arrow Surface.
2
In the Settings window for Arrow Surface, click to expand the Title section.
3
From the Title type list, choose None.
4
Click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Laminar Flow>Velocity and pressure>u,w - Velocity field.
5
Locate the Arrow Positioning section. Find the R grid points subsection. From the Entry method list, choose Coordinates.
6
In the Coordinates text field, type range(25.1,18/10,44).
7
Locate the Coloring and Style section. From the Color list, choose Black.
Surface 1
1
Right-click Velocity and Magnetic Flux Density and choose Surface.
2
In the Settings window for Surface, click to expand the Title section.
3
From the Title type list, choose Custom.
4
Find the Type and data subsection. Clear the Type check box.
5
Click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Laminar Flow>Velocity and pressure>spf.U - Velocity magnitude - m/s.
6
Locate the Coloring and Style section. Click  Change Color Table.
7
In the Color Table dialog box, select Wave>WaveLight in the tree.
8
Surface 2
1
Right-click Velocity and Magnetic Flux Density and choose Surface.
2
In the Settings window for Surface, locate the Title section.
3
From the Title type list, choose Custom.
4
Find the Type and data subsection. Clear the Type check box.
5
Locate the Coloring and Style section. Click  Change Color Table.
6
In the Color Table dialog box, select Rainbow>RainbowLight in the tree.
7
Selection 1
1
Right-click Surface 2 and choose Selection.
2
Surface 3
1
In the Model Builder window, right-click Velocity and Magnetic Flux Density and choose Surface.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Magnetic Fields>Currents and charge>Current density - A/m²>mf.Jphi - Current density, phi-component.
3
Locate the Title section. From the Title type list, choose Custom.
4
Find the Type and data subsection. Clear the Type check box.
5
Locate the Coloring and Style section. Click  Change Color Table.
6
In the Color Table dialog box, select Wave>WaveLight in the tree.
7
Selection 1
1
Right-click Surface 3 and choose Selection.
2
Velocity and Magnetic Flux Density
1
In the Model Builder window, under Results click Velocity and Magnetic Flux Density.
2
In the Velocity and Magnetic Flux Density toolbar, click  Plot.
3
Click the  Go to Default View button in the Graphics toolbar.
Lorentz Force and Current Density
1
In the Home toolbar, click  Add Plot Group and choose 2D Plot Group.
2
In the Settings window for 2D Plot Group, type Lorentz Force and Current Density in the Label text field.
3
Locate the Color Legend section. Select the Show maximum and minimum values check box.
Surface 1
1
Right-click Lorentz Force and Current Density and choose Surface.
2
In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Magnetic Fields>Currents and charge>Current density - A/m²>mf.Jphi - Current density, phi-component.
3
Locate the Coloring and Style section. From the Scale list, choose Linear symmetric.
4
Click  Change Color Table.
5
In the Color Table dialog box, select Wave>WaveLight in the tree.
6
Contour 1
1
In the Model Builder window, right-click Lorentz Force and Current Density and choose Contour.
2
In the Settings window for Contour, locate the Expression section.
3
In the Expression text field, type r*Aphi.
4
Locate the Levels section. Clear the Round the levels check box.
5
Locate the Coloring and Style section. From the Coloring list, choose Uniform.
6
From the Color list, choose Black.
7
Clear the Color legend check box.
8
Locate the Title section. From the Title type list, choose None.
Arrow Surface 1
1
Right-click Lorentz Force and Current Density and choose Arrow Surface.
2
In the Settings window for Arrow Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Magnetic Fields>Mechanical>mf.FLtzavr,mf.FLtzavz - Lorentz force contribution, time average.
3
Locate the Arrow Positioning section. Find the R grid points subsection. From the Entry method list, choose Coordinates.
4
In the Coordinates text field, type range(25.1,18/10,44).
5
Find the Z grid points subsection. In the Points text field, type 30.
6
Locate the Coloring and Style section. From the Arrow length list, choose Logarithmic.
7
From the Color list, choose Black.
Lorentz Force and Current Density
1
Click the  Zoom Extents button in the Graphics toolbar.
2
In the Model Builder window, click Lorentz Force and Current Density.
3
In the Lorentz Force and Current Density toolbar, click  Plot.
4
Click the  Go to Default View button in the Graphics toolbar.
Velocity and Magnetic Flux Density, Revolved Geometry
1
In the Home toolbar, click  Add Plot Group and choose 3D Plot Group.
2
In the Settings window for 3D Plot Group, type Velocity and Magnetic Flux Density, Revolved Geometry in the Label text field.
3
Locate the Plot Settings section. Clear the Plot dataset edges check box.
Volume 1
1
Right-click Velocity and Magnetic Flux Density, Revolved Geometry and choose Volume.
2
In the Settings window for Volume, locate the Expression section.
3
In the Expression text field, type mf.normB/((dom!=2)*(dom!=8)*(dom!=7)).
4
Click to expand the Title section. From the Title type list, choose Custom.
5
Find the Type and data subsection. Clear the Type check box.
6
Locate the Expression section.
7
Select the Description check box. In the associated text field, type Magnetic flux density.
8
Locate the Coloring and Style section. Click  Change Color Table.
9
In the Color Table dialog box, select Aurora>AuroraBorealis in the tree.
10
Volume 2
1
In the Model Builder window, right-click Velocity and Magnetic Flux Density, Revolved Geometry and choose Volume.
2
In the Settings window for Volume, locate the Expression section.
3
In the Expression text field, type abs(spf.U).
4
Select the Description check box. In the associated text field, type Fluid velocity.
5
Locate the Title section. From the Title type list, choose Custom.
6
Find the Type and data subsection. Clear the Type check box.
7
Locate the Coloring and Style section. Click  Change Color Table.
8
In the Color Table dialog box, select Aurora>JupiterAuroraBorealis in the tree.
9
10
In the Settings window for Volume, locate the Coloring and Style section.
11
From the Color table transformation list, choose Reverse.
Deformation 1
1
Right-click Volume 2 and choose Deformation.
2
In the Settings window for Deformation, locate the Expression section.
3
In the R-component text field, type 0.
4
In the PHI-component text field, type 0.
5
In the Z-component text field, type abs(w).
6
Locate the Scale section.
7
Select the Scale factor check box. In the associated text field, type 3.
Contour 1
1
In the Model Builder window, right-click Velocity and Magnetic Flux Density, Revolved Geometry and choose Contour.
2
In the Settings window for Contour, locate the Expression section.
3
In the Expression text field, type Aphi*r.
4
Locate the Levels section. Clear the Round the levels check box.
5
Locate the Coloring and Style section. From the Coloring list, choose Uniform.
6
From the Color list, choose Black.
7
Clear the Color legend check box.
8
Click to expand the Title section. From the Title type list, choose None.
Velocity and Magnetic Flux Density, Revolved Geometry
1
In the Model Builder window, click Velocity and Magnetic Flux Density, Revolved Geometry.
2
In the Velocity and Magnetic Flux Density, Revolved Geometry toolbar, click  Plot.
3
Click the  Go to Default View button in the Graphics toolbar.