Design Module

User's Guide

Design Module User's Guide

© 2005-2022 COMSOL

Protected by patents listed on www.comsol.com/patents, or see Help>About COMSOL Multiphysics on the File menu in the COMSOL Desktop for less detailed lists of U.S. Patents that may apply. Patents pending.
This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the license agreement. Portions of this software are owned by Siemens Product Lifecycle Management Software Inc. © 1986-2022. All Rights Reserved. Portions of this software are owned by Spatial Corp. © 1989-2022. All Rights Reserved.
COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Compiler, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. ACIS and SAT are registered trademarks of Spatial Corporation. CATIA is a registered trademark of Dassault Systèmes or its subsidiaries in the US and/or other countries. Parasolid is a trademark or registered trademark of Siemens Product Lifecycle Management Software Inc. or its subsidiaries in the United States and in other countries. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those or the above non-COMSOL trademark owners. For a list of such trademark owners, see www.comsol.com/ trademarks.

Version: COMSOL 6.1

Contact Information

Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries or search for an address and phone number. You can also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for address and contact information.

If you need to contact Support, an online request form is located on the COMSOL Access page at www.comsol.com/support/case. Other useful links include:

- Support Center: www.comsol.com/support
- Product Download: www.comsol.com/product-download
- Product Updates: www.comsol.com/support/updates
- COMSOL Blog: www.comsol.com/blogs
- Discussion Forum: www.comsol.com/forum
- Events: www.comsol.com/events
- COMSOL Video Gallery: www.comsol.com/videos
- Support Knowledge Base: www.comsol.com/support/knowledgebase
Contents
Chapter I: Introduction
About the Design Module 10
Overview of the Included Geometry Tools and Features 10
Overview of the User's Guide 13
Where Do I Access the Documentation and Application Libraries? 13
Chapter 2: Geometry Tools and Features
Constraint and Dimension Features 18
Working with Constraints and Dimensions 18
Angle 27
Coincident 28
Concentric 28
Directed Distance 29
Distance 30
Equal Distance 31
Equal Radius 32
Horizontal 33
Parallel. 33
Perpendicular 33
Position 34
Radius 34
Tangent Constraint 35
Total Edge Length 36
Vertical 36
x-Distance 37
y-Distance 38
Geometry Representation 40
Working with the CAD Kernel 40
Converting Objects to COMSOL Kernel Representation 42
Converting Objects to CAD Kernel Representation 43
Importing and Exporting CAD Files 44
Importing 3D CAD Files 44
Exporting Objects to 3D CAD Formats 50
Repairing and Defeaturing 52
Check 53
Delete Fillets 54
Delete Holes 56
Delete Short Edges 58
Delete Sliver Faces 60
Delete Small Faces 61
Delete Spikes 63
Detach Faces 65
Detect Interferences 66
Repair 69
Replace Faces 71
Creating and Modifying Geometries 73
Cap Faces 73
Chamfer 75
Fillet 76
Knit to Solid 79
Loft 80
Midsurface 84
Offset Faces. 86
Projection 89
Thicken 91
Transform Faces 93
Chapter 3: Programming and Command Reference
Defeaturing Tools 98
Defeaturing Tools - Finding and Deleting Small Details 98
Defeaturing Tools - Detach Faces 101
Defeaturing Tools - Detect Interferences 102
Defeaturing Tools - Replace Faces. 102
Summary of Commands 104
Commands Grouped by Function 106
Commands for Creating and Modifying Geometry in 2D 106
Commands for Creating Constraints in 2D 107
Commands for Creating Dimensions in 2D 107
Commands for Defeaturing 108
Commands for File Import, Export, Conversion and Repair 108
Commands for Creating and Modifying Geometry in 3D 108
Commands in Alphabetical Order 110
Angle 110
Array 111
BezierPolygon 111
CapFaces 111
Chamfer 112
Chamfer3D 113
Check 115
Circle 115
CircularArc 116
Coincident 117
Concentric 117
ConvertToCOMSOL 118
Copy 120
CubicBezier 120
DeleteFillets 120
DeleteHoles 123
DeleteShortEdges 126
DeleteSliverFaces. 129
DeleteSmallFaces 132
DeleteSpikes 134
DetachFaces 137
DetectInterferences 140
DirectedDistance. 140
Distance 142
Ellipse 143
EqualDistance 143
EqualRadius 144
Export, ExportFinal 145
Horizontal 147
Fillet 148
Fillet3D 148
Import 3D CAD 150
InterpolationCurve 158
Knit. 158
LineSegment 160
Loft 161
Midsurface 164
Mirror 166
Move 166
OffsetFaces 166
Parallel. 168
Perpendicular 169
Point 170
Polygon 170
Position 170
Projection 171
QuadraticBezier 173
Radius 173
Rectangle 174
Repair 175
ReplaceFaces 177
Rotate 180
Scale 180
Square 180
TangentConstraint I81
Thicken 182
TotalEdgeLength 185
TransformFaces 185
Vertical 188
XDistance 189
YDistance 190
Index 193

Introduction

Welcome to the Design Module User's Guide. This guide details the functionality of this optional package that extends the COMSOL Multiphysics ${ }^{\circledR}$ modeling environment with additional tools and features to create and modify geometry, and to import and export geometry using the most common 3D CAD file formats.

This introductory chapter contains an overview of the capabilities of the module, including a summary of the included geometry features, an overview of this guide, and a description of where to find documentation and model examples.

About the Design Module

Overview of the Included Geometry Tools and Features

The Design Module extends the geometry modeling capabilities of COMSOL Multiphysics with constraint and dimension features in 2D, a dedicated geometric kernel, the CAD kernel, features for creating and modifying geometry, import and export of several 3D CAD formats, and functionality to repair and defeature imported geometry objects. Included geometry features are, for example, the fillet and chamfer features in 3D, and the loft feature that can generate 3D surfaces based on cross sectional profiles, which could come from an MRI scan, or could be the faces of existing geometry objects. Further functionality such as the midsurface and thicken allows for converting a thin solid object into a surface, or the other way around.

The import capabilities cover the most common 3D CAD file formats: $A C I S^{\circledR}$, AutoCAD ${ }^{\circledR}$, IGES, Inventor ${ }^{\circledR}$, $N X^{\circledR}$, Parasolid ${ }^{\circledR}$, PTC $^{\circledR}$ Creo ${ }^{\circledR}$ Parametric ${ }^{\mathrm{TM}}$, PTC ${ }^{\circledR}$ Pro/ENGINEER ${ }^{\circledR}$, SOLIDWORKS ${ }^{\circledR}$, and STEP. In addition, support for CATIA ${ }^{\circledR}$ V5 is available as a separate add-on. To exchange data with CAD packages, you can export your geometry to the $A C I S^{\circledR}$, IGES, Parasolid ${ }^{\circledR}$, and STEP file formats.

Finally, the product provides a wide range of tools for you to prepare an imported 3D design for meshing and analysis. You can interactively search for and remove geometric features, for example, fillets, holes, slivers, small faces, and short edges. You can also modify objects by detaching a portion to form an additional computational domain, or by creating a fluid domain for computation, in case the CAD design only includes the solid parts.

GEOMETRY FEATURE	ICON	dESCRIPTION
	2D Geometry Features	
Angle	\equiv	Constrain the angle between two edges each other
Coincident	©	Constrain circular edges and vertices to have the same center
Concentric		

GEOMETRY FEATURE	ICON	DESCRIPTION
Directed Distance	\bigcirc	Constrain the distance between two geometric entities in a given direction
Distance	\checkmark	Constrain the distance between two geometric entities
Equal Distance	\leftrightarrows	Constrain the distances between two pairs of geometric entities to be equal
Equal Radius	©®	Constrain two circular edges to have the same radius
Horizontal	〒	Constrain a straight edge to be parallel to the x -axis
Parallel	//	Constrain straight edges to be parallel
Perpendicular	1	Constrain two straight edges to be perpendicular
Position	ϕ	Constrain the x - and y-coordinates of a point
Projection	最	Project 3D objects and entities to a work plane
Radius	\bigcirc	Constrain the radius of a circular edge
Tangent Constraint	\checkmark	Constrain two edges to be tangent
Total Edge Length	Γ	Constrain the total length for a set of edges
Vertical	16	Constrain a straight edge to be parallel to the y-axis
x-Distance	\longrightarrow	Constrain the distance in the x direction between entities
y-Distance	\uparrow	Constrain the distance in the y direction between entities
- 3D Geometry Features		
Cap Faces	\square	Generate faces from edges to fill gaps and create solid objects, or to partition solids
Check	\square	Check CAD objects for faults, for example tolerance issues and invalid entities
Chamfer	\square	Create a bevel on selected edges

GEOMETRY FEATURE	ICON	DESCRIPTION
Convert to COMSOL	（c）	Convert to the COMSOL kernel representation
Replace Faces	\square	Delete and replace faces
Delete Fillets	\square	Search for and delete fillets
Delete Holes	8	Search for and delete holes
Delete Short Edges	\square	Search for and delete short edges
Delete Sliver Faces	\square	Search for and delete sliver faces
Delete Small Faces	\square	Search for and collapse small faces
Delete Spikes	\square	Search for and delete spikes from faces
Detach Faces	回	Detach faces to form a new object from them
Detect Interferences		Search for interferences，such as intersections， gaps，touches and containments，between objects
Export	\rightleftarrows	Export geometry objects to 3D CAD file formats
Fillet	\square	Create rounds on selected edges
Import	茞	Import geometry objects from 3D CAD file formats
Knit to Solid	国	Knit surface objects to form solid or surface object
Loft	8	Create a lofted surface from a set of profile curves
Midsurface	θ	Generate midsurfaces for selected solid objects
Offset Faces	$\stackrel{+}{+1}$	Offset faces of 3D objects in the normal direction
Repair	ϕ	Repair defects and remove small details from 3D objects
Replace Faces	\square	Replace faces by growing surrounding faces or creating new faces
Thicken	\geqslant	Create a solid by offsetting selected surfaces
Transform Faces	(1)	Displace，rotate，and scale faces of 3D objects

Overview of the User's Guide

This documentation covers the Design Module and the add-on for file import of CATIA ${ }^{\circledR}$ V5 files. Instructions on how to use the geometry modeling tools in COMSOL Multiphysics ${ }^{\circledR}$ in general are included with the COMSOL Multiphysics Reference Manual. To help you get started with modeling this module is also accompanied by the quick-start guide Introduction to Design Module.

Where Do I Access the Documentation and Application Libraries?

A number of internet resources have more information about COMSOL, including licensing and technical information. The electronic documentation, topic-based (or context-based) help, and the application libraries are all accessed through the COMSOL Desktop.

If you are reading the documentation as a PDF file on your computer, the blue links do not work to open an application or content referenced in a different guide. However, if you are using the Help system in COMSOL Multiphysics, these links work to other modules (as long as you have a license), application examples, and documentation sets.

THE DOCUMENTATION AND ONLINE HELP

The COMSOL Multiphysics Reference Manual describes all core physics interfaces and functionality included with the COMSOL Multiphysics license. This book also has instructions about how to use COMSOL Multiphysics and how to access the electronic Documentation and Help content.

Opening Topic-Based Help

The Help window is useful as it is connected to many of the features on the GUI. To learn more about a node in the Model Builder, or a window on the Desktop, click to highlight a node or window, then press Fl to open the Help window, which then
displays information about that feature (or click a node in the Model Builder followed by the Help button (?). This is called topic-based (or context) belp.

To open the Help window:

- In the Model Builder, Application Builder, or Physics Builder click a node or window and then press Fl.
- On any toolbar (for example, Home, Definitions, or Geometry), hover the mouse over a button (for example, Add Physics or Build All) and then press Fl.
- From the File menu, click Help (?).
- In the upper-right corner of the COMSOL Desktop, click the Help (?) button.

To open the Help window:

- In the Model Builder or Physics Builder click a node or window and then press Fl.
Linux - On the main toolbar, click the Help (?) button.
- From the main menu, select Help>Help.

Opening the Documentation Window

To open the Documentation window:

- Press Ctrl+Fl.
- From the File menu select Help>Documentation (\square).

To open the Documentation window:

- Press Ctrl+Fl.
- On the main toolbar, click the Documentation (\square) button.
- From the main menu, select Help>Documentation.

THE APPLICATION LIBRARIES WINDOW

Each application includes documentation with the theoretical background and step-by-step instructions to create a model application. The applications are available in COMSOL as MPH-files that you can open for further investigation. You can use the step-by-step instructions and the actual applications as a template for your own modeling and applications. In most models, SI units are used to describe the relevant properties, parameters, and dimensions in most examples, but other unit systems are available.

Once the Application Libraries window is opened, you can search by name or browse under a module folder name. Click to view a summary of the application and its properties, including options to open it or a PDF document.

The Application Libraries Window in the COMSOL Multiphysics Reference Manual.

Opening the Application Libraries Window
To open the Application Libraries window ($\|$) :

- From the Home toolbar, Windows menu, click ($\|$) Applications Libraries.

- From the File menu select Application Libraries.

To include the latest versions of model examples, from the File>Help

Select Application Libraries from the main File or Windows menus.
To include the latest versions of model examples, from the Help menu

CONTACTING COMSOL BY EMAIL

For general product information, contact COMSOL at info@comsol.com.
To receive technical support from COMSOL for the COMSOL products, please contact your local COMSOL representative or send your questions to
support@comsol.com. An automatic notification and case number is sent to you by email.

COMSOL WEBSITES

COMSOL website	www.comsol.com
Contact COMSOL	www.comsol.com/contact
COMSOL Access	www.comsol.com/access
Support Center	www.comsol.com/support
Product Download	www.comsol.com/product-download
Product Updates	www.comsol.com/support/updates
COMSOL Blog	www.comsol.com/blogs
Discussion Forum	www.comsol.com/events
Events	www.comsol.com/video
COMSOL Video Gallery	www.comsol.com/support/knowledgebase
Support Knowledge Base	

2

Geometry Tools and Features

This chapter describes the tools and features available for creating, importing, and modifying geometry with the Design Module.

In this chapter:

- Constraint and Dimension Features
- Geometry Representation
- Importing and Exporting CAD Files
- Repairing and Defeaturing
- Creating and Modifying Geometries

Constraint and Dimension Features

In this section:

- Working with Constraints and Dimensions
- Angle
- Coincident
- Concentric
- Directed Distance
- Distance
- Equal Distance
- Equal Radius
- Horizontal
- Parallel
- Perpendicular
- Position
- Radius
- Tangent Constraint
- Total Edge Length
- Vertical
- x-Distance
- y -Distance

Working with Constraints and Dimensions

With the Design Module you can apply constraints and dimensions to geometry in 2D geometry sequences, including in geometric parts and on work planes in 3D. By using drawing tools you can quickly draw geometry that resembles a desired shape, then, by adding constraints and dimensions, you can obtain the final geometry.

A dimension (or constraining dimension) is a requirement on geometric entities that has a value, for example the distance between vertex 3 and edge 7 should be 5 [m]. You may also define a dimension using an expression that may include global parameters, for example $A * 5[\mathrm{~m}]$ that depends on the parameter A . A constraint is a requirement on
geometric entities that does not have a value; for example, a requirement that edges 9 and 11 should be perpendicular.

When you apply a constraint or dimension feature, the software immediately adjusts the drawing to satisfy the applied feature. It does this by adjusting the values of the input fields of the geometric features that created the objects. The constraints and dimensions are visualized with symbols and arrows in the Graphics window.

ENABLING THE CONSTRAINTS AND DIMENSIONS FUNCTIONALITY

The constraint and dimension functionality is automatically enabled when you add a constraint or dimension feature to a 2D geometry sequence using the buttons in the Constraints and Dimensions sections in the Sketch toolbar, and from the context menus in the Graphics and Model Builder windows. To manually enable the use of constraints and dimensions in a 2D geometry or part, or work plane, go to the Settings window for the Geometry or Plane Geometry node and set Use constraints and dimensions to On. In addition to enabling the use of constraint and dimension features, this check box also enables the editing of objects that result from previous geometric operations by dragging of vertices and edges in the Graphics window. Note that turning this functionality on for a geometry that consists of a very large number of edges and vertices may slow down the sketch visualization, and it is therefore not recommended.

To enable constraints and dimensions by default in new models make sure that the Use in new geometries check box is selected on the Geometry>2D Constraints and Dimensions page in the Preferences dialog box.

When you open an existing model, the constraint and dimension features in the model are normally active. To change this behavior clear the Use when opening a model that uses constraints and dimensions check box on the Geometry>2D Constraints and Dimensions page in the Preferences dialog box. After this, when you open a model that uses constraints and dimensions you will get a question whether you want to disable the use of constraints and dimensions. If you answer yes, the constraint and dimension features will be loaded, but they will not have any effect.

If you want to avoid that dimension and constraint features modify the input fields of a geometry feature click the Constrain (\int) button (visible only when the use of constraints and dimensions is enabled) to the right of the text field in the Settings window of the feature. This locks the text field (the Constrain button icon changes into to accept only values or expressions that are entered directly, so that the text field now becomes a built-in dimension. In some cases this is also indicated in the Graphics window by the built-in dimensions being visualized with arrows.

Constraints and dimensions can be applied to just about any geometry object, for example to the output of features you have added from the Model Builder, and the output of features such as the Union operation. The following features create objects that cannot be modified using constraints or dimensions:

- Polygon where the data source is not Table
- Interpolation Curve where the data source is not Table or Relative tolerance is not 0
- Rectangle, Square, Circle, Ellipse using layers
- Parametric Curve
- Cross Section
- Edit Object
- Import
- Part Instance
- Partition Objects, Partition Domains, and Partition Edges
- Tangent

Note that even when an object cannot be modified by a constraint or dimension feature, its entities can be used as input for such a feature together with entities that can be modified.

When applying a constraint or dimension to a straight or circular edge, the entire line or full circle is usually considered. For example, a dimension that constrains the distance between a vertex and a straight edge really constrains the distance between the vertex and the straight line underlying the edge.

CREATING CONStraint and dimension features

When you are creating a drawing in sketch mode - that is, the Sketch button is active; see also The Sketch Visualization — activate the Snap to Geometry (\square) and
Constrain) buttons in the Draw Settings group of the Sketch toolbar to automatically generate constraints as you draw curve segments using the geometry primitives. For example, a Coincident constraint is automatically applied when a vertex is snapped to an existing vertex, and Perpendicular and Tangent constraints may be applied where appropriate between curve segments as you draw them.

When applying constraint and dimension to a geometry it is recommended to add the constraints before the dimensions. The applied constraints and dimensions appear as feature nodes in the geometry sequence and the corresponding symbols are displayed in the Graphics window. You can create constraint and dimension features by using the
toolbar buttons from the Sketch toolbar or the contextual menu in the Graphics window, as described below in the sections Creating Constraints and Creating Dimensions, or by using the contextual menu of a Geometry or Plane Geometry node in the Model Builder. By the latter method you first add a constraint or dimension feature to the geometry sequence, then you select the input entities in its Settings window. When assigning the selections in the Settings window, note that the numbering of the vertices and edges in the sketch visualization (see The Sketch Visualization) sometimes differs from the numbering used in the non-sketch visualization. After building the feature the symbol for the constraint will appear the Graphics window.

CREATING CONSTRAINTS

You can add a constraint using the buttons from the Sketch toolbar by one of the following methods:

- Click the Constraint () button on the Sketch toolbar, also available from the right-click context menu in the Graphics window, to enter the smart constraint mode. In this mode, you can start with selecting edges and vertices in the Graphics window. When you have selected a sufficient number of entities, a constraint symbol will appear next to the mouse pointer. This symbol indicates a suggested constraint for the selected entities. If you are satisfied with this suggestion, move the symbol to the desired position on the canvas and left-click to place it there. This will also add the constraint feature node to the geometry sequence, and the geometry will be rebuilt so that you see the effect of the constraint. You can drag the symbol afterward to adjust its position. To select a different type of constraint from the one suggested, click the button of another constraint, from the Sketch toolbar or from the context menu displayed after right-clicking in the Graphics window, before placing the symbol. If a sufficient number of entities are selected for this new constraint, the symbol for the constraint will appear immediately at a default position, and the constraint feature node will be added to the geometry sequence. The smart constraint mode remains active after each applied constraint until you click the Constraint button again, or press Esc.
- Click a button (other than Constraint) from the Constraint group of the Sketch toolbar, to select a specific constraint. If you have already selected some entities you can also select an applicable constraint from the context menu displayed when you right-click in the Graphics window. If the preselected entities are sufficient for applying the constraint, the symbol for the constraint will appear immediately at a default position, and the constraint feature node will be added to the geometry sequence. Otherwise, when you have selected a sufficient number of entities, the
constraint symbol will appear under the pointer. Move the symbol to the desired position on the canvas and click to place it there. The feature node for the constraint will be added to the geometry sequence, and the geometry will be rebuilt.

CREATING DIMENSIONS

You can add a dimension using the buttons from the Sketch toolbar by one of the following methods:

- Click the Dimension (${ }^{123}$) button on the Sketch toolbar to enter the smart dimension mode. In this mode, you can start with selecting edges and vertices in the Graphics window. When you have selected a sufficient number of entities, a dimension symbol will appear next to the mouse pointer. This symbol indicates a suggested dimension for the selected entities (also considering the mouse pointer position in relation to the selected entities). If you are satisfied with this suggestion, move the symbol to the desired position on the canvas and click to place it there. This will also add the dimension feature node to the geometry sequence. Change the dimension's value in the Settings window for the feature; then click Build Selected to see its effect. To select a different type of dimension from the one suggested, click the button of another dimension, from the Sketch toolbar or from the context menu displayed after right-clicking in the Graphics window, before placing the symbol. If a sufficient number of entities are selected for this new dimension, the symbol for the dimension will appear immediately at a default position, and the dimension feature node will be added to the geometry sequence. You can drag the symbol afterward to adjust its position. The smart dimension mode remains active after each applied dimension until you click the Dimension button again, or press Esc.
- Click a button (other than Dimension) from the Dimensions group of the Sketch toolbar, to select a specific dimension. If you have already selected some entities you can also select an applicable dimension from the context menu displayed when you right-click in the Graphics window. If the preselected entities are sufficient for applying the dimension, the symbol for the dimension will appear immediately at a default position, and the dimension feature node will be added to the geometry sequence. Otherwise, when you have selected a sufficient number of entities, the dimension symbol will appear under the pointer. Move the symbol to the desired position on the canvas and click to place it there. This will also add the dimension feature node to the geometry sequence. Change the dimension's value in the Settings window for the feature, then click Build Selected to see its effect.

CONSTRAINT AND DIMENSION SYMBOLS

In the Graphics window the constraint and dimension features are visualized with symbols, arrows, and dimension values. These are displayed when the sketch visualization (see The Sketch Visualization) is turned on. To turn on sketch visualization click the Sketch (.) button on the Geometry, Sketch, or Work Plane toolbars. You can use the constraint and dimension symbols in the Graphics window in the following ways:

- When you hover over a symbol, it will be highlighted in red, together with the geometric entities it acts on.
- Use the scroll wheel to cycle through overlapping symbols.
- Drag the symbol to change its position.
- Double-click the symbol to select the corresponding feature node in the geometry sequence, so that its settings are shown in the Settings window. For a dimension, this also gives focus to the dimension value text field.
- Click to select the symbol. Hold down the Ctrl key to select several symbols. Selected symbols are blue in the Graphics window.
- Click the Delete (目) toolbar button or press the Delete key to delete the selected constraints and dimensions.

STATUS OF THE CONSTRAINTS AND DIMENSIONS

Before any constraints or dimensions are applied to a geometry it is possible to grab any of the edges or points of the geometry and move it around in all directions. In this state the geometry is underdefined. All geometric entities are possible to move, and they have a gray color in the Graphics window.

As you add constraints or dimensions to the geometry, the software automatically modifies the geometry and computes the remaining degrees of freedom - that is, the directions in which it is still possible to move the geometric entities. The edges and vertices that are not possible to move become black in the Graphics window to signify that they are uniquely defined. In this state the geometry is still underdefined.

When a sufficient number constraints and dimensions are added, all degrees of freedom become locked, so that none of the vertices or edges can be moved. In this state all geometric entities are black and the geometry is now well defined.

Adding further dimensions to the geometry may cause it to be overdefined. In this state the geometric entities are colored magenta in the Graphics window. Note that
entities might also be colored magenta due to other problems, for example in case a constraint can not be applied to the selected entities.

The overall status of the applied constraints and dimensions is also indicated in the Settings window for the Geometry or the Plane Geometry node, at the bottom of the Constraints and Dimensions section. The following status messages can appear there:

TABLE 2-I: CONSTRAINT AND DIMENSION STATUS MESSAGES.

status	DEscription
Underdefined	There are too few constraints and dimensions to define the geometry uniquely. Add more constraints and dimensions.
Well defined	The constraints and dimensions define the geometry uniquely, and they do not contradict each other. Note that redundant constraints are accepted in a well-defined geometry, but not redundant dimensions.
Overdefined	There are too many dimensions. Remove dimensions to get a well defined geometry.
Overdefined and	There are some conflicting or redundant constraints/ dimensions but the geometry is not uniquely defined.
underdefined	The software was unable to satisfy the constraints and dimensions, but a solution might exist.
Inconsistent	Add X constraints/dimensions to get a well defined geometry.
Need X more constraints dimensions	Of the X remaining degrees of freedom, Y degrees of freedom are rigid body motions (translation and rotation of the whole geometry).
Y rigid body degrees of freedom	Remove X constraints/dimensions to get a well defined geometry.
X too many constraints/	
dimensions	

Note that the status concerns the state of the geometry when it was last built, that is, the geometry you see in the Graphics window.

Each constraint and dimension node in the Model Builder can have a warning subnode that tells if the node is overdefined or inconsistent. When this happens, the software tries to satisfy the other constraints and dimensions, ignoring the problematic ones.

BUILDING A SUBSET OF THE CONSTRAINT AND DIMENSION FEATURES

To troubleshoot an overdefined or inconsistent state for constraints and dimensions and to find conflicting constraints or dimensions you can disable the corresponding features in the geometry sequence. Select one or several nodes in the Model Builder,
then right-click the selected nodes and select Disable. Rebuild the geometry sequence to see the effect.

Another option is to change how the constraint and dimension features are built in the geometry sequence. To do this, in the Settings window for the Geometry or the Plane Geometry node, in the Constraints and Dimensions section, the Constraint and dimension features to build list provides the following options:

- All: This option means that all constraint and dimension features in the sequence are applied, also the features that come after the feature which you are building up to. This is the default setting.
- None: Use this option to turn off the build of constraint and dimension features. The corresponding feature nodes are grayed out in the geometry sequence. Note that built-in dimensions defined by the geometric primitive features and other features may still apply.
- Up to build target: With this option selected only the constraint and dimension features up to the feature you are building up to are applied to the geometry.

MEASURING DIMENSIONS

Dimensions are created by default as constraining dimensions that are treated as a requirement on the drawing. In the settings for a dimension you can change it to become a measuring dimension by toggling the Constrain button from the locked padlock (\cap) to the open padlock (Ω). A measuring dimension is not imposing a requirement on the entities it applies to, but rather it is updated according to the other features in the geometry sequence. In the Graphics window, measuring dimensions are displayed in a blue color that is lighter than that of the constraining dimensions. Measuring dimensions are useful when you want to know the value of dimension in the drawing but adding a constraining dimension would overdefine the geometry.

DIMENSION PARAMETERS

To use the value of a dimension as a parameter in other geometry and non-geometry features select the Create parameter check box in the settings for the dimension. This setting is available for both constraining and measuring dimensions. The following conditions apply when using dimension parameters:

- You can use a dimension parameter in the expression for another dimension's value, as well as expressions in other geometry features, within the same 2 D geometry sequence. The geometry feature where you use the dimension parameter may come above the dimension feature that defines the parameter.
- When used in a geometry feature in the same 2D geometry sequence, the expression containing the dimension parameters must be linear in the dimension parameters. For example, if A is a parameter defined in a Global Definitions>Parameters node and geom1.dist3 is a dimension parameter, you can enter the expression 2+A^2*geom1. dist3, but not 2+A^2*geom1.dist3^2.
- The Condition expression in If and Else If features does not support dimension parameters.
- You can use a dimension parameter that is defined by a feature in a work plane's plane geometry sequence in expressions in 3D geometry features that come below the work plane feature.
- You can use dimension parameters created in a component in expressions in non-geometry features in that component as well as in other components, for example in physics, mesh, and materials settings.
- You can use dimension parameters created in a component in features under a Study, Results, and Global Definitions>Materials nodes.
- When entering expressions in a text field press Ctrl+Space to display a menu where you find available dimension parameters under Geometric dimensions.
- For dimensions that define a parameter, the name of the dimension parameter is displayed in the Graphics window, in the dimension's label.

HELP POINTS

For some constraint and dimension features the Settings window contains a section Help Points where you can specify coordinates for the help points on curved edges. The help points are used as initial guesses when solving the constraint or dimension. More specifically, when there are several solutions to a constraint or dimension, the software chooses the solution that is closest to the help points. When you add a constraint or dimension using a toolbar button, which is the recommended way, the help points are based on the position of the mouse click for the edge selection. When you add a constraint or dimension using the context menu in the Model Builder window the coordinates for the help points are instead set to $(0,0)$, which may sometimes result in a solution that is not desired. The software updates the help point coordinates when the geometry is built, so that the help points correspond to the found solution.

Angle

Use the Angle dimension to specify the angle between two edges. The specified angle is applied between the tangent rays at the point of intersection for the two curves underlying the edges.

Add an Angle dimension as follows:
I Click the Angle (\angle) toolbar button.
2 Select two edges, or a vertex that has exactly two adjacent edges.
3 Move the mouse pointer to select one of the four angular sectors to measure, and to adjust the radial position of the circular arrow symbol.
4 Click to place the symbol.
5 In the Settings window for Angle change the value in the Angle text field.
6 Click Build Selected to rebuild the geometry with the new value.
The Settings window for Angle contains the following sections:

- First Ray: Change the selection for the first edge. The Reverse direction check box determines the direction of the edge's tangent ray at the intersection point.
- Second Ray: Change the selection for the second edge. The Reverse direction check box determines the direction of the edge's tangent ray at the intersection point.
- Dimension Value:
- Adjust the value of the angle. The angle is measured from the first tangent ray to the second tangent ray in the counterclockwise direction.
- Toggle the Constrain button to switch between using the dimension as a constraining dimension (ρ, default) or measuring dimension (\cap). The value of a measuring dimension is not imposed as a requirement to the drawing. Instead it is updated according to other dimensions and constraints in the geometry sequence. For more information see Measuring Dimensions.
- Select the Create Parameter check box to generate a parameter for the dimension. Edit the name displayed in the Parameter name text field. When in sketch visualization mode, the parameter name is displayed in the dimension's label in the Graphics window. Use dimension parameters in expressions in geometry and other features as described in Dimension Parameters.
- Help Points: Change the help point coordinates for the two edges. These are used as initial guesses when computing a point of intersection (see Help Points).

Coincident

Use the Coincident constraint to constrain two geometric entities to coincide with each other. Depending on the type of entities selected for the constraint the following conditions may apply:

- A vertex coincides with a straight edge if the vertex lies on the line.
- A vertex coincides with a circular edge if the vertex lies on the circle.
- A vertex coincides with a spline edge if the vertex lies on the spline parameterization (but possibly outside the edge's parameter interval).
- Two straight edges coincide if they lie on the same line.
- Two circular edges coincide if they lie on the same circle.
- Two spline edges coincide if they have the same spline parameterization (but possible different parameter intervals).

Add a Coincident constraint as follows:
I Click the Coincident (\equiv) toolbar button.
2 Select two vertices or edges, or one vertex and one edge.
3 Move the mouse pointer to position the coincident symbol.
4 Click to place the symbol.
The Settings window for Coincident contains the following sections:

- Geometric Entity Selection: Change the selected entities and their type.
- Help Points: Change the help point coordinates for the selected entities. These are used as initial guesses when making a vertex coincident with a curved edge (see Help Points).

Concentric

Use the Concentric constraint to constrain circular edges to have the same center, or to constrain the center point of circular edges and vertices to coincide.

Add a Concentric constraint as follows:
I Click the Concentric (O) toolbar button.
2 Select circular edges and/or vertices.
3 Move the mouse pointer to position the concentric symbol.
4 Click to place the symbol.

The Settings window for Coincident contains the following sections:

- Geometric Entity Selection: Change the selected circular edges and vertices.

Directed Distance

Use the Directed Distance dimension to set the distance in a specified direction between two geometric entities.

The directed distance from, or to, an edge is defined using a stationary point for the directed point-to-point distance along the edge. For example, there are four ways to define the directed distance between two circles.

Add a Directed Distance dimension as follows:
I Click the Directed Distance (\quad) toolbar button.
2 Select two vertices or curved edges, or a vertex and a curved edge.
3 Optionally, select a straight edge that specifies the direction in which the distance between the entities is measured.

4 Move the mouse pointer to position the arrow symbol.
5 Click to place the symbol.
6 If you have not chosen a straight edge in Step 3 above, in the Settings window for Directed Distance specify the components of the direction vector in the \mathbf{x} and \mathbf{y} text fields.

7 If you have chosen a straight edge in Step 3, you can optionally change the Direction for the dimension from Parallel with edge (default) to Perpendicular to edge.

8 Edit the value in the Distance text field. Note that the distance can also be negative or zero.

9 Click Build Selected to see the effect of the new distance value.
The Settings window for Directed Distance contains the following sections:

- Geometric Entity Selection: Select the entities for the dimension.
- Direction: Set the direction in which the distance is measured by selecting one of the options from the Direction list box:
- Vector: Specify the direction by the \mathbf{x} and \mathbf{y} components of a direction vector. This is the default option.
- Parallel with edge: The direction is parallel with the edge in the Straight edge selection.
- Perpendicular to edge: The direction is perpendicular to the edge in the Straight edge selection.
- Dimension Value:
- Enter the distance expression in the Distance text field. The distance may be positive, negative, or zero. The sign does not matter when Direction is set to Perpendicular to edge.
- Toggle the Constrain button to switch between using the dimension as a constraining dimension (Ω, default) or measuring dimension (Ω). The value of a measuring dimension is not imposed as a requirement to the drawing. Instead it is updated according to other dimensions and constraints in the geometry sequence. For more information see Measuring Dimensions.
- Select the Create Parameter check box to generate a parameter for the dimension. Edit the name displayed in the Parameter name text field. When in sketch visualization mode, the parameter name is displayed in the dimension's label in the Graphics window. Use dimension parameters in expressions in geometry and other features as described in Dimension Parameters.
- Help Points: Change the help point coordinates for the selected entities. The help points are used as the initial guess to determine which directed distance to measure (see Help Points).

Distance

Use the Distance dimension to set the distance between two geometric entities. The distance from, or to, an edge is defined using a stationary point for the point-to-point distance along the edge. For example, there are four ways to define the distance between two circles. When you apply it to two straight edges, the distance dimension constrains the edges to be parallel. For a single edge, the distance is applied between the endpoints for the edge.

Add a Distance dimension as follows:

I Click the Distance () toolbar button.
2 Select two vertices or edges, a vertex and an edge, or an edge.
3 Move the mouse pointer to position the arrow symbol.
4 Click to place the symbol.
5 In the Settings window for Distance edit the value in the Distance text field.
6 Click Build Selected to see the effect of the new distance value.
The Settings window for Distance contains the following sections:

- Geometric Entity Selection: Change the selected entities and their type.
- Dimension Value:
- Enter the distance expression in the Distance text field.
- Toggle the Constrain button to switch between using the dimension as a constraining dimension (Ω, default) or measuring dimension (Ω). The value of a measuring dimension is not imposed as a requirement to the drawing. Instead it is updated according to other dimensions and constraints in the geometry sequence. For more information see Measuring Dimensions.
- Select the Create Parameter check box to generate a parameter for the dimension. Edit the name displayed in the Parameter name text field. When in sketch visualization mode, the parameter name is displayed in the dimension's label in the Graphics window. Use dimension parameters in expressions in geometry and other features as described in Dimension Parameters.
- Help Points: Change the help point coordinates for the selected entities. The help points are used as the initial guess to determine which distance to measure (see Help Points).

Equal Distance

Use the Equal Distance constraint to constrain the distances between two pairs of geometric entities to be equal. The distance from and to an edge is defined using a stationary point for the point-to-point distance along the edge. For example, there are four ways to define the distance between two circles.

The help points (the points where you clicked when selecting the edges) are used to determine which distance to measure.

Add an Equal Distance constraint as follows:
I Click the Equal Distance $(\stackrel{\leftrightarrows}{\leftrightarrows})$ toolbar button.

2 Select two vertices or edges, or a vertex and an edge.
3 Move the pointer to position the arrow symbol, then click to place the symbol for the first pair of entities.

4 Again, select two vertices or edges, or a vertex and an edge.
5 Click to place the second arrow symbol.
The same label will be displayed with the arrow symbols to indicate the constraint.
The Settings window for Equal Distance contains the following sections:

- First Distance: Change the selected entities and their type for the first pair.
- Second Distance: Change the selected entities and their type for the second pair.
- Graphics: Edit the label displayed with the arrow symbol for the constraint.
- Help Points: Change the help point coordinates for the selected entities. The help points are used as the initial guess to determine which distance to measure (see Help Points).

Equal Radius

Use the Equal Radius constraint to constrains two circular edges to have the same radius.

Add an Equal Radius constraint as follows:
I Click the Equal Radius $(\Theta \Theta)$ toolbar button.
2 Select a circular edge.
3 Move the pointer to position the arrow symbol, then click to place the symbol for the first edge.
4 Select another circular edge.
5 Click to position the second arrow symbol.
The same label will be displayed with the arrow symbols to indicate the constraint.
The Settings window contains the following sections:

EDGE SELECTION

Change the selected entities.

GRAPHICS

Edit the label displayed with the arrow symbol for the constraint.

Horizontal

Use the Horizontal constraint to constrain straight edges to be parallel to the x -axis.
Add a Horizontal constraint as follows:
I Click the Horizontal (\ldots) toolbar button.
2 Select straight edges.
3 Move the pointer to position the parallel symbol, then click to place it.
The Settings window for Horizontal contains the following section:

EDGE SELECTION

Change the selected entities.

Parallel

Use the Parallel constraint to constrain straight edges to be parallel.
Add a Parallel constraint as follows:
I Click the Parallel (/) toolbar button.
2 Select straight edges.
3 Move the pointer to position the parallel symbol, then click to place it.
The Settings window for Parallel contains the following section:

EDGE SELECTION

Change the selected entities.

Perpendicular

Use the Perpendicular constraint to constrain two straight edges to be orthogonal.
Add a Perpendicular constraint as follows:
I Click the Perpendicular ($ـ$) toolbar button.
2 Select two straight edges, or a vertex that has exactly two adjacent edges.
3 Move the pointer to position the perpendicular symbol, then click to place it.
The settings window for Perpendicular contains the following section:

- Edge Selection: Change the selected entities.

Position

Use the Position dimension to specify the coordinates for a vertex.
Add a Position dimension as follows:
I Click the Position (ϕ) toolbar button.
2 Select a vertex.
3 Click somewhere on the canvas to place the position symbol.
4 In the Settings window for Position edit the coordinates in the \mathbf{x} and \mathbf{y} text fields.
5 Click Build Selected to rebuild the geometry with the new coordinates for the vertex.
The Settings window for Position contains the following sections:

- Vertex Selection: Change the selected vertex.
- Coordinates:
- Edit the coordinate expressions.
- Toggle the Constrain buttons to switch between using the dimensions as constraining dimensions (Ω, default) or measuring dimensions ($\boldsymbol{\sim}$). The value of a measuring dimension is not imposed as a requirement to the drawing. Instead it is updated according to other dimensions and constraints in the geometry sequence. For more information see Measuring Dimensions.
- Select the Create Parameter check box to generate a parameter for the dimensions. Edit the names displayed in the \mathbf{x} parameter name and \mathbf{y} parameter name text fields. When in sketch visualization mode, the parameter names are displayed in the dimension's label in the Graphics window. Use dimension parameters in expressions in geometry and other features as described in Dimension Parameters.

Radius

Use the Radius dimension to set the radius for a circular edge.
Add a Radius dimension as follows:
I Click the Radius (Θ) toolbar button.
2 Select a circular edge.
3 Click somewhere on the canvas to place the arrow symbol.
4 In the Settings window for Radius edit the value in the Radius text field.

5 Click Build Selected to rebuild the geometry with the new radius.
The Settings window for Radius contains the following sections:

- Edge Selection: Change the selected circular edge.

- Dimension Value:

- Edit the radius expression.
- Toggle the Constrain button to switch between using the dimension as a constraining dimension (Ω, default) or measuring dimension (Ω). The value of a measuring dimension is not imposed as a requirement to the drawing. Instead it is updated according to other dimensions and constraints in the geometry sequence. For more information see Measuring Dimensions.
- Select the Create Parameter check box to generate a parameter for the dimension. Edit the name displayed in the Parameter name text field. When in sketch visualization mode, the parameter name is displayed in the dimension's label in the Graphics window. Use dimension parameters in expressions in geometry and other features as described in Dimension Parameters.

Tangent Constraint

Use the Tangent Constraint to constrain two edges to have a point of tangency. For each edge, you can optionally specify an adjacent vertex as the point of tangency.

Add a Tangent Constraint as follows:
I Click the Tangent Constraint ($\left.\mathcal{U}^{(}\right)$toolbar button.
2 Select two edges (and optionally a vertex adjacent to each edge), or a vertex having exactly two adjacent edges.

3 Click somewhere on the canvas to place the tangent symbol.
The Settings window for Tangent Constraint contains the following sections:

- First Edge: Change the selected edge. To set the point of tangency to a vertex, from the Point of tangency list, choose Vertex, then activate the Vertex selection, and select a vertex adjacent to the edge. With the default setting for Point of tangency, Anywhere, the tangency can be applied anywhere on the edge.
- Second Edge: Change the selected edge and point of tangency similarly as in the First Edge section.
- Help Points: Change the help point coordinates for the selected edges. The help points are used as the initial guess when computing the intersection of the edges if a vertex has not been selected (see Help Points).

Total Edge Length

Use the Total Edge Length dimension to specify the total length for a set of edges. The edges must form a chain and all lie on the same line, circle, or spline.

Add a Total Edge Length dimension as follows:
I Click the Total Edge Length (Γ) toolbar button.
2 Select edges that form a chain on the same line, circle, or spline.
3 Click somewhere on the canvas to place the arrow symbol.
4 In the Settings window for Total Edge Length edit the value in the Length text field.
5 Click Build Selected to rebuild the geometry with the new length.
The Settings window for Total Edge Length contains the following section:

- Edge Selection: Change the selected edges.

- Dimension Value:

- Edit the length expression.
- Toggle the Constrain button to switch between using the dimension as a constraining dimension (Ω, default) or measuring dimension (Ω). The value of a measuring dimension is not imposed as a requirement to the drawing. Instead it is updated according to other dimensions and constraints in the geometry sequence. For more information see Measuring Dimensions.
- Select the Create Parameter check box to generate a parameter for the dimension. Edit the name displayed in the Parameter name text field. When in sketch visualization mode, the parameter name is displayed in the dimension's label in the Graphics window. Use dimension parameters in expressions in geometry and other features as described in Dimension Parameters.

Vertical

Use the Vertical constraint to constrain straight edges to be parallel to the y -axis.

Add a Horizontal constraint as follows:
I Click the Vertical ($\left.\right|_{k}$) toolbar button.
2 Select straight edges.
3 Move the pointer to position the parallel symbol, then click to place it.
The Settings window for Vertical contains the following section:

EDGE SELECTION

Change the selected entities.

x-Distance

Use the \mathbf{x}-Distance dimension to set the distance in the x direction between two geometric entities. The x-distance from or to an edge is defined using a stationary point for the point-to-point x-distance along the edge. For example, there are four ways to define the x-distance between two circles.

Add an x-distance dimension as follows:
I Click the \mathbf{x}-Distance (\longrightarrow) toolbar button.
2 Select two vertices, two curved edges, or a vertex and a curved edge.
3 Click somewhere on the canvas to place the arrow symbol.
4 In the Settings window for \mathbf{x}-Distance edit the value in the Distance text field. Note that the distance can also be negative or zero.
5 Click Build Selected to rebuild the geometry with the new distance value.
The Settings window for \mathbf{x}-Distance contains the following sections:

- Geometric Entity Selection: Change the selected entities and their type.
- Dimension Value:
- Enter the distance expression in the Distance text field. The distance may be positive, negative, or zero.
- Toggle the Constrain button to switch between using the dimension as a constraining dimension (Ω, default) or measuring dimension (Ω). The value of a measuring dimension is not imposed as a requirement to the drawing.

Instead it is updated according to other dimensions and constraints in the geometry sequence. For more information see Measuring Dimensions.

- Select the Create Parameter check box to generate a parameter for the dimension. Edit the name displayed in the Parameter name text field. When in sketch visualization mode, the parameter name is displayed in the dimension's label in the Graphics window. Use dimension parameters in expressions in geometry and other features as described in Dimension Parameters.
- Help Points: Change the help point coordinates for the selected entities. The help points are used as the initial guess to determine which x -distance to measure (see Help Points).

y-Distance

Use the \boldsymbol{y}-Distance dimension to set the distance in the y direction between two geometric entities. The y-distance from or to an edge is defined using a stationary point for the point-to-point y-distance along the edge. For example, there are four ways to define the y-distance between two circles.

Add a y-distance dimension as follows:
I Click the \boldsymbol{y}-Distance (\uparrow) toolbar button.
2 Select two vertices, two curved edges, or a vertex and a curved edge.
3 Click somewhere on the canvas to place the arrow symbol.
4 In the Settings window for \boldsymbol{y}-Distance edit the value in the Distance text field. Note that the distance can also be negative or zero.

5 Click Build Selected to rebuild the geometry with the new distance value.
The Settings window for \boldsymbol{y}-Distance contains the following sections:

- Geometric Entity Selection: Change the selected entities and their type.
- Dimension Value:
- Enter the distance expression in the Distance text field. The distance may be positive, negative, or zero.
- Toggle the Constrain button to switch between using the dimension as a constraining dimension (Ω, default) or measuring dimension (Ω). The value of a measuring dimension is not imposed as a requirement to the drawing.

Instead it is updated according to other dimensions and constraints in the geometry sequence. For more information see Measuring Dimensions.

- Select the Create Parameter check box to generate a parameter for the dimension. Edit the name displayed in the Parameter name text field. When in sketch visualization mode, the parameter name is displayed in the dimension's label in the Graphics window. Use dimension parameters in expressions in geometry and other features as described in Dimension Parameters.
- Help Points: Change the help point coordinates for the selected entities. The help points are used as the initial guess to determine which y-distance to measure (see Help Points).

Geometry Representation

Working with the CAD Kernel

The component of the COMSOL Multiphysics ${ }^{\circledR}$ software that is used to represent, build, and manage the interactions between geometric objects is the geometric kernel or geometric modeler. There are two kernels used by the software, the COMSOL kernel, and the CAD kernel (the Parasolid ${ }^{\circledR}$ kernel) that is included with the CAD Import Module, the Design Module, and LiveLink ${ }^{\text {TM }}$ products interfacing CAD packages.

With a license for the Design Module the software defaults to the CAD kernel for representing the geometry. You need to use the CAD kernel to apply the geometry features included with this module, for example the defeaturing and repair tools, as well as to import 3D geometries using various 3D CAD file formats. Exceptions are the constraint and dimension features that do not require the CAD kernel.

The 3D operations and primitives listed in Table 2-2 do not support the CAD kernel - they always use the COMSOL kernel. However, an automatic conversion is performed for these objects before they are used as input to geometry features that require the CAD kernel, see Converting Objects to CAD Kernel Representation.

TABLE 2-2: 3D GEOMETRY FEATURES THAT DO NOT SUPPORT THE PARASOLID GEOMETRY KERNEL.

FEATURE NAME	FEATURE NAME
Bezier Polygon	Point
Eccentric Cone	Polygon
Extrude	Pyramid
Helix	Revolve
Hexahedron	Sweep
Interpolation Curve	Tetrahedron
Parametric Curve	Torus
Parametric Surface	Work Plane

CHANGING THE GEOMETRIC KERNEL

To switch between geometric kernels, you can click the Geometry node, then in its Settings window, from the Geometry representation list choose either the CAD kernel or COMSOL kernel.

When you change the Geometry representation setting, all nodes that support the CAD kernel are marked as edited with an asterisk (*) in the upper-right corner of the node's icon. To rebuild the geometry using the new kernel, click the Build All button (\mathbb{B}). To avoid re-solving an already solved model, you can click the Update Solution button (C) on the Study toolbar to map the solutions from the geometry represented by the CAD kernel to the new geometry represented by the COMSOL kernel.

> If you solve a model using the CAD kernel, it is not possible to view and postprocess the solution if you open it in a COMSOL Multiphysics session where a license for the CAD Import Module, Design Module, or one of the LiveLink for CAD products is not available, unless, before saving the model, you change the geometry representation to COMSOL kernel and update the solution. This is possible to do only for 3D geometry sequences that do not contain geometry features that require the CAD kernel.

When you create a new model, its default geometry representation is controlled by the preference setting Geometry>Geometry representation>In new geometries.

When you open an existing model, you normally use the geometry representation used in the model. To always get the possibility to convert the geometry to the COMSOL kernel, change the preference setting Geometry>Geometry representation>When opening an existing model to Convert to COMSOL kernel.

USING THE DESIGN MODULE BOOLEAN OPERATIONS

The Design Module includes 3D Boolean geometry operations that may in some cases be more successful in computing the resulting geometry, for example when building the union of objects that intersect or have gaps. By specifying an absolute tolerance that corresponds to the width of the overlap or gap, the intersecting region is collapsed or the gap is closed when building the union operation. To find appropriate tolerance values use the Detect Interferences tool.

If your license includes the Design Module and the geometry representation is set to use the CAD kernel, you can select the Design Module Boolean operations check box in a 3D Geometry node's Settings window to use the Boolean operations available with the Design Module. When you open an existing model, you normally use the Boolean operations used in the model. To always use the Design Module Boolean operations when adding a new component or part, select the preference setting Geometry>3D Design Module Boolean operations>Use in new geometries.

Converting Objects to COMSOL Kernel Representation

To convert CAD objects (geometric objects represented by the CAD kernel) to objects represented by the COMSOL kernel, from the Geometry toolbar, Conversions menu, select Convert to COMSOL (®).

> The COMSOL geometry file format (.mphbin, or .mphtxt) can contain geometric objects saved in both the CAD kernel and COMSOL kernel representations. To import geometry from such a file to a geometry sequence that uses the COMSOL kernel, you need to convert geometry objects to the COMSOL representation before exporting to the file.

CONVERT TO COMSOL

Select the objects that you want to convert in the Graphics window. The selected objects are displayed in the Input objects list.

SELECTIONS Of RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

ASSIGNED ATTRIBUTES

From the Construction geometry list choose $\mathbf{O n}$ to make the resulting objects available only in the feature's geometry sequence. The default option Inherit from input means that the resulting objects become construction geometry if all input objects are construction geometry. Choose Off to never output construction geometry objects.

For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

Converting Objects to CAD Kernel Representation

If the current geometry representation for the geometry sequence is CAD kernel, an automatic conversion of COMSOL objects to CAD objects takes place before using the objects in Boolean operations and before using the objects in the Convert to Solid, Convert to Surface, Convert to Curve, and Convert to Point operations. This ensures that the CAD kernel is used in the abovementioned operations. This conversion is also performed when COMSOL objects are used as input to features that require the CAD kernel, for example the Knit to Solid feature

An automatic conversion to CAD objects is also performed before exporting geometry in the ACIS ${ }^{\circledR}$, Parasolid ${ }^{\circledR}$, STEP, and IGES file formats.

If the automatic conversion cannot be performed, the geometry operation is performed by the COMSOL kernel. For example, geometry objects created from a mesh cannot be converted to CAD kernel representation. Other examples of geometry objects that cannot be converted to CAD representation include objects that have an edge adjacent to three or more isolated faces, or objects that have a face bounded by an edge loop that intersects itself.

The automatic conversion to CAD kernel representation is not performed if one of the input objects to the Boolean or conversion operation is the result of a previous Convert to COMSOL operation.

Importing and Exporting CAD Files

Importing 3D CAD Files

To import geometry objects from a 3D CAD file, from the Home or the Geometry toolbar, click Import (file from the Geometry import list. You can also skip this step as the type of the selected file is automatically recognized by the code. Click Browse to locate the file to import, or enter the path to the file. Before clicking the Import button consider to review and configure the import settings. If you have changed some settings after importing a file, the file is automatically re-imported when you click a build button.

The imported geometry objects are represented by the CAD kernel, see Working with the CAD Kernel, which is the geometric kernel used by the CAD Import Module, Design Module, and LiveLink ${ }^{\mathrm{TM}}$ products interfacing CAD packages.

Some 3D CAD formats use periodic parameterization for edges and faces. For example, a full-revolution cylindrical edge or face appears seamless in the CAD program. During import edges or faces that have a periodic parameterization are cut in two halves by inserting new vertices and edges. This is done because the mesh algorithms do not support periodic entities. You can ignore such inserted edges using an Ignore Edges feature from Virtual Operations.

SUPPORTED FORMATS

The CAD import supports the following 3D CAD formats:
TABLE 2-3: SUPPORTED 3D CAD FILE FORMATS

FILE FORMAT	NOTES	FILE EXTENSIONS	SUPPORTED VERSIONS
ACIS $^{\circledR}$	I	.sat, .sab	up to 2022 1.0
AutoCAD $^{\circledR}$	I, 2,3	.dwg, .dxf	$2.5-2023$
CATIA $^{\circledR}$ V5	4,5	.CATPart,	R8 to R2022
IGES	I CATProduct		
Inventor ${ }^{\circledR}$ assembly	I, 2,3	.igs, .iges	up to 5.3
Inventor $^{\circledR}$ part	I, 2,3	.ipt	$11-2023$
NX $^{\text {TM }}$	I, 3,6	.prt	$6-2023$
Parasolid $^{\circledR}$	I	.x_t, .x_b	up to 2206
PTC $^{\circledR}$ Creo $^{\circledR}$ Parametric ${ }^{\text {TM }}$	I, 3	.prt, .asm	$1.0-9.0$

TABLE 2-3: SUPPORTED 3D CAD FILE FORMATS

FILE FORMAT	NOTES	FILE EXTENSIONS	SUPPORTED VERSIONS
PTC $^{\circledR}$ Pro/ENGINEER ${ }^{\circledR}$	I	.prt, .asm	16 to Wildfire 5
SOLIDWORKS ${ }^{\circledR}$	I, 2,7	.sldprt, .sldasm	$98-2022$
STEP	I	.step, .stp	AP203E1, AP214, AP242

Note 1: This format requires a license for one of the CAD Import Module, or Design Module, or LiveLink product for a CAD package.

Note 2: This format is available only on a supported Windows ${ }^{\circledR}$ operating systems.
Note 3: Support for the AutoCAD ${ }^{\circledR} 2023$, Inventor ${ }^{\circledR} 2023$, $\mathrm{NX}^{\mathrm{TM}} 2206$, and PTC ${ }^{\circledR}$ Creo ${ }^{\circledR}$ Parametric ${ }^{\text {TM }} 9.0$ file format versions is not available on Windows ${ }^{\circledR} 7$.

Note 4: This format requires, in addition to the CAD Import Module, or Design Module, or a LiveLink product for a CAD package, a license for the File Import for CATIA V5 module.

Note 5: This format is available only on the Windows ${ }^{\circledR} 8.1$, Windows ${ }^{\circledR} 10$, and Windows ${ }^{\circledR} 11$ operating systems.

Note 6: Support for the $N X^{\text {TM }}$ file format is available only on a supported Windows ${ }^{\circledR}$ or Linux operating system.

Note 7: Embedded parts in assemblies are not supported. To import such an assembly, first convert the embedded parts to external parts.

ASSOCIATIVITY

When possible the import maintains associativity for the imported geometry objects, so that when the CAD file is re-imported the settings applied to the geometric entities, for example physics or material settings, are retained. To maintain associativity the import relies on information in the CAD file that uniquely identifies the geometry objects and their entities, such as faces, edges, and points. This information is usually included in the CAD file if the geometry is saved in the format of the CAD software where it was created, but not when the geometry is exported to another CAD format. When re-importing a CAD file the import automatically tries to identify and match all geometry objects and their entities to the previous version. This may fail if the topology (structure) of the geometry has changed since the last import.

Note: To ensure that associativity is maintained when re-importing a CAD file work with CAD files saved in the originating CAD software's format, and avoid changes to the topology (structure) of the geometry. When an associative import is not possible use coordinate-based selections, such as the Ball, Box, and Cylinder selections in 3D (see Creating Selections From Geometric Primitives and Operations in the COMSOL Multiphysics Reference Manual).

LENGTH UNIT

In the Length unit list, select From CAD document to change the geometry's length unit to the unit in the file (if the file has a length unit). Select From COMSOL to keep the geometry's length unit and scale the objects in the file to the geometry's unit.

OBJECTS TO IMPORT

Select the types of objects to import using the Solids, Surfaces, and Curves and points check boxes.

If the Surfaces check box is selected, you can choose how COMSOL imports the surfaces using the list under For surface objects:

- Choose Form solids (the default) to knit together surface objects to form solids. The input surface objects must have manifold topology, and the operation can only form solids with manifold topology. An example of a solid object with nonmanifold topology is a solid that has an interior surface that separates two domains. A surface object that contains an edge that is adjacent to more than one boundary is an example of a surface object with nonmanifold topology.
- Choose Knit surfaces to form surface objects by knitting.
- Choose Do not knit to not form any surface or solid objects from the imported surfaces.

For the Form Solids and Knit surfaces options select the Fill holes check box to generate new faces to replace missing geometry.

To import wireframe geometry you need to select the Curves and points check box. With this option, the Unite curve objects check box is selected by default to unite the imported curve objects, which speeds up the rendering of the geometry.

IMPORT OPTIONS

The Absolute import tolerance is a length measured in the geometry's unit after the import. When importing 3D CAD files, the program merges geometric entities with a distance smaller that this tolerance.

Select the Check imported objects for errors check box to check the validity of the imported objects as the last stage of the import. Warning nodes appear with details about the detected problems, if any. Use the Zoom to Selection button next to the Entities list in a warning node to locate the problematic edges or faces. For information on geometry problems that may occur see the Check feature.

If you select the Repair imported objects check box, the software tries to repair defects and remove details smaller than the Absolute repair tolerance.

The option Simplify curves and surfaces is selected by default to simplify, within the Absolute import tolerance, the underlying curve and surface manifolds of the imported geometric entities. Importing objects with this option may improve both the performance and reliability of geometric operations on some imported geometry, for example it may help in some cases when Boolean operations on the imported objects fail. Simplification means that the manifolds are converted where possible to analytical form: linear, circular, and elliptical curves; and planar, spherical, cylindrical, conical, and toroidal surfaces. Manifolds that are converted are B-spline curves and surfaces, or certain surfaces generated by operations such as sweeping, revolving, and filleting.

If the Remove redundant edges and vertices check box is selected, edges and vertices that are considered redundant, such as the edges of an imprint on a face, are removed during synchronization.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection,
which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

Select the Individual objects selections check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence for each individual object in the geometry file and for each relevant entity level. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, if available, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

SELECTIONS GENERATED BASED ON INFORMATION IN THE CAD FILE

 The following types of data from the CAD file are used to generate selection on the imported geometry:- Material assignments can generate objects selections that are named according to the material names in the CAD file.
- Layer assignments of objects and entities, when supported by the CAD format, can generate object, boundary, edge, and point selections that are named according to the layer names in the CAD file.
- Color assignments to objects, faces, or edges can generate object, boundary, and edge selections, respectively.

After the import the generated selections are displayed in the Settings window for the Import node in sections named according to the entity level of the selections:

- Object Selections
- Boundary Selections
- Edge Selections
- Point Selections

Depending on which selections are generated, a subset of the above sections is displayed. The selections are listed in tables with the following columns:

- Name: Here you can edit the selection name that is generated by the import. For colors the generated names are of the type Color 1, Color 2, and so on, for materials and layers the names from the CAD file are used.
- Name in file: This column contains the original name of the selection. To display this column select the Show names from file check box above the table.
- Keep: Select the check box in this column to make the selection available in selection lists for subsequent nodes in the geometry sequence.
- Physics: Select the check box in this column to make the selection available in all applicable selection lists (in physics and materials settings, for example).
- Contribute to: If you want to make the objects or entities in the selection contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New Cumulative Selection button under the table to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Click a row in a table to highlight the corresponding selection on the geometry in the Graphics window. To help with identifying the color selections, these are highlighted with the colors defined in the imported CAD file. To always highlight on the geometry the color selections that you keep select from the Graphics toolbar Colors > Show

Selection Colors.

The selections listed in the Object Selections section that are made available for the geometry sequence or physics setup are always available in all input selection lists, including all applicable entity selection lists. For example, the object selection of a solid object, generated for a material from the CAD file, automatically results in domain, boundary, edge, and point selections with the same name, so that you can use it to apply a boundary material, or a boundary condition. In contrast, a color assigned to a face of a solid object in the CAD file results in a boundary selection that is displayed in the Boundary Selections section, and it is available in all applicable boundary selection lists, but not, for example, in any edge selection lists.

ASSIGNED ATTRIBUTES

Select the Construction geometry check box to make the resulting objects available only in the feature's geometry sequence. For more information see Construction Geometry.

Exporting Objects to 3D CAD Formats

With a license for the Design Module you can export 3D geometry objects to the ACIS ${ }^{\circledR}$ (version 2016 1.0), IGES (version 5.3), Parasolid ${ }^{\circledR}$ (version 34.0), and STEP (version AP203) formats. To do this:

- right-click the Geometry node and select Export ($\mathbb{\|}$), or
- on the Geometry toolbar click Export ($\mathbb{\|}$).

Then, in the Export window, the File type list, select Parasolid binary file, Parasolid text file, ACIS binary file, ACIS text file, IGES file, or STEP file. Use the Browse button to choose the filename, or enter a filename including the path in the Filename field.

Next, select Export selected objects to export only chosen geometry objects or select Export entire finalized geometry to export the resulting geometry of a Form Union or Form Assembly operation.

The following limitations apply when exporting geometry objects to the 3D CAD formats mentioned in this section:

- Geometry objects that are created from mesh cannot be exported.
- Geometry objects that are the result of virtual geometry operations that come after a Form Union or Form Assembly node in the geometry sequence cannot be exported. The finalized geometry resulting from the Form Union or Form Assembly node is exported instead.
- Geometry objects created with a license for the ECAD Import Module from ECAD files imported with the options Ignore vertices with continuous tangent and Eliminate short edges cannot be exported. In this case the exported geometry objects contain the vertices and edges removed by the import.

COMSOL objects are automatically converted to CAD objects before saving the file.

For details on which objects can be converted to CAD objects see Converting Objects to CAD Kernel Representation.

To export the geometry to the specified file, click the Export ($\mathbb{\|}$) button. A confirmation message appears in the Messages window.

ADVANCED

When exporting to an ACIS file format choose the ACIS file format version. Available versions are 4.0, 7.0, 20161.0 (default).

For the Parasolid, IGES, and STEP file formats select a Length Unit. A unit conversion is carried out when the selected unit is different from the length unit of the geometry. A unit conversion is not done for the default From geometry option.

The Parasolid binary and text formats do not allow coordinate values larger than 500 . Therefore you might have to change the export unit in the Length unit list box to be able to export the geometry.

For the Parasolid file formats the option Split in manifold objects is selected by default to make sure that the exported geometry objects are manifold objects. A non-manifold object is, for example, a solid with an interior boundary that separates two domains. When exported using this option the solid is split along the interior boundary into two separate objects. When exporting to the ACIS, IGES, and STEP formats non-manifold objects are always split.

Repairing and Defeaturing

When importing 3D CAD files, the default import settings ensure that the validity of the imported objects is checked, and that defects are repaired when possible. In addition to the checks and repair performed during import, the Design Module provides operations for checking, repairing, and defeaturing 3D geometry objects, and locating overlaps and gaps in imported CAD assemblies.

OPERATIONS FOR CHECKING AND REPAIRING 3 D OBJECTS

Use the operations listed in the table below to check and repair geometry objects and to detect interferences between objects:

TABLE 2-4: OPERATIONS FOR DETECTING DEFECTS IN AND REPAIRING 3D OBJECTS AND DETECTING INTERFERENCES BETWEEN 3D GEOMETRY OBJECTS

ICON	NAME	DESCRIPTION
\backsim	Check	Check CAD objects for faults, for example tolerance issues and invalid entities
	Detect Interferences	Search for interferences, such as intersections, gaps, touches and containments, between objects
Repair	Repair defects and remove small details from 3D objects	

OPERATIONS FOR DEFEATURING

With the defeaturing tools listed in the table below you can search for and delete both small details, such as short edges, small faces, sliver faces, and spikes, and larger details, for example, fillets, chamfers, and cylindrical holes. You can also replace and detach a selection of faces to form 3D objects.

TABLE 2-5: OPERATIONS FOR DEFEATURING 3D GEOMETRY OBJECTS

ICON	NAME	DESCRIPTION
\square	Delete Fillets	Search for and delete fillets
\square	Delete Holes	Search for and delete holes
\square	Delete Short Edges	Search for and collapse short edges
\square	Delete Sliver Faces	Search for and delete slivers faces
\square	Delete Small Faces	Search for and collapse small faces

TABLE 2-5: OPERATIONS FOR DEFEATURING 3D GEOMETRY OBJECTS

ICON	NAME	DESCRIPTION
\square	Delete Spikes	Search for and delete spikes from faces
\square	Detach Faces	Detach faces to form a new object from them
\square	Replace Faces	Replace faces by growing surrounding faces or creating new faces

Check

To check the validity of CAD objects, from the Geometry toolbar, Defeaturing and Repair (+) menu, select Check ($\boldsymbol{D}_{\text {) }}$)

Select the objects that you want to check in the Graphics window. These then appear in the Input objects list. If the geometry sequence includes user-defined selections above the Check node, choose Manual to select objects, or choose one of the selection nodes from the list next to Input objects. Click the Active button to toggle between turning ON and OFF the Input objects selections.

If any problems are detected in the selected objects when building this feature, warning nodes appear with details about the issues. In the warning nodes use the Zoom to Selection button next to the Entities list to locate the faulty edges or faces.

Warnings on geometric entities are usually associated with objects imported from CAD files, but could also be introduced by geometric operations, for example when repairing an object with a tolerance that is too large. The presence of warnings does not generally mean that the geometry is invalid and cannot be used for setting up a simulation. However, the faulty entities may in some cases cause the failure of geometric operations that involve these entities, and meshing of entities with certain types of faults may fail. In the following you can read about two commonly occurring class of faulty geometric entities, and how to repair these:

- Tolerance issues: The warning messages vertex not on edge, vertex not on face, edge not on face belong to this category. These type of faults indicate that the topology (structure) of the object is not correct locally, for example that an edge is not located on the boundary where it is expected to be. You can often repair tolerance issues in an object by applying the Repair operation with a tolerance that is larger than the tolerance used for the import. Repair adjusts the tolerance of the entities where required, and, if this fixes the issues, warning nodes will not be displayed after the Repair node. In some cases it may also help to use the option Simplify curves and
surfaces for the Repair operation. Note that increasing the repair tolerance too much may lead to removing important details from the geometry. As an alternative to the Repair operation you can also re-import the CAD file using a larger tolerance, however the option to simplify curves and surfaces is not available in this case. For more details see Repair, and Import Options.
- Invalid entities: The warning messages invalid curve or surface, self-intersecting face, face-to-face inconsistency, self-intersecting curve or surface signify invalid entities. If you encounter any of these faults after importing a geometry from a CAD file you may need to repair the geometry to avoid problems with meshing. For example:
- For face-to-face inconsistency faults on solid objects, try to repair the object using the Repair face-to-face inconsistencies in solids option for the Repair feature.
- Try to replace the faulty face. Use the Delete operation to delete the face, then use the Cap Faces operation to generate a new face in its place. Another solution may be to use Delete Faces to delete and patch in one operation several connected faces that have a fault.

Delete Fillets

Use the Delete Fillets tool to search for fillets of a specified radius and delete these from an object. The faces forming the fillet are removed and the adjacent faces are extended to cover the resulting wound.

Note that this defeaturing tool may not find all fillets on nonmanifold objects. An example of a nonmanifold object is an object with several domains. Such an object can for example result from a Union or a Partition operation. To remove the fillets make sure to defeature the geometry objects before applying Boolean operations that result in nonmanifold objects.

The Delete Fillets tool cannot delete fillets for which the adjacent faces cannot be extended to cover the wound. The figure below shows an example of such fillets.

Applying the fillets on the highlighted edges deletes the annular face from the geometry, which cannot be recreated if the fillets are to be deleted.

To open the Tools window for Delete Fillets, from the Geometry toolbar, Defeaturing and Repair (\mp) menu, select Delete Fillets (\square). You can also right-click the Geometry node and select the same option from the context menu.

Note: When you are on the Tools window for Delete Fillets, you can at anytime switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

DELETE FILLETS

Activate the Input objects selection by clicking the Active button to toggle between $\square \square$ and \square. Select the objects you want to examine in the Graphics window. They appear in the Input objects list.

The Delete Fillets tool can only be applied to objects that are represented by the Parasolid ${ }^{\circledR}$ geometry kernel, also called CAD objects.

In the fields Minimum fillet radius and Maximum fillet radius, enter the size of the fillets you want to search for. When you click the Find Fillets button, a list of fillets with radii between the given values is shown in the Fillet selection list.

To delete the found details, either click the Delete All button, or select a subset of the found details in the list and click Delete Selected. Then, the selected details are deleted from their objects, and a node corresponding to this operation is added to the geometry branch of the model tree.

If you want to modify the performed deletion operation, you can select the added node in the geometry branch. Then, edit the node's form that appears in the Settings window. Click the Build Selected button () to see the result of your edits. The Settings window for Delete Fillets contains the additional settings described below.

To delete all fillets returned by the search, set the Deletion type to All fillets. You can delete a subset of the found fillets by selecting them in the Fillet selection list, and choosing Selected fillets in the Deletion type list.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

Delete Holes

Use this defeaturing tool to search for and delete cylindrical holes from an object. The tool can find and delete both through or blind holes on solid as well as surface objects. The faces forming the hole are deleted and the resulting wound is covered by extending the adjacent faces.

Note that holes found on nonmanifold objects are not possible to delete. An example of a nonmanifold object is an object with several domains. Such an object can for example result from a Union or a Partition operation. To remove the holes make sure to defeature the geometry objects before applying Boolean operations that result in nonmanifold objects.

To open the Tools window for Delete Holes, from the Geometry toolbar, Defeaturing and Repair (+) menu, select Delete Holes (5). You can also right-click the Geometry node and select the same option from the context menu.

Note: When you are on the Tools window for Delete Holes, you can at anytime switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

DELETE HOLES

Activate the Input objects selection by clicking the Active button to toggle between $\square \square$ and \square. Select the objects you want to examine in the Graphics window. They appear in the Input objects list.

The Delete Holes tool can only be applied to objects that are represented by the CAD kernel; see Converting Objects to CAD Kernel Representation.

In the fields Minimum hole radius and Maximum hole radius, enter the size of the holes you want to search for. When you click the Find Holes button, a list of holes with radii between the given values is shown in the Hole selection list.

To delete the found details, either click the Delete All button, or select a subset of the found details in the list and click Delete Selected. Then, the selected details are deleted from their objects, and a node corresponding to this operation is added to the geometry branch of the model tree.

If you want to modify the performed deletion operation, you can select the added node in the geometry branch. Then, edit the node's form that appears in the Settings window. Click the Build Selected button () to see the result of your edits. The Settings window for Delete Holes contains the additional settings described below.

To delete all holes returned by the search, set the Deletion type to All holes. You can delete a subset of the found holes by selecting them in the Hole selection list, and choosing Selected holes in the Deletion type list.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no
contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

Delete Short Edges

Use the Delete Short Edges tool to find edges shorter than a specified length, and then to delete these by collapsing the edges.

Note that this defeaturing tool cannot find short edges on nonmanifold objects. An example of a nonmanifold object is an object with several domains. Such an object can for example result from a Union or a Partition operation. To avoid this situation defeature the geometry objects before applying Boolean operations that result in nonmanifold objects.

To open the Tools window for Delete Short Edges, from the Geometry toolbar, Defeaturing and Repair (\dagger) menu, select Delete Short Edges (\square). You can also right-click the Geometry node and select the same option from the context menu.

Note: When you are on the Tools window for Delete Short Edges, you can anytime switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

DELETE SHORT EDGES

Activate the Input objects selection by clicking the Active button to toggle between $\square \square$ and \square. Select the objects you want to examine in the Graphics window. They appear in the Input objects list.

The Delete Short Edges tool can only be applied to objects that are represented by the Parasolid ${ }^{\circledR}$ geometry kernel, also called CAD objects.

In the field Maximum edge length, enter the maximum length of the edges you want to delete. When you click the Find Short Edges button, a list of edges with length smaller that the given value is shown in the Short edge selection list.

To delete the found details, either click the Delete All button, or select a subset of the found details in the list and click Delete Selected. Then, the selected details are deleted from their objects, and a node corresponding to this operation is added to the geometry branch of the model tree.

If you want to modify the performed deletion operation, you can select the added node in the geometry branch. Then, edit the node's form that appears in the Settings window. Click the Build Selected button () to see the result of your edits. The Settings window for Delete Short Edges contains the additional settings described below.

To delete all edges returned by the search, set the Deletion type to All short edges. You can delete a subset of the found edges by selecting them in the Short edge selection list, and choosing Selected short edges in the Deletion type list.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain
selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

Delete Sliver Faces

Use the Delete Sliver Faces tool to search for high aspect ratio faces of a specified maximum width. The tool deletes the selected sliver faces by collapsing these.

Note that this defeaturing tool cannot find sliver faces on nonmanifold objects. An example of a nonmanifold object is an object with several domains. Such an object can for example result from a Union or a Partition operation. To avoid this situation defeature the geometry objects before applying Boolean operations that result in nonmanifold objects.

To open the Tools window for Delete Sliver Faces, from the Geometry toolbar, Defeaturing and Repair (\dagger) menu, select Delete Sliver Faces (\square). You can also right-click the Geometry node and select the same option from the context menu.

Note: When you are on the Tools window for Delete Sliver Faces, you can at anytime switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

DELETE SLIVER FACES

Activate the Input objects selection by clicking the Active button to toggle between $\square \square$ and \square. Select the objects you want to examine in the Graphics window. They appear in the Input objects list.

The Delete Sliver Faces tool can only be applied to objects that are represented by the Parasolid ${ }^{\circledR}$ geometry kernel, also called CAD objects.

In the field Maximum face width, enter the maximum width of the faces you want to delete. When you click the Find Sliver Faces button, a list of faces with width smaller that the given value are shown in the Sliver faces selection list.

To delete the found details, either click the Delete All button, or select a subset of the found details in the list and click Delete Selected. Then, the selected details are deleted from their objects, and a node corresponding to this operation is added to the geometry branch of the model tree.

If you want to modify the performed deletion operation, you can select the added node in the geometry branch. Then, edit the node's form that appears in the Settings window. Click the Build Selected button () to see the result of your edits. The Settings window for Delete Sliver Faces contains the additional settings described below.

To delete all faces returned by the search, set the Deletion type to All sliver faces. You can delete a subset of the found faces by selecting them in the Sliver face selection list, and choosing Selected sliver faces in the Deletion type list.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

Delete Small Faces

Use the Delete Small Faces tool to find and delete faces of a specified maximum size. The tool deletes the selected small faces by collapsing these.

Note that this defeaturing tool cannot find small faces on nonmanifold objects. An example of a nonmanifold object is an object with several domains. Such an object can for example result from a Union or a Partition operation. To avoid this situation
defeature the geometry objects before applying Boolean operations that result in nonmanifold objects.

To open the Tools window for Delete Small Faces, from the Geometry toolbar, Defeaturing and Repair (\dagger) menu, select Delete Small Faces (\boxtimes). You can also right-click the Geometry node and select the same option from the context menu.

Note: When you are on the Tools window for Delete Small Faces, you can at anytime switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

DELETE SMALL FACES

Activate the Input objects selection by clicking the Active button to toggle between $\square \square$ and \square. Select the objects you want to examine in the Graphics window. They appear in the Input objects list.

The Delete Small Faces tool can only be applied to objects that are
\square represented by the Parasolid ${ }^{\circledR}$ geometry kernel, also called CAD objects.

In the field Maximum face size, enter the maximum diameter of the faces you want to delete. When you click the Find Small Faces button, a list of faces with diameter smaller that the given value appears in the Small faces selection list.

To delete the found details, either click the Delete All button, or select a subset of the found details in the list and click Delete Selected. Then, the selected details are deleted from their objects, and a node corresponding to this operation is added to the geometry branch of the model tree.

If you want to modify the performed deletion operation, you can select the added node in the geometry branch. Then, edit the node's form that appears in the Settings window. Click the Build Selected button () to see the result of your edits. The Settings window for Delete Small Faces contains the additional settings described below.

To delete all faces returned by the search, set the Deletion type to All small faces. You can delete a subset of the found faces by selecting them in the Small face selection list, and choosing Selected small faces in the Deletion type list.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

Delete Spikes

A spike is a long and narrow protrusion on an edge or corner of a face defined by two or three edges. Using the Delete Spikes tool you can search for and delete spikes from an object, by collapsing the narrow face region defined by the spike.

To open the Tools window for Delete Spikes, from the Geometry toolbar, Defeaturing and Repair ($\boldsymbol{P}_{\text {) }}$) menu, select Delete Spikes ($\bar{\square}$). You can also right-click the Geometry node and select the same option from the context menu.

Note: When you are on the Tools window for Delete Spikes, you can at anytime switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

DELETE SPIKES

Activate the Input objects selection by clicking the Active button to toggle between $\square \square$ and \square. Select the objects you want to examine in the Graphics window. They appear in the Input objects list. Note that this defeaturing tool cannot find spikes on faces that belong to nonmanifold objects. An example of a nonmanifold object is
an object with several domains. Such an object can for example result from a Union or a Partition operation. To avoid this situation defeature the geometry objects before applying Boolean operations that result in nonmanifold objects.

The Delete Spikes tool can only be applied to objects that are represented by the Parasolid ${ }^{\circledR}$ geometry kernel, also called CAD objects.

In the field Maximum spike width, enter the maximum width of the spikes you want to delete. When you click the Find Spikes button, a list of spikes with width smaller that the given value are shown in the Spike selection list.

To delete the found details, either click the Delete All button, or select a subset of the found details in the list and click Delete Selected. Then, the selected details are deleted from their objects, and a node corresponding to this operation is added to the geometry branch of the model tree.

If you want to modify the performed deletion operation, you can select the added node in the geometry branch. Then, edit the node's form that appears in the Settings window. Click the Build Selected button () to see the result of your edits. The Settings window for Delete Spikes contains the additional settings described below.

To delete all spikes returned by the search set the Deletion type to All spikes. You can delete a subset of the found spikes by selecting them in the Spike selection list, and choosing Selected spikes in the Deletion type list.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These
selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

Detach Faces

By detaching, faces are removed from an object (the parent) and are used to form a new object (the child). The wound that results from detaching the faces is healed by either creating new faces based on the surrounding edges or by growing or shrinking adjacent faces.

To open the Tools window for Detach Faces, from the Geometry toolbar, Defeaturing and Repair (+) menu, select Detach Faces (回) . You can also right-click the Geometry node and select the same option from the context menu.

Note: When you are on the Tools window for Detach Faces, you can at anytime switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

Select the faces you want to detach in the Graphics window. They appear in the Faces to detach list.

The Detach Faces tool can only be applied to objects that are represented by the Parasolid ${ }^{\circledR}$ geometry kernel, also called CAD objects.

The Parent heal method list determines how to replace the detached faces in the parent object: Create capping faces means that a new faces are constructed based on the edges adjacent to each wound, and Extend adjacent faces (default) means that the wound is covered by growing and shrinking the adjacent faces.

The Child heal method list controls how to construct the child solid from the detached faces: Create capping faces means that a new face is formed based on the surrounding edges of each wound, Extend adjacent faces from child means that the detached faces grow or shrink to form a solid, and Extend adjacent faces from parent (default) means that the parent faces surrounding the detached faces grow or shrink to form a solid together with the detached faces.

When you click the Detach Selected button, the program detaches the selected faces and adds a node corresponding to this operation to the geometry branch of the model tree.

The Tools window for Detach Faces remains open so that you can continue defeaturing using this or another defeaturing tool.

If you want to modify the performed detach operation, select the added node in the geometry branch. Then edit the node's form that appears in the Settings window. Click the Build Selected button ($\mathrm{B}_{\text {) }}$) to see the result of your edits. The Settings window for Detach Faces contains the additional settings described below.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

Detect Interferences

To analyze the interference of geometry objects, from the Geometry toolbar, Defeaturing and Repair (+) menu, select Detect Interferences (right-click the Geometry node and select the same option from the context menu.

Note: When you are on the Tools window for Detect Interferences, you can at anytime switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

In the Input objects list, select the objects you want to analyze. In the Tolerance text field, enter the absolute tolerance, which has the default value of 0.1 mm , to be used
for the search. When you click the Find Interferences button, a list of interferences is displayed in the Interfering faces list.

The interference detection applies to the exterior faces of the selected objects, thus ignoring interior faces, isolated edges and vertices. Each detected interference involves two objects. The following types of interferences appear in the list when detected by the tool:

- Touch. Two interfering objects are classified as touching when they intersect, and the interfering faces are located within a distance less than the specified tolerance from each other. Thus, an intersection (as defined below) may become a touch after you increase the tolerance such that it becomes larger than the distance between the interfering faces.
- Intersection. An intersection between the two objects is detected, and the interfering faces are located at a distance that is larger than the tolerance from each other.
- Gap. No intersection is detected between the two objects, but they have faces with portions that are located within a distance less than the specified tolerance from each other. The detected size of the gap appears in the list.
- Containment. One object is a contained in another object, which is a solid.

By default the Interfering faces list displays the detected interferences in a tree with the interferences as the top level nodes sorted by the type of interference. To sort the list by the objects select the Group by object check box. In this case the objects involved in an interference are listed as the top level nodes in the tree. Expand a top level node to see the list of objects that the object on the top level is interfering with. Expand sub node to see the list of detected interferences for the objects. You can expand the nodes for the detected interferences to reveal the two interfering objects, and then expand the nodes for the objects to look at the interfering faces displayed in sub-nodes according to the following:

- For two intersecting solid objects the nodes for the objects have two sub-nodes each, Inside and Outside. Click the Inside node to highlight the parts of the interfering faces that are inside the other object. Click the Outside node to highlight the parts of the interfering faces that are outside the other object.
- For two intersecting surface objects the nodes for the objects have two sub-nodes each, Small side and Large side. The faces resulting from the intersection are grouped according to size since surface objects do not delimit a volume in space, thus it is not possible to determine what is inside or outside the other object. Click
the Small side and Large side nodes to highlight the parts of the interfering faces that result from the intersection with the faces of the other object.
- For an intersection of a solid and a surface object, the node for the solid object has the sub-nodes Small side and Large side, while the node for the surface object has sub-nodes Inside and Outside.
- For two touching objects, the nodes for the objects may have two sub-nodes, Touching and Not touching. Click these nodes to highlight the corresponding portions of the interfering faces.
- For a gap between two objects, the nodes for the objects may sometimes have two sub-nodes Touching and Not touching.
- For a Containment node, the first sub-node is the containing object, and the second sub-node is the contained object.

VISUALIZATION OF DETECTED INTERFERENCES

For a better visualization of the detected interferences, the Detect Interferences tool partitions the faces involved in the intersections and touches so that the interfering face regions can be shown and highlighted separately. In the Interfering faces list, when you select the nodes for the interferences, or the top most or first sub-level object nodes when the Group by object check box is selected, the interferences are visualized only by highlighting those faces or face regions that enclose an intersection or are directly in touch. In the list, these are the faces belonging to the first sub-node of each object node under the selected interference node. Thus, when you click a node for an interference in the list, the faces or face regions belonging to nodes Outside, Large side, and Not touching are not highlighted. Expand the node for the interference, and select the object sub-nodes, to see highlighted the involved faces in their entirety, including the face regions that are not directly interfering.

Note that the face partitioning that is the result of the intersections is visible only while working with the Detect Interferences tool, and that the geometry is not modified by this tool.

To change which objects are shown in the Graphics window while selecting nodes in the Interfering faces list choose one of the options from the Show in graphics list:

- Choose Interfering faces only to show only the interfering faces involved in the selected node. For example, if you select an intersection node from the list, only the face regions from the two objects that are involved in the intersection are shown.
- Choose Selected object (default) to show only the objects involved in the selected node.
- Choose Other object to show the object that is interfering with the currently selected object sub-node to the interference node.
- Choose Both objects to show both objects involved in a interference when you select one of the sub-nodes to the interference node.
- Choose All objects to show all objects regardless of which nodes are selected.

The Zoom to Selection button next to the Interfering faces list may also help to find the detected interferences on the geometry. For a better view of the interferences between objects you can also click the Wireframe Rendering or Transparency buttons on the Graphics toolbar.

Repair

To repair objects, from the Geometry toolbar, Defeaturing and Repair (\ddagger) menu, select Repair (\&). You can also right-click the Geometry node and select the same option from the context menu.

REPAIR

Select the objects to repair in the Graphics window. They appear in the Input objects list.
The software tries to repair defects and remove details smaller than the Absolute repair tolerance. More precisely:

- Entities with invalid sense
- Invalid edge and vertex tolerances
- Invalid manifolds
- Self-intersecting manifolds
- Non-Gl manifolds
- Missing edge or vertex manifolds
- Missing vertex
- Vertices not on curve of edge
- Edges and vertices not on surface of face
- Removal of surface self-intersections that lie outside the face
- Splitting at edge intersections which have no vertex
- Removal of discontinuities by either splitting or smoothing
- Remove small features (short edges, small faces, sliver faces, and spikes)

Select the option Simplify curves and surfaces to also simplify within the Absolute repair tolerance the underlying curve and surface manifolds of the geometric entities. Repairing objects with this option may improve both the performance and reliability of geometric operations on some imported geometry, for example it may help in some cases when Boolean operations on the imported objects fail. Simplification means that the manifolds are converted where possible to analytical form: linear, circular, and elliptical curves; and planar, spherical, cylindrical, conical, and toroidal surfaces. Manifolds that are converted are B-spline curves and surfaces, or certain surfaces generated by operations such as sweeping, revolving, and filleting.

Select the Repair face-to-face inconsistencies in solids check box to try to repair solid objects with this fault reported by Import, Check, or Repair features.

When the option Check resulting objects is selected the repaired objects are checked for remaining problems. Warning nodes appear with details about the detected problems, if any. Use the Zoom to Selection button next to the Entities list in a warning node to locate the problematic edges or faces. For information on geometry problems see the Check feature.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

ASSIGNED ATtRIBUTES

From the Construction geometry list choose $\mathbf{O n}$ to make the resulting objects available only in the feature's geometry sequence. The default option Inherit from input means
that the resulting objects become construction geometry if all input objects are construction geometry. Choose $\mathbf{O f f}$ to never output construction geometry objects. For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

Replace Faces

By replacing faces from an object you can delete the geometric features formed by the faces. The deleted faces are replaced either by new faces created based on the edges surrounding the wound or by growing or shrinking of adjacent faces.

To open the Tools window for Replace Faces, from the Geometry toolbar, Defeaturing and Repair (+) menu, select Replace Faces (\square). You can also right-click the Geometry node and select the same option from the context menu.

Note: When you are on the Tools window for Replace Faces, you can at anytime switch to another defeaturing tool by clicking one of the corresponding buttons at the top of the window.

Select the faces you want to replace in the Graphics window. They appear in the Faces to replace list.

The Replace Faces tool can only be applied to objects that are represented by the Parasolid ${ }^{\circledR}$ geometry kernel, also called CAD objects.

In the Heal method list, select the method to use for covering the wounds after deleting the faces to be replaced: Create capping faces means that new faces are generated based on the edges surrounding each wound, while Extend adjacent faces means that the adjacent faces are grown or shrunk to heal the wounds. Select the Heal as through hole check box if you have selected faces that make up a hole that you want to delete and replace.

When you click the Replace Selected button, the program deletes and replaces the selected faces and adds a node corresponding to this operation to the geometry branch of the model tree. The Tools window for Replace Faces remains open so that you can continue defeaturing using this or another defeaturing tool.

If you want to modify the performed replace operation, select the added node in the geometry branch. Then edit the node's form that appears in the Settings window. Click the Build Selected button () to see the result of your edits. The Settings window for Replace Faces contains the additional settings described below.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

Creating and Modifying Geometries

This section describes the operations for creating and modifying geometries listed in the table below.

TABLE 2-6: OPERATIONS FOR CREATING AND MODIFYING		
ICON	NAME	DESCRIPTION
\square	Cap Faces	Generate faces from edges to fill gaps and create solid objects, or to partition solids
\square	Chamfer	Create a bevel on selected edges
\square	Fillet	Create rounds on selected edges
旺	Knit to Solid	Knit surface objects to form solid or surface object
O	Loft	Create a lofted surface from a set of profile curves
Offset Faces	Offset faces of 3D objects in the normal direction	
Projection	Project 3D objects and entities to a work plane	
Thicken	Create a solid by offsetting selected surfaces	
Transform	Displace, rotate, and scale faces of 3D objects	

Cap Faces

You can add cap faces to fill holes in a geometry (for example, to make a domain for the void inside a cylinder geometry for simulating fluid flow inside the cylinder) or to partition the geometry. To add cap faces to objects, from the Geometry toolbar, Defeaturing and Repair (\ddagger) menu, select Cap Faces (\square).

CAP FACES

Select edges that form loops around the faces you want to create. The edges display in the Bounding edges list.

A cap face is created for each loop of edges in the input selection. The cap faces are joined with the original objects. If new closed volumes are created by the cap faces, these are converted to solid domains. The selected edges can contain more than one edge loop, but no two loops can have edges or vertices in common. The selected edges can contain edges from more than one object. In this case, each object is processed individually. This means that two edges or vertices can overlap as long as they are not in the same object. It also means that if new closed volumes are created, but bounded by faces from more than one object, these volumes are not converted to solid domains. If you want to perform a Cap Faces operation involving more than one object, first unite the objects using a Union operation.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

ASSIGNED ATTRIBUTES

From the Construction geometry list choose $\mathbf{O n}$ to make the resulting objects available only in the feature's geometry sequence. The default option Inherit from input means that the resulting objects become construction geometry if all input objects are construction geometry. Choose Off to never output construction geometry objects. For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

Chamfer

To chamfer corners in 3D geometry objects, from the Geometry toolbar, Editing () menu, select Chamfer (\square). You can also right-click the Geometry node to add this node from the context menu.

EDGES

Select the edges that you want to chamfer in the Graphics window. They then appear in the Edges to chamfer list. If the geometry sequence includes user-defined selections above the Chamfer node, choose Manual to select edges, or choose one of the selection nodes from the list next to Edges to chamfer.

Click the Active button to toggle between turning ON and OFF the Edges to chamfer selections.

RADIUS

Enter the Radius of the chamfer. The size of the chamfer is determined by rolling a ball of the given radius so that it is tangent to the faces that are adjacent to the edge. The chamfer surface is generated by the line segment that connects the points of tangency.

OPTIONS

Select or clear the following check boxes as needed.

- If the Propagate to tangent edges check box is selected, the chamfer is propagated to edges that have continuous tangent to the edges selected in Edges to chamfer.
- If the Preserve overlapped entities check box is selected, geometric features such as holes and bosses on faces that are overlapped by the chamfer surface are preserved.
- Select the \mathbf{Y}-shaped chamfer check box to get a y-shaped chamfer at a vertex where three or more edges meet and there are two chamfer surfaces of different convexity. In some cases, using this option is necessary for the operation to succeed.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

ASSIGNed Attributes

From the Construction geometry list choose $\mathbf{O n}$ to make the resulting objects available only in the feature's geometry sequence. The default option Inherit from input means that the resulting objects become construction geometry if all input objects are construction geometry. Choose Off to never output construction geometry objects. For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

Fillet

To fillet corners in 3D geometry objects, from the Geometry toolbar, Editing () menu, select Fillet (\square). You can also right-click the Geometry node and add this node from the context menu.

The objects containing the selected edges must have manifold topology in the neighborhood of the selected edges. In particular, each edge must be adjacent to exactly two faces. When you build the feature, these adjacent faces are shrunk and a rolling ball fillet face is inserted in between. The new surface is generated by rolling a
ball of the given radius so that it is tangent to both faces. The fillet face is therefore tangent to both original faces.

When more than two selected edges meet at a vertex, one or several additional patch faces are inserted at the vertex to get a smooth result.

If the radius is large, it can happen that the fillet face overflows the original faces. In this case the fillet face meets other, more distant, faces in the object.

EDGES

Select the edges that you want to fillet in the Graphics window. They then appear in the Edges to fillet list. If the geometry sequence includes user-defined selections above the Fillet node, choose Manual to select edges, or choose one of the selection nodes from the list next to Edges to fillet.

Click the Active button to toggle between turning ON and OFF the Edges to fillet selections.

RADIUS

Enter the Radius of the fillet. The fillet surface is generated by rolling a ball of the given radius so that it is tangent to the faces adjacent to the edge.

OPTIONS

Select or clear the following check boxes as needed.

- If the Propagate to tangent edges check box is selected, the fillet is propagated to edges that have continuous tangent to the edges selected in Edges to fillet.
- If the Preserve overlapped entities check box is selected, geometric features such as holes and bosses on faces that are overlapped by the fillet surface are preserved.
- Select the \mathbf{Y}-shaped fillet check box to get a y-shaped fillet at a vertex where three or more edges meet and there are two fillet surfaces of different convexity. In some cases, using this option is necessary for the operation to succeed.

- Select the Fillet sharp edges at vertices check box to get a smooth fillet surface at vertices where two filleted edges intersect at an angle.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials
settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

ASSIGNED ATTRIBUTES

From the Construction geometry list choose $\mathbf{O n}$ to make the resulting objects available only in the feature's geometry sequence. The default option Inherit from input means that the resulting objects become construction geometry if all input objects are construction geometry. Choose $\mathbf{O} f$ to never output construction geometry objects. For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

Knit to Solid

To knit surface objects to form solid objects, from the Geometry toolbar, Defeaturing and Repair (+) menu, select Knit to Solid (国) 。

KNIT TO SOLID

Select the objects to knit together in the Graphics window. They appear in the Input objects list.

The knitting merges edges that have a distance smaller than the Absolute repair tolerance and deletes gaps and spikes smaller than the Absolute repair tolerance. If the Fill holes check box is selected the operation attempts to generate new faces to replace missing geometry.

The input surface objects must have manifold topology, and the operation can only form solids with manifold topology. An example of a solid object with nonmanifold topology is a solid that has an interior surface that separates two domains. A surface object that contains an edge that is adjacent to more than one boundary is an example of a surface object with nonmanifold topology.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

ASSIGNED ATTRIBUTES

From the Construction geometry list choose $\mathbf{O n}$ to make the resulting objects available only in the feature's geometry sequence. The default option Inherit from input means that the resulting objects become construction geometry if all input objects are construction geometry. Choose $\mathbf{O} f$ to never output construction geometry objects. For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

Loft

To create a lofted object from a set of profiles in 3D, on the Geometry toolbar, click Loft (∇_{-}). You can also right-click the Geometry node and add this node from the context menu. Enter the properties of the loft operation according to the following sections.

Each profile is a chain or loop of edges, also called a profile curve. The profiles must be all open or all closed, and they must have the same number of edges. The output is a loft surface, which consists of one or several faces that interpolate the profiles. In the closed curve case, a profile can optionally contain a set of faces (with manifold topology) that is bounded by the profile curve. These faces can be added to the loft surface to give the resulting object. The start and end profiles can degenerate to a point. Also, in the closed profile case, the start and end profiles can degenerate to an open curve. The loft can be periodic, which means that the end profile should not be specified because it equals the start profile (in this case the degenerate profiles are not allowed).

There can also be curves in the lofting direction that the loft surface should interpolate; these are called guide curves. If there are no guide curves, there must be at least two profiles.

GENERAL

Select or clear the following check boxes as needed.

- Select the Periodic loft check box to create a periodic loft, for which the start and end profiles coincide.
- If the Unite with input objects check box is selected, the resulting object is the union of the loft surface with the objects containing the start and end profiles and the objects containing the start and end guide curves. The faces that might exist in the start and end profiles are always included in the resulting object.
- If the Keep intermediate profile faces check box is selected, faces in the intermediate profile objects are added to the resulting object. Any faces belonging to the start and end profiles are always kept.
- Select an Object type - Solid (the default) or Surface. This determines whether domains should be created in the resulting object.

- Select a Face partitioning:

- If Minimal (the default) is selected, the loft surface is divided along the loft direction only at vertices where the profile curve has a tangent discontinuity.
- If Columns is selected, the loft surface is divided along the loft direction at each vertex of the profile curves.
- If Grid is selected, in addition to the Columns partitioning, the loft surface is divided by the profile curves. The loft surface is always partitioned by the profile faces when Keep intermediate profile faces is selected.

PROFILES

This section specifies the profiles that are not specified in the Start Profile or End Profile sections.

Select the objects that you want to use as profiles in the Graphics window. You can select a set of connected surface objects, curve objects, or point objects. Surface objects must have manifold topology and be bounded by a single edge loop. Curve objects must be a single edge loop or chain. Point objects are only allowed for use as start or end profiles and must have a single vertex. The selected objects appear in the Profile objects list. If the geometry sequence includes user-defined selections above the Loft
node, choose Manual to select objects, or choose one of the selection nodes from the list next to Profile objects.

Click the Active button to toggle between turning ON and OFF the Profile objects selection.

START PROFILE

Use this section to specify the start profile in the following cases:

- If you want to explicitly specify which profile should be the start profile.
- If the start profile is part of a larger object.
- If you want to prescribe the direction of the loft surface on the start profile.

In other cases, you can specify the start profile in the Profiles section, and leave the selection in the Start Profile section empty.

Select a Geometric entity level for the profile - Object, Point, Edge, or Boundary. Click to select the entities in the Graphics window. An object selection must fulfill the requirements detailed in the Profiles section. A point selection must consist of a single point. An edge selection must form a single edge loop or chain. A boundary selection must have manifold topology and be bounded by a single edge loop. The selected entities appear in the Start profile list. If the geometry sequence includes user-defined selections above the Loft node, choose Manual to select objects or entities, or choose one of the selection nodes from the list next to Input objects.

Click the Active button to toggle between turning ON and OFF the Start profile selection.

Select a Loft direction - Not prescribed (the default), Parallel, Perpendicular, or At angle. For Parallel the loft direction is prescribed along the profile curve, while for Perpendicular or At angle it is only prescribed at the vertices on the profile curve.

Select Relative to - Adjacent faces (the default), Profile faces, or Profile edges' plane. When At angle is selected, also enter an Angle (SI unit: deg).

- Adjacent faces are the faces that are adjacent to the profile edges and that are not contained in the Start profile selection.
- Profile faces are the faces contained in the Start profile selection.
- Profile edges' plane means that the loft direction is prescribed in relation to the plane tangent to the profile's edges at each vertex on the profile curve.

END PROFILE

The settings for this section are analogous to the Start Profile section. This section should not be used if the loft is periodic.

GUIDE CURVES

Use this section if you want to specify guide curves for the lofted object.
Select the objects that you want to use as guides in the Graphics window. You can select a set of curve objects. In the non-periodic case, each guide object must be a single edge chain. In the periodic case, each guide object must be a single edge loop. Each guide object must have continuous tangents and intersect each profile exactly once. The objects appear in the Guide objects list. If the geometry sequence includes user-defined selections above the Loft node, choose Manual to select objects, or choose one of the selection nodes from the list next to Guide objects.

Click the Active button to toggle between turning ON and OFF the Guide objects selection.

START GUIDE CURVES

Use this section to specify the start guide curve in the following cases:

- If the start guide curve is part of a larger object.
- If you want to prescribe the direction of the loft surface on the start guide curve.

In other cases, you can specify the start guide curve in the Guide Curves section, and leave the selection in the Start Guide Curve section empty.

The selected set of edges must form a single edge loop or chain, and fulfill the other requirements on a guide curve. Click the Active button to toggle between turning ON and OFF the Edges selection.

Select a Loft surface direction - Not prescribed (the default) or Parallel to adjacent faces, which means that the loft surface is prescribed to be tangent to the adjacent faces along the guide curve.

END GUIDE CURVES

The settings for this section are analogous to the Start Guide Curve. This section should not be used in the closed profile case.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no
contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

ASSIGNED ATTRIBUTES

From the Construction geometry list choose On to make the resulting objects available only in the feature's geometry sequence. The default option Inherit from input means that the resulting objects become construction geometry if all input objects are construction geometry. Choose $\mathbf{O f f}$ to never output construction geometry objects. For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

Midsurface

The Midsurface feature is the inverse of the Thicken feature (with symmetric offset). It removes the thickness of a solid object (having constant thickness), resulting in a surface object, which can be useful if you can use a Shell interface, for example, and model the physics on surfaces only.

On the Geometry toolbar, Conversions menu, click Midsurface (∇). You can also right-click the Geometry node and add this node from the Conversions submenu.

INPUT

Select the objects that you want to use as input in the Graphics window. The objects appear in the Input objects list. A midsurface object is generated for each input object independently. If the geometry sequence includes user-defined selections above the Midsurface node, choose Manual to select objects, or choose one of the selection nodes from the list next to Input objects.

Click the Active button to toggle between turning ON and OFF the Input objects selection.

Select the Keep input objects check box to use the selected geometry objects for further geometry operations.

OPTIONS

Select the Repair overlaps check box to repair areas where two or more generated midsurfaces overlap.

Click to select the Split in smooth components check box as needed. If this is selected, each output object is split into components, where each component is of manifold type and has smooth normal vector.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials
settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

ASSIGNED ATTRIBUTES

From the Construction geometry list choose On to make the resulting objects available only in the feature's geometry sequence. The default option Inherit from input means that the resulting objects become construction geometry if all input objects are construction geometry. Choose Off to never output construction geometry objects. For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

Offset Faces

To offset the faces of 3D geometry objects in the normal direction, from the Geometry toolbar, Editing () menu, select Offset Faces ($+\mathbb{Q}^{+}$). You can also right-click the Geometry node and add this node from the context menu.

Enter the properties of the Offset Faces operation using the following sections:

FACES

Select the faces that you want to offset in the Graphics window. They then appear in the Faces to offset list. If the geometry sequence includes user-defined selections above the Offset Faces node, choose Manual to select faces, or choose one of the selection nodes from the list next to Faces to offset.

Click the Active button to toggle between turning ON and OFF the Faces to offset selections.

Select the Keep input objects check box if you want to use the selected geometry objects for further geometry operations.

OFFSET

Enter a Distance for the offset. Switching between a positive and negative number reverses the offset direction.

Select the Reverse side check box (cleared by default) to reverse the offset direction. This is equivalent to changing the sign of the offset distance.

OPTIONS

Select the check box Fillet convex edges, cleared by default, to fillet convex edges between two offset faces. By default, such offset faces are instead extended until they meet.

The check box Perpendicular step edges for surface objects, cleared by default, applies to offsetting faces of a surface object, when the operation sometimes needs to split a vertex in two and introduce a step edge in between them. By default, the step edge is not perpendicular to an adjacent edge. With the check box selected, the created step edge is perpendicular to an adjacent edge.

To decide how step faces that connect the bounding edges of the offset faces with the adjacent faces are created, select one of the available options for Create step faces:

- Select Where faces meet with continuous tangent (default) to create step faces at all bounding edges where the selected faces meet the adjacent faces with tangent continuity.
- Select No to not create step faces.

Create step faces: Where faces meet with continuous tangent

Create step faces: Where faces meet with continuous tangent
Except if faces at ends of edge can be merged

Create step faces: No

When Create step faces is set to Where faces meet with continuous tangent you can select the check box Except if faces at ends of edge can be merged (cleared by default) to
extend and merge, if possible, the neighboring faces at the two ends of those bounding edges where faces meet with continuous tangent.

Use the Overflow handling setting to determine how to handle the case when an offset face moves beyond a nearby face in such a way that a wound (hole) appears. The following options are available:

- Automatic (default). The operation determines a suitable method to cover the wound caused by the overflow.
- Extend offset faces. With this option the offset faces are extended to cover the wound caused by the overflow.
- Extend other faces. With this option the faces that are not offset are extended to cover the wound caused by the overflow.
- Cap faces. The wound caused by the overflow is covered by creating new faces based on the edges surrounding the wound.
- Disallow. This option will return an error message if overflow happens.

Overflow handling: Extend offset faces

Overflow handling: Extend other faces

Overflow handling: Cap faces

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

ASSIGNED ATTRIBUTES

From the Construction geometry list choose $\mathbf{O n}$ to make the resulting objects available only in the feature's geometry sequence. The default option Inherit from input means that the resulting objects become construction geometry if all input objects are construction geometry. Choose Off to never output construction geometry objects. For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

Projection

Use the Projection feature to compute the projection of 3D objects and entities to a work plane. This can be useful when you need to reference existing 3D objects in the 2D drawing on the work plane. You can also add a new 2D or 2D axisymmetric component and add the Projection node there. In that case you can select the work plane to use for the projection from the 3D component's geometry sequence, but first make sure that in the 3D component's Geometry node the Geometry representation is set to the CAD kernel.

To add a projection to a Work Plane node's Plane Geometry sequence, from the Plane Geometry toolbar select Projection (莫), or right-click a Plane Geometry node under a Work Plane node and select Projection (是). Enter the properties of the projection using the following sections:

PROJECTION

From the Project list, choose All objects (the default) to project all 3D geometry objects to the work plane, or choose Selected objects, Selected domains, Selected boundaries, Selected edges, or Selected vertices to project only the objects or entities that you add to the Entities to project list that appears.

Click the Active button to toggle between turning ON and OFF the Entities to project selections.

When projecting objects, domains, and boundaries you can select the Projection type to project the Outline (default) of the selected objects and entities, or to project the Edges and vertices only, or the Outline, edges, and vertices.

Projecting the outline for surface and solid objects results in the edges that form the boundary of the shadow of the object's faces. In this case the edges are projected only if they coincide with the outline. If you project the outline of a mixed object that contains isolated edges and vertices, only the outline of the faces is generated, the isolated edges and vertices are not projected.

For point and curve objects, projecting the outline is the same as projecting the edges and vertices.

You can change the settings for the Repair tolerance list if you experience problems with the projection operation. Geometric entities that have a distance less than the repair tolerance are merged.

- The default value in the Repair tolerance list is Automatic, which means a relative repair tolerance of 10^{-6}.
- Choose Relative to enter a value for the Relative repair tolerance field (the default is determined by the main Geometry node's setting). This value is relative to the largest absolute value of the coordinates of all input objects.
- Choose Absolute to enter a value for the Absolute repair tolerance field (the default is determined by the main Geometry node's setting; SI unit: m). This value uses the same unit as the geometry sequence's length unit.

When you build this feature, the relative and absolute repair tolerances are set to the values that are used for the last projected object (with a precision of two digits). This is useful to find out the tolerance used for the last projected object. After the feature is built, you can set the Repair tolerance to either Relative or Absolute, then check the values displayed in the Relative repair tolerance or Absolute repair tolerance fields.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, boundaries, and points - that are applicable) in subsequent nodes in the plane geometry sequence. To also make all or one of the types of resulting entities (objects, boundaries, and points) available as selections in applicable selection lists in the main Geometry node's geometry sequence, choose an option from the Show in 3D list: All levels, Object selection (default), Boundary selection, or Point selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the plane geometry sequence.

ASSIGNED ATTRIBUTES

From the Construction geometry list choose $\mathbf{O n}$ to make the resulting objects available only in the feature's geometry sequence. The default option Inherit from input means that the resulting objects become construction geometry if all input objects are construction geometry. Choose $\mathbf{O f f}$ to never output construction geometry objects. For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

Thicken

On the Geometry toolbar, Conversions menu, click Thicken (®) to convert a surface object to a solid object by giving it a thickness in the normal direction. You can also right-click the Geometry node and add this node from the Conversions submenu.

IN P U T

Select the objects that you want to thicken in the Graphics window. The objects appear in the Input objects list. Each input object is thickened independently. If the geometry sequence includes user-defined selections above the Thicken node, choose Manual to select objects, or choose one of the selection nodes from the list next to Input objects.

Click the Active button to toggle between turning ON and OFF the Input objects selections.

Select the Keep input objects check box to use the selected geometry objects for further geometry operations.

OPTIONS
Select an Offset - Symmetric (the default) or Asymmetric.
If Symmetric is selected enter a Total thickness.
If Asymmetric is selected enter an Upside thickness and a Downside thickness.
Select the Fillet offset edges check box to fillet each convex edge joining two offset faces, using the offset distance as the fillet radius. This option applies only when the offset is single-sided; that is, when either the up or down thickness is set to 0 .

For either choice, select the Direction of side faces- Normal (the default) or Vector. For Vector, and based on space dimension, enter values or expressions for \mathbf{x}, \mathbf{y}, and \mathbf{z} (SI unit: m). Note that this setting influences only the direction of the side faces, the specified thickness is always applied in the normal direction.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

ASSIGNED ATTRIBUTES

From the Construction geometry list choose $\mathbf{O n}$ to make the resulting objects available only in the feature's geometry sequence. The default option Inherit from input means that the resulting objects become construction geometry if all input objects are construction geometry. Choose $\mathbf{O f f}$ to never output construction geometry objects. For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

Transform Faces

Using the Transform Faces operation you can apply a linear transform (consisting of displacement, rotation, and isotropic scaling) on a selection of faces on 3D geometry objects. The transformed faces and their adjacent faces are extended or trimmed to cover any wounds that may result. Alternatively, the wounds are filled by inserting step faces.

To add a Transform Faces node to a geometry sequence, from the Geometry toolbar,
 node and add this node from the context menu.

Enter the properties of the Transform Faces operation using the following sections:

FACES

Select the faces that you want to transform in the Graphics window. They then appear in the Faces to transform list. If the geometry sequence includes user-defined selections above the Transform Faces node, choose Manual to select faces, or choose one of the selection nodes from the list next to Faces to transform.

Click the Active button to toggle between turning ON and OFF the Faces to offset selections.

Select the Keep input objects check box if you want to use the selected geometry objects for further geometry operations.

COORDINATE SYSTEM

The coordinate system in which the point coordinates, displacements, and axis of rotation are interpreted for the linear transformation. From the Work plane list, select xy-plane (the default, for a standard global Cartesian coordinate system) or select any work plane defined above this node in the geometry sequence. If you choose a work
plane, the work plane and its coordinate system appears in the Graphics window, using an extra coordinate triad with the directions $\mathbf{x w}, \mathbf{y w}$, and $\mathbf{z w}$ (which are then used to specify the coordinates, displacements, and the rotation axis position).

CENTER

Specify a point on the axis of rotation, and the centerpoint of the scaling by specifying \mathbf{x}, \mathbf{y}, and $\mathbf{z} ; \mathbf{x w}, \mathbf{y w}$, and $\mathbf{z w}$ if a work plane is selected as the coordinate system. This is the point that stays fixed during the scaling (that is, the point that the scaled faces approach when the scale factor goes to zero).

ROTATION

From the Specify list, choose Axis of rotation (the default), Euler angles (Z-X-Z), or Edge as the way to specify the rotation.

- For Axis of rotation, select an Axis type: x-axis, y-axis, z-axis (the default), Cartesian, or Spherical. For any choice, enter an Angle (SI unit: degrees; default 0) to specify the rotation. If Cartesian is selected, enter Cartesian coordinates values for \mathbf{x}, \mathbf{y}, and \mathbf{z} (default values 0,0 , and 1 , respectively, corresponding to the global z-axis) to specify the axis vector. If Spherical is selected, specify the axis vector using spherical angles theta and phi in degrees (default: 90 and 0 , respectively).
- For Euler angles (Z-X-Z), enter values for the intrinsic Z-X-Z Euler angles α, β, and γ in the corresponding text fields (in degrees; the default values are 0).
- For Edge, choose a straight edge as the axis of rotation and add it to the Straight edge list. Then enter an Angle (SI unit: degrees; default 0) to specify the rotation angle.

SCALING

Specify the isotropic scaling factor in the Factor field.

DISPLACEMENT

Enter values or expressions to specify the \mathbf{x}, \mathbf{y}, and \mathbf{z} displacements (SI unit: m).

OPTIONS

To decide how the step faces, which connect the bounding edges of the transformed faces with the adjacent faces, are created, select one of the available options for Create step faces:

- Select Yes to create step faces for all bounding edges of the transformed faces.
- Select Where faces meet with continuous tangent (default) to create step faces at all bounding edges where the selected faces meet the adjacent faces with tangent continuity.
- Select No to not create step faces.

When Create step faces is set to Yes you can select the check box Merge step faces with adjacent face, cleared by default, to extend and merge, if possible, the neighboring faces with the step faces.

When Create step faces is set to Where faces meet with continuous tangent you can select the check box Except if faces at ends of edge can be merged, cleared by default, to extend and merge, if possible, the neighboring faces at the two ends of those bounding edges where faces meet with continuous tangent.

Use the Overflow handling setting to determine how to handle the case when a transformed face moves beyond a nearby face in such a way that a wound (hole) appears. The following options are available:

- Automatic (default). The operation determines how to cover the wound caused by the overflow.
- Extend transformed faces. With this option the transformed faces are extended to cover the wound caused by the overflow.
- Extend other faces. With this option the faces that are not transformed are extended to cover the wound caused by the overflow.
- Cap faces. The wound caused by the overflow is covered by creating new faces based on the edges surrounding the wound.
- Disallow. This option will return an error message if overflow happens.

SELECTIONS OF RESULTING ENTITIES

If you want to make the resulting entities contribute to a cumulative selection, select a cumulative selection from the Contribute to list (the default, None, gives no contribution), or click the New button to create a new cumulative selection (see Cumulative Selections in the COMSOL Multiphysics Reference Manual).

Select the Resulting objects selection check box to create predefined selections (for all levels - objects, domains, boundaries, edges, and points - that are applicable) in subsequent nodes in the geometry sequence. To also make all or one of the types of resulting entities (domains, boundaries, edges, and points) that the resulting objects consist of available as selections in all applicable selection lists (in physics and materials settings, for example), choose an option from the Show in physics list: All levels, Domain
selection, Boundary selection, Edge selection, or Point selection. The default is Domain selection, which is suitable for use with materials and physics defined in domains. For use with a boundary condition, for example, choose Boundary selection. These selections do not appear as separate selection nodes in the model tree. Select Off to not make any selection available outside of the geometry sequence.

ASSIGNED ATTRIBUTES

From the Construction geometry list choose $\mathbf{O n}$ to make the resulting objects available only in the feature's geometry sequence. The default option Inherit from input means that the resulting objects become construction geometry if all input objects are construction geometry. Choose Off to never output construction geometry objects. For more information see Construction Geometry in the COMSOL Multiphysics Reference Manual.

3

Programming and Command Reference

In this section you find detailed COMSOL ${ }^{\circledR}$ API reference information for the geometry features in the Design Module.

Defeaturing Tools

To remove unnecessary details in objects imported from a 3D CAD file, and detect interferences between objects, you can use the defeaturing tools. You access these by typing:

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets");
model.component(<ctag>).geom(<tag>).defeaturing("Holes");
model.component(<ctag>).geom(<tag>).defeaturing("ShortEdges");
model.component(<ctag>).geom(<tag>).defeaturing("SliverFaces");
model.component(<ctag>).geom(<tag>).defeaturing("SmallFaces");
model.component(<ctag>).geom(<tag>).defeaturing("Spikes");
model.component(<ctag>).geom(<tag>).defeaturing("ReplaceFaces");
model.component(<ctag>).geom(<tag>).defeaturing("DetachFaces");
model.component(<ctag>).geom(<tag>).
    defeaturing("DetectInterferences");
```

Using the defeaturing tools you can search for small details, without altering your geometry. If you find small details that you want to remove, a defeaturing tool can create a feature that removes the details from the geometry.

The features corresponding to the defeaturing tools are DeleteFillets, DeleteHoles, DeleteShortEdges, DeleteSliverFaces, DeleteSmallFaces, DeleteSpikes, ReplaceFaces, and DetachFaces. If you already know which details you need to remove, it is also possible to create these features directly using the standard create syntax.

This section includes these topics:

- Defeaturing Tools - Finding and Deleting Small Details
- Defeaturing Tools - Detach Faces
- Defeaturing Tools - Detect Interferences
- Defeaturing Tools - Replace Faces

Defeaturing Tools - Finding and Deleting Small Details

The defeaturing tools Fillets, Holes, ShortEdges, SliverFaces, SmallFaces, and Spikes search for and delete details smaller than a given size. First select the objects you want to examine by typing, for example,

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
    selection("input").set(<onames>);
```

where <onames> is a string array contains the object names.
Set the maximum size of the details (fillets in this case) you want to remove by typing

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
    set("entsize",size);
```

The defeaturing tools Fillets and Holes also support specifying a minimum radius, to do this type (for fillets in this case):

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
    set("minentsize",minsize);
```

To find the details in the specified size interval, type

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
    find();
```

The found details appear in the selection

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
    detail();
```

To get the number of found details, type

```
int nd = model.component(<ctag>).geom(<tag>).
    defeaturing("Fillets").detail().size();
```

To get the names of the found details, type

```
String[] filletNames = model.component(<ctag>).geom(<tag>).
    defeaturing("Fillets").detail().groupNames();
```

In general, a detail (fillet in this case) consists of a number of geometric entities. For example, a fillet consists of a number of faces. To get the entity numbers in the nth detail, type

```
int[] entities = model.component(<ctag>).geom(<tag>).
    defeaturing("Fillets").detail().groupEntities(n);
```

To get the object that contains the nth detail, type

```
String oname = model.component(<ctag>).geom(<tag>).
    defeaturing("Fillets").detail().groupObject(n);
```

To delete all details found, type

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
    deleteAll(<ftag>);
```

This adds a feature, tagged <ftag>, that performs the deletion operation to the geometry sequence, after the current feature, and build this feature. In this case, it adds a DeleteFillets feature.

To delete a subset of the details found, type, for example

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
    detail().setGroup(2,5);
```

to delete fillets number 2 and 5 . You can also use, for example,

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
    detail().addGroup(7,8);
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
    detail().removeGroup(3);
```

to add and remove details from the selection. Perform the deletion by typing

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
    delete(<ftag>);
```

This adds a DeleteFillets feature tagged <ftag> after the current feature in the geometry sequence.

DEFEATURING METHODS

model.component(<ctag>).geom(<tag>).feature(<ftag>).find() searches for small details, for a defeaturing feature <ftag>.

```
model.component(<ctag>).geom(<tag>).defeaturing(tooltag).find()
```

searches for small details, for a defeaturing tool tooltag.

```
model.component(<ctag>).geom(<tag>).defeaturing(tooltag).detail().
```

selMethod manipulates the selection of details to remove, for a defeaturing tool
tooltag.
model.component(<ctag>).geom(<tag>).feature(<ftag>).detail().
selmethod manipulates the selection of details to remove, for a defeaturing feature
<ftag>.
model.component (<ctag>).geom(<tag>).defeaturing(tooltag).
delete (<ftag>) creates a defeaturing feature of type tooltag, tagged <ftag>, with the properties currently specified in the defeaturing tool. The property delete of the created feature is set to selected. If the feature $<f t a g>$ can be built, it is inserted in the geometry sequence after the current feature, otherwise the feature is discarded.
model.component(<ctag>).geom(<tag>).defeaturing(tooltag). deleteAll(<ftag>) creates a defeaturing feature of type tooltag, tagged <ftag>, with the properties currently specified in the defeaturing tool. The property delete of the created feature is set to all. If the feature <ftag> can be built, it is inserted in the geometry sequence after the current feature, otherwise the feature is discarded.

DEFEATURING SELECTION METHODS

For a defeaturing selection sel the following methods are available, in addition to the methods available for a general geometry selection.

Geometry Object Selection Methods in the COMSOL Multiphysics
Programming Reference Manual

The find method on the corresponding feature or defeaturing tool provides the defeaturing selection with a list of details. Each detail is a group of geometric entities. Group numbers, 〈groups>, is an array of integers that index into the list of details.

You can select groups either by explicitly referring to group numbers, or by selecting geometric entities. In the latter case, any group that has non-empty intersection with the provided entity selection is selected.
int[] sel.group(<groups>) returns the group numbers for the selected groups.
sel.addGroup (<groups>) adds the specified groups to the selection.
sel.setGroup(<groups>) sets the selection groups.
sel.removeGroup (<groups>) removes the specified groups from the selection.
String[] sel.groupNames() returns a list of names of the groups found.
String sel.groupObject (<group>) returns the name of the geometry object that contains the specified detail group.
int[] sel.groupEntities(<group>) returns the entity numbers of the specified detail group.
int sel.size() returns the number of detail groups found.

Defeaturing Tools - Detach Faces

Use the DetachFaces tool to detach faces from a solid object (the parent) to form a new solid object (the child). Select the faces to detach and properties for the operation like in the corresponding feature DetachFaces. The detach operation is performed when you issue the command

```
model.component(<ctag>).geom(<tag>).defeaturing("DetachFaces").
    delete(<ftag>);
```


Defeaturing Tools - Detect Interferences

Access the DetectInterferences tool by the command

```
GeomDefeature tool = model.component(<ctag>).geom(<tag>).
    defeaturing("DetectInterferences");
```

To access the input objects selection, use

```
GeomObjectSelection input = tool.selection("input");
```

To set the tolerance, use

```
tool.set("abstol", value);
```

To find interferences, type

```
tool.find();
```

To access the resulting interferences, use

```
GeomObjectGroupSelection interf = tool.detail();
```

Each node listed in Interfering faces list in the user interface corresponds to a group of faces in GeomObjectGroupSelection. To access the data for a group, use its integer group index:

```
String label = interf.groupNames()[group];
String objName = interf.groupObject(group);
int[] faces = interf.groupEntities(group);
double gapSize = interf.entSize(group)[0];
```

The face numbers in the groups do not refer to the input objects. Rather, they refer to objects in a local state, where the tool has imprinted edges where objects interfere. To hide faces in the local state, first type

```
tool.localState(true);
```

to enter the local state. After doing the hiding, type
tool.localState(false);
to exit the local state.
See also DetectInterferences.

Defeaturing Tools - Replace Faces

Use the ReplaceFaces tool to delete faces and replace them either with a new face or by growing or shrinking the adjacent faces. Select the faces to replace and properties
for the operation like in the corresponding feature ReplaceFaces. The faces are replaced when you issue the command

```
model.component(<ctag>).geom(<tag>).defeaturing("ReplaceFaces").
    delete(<ftag>);
```

This adds a ReplaceFaces feature tagged <ftag> after the current feature in the geometry sequence.

Summary of Commands

- Angle
- Array
- BezierPolygon
- CapFaces
- Chamfer
- Chamfer3D
- Check
- Circle
- CircularArc
- Coincident
- Concentric
- ConvertToCOMSOL
- Copy
- CubicBezier
- DeleteFillets
- DeleteHoles
- DeleteShortEdges
- DeleteSliverFaces
- DeleteSmallFaces
- DeleteSpikes
- DetachFaces
- DetectInterferences
- DirectedDistance
- Distance
- Ellipse
- EqualDistance
- EqualRadius
- Export, ExportFinal
- Fillet
- Fillet3D
- Horizontal
- Import 3D CAD
- InterpolationCurve
- Knit
- LineSegment
-

Loft

- Midsurface
- Mirror
- Move
- OffsetFaces
- Parallel
- Perpendicular
- Point
- Polygon
- Position
- Projection
- QuadraticBezier
- Radius
- Rectangle
- Repair
- ReplaceFaces
- Rotate
- Scale
- Square
- TangentConstraint
- Thicken
- TotalEdgeLength
- TransformFaces
- Vertical
- XDistance
- YDistance

Commands Grouped by Function

Commands for Creating and Modifying Geometry in 2D

FUNCTION	PURPOSE
Projection	Project 3D objects and entities to a 2D work plane

The Design Module enables on/off properties for constraining the other properties of 2D geometric primitive and operation commands. The property name is obtained by appending constr to available property names. The default is on in operation features and usually off in primitive features. A constrained property cannot be modified by constraint and dimension commands. Properties that do not have a constr property are always constrained. With the Design Module some features also have properties for controlling a corresponding symbol in the Graphics window.

The following 2D geometry features get additional properties with the Design Module.

- Array
- BezierPolygon
- Chamfer
- Circle
- CircularArc
- Copy
- CubicBezier
- Ellipse
- Fillet
- InterpolationCurve
- LineSegment
- Mirror
- Move
- Point
- Polygon
- QuadraticBezier
- Rectangle
- Rotate
- Scale
- Square

Commands for Creating Constraints in 2D

FUNCTION	PURPOSE
Coincident	Constrain two geometric entities to coincide with each other
Concentric	Constrain circular edges and vertices to have the same center
EqualDistance	Constrain the distances between two pairs of geometric entities to be equal
CqualRadius	Constrain two circular edges to have the same radius
Corizontal	Constrain straight edges to be parallel to the x-axis straight edges to be parallel
Parallel	Constrain two straight edges to be perpendicular
Perpendicular	Constrain two edges to be tangent
TangentConstraint	Constrain straight edges to be parallel to the y-axis
Vertical	

Commands for Creating Dimensions in 2D

FUNCTION	PURPOSE
Angle	Constrain the angle between two edges entities in a given direction
DirectedDistance	Constrain the distance between two geometric entities
Distance	Constrain the x - and y-coordinates of a point
Position	Constrain the radius of a circular edge
Radius	Constrain the total length for a set of edges
TotalEdgeLength	Constrain the distance in the x direction between entities
XDistance	Constrain the distance in the y direction between entities
YDistance	

Commands for Defeaturing

FUNCTION	PURPOSE
DeleteFillets	Find and delete fillets in CAD objects
DeleteHoles	Find and delete holes in CAD objects
DeleteShortEdges	Find and delete short edges in CAD objects
DeleteSliverFaces	Find and delete sliver faces in CAD objects
DeleteSmallFaces	Find and delete small faces in CAD objects
DeleteSpikes	Find and delete spikes in CAD objects
DetachFaces	Detach faces from CAD objects to form a new solid
DetectInterferences	Detect intersections, touches, gaps, and containments between CAD objects
ReplaceFaces	Delete faces from CAD objects and heal the wounds

Commands for File Import, Export, Conversion and Repair

FUnction	PURPOSE
Check	Check the validity of CAD objects
ConvertToCOMSOL	Convert CAD Import Module geometry objects to COMSOL objects
Export, ExportFinal	Export geometry objects to a 3D CAD file
Import 3D CAD	Import geometry objects from a 3D CAD file
Knit	Knit surface CAD objects to form solids or surface objects
Repair	Repair CAD objects

Commands for Creating and Modifying Geometry in 3D

FUNCTION	PURPOSE
CapFaces	Add cap faces to fill holes in CAD geometries
Chamfer3D	Chamfer edges in 3D geometry objects
Fillet3D	Fillet edges in 3D geometry objects
	Create a lofted surface through a set of profile curves

FUNCTION	PURPOSE
OffsetFaces	Offset faces of 3D objects in the normal direction
Midsurface	Generate a surface object that is the midsurface of a solid object in 3D
Thicken	Generate a solid object by thickening a surface object in 3D
TransformFaces	Transform faces of 3D objects by displacing, rotating, and scaling

Commands in Alphabetical Order

Angle

Constrains two edges to meet at a given angle.

DESCRIPTION

TABLE 3-I: AVAILABLE PROPERTIES

PROPERTY	value	DEFAULT	DESCRIPTION
edge1	Selection		First edge
reverse1	on \| off	off	Reverse the direction of the first ray
edge2	Selection		Second edge
reverse2	on \| off	off	Reverse the direction of the second ray
angle	double	0	Angle
angleconstr	on \| off	on	Determine whether the dimension is a constraining dimension (on) or measuring dimension (off)
createpar	on \| off	off	Generate parameter from dimension
parname	String	" "	Specify parameter name if createpar is on
helppoint1	double[2]	$\{0,0\}$	First help point
helppoint2	double[2]	\{0, 0\}	Second help point
arrowradius	double	Empty	Radius of circular arrow symbol in the Graphics window
labelpos	double	0.5	Relative label position along the arrow symbol in Graphics window
arrowint	on \| off	on	Display internal or external arrow in Graphics window

SEE ALSO

TangentConstraint

The following additional properties are available with the Design Module.
TABLE 3-2: AVAILABLE PROPERTIES

PROPERTY	VALUE	DEFAULT	DESCRIPTION
displconstr	String[2]	\{on, on \}	Constrain the displacement. Constrained properties cannot be modified by constraint and dimension functions.

BezierPolygon

The following additional properties are available with the Design Module.
TABLE 3-3: AVAILABLE PROPERTIES

PROPERTY	VALUE	DEFAULT
pconstr	String[]	$\}$

CapFaces

PURPOSE

Add cap faces to objects.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
    create(<ftag>,"CapFaces");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    setAttribute(attribute,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    getAttribute(attribute);
```


DESCRIPTION

model.component(<ctag>).geom(<tag>).feature(). create (<ftag>, "CapFaces")
creates a CapFaces feature. A cap face is created for each loop of edges in the input selection. The cap faces are joined with the original objects. If new domains are created by the cap faces, these domains are made solid.

The input selection can contain more than one edge loop, but no two loops can have edges or vertices in common.

The input selection can contain edges from more than one object. In this case, each object is processed individually.

PROPERTY	value	DEFAULT	DESCRIPTION		
input	Selection		The input edges.		
selresult	on \| off	off	Create selections of all resulting objects.		
selresultshow	```all\|obj	dom	bnd off```	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a component's geometry. dom, bnd, and edg are not available in all features.
contributeto	String	none	Tag of cumulative selection to contribute to.		

The following attributes are available:
TABLE 3-5: VALID ATTRIBUTES

NAME	VALUE	DEFAULT		
construction	on \|off inherit	inherit		DesCRIPTION
:---				
construction geometry. Use inherit to set				
the construction geometry attribute only if				
all input objects are construction geometry.				

Chamfer

The following additional properties are available with the Design Module.
TABLE 3-6: AVAILABLE PROPERTIES

PROPERTY	VALUE	DEFAULT	DESCRIPTION
distconstr	on \| off	off	Constrain the distance. Constrained properties cannot be modified by constraint and dimension functions.

Chamfer3D

Chamfer edges in 3D geometry objects.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
    create(<ftag>, "Chamfer3D");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    setAttribute(attribute,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    getAttribute(attribute);
```


DESCRIPTION

model. component(<ctag>).geom(<tag>).feature(). create (<ftag>, "Chamfer3D")
creates a Chamfer3D feature.
Use model.component (<ctag>).geom(<tag>).feature (<ftag>). selection("edge") to select the edge to chamfer. The default selection is empty.

TABLE 3-7: AVAILABLE PROPERTIES

| PROPERTY | VALUE | DEFAULT | DESCRIPTION |
| :--- | :--- | :--- | :--- | :--- |
| edge | Selection | | Edges to chamfer. |
| radius | double | 0 | Radius. |
| propagate | on \mid off | on | Propagate to tangent edges. |
| preserveoverlapped | on \mid off | off | Preserve overlapped entities. |
| yshaped | on \mid off | off | Y-shaped chamfer. |
| createselection | on \mid off | off | Create selections. |
| selresult | on \mid off | off | Create selections of all
 resulting objects. |

TABLE 3-7: AVAILABLE PROPERTIES

PROPERTY	VALUE	DEFAULT	DESCRIPTION
selresultshow	all \mid obj \mid dom \mid bnd \mid edg \mid pnt off	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a component's geometry. dom, bnd, and edg are not available in all features.
contributeto	String	none	Tag of cumulative selection to contribute to.

For information about the createselection and contributeto properties, search the online help in COMSOL Multiphysics to locate and search all the documentation.

The following attributes are available:
TABLE 3-8: VALID ATTRIBUTES

NAME	VALUE	DEFAULT	DESCRIPTION
construction	on \mid off inherit	inherit	Designate the resulting objects as construction geometry. Use inherit to set the construction geometry attribute only if all input objects are construction geometry.

EXAMPLE

Chamfer a subset of edges on a block:

```
Model model = ModelUtil.create("Model1");
model.component().create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").geomRep("cadps");
model.component("comp1").geom("geom1").create("blk1", "Block");
model.component("comp1").geom("geom1").
    create("cha1", "Chamfer3D");
model.component("comp1").geom("geom1").feature("cha1").
    selection("edge").set("blk1", new int[]{2, 4, 6, 8});
model.component("comp1").geom("geom1").feature("cha1").
    set("radius", "0.1");
model.component("comp1").geom("geom1").run();
```


SEE ALSO

Fillet3D

Check

Check the validity of CAD objects.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
    create(<ftag>, "Check");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    getType(property)
```


DESCRIPTION

model. component (<ctag>).geom(<tag>).feature(). create(<ftag>, "Check") creates a check feature tagged <ftag>. The following properties are available.

TABLE 3-9: AVAILABLE PROPERTIES

PROPERTY	VALUE	DEFAULT
input	Selection	

SEE ALSO

Repair

Circle

The following additional properties are available with the Design Module.
TABLE 3-10: AVAILABLE PROPERTIES

PROPERTY	VALUE	DEFAULT	DESCRIPTION
rconstr	on \| off	off	Constrain the radius. Constrained properties cannot be modified by constraint and dimension functions.
angleconstr	on \| off	on	Constrain the sector angle. Constrained properties cannot be modified by constraint and dimension functions.
posconstr	String[2]	\{off, off \}	Constrain the position. Constrained properties cannot be modified by constraint and dimension functions.

TABLE 3-10: AVAILABLE PROPERTIES

PROPERTY	VALUE	DEFAULT	DESCRIPTION
rotconstr	on \| off	on	Constrain the rotation angle. Constrained properties cannot be modified by constraint and dimension functions.
arrowangdispl	double	0	Angular displacement of arrow symbol relative to middle of edge.
labelradius	double	0.5	Relative label position along arrow symbol.

CircularArc

The following additional properties are available with the Design Module.
TABLE 3-II: AVAILABLE PROPERTIES

PROPERTY	VALUE	DEFAULT	DESCRIPTION
centerconstr	String[2]	\{off, off \}	Constrain the center. Constrained properties cannot be modified by constraint and dimension functions.
point1constr	String[2]	\{off, off\}	Constrain the starting point. Constrained properties cannot be modified by constraint and dimension functions.
point2constr	String[2]	\{off, off\}	Constrain the endpoint. Constrained properties cannot be modified by constraint and dimension functions.
rconstr	on \|off	off	Constrain the radius. Constrained properties cannot be modified by constraint and dimension functions.
angle1constr	on \|off	off	Constrain the start angle. Constrained properties cannot be modified by constraint and dimension functions.
angle2constr	on \|off	off	Constrain the end angle. Constrained properties cannot be modified by constraint and dimension functions.

Coincident

PURPOSE

Constrain two geometric entities to coincide with each other.

DESCRIPTION

TABLE 3-12: AVAILABLE PROPERTIES

Property	VALUE	DEFAULT	DESCRIPTION
entity1	Selection		First entity (vertex or edge)
entity2	Selection		Second entity (vertex or edge)
helppoint1	double[2]	$\{0,0\}$	First help point
helppoint2	$1 \mid 2$	1	Second help point
symbolentity	double	0.5	The entity the symbol in the Graphics window is attached to
symboledgpar	double	20	Normalized edge parameter for positioning the symbol in the Graphics window
symboledgdispl	double[2]	$\{20,20\}$	Symbol displacement in left normal direction from edge (in pixels)
symbolvtxdispl	Symbol displacement from vertex (in pixels)		

Concentric

PURPOSE

Constrain circular edges and vertices to have the same center.

DESCRIPTION

TABLE 3-I3: AVAILABLE PROPERTIES

PROPERTY	value	DEFAULT	DESCRIPTION
edge	Selection		Circular edges
vertex	Selection		Vertices
symboledg	Selection		Edge the symbol in the Graphics window is attached to
symboledgpar	double	0.5	Normalized edge parameter for positioning the symbol in the Graphics window
symboledgdispl	double	20	Symbol displacement in left normal direction from edge (in pixels)
symbolvtx	Selection		Vertex the symbol in the Graphics window is attached to
symbolvtxdispl	double[2]	\{20, 20\}	Symbol displacement from vertex (in pixels)

ConvertToCOMSOL
Convert CAD objects to COMSOL objects.

SYNTAX

```
model.component(<ctag>).geom(<tag>).feature().
    create(<ftag>, "ConvertToCOMSOL");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    setAttribute(attribute,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    getAttribute(attribute);
```


DESCRIPTION

```
model.component(<ctag>).geom(<tag>).feature().
    create(<ftag>,"ConvertToCOMSOL")
```

creates a ConvertToCOMSOL feature.

TABLE 3-14: AVAILABLE PROPERTIES			
PROPERTY	VALUE	DEFAULT	DESCRIPTION
input	Selection		Names of input objects.
selresult	on \mid off	off	Create selections of all resulting objects.
selresultshow	all \mid obj dom edg \mid bnd off	dom	Show selections of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a components geometry. dom, bnd, and edg are not available in all features.
contributeto	String	none	Tag of cumulative selection to contribute to.

The following attributes are available:
TABLE 3-15: VALID ATTRIBUTES

NAME	value	default	DESCRIPTION	
construction	on \| off	 inherit	inherit	Designate the resulting objects as construction geometry. Use inherit to set the construction geometry attribute only if all input objects are construction geometry.

SEE ALSO
Import 3D CAD

Copy

The following additional properties are available with the Design Module.
TABLE 3-16: AVAILABLE PROPERTIES

PROPERTY	VALUE	DEFAULT	DESCRIPTION
displxconstr	on \| off	on	Constrain the x-displacement. Constrained properties cannot be modified by constraint and dimension functions.
displyconstr	on \| off	on	Constrain the y-displacement. Constrained properties cannot be modified by constraint and dimension functions.

CubicBezier

The following additional properties are available with the Design Module.

```
TABLE 3-17: AVAILABLE PROPERTIES
```

PROPERTY	VALUE	DEFAULT	DESCRIPTION
pconstr	String[4]	\{off, off, off, off $\}$	Constrain the control points. Constrained properties cannot be modified by constraint and dimension functions.

DeleteFillets

Find and delete fillets in CAD objects.

```
SYNTAX
model.component(<ctag>).geom(<tag>).feature().
    create(<ftag>,"DeleteFillets");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
    getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).find();
model.component(<ctag>).geom(<tag>).feature(<ftag>).detail();
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
    selection(property);
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
    set(property,<value>);
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").find();
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
    detail();
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
    delete(<ftag>);
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
    deleteAll(<ftag>);
```


DESCRIPTION

model.component(<ctag>).geom(<tag>).defeaturing("Fillets"). delete (<ftag>)
creates a DeleteFillets feature tagged $\langle f t a g\rangle$ with the specified properties. The property delete is set to selected. If the feature can be built, it is inserted in the geometry sequence after the current feature; otherwise, the feature is discarded.

```
model.component(<ctag>).geom(<tag>).defeaturing("Fillets").
``` deleteAll (<ftag>) works as the delete method, but the property delete is set to all.

It is also possible to create the DeleteFillets feature using the standard create method. The following properties are available.

TABLE 3-I8: AVAILABLE PROPERTIES
\begin{tabular}{ll|l|l}
\hline Property & Value & DEFAULT & DESCRIPTION \\
\hline delete & all \(\mid\) selected & selected & \begin{tabular}{l}
Delete all fillets of given size, or \\
a selection. Only available for \\
the feature.
\end{tabular} \\
\hline \begin{tabular}{l}
minentsize
\end{tabular} & double & 0 & Minimum fillet radius. \\
\hline entsize & double & \(1 e-3\) & Maximum fillet radius. \\
\hline
\end{tabular}

TABLE 3-18: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline input & Selection & & Names of input objects. \\
\hline selresult & on \(\mid\) off & off & \begin{tabular}{l}
Create selections of all resulting \\
objects.
\end{tabular} \\
\hline selresultshow & \begin{tabular}{l}
all \(\mid\) obj \(\mid\) dom \\
bnd \(\mid\) edg \(\mid\) pnt \(\mid\) \\
off
\end{tabular} & dom & \begin{tabular}{l}
Show selections of resulting \\
objects in physics, materials, and \\
so on, or in part instances. obj \\
is not available in a component's \\
geometry. dom, bnd, and edg \\
are not available in all features.
\end{tabular} \\
\hline contributeto & String & none & \begin{tabular}{l}
Tag of cumulative selection to \\
contribute to.
\end{tabular} \\
\hline
\end{tabular}
model.component (<ctag>).geom(<tag>).feature(<ftag>).find() searches the input objects for fillets with radius less than entsize.
model.component (<ctag>).geom(<tag>).feature(<ftag>).detail() returns a selection object where you can select a subset of the fillets found.

The find and detail methods of
```

model.component(<ctag>).geom(<tag>).defeaturing("Fillets")

```
have the corresponding functionality for the defeaturing tool.
Only faces that can be deleted without invalidating the object are deleted. If a fillet was not possible to delete, a warning is given, accessible through model.geom(<tag>).feature(<ftag>).problem().

\section*{COMPATIBILITY}

The following property is no longer supported:
TABLE 3-19: OBSOLETE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline Out & \begin{tabular}{l}
stx \(|\mathrm{ftx}| \mathrm{ctx} \mid\) \\
ptx
\end{tabular} & none & Output variables \\
& & & \\
\hline
\end{tabular}

\section*{EXAMPLE}

The following example imports the CAD object in the COMSOL Multiphysics geometry file defeaturing_demo_3.mphbin and finds all fillets with radius less than \(4 \cdot 10^{-3}\). The first of these fillets is deleted.

Model model = ModelUtil.create("Model1");
```

    model.component.create("comp1");
    model.component("comp1").geom().create("geom1",3);
    model.component("comp1").geom("geom1").feature().
        create("imp1","Import");
    model.component("comp1").geom("geom1").feature("imp1").
        set("filename", "defeaturing_demo_3.mphbin");
    model.component("comp1").geom("geom1").run("imp1");
    model.component("comp1").geom("geom1").feature().
        create("dfi1","DeleteFillets");
    model.component("comp1").geom("geom1").feature("dfi1").
        selection("input").
        set("imp1");
    model.component("comp1").geom("geom1").feature("dfi1").
        set("entsize",4e-3);
    model.component("comp1").geom("geom1").feature("dfi1").find();
    model.component("comp1").geom("geom1").feature("dfi1").detail().
        setGroup(1);
    model.component("comp1").geom("geom1").run();
    SEE ALSO
ReplaceFaces

```

\section*{DeleteHoles}

Find and delete holes in CAD objects.
```

SYNTAX
model.component(<ctag>).geom(<tag>).feature().
create(<ftag>,"DeleteHoles");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).find();
model.component(<ctag>).geom(<tag>).feature(<ftag>).detail();
model.component(<ctag>).geom(<tag>).defeaturing("Holes").
selection(property);
model.component(<ctag>).geom(<tag>).defeaturing("Holes").
set(property,<value>);
model.component(<ctag>).geom(<tag>).defeaturing("Holes").find();
model.component(<ctag>).geom(<tag>).defeaturing("Holes").detail();
model.component(<ctag>).geom(<tag>).defeaturing("Holes").
delete(<ftag>);
model.component(<ctag>).geom(<tag>).defeaturing("Holes").
deleteAll(<ftag>);

```

\section*{DESCRIPTION}
model.component(<ctag>).geom(<tag>).defeaturing("Holes").
delete (<ftag>) creates a DeleteHoles feature tagged \(\langle f t a g\rangle\) with the specified properties. The property delete is set to selected. If the feature can be built, it is inserted in the geometry sequence after the current feature; otherwise, the feature is discarded.
```

model.component(<ctag>).geom(<tag>).defeaturing("Holes").

```
deleteAll (<ftag>) works as the delete method, but the property delete is set to all.

It is also possible to create the DeleteHoles feature using the standard create method. The following properties are available.

TABLE 3-20: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline delete & all \(\mid\) selected & selected & \begin{tabular}{l}
Delete all holes of given size, or \\
a selection. Only available for \\
the feature
\end{tabular} \\
\hline \begin{tabular}{l}
minentsize \\
entsize \\
input
\end{tabular} & double & double & Selection
\end{tabular}

TABLE 3-20: AVAILABLE PROPERTIES
\begin{tabular}{ll|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline selresult & on \(\mid\) off & off & \begin{tabular}{l}
Create selections of all resulting \\
objects
\end{tabular} \\
\hline selresultshow & \begin{tabular}{l}
all \(\mid\) obj \(\mid\) dom \\
bnd \(\mid\) edg \(\mid\) pnt \(\mid\) \\
off
\end{tabular} & dom & \begin{tabular}{l}
Show selections of resulting \\
objects in physics, materials, and \\
so on, or in part instances. obj \\
is not available in a component's \\
geometry. dom, bnd, and edg \\
are not available in all features
\end{tabular} \\
\hline contributeto & String & none & \begin{tabular}{l}
Tag of cumulative selection to \\
contribute to
\end{tabular} \\
\hline
\end{tabular}
model.component(<ctag>).geom(<tag>).feature(<ftag>).find() searches the input objects for holes with radius less than entsize.
model.component(<ctag>).geom(<tag>).feature(<ftag>).detail() returns a selection object where you can select a subset of the holes found.

The find and detail methods of model.component(<ctag>).geom(<tag>).defeaturing("Holes") have the corresponding functionality for the defeaturing tool.

Only faces that can be deleted without invalidating the object are deleted. If a hole was not possible to delete, a warning is given, accessible through model.component(<ctag>).geom(<tag>).feature(<ftag>).problem().

\section*{COMPATIBILITY}

The following property is no longer supported:
TABLE 3-2I: OBSOLETE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline Out & stx \(|\mathrm{ftx}| \mathrm{ctx} \mid\) & none & Output variables \\
& ptx & & \\
\hline
\end{tabular}

\section*{EXAMPLE}

The following example imports the CAD object in the COMSOL Multiphysics geometry file defeaturing_demo_3.mphbin and finds all holes with radius less than \(4 \cdot 10^{-2}\). The first four of these holes are deleted.
```

Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);

```
```

    model.component("comp1").geom("geom1").feature().
    create("imp1","Import");
    model.component("comp1").geom("geom1").feature("imp1").
        set("filename", "defeaturing_demo_3.mphbin");
    model.component("comp1").geom("geom1").run("imp1");
    model.component("comp1").geom("geom1").feature().
        create("dho1","DeleteHoles");
    model.component("comp1").geom("geom1").feature("dho1").
        selection("input").
        set("imp1");
    model.component("comp1").geom("geom1").feature("dho1").
        set("entsize",4e-2);
    model.component("comp1").geom("geom1").feature("dho1").find();
    model.component("comp1").geom("geom1").feature("dho1").
        detail().setGroup(1, 2, 3, 4);
    model.component("comp1").geom("geom1").run();
    ```

\section*{SEE ALSO}

ReplaceFaces

\section*{DeleteShortEdges}

Find and delete short edges in CAD objects.
```

SYNTAX
model.component(<ctag>).geom(<tag>).feature().
create(<ftag>,"DeleteShortEdges");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).find();
model.component(<ctag>).geom(<tag>).feature(<ftag>).detail();
model.component(<ctag>).geom(<tag>).defeaturing("ShortEdges").
selection(property);
model.component(<ctag>).geom(<tag>).defeaturing("ShortEdges").
set(property,<value>);
model.component(<ctag>).geom(<tag>).defeaturing("ShortEdges").
find();
model.component(<ctag>).geom(<tag>).defeaturing("ShortEdges").
detail();
model.component(<ctag>).geom(<tag>).defeaturing("ShortEdges").
delete(<ftag>);
model.component(<ctag>).geom(<tag>).defeaturing("ShortEdges").
deleteAll(<ftag>);

```

\section*{DESCRIPTION}
model.component(<ctag>).geom(<tag>).defeaturing("ShortEdges"). delete (<ftag>) creates a DeleteShortEdges feature tagged <ftag> with the specified properties. The property delete is set to selected. If the feature can be built, it is inserted in the geometry sequence after the current feature; otherwise, the feature is discarded.
model.component(<ctag>).geom(<tag>).defeaturing("ShortEdges"). deleteAll (<ftag>) works as the delete method, but the property delete is set to all.

It is also possible to create a DeleteShortEdges feature using the standard create method. The following properties are available.

TABLE 3-22: AVAILABLE PROPERTIES
\begin{tabular}{ll|ll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline delete & all \(\mid\) selected & selected & \begin{tabular}{l}
Delete all edges of given size, or \\
a selection. Only available for the \\
feature.
\end{tabular} \\
\hline entsize & double & \(1 \mathrm{e}-3\) & Maximum edge length \\
\hline
\end{tabular}

TABLE 3-22: AVAILABLE PROPERTIES
\begin{tabular}{l|l|ll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline input & Selection & & Names of input objects \\
\hline selresult & on \(\mid\) off & off & \begin{tabular}{l}
Create selections of all resulting \\
objects.
\end{tabular} \\
\hline selresultshow & \begin{tabular}{ll}
all \(\mid\) obj \(\mid\) dom \(\mid\) \\
bnd \(\mid\) edg \(\mid\) pnt \(\mid\) \\
off
\end{tabular} & dom & \begin{tabular}{l}
Show selections of resulting \\
objects in physics, materials, and \\
so on, or in part instances. obj is \\
not available in a component's \\
geometry. dom, bnd, and edg are \\
not available in all features.
\end{tabular} \\
\hline contributeto & String & none & \begin{tabular}{l}
Tag of cumulative selection to \\
contribute to.
\end{tabular} \\
\hline
\end{tabular}
model.component (<ctag>).geom(<tag>).feature(<ftag>).find() searches the input objects for edges of length less than entsize.
model. component (<ctag>).geom(<tag>).feature(<ftag>).detail() returns a selection object where you can select a subset of the edge sets found.

The find and detail methods of model.component (<ctag>).geom(<tag>).defeaturing("ShortEdges") have the corresponding functionality for the defeaturing tool.

Only edges that can be deleted without invalidating the object are deleted. If an edge was not possible to delete, a warning is given, accessible through model. component (<ctag>).geom(<tag>).feature(<ftag>). problem().

\section*{COMPATIBILITY}

The lengths of the edges are no longer returned.
The following property is no longer supported:

TABLE 3-23: OBSOLETE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline Out & stx \(|\mathrm{ftx}| \mathrm{ctx} \mid\) & none & Output variables \\
& ptx & & \\
\hline
\end{tabular}

\section*{EXAMPLE}

The following example imports the file defeaturing_demo_4. \(x\) _b and finds all edges with length less than \(3 \cdot 10^{-3}\). The first of these edges is deleted.
```

Model model = ModelUtil.create("Model1");
model.component.create("comp1");

```
```

model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
create("imp1","Import");
model.component("comp1").geom("geom1").feature("imp1").
set("filename", "defeaturing_demo_4.x_b");
model.component("comp1").geom("geom1").runAll();
model.component("comp1").geom("geom1").feature().
create("dse1","DeleteShortEdges");
model.component("comp1").geom("geom1").feature("dse1").
selection("input").
set("imp1");
model.component("comp1").geom("geom1").feature("dse1").
set("entsize",3e-3);
model.component("comp1").geom("geom1").feature("dse1").find();
model.component("comp1").geom("geom1").feature("dse1").
detail().setGroup(1);
model.component("comp1").geom("geom1").runAll();

```

\section*{DeleteSliverFaces}

Find and delete sliver faces in CAD objects.
```

SYNTAX
model.component(<ctag>).geom(gname).feature().
create(<ftag>,"DeleteSliverFaces");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).find();
model.component(<ctag>).geom(<tag>).feature(<ftag>).detail();
model.component(<ctag>).geom(<tag>).defeaturing("SliverFaces").
selection(property);
model.component(<ctag>).geom(<tag>).defeaturing("SliverFaces").
set(property,<value>);
model.component(<ctag>).geom(<tag>).defeaturing("SliverFaces").
find();
model.component(<ctag>).geom(<tag>).defeaturing("SliverFaces").
detail();
model.component(<ctag>).geom(<tag>).defeaturing("SliverFaces").
delete(<ftag>);
model.component(<ctag>).geom(<tag>).defeaturing("SliverFaces").
deleteAll(<ftag>);

```

\section*{DESCRIPTION}
model.component(<ctag>).geom(<tag>).defeaturing("SliverFaces"). delete (<ftag>) creates a DeleteSliverFaces feature tagged <ftag> with the specified properties. The property delete is set to selected. If the feature can be built, it is inserted in the geometry sequence after the current feature; otherwise, the feature is discarded.
```

model.component(<ctag>).geom(<tag>).defeaturing("SliverFaces").
deleteAll(<ftag>) works as the delete method, but the property delete is set to

```
all.

It is also possible to create a DeleteSliverFaces feature using the standard create method. The following properties are available.

TABLE 3-24: AVAILABLE PROPERTIES
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & value & default & DESCRIPTION \\
\hline delete & all | selected & selected & Delete all sliver faces of given width, or a selection. Only available for the feature. \\
\hline entsize & double & 1e-3 & Maximum face width. \\
\hline input & Selection & & Names of input objects. \\
\hline selresult & on | off & off & Create selections of all resulting objects. \\
\hline selresultshow & ```
all|obj|dom|
bnd | edg|pnt |
off
``` & dom & Show selections of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a component's geometry. dom, bnd, and edg are not available in all features. \\
\hline contributeto & String & none & Tag of cumulative selection to contribute to. \\
\hline
\end{tabular}

Sliver faces are narrow but long faces with large aspect ratio, which usually give rise to extremely fine local meshes in their vicinity.
```

model.component(<ctag>).geom(<tag>).feature(<ftag>).find() searches

``` the input objects for faces with width less than entsize.
model.component(<ctag>).geom(<tag>).feature(<ftag>).detail() returns a selection object where you can select a subset of the faces found.

The find and detail methods of model.component(<ctag>).geom(<tag>).defeaturing("SliverFaces") have the corresponding functionality for the defeaturing tool.

Only faces that can be deleted without invalidating the object are deleted. If a face was not possible to delete, a warning message is given.

\section*{COMPATIBILITY}

The following property is no longer supported:
TABLE 3-25: OBSOLETE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline Out & stx \(\mid\) ftx \(\mid\) ctx \(\mid\) & none & Output variables \\
& ptx \(\mid\) status & & \\
\hline
\end{tabular}

\section*{EXAMPLE}

The following example imports the geometry model from the file
defeaturing_demo_5.x_b, finds sliver faces narrower than \(2 \cdot 10^{-3}\), and deletes the first of these.
```

Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
create("imp1","Import");
model.component("comp1").geom("geom1").feature("imp1").
set("filename", "defeaturing_demo_5.x_b");
model.component("comp1").geom("geom1").runAll();
model.component("comp1").geom("geom1").feature().
create("dsl1","DeleteSliverFaces");
model.component("comp1").geom("geom1").feature("dsl1").
selection("input").
set("imp1");
model.component("comp1").geom("geom1").feature("dsl1").
set("entsize",2e-3);
model.component("comp1").geom("geom1").feature("dsl1").find();
model.component("comp1").geom("geom1").feature("dsl1").detail().
setGroup(1);
model.component("comp1").geom("geom1").runAll();

```

\section*{SEE ALSO}

ReplaceFaces, DeleteSmallFaces

\section*{DeleteSmallFaces}

Find and delete small faces in CAD objects.

\section*{SYNTAX}
```

model.component(<ctag>).geom(gname).feature().
create(<ftag>,"DeleteSmallFaces");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).find();
model.component(<ctag>).geom(<tag>).feature(<ftag>).detail();
model.component(<ctag>).geom(<tag>).defeaturing("SmallFaces").
selection(property);
model.component(<ctag>).geom(<tag>).defeaturing("SmallFaces").
set(property,<value>);
model.component(<ctag>).geom(<tag>).defeaturing("SmallFaces").
find();
model.component(<ctag>).geom(<tag>).defeaturing("SmallFaces").
detail();
model.component(<ctag>).geom(<tag>).defeaturing("SmallFaces").
delete(<ftag>);
model.component(<ctag>).geom(<tag>).defeaturing("SmallFaces").
deleteAll(<ftag>);

```

\section*{DESCRIPTION}
model.component(<ctag>).geom(<tag>).defeaturing("SmallFaces"). delete (<ftag>) creates a DeleteSmallFaces feature tagged <ftag> with the specified properties. The property delete is set to selected. If the feature can be built, it is inserted in the geometry sequence after the current feature; otherwise, the feature is discarded.
```

model.component(<ctag>).geom(<tag>).defeaturing("SmallFaces").

```
deleteAll (<ftag>) works as the delete method, but the property delete is set to
all.

It is also possible to create a DeleteSmallFaces feature using the standard create method. The following properties are available.

TABLE 3-26: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline Property & Value & Default & DESCRIPTIon \\
\hline delete & all \(\mid\) selected & selected & \begin{tabular}{l} 
Delete all small faces of given \\
size, or a selection. Only \\
available for the feature.
\end{tabular} \\
\hline entsize & double & 1 e-3 & \begin{tabular}{l} 
Maximum face size. \\
input
\end{tabular} \\
\hline Selection & Names of input objects.
\end{tabular}

A small face is a face that fits within a sphere of specified radius, given in the property entsize.
model.component(<ctag>).geom(<tag>).feature(<ftag>).find() searches the input objects for faces with size less than entsize.
model.component (<ctag>).geom(<tag>).feature(<ftag>).detail() returns a selection object where you can select a subset of the faces found.

The find and detail methods of model.component (<ctag>).geom(<tag>).defeaturing("SmallFaces") have the corresponding functionality for the defeaturing tool.

Only faces that can be deleted without invalidating the object are deleted. If a face was not possible to delete, a warning message is given, accessible through model.component(<ctag>).geom(<tag>).feature(<ftag>).problem().

\section*{COMPATIBILITY}

The following property is no longer supported:

TABLE 3-27: OBSOLETE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline Out & stx \(|\mathrm{ftx}| \mathrm{ctx} \mid\) & none & Output variables. \\
& \(\mathrm{ptx} \mid \mathrm{status}\) & & \\
\hline
\end{tabular}

\section*{EXAMPLE}

The following example imports the geometry model from the file defeaturing_demo_6.x_b, finds sliver faces narrower than \(10^{-3}\), and deletes the first of these.
```

 Model model = ModelUtil.create("Model1");
 model.component.create("comp1");
 model.component("comp1").geom().create("geom1",3);
 model.component("comp1").geom("geom1").feature().
 create("imp1","Import");
 model.component("comp1").geom("geom1").feature("imp1").
 set("filename", "defeaturing_demo_6.x_b");
 model.component("comp1").geom("geom1").runAll();
 model.component("comp1").geom("geom1").feature().
 create("df1","DeleteSmallFaces");
 model.component("comp1").geom("geom1").feature("df1").
 selection("input").
 set("imp1");
 model.component("comp1").geom("geom1").feature("df1").find();
 model.component("comp1").geom("geom1").feature("df1").detail().
setGroup(1);
model.component("comp1").geom("geom1").run();

```

\section*{SEE ALSO}

ReplaceFaces, DeleteSliverFaces

\section*{DeleteSpikes}

Find and delete spikes in CAD objects.

\section*{SYNTAX}
```

model.component(<ctag>).geom(<tag>).feature().
create(<ftag>, "DeleteSpikes");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).find();
model.component (<ctag>).geom(<tag>).feature(<ftag>).detail();
model.component(<ctag>).geom(<tag>).defeaturing("Spikes").
selection(property);
model.component(<ctag>).geom(<tag>).defeaturing("Spikes").
set(property,<value>);
model.component(<ctag>).geom(<tag>).defeaturing("Spikes").find();
model.component(<ctag>).geom(<tag>).defeaturing("Spikes").detail();
model.component(<ctag>).geom(<tag>).defeaturing("Spikes").
delete(<ftag>);
model.component(<ctag>).geom(<tag>).defeaturing("Spikes").
deleteAll(<ftag>);

```

\section*{DESCRIPTION}
model.component (<ctag>).geom(<tag>).defeaturing("DeleteSpikes"). delete \((<f t a g\rangle)\) creates a DeleteSpikes feature tagged \(<f\) tag \(\rangle\) with the specified properties. The property delete is set to selected. If the feature can be built, it is inserted in the geometry sequence after the current feature; otherwise, the feature is discarded.
```

model.component(<ctag>).geom(<tag>).defeaturing("DeleteSpikes").

``` deleteAll (<ftag \(\rangle\) ) works as the delete method, but the property delete is set to all.

It is also possible to create a DeleteSpikes feature using the standard create method. The following properties are available.

TABLE 3-28: AVAILABLE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline delete & all \(\mid\) selected & selected & \begin{tabular}{l} 
Delete all spikes of given width, \\
or a selection. Only available for \\
the feature.
\end{tabular} \\
\hline \begin{tabular}{l} 
entsize
\end{tabular} & double & \(1 e-3\) & Maximum spike width. \\
\hline input & Selection & & Names of input objects. \\
\hline
\end{tabular}

TABLE 3-28: AVAILABLE PROPERTIES
\begin{tabular}{l|l|ll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline selresult & on | off & off & \begin{tabular}{l} 
Create selections of all resulting \\
objects.
\end{tabular} \\
\hline selresultshow & \begin{tabular}{l} 
all \(\mid\) obj \(\mid\) dom \(\mid\) \\
bnd \(\mid\) edg \(\mid\) pnt \(\mid\) \\
off
\end{tabular} & dom & \begin{tabular}{l} 
Show selections of resulting \\
objects in physics, materials, and \\
so on, or in part instances. obj is \\
not available in a component's \\
geometry. dom, bnd, and edg are \\
not available in all features.
\end{tabular} \\
\hline contributeto & String & none & \begin{tabular}{l} 
Tag of cumulative selection to \\
contribute to.
\end{tabular} \\
\hline
\end{tabular}

A spike is a long and narrow protrusion on an edge or corner of a face defined by two or three edges.
model.component (<ctag>).geom(<tag>).feature(<ftag>).find() searches the input objects for spikes of width less than entsize.
model. component (<ctag>).geom(<tag>).feature(<ftag>).detail() returns a selection object where you can select a subset of the spikes found.

The find and detail methods of model.component (<ctag>).geom(<tag>).defeaturing("Spikes") have the corresponding functionality for the defeaturing tool.

Only spikes that can be deleted without invalidating the object are deleted. If a spike was not possible to delete, a warning message is given, accessible through model. component (<ctag>).geom(<tag>).feature(<ftag>). problem().

\section*{COMPATIBILITY}

The width of each spike is no longer returned.
The following property is no longer supported:
TABLE 3-29: OBSOLETE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline Out & stx \(\mid\) ftx \(\mid\) ctx \(\mid\) & none & Output variables. \\
& ptx \(\mid\) status & & \\
\hline
\end{tabular}

\section*{EXAMPLE}

The following example imports the geometry model from the file
defeaturing_demo_7.x_b, finds all spikes narrower than \(10^{-4}\), and deletes the first of these.
```

Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
create("imp1"," Import");
model.component("comp1").geom("geom1").feature("imp1").
set("filename", "defeaturing_demo_7.x_b");
model.component("comp1").geom("geom1").runAll();
model.component("comp1").geom("geom1").feature().
create("dsp1", "DeleteSpikes");
model.component("comp1").geom("geom1").feature("dsp1").
selection("input").
set("imp1");
model.component("comp1").geom("geom1").feature("dsp1").
set("entsize",1e-4);
model.component("comp1").geom("geom1").feature("dsp1").find();
model.component("comp1").geom("geom1").feature("dsp1").detail().
setGroup(1);
model.component("comp1").geom("geom1").runAll();

```

\section*{SEE ALSO}

DeleteShortEdges, DeleteSliverFaces

\section*{DetachFaces}

Detach faces from CAD objects to form a new (child) solid.

\section*{SYNTAX}
```

model.component(<ctag>).geom(<tag>).feature().
create(<ftag>,"DetachFaces");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType(property);
model.component(<ctag>).geom(<tag>).defeaturing("DetachFaces").
selection(property);
model.component(<ctag>).geom(<tag>).defeaturing("DetachFaces").
set(property,<value>);
model.component(<ctag>).geom(<tag>).defeaturing("DetachFaces").
delete(<ftag>);

```

\section*{DESCRIPTION}
model.component(<ctag>).geom(<tag>).defeaturing("DetachFaces"). delete (<ftag>) creates a DetachFaces feature tagged \(\langle f t a g\rangle\) with the specified properties. If the feature can be built, it is inserted in the geometry sequence after the current feature; otherwise, the feature is discarded.

It is also possible to create a DetachFaces feature using the standard create method.
TABLE 3-30: AVAILABLE PROPERTIES
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & value & default & DESCRIPTION \\
\hline input & Selection & & Faces to detach. \\
\hline healchild & \[
\begin{aligned}
& \text { fill| } \\
& \text { patchchild | } \\
& \text { patchparent }
\end{aligned}
\] & patchparent & Healing method used on the child object. \\
\hline healparent & fill | patch & patch & Healing method used on the parent object. \\
\hline selresult & on | off & off & Create selections of all resulting objects. \\
\hline selresultshow & all|obj|dom bnd | edg | pnt |off & dom & Show selections of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a component's geometry. dom, bnd, and edg are not available in all features. \\
\hline contributeto & String & none & Tag of cumulative selection to contribute to. \\
\hline
\end{tabular}

The faces in the property input are detached from their parent object. A new solid, the child object, are formed from the detached faces. The output objects are the healed parent and child objects.

The property healparent determines how the parent object is healed to form a new solid after detaching the faces. The value fill means that a new face is formed based on the surrounding edges of each wound. The value patch means that the surrounding faces of each wound are grown or shrunk.

The property healchild determines how the child solid is constructed from the detached faces. The value fill means that a new face is formed based on the surrounding edges of each wound. The value patchchild means that the detached faces are grown or shrunk to form a solid. The value patchparent means that the parent faces surrounding the detached faces are grown or shrunk to form a solid together with the detached faces.

\section*{EXAMPLE}

The following example imports the COMSOL Multiphysics geometry file defeaturing_demo_2.mphbin and detaches a hole defined by a set of faces:
```

Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
create("imp1"," Import");
model.component("comp1").geom("geom1").feature("imp1").
set("filename", "defeaturing_demo_2.mphbin");
model.component("comp1").geom("geom1").runAll();
model.component("comp1").geom("geom1").feature().
create("det1","DetachFaces");
model.component("comp1").geom("geom1").feature("det1").
selection("input").set("imp1",6,7,8,9,11,12,13);
model.component("comp1").geom("geom1").runAll();

```

\section*{COMPATIBILITY}

The following property is no longer supported:
TABLE 3-3I: OBSOLETE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline Out & stx \(|\mathrm{ftx}| \mathrm{ctx} \mid\) & none & Output variables \\
\hline
\end{tabular}

\section*{SEE ALSO}

ReplaceFaces

\section*{DetectInterferences}

Detect intersections, touches, gaps, and containments between CAD objects.

\section*{SYNTAX}
```

model.component(<ctag>).geom(<tag>).
defeaturing("DetectInterferences").selection(property);
model.component(<ctag>).geom(<tag>).
defeaturing("DetectInterferences").set(property,<value>);
model.component(<ctag>).geom(<tag>).
defeaturing("DetectInterferences").selection(property);
model.component(<ctag>).geom(<tag>).
defeaturing("DetectInterferences").find();
model.component(<ctag>).geom(<tag>).
defeaturing("DetectInterferences").detail();

```

\section*{DESCRIPTION}

See Defeaturing Tools - Detect Interferences.
Available properties:
TABLE 3-32: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline input & Selection & & Input objects \\
\hline abstol & double & \(0.1[\mathrm{~mm}]\) & Absolute tolerance \\
\hline showingraphics & \begin{tabular}{l} 
interferingonly \\
selected | other \\
| both | all
\end{tabular} & selecte & Objects to show in graphics \\
\hline groupbyobject & boolean & false & \begin{tabular}{l} 
Group interferences by \\
object in GUI
\end{tabular} \\
\hline
\end{tabular}

\section*{DirectedDistance}

\section*{PURPOSE}

Constrain the distance in a given direction between two geometric entities to a given value.

DESCRIPTION

TABLE 3-33: AVAILABLE PROPERTIES
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & Value & DEFAULT & DESCRIPTION \\
\hline entity1 & Selection & & First entity (vertex or curved edge) \\
\hline entity2 & Selection & & Second entity (vertex or curved edge) \\
\hline direction & ```
vector|
parallel|
perpendicul
ar
``` & vector & Direction \\
\hline vector & double[2] & \{1, 0\} & Direction vector (used when direction is vector) \\
\hline edge & Selection & & Straight edge determining the direction (used when direction is parallel or perpendicular) \\
\hline distance & double & 0 & Distance \\
\hline distanceconstr & on | off & on & Determine whether the dimension is a constraining dimension (on) or measuring dimension (off) \\
\hline createpar & on | off & off & Generate parameter from dimension \\
\hline parname & String & " " & Specify parameter name if createpar is on \\
\hline helppoint1 & double[2] & \(\{0,0\}\) & First help point \\
\hline helppoint2 & double[2] & \{0, 0\} & Second help point \\
\hline arrowdispl & double & Empty & Displacement of arrow symbol in the normal direction \\
\hline labelpos & double & 0.5 & Relative label position along arrow symbol \\
\hline arrowint & on | off & on & Internal or external arrow symbol \\
\hline
\end{tabular}

\section*{SEE ALSO}

Distance, XDistance, YDistance

\section*{Distance}

\section*{PURPOSE}

Constrain the distance between two geometric entities to a given value.

\section*{DESCRIPTION}

TABLE 3-34: AVAILABLE PROPERTIES
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & value & DEFAULT & DESCRIPTION \\
\hline entity1 & Selection & & First entity (vertex or edge) \\
\hline entity2 & Selection & & Second entity (vertex or edge) \\
\hline distance & double & 0 & Distance \\
\hline distanceconstr & on | off & on & Determine whether the dimension is a constraining dimension (on) or measuring dimension (off) \\
\hline createpar & on | off & off & Generate parameter from dimension \\
\hline parname & String & " " & Specify parameter name if createpar is on \\
\hline helppoint1 & double[2] & \(\{0,0\}\) & First help point \\
\hline helppoint2 & double[2] & \{0, 0\} & Second help point \\
\hline arrowdispl & double & Empty & Displacement of arrow symbol in the normal direction \\
\hline labelpos & double & 0.5 & Relative label position along arrow symbol \\
\hline arrowint & on | off & on & Internal or external arrow symbol \\
\hline
\end{tabular}

\section*{SEE ALSO}

DirectedDistance, XDistance, YDistance, EqualDistance, TotalEdgeLength

The following additional properties are available with the Design Module.
TABLE 3-35: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline semiaxesconstr & String[2] & \{off, off\} & \begin{tabular}{l}
Constrain the semiaxes. Constrained \\
properties cannot be modified by \\
constraint and dimension functions.
\end{tabular} \\
\hline angleconstr & on | off & on & \begin{tabular}{l}
Constrain the sector angle. \\
Constrained properties cannot be \\
modified by constraint and dimension \\
functions.
\end{tabular} \\
\hline posconstr & String[2] & \{off, off\} & \begin{tabular}{l}
Constrain the position. Constrained \\
properties cannot be modified by \\
constraint and dimension functions.
\end{tabular} \\
\hline rotconstr & on |off & on & \begin{tabular}{l}
Constrain the rotation angle. \\
Constrained properties cannot be \\
modified by constraint and dimension \\
functions.
\end{tabular} \\
\hline
\end{tabular}

\section*{EqualDistance}

\section*{PURPOSE}

Constrain the distances between two pairs of geometric entities to be equal.

\section*{DESCRIPTION}

TABLE 3-36: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline entity1 & Selection & & \begin{tabular}{l}
First entity (vertex or edge) \\
Second entity (vertex or \\
edge)
\end{tabular} \\
\hline entity2 & Selection & & Third entity (vertex or edge) \\
\hline entity3 & Selection & & Fourth entity (vertex or edge) \\
\hline entity4 & Selection & double[2] & \(\{0,0\}\) \\
\hline helppoint1 & double[2] & \(\{0,0\}\) & First help point \\
\hline helppoint2 & double[2] & \(\{0,0\}\) & Second help point \\
\hline helppoint3 & double[2] & \(\{0,0\}\) & \begin{tabular}{l}
Fourth help point
\end{tabular} \\
\hline helppoint4 & double[2] & Empty & \begin{tabular}{l}
Displacement of arrow \\
symbols in the normal \\
direction
\end{tabular} \\
\hline arrowdispl & String[2] & \(\{0 n\), on \(\}\) & \begin{tabular}{l}
Relative label position along \\
arrow symbols
\end{tabular} \\
\hline Internal or external arrow \\
symbols
\end{tabular}

\section*{SEE ALSO}

Distance

\section*{EqualRadius}

\section*{PURPOSE}

Constrain two circular edges to have the same radius.

\section*{DESCRIPTION}
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & value & default & DESCRIPTION \\
\hline edge1 & Selection & & First circular edge \\
\hline edge2 & Selection & & Second circular edge \\
\hline arrowangdispl & double[2] & \(\{0,0\}\) & Angular displacement of arrow symbols relative to middle of edges \\
\hline labelradius & double[2] & \(\{0.5,0.5\}\) & Relative label position along arrow symbols \\
\hline label & String & & Label text \\
\hline
\end{tabular}

\section*{SEE ALSO}

Radius

\section*{Export, ExportFinal}

Using the CAD Import Module, Design Module, or a LiveLink product for CAD software, export selected geometry objects or the finalized geometry to a 3D CAD format, such as ACIS, Parasolid, STEP, and IGES.

To export selected geometry objects to a file, first select the objects to export using
```

model.component(<ctag>).geom(<tag>).export().selection().set(<obj
names>);

```
where <objnames> is a string array of object names.
Set the file format using
```

model.component(<ctag>).geom(<tag>).export().setType(<format>);

```
where <format> determines the file format. See Table 3-38 for valid type value names available with the CAD Import Module, Design Module, or a LiveLink product for CAD software.

TABLE 3-38: FILE FORMATS SUPPORTED FOR EXPORT
\begin{tabular}{l|l|l}
\hline FILE FORMAT & FILE EXTENSION & TYPE VALUE \\
\hline Parasolid Binary (3D) & \(. x _b, . x m t _b i n\) & parasolidbin \\
\hline Parasolid Text (3D) & \(. x_{-} t, . x m t _t x t\) & parasolidascii \\
\hline ACIS Binary (3D) & .sab & acisbin \\
\hline ACIS Text (3D) &. sat & acisascii \\
\hline
\end{tabular}

TABLE 3-38: FILE FORMATS SUPPORTED FOR EXPORT
\begin{tabular}{lll}
\hline FILE FORMAT & File extension & TYPE VALUE \\
\hline IGES File (3D) & .igs, .iges & iges \\
\hline STEP File (3D) & .step, .stp & step \\
\hline
\end{tabular}

Check which file format is set for the export using
```

String formatType =
model.component(<ctag>).geom(<tag>).export().getType();

```

To export the file enter
```

model.component(<ctag>).geom(<tag>).export(<filename>);

```

To export the finalized geometry to a file, enter
```

model.component(<ctag>).geom(<tag>).exportFinal(<filename>);

```
where <filename> is a string.

\section*{EXPORTING TO AN ACIS FILE}

When exporting to an ACIS file you can set the ACIS file format version using
```

model.component(<ctag>).geom(<tag>).export().setAcisVersion(<vers
ion>);

```
where <version> is a string 4.0, 7.0, or 2016 1.0. Default is 2016 1.0.

\section*{EXPORTING TO A PARASOLID FILE}

The Parasolid text or binary file generated by the export is of version 34 .
When exporting to a Parasolid format, a unit conversion can optionally be performed during export. Use the following method to select the export length unit:
```

model.component(<ctag>).geom(<tag>).export().setLengthUnit(<unit>
);

```
where <unit> is either fromgeom (default) to disable unit conversion or a COMSOL Multiphysics length unit, such as \(m\) for meters or in for inches. To get the current value of the export length unit type:
```

model.component(<ctag>).geom(<tag>).export().getLengthUnit();

```

To decide how the non-manifold objects are exported use the following method:
```

model.component(<ctag>).geom(<tag>).export().setSplitInManifold(<
value>);

```
where <value> is either true (default) to split the objects into manifold objects during the export, or false to export the unmodified objects.

\section*{EXPORTING TO AN IGES FILE}

When exporting to the IGES format, a unit conversion can optionally be performed during export. Use the following method to select the export length unit:
```

model.component(<ctag>).geom(<tag>).export().setLengthUnitIGES(<u
nit>);

```
where <unit> is either fromgeom (default) to disable unit conversion or a supported length unit: uin, um, mil, mm, cm, in, ft, m, km, mi.To get the current value of the export length unit type:
```

model.component(<ctag>).geom(<tag>).export().getLengthUnitIGES();

```

\section*{EXPORTING TO A STEP FILE}

When exporting to the STEP format, a unit conversion can optionally be performed during export. Use the following method to select the export length unit:
```

model.component(<ctag>).geom(<tag>).export().setLengthUnitSTEP(<u
nit>);

```
where <unit> is either fromgeom (default) to disable unit conversion or a supported length unit: nm, uin, um, mil, mm, cm, in, dm, ft, m, km, mi. To get the current value of the export length unit type:
```

model.component(<ctag>).geom(<tag>).export().getLengthUnitSTEP();

```

\section*{SEE ALSO}

Import 3D CAD

\section*{Horizontal}

\section*{PURPOSE}

Constrains straight edges to be parallel to the x -axis.

\section*{DESCRIPTION}

TABLE 3-39: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline edge & Selection & & Straight edges \\
\hline symboledg & Selection & & \begin{tabular}{l}
Edge the symbol in the Graphics window \\
is attached to
\end{tabular} \\
\hline symboledgpar & double & 0.5 & \begin{tabular}{l}
Normalized edge parameter for \\
positioning the symbol
\end{tabular} \\
\hline symboledgdispl & double & 20 & \begin{tabular}{l}
Symbol displacement in left normal \\
direction from edge (in pixels)
\end{tabular} \\
\hline
\end{tabular}

SEE ALSO
Angle, Parallel, Vertical

\section*{Fillet}

The following additional properties are available with the Design Module.

TABLE 3-40: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline radiusconstr & on | off & off & \begin{tabular}{l}
Constrain the radius. Constrained \\
properties cannot be modified by \\
constraint and dimension functions.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fillet3D}

Fillet edges in 3D geometry objects.

\section*{SYNTAX}
```

model.component(<ctag>).geom(<tag>).feature().
create(<ftag>,"Fillet3D");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
setAttribute(attribute,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getAttribute(attribute);

```

\section*{DESCRIPTION}
```

model.component(<ctag>).geom(<tag>).feature().
create(<ftag>, "Fillet3D")
creates a Fillet3D feature.

```

Use model. component (<ctag>).geom(<tag>).feature (<ftag>). selection("edge") to select the edge to fillet. The default selection is empty.

TABLE 3-4I: AVAILABLE PROPERTIES
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & value & default & DESCRIPTION \\
\hline edge & Selection & & Edges to fillet \\
\hline radius & double & 0 & Radius \\
\hline propagate & on | off & on & Propagate to tangent edges \\
\hline preserveoverlapped & on | off & off & Preserve overlapped entities \\
\hline yshaped & on | off & off & Y-shaped fillet \\
\hline filletsharp & on | off & off & Fillet sharp edges at vertices \\
\hline createselection & on | off & off & Create selections \\
\hline selresult & on | off & off & Create selections of all resulting objects. \\
\hline selresultshow & \[
\begin{aligned}
& \text { all |obj | } \\
& \text { dom | bnd } \\
& \mid \text { edg |pnt } \\
& \mid \text { off }
\end{aligned}
\] & dom & Show selections of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a component's geometry. dom, bnd, and edg are not available in all features. \\
\hline contributeto & String & none & Tag of cumulative selection to contribute to. \\
\hline
\end{tabular}

For information about the createselection and contributeto properties, search the online help in COMSOL Multiphysics to locate and search all the documentation.

The following attributes are available:
TABLE 3-42: VALID ATTRIBUTES
\begin{tabular}{l|l|l}
\hline NAME & VALUE & DEFAULT \\
\hline construction & \begin{tabular}{l}
on |off \\
inherit
\end{tabular} & inherit
\end{tabular} \begin{tabular}{l}
DeSCRIPTION \\
construction geometry. Use inherit to set \\
the construction geometry attribute only if \\
all input objects are construction geometry.
\end{tabular}

\section*{EXAMPLE}

Fillet a subset of edges on a block:
```

Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").geomRep("cadps");
model.component("comp1").geom("geom1").create("blk1", "Block");
model.component("comp1").geom("geom1").
create("fil1", "Fillet3D");
model.component("comp1").geom("geom1").feature("fil1").
selection("edge").set("blk1", new int[]{2, 4, 6, 8});
model.component("comp1").geom("geom1").feature("fil1").
set("radius", "0.1");
model.component("comp1").geom("geom1").run();

```

\section*{SEE ALSO}

Chamfer3D

\section*{Import 3D CAD}

Import geometry objects from a 3D CAD file using the CAD Import Module, Design Module, or a LiveLink product for CAD software.

\section*{SYNTAX}
```

model.component(<ctag>).geom(<tag>).feature().
create(<ftag>, "Import");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType (property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
importData();
model.component(<ctag>).geom(<tag>).feature(<ftag>).
setAttribute(attribute,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getAttribute(attribute);

```

\section*{DESCRIPTION}
model.component(<ctag>).geom(<tag>).feature().
create(<ftag>, "Import") creates an import feature. When the property filename
is set to a filename recognized as a 3D CAD file, the property type is set to cad. The following properties are available.

TABLE 3-43: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline check & on | off & & \begin{tabular}{l}
Check imported objects for \\
errors.
\end{tabular} \\
\hline filename & on | off & off & \begin{tabular}{l}
Attempt to generate new faces \\
to replace missing geometry if \\
the property knit is solid or \\
surface
\end{tabular} \\
\hline fillholes & double & on
\end{tabular}

TABLE 3-43: AVAILABLE PROPERTIES
\begin{tabular}{ll|ll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline selresultshow & \begin{tabular}{l}
all \(\mid\) obj \(\mid\) dom \\
bnd \(\mid\) edg \(\mid\) pnt \(\mid\) \\
off
\end{tabular} & dom & \begin{tabular}{l}
Show selections of resulting \\
objects in physics, materials, \\
and so on, or in part instances. \\
obj is not available in a \\
component's geometry. dom, \\
bnd, and edg are not available \\
in all features.
\end{tabular} \\
\hline contributeto & String & none & \begin{tabular}{l}
Tag of cumulative selection to \\
contribute to.
\end{tabular} \\
\hline
\end{tabular}

The file to import is specified by filename, which can have of any of the following formats:

TABLE 3-44: SUPPORTED 3D CAD FILE FORMATS
\begin{tabular}{|c|c|c|}
\hline FILE FORMAT & NOTE & FILE EXTENSION \\
\hline \(\mathrm{AClS}^{\circledR}\) & 1 & .sat, .sab \\
\hline AutoCAD \({ }^{\circledR}\) & I, 2 & .dwg, .dxf \\
\hline CATIA \({ }^{\circledR} \mathrm{V} 5\) & 3, 4 & . CATPart, . CATProduct \\
\hline IGES & 1 & .igs, .iges \\
\hline Inventor \({ }^{\circledR}\) & I, 2 & .ipt, .iam \\
\hline NX \({ }^{\text {TM }}\) & I, 5 & . prt \\
\hline Parasolid \({ }^{\text {® }}\) & 1 & .x_t, .x_b \\
\hline PTC \({ }^{\circledR}\) Creo \({ }^{\circledR}\) Parametric \({ }^{\text {TM }}\) & 1 & .prt, .asm \\
\hline PTC \({ }^{\circledR}\) Pro/ENGINEER \({ }^{\circledR}\) & 1 & .prt, .asm \\
\hline SOLIDWORKS \({ }^{\circledR}\) & I, 2, 6 & .sldprt, .sldasm \\
\hline STEP & 1 & .step, .stp \\
\hline
\end{tabular}

Note 1: This format requires a license for the CAD Import Module, Design Module, or a LiveLink product for a CAD package.

Note 2: This format is available only on a supported Windows \({ }^{\circledR}\) operating systems.
Note 3: This format requires, in addition to the CAD Import Module, Design
Module, or a LiveLink product for a CAD package, a license for the File Import for CATIA V5 module.

Note 4: This format is available only on the Windows \({ }^{\circledR} 8.1\), Windows \({ }^{\circledR} 10\), and Windows \({ }^{\circledR} 11\) operating systems.

Note 5: Support for the \(\mathrm{NX}^{\mathrm{TM}}\) file format is available only on a supported Windows \({ }^{\circledR}\) or Linux operating system.

Note 6: Embedded parts in assemblies are not supported. To import such an assembly, first convert the embedded parts to external parts.

The imported geometry objects are represented using the Parasolid geometry kernel, which is the geometry kernel utilized by the CAD Import Module and the LiveLink products for CAD software.

The method
```

model.geom(gname).feature(<ftag>).importData()

```
imports the file again, even if the feature is built.
The import can generate object, boundary, edge, and point selections based on material, layer, and color assignments in the 3D CAD file. The following properties are available for working these selections:
\begin{tabular}{ll|ll}
\hline TABLE 3-45: AVAILABLE PROPERTIES & & & \\
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline selcadshownamesfromfileobj & boolean & false & \begin{tabular}{l}
Show the object selection \\
names from the file in the \\
GUI.
\end{tabular} \\
\hline selcadnameobj & String[] & Empty & \begin{tabular}{l}
Names of object \\
selections in 3D CAD \\
import.
\end{tabular} \\
\hline selcadnameinfileobj & String[] & Empty & \begin{tabular}{l}
Original names of object \\
selections in 3D CAD \\
import. Read-only.
\end{tabular} \\
\hline selcadkeepobj & on | off & Empty & \begin{tabular}{l}
Keep object selections in \\
3D CAD import.
\end{tabular} \\
\hline selcadshowobj & on | off & Empty & \begin{tabular}{l}
Show object selections in \\
3D CAD import in \\
physics, materials, and so \\
on; in part instances; or in
\end{tabular} \\
\hline 3D from a plane \\
geometry.
\end{tabular}

TABLE 3-45: AVAILABLE PROPERTIES
\(\left.\begin{array}{l|l|l|l}\hline \text { PROPERTY } & \text { VALUE } & \text { DEFAULT } & \text { DESCRIPTION } \\ \hline \text { selcadcontributetoobj } & \text { String[] } & \text { Empty } & \begin{array}{l}\text { Tags of cumulative } \\ \text { selection to contribute to } \\ \text { (or none to not } \\ \text { contribute), for object } \\ \text { selections in 3D CAD } \\ \text { import. }\end{array} \\ \hline \text { selcadtagobj } & \text { String[] } & \text { Empty } & \begin{array}{l}\text { Tags of object selections } \\ \text { (read only, hidden in GUI) } \\ \text { in 3D CAD import. }\end{array} \\ \hline \text { selcadcolorobj } & \text { String[] } & \text { Empty } & \begin{array}{l}\text { Colors of object } \\ \text { selections (read only) in }\end{array} \\ \hline \text { 3D CAD import. The } \\ \text { color is stored as a } \\ \text { comma-separated triple } \\ \text { of numbers between 0 } \\ \text { and I. It can also be none } \\ \text { (in which case it will be } \\ \text { displayed in yellow). }\end{array}\right\}\)

TABLE 3-45: AVAILABLE PROPERTIES
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & value & Default & DESCRIPTION \\
\hline selcadshowbnd & on | off & Empty & Show boundary selections in 3D CAD import in physics, materials, and so on; in part instances; or in 3D from a plane geometry. \\
\hline selcadcontributetobnd & String[] & Empty & Tags of cumulative selection to contribute to (or none to not contribute), for boundary selections in 3D CAD import. \\
\hline selcadtagbnd & String[] & Empty & Tags of boundary selections (read-only, hidden in GUI) in 3D CAD import. \\
\hline selcadcolorbnd & String[] & Empty & Colors of boundary selections (read only) in 3D CAD import. The color is stored as a comma-separated triple of numbers between 0 and I. It can also be none (in which case it will be displayed in yellow). \\
\hline selcadshownamesfromfileedg & boolean & false & Show the edge selection names from the file in the GUI. \\
\hline selcadnameedg & String[] & Empty & Names of edge selections in 3D CAD import. \\
\hline selcadnameinfileedg & String[] & Empty & Original names of edge selections in 3D CAD import. Read only. \\
\hline selcadkeepedg & on | off & Empty & Keep edge selections in 3D CAD import. \\
\hline
\end{tabular}

TABLE 3-45: AVAILABLE PROPERTIES
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & value & default & DESCRIPTION \\
\hline selcadshowedg & on \| off & Empty & Show edge selections in 3D CAD import in physics, materials, and so on; in part instances; or in 3D from a plane geometry. \\
\hline selcadcontributetoedg & String[] & Empty & Tags of cumulative selection to contribute to (or none to not contribute), for edge selections in 3D CAD import. \\
\hline selcadtagedg & String[] & Empty & Tags of edge selections (read only, hidden in GUI) in 3D CAD import. \\
\hline selcadcoloredg & String[] & Empty & \begin{tabular}{l}
Colors of edge selections (read only) in 3D CAD import. The color is stored as a \\
comma-separated triple of numbers between 0 and I. It can also be none (in which case it will be displayed in yellow).
\end{tabular} \\
\hline selcadshownamesfromfilepnt & boolean & false & Show the point selection names from the file in the GUI. \\
\hline selcadnamepnt & String[] & Empty & Names of point selections in 3D CAD import. \\
\hline selcadnameinfilepnt & String[] & Empty & Original names of point selections in 3D CAD import. Read only. \\
\hline selcadkeeppnt & on | off & Empty & Keep point selections in 3D CAD import. \\
\hline selcadshowpnt & on | off & Empty & Show point selections in 3D CAD import in physics, materials, and so on; in part instances; or in 3D from a plane geometry. \\
\hline
\end{tabular}

TABLE 3-45: AVAILABLE PROPERTIES
\begin{tabular}{ll|ll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline selcadcontributetopnt & String[] & Empty & \begin{tabular}{l}
Tags of cumulative \\
selection to contribute to \\
(or none to not \\
contribute), for point \\
selections in 3D CAD \\
import.
\end{tabular} \\
\hline selcadtagpnt & String[] & Empty & \begin{tabular}{l}
Tags of point selections \\
(read only, hidden in GUI) \\
in 3D CAD import.
\end{tabular} \\
\hline selcadcolorpnt & String[] & Empty & \begin{tabular}{l}
Colors of point selections \\
(read only) in 3D CAD \\
import. The color is \\
stored as a \\
comma-separated triple \\
of numbers between 0 \\
and I. It can also be none \\
(in which case it will be \\
displayed in yellow).
\end{tabular} \\
\hline
\end{tabular}

The following attributes are available:
TABLE 3-46: VALID ATTRIBUTES
\begin{tabular}{llll}
\hline NAME & VALUE & DEFAULT & DESCRIPTION \\
\hline construction & on \(\mid\) off & off & \begin{tabular}{l}
Designate the resulting objects as construction \\
geometry.
\end{tabular} \\
\hline
\end{tabular}

\section*{COMPATIBILITY}

The following property is no longer supported:
TABLE 3-47: OBSOLETE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline COercion & \begin{tabular}{l}
solid \(\mid\) face \\
off
\end{tabular} & solid & \begin{tabular}{l}
Alias for knit. face is equivalent \\
to surface.
\end{tabular} \\
\hline
\end{tabular}

\section*{SEE ALSO}

Export, ExportFinal

The following additional properties are available with the Design Module.
TABLE 3-48: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline tableconstr & String[] & \(\}\) & \begin{tabular}{l}
Constrain the interpolation points. \\
Constrained properties cannot be \\
modified by constraint and \\
dimension functions.
\end{tabular} \\
\hline starttangconstr & String[2] & \{off, off \(\}\) & \begin{tabular}{l}
Constrain the start tangent. \\
Constrained properties cannot be \\
modified by constraint and \\
dimension functions.
\end{tabular} \\
\hline endtangconstr & String[2] & \{off, off \} & \begin{tabular}{l}
Constrain the end tangent. \\
Constrained properties cannot be \\
modified by constraint and \\
dimension functions.
\end{tabular} \\
\hline
\end{tabular}

\section*{Knit}

Knit surface CAD objects to form solids or surface objects.

\section*{SYNTAX}
```

model.component(<ctag>).geom(<tag>).feature().
create(<ftag>, "Knit");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType (property)
model.component(<ctag>).geom(<tag>).feature(<ftag>).
setAttribute(attribute,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getAttribute(attribute);

```

\section*{DESCRIPTION}
model. component (<ctag>).geom(<ftag>).feature(). create(<ftag>, "Knit") creates a knit feature tagged <ftag>. The following properties are available.

TABLE 3-49: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline Property & VALUE & DEFAULT & DESCRIPTION \\
\hline fillholes & on | off & off & \begin{tabular}{l}
Attempt to generate new faces \\
to replace missing geometry
\end{tabular} \\
\hline input & Selection & & Names of input surface objects. \\
\hline repairtol & double & 1 e-5 & Absolute repair tolerance. \\
\hline selresult & on \(\mid\) off & off & \begin{tabular}{l}
Create selections of all resulting \\
objects.
\end{tabular} \\
\hline selresultshow & \begin{tabular}{l}
all \(\mid\) obj \(\mid\) dom \(\mid\) \\
bnd \(\mid\) edg \(\mid\) pnt \(\mid\) \\
off
\end{tabular} & dom & \begin{tabular}{l}
Show selections of resulting \\
objects in physics, materials, and \\
so on, or in part instances. obj is \\
not available in a component's \\
geometry. dom, bnd, and edg are \\
not available in all features.
\end{tabular} \\
\hline contributeto & String & none & \begin{tabular}{l}
Tag of cumulative selection to \\
contribute to.
\end{tabular} \\
\hline
\end{tabular}

This function also removes gaps and spikes that are within the absolute tolerance specified in the property repairtol.

The following attributes are available:

TABLE 3-50: VALID ATTRIBUTES
\begin{tabular}{l|l|l|l}
\hline NAME & VALUE & DEFAULT & DESCRIPTION \\
\hline construction & \begin{tabular}{l}
on \(\mid\) off \(\mid\) \\
inherit
\end{tabular} & inherit & \begin{tabular}{l}
Designate the resulting objects as \\
construction geometry. Use inherit to set \\
the construction geometry attribute only if \\
all input objects are construction geometry.
\end{tabular} \\
\hline
\end{tabular}

\section*{COMPATIBILITY}

The following property is no longer supported:
TABLE 3-5I: OBSOLETE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline Out & stx \(|\mathrm{ftx}| \mathrm{ctx} \mid\) & none & Output variables. \\
& ptx & & \\
\hline
\end{tabular}

\section*{EXAMPLE}

The following example imports the file repair_demo_2.x_b, and knits the surface objects into a solid. A gap is also removed during the operation.
```

Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
create("imp1","Import");
model.component("comp1").geom("geom1").feature("imp1").
set("filename","repair_demo_2.x_b");
model.component("comp1").geom("geom1").runAll();
model.component("comp1").geom("geom1").feature().
create("knit1","Knit");
model.component("comp1").geom("geom1").feature("knit1").
selection("input").set("imp1");
model.component("comp1").geom("geom1").feature("knit1").
set("repairtol",1e-3);
model.component("comp1").geom("geom1").runAll();

```

\section*{SEE ALSO}

Repair

\section*{LineSegment}

The following additional properties are available with the Design Module.
TABLE 3-52: AVAILABLE PROPERTIES
\begin{tabular}{l|lll}
\hline Property & VALUE & defalut & DESCRIPTION \\
\hline coord1constr & String[2] & \{off, off \(\}\) & \begin{tabular}{l}
Constrain the coordinates of the \\
starting point. Constrained properties \\
cannot be modified by constraint and \\
dimension functions.
\end{tabular} \\
\hline coord2constr & String[2] & \{off, off \} & \begin{tabular}{l}
Constrain the coordinates of the \\
endpoint. Constrained properties \\
cannot be modified by constraint and \\
dimension functions.
\end{tabular} \\
\hline
\end{tabular}

\section*{Loft}

Create a lofted surface through a set of profile curves.

\section*{SYNTAX}
```

model.component(<ctag>).geom(<tag>).feature().
create(<ftag>,"Loft");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
setAttribute(attribute,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getAttribute(attribute);

```

\section*{DESCRIPTION}
model.component(<ctag>).geom(<tag>).feature(). create(<ftag>, "Loft")
creates a Loft feature.
Use model.component (<ctag>).geom(<tag>).feature (<ftag>). selection("profile") to select loft profiles that are not specified as start or end profiles. The default selection is empty.

Use model.component (<ctag>).geom(<tag>).feature (<ftag>). selection("startprofile") to select the loft start profile. The default selection is empty.

Use model.component (<ctag>).geom(<tag>).feature (<ftag>). selection("endprofile") to select the loft start profile. The default selection is empty.

Use model.component (<ctag>).geom(<tag>).feature (<ftag>).
selection ("guide") to select guide curves that are not specified as start or end guide curves. The default selection is empty.

Use model.component (<ctag>).geom(<tag>).feature (<ftag>). selection("startguide") to select the start guide curve. The default selection is empty.

Use model.component (<ctag>).geom(<tag>).feature (<ftag>). selection("endguide") to select the end guide curve. The default selection is empty.

TABLE 3-53: AVAILABLE PROPERTIES
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & value & Default & DESCRIPTION \\
\hline periodic & on | off & off & Periodic loft. \\
\hline unite & on | off & on & Unite with input objects. \\
\hline crossfaces & on | off & off & Keep intermediate profile faces. \\
\hline type & solid | surface & solid & Object type. \\
\hline facepartioning & \[
\begin{aligned}
& \text { minimal } \\
& \text { columns }
\end{aligned} \text { grid }
\] & minimal & Face partitioning. \\
\hline profile & Selection & & Profiles. \\
\hline startprofile & Selection & & Start profile selection. \\
\hline startprofiledir & ```
notprescribed|
parallel|
perpendicular|
atangle
``` & \begin{tabular}{l}
notpresc \\
ribed
\end{tabular} & Loft direction. \\
\hline startprofilerel & ```
profilefaces|
adjacent|
profileedges
``` & adjacent & Relative to. \\
\hline startprofileangle & double & 0 & Angle. \\
\hline endprofile & Selection & & End profile selection. \\
\hline endprofiledir & ```
notprescribed|
parallel|
perpendicular|
atangle
``` & \begin{tabular}{l}
notpresc \\
ribed
\end{tabular} & Loft direction. \\
\hline endprofilerel & profilefaces adjacent| profileedges & adjacent & Relative to. \\
\hline endprofileangle & double & 0 & Angle. \\
\hline guide & Selection & & Guide curves. \\
\hline
\end{tabular}

TABLE 3-53: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline startguide & Selection & & Start guide curve. \\
\hline startguidedir & \begin{tabular}{l} 
notprescribed \\
parallel
\end{tabular} & \begin{tabular}{l} 
notpresc \\
ribed
\end{tabular} & Loft surface direction. \\
\hline endguide & Selection & \begin{tabular}{l} 
notprescribed \\
parallel
\end{tabular} & \begin{tabular}{l} 
notpresc \\
ribed
\end{tabular}
\end{tabular} Loft surface direction. \begin{tabular}{l} 
endguidedir \\
\hline on \(\mid\) off
\end{tabular}

For information about the createselection and contributeto properties, search the online help in COMSOL Multiphysics to locate and search the documentation.

The following attributes are available:
TABLE 3-54: VALID ATTRIBUTES
\begin{tabular}{llll}
\hline NAME & VALUE & DEFAULT & DESCRIPTION \\
\hline construction & \begin{tabular}{l} 
on | off \\
inherit
\end{tabular} & inherit & \begin{tabular}{l} 
Designate the resulting objects as \\
construction geometry. Use inherit to set \\
the construction geometry attribute only if \\
all input objects are construction geometry.
\end{tabular} \\
\hline
\end{tabular}

\section*{EXAMPLE}

Create a cylinder from two disc profiles. This illustrates two different ways of specifying the profile.
```

Model model = ModelUtil.create("Model1");
model.component().create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").geomRep("cadps");
model.component("comp1").geom("geom1").feature().
create("wp1", "WorkPlane");

```
```

model.component("comp1").geom("geom1").feature("wp1").geom().
create("c1", "Circle");
model.component("comp1").geom("geom1").create("copy1", "Copy");
model.component("comp1").geom("geom1").feature("copy1").
selection("input").set(new String[]{"wp1"});
model.component("comp1").geom("geom1").feature("copy1").
set("displz", "1");
model.component("comp1").geom("geom1").create("loft1", "Loft");
model.component("comp1").geom("geom1").feature("loft1").
selection("profile").set(new String[]{"wp1"});
model.component("comp1").geom("geom1").feature("loft1").
selection("startprofile").init(1);
model.component("comp1").geom("geom1").feature("loft1").
selection("startprofile").
set("copy1", new int[]{1, 2, 3, 4});
model.component("comp1").geom("geom1").run();

```

\section*{Midsurface}

Generate a surface object that is the midsurface of a solid object in 3D.

\section*{SYNTAX}
```

model.component(<ctag>).geom(<tag>).feature().
create(<ftag>,"Midsurface");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
setAttribute(attribute,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getAttribute(attribute);

```

\section*{DESCRIPTION}
```

 model.component(<ctag>).geom(<tag>).feature().
 create(<ftag>,"Midsurface")
    ```
creates a Midsurface feature.

Use
```

model.component(<ctag>).geom(<tag>).feature(<ftag>).

```
    selection("input")
to select the objects for the midsurface operation. The default selection is empty.
TABLE 3-55: AVAILABLE PROPERTIES
\begin{tabular}{l|lll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline repair & on \(\mid\) off & on & Repair overlaps \\
\hline split & on \(\mid\) off & off & Split in smooth components \\
\hline createselection & on |off & off & Create selections \\
\hline contributeto & String & none & Cumulative selection to contribute to \\
\hline
\end{tabular}

For information about the createselection and contributeto properties, search the online help in COMSOL Multiphysics to locate and search all the documentation.

The following attributes are available:
TABLE 3-56: VALID ATTRIBUTES
\begin{tabular}{llll}
\hline NAME & VALUE & DEFAULT & DESCRIPTION \\
\hline construction & \begin{tabular}{l} 
on |off \\
inherit
\end{tabular} & inherit & \begin{tabular}{l} 
Designate the resulting objects as \\
construction geometry. Use inherit to set \\
the construction geometry attribute only if \\
all input objects are construction geometry.
\end{tabular} \\
\hline
\end{tabular}

\section*{EXAMPLE}

Generate the midsurface of a thin block:
```

Model model = ModelUtil.create("Model1");
model.component().create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").geomRep("cadps");
model.component("comp1").geom("geom1").create("blk1", "Block");
model.component("comp1").geom("geom1").feature("blk1").
set("size", new String[]{"1", "1", "0.1"});
model.component("comp1").geom("geom1").
create("mid1", "Midsurface");
model.component("comp1").geom("geom1").feature("mid1").
selection("input").set(new String[]{"blk1"});
model.component("comp1").geom("geom1").run();

```

SEE ALSO
Thicken

\section*{Mirror}

The following additional properties are available with the Design Module.
TABLE 3-57: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline posconstr & String[2] & \{on, on \} & \begin{tabular}{l} 
Constrain point on line of reflection. \\
Constrained properties cannot be \\
modified by constraint and dimension \\
functions.
\end{tabular} \\
\hline axisconstr & String[2] & \{on, on\} & \begin{tabular}{l} 
Constrain normal vector to line of \\
reflection. Constrained properties \\
cannot be modified by constraint and \\
dimension functions.
\end{tabular} \\
\hline
\end{tabular}

\section*{Move}

The following additional properties are available with the Design Module.
\begin{tabular}{l|l|l|l}
\hline \multicolumn{3}{l}{ TABLE 3-58: AVAILABLE PROPERTIES } & \\
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline displxconstr & on \(\mid\) off & on & \begin{tabular}{l} 
Constrain the x-displacement. \\
Constrained properties cannot be \\
modified by constraint and dimension \\
functions.
\end{tabular} \\
\hline displyconstr & on | off & on & \begin{tabular}{l} 
Constrain the y-displacement. \\
Constrained properties cannot be \\
modified by constraint and dimension \\
functions.
\end{tabular} \\
\hline
\end{tabular}

\section*{OffsetFaces}

\section*{PURPOSE}

Offset faces of 3D objects in the normal direction.

\section*{S Y N TAX}
```

model.component(<ctag>).geom(<tag>).feature().
create(<ftag>,"OffsetFaces");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType(property)
model.component(<ctag>).geom(<tag>).feature(<ftag>).
setAttribute(attribute,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getAttribute(attribute);

```

\section*{DESCRIPTION}
model. component(<ctag>).geom(<tag>).feature().
            create(<ftag>,"OffsetFaces")
creates an offset faces feature tagged <ftag>. The following properties are available.
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & value & default & DESCRIPTION \\
\hline face & Selection & Empty & Faces to offset \\
\hline keep & on | off & off & Keep input objects \\
\hline distance & double & 0 & Offset distance \\
\hline reverse & on | off & off & Reverse offset direction \\
\hline fillet & on | off & off & Fillet convex edges \\
\hline stepfaces & contang | no & contang & Create step faces \\
\hline exceptendface smerged & on | off & off & Except if faces at ends of edge can be merged. Only used when stepfaces is contang \\
\hline perpstepedges & on | off & off & Create perpendicular step edges for surface objects \\
\hline overflow & \begin{tabular}{l}
auto| \\
extendoffset| \\
extendother| \\
capfaces | \\
error
\end{tabular} & auto & Overflow handling \\
\hline selresult & on | off & off & Create selections of all resulting objects \\
\hline
\end{tabular}

TABLE 3-59: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline selresultshow & \begin{tabular}{l} 
all \(\mid\) obj \(\mid\) dom \(\mid\) \\
bnd \(\mid\) edg \(\mid\) pnt \(\mid\) \\
off
\end{tabular} & dom & \begin{tabular}{l} 
Show selections, if selresult is \\
on, of resulting objects in physics, \\
materials, and so on, or in part \\
instances. obj is not available in a \\
component's geometry
\end{tabular} \\
\hline color & \begin{tabular}{l} 
none \(\mid\) custom \\
integerbetween \\
I and the number \\
of colors in the \\
current theme
\end{tabular} & none & \begin{tabular}{l} 
The color of the selection, either \\
given as an integer indicating a \\
color in the color theme, or as a \\
custom color in the customcolor \\
property. Coloring is only \\
available when selresult in active
\end{tabular} \\
\hline customcolor & RGB-triplet & \begin{tabular}{l} 
Next \\
available \\
theme \\
color
\end{tabular} & \begin{tabular}{l} 
The color to use. Active when \\
color is set to custom
\end{tabular} \\
\hline contributeto & String & none & \begin{tabular}{l} 
Tag of cumulative selection to \\
contribute to
\end{tabular} \\
\hline
\end{tabular}

The following attributes are available:

\section*{TABLE 3-60: VALID ATTRIBUTES}
\begin{tabular}{l|l|l}
\hline NAME & VALUE & DEFAULT \\
\hline construction & \begin{tabular}{l} 
on |off \\
inherit
\end{tabular} & inherit
\end{tabular} \begin{tabular}{l} 
DESCRIPTION \\
construction geometry. Use inherit to set \\
the construction geometry attribute only if \\
all input objects are construction geometry.
\end{tabular}

\section*{SEE ALSO}

TransformFaces

\section*{Parallel}

PURPOSE
Constrains straight edges to be parallel.

\section*{DESCRIPTION}

TABLE 3-6I: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline edge & Selection & & Straight edges \\
\hline symboledg & Selection & & \begin{tabular}{l} 
Edge the symbol in the Graphics window \\
is attached to
\end{tabular} \\
\hline symboledgpar & double & 0.5 & \begin{tabular}{l} 
Normalized edge parameter for \\
positioning the symbol
\end{tabular} \\
\hline symboledgdispl & double & 20 & \begin{tabular}{l} 
Symbol displacement in left normal \\
direction from edge (in pixels)
\end{tabular} \\
\hline
\end{tabular}

SEE ALSO
Angle

\section*{Perpendicular}

\section*{PURPOSE}

Constrains two straight edges to be orthogonal.

\section*{DESCRIPTION}

TABLE 3-62: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline Property & VALUE & Default & DESCRIPTION \\
\hline entity1 & Selection & & First edge \\
\hline entity2 & Selection & & Second edge \\
\hline symbolentity & \(1 \mid 2\) & 1 & \begin{tabular}{l} 
Edge the symbol in the Graphics window \\
is attached to
\end{tabular} \\
\hline symboledgpar & double & 0 & \begin{tabular}{l} 
Normalized edge parameter for \\
positioning the symbol
\end{tabular} \\
\hline symboledgdispl & double & 20 & \begin{tabular}{l} 
Symbol displacement in left normal \\
direction from edge (in pixels)
\end{tabular} \\
\hline
\end{tabular}

SEE ALSO
Angle

\section*{Point}

The following additional properties are available with the Design Module.
TABLE 3-63: AVAILABLE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline pconstr & String[2] & \{off, off \} & \begin{tabular}{l} 
Constrain the coordinates. Constrained \\
properties cannot be modified by \\
constraint and dimension functions.
\end{tabular} \\
\hline
\end{tabular}

\section*{Polygon}

The following additional properties are available with the Design Module.

TABLE 3-64: AVAILABLE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline tableconstr & String[] & \(\}\) & \begin{tabular}{l} 
Constrain the polygon points. \\
Constrained properties cannot be \\
modified by constraint and dimension \\
functions.
\end{tabular} \\
\hline
\end{tabular}

\section*{Position}

PURPOSE
Constrain a vertex to have given coordinates.

DESCRIPTION
TABLE 3-65: AVAILABLE PROPERTIES
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & Value & default & DESCRIPTION \\
\hline vertex & Selection & & Vertex to fix \\
\hline pos & double[2] & \(\{0,0\}\) & Coordinates \\
\hline posconstr & String[] & \{"on", "on" \} & Determine whether the dimension is a constraining dimension (on) or measuring dimension (off) \\
\hline createpar & on | off & off & Generate parameter from dimension \\
\hline parname & String & \{ " ", " " \} & Specify parameter name if createpar is on \\
\hline symbolvtxdispl & double[2] & \(\{20,20\}\) & Displacement of the symbol in the Graphics window from the vertex (in pixels) \\
\hline
\end{tabular}

\section*{Projection}

\section*{PURPOSE}

Project 3D objects and entities to a 2D work plane.

\section*{SYNTAX}
```

model.component(<ctag>).geom(<tag>).feature(<wptag>).
geom().create(<ftag>, "Projection");
model.component(<ctag>).geom(<tag>).feature(<wptag>).
geom().feature(<ftag>).selection("input");
model.component(<ctag>).geom(<tag>).feature(<wptag>).
geom().feature(<ftag>).set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<wptag>).
geom().feature(<ftag>).getType (property)
model.component(<ctag>).geom(<tag>).feature(<ftag>).
setAttribute(attribute,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getAttribute(attribute);

```

\section*{DESCRIPTION}

Use
```

model.component(<ctag>).geom(<tag>).feature(<wptag>).geom().
create(<ftag>,"Projection")

```
to create a projection feature tagged <ftag> in the 2 D sequence of the work plane feature <wptag>. It can compute the projection of 3D objects and entities to the work plane.

By default, you get the projection for all 3D objects that were generated by the features preceding the work plane feature. To select a subset of these objects or to select entities, set the project property to the appropriate entity level, and use the property input to select the 3 D objects or entities.

The following properties are available.

TABLE 3-66: AVAILABLE PROPERTIES
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & value & default & DESCRIPTION \\
\hline absrepairtool & & \[
\begin{aligned}
& \text {...geom(<tag>). } \\
& \text { absRepairTol() }
\end{aligned}
\] & Absolute repair tolerance. \\
\hline input & Selection & & Entities to project. Used when project is not all. \\
\hline project & \begin{tabular}{l|l|l|} 
all & obj \\
dom & bnd \\
edg \(\mid\) & vtx
\end{tabular} & all & Project all objects or selected objects or entities \\
\hline \begin{tabular}{l}
projectiontyp \\
e
\end{tabular} & \begin{tabular}{l}
edgvtx| \\
outline| \\
all
\end{tabular} & outline & Projection type. Used when project is all, dom, or bnd. \\
\hline repairtol & double & \[
\begin{aligned}
& \text {...geom(<tag>). } \\
& \text { repairTol() }
\end{aligned}
\] & Relative repair tolerance, relative to size of each input object. \\
\hline repairtoltype & ```
auto|
relative|
absolute
``` & \[
\begin{aligned}
& \text {...geom(<tag>). } \\
& \text { repairTolType() }
\end{aligned}
\] & Repair tolerance type: automatic, relative, or absolute. \\
\hline workplane & String & & Work plane to project onto. \\
\hline selresult & on | off & off & Create selections of all resulting objects. \\
\hline selresultshow & \begin{tabular}{l}
all|obj| \\
bnd |pnt | \\
off
\end{tabular} & bnd & Show selections, if selresult is on, in physics, materials, and so on; or in 3D from a plane geometry. obj is not available in a component's geometry. \\
\hline contributeto & String & none & Tag of cumulative selection to contribute to. \\
\hline
\end{tabular}

The following attributes are available:
TABLE 3-67: VALID ATTRIBUTES
\begin{tabular}{l|l|l|l}
\hline NAME & VALUE & DEFAULT & DESCRIPTION \\
\hline construction & \begin{tabular}{l}
on \(\mid\) off \\
inherit
\end{tabular} & inherit & \begin{tabular}{l}
Designate the resulting objects as \\
construction geometry. Use inherit to set \\
the construction geometry attribute only if \\
all input objects are construction geometry.
\end{tabular} \\
\hline
\end{tabular}

\section*{SEE ALSO}

CrossSection, WorkPlane

\section*{QuadraticBezier}

The following additional properties are available with the Design Module.

TABLE 3-68: AVAILABLE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline pconstr & String[3] & \begin{tabular}{l}
\(\{0 f f\), off, \\
off \(\}\)
\end{tabular} & \begin{tabular}{l}
Constrain the control points. \\
Constrained properties cannot be \\
modified by constraint and dimension \\
functions.
\end{tabular} \\
\hline
\end{tabular}

Radius

PURPOSE
Constrain a circular edge to have a given radius.

\section*{DESCRIPTION}

TABLE 3-69: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline edge & Selection & & Circular edge \\
\hline radius & double & 0 & Radius \\
\hline radiusconstr & on | off & on & \begin{tabular}{l}
Determine whether the dimension is a \\
constraining dimension (on) or measuring \\
dimension (off)
\end{tabular} \\
\hline createpar & on | off & off & \begin{tabular}{l}
Generate parameter from dimension
\end{tabular} \\
\hline parname & String & " " & \begin{tabular}{l}
Specify parameter name if createpar is \\
on
\end{tabular} \\
\hline arrowangdispl & double & 0 & \begin{tabular}{l}
Angular displacement of arrow symbol \\
relative to middle of edge
\end{tabular} \\
\hline labelradius & double & 0.5 & Relative label position along arrow symbol \\
\hline
\end{tabular}

\section*{SEE ALSO}

EqualRadius

\section*{Rectangle}

The following additional properties are available with the Design Module.
\begin{tabular}{ll|ll}
\hline TABLE 3-70: AVAILABLE PROPERTIES & & \\
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline Sizeconstr & String[2] & \{off, off \} & \begin{tabular}{l}
Constrain the width and the height. \\
Constrained properties cannot be \\
modified by constraint and dimension \\
functions.
\end{tabular} \\
\hline posconstr & String[2] & \{off, off \} & \begin{tabular}{l}
Constrain the position. Constrained \\
properties cannot be modified by \\
constraint and dimension functions.
\end{tabular} \\
\hline rotconstr & on | off & off & \begin{tabular}{l}
Constrain the rotation angle. \\
Constrained properties cannot be \\
modified by constraint and dimension \\
functions.
\end{tabular} \\
\hline arrowdispl & double[2] & Empty & \begin{tabular}{l}
Displacement of arrow symbols in the \\
normal direction.
\end{tabular} \\
\hline
\end{tabular}

TABLE 3-70: AVAILABLE PROPERTIES
\begin{tabular}{ll|ll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline labelpos & double[2] & \(\{0.5,0.5\}\) & \begin{tabular}{l}
Relative label position along arrow \\
symbols.
\end{tabular} \\
\hline arrowint & String[2] & \{on, on \(\}\) & Internal or external arrow symbols. \\
\hline
\end{tabular}

\section*{Repair}

Repair CAD objects.

\section*{SYNTAX}
```

model.component(<ctag>).geom(<tag>).feature().
create(<ftag>, "Repair");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
selection(property);
model.component(\langlectag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType(property)
model.component(<ctag>).geom(<tag>).feature(<ftag>).
setAttribute(attribute,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getAttribute(attribute);

```

\section*{DESCRIPTION}
```

model.component(<ctag>).geom(<tag>).feature().

```
 create(<ftag>, "Repair")
creates a repair feature tagged <ftag>. The following properties are available.
TABLE 3-7I: AVAILABLE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline \begin{tabular}{l}
input \\
check
\end{tabular} & Selection & & Names of input objects. \\
\hline on | off & on & \begin{tabular}{l}
Check the input objects for \\
errors.
\end{tabular} \\
\hline repairtol & double & \(1 \mathrm{e}-5\) & Absolute repair tolerance \\
\hline selresult & on \(\mid\) off & off & \begin{tabular}{l}
Create selections of all resulting \\
objects.
\end{tabular} \\
\hline
\end{tabular}

TABLE 3-7I: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline selresultshow & \begin{tabular}{l}
all \(\mid\) obj \\
dom \(|\)\begin{tabular}{l}
bnd \\
edg \(\mid\) pnt \\
off
\end{tabular}
\end{tabular} & dom & \begin{tabular}{l}
Show selections of resulting \\
objects in physics, materials, and \\
so on, or in part instances. obj is \\
not available in a component's \\
geometry. dom, bnd, and edg are \\
not available in all features.
\end{tabular} \\
\hline simplify & on | off & off & \begin{tabular}{l}
Simplify the underlying curve and \\
surface manifolds of geometric \\
entities
\end{tabular} \\
\hline repairfacetoface & on | off & off & \begin{tabular}{l}
Repair face-to-face \\
inconsistencies in solid objects
\end{tabular} \\
\hline contributeto & String & none & \begin{tabular}{l}
Tag of cumulative selection to \\
contribute to.
\end{tabular} \\
\hline
\end{tabular}

The function tries to remove or repair the following defects:
- Entities with invalid sense
- Invalid edge and vertex tolerances
- Invalid manifolds
- Self-intersecting manifolds
- Non-Gl manifolds
- Missing edge or vertex manifolds
- Missing vertex
- Vertices not on curve of edge
- Edges and vertices not on surface of face
- Removal of surface self-intersections that lie outside the face
- Splitting at edge intersections which have no vertex
- Removal of discontinuities by either splitting or smoothing
- Remove small features (short edges, small faces, sliver faces, and spikes)

The following attributes are available:
TABLE 3-72: VALID ATTRIBUTES
\begin{tabular}{l|l|l|l}
\hline NAME & VALUE & DEFAULT & DESCRIPTION \\
\hline construction & \begin{tabular}{l}
on |off \\
inherit
\end{tabular} & inherit & \begin{tabular}{l}
Designate the resulting objects as \\
construction geometry. Use inherit to set \\
the construction geometry attribute only if \\
all input objects are construction geometry.
\end{tabular} \\
\hline
\end{tabular}

\section*{COMPATIBILITY}

The following property is no longer supported:
TABLE 3-73: OBSOLETE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline Out & stx \(|\mathrm{ftx}| \mathrm{ctx} \mid\) & none & Output variables \\
\hline
\end{tabular}

\section*{EXAMPLE}

The following example imports the file repair_demo_2.x_b, and repairs the resulting objects.
```

Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
create("imp1", "Import");
model.component("comp1").geom("geom1").feature("imp1").
set("filename", "repair_demo_2.x_b");
model.component("comp1").geom("geom1").runAll();
model.component("comp1").geom("geom1").feature().
create("rep1", "Repair");
model.component("comp1").geom("geom1").feature("rep1").
selection("input"). set("imp1");
model.component("comp1").geom("geom1").feature("rep1").
set("repairtol",1e-3);
model.component("comp1").geom("geom1").runAll();

```

\section*{SEE ALSO}

Check, Knit

\section*{ReplaceFaces}

Delete faces from CAD objects and heal the wounds by creating new faces.
```

SYNTAX
model.component(<ctag>).geom(<tag>).feature().
create(<ftag>,"ReplaceFaces");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType(property);
model.component(<ctag>).geom(<tag>).defeaturing("ReplaceFaces").
selection(property)
model.component(<ctag>).geom(<tag>).defeaturing("ReplaceFaces").
set(property,<value>);
model.component(<ctag>).geom(<tag>).defeaturing("ReplaceFaces").
delete(<ftag>);

```

\section*{DESCRIPTION}
model.component (<ctag>).geom(<tag>).defeaturing("ReplaceFaces"). delete (<ftag>) creates a ReplaceFaces feature tagged \(\langle f\) tag \(\rangle\) with the specified properties. If the feature can be built, it is inserted in the geometry sequence after the current feature; otherwise, the feature is discarded.

It is also possible to create a ReplaceFaces feature using the standard create method.

TABLE 3-74: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline input & Selection & & Faces to replace. \\
\hline heal & cap | extend & extend & \begin{tabular}{l}
Healing method.
\end{tabular} \\
\hline throughhole & on \(\mid\) off & off & \begin{tabular}{l}
Heal as if the removed faces are a \\
through hole.
\end{tabular} \\
\hline selresult & on \(\mid\) off & off & \begin{tabular}{l}
Create selections of all resulting \\
objects.
\end{tabular} \\
\hline selresultshow & \begin{tabular}{l}
all \(\mid\) obj \(\mid\) dom \\
bnd \(\mid\) edg \(\mid\) pnt \(\mid\) \\
off
\end{tabular} & dom & \begin{tabular}{l}
Show selections of resulting \\
objects in physics, materials, and \\
so on, or in part instances. obj is \\
not available in a component's \\
geometry. dom, bnd, and edg are \\
not available in all features.
\end{tabular} \\
\hline contributeto & String & none & \begin{tabular}{l}
Tag of cumulative selection to \\
contribute to.
\end{tabular} \\
\hline
\end{tabular}

The faces in the property input are deleted from their objects. The resulting object is healed so that a solid object is obtained. If heal is cap, a new face is formed based on the surrounding edges of each wound. If heal is extend, the surrounding faces of each wound are grown or shrunk to heal the wound.

When you replacing faces that form through holes, set the throughhole property to on to indicate that the two wounds from where the hole entered and exited the geometry are to be healed independently instead of as a single wound. If throughhole is off, the wound would be healed with a single new face that would just recreate the hole.

\section*{EXAMPLE}

The following example imports the file defeaturing_demo_2.mphbin, and removes a hole from the geometry model.
```

Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").feature().
create("imp1"," Import");
model.component("comp1").geom("geom1").feature("imp1").
set("filename", "defeaturing_demo_2.mphbin");
model.component("comp1").geom("geom1").run("imp1");
model.component("comp1").geom("geom1").feature().
create("rfa1","ReplaceFaces");
model.component("comp1").geom("geom1").feature("rfa1").
selection("input").set("imp1", 6,7,8,9,11,12,13);
model.component("comp1").geom("geom1").run();

```

\section*{COMPATIBILITY}

The following property is no longer supported:

TABLE 3-75: OBSOLETE PROPERTIES
\begin{tabular}{llll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline Out & stx \(|\mathrm{ftx}| \mathrm{ctx} \mid\) & none & Output variables \\
\hline
\end{tabular}

\section*{SEE ALSO}

DeleteFillets, DeleteSliverFaces, DeleteSmallFaces, DetachFaces

\section*{Rotate}

The following additional properties are available with the Design Module.
TABLE 3-76: AVAILABLE PROPERTIES
\begin{tabular}{ll|ll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline rotconstr & on | off & on & \begin{tabular}{l}
Constrain the rotation angle. \\
Constrained properties cannot be \\
modified by constraint and dimension \\
functions.
\end{tabular} \\
\hline posconstr & String[2] & \{on, on \} & \begin{tabular}{l}
Constrain the center of rotation. \\
Constrained properties cannot be \\
modified by constraint and dimension \\
functions.
\end{tabular} \\
\hline
\end{tabular}

\section*{Scale}

The following additional properties are available with the Design Module.
TABLE 3-77: AVAILABLE PROPERTIES
\begin{tabular}{ll|ll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline posconstr & String[2] & \{on, on \} & \begin{tabular}{l}
Constrain the center of scaling. \\
Constrained properties cannot be \\
modified by constraint and dimension \\
functions.
\end{tabular} \\
\hline
\end{tabular}

\section*{Square}

The following additional properties are available with the Design Module.
TABLE 3-78: AVAILABLE PROPERTIES
\begin{tabular}{ll|ll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline sizeconstr & on | off & off & \begin{tabular}{l}
Constrain the side length. Constrained \\
properties cannot be modified by \\
constraint and dimension functions.
\end{tabular} \\
\hline posconstr & String[2] & \{off, off \} & \begin{tabular}{l}
Constrain the position. Constrained \\
properties cannot be modified by \\
constraint and dimension functions.
\end{tabular} \\
\hline rotconstr & on | off & off & \begin{tabular}{l}
Constrain the rotation angle. \\
Constrained properties cannot be \\
modified by constraint and dimension \\
functions.
\end{tabular} \\
\hline
\end{tabular}

TABLE 3-78: AVAILABLE PROPERTIES
\begin{tabular}{ll|ll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline arrowdispl & double & Empty & \begin{tabular}{l}
Displacement of arrow symbol in the \\
normal direction.
\end{tabular} \\
\hline labelpos & double & 0.5 & \begin{tabular}{l}
Relative label position along arrow \\
symbol.
\end{tabular} \\
\hline arrowint & on |off & on & Internal or external arrow symbol. \\
\hline
\end{tabular}

\section*{TangentConstraint}

\section*{PURPOSE}

Constrain two edges to have a point of tangency. For each edge, you can require that the tangency occurs at an adjacent vertex.

\section*{DESCRIPTION}

TABLE 3-79: AVAILABLE PROPERTIES
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & Value & DEFAULT & DESCRIPTION \\
\hline edge1 & Selection & & First edge \\
\hline point1 & \begin{tabular}{l}
vertex| \\
anywhere
\end{tabular} & anywhere & Point of tangency for first edge \\
\hline vertex1 & Selection & & Vertex for point of tangency (used when point1 is vertex) \\
\hline edge2 & Selection & & Second edge \\
\hline point2 & vertex | anywhere & anywhere & Point of tangency for second edge \\
\hline vertex2 & Selection & & Vertex for point of tangency (used when point2 is vertex) \\
\hline helppoint1 & double[2] & \{0, 0\} & First help point (used when point1 is anywhere) \\
\hline helppoint2 & double[2] & \{0, 0\(\}\) & Second help point (used when point1 is anywhere) \\
\hline symbolentity & 1|2 & 1 & Edge the symbol in the Graphics window is attached to \\
\hline symboledgpar & double & 0 & Normalized edge parameter for positioning the symbol \\
\hline symboledgdispl & double & 20 & Symbol displacement in left normal direction from edge (in pixels) \\
\hline
\end{tabular}

\section*{SEE ALSO}

Angle

\section*{Thicken}

Generate a solid object by thickening in the normal direction a surface object in 3D.

\section*{S Y N TAX}
```

model.component(<ctag>).geom(<tag>).feature().
create(<ftag>, "Thicken");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
setAttribute(attribute,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getAttribute(attribute);

```

\section*{DESCRIPTION}
model. component(<ctag>).geom(<tag>).feature().
 create (<ftag>, "Thicken")
creates a Thicken feature.
Use model.component (<ctag>).geom(<tag>).feature (<ftag>). selection("input") to select the objects for the thicken operation. The default selection is empty.

TABLE 3-80: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline input & Selection & & Input objects \\
\hline offset & \begin{tabular}{l}
symmetric \\
asymmetric
\end{tabular} & \begin{tabular}{l}
symmetr \\
ic
\end{tabular} & Type of offset specification \\
\hline totalthick & double & 0 & \begin{tabular}{l}
Total thickness (for symmetric \\
offset)
\end{tabular} \\
\hline upthick & double & 0 & \begin{tabular}{l}
Upside thickness (for asymmetric \\
offset)
\end{tabular} \\
\hline downthick & double & 0 & \begin{tabular}{l}
Downside thickness (for \\
asymmetric offset)
\end{tabular} \\
\hline direction & \begin{tabular}{l}
normal \\
vector
\end{tabular} & normal & Direction of the side faces \\
\hline dirvector & double[3] & \(\{0,0,1\}\) & Direction vector for side faces \\
\hline on | off & off & Fillet offset edges \\
\hline selresult & on \(\mid\) off & off & \begin{tabular}{l}
Create selections of all resulting \\
objects.
\end{tabular} \\
\hline
\end{tabular}

TABLE 3-80: AVAILABLE PROPERTIES
\begin{tabular}{l|l|ll}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline selresultshow & \begin{tabular}{l}
all \(\mid\) obj \(\mid\) \\
dom \(\mid\) bnd \\
edg \(\mid\) pnt \\
off
\end{tabular} & dom & \begin{tabular}{l}
Show selections of resulting \\
objects in physics, materials, and so \\
on, or in part instances. obj is not \\
available in a component's \\
geometry. dom, bnd, and edg are \\
not available in all features.
\end{tabular} \\
\hline contributeto & String & none & \begin{tabular}{l}
Tag of cumulative selection to \\
contribute to.
\end{tabular} \\
\hline
\end{tabular}

For information about the createselection and contributeto properties, search the online help in COMSOL Multiphysics to locate and search all the documentation.

The following attributes are available:
TABLE 3-8I: VALID ATTRIBUTES
\begin{tabular}{l|l|l|l}
\hline NAME & VALUE & DEFAULT & DESCRIPTION \\
\hline construction & \begin{tabular}{l}
on \(\mid\) off \\
inherit
\end{tabular} & inherit & \begin{tabular}{l}
Designate the resulting objects as \\
construction geometry. Use inherit to set \\
the construction geometry attribute only if \\
all input objects are construction geometry.
\end{tabular} \\
\hline
\end{tabular}

\section*{EXAMPLE}

Create a cylinder by thickening a disc shaped surface:
```

Model model = ModelUtil.create("Model1");
model.component.create("comp1");
model.component("comp1").geom().create("geom1",3);
model.component("comp1").geom("geom1").geomRep("cadps");
model.component("comp1").geom("geom1").feature().
create("wp1", "WorkPlane");
model.component("comp1").geom("geom1").feature("wp1").geom().
create("c1", "Circle");
model.component("comp1").geom("geom1").create("thi1", "Thicken");
model.component("comp1").geom("geom1").feature("thi1").
selection("input").set(new String[]{"wp1"});
model.component("comp1").geom("geom1").feature("thi1").
set("totalthick", "0.1");
model.component("comp1").geom("geom1").feature("thi1").
set("direction", "vector");
model.component("comp1").geom("geom1").feature("thi1").
set("dirvector", new String[]{"1", "0", "1"});
model.component("comp1").geom("geom1").run();

```

\section*{TotalEdgeLength}

\section*{PURPOSE}

Constrain a set of edges to have a given total length. The edges must form a chain and all lie on the same line, circle, or spline.

\section*{DESCRIPTION}

TABLE 3-82: AVAILABLE PROPERTIES
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & value & default & DESCRIPTION \\
\hline edge & Selection & & Edges \\
\hline length & double & 0 & Total length of edges \\
\hline lengthconstr & on | off & on & Determine whether the dimension is a constraining dimension (on) or measuring dimension (off) \\
\hline createpar & on | off & off & Generate parameter from dimension \\
\hline parname & String & " " & Specify parameter name if createpar is on \\
\hline labeldispl & double & Empty & Displacement of the label in the Graphics window in left normal direction \\
\hline labelpos & double & 0.5 & Relative position of the label in the Graphics window along edges \\
\hline
\end{tabular}

\section*{SEE ALSO}

\section*{Distance}

\section*{TransformFaces}

\section*{PURPOSE}

Apply a linear transform (consisting of displacement, rotation, and isotropic scaling) to faces of 3D objects.

\section*{SYNTAX}
```

model.component(<ctag>).geom(<tag>).feature().
create(<ftag>,"TransformFaces");
model.component(<ctag>).geom(<tag>).feature(<ftag>).
selection(property);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
set(property,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getType(property)
model.component(<ctag>).geom(<tag>).feature(<ftag>).
setAttribute(attribute,<value>);
model.component(<ctag>).geom(<tag>).feature(<ftag>).
getAttribute(attribute);

```

\section*{DESCRIPTION}
model. component(<ctag>).geom(<tag>).feature(). create(<ftag>, "TransformFaces")
creates a transform faces feature tagged <ftag>. The following properties are available.
TABLE 3-83: AVAILABLE PROPERTIES
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & value & DEFAULT & DESCRIPTION \\
\hline face & Selection & Empty & Faces to transform \\
\hline keep & on | off & off & Keep input objects \\
\hline workplanesrc & this | Part Instance feature tag & this & Part Instance feature to take the work plane from \\
\hline workplane & xyplane | work plane feature tag & xyplane & Work Plane feature that defines the coordinate system. The default, xyplane, is the global Cartesian coordinate system \\
\hline center & double[3] & \{0, 0, 0\} & Point on the axis of rotation, and the center point of scaling \\
\hline displ & double[3] & \{0, 0, 0\} & Displacement \\
\hline specify & axis|eulerang | edge & axis & Specify an axis of rotation, Euler angles (Z-X-Z), or a straight edge \\
\hline axistype & \[
\begin{aligned}
& x|y| z \mid \\
& \text { cartesian | } \\
& \text { spherical }
\end{aligned}
\] & Z & Coordinate system used for axis. Used if specify is set to axis \\
\hline ax3 & double[3] & \(\{0,0,1\}\) & Axis vector, used if axistype is cartesian \\
\hline ax2 & double[2] & \{0,0\} & Spherical angles theta and phi, used if axistype is spherical \\
\hline
\end{tabular}

TABLE 3-83: AVAILABLE PROPERTIES
\begin{tabular}{|c|c|c|c|}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline axis & double & \(\{0,0,1\}\) & Rotation axis. Vector has length 3 if axistype is cartesian, and length 2 if axistype is spherical. Alias for ax2 and ax3 \\
\hline eulerang & double[3] & \(\{0,0,0\}\) & Intrinsic Z-X-Z Euler angles \(\alpha, \beta\), and \(\gamma\), used if specify is set to eulerang \\
\hline edge & Selection & & Edge selection. Used when specify is set to edge \\
\hline rot & double & 0 & Rotation angle. Used if specify is set to axis or edge \\
\hline factor & double & 1 & Scale factor \\
\hline stepfaces & ```
yes | contang |
no
``` & contang & Create step faces \\
\hline mergestepfaces & on | off & off & Merge step faces with adjacent face. Only used when stepfaces is yes \\
\hline exceptendfaces merged & on | off & off & Except if faces at ends of edge can be merged. Only used when stepfaces is contang \\
\hline perpstepedges & on | off & off & Create perpendicular step edges for surface objects \\
\hline overflow & \begin{tabular}{l}
auto | \\
extendtransfo \\
rmed | \\
extendother | \\
capfaces | \\
error
\end{tabular} & auto & Overflow handling \\
\hline selresult & on | off & off & Create selections of all resulting objects \\
\hline selresultshow & ```
all|obj|dom|
bnd | edg|pnt |
off
``` & dom & Show selections, if selresult is on, of resulting objects in physics, materials, and so on, or in part instances. obj is not available in a component's geometry \\
\hline
\end{tabular}

TABLE 3-83: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline color & \begin{tabular}{l}
none | custom \\
integer between \\
I and the number \\
of colors in the \\
current theme
\end{tabular} & none & \begin{tabular}{l}
The color of the selection, either \\
given as an integer indicating a \\
color in the color theme, or as a \\
custom color in the \\
customcolor property. \\
Coloring is only available when \\
selresult is active
\end{tabular} \\
\hline customcolor & RGB-triplet & \begin{tabular}{l}
Next \\
available \\
theme \\
color
\end{tabular} & \begin{tabular}{l}
The color to use. Active when \\
color is set to custom
\end{tabular} \\
\hline contributeto & String & none & \begin{tabular}{l}
Tag of cumulative selection to \\
contribute to
\end{tabular} \\
\hline
\end{tabular}

The following attributes are available:
TABLE 3-84: VALID ATTRIBUTES
\begin{tabular}{l|lll}
\hline NAME & VALUE & DEFAULT & DESCRIPTION \\
\hline construction & \begin{tabular}{l}
on |off \\
inherit
\end{tabular} & inherit & \begin{tabular}{l}
Designate the resulting objects as \\
construction geometry. Use inherit to set \\
the construction geometry attribute only if \\
all input objects are construction geometry.
\end{tabular} \\
\hline
\end{tabular}

\section*{SEE ALSO}

OffsetFaces

\section*{Vertical}

\section*{PURPOSE}

Constrains straight edges to be parallel to the \(y\)-axis.

\section*{DESCRIPTION}

TABLE 3-85: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline edge & Selection & & Straight edges \\
\hline symboledg & Selection & & \begin{tabular}{l}
Edge the symbol in the Graphics window \\
is attached to
\end{tabular} \\
\hline symboledgpar & double & 0.5 & \begin{tabular}{l}
Normalized edge parameter for \\
positioning the symbol
\end{tabular} \\
\hline symboledgdispl & double & 20 & \begin{tabular}{l}
Symbol displacement in left normal \\
direction from edge (in pixels)
\end{tabular} \\
\hline
\end{tabular}

\section*{SEE ALSO}

Angle, Horizontal, Parallel
XDistance

\section*{PURPOSE}

Constrain the distance in the \(x\) direction between two geometric entities to a given value.

\section*{DESCRIPTION}

TABLE 3-86: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline entity1 & Selection & & First entity (vertex or curved edge) \\
\hline entity2 & Selection & & \begin{tabular}{l}
Second entity (vertex or curved edge)
\end{tabular} \\
\hline distance & double & 0 & Distance \\
\hline distanceconstr & on | off & on & \begin{tabular}{l}
Determine whether the dimension is a \\
constraining dimension (on) or \\
measuring dimension (off)
\end{tabular} \\
\hline createpar & on | off & off & \begin{tabular}{l}
Generate parameter from dimension
\end{tabular} \\
\hline parname & String & " " & \begin{tabular}{l}
Specify parameter name if createpar is \\
on
\end{tabular} \\
\hline helppoint1 & double[2] & \(\{0,0\}\) & \begin{tabular}{l}
First help point \\
\hline helppoint2 \\
double[2]
\end{tabular} \\
\hline double 0\(\}\) & Empty & \begin{tabular}{l}
Second help point \\
Displacement of arrow symbol in the \\
Graphics window in the normal \\
direction
\end{tabular} \\
\hline labelpos & double & 0.5 & \begin{tabular}{l}
Relative label position along arrow \\
symbol
\end{tabular} \\
\hline arrowint & on \(\mid\) off & on & \begin{tabular}{l}
Internal or external arrow symbol
\end{tabular} \\
\hline
\end{tabular}

SEE ALSO
YDistance, DirectedDistance, Distance

\section*{YDistance}

\section*{PURPOSE}

Constrain the distance in the \(y\) direction between two geometric entities to a given value.

\section*{DESCRIPTION}

TABLE 3-87: AVAILABLE PROPERTIES
\begin{tabular}{l|l|l|l}
\hline PROPERTY & VALUE & DEFAULT & DESCRIPTION \\
\hline \begin{tabular}{l}
entity1 \\
\hline entity2
\end{tabular} & Selection & & First entity (vertex or curved edge) \\
\hline distance & double & 0 & Second entity (vertex or curved edge) \\
\hline distanceconstr & on | off & on & \begin{tabular}{l}
Distance \\
Determine whether the dimension is a \\
constraining dimension (on) or \\
measuring dimension (off)
\end{tabular} \\
\hline createpar & on | off & off & \begin{tabular}{l}
Generate parameter from dimension
\end{tabular} \\
\hline parname & String & " " & \begin{tabular}{l}
Specify parameter name if createpar \\
is on
\end{tabular} \\
\hline helppoint1 & double[2] & \(\{0,0\}\) & \begin{tabular}{l}
First help point \\
\hline helppoint2 \\
double[2]
\end{tabular} \\
\hline double & Empty & \begin{tabular}{l}
Second help point \\
arrowdispl \\
Displacement of arrow symbol in the \\
Graphics window in the normal \\
direction
\end{tabular} \\
\hline labelpos & double & 0.5 & \begin{tabular}{l}
Relative label position along arrow \\
symbol
\end{tabular} \\
\hline arrowint & on \(\mid\) off & on & Internal or external arrow symbol \\
\hline
\end{tabular}

SEE ALSO
XDistance, DirectedDistance, Distance

Index

A Application Libraries window 15
C cap faces 73
chamfer (node) 75
D defeaturing tools 98
documentation 13

E emailing COMSOL I5 export (of geometries) 50

F fillet (node) 76
filling holes 73
G geometry
exporting to file 50
I internet resources 13
K knowledge base, COMSOL 16
L loft (node) 80
M MPH-files I5
T technical support, COMSOL 15
w websites, COMSOL 16```

