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 1
I n t r o d u c t i o n
This guide describes the Rotordynamics Module, an optional add-on package for 
the COMSOL Multiphysics® simulation software. The module is designed to 
perform the static and dynamic analysis of a rotor of a rotating machinery mounted 
with various stationary and moving components.

This chapter introduces you to the capabilities of the Rotordynamics Module and 
includes a summary of the physics interfaces and where you can find 
documentation and model examples. The last section provides a brief overview with 
links to the chapters in this guide.

In this chapter:

• About the Rotordynamics Module

• Overview of the User’s Guide
 13
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Abou t  t h e  Ro t o r d ynam i c s  Modu l e

In this section:

• What Can the Rotordynamics Module Do?

• Where Do I Access the Documentation and Application Libraries?

What Can the Rotordynamics Module Do?

The Rotordynamics Module, which requires the Structural Mechanics Module, can be 
used to model the rotor of a rotating machinery mounted with various stationary and 
rotating components. Using this module, you can obtain the dynamic response of a 
rotor when subjected to external loads and thus the operational behavior of the rotor 
for different angular speeds. You can also produce a stability map of the rotor against 
different angular speeds. Some major application areas are automotive, aerospace, 
power generation, electrical machines, and home appliances.

There are six physics interfaces in the Rotordynamics Module:

• The Solid Rotor interface for modeling the rotor as a 3D object in a corotating 
frame.

• The Solid Rotor, Fixed Frame interface for modeling the rotor as a 3D object in a 
space-fixed frame. This interface is limited to modeling rotors that are axially 
symmetric.

• The Beam Rotor interface for abstract modeling of the rotor as lines in a space-fixed 
frame.

• The Hydrodynamic Bearing interface for modeling the flow in the lubricant film in 
a bearing.

• The Solid Rotor with Hydrodynamic Bearing multiphysics interface for combined 
modeling of rotor and bearing and the interactions between them. The solid 
mechanics formulation of the rotor is used.

• The Beam Rotor with Hydrodynamic Bearing multiphysics interface for combined 
modeling of rotor and bearing and the interactions between them. The beam 
formulation of the rotor is used.
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All physics interfaces in the Rotordynamics Module appear on the Model Wizard’s 
Select Physics page under Structural Mechanics>Rotordynamics.

Where Do I Access the Documentation and Application Libraries?

A number of internet resources have more information about COMSOL, including 
licensing and technical information. The electronic documentation, topic-based (or 
context-based) help, and the application libraries are all accessed through the 
COMSOL Desktop.

T H E  D O C U M E N T A T I O N  A N D  O N L I N E  H E L P

The COMSOL Multiphysics Reference Manual describes the core physics interfaces 
and functionality included with the COMSOL Multiphysics license. This book also has 
instructions about how to use COMSOL Multiphysics and how to access the 
electronic Documentation and Help content.

Opening Topic-Based Help
The Help window is useful as it is connected to the features in the COMSOL Desktop. 
To learn more about a node in the Model Builder, or a window on the Desktop, click 
to highlight a node or window, then press F1 to open the Help window, which then 
displays information about that feature (or click a node in the Model Builder followed 
by the Help button ( ). This is called topic-based (or context) help.

In the COMSOL Multiphysics Reference Manual:

• Studies and Solvers

• The Physics Interfaces 

• For a list of all the core physics interfaces included with a COMSOL 
Multiphysics software license, see the Physics Interface Guide.

If you are reading the documentation as a PDF file on your computer, 
the blue links do not work to open an application or content 
referenced in a different guide. However, if you are using the Help 
system in COMSOL Multiphysics, these links work to open other 
modules, application examples, and documentation sets.
A B O U T  T H E  R O T O R D Y N A M I C S  M O D U L E  |  15
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Opening the Documentation Window

T H E  A P P L I C A T I O N  L I B R A R I E S  W I N D O W

Each model or application includes documentation with the theoretical background 
and step-by-step instructions to create a model or application. The models and 
applications are available in COMSOL Multiphysics as MPH files that you can open 
for further investigation. You can use the step-by-step instructions and the actual 
models as templates for your own modeling. In most models, SI units are used to 
describe the relevant properties, parameters, and dimensions, but other unit systems 
are available.

Once the Application Libraries window is opened, you can search by name or browse 
under a module folder name. Click to view a summary of the model or application and 
its properties, including options to open it or its associated PDF document.

Opening the Application Libraries Window
To open the Application Libraries window ( ):

C O N T A C T I N G  C O M S O L  B Y  E M A I L

For general product information, contact COMSOL at info@comsol.com.

C O M S O L  A C C E S S  A N D  T E C H N I C A L  S U P P O R T

To receive technical support from COMSOL for the COMSOL products, please 
contact your local COMSOL representative or send your questions to 
support@comsol.com. An automatic notification and a case number are sent to you by 
email. You can also access technical support, software updates, license information, and 
other resources by registering for a COMSOL Access account.
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C O M S O L  O N L I N E  R E S O U R C E S

COMSOL website www.comsol.com

Contact COMSOL www.comsol.com/contact

COMSOL Access www.comsol.com/access

Support Center www.comsol.com/support

Product Download www.comsol.com/product-download

Product Updates www.comsol.com/support/updates

COMSOL Blog www.comsol.com/blogs

Discussion Forum www.comsol.com/community

Events www.comsol.com/events

COMSOL Application Gallery www.comsol.com/models

COMSOL Video Gallery www.comsol.com/video

Support Knowledge Base www.comsol.com/support/knowledgebase
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Ove r v i ew o f  t h e  U s e r ’ s  Gu i d e

The Rotordynamics Module User’s Guide gets you started with modeling 
rotordynamics applications using COMSOL Multiphysics. The information in this 
guide is specific to this module. Instructions on how to use COMSOL Multiphysics in 
general are included in the COMSOL Multiphysics Reference Manual. 

T A B L E  O F  C O N T E N T S  A N D  I N D E X

To help you navigate this guide, see the Contents and Index sections.

M O D E L I N G  W I T H  R O T O R D Y N A M I C S  M O D U L E

The Rotordynamics Modeling chapter gives you insight into how to approach 
modeling various rotordynamics problems. The content covers subjects such as 
Selecting Physics Interfaces, Study Types, Modeling Bearings, Modeling Foundations, 
Specifying the Rotor Axis, Gears, Gear Pairs, Forward and Backward Whirl, and 
Campbell Plot.

R O T O R D Y N A M I C S  T H E O R Y

The Rotordynamics Theory chapter outlines the theory for the various interfaces 
present in the Rotordynamics Module. The Rotor Axis section describes the 
considerations in obtaining the rotor axis and how it affects the frame acceleration 
forces on rotor. This chapter also covers topics such as Frames and Coordinate 
Systems; Displacement, Velocity, and Acceleration; Change Rotor Speed; Formulation 
of Equilibrium Equations; Damping; Bearings and Foundations; Rigid Domain; 
Loads; Multi-Spool Bearing; Liquid Annular Seal; Rotor Coupling; Misalignment; 
Identification of Whirl; Gear Theory; Gear Pair Theory; and Energy Quantities.

T H E  S O L I D  R O T O R  I N T E R F A C E

The Solid Rotor chapter describes The Solid Rotor Interface and all the available 
feature nodes. Nodes which are unique to the Solid Rotor interface are described in 
detail. The rest of the feature nodes are described in the Structural Mechanics Module 
User’s Guide.

As detailed in the section Where Do I Access the Documentation and 
Application Libraries?, this information can also be searched from the 
COMSOL Multiphysics software Help menu. 
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T H E  S O L I D  R O T O R ,  F I X E D  F R A M E  I N T E R F A C E

The Solid Rotor, Fixed Frame chapter describes The Solid Rotor, Fixed Frame 
Interface and all the available feature nodes. This interface shares all the nodes with 
Solid Rotor interface. Thus, the details of all the nodes are given in the Solid Rotor 
chapter.

T H E  B E A M  R O T O R  I N T E R F A C E

The Beam Rotor chapter describes the Beam Rotor interface, which uses Timoshenko 
beam theory for modeling the rotor. This chapter also describes the underlying theory 
for the physics interface and the available feature nodes in The Beam Rotor Interface. 
The Bearings and Foundation nodes are described in the Solid Rotor chapter. The rest 
of the feature nodes are described in the Structural Mechanics Module User’s Guide.

T H E  H Y D R O D Y N A M I C  B E A R I N G  I N T E R F A C E

The Hydrodynamic Bearing chapter describes the Hydrodynamic Bearing interface 
and all the available feature nodes. The Hydrodynamic Journal Bearing, 
Hydrodynamic Thrust Bearing, Floating Ring Bearing and Squeeze Film Damper 
features and Bearing Types are therein described in detail.

M U L T I P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G S

The Multiphysics Interfaces and Couplings chapter describes two multiphysics 
interfaces found under the Rotordynamics branch when adding a physics interface:

• The Solid Rotor with Hydrodynamic Bearing Interface combines a Solid Rotor 
interface with a Hydrodynamic Bearing interface. The coupling appears on the 
boundary level, where the pressure from the Hydrodynamic Bearing interface acts 
as a mechanical load for the Solid Rotor interface, causing motion and structural 
deformation of the rotor. The motion and deformation of the Solid Rotor affect the 
lubricant film thickness, hence altering the pressure of lubricant film.

• The Beam Rotor with Hydrodynamic Bearing Interface combines a Beam Rotor 
interface with a Hydrodynamic Bearing interface. The coupling appears on the 
boundary level, where the pressure from the Hydrodynamic Bearing interface acts 
as a mechanical load for the Beam Rotor interface, causing motion and structural 
deformation of the rotor. The motion and deformation of the Beam Rotor affect the 
lubricant film thickness, hence altering the pressure of lubricant film.
O V E R V I E W  O F  T H E  U S E R ’ S  G U I D E  |  19
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 2
R o t o r d y n a m i c s  M o d e l i n g
The goal of this chapter is to give you insight into how to approach the modeling 
of rotordynamics problems and different types of analyses. 

In this chapter:

• Selecting Physics Interfaces

• Study Types

• Modeling Bearings

• Modeling Foundations

• Specifying the Rotor Axis

• Gears

• Gear Pairs

• Forward and Backward Whirl

• Campbell Plot
 21
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S e l e c t i n g  Ph y s i c s  I n t e r f a c e s

The Rotordynamics Module contains tools for modeling rotors and bearings. For 
modeling the rotor, there are three physics interfaces: the Solid Rotor interface; the 
Solid Rotor, Fixed Frame interface; and the Beam Rotor interface. The basic physics 
interfaces in the Rotordynamics Module are:

• Solid Rotor — For modeling the rotor as a 3D object in a corotating frame

• Solid Rotor, Fixed Frame — For modeling the rotor as a 3D object in a space-fixed 
frame

• Beam Rotor — For the abstract modeling of the rotor as a line object with bending 
stiffness

• Hydrodynamic Bearing — For modeling hydrodynamic sliding bearings with very 
small oil film thickness

Solid Rotor

The Solid Rotor interface offers the most general approach for modeling a rotor based 
on a continuum description. Solid elements are used to define the rotor assembly, and 
the rotor is represented by its three-dimensional geometry. Governing equations for 
this interface are described in a rotating frame. This interface automatically accounts 
for frame acceleration forces due to rotation of the rotor about its axis; hence the 
physical rotation is not needed to model the rotor. Also, the effect of spin softening 
and stress stiffening can be captured automatically using solid elements. The advantage 
of writing the governing equations in a rotating frame is that nonaxially symmetric 
rotors can be modeled too.

With the Solid Rotor interface, as opposed to a conventional rotordynamic analysis 
approach, the rotor vibration cannot be split into axial, bending, and torsional 
components. The results in this interface are obtained in a corotating frame and hence 
require a careful interpretation. For example, the whirl frequencies in this interface are 
relative to the axial rotation of the rotor. Therefore, the speed of the rotor, depending 
on the forward or backward whirl, is either added or subtracted from the frequency to 
obtain the corresponding frequency in a space-fixed frame. Furthermore, 
rotordynamic analysis using solid elements is computationally expensive, particularly in 
a case where you are interested in predicting the response of the rotor at various 
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angular speeds. Therefore, use this interface only when you are interested in the 
detailed deformation and stresses.

Solid Rotor, Fixed Frame

The Solid Rotor, Fixed Frame uses the same approach as the Solid Rotor interface. 
However, the governing equations for this interface are described in a space-fixed 
frame. Acceleration forces due to rotation of the rotor are automatically taken into 
account. As opposed to Solid Rotor, the results in this interface are obtained in a 
space-fixed frame. As a result, the interpretation of the results in this interface is more 
straight forward.

The Solid Rotor, Fixed Frame interface assumes that the rotor is axially symmetric. For 
a nonaxially symmetric rotor like a crankshaft, the governing equations are not valid. 
Bearings and foundations supporting the rotor, however, can be anisotropic.

Beam Rotor

The Beam Rotor interface is an abstract model of the actual rotor assembly, where only 
the span in the axial direction is modeled explicitly on an edge. The cross-sectional 
information of the rotor is specified in terms of properties such as area and moments 
of inertia. This approach neglects the cross-sectional deformation of the rotor. Beam 
elements, based on Timoshenko theory where shear deformations are taken into 
account, are used to model the rotor assembly. This also makes it possible to accurately 
model rather thick rotors using beam elements. In this interface, the vibration response 
can be split into axial, bending, and torsional components. As it is customary in a 
rotordynamics study to analyze the response of the rotor at different angular speeds, it 
is very efficient, in terms of computational cost, to use beam elements to model the 
rotor system without losing its basic characteristics.

Hydrodynamic Bearing

The Hydrodynamic Bearing interface can be used for modeling the sliding bearings 
where oil between the journal/collar and bushing acts as a lubricant. Using this 
interface, you can obtain the pressure distribution in the oil film by solving the 
Reynolds equation. This interface provides the models for the Journal Bearing, Thrust 
Bearing, Floating Ring Bearing and Squeeze Film Damper. For the journal bearing, 
built-in models for plain, elliptic, split-halves, multilobe, and tilted-pad bearings are 
available. There is also an option to specify a user defined initial oil film thickness in 
S E L E C T I N G  P H Y S I C S  I N T E R F A C E S  |  23
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the bearing for a type of bearing that is not included in the feature. For a thrust bearing 
available models are tapered, tilted pad and user defined.

The Hydrodynamic Bearing interface can be used either independently to study 
bearing characteristics; or together with the Solid Rotor or Beam Rotor interfaces to 
study the response of the complete rotor assembly through a multiphysics coupling.
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S t u d y  T yp e s

In this section, you will find information about when and how to apply the study types 
that are available for rotordynamics problems:

• Stationary Study

• Eigenfrequency Study

• Frequency Domain Study

• Time Domain Study

• Transient with FFT Study

Stationary or Dynamic Analysis

When using the Solid Rotor interface in Rotordynamics Module, you must adopt a 
view where the concepts of what is static and what is dynamic deviate somewhat from 
the common conceptions.

In a general structural mechanics setting, different forms of dynamic analysis are used 
when inertial forces cannot be ignored. As the Solid Rotor interface is formulated in a 
corotating frame, some of the inertial effects are already taken into account as static 
loads. Thus, a rotor that spins under conditions that are stationary when viewed by a 
corotating observer does not require a dynamic analysis.

On the other hand, a load that is fixed in the spatial frame, like gravity, will have a 
harmonic variation when seen from the corotating perspective, and it provides a 
dynamic excitation.

As opposed to the Solid Rotor interface, the Beam Rotor and Solid Rotor, Fixed Frame 
interfaces are still formulated in a space-fixed frame, and hence the sense of static and 
dynamic loads does not change for these interfaces. However, effect of the rotor spin 
is already taken into account in the Beam Rotor interface through gyroscopic 
moments.
S T U D Y  T Y P E S  |  25
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Stationary Study

A rotordynamics problem can be considered stationary if the following two criteria are 
fulfilled:

• Solid Rotor: Loads in the corotating frame do not change their magnitude and 
direction significantly, for example, in an inertial load due to mass eccentricity. Note 
that a load that appears stationary in a space-fixed frame has a very strong time 
dependence in the corotating frame and vice versa.

• Beam Rotor and Solid Rotor, Fixed Frame: Loads in a space-fixed frame do not 
change their magnitude and direction significantly, for example, gravity load. Note 
that a load due to mass eccentricity has a very strong time dependence.

• There is no explicit time dependence in the material model of the rotor.

In some cases, there is a variation in the load, even though the solution for each value 
of the load can be considered to be stationary. A typical case is that the load values are 
independent, and you just want to compute a number of different load cases. For 
example, you may want to find the stresses and magnitude of the lateral displacement 
of the rotor for different eccentric masses.

Note that a stationary problem is solvable only if the structure is sufficiently 
constrained. There must not be any possible rigid body modes, thus no stress-free 
deformation states are allowed. If the model is underconstrained, you may encounter 
problems like singular or ill-conditioned system matrices.

Eigenfrequency Study

An eigenfrequency study solves for the natural frequencies and the corresponding 
mode shapes. It is also possible to compute the eigenfrequencies for a problem that is 
not fully constrained. This sometimes is referred to as free-free modes. In practice, the 
natural frequencies of the rigid body modes are not computed as exactly zero, but can 
appear as small numbers, which can even be negative or complex. If the rigid-body 
modes are present in the model, then it is important to use a nonzero value in the 
Search for eigenfrequencies around text field in the settings for the Eigenfrequency study 
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step. The value should reflect the order of the magnitude of the first important 
nonzero eigenfrequency.

In rotordynamics, an eigenfrequency analysis is the most commonly used study type. 
It is used to determine the critical speed of the rotor. This type of analysis can be 
performed in the following scenarios:

• To determine the stable operating ranges and critical speeds of the rotor. In this 
case, an eigenfrequency analysis is repeated multiple times by performing a sweep 
over the rotor’s angular speed to determine the resonance conditions of the rotor. 
An angular speed at which the rotor experiences a resonance is called a critical speed. 
A very important result of such an analysis is a plot of the variation of the natural 
frequency of the rotor versus the angular speed of the rotor, called a Campbell 
diagram.

• To check if the assembly operates safely for a given operational speed. Sometimes, 
the operational angular velocity of a rotor is predetermined. In this case, the main 
interest lies in studying the behavior of the rotor at the given operational speed. You 
can then perform the eigenfrequency analysis at a given spin speed to check that 
none of the eigenfrequencies is close to it.

P R E S T R E S S E D  A N A L Y S I S

In a loaded structure the frequencies may be shifted due to stress stiffening. A rotor 
modeled with a Solid Rotor or Solid Rotor, Fixed Frame interface is always prestressed 
due to the frame acceleration forces. Therefore, it is extremely important to perform a 
prestressed analysis in these interfaces to get the correct natural frequencies.

Another scenario where a prestressed analysis is important is in modeling a nonlinear 
bearing behavior. Both fluid film bearing and roller bearings have a nonlinear force 
displacement relationship. Thus, a prestressed analysis can be used to determine the 
natural frequencies of a rotor-bearing system about the static equilibrium position of 

In the COMSOL Multiphysics Reference Manual:

• Eigenvalue Solver 

• Studies and Solvers

• Derived Values, Evaluation Groups, and Tables

In the Structural Mechanics Module User’s Guide:

• Eigenfrequency Analysis
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the rotor. Roller bearings are also preloaded sometimes. A prestressed analysis also 
helps in using the linearized coefficients for a roller bearing about its preloaded state.

Frequency Domain Study

If all loads are time harmonic when seen from a) the corotating frame for a Solid Rotor 
and b) the stationary frame for a Beam Rotor or Solid Rotor, Fixed Frame, then a 
frequency domain study is an efficient method for computing the response of the 
rotor. In this study type, all quantities are represented by complex amplitudes, where 
the relation between the real and imaginary parts determines the phase.

Frequency domain study is an important analysis to determine the vibration amplitude 
amplification factor at the resonance which in turn helps in determining the separation 
margin between the operating speed and critical speed of the rotor.

In a rotordynamic analysis, the only meaningful analysis frequency in a frequency 
domain study is the one that corresponds to the angular speed of the rotor.

P R E S T R E S S E D  A N A L Y S I S

The shift in the natural frequency of the prestressed structure can also have significant 
effect on its frequency response. This is particularly important when the loading 
frequency is close to one of the natural frequencies of a structure.

Like the prestressed eigenfrequency analysis, prestressed frequency domain analysis is 
useful to get the response of a rotor-bearing system with a nonlinear bearing behavior 
for a harmonic loading.

Time Domain Study

You will need to use a time-dependent study when analyzing truly transient events, or 
when loads or supports vary with the angle of rotation.

In the COMSOL Multiphysics Reference Manual:

• Frequency Domain 

• Studies and Solvers

In the Structural Mechanics Module User’s Guide:

• Frequency-Domain Analysis
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There are two general solvers for time-dependent problems in COMSOL 
Multiphysics:

• The Generalized alpha method, which is recommended for structural dynamics 
problems.

• The BDF method, which is recommended for first-order problems.

The Generalized alpha method is the default solver in the Rotordynamics Module due 
to the transient nature of this class of problems.

Transient with FFT Study

In many cases, you can obtain a good overview of the response of the rotor by plotting 
the entire frequency spectrum of the time response at different angular speeds. Such a 
plot is called a waterfall diagram. The Transient with FFT study helps generate such 
data by performing the parametric sweep over the rotor angular speed. This study 
consists of a Time Dependent study step followed by a Time to Frequency FFT study 
step.

This type of study is computationally very expensive with a Solid Rotor interface, so 
this combination should only be used when the local deformation of the rotor plays a 
significant role in determining the overall dynamics of the rotor assembly.

In the COMSOL Multiphysics Reference Manual:

• Time-Dependent Solver 

• Studies and Solvers

In the Structural Mechanics Module User’s Guide:

• Time-Domain Analysis

In the COMSOL Multiphysics Reference Manual:

• Time-Dependent Solver 

• Time to Frequency FFT

• Studies and Solvers
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Mode l i n g  Bea r i n g s

Bearings are an integral part of a rotor assembly. In the rotordynamics interfaces, the 
rotor can only be supported by bearings. The response of the rotor system is sensitive 
to the bearing model that is used. Therefore, it is important to model the bearings 
accurately. Following are the commonly used bearings to restrict the motion of the 
rotor in different directions:

• Journal Bearing

• Thrust Bearing

• Multi-Spool Bearing

Journal Bearing

Journal bearings restrict the translational motion of the journal in the lateral direction. 
In addition, they also restrict the rotation of the journal about both the lateral axes due 
to the finite length of the journal. The modeling of journal bearings can be done at 
different levels of detail, as described below.

N O  C L E A R A N C E  B E A R I N G

This type of bearing completely restricts the translational and rotational motion of the 
journal in the lateral direction. You can use this approximation when the bearings are 
very stiff, so that the motion of the journal in the bearing is small and does not 
significantly affect the overall response of the rotor.

P L A I N  H Y D R O D Y N A M I C  B E A R I N G

This bearing model works as a spring and damper system on the journal of the rotor. 
The dynamic stiffness and damping coefficients are obtained by Ocvirk’s theory, which 
uses a short bearing approximation (See Ref. 1). Use this model when the bearing’s 
dynamic stiffness and damping coefficients are unknown and you want to evaluate 
them as functions of the journal motion in the bearing. This method is a good 
approximation for modeling the effect of an oil wedge in plain hydrodynamic bearings.

B E A R I N G  S T I F F N E S S  A N D  D A M P I N G  C O E F F I C I E N T

In a journal bearing model, the bearing operates as a spring and damper system on the 
journal of the rotor. The only difference from the plain hydrodynamic bearing is that 
in this case, the dynamic stiffness and damping coefficients are known a priori through 
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experiments or computer simulations. Both functional and tabular forms of these 
parameters are supported. For the tabular data, you need to use an interpolation 
function.

B E A R I N G  F O R C E S  A N D  M O M E N T S

In many cases, it is easier to evaluate the reaction of the bearing on the journal because 
reaction forces and moments due to bearing can be applied directly on the journal. 
Usually, forces and moments in the bearing are functions of the journal motion. Force 
and moment data obtained through experiments or simulation can also be used 
through interpolation functions in this model.

M U L T I P H Y S I C S  C O U P L I N G

When it is necessary is to capture effects of oil whirl and whip, a multiphysics coupling 
can be used to model the bearing. These phenomena are connected with the 
hydrodynamic instability of the bearing. In this case, the Solid Rotor or Beam Rotor 
interfaces can be coupled with the Hydrodynamic Bearing interface.

Thrust Bearing

Thrust bearings are primarily used to restrict the axial motion of the rotor. However, 
due to the finite cross-sectional area of the collar of these bearings, they also restrict 
the rotation about the lateral axes. Thrust bearings can be modeled at different levels 
of detail, as described below.

N O  C L E A R A N C E  B E A R I N G

This model completely constrains the axial motion of the rotor and the rotation about 
both lateral axes. Use this model when the effect of the bearing on the dynamics of the 
rotor assembly is not significant.

B E A R I N G  S T I F F N E S S  A N D  D A M P I N G  C O E F F I C I E N T S

In this case, the thrust bearing is modeled as a spring-damper system with one 
translational stiffness and damping coefficient along the axis of the rotor, and two 
rotational stiffnesses and corresponding damping coefficients about the lateral 
directions. These values are known either by performing experiments or computer 
simulations. Tabular data of these parameters as a function of the collar motion can be 
entered as interpolation functions.
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B E A R I N G  F O R C E S  A N D  M O M E N T S

You can also directly describe bearing forces and moments as functions of the motion 
of the collar. If tabular data is available for these relations, you can use interpolation 
functions for entering the data.

M U L T I P H Y S I C S  C O U P L I N G

When it is necessary is to capture nonlinear effects in the bearing, a multiphysics 
coupling can be used. For this type of modeling, both the Solid Rotor and the Beam 
Rotor interfaces can be coupled with the Hydrodynamic Bearing interface.

Multi-Spool Bearing

Multi-Spool Bearings restrict the relative lateral motion between the two coaxial rotors 
running at same or different speeds. The model for these bearings is based on 
equivalent stiffness and damping coefficients for the relative lateral and relative tilt 
motion between the rotors. There is also an option to make the connections between 
the two rotors rigid. For a rigid connection, both the rotors move and/or tilt together 
without any relative motion. To make either the lateral displacement or tilting free 
between the rotors, you can use a zero value in the corresponding stiffness and 
damping fields.
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Mode l i n g  Founda t i o n s

Bearing foundations are the structural components on which bearings rest. The 
foundations can be modeled as:

• Fixed Foundation

• Moving Foundation

• Flexible Foundation

• Squeeze Film Damper

• Attachment

Fixed Foundation

Use this type of foundation if the component on which the bearings rest is very rigid 
or their motion does not significantly affect the rotor response.

Moving Foundation

Sometimes, ground vibration is present in the area where rotating machinery is 
installed. If you have the ground vibration data, you can use this type of foundation to 
study the effect of the ground vibration on the response of the rotor assembly. A 
displacement solution from another study can also be used to specify the foundation 
motion.

Flexible Foundation

Use this type of foundation when an equivalent stiffness of the foundation is known. 
A flexible foundation can alter the critical speed of the rotor and can thus be a critical 
element in the rotor assembly. The effect of the foundation on the critical speed of the 
rotor can be captured by this model. The Fixed and Moving foundation models 
described above do not affect the critical speed of the rotor.

Squeeze Film Damper

Sometimes, to increase the overall damping in the rotating machinery, bearings are 
extended with squeeze film dampers. These components provide damping by 
squeezing of the lubricant film. You can use this option to approximately model the 
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effect of squeeze film dampers on the overall dynamics of the rotor. In this model, the 
damper is represented by its equivalent damping coefficients obtained by analytically 
solving the Reynolds equations for a short length approximation. This model also 
affects the critical speed of the rotor assembly.

Attachment

The response of a rotor is strongly dependent on the resting foundation structure. 
Sometimes an equivalent stiffness of the foundation structure is not enough to capture 
its behavior accurately. A detailed modeling of the structure is needed in such a case. 
You can model the foundation structure by using any of the basic structural mechanics 
interfaces such as Solids, Shells, or Beams. To connect it with the rotor, create 
attachments in these interfaces. These attachments are then available in the list of the 
foundation in the bearing features. You can choose any of these attachments to 
connect the rotor with the foundation structure.
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S p e c i f y i n g  t h e  Ro t o r  A x i s

In the Beam Rotor interface, the modeled line geometry itself is considered to be the 
axis of the rotor. Therefore, there is no need to explicitly specify the axis of the rotor 
in this interface. Because of this assumption, you cannot model a nonstraight rotor in 
the Beam Rotor interface. Therefore, a geometry such as a crankshaft of an internal 
combustion engine is not straightforward to model in the Beam Rotor interface. A Disk 
node with an offset can be used to model the inertial effects and account for the 
eccentricity of the crankpin and balance masses from the rotor axis, assuming that both 
are rigid. A straight line can then be used to model the crankshaft.

In the Solid Rotor interface, the axis of the rotor cannot be determined automatically. 
You must specify the initial axis of the rotor through the Rotor Axis node. There are 
two methods you can use to specify the rotor axis:

• Support Locations

• Edge

Support Locations

When support locations are specified, a line joining these locations is considered to be 
the initial axis of rotation. This option can be useful for specifying the axis of the 
crankshaft-type rotor, where material points are absent at certain locations along the 
axis. For overhung rotors, where there is only one bearing support, you can choose 
two points near the support location to determine the rotor axis. However, an axis 
specified using an edge may be a better choice in this case.

Edge

In this method, a selected edge is considered to be the initial axis of the rotor. This 
method fails if there is no material point of the rotor along this line. A typical example 
is a crankshaft. In such a case, use support locations to prescribe the axis instead.
S P E C I F Y I N G  T H E  R O T O R  A X I S  |  35



36 |  C H A P T E R
Gea r s

Gears are the mechanical components to transmit power from one shaft to another. 
They are also used to increase or decrease the output speed (transmitted torque) of the 
shafts. In general, on a single rotor, bending and torsional motion of the rotor are 
uncoupled. However, when gears are used to connect the rotors, bending and 
torsional motions of the rotor get coupled due to the gear meshing, thus significantly 
changing the response of the rotor. Three types of gears — spur, helical, and bevel — 
are provided in the Solid Rotor interface to support the modeling of systems of several 
rotors connected through gears.

A gear is defined as a rigid body. A finite stiffness for the gear mesh (or gear tooth) can 
be specified in the Gear Pair node while connecting to other gears. Similar to a rigid 
domain, the gears are a material model, which is mutually exclusive to all other material 
models. The only material property needed is the mass density.

Gears automatically get mounted on an adjacent flexible shaft. To attach a gear to a 
rigid shaft, the shaft itself can be selected in the Gear node. 

The axis of the gear is the same as that of the rotor on which it is mounted.

For details about the theory of gears, see Gear Theory.
 2 :  R O T O R D Y N A M I C S  M O D E L I N G



Gea r  Pa i r s

The gear pair node connects two spur gears, helical gears, or bevel gears in such a way 
that at the contact point, they have no relative motion along the line of action. The 
remaining displacements and rotations of both the gears are independent of each 
other.

In the case of a line contact model, one additional constraint is added to restrict the 
relative rotation about a line joining the two gear centers. When friction is included for 
a gear pair, frictional forces in the plane perpendicular to the line of action are added 
on both of the gears.

The Gear Pair node is a global feature and takes two gears as input, thus providing the 
connection between the selected gears.

In the Rotordynamics Module, the rotor does not physically rotate. However, the 
mesh stiffness, which is periodic within a mesh cycle or within a full revolution of the 
gear, should account for the physical rotation of the gear. Therefore, the magnitude of 
the rotation of the gears is obtained by time integrating the respective angular 
velocities. This rotation is then added in the rotation that is due to torsional 
deformation of the shafts to specify the periodicity of the gear mesh stiffness. 

For details about the theory of gear pairs, see Gear Pair Theory.
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Fo rwa r d  and Ba c kwa r d  Wh i r l

For a symmetric rotor that is not rotating, all lateral vibration modes will appear in pairs 
with the same natural frequency. For the rotating system, the double natural 
frequencies will be split into two separate values, corresponding to forward and 
backward whirl. When vibrating at one of the natural frequencies, the corresponding 
mode shape will travel in an orbit due to the rotation of the rotor.

In a mode with forward whirl, the natural vibration mode travels in the same direction 
as the rotation of the rotor. For backward whirl, the situation is the opposite.

The orbit of the rotor actually consists of the summation of two rotating vectors: one 
is a forward circular motion and the other is a backward circular motion. When the 
forward amplitude is larger than the backward amplitude, the overall motion is 
forward. When the forward amplitude is smaller than the backward amplitude, the 
overall motion is backward. When both amplitudes are equal, the motion degenerates 
to a straight line.

When you have solved for the eigenfrequencies, you can plot a shape and directivity 
index variable, named <interface>.isd (for example, rotbm.isd). This variable has 
the range

A classification of the whirl can now be done using the following criteria:

• isd = −1: Backward circular planar motion

•  −1 < isd < 0: Backward elliptical planar motion

• isd = 0: Straight line motion

• 0 < isd < 1: Forward elliptical planar motion

• isd = 1: Forward circular planar motion

At points where the mode shape has a node (the lateral displacement is zero), the index 
cannot be determined, thus the value may be arbitrary.

Usually, the entire rotor has either forward or backward whirl. However, it is also 
possible that the complete rotor can have mixed whirling. In this case, the rotor can 
undergo forward and backward whirl simultaneously at different sections. Mixed 
whirling sometimes occurs in long, flexible rotors supported by fluid film bearings.

1 isd 1≤ ≤–
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For details about the shape and directivity index variable, see 
Identification of Whirl in the theory section.
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Campbe l l  P l o t

For an eigenfrequency analysis, a Campbell Plot is generated by default by each of the 
rotor interfaces, namely, the Solid Rotor, the Solid Rotor, Fixed Frame, and Beam 
Rotor interfaces.

Since the equations in the Beam Rotor and Solid Rotor, Fixed Frame interfaces are 
formulated in a fixed reference frame, the Campbell Plot shows the eigenfrequencies in 
the fixed reference frame.

The equations in the Solid Rotor interface are however formulated in a corotating 
reference frame. Therefore, the frequencies computed by this interface can be 
considered as frequencies of the vibration observed from the corotating frame. The 
frequencies in the fixed frame and the corotating frame are related to each other by a 
very simple relation. For a forward whirl mode, an eigenfrequency in the corotating 
frame can be converted to an eigenfrequency in the fixed frame by adding the angular 
speed of the rotor. Similarly, an eigenfrequency in a backward whirl mode can be 
converted to fixed frame by subtracting the angular speed of the rotor.

In the Solid Rotor interface, a Campbell Plot is generated in both corotating and fixed 
frame by default.

When you have solved for the eigenfrequencies, you can also evaluate forward and 
backward natural frequency variables, named <interface>.omegaf and 
<interface>.omegab (for example, rotbm.omegaf) in the fixed frame.

Limitations of the Campbell Plot

If there are multiple rotors present in the model, or if the rotor is very long, whirl 
modes can be mixed. In such rotor systems it is difficult to tell if the whirl mode is 
forward or backward. Therefore, the transformation of the eigenfrequencies from the 
corotating to the fixed frame as explained above fails. The Campbell plot may not show 
a correct result in this case. If you encounter such a case it, is better to plot only 

For details about the identification of the whirl modes, see Identification 
of Whirl in the theory section.

Refer to the Forward and Backward Whirl section for the different 
variables provided in the interface to identify the whirl.
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<interface>.omega in the Campbell plot. This variable should be interpreted in the 
respective frame the interfaces are modeled.

A Campbell plot only makes sense if there is a parametric sweep over the rotor angular 
speed. For a single rotor angular speed there is only one point on the abscissa. If your 
interest is only to look at the natural frequencies of the rotor for a given angular speed, 
you can ignore the default Campbell Plot or delete it from the model.

Determination of the Critical Speed

The critical speed of the rotor can be obtained by looking at the intersection of the 
Campbell plot with ω=Ω curve in the fixed frame. If the plot is generated in the 
corotating frame, the intersection of the backward whirl eigenfrequency curve with 
ω=2Ω curve is the backward whirl mode critical speed. Similarly, the intersection of 
the forward whirl eigenfrequency curve with the abscissa is the forward whirl mode 
critical speed. Generally, in the corotating frame, the backward whirl eigenfrequency 
curves increase with the rotor speed whereas the forward whirl mode curves decrease.

Comparing Beam Rotor and Solid Rotor

A comparison of Campbell plots must be done from a same frame of reference. 
Therefore, a Campbell plot obtained from the Beam Rotor interface should be 
compared with a Campbell plot in the fixed frame from the Solid Rotor interface. 
Because frame acceleration forces are modeled explicitly in the Solid Rotor interface, 
stress stiffening effects due to centrifugal forces are important to obtain the correct 
natural frequency. This can be done by setting up a stationary analysis to obtain the 
prestress in the structure caused by centrifugal forces, followed by an eigenfrequency 
analysis with the prestressed state as a linearization point. This effect is very important 
for cases where an object with a large moment of inertia on the rotor is tilted 
significantly in the mode shape.
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R o t o r d y n a m i c s  T h e o r y
This chapter introduces you to the theory that is specific for the features in the 
Rotordynamics Module.

In this chapter:

• Solid Rotor Theory

• Frames and Coordinate Systems

• Displacement, Velocity, and Acceleration

• Rotor Axis

• Change Rotor Speed

• Formulation of Equilibrium Equations

• Damping

• Rigid Domain

• Fixed Axial Rotation

• Loads

• Bearings and Foundations

• Multi-Spool Bearing

• Liquid Annular Seal
 43
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• Rotor Coupling

• Misalignment

• Identification of Whirl

• Added Mass

• Energy Quantities

• Gear Theory

• Gear Pair Theory
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S o l i d  Ro t o r  T h eo r y

In the following, the theory for the Solid Rotor interface is described. To a large 
extent, this section also applies to the Solid Rotor, Fixed Frame and the Beam Rotor 
interfaces. Theory that is specific to the Beam Rotor interface and the Hydrodynamic 
Bearing interface is described in the corresponding chapters.

• Beam Rotor Theory

• Hydrodynamic Bearing Theory
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F r ame s  and Coo r d i n a t e  S y s t em s

Fixed and Corotating Frames

Consider a space-fixed frame O and a body-fixed rotating frame O* as shown in 
Figure 3-1.

Figure 3-1: Canonical basis in different frames.

The origins of both frames coincide for all times t. The canonical basis vector triads for 
both frames are {e1,e2,e3} and {e1*, e2*, e3*}, respectively. Any vector v in a basis 
can be expressed as

. 

Therefore, basis vector triads in frame O* can be expressed in terms of basis vectors in 
O as

v v ei⋅( )ei viei= =

ei∗ ei∗ ej⋅( )ej Rijej= =
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where the transformation matrix components are given by . A 
component of a vector v as observed from the frame O* can be written in terms of the 
components observed in O as

Two frames will be considered: one is spatially fixed with its origin at xs and the other 
one is the body-fixed rotating frame with its origin at xr. Points expressed in the 
body-fixed coordinates are distinguished from those represented in spatial coordinates 
by an asterisk (*) symbol. This means that if x is a point in the spatial coordinate 
system, then x∗ is the same point in the body-fixed coordinate system. Therefore, we 
can directly conclude that xs = 0 and xr

∗ = 0. However, xs
∗ and xr need not be zero. 

The relation between a space-fixed coordinate x and body-fixed coordinate x∗ can be 
expressed as

The inverse relation is

From the above relations, it is clear that

Rij ei∗ ej⋅=

vi∗ v ei∗⋅ v Rijej( )⋅ Rijvj= = =

x RT x∗ xs∗–( ) RTx∗ xr+= =

x∗ R x xr–( ) Rx xs∗+= =

xr RTxs∗–=

xs∗ Rxr–=

In the Structural Mechanics User’s Guide, see also

• Tensor Notation

• Material and Spatial Coordinates

• Coordinate Systems
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D i s p l a c emen t ,  V e l o c i t y ,  a nd 
A c c e l e r a t i o n

This section defines the displacement, velocity, and acceleration of a point located on 
a rotor in a suitable frame of reference. In general, two different frames can be 
distinguished, namely the space-fixed and the corotating frames. The rotor 
deformation can be observed in either of these frames. Depending on the frame of 
references used in a particular study, terms in the equations of motion will change. In 
the Rotordynamics Module, the rotor is not physically rotated. Rather, the effect of 
the rotation is accounted for with frame acceleration forces in the momentum balance 
equation. The different kinematic quantities are described in the following sections for 
the two possible reference frames.

Corotating Frame of Reference

Let X be the material position of a particle on the rotor and ur be the displacement of 
that point due to the deformation in the corotating frame. In the following, a subscript 
‘r’ is used to denote quantities observed in the corotating frame. Let Xbp be the base 
point on the axis of the rotor in the space-fixed frame, which defines the origin of the 
corotating frame. Then, the position of the material point X in the corotating frame 
with respect to the origin is given by

By using the frame transformation rule, the position vector of the particle at point X 
after the deformation (denoted ), can be expressed in the space-fixed frame by

  (3-1)

Here, R is the rotation matrix that maps the components in the rotated directions to 
those in the fixed directions and is defined as

with θ being the magnitude of the rotation vector θ. I is the identity matrix, and  
denotes a dyadic product.

Xr X Xbp–=

χ

χ X t,( ) Xbp R Xr ur+( )+ Xbp R X ur Xbp–+( )+= =

R θIcos θsin
θ
------------ θ I×( ) 1 θcos–( )

θ2
-------------------------- θ θ⊗( )+ +=

⊗
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The total displacement of a point on the rotor including the effect of rotation in the 
fixed frame can be expressed as

 (3-2)

This expression for the displacement also accounts for the rotation. If the rotor is not 
flexible, then the motion of the rotor can be represented as:

Therefore, displacement caused only by deformation can be obtained by subtracting 
the rigid motion from the total displacement

Taking the time derivative of Equation 3-1, the velocity at a point on the rotor in the 
fixed frame is

 (3-3)

Here,  is a skew-symmetric tensor corresponding to the angular velocity.

Similarly, the acceleration of a point on the rotor in the fixed frame is given by

 (3-4)

The effective acceleration ar is accounting for the effect of the rotation of the rotor 
observed in the body-fixed frame and is given by

The first term in the equation above corresponds to the Euler acceleration, the second 
to the centrifugal acceleration, and the third to the Coriolis acceleration. The last term 
corresponds to the acceleration without the effect of the rotation. Note that the 

u χ X t,( ) X– Rur R I–( ) X Xbp–( )+= =

xrigid Xbp R X Xbp–( )+=

ud χ X t,( ) xrigid– Rur= =

∂χ X t,( )
∂t

--------------------- ∂R
∂t
------- X ur Xbp–+( ) R

∂ur
∂t
--------- 
 += =

R Ωr
˜ X ur Xbp–+( )

∂ur
∂t
---------+

Ωr
˜ RTR

·
=

∂2χ X t,( )

∂t2
------------------------ R

∂Ωr
˜

∂t
---------- Ωr

˜ 2
+

 
 
 

X ur Xbp–+( ) 2Ωr
˜ ∂ur

∂t
---------

∂2ur

∂t2
------------+ + Rar= =

ar t∂
∂Ωr X ur Xbp–+( )× Ωr Ωr X ur Xbp–+( )××+ +=

2Ωr
∂ur
∂t
---------×

∂2ur

∂t2
------------+
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acceleration also includes the spin softening effect, because centrifugal and Coriolis 
acceleration terms also contain the effect of deformation.

The relation between the angular velocity vector Ωr corresponding to the 
skew-symmetric tensor  with the rotation vector can be obtained by considering

Since a is arbitrary, 

 (3-5)

Using the relation

Equation 3-5 can be written as 

 (3-6)

in which Θ is the skew-symmetric tensor corresponding to the rotation vector θ. If the 
rotation is about a fixed axis e, then the rotation vector can be written as

and

Space-Fixed Frame of Reference

Consider a rotor as observed in a space-fixed frame. Let, the initial position of a 
material point be denoted by X. Since the rotor rotates about its axis, the position of 
the material point X changes in time, even if the rotor is not undergoing any 

Ω
˜

r

Ωr
˜ a Ωr a× RT dR

dt
-------- 
 a= = =

dθ
dt
------- 
  θ

θ
--- θsin

θ
------------ dθ

dt
------- dθ

dt
-------θ

θ
---– 

  1 θcos–

θ2
--------------------- 
  θ dθ

dt
------× 

 –+ a×

Ωr
dθ
dt
------- 
  θ

θ
--- θsin

θ
------------ dθ

dt
------- dθ

dt
-------θ

θ
---– 

  1 θcos–

θ2
--------------------- 
  θ dθ

dt
------× 

 –+=

θ θ dθ
dt
------× 

 × θ–
2 dθ

dt
------- dθ

dt
-------θ

θ
---– 

 =

Ωr I 1 θcos–

θ2
--------------------- 
 Θ θ θsin–

θ3
--------------------- 
 Θ2

+–
dθ
dt
------- TTdθ

dt
-------= =

θ θe=

Ωr td
dθe=
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deformation. The current position xR of the material point X without deformation is 
thus given by

 (3-7)

where Xbp is a point located on the axis of rotation, R(t) is the rotation matrix due to 
the axial rotation. When also including the deformation, the current position x of the 
material point X is given by

where u(xR(t), t) is the displacement of the point at xR(t) as observed in the 
space-fixed frame. The velocity of this point can be expressed as

where

Here, W is a skew-symmetric tensor corresponding to the angular velocity vector Ω, 
defined as

The components of the skew-symmetric tensor W in terms of components of angular 
velocity vector are given as

Thus, the tensor W operating on a vector has the same effect as taking the cross 
product of Ω with the same vector.

The velocity vector can therefore also we expressed as

 (3-8)

xR t( ) Xbp R t( ) X Xbp–( )+=

x xR t( ) t,( ) xR t( ) u xR t( ) t,( )+=

v xR t( ) t,( )
td

dx
td

dxR
t∂

∂u
xR∂

∂u
td

dxR+ += =

td

dxR
td

dR X Xbp–( ) W xR Xbp–( ) Wrp= = =

W
td

dRRT
=

W[ ]
0 Ωz– Ωy

Ωz 0 Ω– x

Ω– y Ωx 0

=

v xR t( ) t,( )
t∂

∂u
xR∂

∂u Wrp Wrp+ +
t∂

∂u FRWrp+= =
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where

Similarly, the acceleration is obtained as

 (3-9)

The first term on the right-hand side in the above expression is the acceleration 
without the effect of rotation, and second term is the Coriolis acceleration. The third 
and the fourth terms are the Euler acceleration. The last three terms on the right-hand 
side are the centrifugal acceleration. The acceleration can also be expressed with the 
deformation gradient as

 (3-10)

FR I
xR∂

∂u
+ I uR∇+= =

a xR t( ) t,( )
td

dv
=

t2

2

∂
∂ u 2

t∂
∂

xR∂
∂u

 
 Wrp td

dWrp xR∂
∂u

td
dWrp+ + + +=

xR∂
∂u WWrp

xR
2

2

∂
∂ u Wrp
 
 
 

Wrp WWrp+ +

a
t2

2

∂
∂ u 2

t∂
∂FRWrp FR t∂

∂Wrp FRW2rp xR∂
∂FRWrp
 
 
 

Wrp+ + + +=
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Ro t o r  A x i s

This section aims to define the rotor axis in the Solid Rotor interface. There are two 
methods to specify the rotor axis:

• The first method is to specify two points, usually the locations of end supports, on 
the rotor. The line joining these points then defines the rotor axis.

• The second method is to specify an edge on the rotor corresponding to the physical 
axis of the rotor. If there is only one support, you can either specify the two points 
close to the support or use the second method to specify the edge representing the 
rotor axis.

The following sections describe the two methods to determine the rotor axis.

Support Locations

Let X1 and X2 be the position vectors of the points corresponding to the support 
locations. Then the rotor axis direction is

For a material point X on the rotor, the corresponding material point on the rotor axis 
is

Edge

If the edge corresponding to the axis is specified, then Xax are the material coordinates 
X on the edge. The axis direction is given by 

where ζ1 is the local coordinate along the edge representing the axis.

e1
X2 X1–

X2 X1–
-------------------------=

Xax X1 X X1–( ) e1⋅{ }e1+=

e1

dX
dζ1
---------

dX
dζ1
---------
--------------=
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Chang e  Ro t o r  S p e ed

The speed of the rotor is usually specified in the interface settings. If the analysis 
consists of a single rotor or multiple rotors rotating at the same speed, you do not need 
the Change Rotor Speed node. However, there are also cases where the rotors in the 
system rotate at different speeds. Use this feature to selectively specify the speed of each 
rotor in a multirotor system.

Geared Rotor System

Geared rotor system have multiple rotors with pair of gears connecting them together. 
The speed of the shafts that are connected throughs the gears have a specific ratio 
called the gear ratio, which is the number of teeth per gear. The Change Rotor Speed 

feature can be used to specify the angular speeds of the respective rotors consistent 
with the gear ratio.

Multi-Spool Rotor System

A multi-spool rotor system has coaxial rotors with an intershaft bearing connecting 
them together. Both the shafts in such an arrangement have independent speed of 
rotation. The Change Rotor Speed feature can be used to specify the speed of one of the 
shafts whereas other shaft inherits the speed specified at the interface.
 3 :  R O T O R D Y N A M I C S  T H E O R Y



Fo rmu l a t i o n  o f  Equ i l i b r i um 
Equa t i o n s

In this section:

• Transformation of Some Quantities

• Equation Implementation

Transformation of Some Quantities

C O R O T A T I N G  F R A M E

The deformation gradient in the fixed frame is obtained by taking the derivative of 
Equation 3-1 with respect to X.

 (3-11)

where Fr is the deformation gradient in the rotating frame.

Using this expression for the deformation gradient, the relation between the 
Green-Lagrange strain in the fixed and corotating frames is

A traction vector transforms between different frames like a vector. Therefore, the 
relation between the traction vector in the fixed and corotating frames is

where n = Rnr. Using Cauchy’s relation, t = σn, the Cauchy stress tensor transforms as

The first Piola-Kirchhoff tensor in the fixed frame is related to the same tensor in the 
corotating frame by

∂χ X t,( )
∂X

---------------------
X∂
∂ Xbp R X ur Xbp–+( )+( ) R

X∂
∂ X ur+( ) RFr= = =

E 1
2
--- FTF I–( ) 1

2
--- Fr

TRTRFr I–( ) 1
2
--- Fr

TFr I–( ) Er= = = =

t x t n, ,( ) Rtr xr t nr, ,( )=

σ RσrR
T

=

P JσF T– J RσrR
T( ) RFr( ) T– JRσrFr

T– RPr= = = =
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S P A C E - F I X E D  F R A M E

Deformation gradient in space-fixed frame can be written as

FR is the deformation gradient using rotated coordinates xR as reference. Thus 
Green-Lagrange strain can be expressed as

We know that area transformation between spatial and material frame are related as

If we use this transformation for the case where the rotor only rigidly rotates without 
any deformation, then

Thus, dAR = dA0 and nR = RN.

The relation between Cauchy stress and second Piola-Kirchhoff stress is

Using the rigidly rotated state as a reference, the second Piola-Kirchhoff stress is

Therefore, relation between second Piola-Kirchhoff stress using initial configuration 
and rotated configuration as reference is

 (3-12)

Following the similar steps, the relation between first Piola-Kirchhoff stress using 
initial and rotated configuration as reference is

 (3-13)

F
X∂

∂x
xR∂

∂x
X∂

∂xR FRR= = =

E 1
2
--- FTF I–( ) RT1

2
--- FR

TFR I–( )R RTERR= = =

ndA det F( )F T– NdA0=

nRdAR det R( )R T– NdA0 RNdA0= =

S det F( )F 1– σF T– det FR( )RTFR
1– σFR

T– R= =

SR det FR( )FR
1– σFR

T–
=

S RTSRR=

P PRR=
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Equation Implementation

The equilibrium equations for rotordynamics are based on Newton’s second law. It is 
usually written using a spatial formulation in terms of the Cauchy stress tensor σ:

Here, fV is a body force per unit deformed volume, and ρ is the current mass density. 
For the material frame formulation used in COMSOL Multiphysics, it is more 
appropriate to use a Lagrangian version of the equation:

 (3-14)

Here, the first Piola-Kirchhoff tensor, P, is used. The term FV is the body force with 
the components in the current configuration but given with respect to the undeformed 
volume, and ρ0 is initial mass density. Also note that the gradient operators are not the 
same. In the first case, the gradient is taken with respect to spatial coordinates, and in 
the second case it is taken with respect to material coordinates. 

C O R O T A T I N G  F R A M E

Considering that Equation 3-14 is valid in an inertial frame, the fixed-to-corotating 
frame transformation and Equation 3-4 are used to write Equation 3-14 in the 
corotating frame as:

 (3-15)

All the variables in Equation 3-15 are interpreted in the corotating frame. Here, Sr is 
the second Piola-Kirchhoff stress tensor, and Fr is the deformation gradient tensor. 
The COMSOL Multiphysics implementation of the equations in the Solid Rotor 
interface is, however, not based on the equation of motion directly but rather on the 
principle of virtual work.

The principle of virtual work states that the sum of the internal virtual work and the 
external virtual work are equal. The internal virtual work is the work done by the 
current stress state on a kinematically admissible variation in strains. The external 
virtual work is the work done by all forces (acting on domains, boundaries, edges, or 
points) when multiplied with the variation in displacements corresponding to the 
variation in strains. The virtual displacements δur are in the finite element formulation 

ρ∂2u

∂t2
---------- ∇x σ fV+⋅=

ρ0
∂2χ X t,( )

∂t2
------------------------ ∇X P FV+⋅=

ρ0ar ∇X Pr FrV+⋅ ∇X FrSr( ) FrV+⋅= =
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represented by the test() operator in COMSOL Multiphysics. For a transient case, 
the virtual work δW is written as

 (3-16)

As the equation is formulated in the material frame, all of the integrals are taken over 
the undeformed geometry.

The Solid Rotor interface supports stationary, time-dependent, and eigenfrequency 
analyses. For stationary analyses, the acceleration term is reduced to

For eigenfrequency analyses, the acceleration term is

S P A C E - F I X E D  F R A M E

The momentum balance equation (Equation 3-14) can be transformed by 
incorporating the quantities obtained by using rotated coordinates as a reference (see 
Equation 3-9 and Equation 3-13). The momentum balance then becomes

Using Equation 3-7 to transfer the derivative with respect to the material coordinate X 
to the derivative with respect to the rotating coordinate xR, the momentum balance 
equation changes to

δW δε–  : σ δur FrV ρ0δur ar⋅–⋅+( ) Vd
V
 +=

δur FrS⋅( ) Sd
S
 δur FrL⋅( ) Ld

L
 δur FrP⋅

P
+ +

ar Ωr Ωr xr Xbp–( )×{ }×=

ar jω( )2ur 2 jω( )Ωr ur×+=

ρ0
t2

2

∂
∂ u 2

t∂
∂FRWrp FR t∂

∂Wrp FRW2rp xR∂
∂FRWrp 
 
 

Wrp+ + + +

∇X PRR( ) FV+⋅

=

ρ0
t2

2

∂
∂ u 2

t∂
∂FRWrp FR t∂

∂Wrp FRW2rp xR∂
∂FRWrp 
 
 

Wrp+ + + +

∇xR
PR FV+⋅

=
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For the transient case, virtual work can be obtained by multiplying the momentum 
balance equation by δu and integrating the resulting expression over the material 
volume. Since many of the quantities are expressed in terms of rotated coordinates xR 
rather than the material coordinate X, we can change the integral over the material 
volume V to an integral over the rotating volume VR. The resulting expression is

Note that the integrals are performed over the rotating volume. Hence, they will 
change in time even if the quantities inside the integral are no function of time. If the 
rotor is axisymmetric, the rotating volume does not change in time. In that case, the 
rotating volume can be treated as a stationary volume similar to the material volume.

The acceleration for the transient study as a function of material coordinates is

The first term on the right-hand side of the above expression is the acceleration 
without the effect of rotation. The second and third term combined are due to the 
Euler acceleration. The fourth term is the Coriolis acceleration. The last three terms 
combined are the centrifugal acceleration.

For a stationary analysis the acceleration reduces to

In an eigenfrequency or frequency-domain study, the acceleration takes the following 
form

δW δFR:PR– δu FV ρRδu a⋅–⋅+( ) VRd
VR

 +=

δu FS⋅( ) SRd
SR

 δu FL⋅( ) LRd
LR

 δu FP⋅
PR

+ +

a
t2

2

∂
∂ u uX∇( )

t∂
∂Ω Xp× 
 

t∂
∂Ω RXp× 2

t∂
∂u

X∇ 
  Ω Xp×( )+ + + +=

uX∇( ) Ω Ω Xp×( )×{ } uX∇( ) Ω Xp×( )X∇{ } Ω Xp×( ) Ω Ω RXp×( )×+ +

a uX∇( ) Ω Ω Xp×( )×{ } uX∇( ) Ω Xp×( )X∇{ } Ω Xp×( ) Ω+ Ω Xp×( )×+=

a iω( )2u 2 iω( ) uX∇( ) Ω Xp×( )+ +=

uX∇( ) Ω Ω Xp×( )×{ } uX∇( ) Ω Xp×( )X∇{ } Ω Xp×( ) Ω Ω RXp×( )×+ +
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Damp i n g

For dynamic problems, damping in the structure is an important property. In this 
section, the theory for Rayleigh damping is described. For other types of damping, see 
the Structural Mechanics Module User’s Guide.

Rayleigh Damping: Corotating Frame

Rayleigh damping is described by two coefficients: the mass damping coefficient αdM 
and the stiffness damping coefficient βdK. Rayleigh damping gives the following 
contribution to the virtual work:

Since a rigid body rotation will not cause any structural damping, contributions due to 
a rigid motion can be ignored in the corotating frame formulation. The resulting 
expression is

where the equality δu = Rδur is used.

For the stationary case, there is no damping contribution.

In a frequency-domain analysis, the contribution to the virtual work is

Since Rayleigh damping is added directly to the virtual work equation, it does not 
affect the constitutive relation. As a consequence, the stresses and strains for a linear 
elastic material will still be in phase. This stands in contrast to other damping models.

Rayleigh Damping: Space-Fixed Frame

Rayleigh damping in fixed frame gives the following contribution to the virtual work:

δW βdKδ ∇ur( ):
t∂

∂Pr– αdMρδu–
t∂

∂χ⋅ Vd
V
=

δW βdKδ ∇ur( ):
t∂

∂Pr– αdMρδur–
t∂

∂ur⋅ Vd
V
=

δW iω( ) βdKδ ∇ur( ):Pr– αdMρδur– ur⋅[ ] Vd
V
=
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Again ignoring the effect of rigid motion on the damping, the weak contribution, after 
simplification, can be written as

For the stationary case, the damping contribution reduces to

In frequency-domain, the damping contribution can be written as

Viscous Damping: Space-Fixed Frame

The viscous damping for a Newtonian-type fluid is specified by two material constants 
μb and μs, known as bulk viscosity and shear viscosity, respectively. The constitutive law 
is defined by separating the strains into two parts namely, volumetric strain and 
deviatoric strain (traceless) components. The volumetric strain rate multiplied by the 
bulk viscosity gives a pressure, and the deviatoric strain rate multiplied by a shear 
viscosity gives deviatoric stress. Total stress is then the sum of pressure and deviatoric 
stress:

The strain rate is defined as

δW βdKδ ∇u( ):
t∂

∂P
– αdMρδu v⋅( )– Vd

V
=

δW β– dKδ ∇Ru( ):
t∂

∂PR β– dKδ ∇Ru( ):PRW
VR

=

αdMρRδu
t∂

∂u uWrpR∇+ 
  dVR⋅–

δW βdKδ ∇Ru( ):PRW– αdMρRδu uWrpR∇⋅–[ ] VRd
VR

=

δW β– dKδ ∇Ru( ): iωPR( ) β– dKδ ∇Ru( ):PRW[
VR

=

αdMρRδu iωu uWrpR∇+( ) ]dVR⋅–

σ pI– σd+ μb t∂
∂εvI μs t∂

∂εd+= =
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with

Using the velocity expression from Equation 3-8, it can be shown that

After substituting these expressions, the total stress can be written as

The second Piola-Kirchhoff tensor then becomes

Thus, 

Consider,

Therefore,

t∂
∂ε 1

2
--- vx∇ vx∇( )T

+( ) 1
2
--- L LT

+( )= =

t∂
∂εv Tr

t∂
∂ε
 
 =

t∂
∂εd

t∂
∂ε 1

3
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t∂
∂εvI–=

L vx∇
t∂

∂FF 1– LR FRWFR
1–

+= = =

∇x v⋅ Tr L( ) 1
J
---

td
dJ 1

JR
-------

td

dJR= = =

σ μb
μs
3
-----– 

  1
JR
-------

td

dJRI
μs
2
----- 2DR FRWFR

1– FR
T– WFR

T
–+( )+=

S JF 1– σF T– JRRTFR
1– σFR

T– R RTSRR= = =

SR μb
μs
3
-----– 

 
td

dJRCR
1– μs

2
-----JR 2FR

1– DRFR
T– WCR

1– CR
1– W–+( )+=

2FR
1– DRFR

T– FR
1–

t∂
∂FRFR

1– FR
T–

t∂
∂FR

T

+
 
 
 

FR
T– CR

1–

t∂
∂CRCR

1–
= =

SR μb
μs
3
-----– 

 
td

dJRCR
1– μs

2
-----JR 2CR

1–

t∂
∂ERCR

1– WCR
1– CR

1– W–+ 
 +=
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R i g i d  Doma i n

A Rigid Domain, or a rigid body, is an idealization where the body is assumed to 
exhibit no deformation. In other words, the distance between any two given points of 
a rigid body remains constant in time, regardless of any external forces acting on it. An 
object can be assumed to be rigid if its flexibility is negligible in comparison to other 
flexibilities in the system, and when there is no need to compute internal stresses.

The implementation of the rigid domain in the Rotordynamics Module differs from 
the Structural Mechanics Module in terms of the contribution to the virtual work due 
to inertial forces.

Corotating Frame

In the Structural Mechanics Module, the rigid domain is modeled in a space-fixed 
frame. In the Solid Rotor interface, however, it is modeled in a rotating frame 
associated with the rotor rotation. Therefore, some frame acceleration terms also 
contribute to the virtual work. In a frame rotating with angular velocity Ω, this 
additional contribution to the virtual work is:

where

with xmp = Xm+um-Xbp and

For details about the theory of a rigid domain, see Rigid Domain Model 
in the Structural Mechanics Module User’s Guide.

δWk maf δum AfEm:δR–⋅– maf δum Mf δϑ⋅–⋅–= =

af Ω Ω xmp×( )×
t∂

∂Ω xmp× 2Ω
t∂

∂um×+ +=

Af Ω̃2 Ω̃+( )R 2Ω̃R
·

+=

Mf RImRT Ω
·

Ω ϑ
·

×+( ) Ω ϑ
·

+( ) RIm× RT Ω ϑ
·

+( )+=
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where ϑ is the rotation vector corresponding to the rotation matrix R, which 
represents the rotation of the rigid body in the rotating frame.

Space-Fixed Frame

In the Solid Rotor, Fixed Frame interface equations are modeled in a space-fixed 
frame. However, additional acceleration terms due to the spin of the rotor also 
contribute to the virtual work. The additional contribution is

where

In the above, Rrig is the rotation matrix due to a rigid body motion and R is the 
rotation matrix corresponding to corotational motion. Similarly, Wrig and W are the 
angular velocity tensors corresponding to rigid body motion and corotational motion, 
respectively.

Im ρ X Xm–( ) X Xm–( )I X Xm–( ) X Xm–( )⊗–⋅[ ] Vd
V
=

Em ρ X Xm–( ) X Xm–( )⊗ Vd
V
=

Ω̃ Ω I×=

δWk m AR A1–( ) Xc Xbp–( ) δuc⋅–=

m u··c AR A1–( ) Xc Xbp–( )+{ } R I–( ) Xc Xbp–( )⊗[ ]:δRrig–

A A1 A2+=

A1 W
·

rig Wrig
2

+( )Rrig=

A2 2WrigRrigW RrigW
·

RrigW2
+ +=

m ρ0 V0d
V0

=

E ρ0 X Xc–( ) X Xc–( )⊗ V0d
V0

=

Wrig R
·

rigRrig
T

=

W R
·
RT

=
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F i x e d  Ax i a l  Ro t a t i o n

Rotors are often subjected to torsional loads. Therefore, the rotor transfers the 
torsional load while it is rotating about its own axis. The bearings that support the 
rotor do not constrain the axial rotation of the rotor. Since you analyze the rotor in the 
corotating frame during the rotordynamic analysis, you need a cross section on the 
rotor as a reference about which torsional vibration can be studied. The Fixed Axial 
Rotation node is a default node in the Solid Rotor interface that provides the method 
to constrain the axial rotation of the rotor at a given cross section. In general, each 
cross section along the rotor can have an axial rotation that differs from the rigid body 
rotation due to twist in the rotor. The nonrigid part of the axial rotation is constrained 
by this feature.

If the deformational displacement is approximated by a rigid body map, then

Therefore, taking the cross product by  on both sides and integrating over the 
area, gives

The following constraint should be applied to fix the axial rotation:

where

and

ur ur ax, θr X Xax–( )×+=

X Xax–

IAθr X Xax–( ) ur ur ax,–( )× Ad
A
=

θr e1⋅ e1 IA( ) 1– X Xax–( ) ur rot, ur ax,–( )× Ad
A
⋅ 0= =

IA X Xc–( ) X Xc–( )⋅{ }I X Xc–( ) X Xc–( )⊗–[ ] Ad
A
=

ur ax,

ur Ad
A


Ad
A

------------------=
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Weak Constraint

The constraint described above involves many degrees of freedom. The internal 
constraint elimination algorithm will have to solve a large system of equations, which 
may lead to excessive memory usage or inaccuracies. Sometimes due to inaccurate 
handing of the constraints you may observe convergence issues in the model. If this 
happens, select the Use weak constraints check box (enabled by Advanced Physics 

Options) to use the weak form of the constraint. The Lagrange multiplier, 
<phys>.<feat>.th1_lm, for this constraint provides the reaction torque on the cross 
section.

Xc

X Ad
A


Ad
A

----------------=
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L o ad s

In this section: 

• Distributed Loads

• Gravity

Distributed Loads

The direction of the explicitly applied distributed load should be given with reference 
to a global or local coordinate system in the spatial (fixed) or corotating frame. The 
magnitude of the load must be with reference to the undeformed reference (or 
material) area. Since the reference area does not depend on the material or corotating 
frame, the magnitude of the load remains unaffected with respect to the frame in which 
it is applied. However, the direction of the load will depend strongly on the frame in 
which it is applied. The relation between the true force f acting on the current area da 
and the specified distributed load F acting on the material area dA is fda = FfdA. If 
the load is specified in the corotating frame, then the relation changes to fda = RFdA. 
Therefore, the contribution to the virtual work for a distributed force specified on a 
surface is

In a stationary analysis, irrespective of the choice of the frame, a load is always 
considered to act in the corotating frame.

When a pressure load, p, acts on the rotor, the true force on the surface element acts 
with the magnitude p over the current area da in the normal direction n:

Therefore, the pressure load type specifies the distributed load as

where both normal n and area element da are functions of the current displacement 
field. Another view of how to interpret the load is to express it in terms of the first 
Piola-Kirchhoff stress tensor P via the following formula:

δW δu
A
 FAdA⋅ δur

A
 RTFAdA⋅ δur

A
 FrAdA⋅= = =

f pnda=

F pn da
dA
--------=
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where the normal n0 corresponds to the undeformed surface element. Such a force 
vector is often referred to as nominal traction.

R O T A T I N G  L O A D  I N  F R E Q U E N C Y  D O M A I N

In rotordynamics, we often encounter loads that are rotating with respect to the frame 
in which the rotor is modeled. For example, an eccentric load observed in a space-fixed 
frame is rotating with a speed equal to the rotor’s angular speed. Similarly, a 
gravitational load will appear to be rotating with a speed equal to the rotor’s angular 
speed and opposite to the rotational direction when observed in a corotating frame. In 
frequency-domain analyses, such loads require special treatment to correctly model 
their rotating behavior.

Consider a load of magnitude F0 rotating about the rotor axis with angular speed Ω 
with an initial phase angle φ. The local components of this load as a function of time are

In the vector form

With

a load rotating in positive Ω direction can in frequency-domain be represented as

Similarly, a load rotating in negative Ω direction is

F Pn0=

F1 0=

F2 F0 Ωt φ+( )cos=

F3 F0 Ωt φ+( )sin=

F F0 Ωt φ+( )e20 F0 Ωt φ+( )e30sin+cos=

F0
2
------ φcos i φsin+( ) e20 ie30–( )eiΩt φcos i φsin–( ) e20 ie30+( )e iΩt–

+[ ]=

F20 F0 φcos=

F30 F0 φsin=

F
F20 iF30+

2
--------------------------- 
 e20

F30 iF20–

2
--------------------------- 
 e30–=
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Gravity

You can add the Gravity node to create the load caused by gravity. This gives load 
contribution from all the nodes in the physics interface that have density or mass, such 
as Linear Elastic Material, Added Mass, or Point Mass.

In the following, the mass density ρ should be considered to be generalized. It can 
represent mass per unit volume, mass per unit area, mass per unit length, or mass itself, 
depending on the dimensionality of the object giving the contribution. The gravity 
acts in a fixed spatial direction eg. The intensity in the corotating frame is:

where g is the acceleration of gravity. The action of gravity can also be presented as the 
linearly accelerated frame of reference. Thus, it can be accounted for as a contribution 
into the effective acceleration via the frame acceleration term given by:

Due to the presence of the transformation matrix R, which is time dependent, gravity 
in the Solid Rotor interface is only meaningful in a dynamic analysis. However, for a 
stationary analysis, the component of gravity that acts along the axis of the rotor is still 
considered, since it is independent of the rotation. For an eigenfrequency analysis, 
gravity has no effect. Since a gravity load in a corotating frame is a rotating load, it can 
be applied as described in Rotating Load in Frequency Domain for frequency-domain 
analyses.

F
F20 iF30–

2
--------------------------- 
 e20

F30 iF20+

2
--------------------------- 
 e30+=

g ρgRTeg=

af g–=
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Bea r i n g s  and Founda t i o n s

In this section:

• Journal Bearing

• Thrust Bearing

• Radial Roller Bearing

• Active Magnetic Bearing

• Fixed Foundation

• Moving Foundation

• Flexible Foundation

• Squeeze Film Damper

Journal Bearing

The purpose of journal bearings is to support the rotor against its lateral movement. 
Due to the finite length of the bearings, as a side effect, they also offer a resistance to 
the bending of the rotor about the two lateral directions. If the bearings are very short 
when compared to the overall length of the rotor, the bending resistance of the 
bearings can be neglected. Modeling of the journal bearings in COMSOL 
Multiphysics can be done in two ways: get the equivalent stiffness and damping 
constants or consider the equivalent resistive forces and moments offered by the 
bearing. There is also a special category where the journal bearing is assumed to offer 
infinite resistance to the lateral and bending motion of the journal. This is called a 
no-clearance bearing.

For the purpose of implementation, the motion of the journal in the Solid Rotor 
interface is represented by a displacement at the center of the journal and a rotation 
around it. To obtain these quantities from the displacement field of the journal, it is 
assumed that the displacement of the journal in the rotating frame can be 
approximated by a rigid map:

 (3-17)

The displacement at the center of the journal ur,c can be obtained by:

ur J, ur c, θr c, X Xc–( )×+=
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and the rotation of the journal can be obtained by first taking the cross product by 
X-Xc on both sides of Equation 3-17and integrating over the area:

with

In the expressions above, Xc is the coordinate of the center of the journal given by

The displacement of the journal, which affects and in turn is affected by the bearing 
operation, is the displacement excluding the effect of the axial rotation of the rotor. In 
a spatial (fixed) frame this is, for the Solid Rotor interface, given by

In the Solid Rotor, Fixed Frame interface the above transformation using a rotation 
matrix is not required.

The relative displacement of the journal axis with respect to the foundation in the 
spatial frame is given by

Here, ufd is the displacement field of the foundation in the spatial frame.

ur c,

ur Ad
A


Ad
A

------------------=

θr c, IA( ) 1– X Xc–( ) ur ur c,–( )× Ad
A
=

IA X Xc–( ) X Xc–( )⋅{ }I X Xc–( ) X Xc–( )⊗–[ ] Ad
A
=

Xc

X Ad
A


Ad
A

----------------=

uJ Rur J,=

ud uJ ufd– Rur J, ufd–= =

ufd uf θf X Xc–( )×+=
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In the cases where deformation of the journal is significant, the displacement field on 
the journal surface should be considered instead of a linearized displacement of the 
journal axis:

for a Solid Rotor interface, and 

for a Solid Rotor, Fixed Frame interface.

The lateral displacement components at the center of the journal, with respect to the 
foundation in the bearing lateral directions, are

and

The rotation components of the journal relative to the foundation about the bearing 
lateral axes are

and

in which uf and θf are the displacement and rotation vectors, respectively, of the 
bearing foundation at the center of the bearing. The above definition of local 
displacement and rotation components are valid for the Solid Rotor interface. In a 
Solid Rotor, Fixed Frame interface the additional transformation with a rotation 
matrix to convert the rotating frame displacement to a fixed frame displacement is not 
required.

For the Solid Rotor and Solid Rotor, Fixed Frame interfaces, the following methods 
are provided to model journal bearings:

• No Clearance

• Plain Hydrodynamic

ud Rur ufd–=

ud u ufd–=

ud2 Rur c, uf–( ) e2
b⋅=

ud3 Rur c, uf–( ) e3
b⋅=

θd2 Rθr c, θf–( ) e2
b⋅=

θd3 Rθr c, θf–( ) e3
b⋅=
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• Total Spring and Damping Constant

• Total Force and Moment

• Force Per Unit Area

N O  C L E A R A N C E

In this method, it is assumed that there is no clearance between the journal and the 
bushing of the bearing. Therefore, the relative motion between the journal and 
foundation is constrained to zero in the lateral direction. The following constraints are 
applied:

P L A I N  H Y D R O D Y N A M I C

This method models a fluid-lubricated plain journal bearing. Linearized bearing 
dynamic coefficients to model the effect of the fluid film on the journal motion are 
obtained in Ref. 1. These are given by

and

ud e2
b⋅ 0=

ud e3
b⋅ 0=

K22 K0
ε0 16ε0

2 π2 2 ε0
2

–( )+{ }

1 ε0
2

–( )
2
Q

---------------------------------------------------------=

K23 K0

π π2 1 ε0
2

–( )
2

16ε0
4

–
 
 
 

4 1 ε0
2

–( )
5 2⁄

Q
---------------------------------------------------------=

K32 K– 0
π π2 1 2ε0

2
+( ) 1 ε0

2
–( ) 32ε0

2 1 ε0
2

+( )+{ }

4 1 ε0
2

–( )
5 2⁄

Q
---------------------------------------------------------------------------------------------------=

K33 K0
ε0 π2 1 2ε0

2
+( ) 1 ε0

2
–( ) 32ε0

2 1 ε0
2

+( )+{ }

1 ε0
2

–( )
3
Q

-----------------------------------------------------------------------------------------------------=
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where K0 = μΩR(L/C)3, C0 = μR(L/C)3 and Q = 16ε0
2+π2(1-ε0

2).

Here, μ is the dynamic viscosity of the lubricant, Ω is the angular speed of the rotor, R 
is the radius of the journal, C is the clearance between the journal and bushing when 
both are concentric, ε0 is the relative eccentricity and is given by ε0 = e/C, and e is the 
eccentricity of the journal defined as

The attitude angle, which represents the direction in which the journal center moves 
relative to the bushing center with respect to the local y-direction, is defined as

For a dynamic analysis, the contribution to the virtual work from the bearing in this 
case is

In a stationary case, the contribution due to damping is dropped in the expression 
above. For a frequency-domain analysis, the contribution to the virtual work is

C22 C0
π π2 1 2ε0

2
+( ) 16ε0

2
–{ }

2 1 ε0
2

–( )
3 2⁄

Q
----------------------------------------------------------=

C23 C32 C– 0
2ε0 π2 1 2ε0

2
+( ) 16ε0

2
–{ }

1 ε0
2

–( )
2
Q

----------------------------------------------------------------= =

C33 C0

π 48ε0
2 π2 1 ε0

2
–( )

2
+

 
 
 

2 1 ε0
2

–( )
5 2⁄

Q
----------------------------------------------------------=

e ud2
2 ud3

2
+=

ψ
ud3
ud2
--------- 
 atan=

δW 1
A
---- K22 K23

K32 K33

ud2

ud3

C22 C23

C32 C33

t∂
∂ud2

t∂
∂ud3

+

 
 
 
 
 
 
 

δud2

δud3

⋅

 
 
 
 
 
 
 

Ad–

A
=
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T O T A L  S P R I N G  A N D  D A M P I N G  C O N S T A N T

In this case, spring and damping constants are needed explicitly to model the bearing. 
There is also an option to include the translational-rotational coupling both for the 
spring constant and the damping constant. In the general case, the following inputs 
are needed: ku, kθ, kuθ, and kθu for stiffness and cu, cθ, cuθ, and cθu for damping. 
These inputs are all 2x2 matrices. The contribution to the virtual work is:

where

and

In a frequency-domain analysis, the contribution to the virtual work is modified to

In a stationary analysis, the terms corresponding to damping are dropped.

Default values for the inputs kθ and cθ are provided assuming that ku and cu are 
constants and that the displacement of the journal varies linearly along the axis. The 
default values for these inputs are

δW 1
A
---- K22 K23

K32 K33

ud2

ud3

jω
C22 C23

C32 C33

ud2

ud3

+
 
 
 
  δud2

δud3

⋅

 
 
 
 
 

Ad–

A
=

δW 1
A
---- kuub kuθθb cu t∂

∂ub cuθ t∂
∂θb+ + + 

  δub +⋅


A
–=

kθθb kθuub cθ t∂
∂θb cθu t∂

∂ub+ + + 
  δθb⋅ 

dA

ub
ud2

ud3

=

θb
θd2

θd3

=

δW 1
A
---- kuub kuθθb jωcuub jωcuθθb+ + +( )( δub +⋅

A
–=

kθθb kθuub jωcθθb jωcθuub+ + +( ) δθb⋅ ) Ad
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and

where

T O T A L  F O R C E  A N D  M O M E N T

A bearing can also be modeled by directly specifying the total force and moment it 
applies on the journal. These forces and moments are generally functions of the journal 
displacement and rotation and their time derivatives. Total force F (2x1) and total 
moment M (2x1) are the inputs. The contribution to the virtual work in this case is

F O R C E  P E R  U N I T  A R E A

Instead of specifying the total force and moment on the journal, a distributed force on 
the journal surface can also be specified. The force per unit area, FA (2x1), is the input. 
In such a case, the contribution to the virtual work is written as

Thrust Bearing

The purpose of thrust bearings is to restrict the axial motion of the rotor. Due to the 
finite area of the thrust bearings, as a side effect, they also offer a resistance to the 
bending of the rotor about the two lateral directions. Just as for journal bearings, 
modeling of thrust bearings can be done in two ways — either by specifying the 
equivalent stiffness and damping constants or by specifying the equivalent resistive 
forces and moments. There is also a special category where the thrust bearing is 

kθ
E11
A
--------- ku 33, ku 32,–

ku 23,– ku 22,

=

cθ
E11
A
--------- cu 33, cu 32,–

cu 23,– cu 22,

=

Eij X Xc–( ) ei⋅{ } X Xc–( ) ej⋅{ } Ad
A
=

δW 1
A
---- F δub M δθb⋅+⋅( ) Ad

A
–=

δW FA δud⋅( ) Ad
A
–=
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assumed to offer infinite resistance to the axial and bending motion of the collar. This 
is called a no-clearance thrust bearing.

For the purpose of implementation, the motion of the collar in the Solid Rotor 
interface is represented by the displacement at the center of the collar and a rotation 
around it. To obtain these quantities from the displacement field of the collar, it is 
assumed that the relative displacement of the collar with respect to the foundation can 
be written in terms of the displacement and rotation at the center of the collar in the 
following way:

 (3-18)

The displacement at the center of the collar ur,c can be obtained by:

and the rotation of the collar can be obtained by first taking the cross product by X-Xc 
on both sides of Equation 3-18 and then integrating over the area:

Here

In these expressions, Xc is the coordinate of the center of the journal given by

The displacement of the collar in the spatial (fixed) frame for the Solid Rotor interface 
is given by

ur C, ur c, θr c, X Xc–( )×+=

ur c,

ur Ad
A


Ad
A

------------------=

θr c, IA( ) 1– X Xc–( ) ur ur c,–( )× Ad
A
=

IA X Xc–( ) X Xc–( )⋅{ }I X Xc–( ) X Xc–( )⊗–[ ] Ad
A
=

Xc

X Ad
A


Ad
A

----------------=

uC Rur C,=
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For a Solid Rotor, Fixed Frame interface the transformation with the rotation matrix 
is not required.

Further, since the thrust bearing only supports the axial motion of the collar, the 
displacement component in the axial direction is given as

Here, the fact that axial direction is independent of the rotation is used. The relative 
axial displacement of the collar with respect to the foundation is then given by

The components of the collar relative to the foundation in local bearing directions are 
obtained differently for the Solid Rotor and Solid Rotor, Fixed Frame interfaces. In a 
Solid Rotor interface, an additional transformation of the collar displacement with 
respect to rotation matrix is needed to convert it into the space-fixed frame. For the 
Solid Rotor, Fixed Frame interface this transformation is not required. Details for the 
Solid Rotor interface are provided below.

The components of the collar rotation relative to the foundation about the bearing 
lateral axes are

and

in which uf and θf are the displacement and rotation vectors, respectively, of the 
bearing foundation at the center of the bearing.

If the deformational displacement of the collar in the axial direction is important, then 
instead of the linearized displacement, the full displacement field of the collar is used:

Here, ufd is the displacement field of the foundation in the spatial frame.

u1 uC e1⋅ ur C, e1⋅= =

ud1 uC uf–( ) e1⋅ u1 u1 f,–= =

θd2 Rθr c, θf–( ) e2
b⋅=

θd3 Rθr c, θf–( ) e3
b⋅=

ud Rur ufd–=

ufd uf θf X Xc–( )×+=
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For the Solid Rotor interface, the following methods are provided to model thrust 
bearings:

• No Clearance

• Total Spring and Damping Constant

• Total Force and Moment

• Force Per Unit Area

N O  C L E A R A N C E

In this method, it is assumed that there is no clearance between the collar and the 
foundation, and therefore the relative axial motion between the collar and foundation 
is constrained to zero. The following constraint is applied:

T O T A L  S P R I N G  A N D  D A M P I N G  C O N S T A N T

In this case, spring and damping constants are needed explicitly to model the bearing. 
There is also an option to include the translational-rotational coupling for both the 
spring constant and the damping constant. In a general case, the following inputs are 
needed: ku (1x1), kθ (2x2), kuθ (1x2), and kθu (2x1) for stiffness; and cu (1x1), cθ 
(2x2), cuθ (1x2), and cθu (2x1) for damping. The contribution to the virtual work is:

where

In a frequency-domain analysis, the contribution to the virtual work is modified to

ud e1
b⋅ 0=

δW 1
A
---- kuud1 kuθθb cu t∂

∂ud1 cuθ t∂
∂θb+ + + 

 

 δud1 +⋅

A
–=

kθθb kθuud1 cθ t∂
∂θb cθu t∂

∂ud1+ + + 
  δθb⋅ 

 Ad

θb
θd2

θd3

=

δW 1
A
---- kuud1 kuθθb jωcuud1 jωcuθθb+ + +( )( δud1 +⋅

A
–=

kθθb kθuud1 jωcθθb jωcθuud1+ + +( ) δθb⋅ ) Ad
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In a stationary analysis, the terms corresponding to damping are dropped.

Default values for the inputs kθ and cθ are provided assuming that ku and cu are 
constants and that the displacement of the collar varies linearly in the plane of the 
collar. The default values for these inputs are

and

where

T O T A L  F O R C E  A N D  M O M E N T

A bearing can also be modeled by directly specifying the total axial force and the 
bending moment it applies on the collar. These forces and moments are generally 
functions of the collar displacement and rotation and their time derivatives. Total force 
Fax (1x1) and total moment M (2x1) are the inputs. The contribution to the virtual 
work is

F O R C E  P E R  U N I T  A R E A

Instead of specifying the total force and moment on the journal, a distributed force on 
the journal surface can be specified. Force per unit area, Fax,A (1x1), is the input. In 
such a case, the contribution to the virtual work is written as

kθ
ku
A
------ E33 E32–

E23– E22

=

cθ
cu
A
----- E33 E32–

E23– E22

=

Eij X Xc–( ) ei⋅{ } X Xc–( ) ej⋅{ } Ad
A
=

δW 1
A
---- Fax δud1 M δθb⋅+⋅( ) Ad

A
–=

δW Fax A, δud e1
b⋅( ) Ad

A
–=
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Radial Roller Bearing

In this type of bearing, relative rotation between the two components is allowed by 
inserting rolling elements between them. These bearings typically consist of the inner 
race, rollers (ball or cylindrical rollers), and the outer race. The inner race is 
interference fitted on the shaft whereas the outer race is fixed to the casing. A cage is 
used to keep the rollers well separated.

During the operation, rollers are in contact with the inner and outer race surfaces and 
roll in between whenever there is a relative motion between these surfaces. Inner and 
outer surfaces can, in general, be curved in both the directions perpendicular to the 
normal. Therefore, modeling of roller bearings requires a detailed analysis of how the 
contact interaction takes places between the inner race and roller, and the roller and 
outer race. Contact between the rolling element and the races can be of two types, 
namely, a point contact such as contact between ball and races or a line contact such as 
contact between the cylindrical roller and races.

F O R C E  I N  P O I N T  C O N T A C T

Consider two solids having different radii of curvature in two tangential directions 
which are in point contact when no load is applied. Under the action of the load F, the 
contact area becomes elliptical. As a convention, let us assign the positive sign for the 
curvature of a convex surface and negative for a concave surface. The contact profile 
between the two solids A and B can be expressed in terms of the curvature sum, R, and 
curvature difference, Rd, as follows:

Indices 1 and 2 represent the local tangent directions. R1 and R2 are the effective 
radius of curvatures of the contacting surfaces in the local direction given by:

The point of contact under the action of the load expands to an ellipse with semi-major 
axis, ae, and semi-minor axis, be. The ellipticity parameter is defined as:

1
R
---- 1

R1
------- 1

R2
-------+=

Rd R 1
R1
------- 1

R2
-------– 

 =

1
R1
------- 1

rA1
--------- 1

rB1
---------+=

1
R2
------- 1

rA2
--------- 1

rB2
---------+=
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This ellipticity parameter can be defined in terms of the curvature difference, Rd, and 
elliptic integrals of first and second kind as follows:

where ξ and ζ are the elliptic integrals of first and second kind, respectively, defined as:

An approximate formula for the ellipticity and elliptical integrals of first and second 
kind can be given as:

The contact stiffness for point contact then can be evaluated in terms of the elliptic 
integrals and ellipticity parameters as follows:

with E' defined as: 

The contact force for the point contact is 
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where δ is the penetration of the surfaces into each other.

Therefore, an equivalent stiffness corresponding to both inner and outer contacts is:

Determination of the contact stiffness requires the radius of curvatures of the 
contacting surfaces in the tangential directions. For different point contact bearings 
these are given below.

Deep Groove Ball Bearing

Ball and inner race contact:

Fc Kcδ3 2⁄
=

Kc
tot 1

1

Kc
in

---------
 
 
  2 3⁄ 1

Kc
out
------------
 
 
  2 3⁄

+
3 2⁄

----------------------------------------------------------------------=
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Ball and outer race contact:

Angular Contact Ball Bearing

rA1
in db

2
------=

rA2
in db

2
------=

rB1
in dp

2
------

db
2
------–

cr
4
----–=

rB2
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out db

2
------=

rB1
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2
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2
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–=
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Ball and inner race contact:

Ball and outer race contact:

rA1
in db

2
------=

rA2
in db

2
------=

rB1
in dp

2 φ0cos
-------------------

db
2
------–

cr
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----–=
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2
------=

rB1
out dp

2 φ0cos
-------------------–

db
2
------–

cr
4
----–=

rB2
out rout

–=
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Self-Aligning Ball Bearing

Ball and inner race contact:

Ball and outer race contact:

rA1
in db

2
------=

rA2
in db

2
------=

rB1
in dp

2 φ0cos
-------------------

db
2
------–

cr
4
----–=

rB2
in rin

–=
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Spherical Roller Bearing

roller and inner race contact:

roller and outer race contact:

rA1
out db

2
------=

rA2
out db

2
------=

rB1
out dp

2 φ0cos
-------------------–

db
2
------–

cr
4
----–=

rB2
out rout

–=

rA1
in dr

2
-----=

rA2
in rr=

rB1
in dp

2 φ0cos
-------------------

dr
2
-----–

cr
4
----–=

rB2
in rin

–=
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F O R C E  I N  L I N E  C O N T A C T

When two cylindrical surfaces with parallel axes come in contact, the contact formed 
is a line contact. In this case, the force, F, changes the contact area into rectangular. 
The width of the contact area, b, can be obtained in terms of the applied load, F, 
equivalent radius of curvature, R, and the effective elastic modulus, E', as:

where L is the length of cylindrical surfaces in contact. The normal displacement is 
given by:

The derivative of the normal displacement, δ, with respect to the load, F, gives the 
compliance. The inverse of the compliance is the stiffness of the contacting surfaces.

However, this method requires iterations during the numerical solution to know the 
contact forces. Based on laboratory testing, Palmgren provided a simple expression to 
evaluate the contact forces as a function of indentation as:

Therefore, the equivalent stiffness corresponding to the inner and outer contacts is:

rA1
out dr

2
-----=

rA2
out rr=

rB1
out dp

2 φ0cos
-------------------–

dr
2
-----–

cr
4
----–=

rB2
out rout

–=

b 8FR
πE′L
-------------- 
  1 2⁄

=

δ 2F
πE′L
-------------- 1 πL3E′

2FR
----------------- 
 log+=

k πE′L

2 πL3E′
2FR
----------------- 
 log

----------------------------------- 1
δ
F
---- 2

πE′L
--------------–

------------------------= =

Fc 0.71069 E′
2
------ 
 Leff

8 9⁄ δ10 9⁄ Kcδ10 9⁄
= =
 3 :  R O T O R D Y N A M I C S  T H E O R Y



C O N T A C T  D E F O R M A T I O N  I N  P O I N T  C O N T A C T  R O L L E R  B E A R I N G S

Figure 3-2: Front view of roller bearing.

Figure 3-2 shows the front view of a typical roller bearing. Due to the relative motion 
of the inner race and outer race, some of the rollers get loaded, whereas others get 
unloaded. This relative motion determines the contact indentation at different rollers. 
From Figure 3-3 the initial distance between the inner and outer race curvature centers 
is:

along the line 

Kc
tot 1

1

Kc
in

---------
 
 
  9 10⁄ 1

Kc
out

------------
 
 
  9 10⁄

+
10 9⁄

------------------------------------------------------------------------------=

A0 rout rin dr–
cr
2
----–+=
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Plus sign is for the second row and minus sign is for the first row of the rollers. In case 
of a single row bearing φ0 becomes zero. ei

rj is the radial vector corresponding to the 
roller i in row j and is defined as:

Figure 3-3: Side view of the roller bearing.

Let the relative center displacement between the inner and outer race be ur, and the 
relative tilt about local y and z directions be θ2 and θ3 respectively. Then the relative 
displacement between the inner and outer races at roller i in row j is:

with 

ej0
i φ0sin±( )e1 φ0erj

icos+=

erj
i βj

ie2cos βj
ie3sin+=

uj
i ur θ2e2 θ3e3+( ) rj

i×+=

rj
i b

2
---e1±

dp
2
------erj

i
+=
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for a double row bearing with plus sign for second row and minus sign for the first row, 
and

for single row bearing. Here, b is the axial distance between the roller centers and dp 
is the pitch diameter of the bearing. The loaded distance vector between the inner and 
outer race curvature centers is:

The magnitude of the loaded distance vector is the loaded distance between the 
curvature centers of the races. The distance between the race surfaces along the 
common normal in the loaded state then can be calculated as:

Then the indentation at roller i in row j is:

The total contact force on the inner race is then given by:

Only positive values of the contact forces on each roller are taken into account, and 
negative values are replaced by zero since such rollers are unloaded. For a single row 
bearing, summation over j is dropped. The contact force on the outer race acts in 
opposite direction to that on inner race.

The net moment on the rotor from the bearing then can be obtained by

C O N T A C T  D E F O R M A T I O N  I N  T A P E R E D  R O L L E R  B E A R I N G

In the tapered roller bearing the contact force directions at inner and outer contacts 
are different. In addition, there is also a contact between the bearing flange and roller. 

rj
i dp

2
------erj

i
=

Aj
i A0ej0

i uj
i

+=

dj
i rout rin Aj

i
–+=

δj
i dr dj

i
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Fc Kc
tot δj
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Therefore, it is not possible to directly get the equivalent stiffness of the inner and 
outer contacts. This requires the determination of the contact forces at inner and outer 
contacts individually. Geometric details of the tapered roller bearing are shown in the 
Figure 3-4. 

Figure 3-4: Tapered roller bearing geometry

There are three locations at which the roller comes into contact with the inner and 
outer races, namely radial contact with the outer race, radial contact with the inner 
race, and axial contact with the inner race. Radial contacts are line contacts, whereas 
the axial contact between the roller and the inner race is a point contact. In order to 
determine the contact forces in all these cases, contact deformation in the roller needs 
to be determined due to the relative motion of the inner and outer races. This can be 
described conveniently by using a local coordinate system (ξ, η, ζ) in which the ζ 
direction is along the axis of the roller, ξ is perpendicular to the ζ axis and is in the 
plane formed by bearing's radial and axial directions. In this coordinate system, the 
relative in-plane motion (ξ-ζ plane) and tilt about η axis can cause roller deformation.
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Figure 3-5: Position vectors of the various points in local coordinate system.

Determination of the roller deformation can be done by first looking at the initial 
position vectors of the various points which are likely to come into contact, and then 
determine their current position vector due to the motion of the races. A projection of 
the difference between the current and initial position vectors gives an estimate to the 
roller deformation. Using the geometric details given in the Figure 3-4, the position 
vectors of the various points are as follows:

where ζcs is given by 

π0ai

Da
2
-------eξ–

Da
2
------- βeζtan–=

π0i
Da
2
------- Δi βcos+ 
 eξ–

Da
2
------- βtan Δi βsin+ 
 eζ–=

π0ae
Da
2
-------eξ

Da
2
------- βeζtan–=

πae
Da
2
------- Δe βcos+ 
 eξ

Da
2
------- βtan Δe βsin+ 
 eζ–=

π0cs ζcseζ–=

π0s Rs μ0eξsin– ζcs– Rs μ0cos+( )eζ+=

π0f Rs Δf+( ) μ0eξsin–=
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Introduce the displacement ui and rotation vector θi at the reference point on the 
inner race, the displacement ue and rotation vector θe at the reference point on the 
outer race, and the displacement ur and rotation vector θr at the reference point on 
the rollers. Then, the displaced position π of the arbitrary point located at π0 from the 
reference point will be:

where uref and θref are pair (ui, θi) for a point on the inner race, (ue, θe) for a point 
on the outer race and (ur, θr) for a point on the roller.

The compression δ at the contact between roller and raceway is found by taking the 
projection of the current relative position vectors of the nominal contact points on 
their outside normal vector and removing the initial gap:

The normal vectors in the local coordinate system are given by:

After simplification, the respective indentations are:

In this case, the roller center is chosen as the reference point for both the roller and 
the races.

The motion of the both the races are determined from the motion of the components 
they are connected to. For example, the inner race motion can be determined from the 
rotor and the outer race motion can be determined from the motion of the bearing 

ζcs Rs λcos
Lr
2
------ βcos–

Da
2
------- βtan+=

π π0 uref θref π0×+ +=

δi πi πai–( ) π0i π0ai–( )–[ ]– ni⋅=

δe πe πae–( ) π0e π0ae–( )–[ ]– ne⋅=

δf πf πs–( ) π0f π0s–( )–[ ]– nf⋅=

ni βeξcos– βeζsin–=

ne βeξcos βeζsin–=

nf μ0eξsin– μ0eζcos+=

δi ui ur–( ) ni⋅– Δi–=

δe ue ur–( ) ne⋅– Δe–=

δf ui ur–( ) nf Δf– ζcs θi θr–( ) μ0sin–⋅–=
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pedestal. The motion of the roller, however, still remains unknown. It can be 
determined by considering the load balance of the roller as shown in Figure 3-6.

Figure 3-6: Load balance on the roller

Force balance:

Moment balance:

In the local roller direction, this reduces to:

The contact forces, in terms of roller deformation are:

Qini Qene Qfnf+ +( )– 0=

Qini π0ai Qe+× ne π0ae× Qfnf π0s× Teeη Tieη–+ +( )– 0=

Qe βcos– Qi βcos Qf μ0sin+ + 0=

Qe βsin Qi βsin Qf μ0cos–+ 0=

Ti Te– Qfζcs μ0sin– 0=
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The corresponding contact moments from line contact are obtained by integrating the 
local contact forces over the contact line:

where re and ri are the position vectors on the outer and inner contact lines, 
respectively, with respect to the reference point. dQe and dQi are the infinitesimal 
forces acting on the infinitesimal length dx on the outer and inner contact lines.

Contact forces and moments then need to be added from each roller to determine the 
total bearing forces acting on the rotor and bearing pedestal.

C O N T A C T  D E F O R M A T I O N  I N  C Y L I N D R I C A L  R O L L E R  B E A R I N G

In the cylindrical roller bearing, the forces at inner and outer contact lines are aligned 
as in the case of the point contact roller bearings. A typical arrangement of a cylindrical 
roller bearing is shown in Figure 3-7. The initial gap between the outer race and inner 
race for roller i in row j is given by:

along the line

Here, ei
rj is the radial vector corresponding to the roller i in row j and is defined as:

Qe Ke δe( )10 9⁄
=

Qi Ki δi( )10 9⁄
=

Qf Kf δf( )3 2⁄
=

Te re Qened–( )×

Lr 2⁄–

Lr 2⁄

=

Ti ri Qinid–( )×

Lr 2⁄–

Lr 2⁄

=

d0 dr
cr
2
----+=

ej0
i erj

i
=

erj
i βj

ie2cos βj
ie3sin+=
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Figure 3-7: Geometry of the cylindrical roller bearing.

Let the relative center displacement of the inner race with respect to outer race be ur 
and the relative tilt about local y and z directions be θ2 and θ3, respectively. Then the 
relative displacement of the inner with respect to outer races at roller i in row j is:

with 

for a double row bearing. Plus sign applies to the second row and minus sign to the 
first row and

for a single row bearing. b is the axial distance between the roller centers and dp is the 
pitch diameter of the bearing.

After the loading, the gap vector of the outer race with respect to the inner race is:

uj
i ur θ2e2 θ3e3+( ) rj

i×+=

rj
i b

2
---e1±

dp
2
------erj

i
+=

rj
i dp

2
------erj

i
=

B E A R I N G S  A N D  F O U N D A T I O N S  |  97



98 |  C H A P T E R
Then the indentation at roller i in row j is:

The total contact force on the inner race is then given by:

Only positive values of the contact forces on each roller are taken into account, and 
negative values are replaced by zero since the roller is unloaded. For a single row 
bearing, summation over j is dropped. Contact forces on the outer race acts in the 
opposite direction to those at the inner race.

The net moment on the rotor due to bearing then can be obtained by

B E A R I N G  P R E L O A D

A bearing preload is usually a sustained axial load that is applied to a bearing to ensure 
constant contact between the rolling elements and the races. This helps in reducing or 
eliminating both radial and axial play between the inner and outer races. As a result, 
the rotational accuracy of the shaft increases with the preload. A proper preload in the 
bearing can increase the life of the bearing, and also reduce the vibrations and noise 
that result from the clearance between the races. For some bearings, like the radial 
roller bearings, a radial preload is applied instead. Preloading of the bearing is mostly 
used in high precision and high speed applications such as machine tool spindles, 
electric motor, automotive differentials etc. 

Axial Preload
An axial preload in the single row bearings can be provided to angular contact ball 
bearings and tapered roller bearings. For these bearings, the axial preload causes the 
inner and outer races to move towards each other. Thus, the axial preload directly 

dj
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δj
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i erj
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works as a load on the relative displacement of the inner race and the outer race in such 
a way that it loads the rollers/balls. 

Figure 3-8: Axial preload on a single row angular contact ball bearing.

If the contact direction between the rolling elements and races has a positive projection 
on the bearing axis, then the preload will push the outer race opposite to the bearing 
axis and the inner races along the bearing axis. The direction will reverse if the contact 
direction has a negative projection on the bearing axis. Thus, a weak contribution due 
to a preload can be expressed as

Here, Fa is the axial preload in the bearing, e1 is the bearing axis, ur is the rotor 
displacement, uf is the foundation displacement and er is the contact direction 
between the rolling element and the races. Because races of a bearing are connected to 
the rotor and the foundation, respectively, the displacement of the inner race is equal 
to the rotor displacement, and the displacement of the outer race is equal to 
foundation displacement. As you can see, for single row bearings, the preload is also 
transmitted to the rotor on which the bearing is mounted. 

An axial preload in double row bearings can be used with an angular contact ball 
bearing, a self-aligning ball bearing, a spherical roller bearing and a tapered roller 
bearing. For double row bearings, the situation more complex. In this case, one of the 
races in the bearing is split and a preload between the split parts is applied in such a 

δWpre Fa e1 δ ur uf–( )⋅( )sign er e1⋅( )=
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way that they push the rolling elements against the nonsplit race. This loads the rollers 
in the bearing. Because the races are split, they can move relative to one another. 

Figure 3-9: Axial preload in a double row angular contact ball bearing.

Let us assume that the outer race is split and that the part corresponding to the first 
row moves by an axial displacement ua along the bearing axis, and that the part 
corresponding to the second row moves by the same axial displacement but in opposite 
direction. The weak contribution due to the axial preload, in this case, is 

Thus, we see that preload in this case works on the relative axial displacement of the 
split parts. As a result, a preload in the double row bearings is not transferred to the 
rotor on which it is mounted. Relative axial displacement between the split parts is 
determined by the balance of the preload and the roller-race contact reaction forces on 
each part. 

Radial Preload
A radial preload is applied to deep groove ball bearings and cylindrical roller bearings 
for both single and double rows. Other single row bearings on which a radial preload 

δWpre Fa e1 δ uf uae1 ur–+( )⋅( ) Fa e1 δ uf uae1– ur–( )⋅( )– 2Faδua= =
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can be applied are self-aligning ball bearings and spherical roller bearings. This type of 
preload refers to an interference fit in the bearing.

Figure 3-10: Radial preload in a single row cylindrical roller bearing.

We assume that radial deformation in the bearing is ur due to the preload. Then the 
weak contribution due to radial preload is

The radial deformation due to a preload is obtained by considering the force balance 
between the radial preload and roller-race contact reaction force. Due to symmetry, a 
radial preload is canceled out and there is no net load transferred to the rotor on which 
bearing is mounted. 

C O N S I S T E N C Y  O F  G E O M E T R I C  P A R A M E T E R S

A roller bearing model requires many geometric parameters as an input. Since, these 
parameters are specified independently during the modeling, there is a possibility that 
they are geometrically inconsistent and do not correspond to a physical bearing. A 
consistency check is implemented to provide a guideline in choosing certain 
parameters with respect to how other parameters are defined. Let us first define certain 
terms that are helpful in geometry checks.

δWpre Frδur=
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Fill angle: A fill angle ψf is the angular space occupied by the rolling elements on a 
pitch circle. 

Figure 3-11: Front view of a ball bearing

Since each rolling element has a diameter dr and there are N number of them, the arc 
length occupied on the pitch circle by the rolling elements is Ndr. Furthermore, the 
pitch circle radius is dp/2. Thus, the angular space occupied by the rollers, that is, the 
fill angle is 

Inner race conformity: Inner race conformity, fin, is the ratio of the inner race radius 
of curvature to the diameter of the rolling element. It is defined by

Outer race conformity: Outer race conformity, fout, is the ratio of the outer race radius 
of curvature to the diameter of the rolling element. It is defined by

For a physical bearing, the fill angle cannot be larger than 2π radians. This gives a 
constraint on the diameter of the roller in relation to the pitch diameter as

Usually the fill angle is much smaller than 2π due to the space occupied by the cage.

ψf
Ndr
dp 2⁄( )
------------------

2Ndr
dp
--------------= =

fin
rin
dr
-------=

fout
rout
dr
----------=

dr
πdp
N
----------≤
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For point contact bearings, another constraint comes from the fact that the rolling 
elements have to fit between the inner race and the grooves of the outer race. As a 
result, the race radius of curvatures should be larger than the radius of the rolling 
elements. This means that the race conformity should be larger than 0.5 for both races.

For a tapered roller bearing another geometric constraint is that the flange contact 
angle, μ0, should be less than the roller cap angle, λ.

If these conditions are violated for any bearing, an error message is thrown with 
relevant information to identify the parameter causing the problem.

Active Magnetic Bearing

An active magnetic bearing is used to control vibrations in a rotor by using a feedback 
control mechanism. The rotor motion is monitored by a displacement sensor located 
very close to the location of the bearing. A schematic representation of the active 
magnetic bearing system is shown in Figure 3-12:

Figure 3-12: Sketch of an active magnetic bearing system.

There is a wide variety of control mechanisms that can be used, but here we focus on 
a PID controller. The coil current for such a controller is given by

where us is the displacement measured from the sensor and Kp, Ki, and Kd are the 
proportional, integral, and derivative gain of the controller, respectively. 

The air gap forces between the stator and rotor pole pair is given by

ic Kpus Ki us td Kdu·s+ + 
 –=

F
B2Aproj

2μ0
---------------------=
B E A R I N G S  A N D  F O U N D A T I O N S  |  103



104 |  C H A P T E
where B is the magnetic flux density, Aproj is the projected pole area, and μ0 is the 
permeability of free space. Assuming that the magnetic resistance of air is much larger 
than that of the poles, we can use Ampere’s law to write the magnetic flux density in 
the air gap as

where N is the number of turns per pole, h is the air gap, and I is the current of the 
coil. Using this, the air gap force can be written as

This shows that magnetic force in the bearing is proportional to the square of the 
current, which is undesirable for the control purpose. To overcome this difficulty, a 
pair of opposing electromagnets are used with an equal but opposite bias force. In this 
case the net force on the rotor will be

where I1 and h1 are the coil current and air gap in one electromagnetic, and I2 and h2 
are the coil current and air gap in the opposing electromagnet. Now if I1 and I2 are 
composed of a steady bias current Ib and a control current Ic, we get

Then the air gap force can be written as

for h1 = h2 = h0. This expression is now linear with respect Ic. In general, the air gap 
on both sides will not be equal. As the rotor moves by the distance us, the gaps change 
so that h1 = h0−us and h2 = h0+us. As a result, the expression for the air gap force, in 
general, is
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In the above expression, a different bias current is assumed in the two opposite 
electromagnets. The force constant in the expression is also generalized to Fc. In 
general, the air gap force is a nonlinear function of current and displacement, which is 
suitable for a time-dependent analysis. For frequency-domain and eigenfrequency 
analyses, a linearized expression for the air gap force is more suitable. If we assume that 
us<< h0 and Ic << Ib, then the above expression can be approximated as

where F0 is the static force produced due to the difference in bias current on positive 
and negative axes. It is given by

Thus, the difference in the bias current can be used to levitate the rotor against the 
static load such as the weight of the rotor. The bearing stiffness ki due to the current 
is given by

and the bearing stiffness ku due to displacement is given by

Note that the displacement stiffness is negative, thus the bearing is inherently unstable 
without a control current. For a stationary analysis, a PID controller reduces to a 
proportional controller. As a result, the control current is given as Ic = −Kpus. In this 
case, the expression for the air gap force reduces to

Thus, to make the bearing stable (that is, to have a positive effective stiffness), the 
proportional gain should satisfy the following condition
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For a frequency-domain analysis, a control current can be expressed in terms of 
displacement and frequency as

Using this expression for the control current in the linearized expression for the air gap 
force and dropping the static force term, we get

The coefficient in front of us can be considered as the effective impedance of the 
electromagnetic bearing.

Fixed Foundation

The purpose of the Fixed Foundation is to approximately model a case in which the 
foundation is very stiff as compared to the rotor itself. Therefore, the foundation is 
assumed to be static in this case and

Moving Foundation

The purpose of the Moving Foundation node is to model a ground vibration effect on 
the rotor. Here, the motion of the foundation uf and θf is already known, either 
through some experimental observation or through simulation. The linearized 
displacement field of the foundation is given by

Note that this does not affect the eigenfrequencies of the rotordynamic system. 
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Flexible Foundation

The purpose of the Flexible Foundation node is to model the effect of the flexibility of 
the foundation on which the bearing is mounted. In this case, the motion of the 
foundation is not known a priori, rather it is solved for. Here, the inputs are the 
stiffnesses, ku and kθ, and the damping constants, cu and cθ. If the coupling between 
the foundation’s translational and rotational motion is considered, the inputs kuθ, kθu, 
cuθ, and cθu are also needed. The contribution to the virtual work is:

The displacement field of the foundation is given by

Note that in this case, the foundation properties affect the natural frequencies of the 
rotor system.

Squeeze Film Damper

The purpose of the Squeeze Film Damper node is to model the additional damping 
provided to the bearing through a squeezing action in the fluid film. Damping is 
modeled in terms of effective damping coefficients based on the analytical solution of 
the Reynolds equation in the film for a short length approximation. These coefficients 
are functions of damper dimensions, lubricant properties and the location of the 
journal in the damper as given below:
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Here, μ is the viscosity of the lubricant, R is the radius of the journal, L is the length 
of the journal, and C is the clearance between the journal and damper when the journal 
is concentric with the damper. Subscripts 2 and 3 refer to local y and z directions, 
respectively. u2 and u3 are the journal displacements in the local y and z directions, 
respectively.  is the eccentricity of the journal in the damper. ε is the 
relative eccentricity with respect to the initial clearance between the journal and the 
damper, ε = e/C.

The components of the damper force on the journal in local directions is given by

The damping coefficients given above will however become singular when the journal 
center coincides with damper center since e appears in the denominator of several 
expressions. The limiting values are:

To avoid the singularity, these values are used while performing eigenfrequency and 
frequency-domain analyses.
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Mu l t i - S p oo l  B e a r i n g

Multi-spool bearings are intershaft bearings connecting coaxial rotors running at 
different speeds. 

Figure 3-13: Multi-spool bearing

A connection between the rotors is established by adding a spring-damper system with 
equivalent stiffness and damping coefficients between the corresponding surfaces on 
both the shafts. Usually the radial deformation in the shafts is not significant when 
compared to the overall lateral displacement. Therefore, only average lateral 
displacements and average tilting rotations in local directions are used for formulating 
the connection.

Displacement and Rotations in Solid Rotor

Bearing coefficients are specified in space-fixed directions, which are local to the 
bearing. Because the Solid Rotor interface is formulated in a co-rotating frame, the 
displacements are observed from a rotating frame. This displacement field should be 
transformed to a space-fixed frame before evaluating the average displacement and 
tilting of the connected boundaries. Let u1,r and u2,r be the displacement fields of the 
rotors in their respective co-rotating frames. The space-fixed displacement field can be 
obtained as:

where R is the rotation matrix corresponding to the axial rotation and θ1 and θ2 are 
the corresponding axial rotations of the rotor. 

Average displacement and rotations of the connected surface can be obtained as:

u1 R θ1( )u1 r,=

u2 R θ2( )u2 r,=
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where rc is the center of the connected boundaries and

Intershaft Connection

Connections can be either rigid or flexible. The rigid case is an idealized model where 
the bearing stiffness is much larger than the stiffness of the connected shafts. In the 
flexible case, the displacements and rotations of both shafts are connected through an 
equivalent spring and damper.

R I G I D  C O N N E C T I O N

For a rigid connection, a constraint is added to make the lateral displacement and 
tilting rotations of the both shafts equal. In the presence of misalignment in the 
bearing, these constraints should accommodate the misalignment too.

uc

u Sd
∂Ω


Sd
∂Ω

------------------=

θc

r rc–( ) u uc–( )× Sd
∂Ω


r rc–( ) r rc–( ) Sd⋅
∂Ω

-------------------------------------------------------------=

r rc– R Ω( ) X Xc–( )=

The Beam Rotor interface is modeled in a space-fixed frame. Therefore, 
there is no need to do any transformation to get the displacement in a 
space-fixed frame. Also, both displacements and rotations are degrees of 
freedom in the Beam Rotor interface. These are directly used for 
connecting the respective points.

u2 1, u2 2, u2 0,+=

u3 1, u3 2, u3 0,+=

θ2 1, θ2 2, θ2 0,+=

θ3 1, θ3 2, θ3 0,+=
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The first subscript refers to the local y or z components, and the second subscript refers 
to shafts or misalignment. 1 and 2 refers to the shafts, and 0 refers to the misalignment.

F L E X I B L E  C O N N E C T I O N

For the flexible case, spring-damper forces and moments proportional to the 
corresponding relative motion between the shaft are added:

and

Here
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Misalignment values can be specified in the Misalignment node under 
Multi-Spool Bearing.
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L i q u i d  Annu l a r  S e a l

The flow of a lubricant in a seal annulus induces radial forces opposing the motion the 
rotor. In addition, due to axial variation of the swirl flow velocity, there are also 
cross-coupled forces acting on the rotor. The first type of forces always has a stabilizing 
effect on the rotor, whereas the second type of forces can have a destabilizing effect in 
certain conditions.

Childs obtained expressions for the dynamic coefficient for an unsteady turbulent flow 
in a liquid annular seal by considering a classical Reynolds-type equation used in 
thin-film flow by relating turbulent shear stresses to the averaged velocities in the gap.

The local force components acting on the rotor due to the seal are commonly 
described in terms of dynamic coefficients in the following way:

Here, Kd and Cd are the direct stiffness and damping coefficients for the seal, 
respectively. Similarly, kc and cc are cross-coupled stiffness and damping coefficients for 
the seal. md  is the effective mass of the seal. These coefficients are functions of the 
flow as well as geometric properties of the seal. The commonly used models describing 
these dependencies are by Black and Jenssen, and by Childs. The Black and Jenssen 
model uses a constant inlet swirl ratio of 0.5, whereas in the Childs model the inlet 
swirl ratio can be varied. The inlet swirl ratio, α, is defined as the ratio of 
circumferential velocity of the flow to circumferential velocity of the rotor at a distance 
R from the center:

Here, uc is the circumferential velocity of the flow at the seal’s inlet, and Ω is the 
angular speed of the rotor. R is the radius of the seal. 

A fundamental relationship describing the axial pressure drop in the seal and mean axial 
flow velocity is described by
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where ΔP is axial pressure drop, V is axial flow velocity, ξ is entrance loss factor, σ is 
scaled friction factor given by λL/C. L is the seal length, and C is the seal clearance.

Since σ is a nonlinear function of the mean axial flow velocity (described below for 
different seal models), the pressure drop and the axial flow velocity relation need to be 
solved iteratively to determine the axial flow velocity for a given pressure drop across 
the seal.

In the following sections, the seal dynamic coefficients are described for the different 
seal models.

Black and Jenssen Model

The dynamic coefficients for the Black and Jenssen model are given by

where

Factors f0, f1 and f2 in the above expressions are the correction factors multiplied in 
the short seal expressions to correct for the finite length of the seal. These factors are 
given by
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The friction loss factor, λ, is defined as

Ra and Rc are axial and circumferential Reynolds numbers, respectively, and are given 
by

The time scale, T, is given by

and

Childs Model

The Childs model is based on Hirs' lubrication equation that includes the effect of 
fluid inertia in the momentum equation. Expressions are obtained for a short seal 
theory. The dynamic coefficients for this model are given by
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where

The friction loss factor, λ, in this model is defined as

The axial and circumferential Reynolds numbers are defined as
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and b is the ratio of axial to circumferential Reynolds numbers. Other variables in the 
dynamic coefficient expressions are defined as
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Ro t o r  C oup l i n g

Coupling members are used for connecting rotors in long rotor assemblies. One such 
example is a spline coupling. This coupling connects the displacements of the rotors 
while providing the freedom to tilt relative to each other. Another example is a 
torsional coupling where the coupling has certain stiffness for the relative axial 
rotation of the connected rotors while keeping the displacement and tilting of the 
rotors rigidly connected. In general, a coupling will have some combination of allowed 
and restricted relative motions across the two rotors. Connection between the 
different degrees of freedom for various types of couplings are described in the 
following sections.

Spline Coupling

In a spline coupling, displacements and axial rotation of the rotors are rigidly 
connected whereas rotors are free to tilt relative to each other.

If a Rotor Coupling is applied to an interior boundary, the degrees of freedom in the 
rotor are slit and then connected using the following constraint:

Here, uu and ud are the displacements on both sides of the interior boundary. u0 is 
the parallel misalignment in the coupling. θ1u and θ1d are the axial rotations of the 
rotors on both sides of the interior boundary.

On an exterior boundary, there is no rotor present on the other side. Therefore, 
displacement and tilt rotations are free for this coupling type, while the axial rotation 
is fixed:

Here, θ1 is the axial rotation of the rotor on the selected boundary.

Torsional Coupling

A torsional coupling offers a torsional stiffness between the two rotors. Other degrees 
of freedom — displacement and tilting rotations — of both rotors are rigidly 

uu ud u0+=

θ1u θ1d=

θ1 0=
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connected. On an interior boundary, the following constraints and torsional moments 
are applied:

Here, θ2u and θ3u are the bending rotations on one side of the interior boundary and 
θ2d and θ3d are the rotations on the other side. Subscripts 2 and 3 denote the local y 
and z direction components of the bending rotation. θ0y and θ0z are the angular 
misalignment values in the local y and z directions, respectively.

On an exterior boundary, displacements and tilt rotations are free. A torsional moment 
given by

acts on this boundary.

User Defined

A general connection between the two rotors can be established using the User defined 
option. The degrees of freedom are split into three types: displacement, bending 
rotation, and axial rotation. Each type of degree of freedom can be rigidly or flexibly 
connected. In the rigid case, a constraint is applied across the degrees of freedom on 
both rotors. In the flexible case, a force (moment) proportional to the degree of 
freedom is applied. The following sections describe the corresponding constraints and 
forces (moments) for various types of connections.

D I S P L A C E M E N T  C O N N E C T I O N

For a rigid connection, the following constraints are applied on the interior boundary:

On the exterior boundary, the constraint is:

If the connection is flexible, the force acts on the relative translation of the two rotors 
on the interior boundary:

uu ud u0+=

θ2u θ2d θ0y+=

θ3u θ3d θ0z+=

ΔT1 kθ ax, θ1u θ1d–( )–=

T1 kθ ax, θ1–=

uu ud u0+=

u u0=
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Note that the relative motion is offset by the misalignment value, if any. Thus, the 
misalignment acts like a predeformation in the spring. 

On an exterior boundary, the force is given by

A X I A L  R O T A T I O N  C O N N E C T I O N

On an interior boundary, the following constraints are applied for a rigid case:

On an exterior boundary, the constraint changes to

For a flexible connection on the interior boundary, the following torsional moment is 
applied on the relative axial rotation:

On an exterior boundary it is

B E N D I N G  R O T A T I O N  C O N N E C T I O N

For a rigid connection, the following constraints are applied on an interior boundary:

On an exterior boundary, the constraints are changed to

In the case of a flexible connection, the following moments act on an interior 
boundary on the relative tilting motion of the two rotors:

ΔF ku uu ud– u0–( )–=

F ku u u0–( )–=

θ1u θ1d=

θ1 0=

ΔT1 kθ ax, θ1u θ1d–( )–=

T1 k– θ ax, θ1=

θ2u θ2d θ0y–=

θ3u θ3d θ0z–=

θ2 θ0y=

θ3 θ0z=
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On an exterior boundary, the moments are

.

ΔMb2

ΔMb3

kθ22 kθ23

kθ32 kθ33

–
θ2u θ2d– θ0y–

θ3u θ3d– θ0z–
=

Mb2

Mb3

kθ22 kθ23

kθ32 kθ33

–
θ2

θ3

=

Misalignment values can be specified from the Misalignment feature, 
available as a subnode for Rotor Coupling.
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M i s a l i g nmen t

Misalignment in the bearings and rotor couplings can occur due as an effect of 
improper mounting. Misalignment often results in metal to metal contact in the 
bearing components with high contact forces. This gives rise to noise and high 
temperatures in the bearing. The misalignment is broadly classified in the following 
categories:

• Parallel misalignment: The axes of the bearings are parallel to each other but the 
bearing centers are offset in the lateral direction (see Figure 3-14).

• Angular misalignment: The axes of the bearings are not perfectly parallel. Rather, 
they are slightly inclined relative to each other (see Figure 3-15). Bearing centers are 
still aligned in the direction of the rotor axis.

• A combination of the above two.

Figure 3-14: Parallel misalignment

Figure 3-15: Angular misalignment

Misalignment modeling for the different types of bearings is explained in the following 
sections.

Journal and Thrust Bearings

Misalignment in journal and thrust bearings acts as preload on the rotor and has a 
similar effect as predeformation in springs. Therefore, modeling of the misalignment 
requires adjustment of the relative motion between the journal and the foundation 
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motion. Let ur and uf be the journal and foundation displacements at the bearing 
center, and θr and θf be the tilt angles of the rotor and foundation. For a parallel 
misalignment u0, the relative displacement between the journal and foundation is 
given by

For an angular misalignment θ0, the relative angular displacement between the journal 
and foundation is

The spring and damping forces are then functions of these relative displacements, 
rotations and their derivatives.

Radial Roller Bearing

The roller deformation in the roller bearings is determined by the relative motion of 
the shaft and the outer races at the roller location. When the bearing has misalignment, 
this relative motion needs to be adjusted for the parallel misalignment u0 and angular 
misalignment θ0 to calculate the actual roller deformation. Let the displacement of the 
inner race at its center be ui and its tilt θi, and the displacement of the outer race at its 
center be uo with tilt θo. Then, the net relative motion of the inner and outer races 
including the effect of misalignment can be written as:

Here, rrc is the position of the roller center relative to the center of the bearing. The 
roller force is a function of the roller deformation, which in case of misalignment is 
given by the above expression.

Δu ur uf– u0–=

Δθ θr θf– θ0–=

For details about the bearing forces, see the theory for the Journal 
Bearing and Thrust Bearing.

Δu ui uo– u0–( ) θi θo– θ0–( ) rrc×+=

For details about the roller deformation and roller force computation, see 
the theory for the Radial Roller Bearing.
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Rotor Coupling

The behavior of the misalignment in the rotor coupling is similar to that described for 
the Journal and Thrust Bearings above. As opposed to the bearings where the relative 
motion is between the journal (collar) and the foundation, the relative motion is 
between the two rotors in this case.

Multi-Spool Bearing

Misalignment in multi-spool bearings acts as a preload between the rotors and has a 
similar effect as predeformation in springs. Therefore, modeling misalignment requires 
adjustment of the relative motion between the shafts. Let u1 and u2 be the 
displacements of the shafts at the bearing center, and θ1 and θ2 be the corresponding 
tilt angles. For a parallel misalignment u0, the relative displacement between the shafts 
is given by

For an angular misalignment θ0, the relative angular displacement between the shafts is

The spring and damping forces are then functions of these relative displacements, 
rotations and their derivatives.

For details about the coupling forces and moments, see the theory for the 
Rotor Coupling.

Δu u1 u2– u0–=

Δθ θ1 θ2– θ0–=

For details about the forces and moments, see the theory for the 
Multi-Spool Bearing.
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I d e n t i f i c a t i o n  o f  Wh i r l

When the deformation of the rotor is observed in a corotating frame, the computed 
eigenfrequencies must be shifted to obtain the correct eigenfrequency from the 
analysis. This can be shown with the following consideration. Let u2r and u3r be the 
components of the displacement vector in lateral directions 2 and 3 of the rotor. The 
axis of the rotor is chosen as direction 1. Then, the harmonic response of these 
displacements can be represented as

The components of the displacements observed in the spatial frame can be written as

where Ω is the angular velocity of the rotor. After simplification, these components are

and

In the complex plane, the lateral displacement can be represented as ul = u2+iu3. After 
substitution, this becomes

u2r u2r
c ωtcos u2r

s ωtsin+=

u3r u3r
c ωtcos u3r

s ωtsin+=

u2

u3

Ωtcos Ωtsin–

Ωtsin Ωtcos

u2r

u3r

=

u2
u2r

c u3r
s

+

2
------------------------ Ω ω+( )tcos

u2r
c u3r

s
–

2
----------------------- Ω ω–( )tcos+ +=

u2r
s u3r

c
–

2
----------------------- Ω ω+( )tsin

u2r
s u3r

c
+

2
------------------------ Ω ω–( )tsin–

u3
u3r

c u2r
s

–

2
----------------------- Ω ω+( )tcos

u2r
s u3r

c
+

2
------------------------ Ω ω–( )tcos+ +=

u2r
c u3r

s
+
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u2r
c u3r

s
–

2
----------------------- Ω ω–( )tsin+
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 (3-19)

The motion is defined as forward whirl if it whirls in the rotor spinning direction, and 
as backward whirl if it whirls opposite to the rotor spinning direction. Therefore, the 
first term in Equation 3-19 corresponds to the forward whirl and the second term 
corresponds to the backward whirl. The lateral displacement can then be represented 
in terms of forward and backward components in the following way:

with

A solution from an eigenfrequency analysis is represented as

The real part is then

Therefore,

Hence, the forward and backward components can be expressed as

ul
1
2
--- u2r

c u3r
s

+( ) i u3r
c u2r

s
–( )+{ }ei Ω ω+( )t

+=

1
2
--- u2r

c u3r
s

–( ) i u3r
c u2r

s
+( )+{ }ei Ω ω–( )t

ul ufe
i Ω ω+( )t ubei Ω ω–( )t

+=

uf
1
2
--- u2r

c u3r
s

+( ) i u3r
c u2r

s
–( )+{ }=

ub
1
2
--- u2r

c u3r
s

–( ) i u3r
c u2r

s
+( )+{ }=

u uR iuI+( )eiωt
=

ℜ u( ) uR ωtcos uI ωtsin–=

uc uR=

us uI–=

uf
1
2
--- u2r R, u3r I,–( ) i u3r R, u2r I,+( )+{ }=

ub
1
2
--- u2r R, u3r I,+( ) i u3r R, u2r I,–( )+{ }=
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The lateral displacement in the complex plane can also be written as

 (3-20)

with

Equation 3-20 shows that the orbit of the rotor consists of the summation of two 
rotating vectors: one is a forward circular motion with an amplitude |uf|, and the other 
is a backward circular motion with an amplitude |ub|. When the forward amplitude is 
greater than the backward amplitude, the overall motion is forward. When the forward 
amplitude is smaller than the backward amplitude, the overall motion is backward. 
When both amplitudes are equal, the motion degenerates to a straight line. To 
summarize, you can classify the whirl based on the following criteria:

• |uf| = 0: Backward circular planar motion

• |ub| = 0: Forward circular planar motion

• |ub| > |uf|: Backward elliptic planar motion

• |ub| = |uf|: Straight line motion

• |ub| < |uf|: Forward elliptical planar motion

Quantification of this information can be done conveniently by defining a shape and 
directivity index in the following way:

As a result,

ul uf e
i Ω ω+( )t φf+{ }

ub e
i Ω ω–( )t φb+{ }

+=

uf
1
2
--- u2r R, u3r I,–( )2 u3r R, u2r I,+( )2

+=

ub
1
2
--- u2r R, u3r I,+( )2 u3r R, u2r I,–( )2

+= 
 

φf
u3r R, u2r I,+

u2r R, u3r I,–
---------------------------------- 
 atan=

φb
u3r R, u2r I,–

u2r R, u3r I,+
---------------------------------- 
 atan=

isd
uf ub–

uf ub+
------------------------=

1 isd 1≤ ≤–
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You can then classify the whirl using the following criteria:

• isd = −1: Backward circular planar motion

•  −1 < isd < 0: Backward elliptical planar motion

• isd = 0: Straight line motion

• 0 < isd < 1: Forward elliptical planar motion

• isd = 1: Forward circular planar motion

Usually, the entire rotor has either forward or backward whirl. However, it is also 
possible that the complete rotor can have mixed whirling, meaning the rotor can 
undergo forward and backward whirl simultaneously at different sections. Mixed 
whirling sometimes occurs in long flexible rotors supported by fluid film bearings.
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Add ed Ma s s

The Added Mass node adds the equations for the inertial effects of components that 
are not explicitly modeled in the rotor system. It is assumed that these components are 
mounted on the rotor and therefore rotate with it. Inertial properties in the Added Mass 
node are thus assumed to be specified in the rotating frame. Also, the flexibility of these 
components is much smaller than that in the rotor. Therefore, these components can 
be treated as rigid bodies. Added mass can exist on domains and boundaries. The 
inertia force in Solid Rotor due to added mass in the corotating frame can, by using 
Equation 3-4, be written as

where M is the mass distribution matrix. For added mass on a boundary, the 
contribution to the virtual work is

Similarly, for the Solid Rotor, Fixed Frame interface the additional frame contribution 
to the virtual work is

where fm = -maf and

for an elastic domain and

for a rigid domain.

fm M RT∂2χ X t,( )
∂t2

------------------------
 
 
 

⋅– M ar⋅–= =

δW fm δur⋅( ) Ad
A
=

δW fm δu⋅( ) Ad
A
=

af FRW
·

xR 2F
·

RWxR FRWxRR∇( )WxR FRW2xR+ + +=

af 2WrigRrigW RrigW
·

RrigW2
+ +( ) xR Xbp–( )=
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Ene r g y  Quan t i t i e s

There are several energy quantities computed in the Solid Rotor and Beam Rotor 
interfaces. This section contains a summary of these quantities and how they are 
computed in different situations.

Elastic Energy

Elastic energy expressions for the Solid Rotor and Beam Rotor interfaces are similar to 
the Solid Mechanics and Beam interfaces in the Structural Mechanics Module. For 
details on the elastic energy, see the Structural Mechanics Module User’s Guide. 

In the Beam Rotor interface, the strain energy density is split into membrane, bending, 
and shear parts, which are then summed into a total strain energy density.

The strain energy density for all elastic domains is integrated to give a total elastic strain 
energy, which contains all elastic energy stored in each physics interface.

Kinetic Energy

For a time-dependent study, kinetic energy is defined as

where ρ is the mass density, and v is the velocity defined as

Using Equation 3-3, the kinetic energy can be expressed as

where xr = X + ur - Xbp.

In frequency-domain, the kinetic energy is defined as
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which represents the cycle average.

Wk
1
4
---ρ Ω2 ur

2 Ωr ur⋅( )2
– ω2 ur

2
+[ ]=

• Energy Quantities in the Structural Mechanics Module Users’ Guide.
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Gea r  Th eo r y

In this section:

• Spur Gear Theory

• Helical Gear Theory

• Bevel Gear Theory

Spur Gear Theory

The Spur Gear is defined as a rigid body. A finite stiffness for the gear mesh (or gear 
tooth) can be specified in the Gear Pair node while connecting to other gears. Similar 
to the rigid domain, the spur gear is a material model, which is mutually exclusive to 
all other material models. The only material property needed is the mass density.

Figure 3-16: Sketch of an external spur gear., showing the tooth cross section and various 
parameters, such as center of rotation, gear axis, pitch radius, and pressure angle.
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Figure 3-17: ketch of an internal spur gear, showing the tooth cross section and various 
parameters such as center of rotation, gear axis, pitch radius, and pressure angle.

C O N N E C T I O N  T O  O T H E R  G E A R S

A spur gear can be connected to another Spur Gear or a Helical Gear through the Gear 
Pair node. A single gear can be connected to one or more gears.

M O U N T I N G  M E T H O D S

The motion of a spur gear can be constrained directly using its subnode. Alternatively, 
it can be mounted on a shaft.

C E N T E R  O F  R O T A T I O N

Gears are defined through rigid body degrees of freedom. These degrees of freedom 
are created at the center of rotation and the rotation is interpreted about this point. By 
default, the center of rotation is set to the center of mass, but there are other ways to 
define it explicitly. This is the point where you interpret the forces and moment that 
act on the gear due to meshing with other gears.

G E A R  A X I S

The gear axis is the axis of rotation of the gear that passes through the center of 
rotation. This axis is used to create the gear’s local coordinate system in the Gear Pair 
node. The gear rotation, a degree of freedom in the Gear Pair node, is also interpreted 
about this axis.

For details about the theory of a rigid body, see the Rigid Domain Model 
section in the Structural Mechanics Module User’s Guide.
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G E A R  P R O P E R T I E S

The following quantities are required to define a spur gear:

• Number of teeth (n)

• Pitch diameter (dp)

• Pressure angle (α)

The transverse module of the gear is defined as:

The normal module of the gear is defined as:

Helical Gear Theory

The Helical Gear model is defined as a rigid body. A finite stiffness for the gear mesh 
(or gear tooth) can be specified in the Gear Pair node while connecting to other gears. 
Similar to the rigid domain, the helical gear is a material model, which is mutually 
exclusive to all other material models. The only material property needed is the mass 
density.

Figure 3-18: Sketch of an external helical gear, showing the tooth cross section and various 
parameters such as center of rotation, gear axis, pitch radius, pressure angle, and helix 
angle.

mt
dp
n
------=

mn mt=
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Figure 3-19: Sketch of an internal helical gear, showing the tooth cross section and various 
parameters such as center of rotation, gear axis, pitch radius, pressure angle, and helix 
angle.

G E A R  P R O P E R T I E S

The additional parameter helix angle (β) is required to define a helical gear. The 
positive helix angle is interpreted as right-handed and the negative helix angle is 
interpreted as left handed.

The normal module of the gear is defined as:

Bevel Gear Theory

The Bevel Gear model is defined as a rigid body. A finite stiffness for the gear mesh (or 
gear tooth) can be specified in the Gear Pair node while connecting to other gears. 
Similar to the rigid domain, the bevel gear is a material model, which is mutually 

For details about the theory of a rigid body, see the Rigid Domain Model 
section in the Structural Mechanics Module User’s Guide.

The following section is an addition to the Spur Gear Theory section, 
which is also applicable for the helical gear.

mn mt βcos=
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exclusive to all other material models. The only material property needed is the mass 
density.

Figure 3-20: Sketch of a bevel gear, showing the gear cross section and various parameters 
such as center of rotation, gear axis, pitch diameter, and cone angle.

C O N N E C T I O N  T O  O T H E R  G E A R S

A bevel gear can be connected to another Bevel Gear through the Gear Pair node. A 
single gear can be connected to one or more gears.

G E A R  P R O P E R T I E S

The additional parameter cone angle (γ) is required to define a bevel gear. The positive 
cone angle results in a decrease in diameter along the gear axis.

For details about the theory of a rigid body, see the Rigid Domain Model 
section in the Structural Mechanics Module User’s Guide.

The following section is an addition to the Spur Gear Theory section, 
some of which is also applicable for the bevel gear.
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Gea r  Pa i r  T h e o r y

In this section:

Theory for Gear Pairs

The Gear Pair node connects two spur gears, helical gears, or bevel gears in such a way 
that at the contact point, they have no relative motion along the line of action. The 
remaining displacements and rotations of both gears are independent of each other.

In case of a line contact model, one additional constraint is added to restrict the relative 
rotation about a line joining the two gear centers. When friction is included for a gear 
pair, frictional forces in the plane perpendicular to the line of action are added on both 
the gears.

Figure 3-21: Sketch of a gear pair where the line of action is computed by the clockwise 
rotation of the tangent. 

• Theory for Gear Pairs

• Theory for Gear Elasticity

• Theory for Transmission Error

• Theory for Backlash

• Theory for Gear Friction
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The degrees of freedom at the gear pair are θwh and θpn. They are defined as the 
rotation of the wheel and pinion about the first axis of their respective local coordinate 
system.

Figure 3-22: Sketch of a gear pair where the line of action is computed by the 
counterclockwise rotation of the tangent.

The rest of this section discusses the following topics:

G E A R  P A I R  C O M P A T I B I L I T Y  C R I T E R I A

In a Gear Pair node, you can select any two gears defined for the model. However, for 
the correct tooth meshing, a set of gears must fulfill the compatibility criteria.

Normal Module
The normal module of both gears must be the same.

Pressure Angle
The pressure angle of both gears must be the same.

• Gear Pair Compatibility Criteria

• Gear Local Coordinate System

• Gear Tooth Coordinate System

• Line of Action

• Gear Ratio

• Contact Point Position and Offset

• Gear Pair Constraints

• Contact Forces and Moments

mn wh, mn pn,=

αwh αpn=
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Configuration
For parallel axis helical gears, the sum of the helix angles must be zero.

For crossed axis helical gears, the sum of the helix angle must be nonzero.

G E A R  L O C A L  C O O R D I N A T E  S Y S T E M

The local coordinate system for each gear is created using the gear axis and the center 
of rotation of both gears. This local coordinate system is attached to the gear; however, 
it does not rotate with the gear local rotation.

Initial Local Coordinate System
The first axis for the wheel ( ) and pinion ( ) is an input on the respective 
nodes. In 2D, it is assumed to be the out-of-plane direction.

For a parallel or intersecting configuration, the second axis is defined as:

where xc,wh and xc,pn are the center of rotation of the wheel and pinion, respectively.

For a configuration that is neither parallel nor intersecting, the second axis is defined 
as:

In 2D:

βwh βpn+ 0=

βwh βpn 0≠+

e10 wh, e10 pn,

e20 wh, e0 cd, e0 cd, e10 wh,⋅( )e10 wh,–=

e20 pn, e0 cd, e0 cd, e10 pn,⋅( )e10 pn,–( )–=

e0 cd,
xc pn, xc wh,–

xc pn, xc wh,–
----------------------------------------=

e20 wh, e20 e20 e0 cd,⋅( )sgn=

e20 pn, e– 20 wh,=

e20 e10 wh, e10 pn,×=

e20 wh, e0 cd,=

e20 pn, e– 0 cd,=
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The third axis is defined as follows:

Local Coordinate System
The first axis is defined as follows:

The second axis is defined as follows:

The third axis is defined as follows:

where Rwh and Rpn are the rotation matrices of the wheel and the pinion, respectively. 
The angles θwh and θpn are the rotations of the wheel and pinion about the first axis 
of their respective local coordinate system.

G E A R  T O O T H  C O O R D I N A T E  S Y S T E M

The gear tooth coordinate system is defined by rotating the gear local coordinate 
system with the helix angle and cone angle.

where Twh and Tpn are the tooth transformation matrix for the wheel and pinion, 
respectively.

The gear-to-tooth transformation matrix is defined as:

e30 wh, e10 wh, e20 wh,×=

e30 pn, e10 pn, e20 pn,×=

e1 wh, Rwh e10 wh,⋅=

e1 pn, Rpn e10 pn,⋅=

e2 wh, Rwh e20 wh,⋅( ) θwhcos Rwh e30 wh,⋅( ) θwhsin–=

e2 pn, Rpn e20 pn,⋅( ) θpncos Rpn e30 pn,⋅( ) θpnsin–=

e2 wh, Rwh e20 wh,⋅( ) θwhsin Rwh e30 wh,⋅( ) θwhcos+=

e2 pn, Rpn e20 pn,⋅( ) θpnsin Rpn e30 pn,⋅( ) θpncos+=

eit wh, Twh
T ei wh, i⋅ 1 2 3, ,= =

eit pn, Tpn
T ei pn, i⋅ 1 2 3, ,= =
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L I N E  O F  A C T I O N

The line of action is the normal direction of the gear tooth surface at the contact point 
on the pitch circle. This is the direction along which the motion is transferred from 
one gear to another gear. It is defined by rotating the third axis of the tooth coordinate 
system (e3t) about the first axis of the tooth coordinate system (e1t) with the pressure 
angle (α). 

The line of action, also known as the pressure angle direction, is defined as follows:

For clockwise rotation of the third axis:

For counterclockwise rotation of the third axis:

G E A R  R A T I O

The gear ratio (gr) of a gear pair is defined as the ratio of angular velocities of the wheel 
(ωwh) and the pinion (ωpn):

It can also be written as the ratio of number of teeth of the pinion (npn) and the wheel 
(nwh):

T
γ βcoscos γsin– γ βsincos
γ βcossin γcos γ βsinsin

βsin– 0 βcos

=

For the pinion tooth coordinate system, the sign of the second axis 
(e2t,pn) and third axis (e3t,pn) are reversed to match the directions with 
the wheel tooth coordinate system.

epa e2t wh, α e2t wh, αcos+sin=

epa e– 2t wh, α e2t wh, αcos+sin=

gr
ωwh
ωpn
-----------=

gr
npn
nwh
----------=
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C O N T A C T  P O I N T  P O S I T I O N  A N D  O F F S E T

Contact Point Position
The point of contact (xcp) on a gear in its local coordinate system can be defined as:

where, for the wheel and pinion, respectively:

• xcp,wh and xcp,pn are the positions of the contact points

• xc,wh and xc,pn are the centers of rotation

• uwh and upn are the displacement vectors at the center of rotation

• zwh and zpn are the contact point offsets from the center of rotation in the axial 
direction

• rwh and rpn are the pitch radii

• γwh and γpn are the cone angles

Contact Point Offset
The contact point offset from the wheel or pinion center of rotation in the axial 
direction is defined as follows:

For a parallel or intersecting configuration, the contact point offset from the pinion 
center (zpn) is the input. The contact point offset from the wheel center (zwh) is 
defined as:

For a configuration that is neither parallel nor intersecting, the contact point offset 
from the pinion center (zpn) and the contact point offset from the wheel center (zwh) 
are defined as:

where

xcp wh, xc wh, uwh zwhe1 wh, rwh zwh γwhtan–( )e2 wh,+ + +=

xcp pn, xc pn, upn zpne1 pn, rpn zpn γpntan–( )e2 pn,+ + +=

zwh xc pn, xc wh,– zpne10 pn, rpn zpn γpntan–( )e20 pn,+ +( ) e10 wh,⋅=

zpn
xcd e10 pn,⋅( )– xcd e10 wh,⋅( )xwh pn,–

1 xwh pn,
2

–
-----------------------------------------------------------------------------------------------------=

zwh
xcd e10 wh,⋅( ) xcd e10 pn,⋅( )xwh pn,–

1 xwh pn,
2

–
------------------------------------------------------------------------------------------------=
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G E A R  P A I R  C O N S T R A I N T S

Rotation Constraint
This constraint relates the pinion rotation to the wheel rotation:

where θel, θet, and θbl are the transmission error (elasticity), transmission error (static), 
and transmission error (backlash), respectively.

By default, there is no elasticity, transmission error, or backlash in a gear pair hence all 
these transmission errors are zero.

Point Contact Constraint
At the contact point, the relative motion along the line of action must be zero. This 
can be written as:

Line Contact Constraint
In case of a line contact model, an additional constraint is added at the second contact 
point. This can be written as:

where xcp2,wh and xcp2,pn are the position of the second contact point and can be 
defined as:

xcd xc pn, xc wh,–=

xwh pn, e10 wh, e10 pn,⋅=

θpn
θwh
gr
----------– θel θet θbl+ + +=

For more details about these transmission errors, see the Theory for Gear 
Elasticity, Theory for Transmission Error, and Theory for Backlash 
sections.

xcp pn, xcp wh,–( ) epa⋅ 0=

xcp2 pn, xcp2 wh,–
wpn

2
----------θcle3 pn,– 

  epa⋅ 0=
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Here, wpn and θcl are the working width of the pinion and the relative rotation about 
centerline, respectively. By default, there is no elasticity on a gear pair hence the relative 
rotation about the centerline is zero.

Unique Triad Constraint
In case of planetary gears, there is a constraint to ensure that the local coordinate 
system of both the gears are still unique and well defined. This can be written as:

C O N T A C T  F O R C E S  A N D  M O M E N T S

Contact Force
When you compute a contact force using weak constraints, the point contact constraint 
is implemented in the weak form and the corresponding Lagrange multiplier gives the 
contact force (Fc).

Similarly, when you compute a contact force using a penalty method, the point contact 
constraint is implemented using the penalty factor and the corresponding penalty force 
gives the contact force (Fc).

For the case of a line contact model, the second contact force (Fc2) is computed by 
implementing the line contact constraint in the weak form or by using the penalty 
factor.

Contact Moment
When you compute a contact force using weak constraints, the unique triad constraint 
is implemented in the weak form and the corresponding Lagrange multiplier gives the 
moment at the contact point (Mc).

Similarly, when you compute a contact force computation using a penalty method, the 
unique triad constraint is implemented using the penalty factor and the corresponding 
penalty moment gives the moment at the contact point (Mc).

Force and Moment at Gear Centers
The forces at the gear centers are defined as:

xcp2 wh, subst xcp wh, zwh zwh
wpn

2
----------

γwhcos
γpncos

------------------+, , 
 = 

 

xcp2 pn, subst xcp pn, zpn zpn
wpn

2
----------+, , 

 =

e2t wh, e3t pn,⋅ 0=
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The moments at the gear centers are defined as:

For a line contact model, additional contributions from the contact force Fc2 are added 
to the forces and moments at the gear centers. These contributions can be defined as:

Theory for Gear Elasticity

The Gear Elasticity node can be optionally added on gear pairs. In this node, you can 
specify the elastic properties of gear mesh, such as mesh stiffness, mesh damping, and 
contact ratio. By default, the gear mesh is assumed rigid.

Figure 3-23: A sketch of a pair of teeth, showing the point of contact and the direction in 
which mesh stiffness and damping are interpreted.

Fwh F– cepa=

Fpn Fcepa=

Mwh xcp pn, xwh uwh––( ) F– cepa( )× Mc e2t wh, e× 3t pn,( )+=

Mpn xcp pn, xpn upn––( ) Fcepa( )× Mc–( ) e2t wh, e× 3t pn,( )+=

Fwh F– c2epa=

Fpn Fc2epa=

Mwh xcp2 pn, xwh uwh––( ) F– c2epa( )×=

Mpn xcp2 pn, xpn upn––( ) Fc2epa( )×=
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The rest of this section discusses the following topics:

D E G R E E S  O F  F R E E D O M

In this node, the transmission error (elasticity), θel, is a degree of freedom. This 
transmission error is added in the rotation constraint of the gear pair.

In the case of a line contact model, one more degree of freedom, θcl, is added. This is 
the relative rotation about the line joining the centers of two gears. The contribution 
of this rotation is added in the line contact constraint of the gear pair.

E L A S T I C  M O M E N T S

The elastic moment about the first axis of the tooth coordinate system and its virtual 
work contribution are defined as:

In the case of a line contact model, the elastic moment about the second axis of the 
tooth coordinate system and its virtual work contribution are defined as:

where

• kg is the mesh stiffness of the gear pair

• cg is the mesh damping of the gear pair

• rpn is the pitch radius of the pinion

• wpn is the working width of the pinion 

• Degrees of Freedom

• Elastic Moments

• Mesh Stiffness

• Mesh Damping

Mel kgθel cgθ· el+( )– epa e3 pn,⋅( )2rpn
2

=

δW Mel δθel⋅=

Mcl kgθcl cgθ· cl+( )– epa e3 pn,⋅( )2wpn
2

12
----------=

δW Mcl δθcl⋅=

The mesh damping contribution to the elastic moments will be zero in 
the case of a stationary analysis.
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M E S H  S T I F F N E S S

Tooth Stiffness of Individual Gears
The mesh stiffness of the gear pair is defined as:

where kwh and kpn are the mesh stiffness of the wheel and pinion. 

The mesh stiffness of the wheel, for different contact ratios, is defined as follows.

Contact ratio is constant and set to 1:

Figure 3-24: The graph shows the variation of the gear tooth stiffness in a mesh cycle.

The mesh stiffness of the wheel is defined as:

where

• kt,wh is the gear tooth stiffness as function of mesh cycle

• θm,wh is the mesh cycle

The mesh cycle for the wheel is defined as:

kg
kwhkpn

kwh kpn+
--------------------------=

kwh kt wh, θm wh,( )=

θm wh, mod θwh θs wh,,( )       θs wh,
2π

nwh
----------==
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Contact ratio is constant and set to 2:

Figure 3-25: The graph shows the variation of the gear tooth stiffness of the first and second 
teeth in a mesh cycle.

The mesh stiffness of the wheel is defined as:

where kt2,wh is the tooth stiffness of the second tooth. It is defined as:

Contact ratio is constant and set to 3:

Figure 3-26: The graph shows the variation of the gear tooth stiffness of the first, second, 
and third teeth in a mesh cycle.

kwh kt wh, θm wh,( ) kt2 wh,+=

kt2 wh, kt wh, θm wh,
θs wh,

2
--------------+ 

 =
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The mesh stiffness of the wheel is defined as:

where kt2,wh and kt3,wh are the tooth stiffness of the second and third teeth. 
respectively. They are defined as:

Contact ratio is varying and maximum contact ratio is set to 2:

Figure 3-27: The graph shows the variation of the gear tooth stiffness of the first and second 
teeth in a mesh cycle.

The mesh stiffness of the wheel is defined as:

where kt2f,wh and kt2b,pn are the tooth stiffness of the second forward and backward 
teeth. They are defined as: 

where ζ is the next tooth engagement position in the mesh cycle. The value of ζ must 
be in the following range:

kwh kt wh, θm wh,( ) kt2 wh, kt3 wh,++=

kt2 wh, kt wh, θm wh,
θs wh,

3
--------------+ 

 =

kt3 wh, kt wh, θm wh,
2θs wh,

3
------------------+ 

 =

kwh kt wh, θm wh,( ) kt2f wh, kt2b wh,++=

kt2f wh, θm wh, 1 ζ–( )θs wh,<( ) kt wh, θm wh, ζθs wh,+( )⋅=

kt2b wh, θm wh, ζθs wh,≥( ) kt wh, θm wh, ζθs wh,–( )⋅=
G E A R  P A I R  T H E O R Y  |  149



150 |  C H A P T E
Contact ratio is varying and maximum contact ratio is set to 3:

Figure 3-28: The graph shows the variation of the gear tooth stiffness of the first, second, 
and third teeth in a mesh cycle.

The mesh stiffness of the wheel is defined as:

where 

• kt2f,wh and kt2b,pn are the tooth stiffness of the second forward and backward teeth.

• kt3f,wh and kt3b,pn are the tooth stiffness of the third forward and backward teeth.

The value of ζ must be in the following range:

Total Stiffness of Gear Pair 
The mesh stiffness of gear pair is defined as follows:

1
2
--- ζ 1≤ ≤

kwh kt wh, θm wh,( ) kt2f wh, kt2b wh, kt3f wh, kt3b wh,+ + ++=

kt2f wh, θm wh, 1 ζ–( )θs wh,<( ) kt wh, θm wh, ζθs wh,+( )⋅=

kt2b wh, θm wh, 2ζθs wh,≥( ) kt wh, θm wh, 2ζθs wh,–( )⋅=

kt3f wh, θm wh, 1 2ζ–( )θs wh,<( ) kt wh, θm wh, 2ζθs wh,+( )⋅=

kt3b wh, θm wh, ζθs wh,≥( ) kt wh, θm wh, ζθs wh,–( )⋅=

1
3
--- ζ 1

2
---≤ ≤
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Function of wheel mesh cycle:

Function of wheel full revolution:

Function of pinion mesh cycle:

Function of pinion full revolution:

M E S H  D A M P I N G

The mesh damping of a gear pair can be a constant value or it can be written as a 
function of mesh cycle or mesh stiffness. 

Theory for Transmission Error

The transmission Error node can be optionally added on gear pairs. In this node, the 
static transmission error can be specified and added in the rotation constraint of the 
gear pair. By default, there is no transmission on the gear pair and it is assumed as an 
ideal pair.

The static transmission error could be due to geometrical errors and geometrical 
modifications, such as gear run outs, misalignments, tooth tip, and root relief.

kg kg θm wh,( )=

θm wh, mod θwh θs wh,,( ) θs wh,
2π

nwh
----------= =

kg kg θf wh,( )=

θf wh, mod θwh 2π,( )=

kg kg θm pn,( )=

θm pn, mod θpn θs pn,,( ) θs pn,
2π
npn
---------= =

kg kg θf pn,( )=

θf pn, mod θpn 2π,( )=
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Figure 3-29: Sketch of a pair of teeth, showing the point of contact and the direction in 
which the transmission error is interpreted.

The static transmission error can be defined as:

where ewh and epn are the wheel and pinion transmission errors, respectively.

In the above equation, ewh and epn are written as a function of respective mesh cycle. 
However, it is also possible to write them individually as a function of a full revolution.

Similarly, it is also possible to directly specify et as a function of the mesh cycle and a 
full revolution of a wheel or pinion. 

Theory for Backlash

The Backlash node can be optionally added on gear pairs. The transmission error due 
to backlash is added in the rotation constraint of the gear pair. By default, there is no 
backlash on a gear pair.

The backlash on a gear pair plays an important role for unloaded gears. For loaded 
gears, it does not affect the dynamics of gears to a large extent.

θet
et

rpn
-------- epa e3 pn,⋅( )=

et ewh θm wh,( ) epn θm pn,( )+=

The backlash is taken into account only in the case of a time-dependent 
analysis.
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Figure 3-30: Sketch of a pair of teeth, showing the point of contact and the direction in 
which backlash is interpreted.

The transmission error (backlash), θbl, is degree of freedom in this node. The backlash 
moment about the first axis of the tooth coordinate system and its virtual work 
contribution are defined as:

where bl and pbm are the backlash and modified penalty factor, respectively.

To prevent the solver from taking larger time steps, the penalty factor is modified in 
the following manner:

Mb pbm θbl 0<( )θbl θbl θb>( ) θbl θb–( )+( )–=

δW Mb δθbl⋅=

θb
bl

rpn
---------=

pbm pb if θbl 0<( ) θbl θb>( )+( ) Δt Δtmax>( ) ∞ 0, ,⋅( )+=

The penalty factor is not modified for quasistatic analysis or when the 
manual control on time stepping is deselected.
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Theory for Gear Friction

The Friction node can be optionally added on gear pairs. In cases where friction is 
included on a gear pair, frictional forces in the plane perpendicular to the line of action 
are added on both the gears.

F R I C T I O N  M O D E L

The friction force is modeled using a continuous friction law, which is capable of 
modeling sliding-sticking phenomena. A strict application of Coulomb’s law involves 
discrete transition from sticking to sliding and vice versa, as dictated by a vanishing 
relative velocity. These discrete transitions cause numerical difficulties, and to avoid 
them, the friction force is approximated with a continuous friction law:

where Ff is the friction force, μ is the frictional coefficient, N is the normal force, v is 
the slip velocity, and v0 is the characteristic slip velocity. The term 

is called the regularization factor.

The regularization factor smooths the friction force discontinuity. The characteristic 
slip velocity should be made small in comparison to the characteristic relative velocities 
encountered during the simulation. The continuous friction law describes both sliding 
and sticking behavior; that is, it completely replaces Coulomb’s law. Sticking is 
replaced by creeping between the contacting bodies with a small relative velocity.

N O R M A L  F O R C E

The normal force at the contact point can be taken as the computed contact force. 
Alternatively, it can also be entered explicitly. 

S L I P  A T  C O N T A C T  P O I N T

The slip vector at the contact point of a gear pair is defined as:

Friction can be applied to gear pairs only in a time-dependent analysis.

Ff μN v
v
------ 1 e

v–
v0

---------
–

 
 
 

–=

1 e

v–
v0

---------
–

 
 
 
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In 2D, the slip vector expression reduces to:

In the case of a line contact model, the slip at the second contact point is defined as:

F R I C T I O N  F O R C E

The friction force at the contact point and its virtual work contribution are defined as:

where Ff,r and Ff,max are the additional sliding resistance and the maximum friction 
force, respectively.

Similarly, in the case of a line contact model, the friction force at the second contact 
point and its virtual work contribution are defined as:

E N E R G Y  D I S S I P A T I O N  R A T E

The energy dissipation rate due to friction at the contact point is defined as:

For a line contact model, the additional contribution in the energy dissipation rate is 
defined as:

us xcp pn, xcp wh,–( ) rpnθpne'3 pn, rwhθwhe'3 wh,–( )+=

e'3 wh, e3 wh, e3 wh, epa⋅( )epa–=

e'3 pn, e3 pn, e3 pn, epa⋅( )epa–=

us xcp pn, xcp rk,–( )=

us2 xcp2 pn, xcp2 wh,–( ) rpnθpne'3 pn, rwhθwhe'3 wh,–( )+=

Ff min μN Ff r,+  Ff max,( , )
us
·

us
·----------- 1 e

us

·
–

v0

--------------
–

 
 
 
 

–=

δW Ff δus⋅=

Ff2 min μN2 Ff r,+  Ff max,( , )
us2
·

us2
·-------------- 1 e

us2

·
–

v0

-----------------
–

 
 
 
 

–=

δW Ff2 δus2⋅=

Qf Ff us
·

⋅–=

Qf Ff2 us2
·

⋅–=
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 4
S o l i d  R o t o r
This chapter describes the Solid Rotor interface ( ) and its functionality, which 
is found under the Structural Mechanics>Rotordynamics branch ( ) when adding 
a physics interface.
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Th e  S o l i d  Ro t o r  I n t e r f a c e

The Solid Rotor (rotsld) interface ( ) is found under the Structural 

Mechanics>Rotordynamics branch ( ) when adding a physics interface. It is intended 
for analysis of rotating structural components in 3D. This interfaces models the 
equations of motion for an observer sitting in a corotating frame of reference. With 
this interface, you can compute displacements, velocities, accelerations, and stresses. 
The vector and tensor quantities from this interface should be interpreted in a 
corotating frame of reference unless stated otherwise. Journal and thrust bearing 
features provided in this interface can be used to model different type of bearings. You 
can also model the effect of a bearing mounted on a foundation.

The Linear Elastic Material is the default material model. It adds the equations for the 
displacements in a linear elastic rotor and has a Settings window to define the elastic 
and inertia properties of a material. The equations in this feature account for the frame 
acceleration forces due to the rotation of the rotor.

When the Solid Rotor interface is added, these default nodes are also added to the 
Model Builder — Linear Elastic Material; Rotor Axis (a domain feature to specify the axis 
of the rotor); Free (a boundary condition where boundaries are free, with no loads or 
constraints); Initial Values; and Fixed Axial Rotation (a reference surface where axial 
rotation relative to the rigid rotation of the rotor is zero). Then, from the Physics 
toolbar, you can add features that implement other rotor properties. You can also 
right-click Solid Rotor to select physics features from the context menu.

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is rotsld.
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R O T O R  S P E E D

Enter the Rotor speed as revolutions per time or angular velocity (variable Ov). This 
speed, together with the rotor axis, is used to compute the frame acceleration forces 
due to rotation of the rotor.

S P I N  S O F T E N I N G

Select the Include spin softening check box to add the effect of spin softening to the 
model. When the spin softening effect is included, the centrifugal and Euler forces are 
calculated based on the current position of the material particle during the 
deformation. However, if this effect is neglected, these forces do not change their 
magnitude based on the deformation.

R E F E R E N C E  P O I N T  F O R  M O M E N T  C O M P U T A T I O N

Enter the coordinates for the Reference point for moment computation xref, (variable 
refpnt). The resulting moments (applied or as reactions) are then computed relative 
to this reference point. During the results and analysis stage, the coordinates can be 
changed in the Parameters section in the result nodes. The point is given as a material 
coordinate, that is in the rotating frame.

D E P E N D E N T  V A R I A B L E S

The physics interface uses the global spatial components of the Displacement field u as 
dependent variables in the rotor domain. The default names for the components are 
(u, v, w).

You can change both the field name and the individual component names. If a new 
field name coincides with the name of another displacement field, the two fields (and 
the interfaces that define them) share degrees of freedom and dependent variable 
component names.

A new field name must not coincide with the name of a field of another type (that is, 
it must contain a displacement field), or with a component name belonging to some 
other field. Component names must be unique within a model except when two 
interfaces share a common field name.

The Flexible Foundation node also adds two dependent vector variables, one for 
translation and one for rotation.
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D I S C R E T I Z A T I O N

The discretization order applies to the flexible bodies. The default is to use Quadratic 

shape functions for the Displacement field.

Domain, Boundary, and Pair Nodes for the Solid Rotor Interface

The Solid Rotor Interface has domain, boundary, and pair nodes (and subnodes), 
listed in alphabetical order below, available from the Physics ribbon toolbar (Windows 
users), Physics context menu (Mac or Linux users), or by right-clicking the main 
physics interface node to access the context menu (all users).

• Domain, Boundary, and Pair Nodes for the Solid Rotor Interface

• Rotordynamics Theory

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.

In the COMSOL Multiphysics Reference Manual, see Table 2-4 for links 
to common sections and Table 2-5 for common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.

The links to the nodes described in external guides, such as the Structural 
Mechanics Module User’s Guide, do not work in the PDF, only from the 
online help in COMSOL Multiphysics.
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The following list contains links to the documentation for the domain and boundary 
nodes specific to the Solid Rotor interface:

These subnodes are available from the main parent nodes as indicated in the 
documentation: 

These nodes are described in detail for the Solid Mechanics Interface:

• Active Magnetic Bearing

• Added Mass

• Applied Torque

• Bevel Gear

• Body Load

• Boundary Load

• Change Rotor Speed

• Fixed Axial Rotation

• Gear Pair

• Gravity

• Helical Gear

• Initial Values

• Journal Bearing

• Linear Elastic Material

• Liquid Annular Seal

• Multi-Spool Bearing

• Radial Roller Bearing

• Rotor Axis

• Rotor Coupling

• Spur Gear

• Thrust Bearing

• Axis

• First Support

• Flexible Foundation

• Initial Values (Gear)

• Misalignment

• Moving Foundation

• Second Support

• Squeeze Film Damper

• Average Rotation

• Damping

• External Strain

• External Stress

• Initial Stress and Strain

• Linear Elastic Material

• Phase

• Rigid Domain

• Thermal Expansion (for Materials)
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Initial Values

The Initial Values node adds initial values for the displacement field and structural 
velocity field that can serve as an initial condition for a transient simulation or as an 
initial guess for a nonlinear analysis. In addition to the default Initial Values node always 
present in the interface, you can add more Initial Values nodes if needed. The values are 
given in the rotating frame in Solid Rotor interface and are in space-fixed frame in Solid 
Rotor, Fixed Frame interface.

I N I T I A L  V A L U E S

Enter values or expressions for the initial values of the Displacement field u (the 
displacement components u, v, and w), and the Structural velocity field ∂u/∂t.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Initial Values

Ribbon
Physics tab with Solid Rotor selected:

Domains>Solid Rotor>Initial Values

Linear Elastic Material

The Linear Elastic Material node adds the equations for a linear elastic rotor and an 
interface for defining the elastic material properties.

By adding the following subnodes to the Linear Elastic Material node, you can 
incorporate many other effects:

• Thermal Expansion (for Materials)

• Initial Stress and Strain

• External Stress

• External Strain

• Damping.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes (except boundary 
coordinate systems). The coordinate system is used for interpreting directions of 
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orthotropic and anisotropic material data and when stresses or strains are presented in 
a local system. The coordinate system must have orthonormal coordinate axes and be 
defined in the material frame. The material frame will in this context interpreted as the 
corotating system. Many of the possible subnodes inherit the coordinate system 
settings.

L I N E A R  E L A S T I C  M A T E R I A L

To use a mixed formulation by adding the pressure as an extra dependent variable to 
solve for, select the Nearly incompressible material check box. For a material with a very 
low compressibility, using only displacements as degrees of freedom may lead to a 
numerically ill-posed problem.

Define the Solid model and the linear elastic material properties.

Solid Model
Select a linear elastic Solid model — Isotropic, Orthotropic, or Anisotropic. Select:

• Isotropic for a linear elastic material that has the same properties in all directions.

• Orthotropic for a linear elastic material that has different material properties in 
orthogonal directions, so that its stiffness depends on the properties Ei, νij, and Gij.

• Anisotropic for a linear elastic material that has different material properties in 
different directions, and the stiffness comes from the symmetric elasticity matrix, D.

Density
The default Density ρ uses values From material. For User defined enter another value or 
expression.

In the Structural Mechanics Theory chapter of the Structural Mechanics 
Module User’s Guide:

• Material Models

• Linear Elastic Material

• Orthotropic and Anisotropic Materials

In the Solid Mechanics chapter of the Structural Mechanics Module 
User’s Guide:

• Linear Elastic Material
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G E O M E T R I C  N O N L I N E A R I T Y

The settings in this section affect the behavior of the selected domains in a 
geometrically nonlinear analysis.

If a study step is geometrically nonlinear, the default behavior is to use a large strain 
formulation in all domains. There are, however, some rare cases when the use of a small 
strain formulation for a certain domain is needed.

In such cases, select the Geometrically Linear Formulation check box. When selected, a 
small strain formulation is always used, independently of the setting in the study step.

When a geometrically nonlinear formulation is used, the elastic deformations used for 
computing the stresses can be obtained in two different ways if inelastic deformations 
are present: additive decomposition and multiplicative decomposition. The default is 
to use multiplicative decomposition. Select Additive strain decomposition to change to 
an assumption of additivity.

Q U A D R A T U R E  S E T T I N G S

Select the Reduced integration check box to reduce the integration points for the weak 
contribution of the feature. Select a method for Hourglass stabilization — Automatic, 
Manual, or None to use in combination with the reduced integration scheme. The 
default Automatic stabilization technique is based on the shape function and shape 
order of the displacement field.

Control the hourglass stabilization scheme by using the Manual option. Select Shear 

stabilization (default) or Volumetric stabilization.

When Shear stabilization is selected, enter a stabilization shear modulus, Gstb. The 
value should be in the order of magnitude of the equivalent shear modulus.

When Volumetric stabilization is selected, enter a stabilization bulk modulus, Kstb. The 
value should be in the order of magnitude of the equivalent bulk modulus.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Linear Elastic Material

Solid Rotor, Fixed Frame>Linear Elastic Material

• Modeling Geometric Nonlinearity

• Studies and Solvers in the COMSOL Multiphysics Reference Manual
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Ribbon
Physics tab with Solid Rotor selected:

Domains>Solid Rotor>Linear Elastic Material

Physics tab with Solid Rotor, Fixed Frame selected:

Domains>Solid Rotor, Fixed Frame>Linear Elastic Material

Rotor Axis

In the Rotor Axis node, you define the initial axis about which the rotor rotates.

R O T O R  A X I S

From the Specified by list, select how to specify the rotor axis — Support locations or 
Edge.

Support Locations
Select Support locations — Selected points or User defined. If you choose Selected points, 
it automatically adds two subnodes with point selection, First Support and Second 

Support. Select the respective points in the selection list of these sub-nodes. If you 
choose User defined, enter the coordinates r1 and r2 of the two supports on the rotor 
axis.

The support points are only used for defining the rotor axis.

Edge
An Axis subnode with an edge selection is automatically added. Select the edge 
representing the rotor axis in the selection list of this node.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Rotor Axis

Solid Rotor, Fixed Frame>Rotor Axis

See also

• Specifying the Rotor Axis in the Rotordynamics Modeling chapter.

• Rotor Axis in the Rotordynamics Theory chapter.
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Ribbon
Physics tab with Solid Rotor selected:

Boundaries>Solid Rotor>Rotor Axis

Physics tab with Solid Rotor, Fixed Frame selected:

Boundaries>Solid Rotor, Fixed Frame>Rotor Axis

First Support

Use the First Support node to select any point or set of points whose centroid 
represents the location of the first support on the rotor axis.

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically added when the rotor axis is specified by Support locations 
in the parent Rotor Axis node and Support locations are defined using Selected points. It 
cannot be added or removed manually.

Second Support

Use the Second Support node to select any point or set of points whose centroid 
represents the location of the second support on the rotor axis.

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically added when the rotor axis is specified by Support locations 
in the parent Rotor Axis node and Support locations are defined using Selected points. It 
cannot be added or removed manually.

Axis

Use the Axis node to select the edge that represents the axis of the rotor.

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically added when the rotor axis is specified by Edge in the parent 
Rotor Axis node. It cannot be added or removed manually.

Fixed Axial Rotation

Use the default Fixed Axial Rotation node to select a rotor cross section that is treated 
as a reference for the axial (torsional) rotation of the rotor.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Fixed Axial Rotation

Solid Rotor, Fixed Frame>Fixed Axial Rotation

Ribbon
Physics tab with Solid Rotor selected:

Boundaries>Solid Rotor>Fixed Axial Rotation

Physics tab with Solid Rotor, Fixed Frame selected:

Boundaries>Solid Rotor, Fixed Frame>Fixed Axial Rotation

Change Rotor Speed

Use the Change Rotor Speed node to selectively specify the speed of the rotor if it is 
different from what is specified in the interface. This feature is useful for multirotor 
systems operating at different speeds, for example, in a geared rotor system where the 
speed of the shafts is in the ratio specified by the gear ratio. Select either Revolutions 

per time or Angular velocity to choose the unit for the angular speed and then enter the 
value in the text field.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>More>Change Rotor Speed

Solid Rotor, Fixed Frame>More>Change Rotor Speed

Beam Rotor>More>Change Rotor Speed

Ribbon
Physics tab with Solid Rotor or Solid Rotor, Fixed Frame selected:

Domains>More>Change Rotor Speed

Physics tab with Beam Rotor selected:

Edges>More>Change Rotor Speed

Journal Bearing

Add a Journal Bearing node to model the effect of a bearing. The selected boundaries 
should form a cylindrical surface representing the journal of the bearing.
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If clearance is incorporated, you can also study the effect of misalignment by adding a 
Misalignment subnode.

B E A R I N G  O R I E N T A T I O N

Use the settings in this section to define the local y direction of the bearing. 
Subsequent vector and matrix inputs are specified in the local directions specified here.

Enter the Bearing orientation vector defining the local y direction. The direction given 
will be adjusted so that it is orthogonal to the rotor axis. The default value is the global 
y-axis.

You can further modify the y-axis orientation by entering an angle for the Rotation of 

the orientation vector around the bearing axis. The direction inferred from the previous 
setting will be rotated counterclockwise around the rotor axis.

B E A R I N G  P R O P E R T I E S

Select a Bearing Model — No clearance, Plain hydrodynamic, Total spring and damping 

constant, Total force and moment, or Force per unit area. Then go to the relevant section 
below to continue defining the properties.

Plain Hydrodynamic
Enter the Bulk viscosity, μ, of the lubricant, the Clearance, C, between the journal and 
bushing, and the Journal length, L. For the Bulk viscosity, select From material to use 
data from a material assigned to the selected journal boundaries, or select User defined 
to enter a value or expression.

The values are used to calculate the stiffness and damping constants by linearization of 
the total forces and moments obtained with a short bearing approximation in the 
Reynolds equation.

Total Spring and Damping Constant
Enter the translational and bending stiffness ku and kθ. Select the 
Translational-rotational coupling check box to also model the coupling between 
translational and rotational motion of the journal. Enter the values of the additional 
inputs kuθ and kθu in this case. If you want to perform dynamic analysis, you can also 
enter nonzero translational and bending damping constants cu and cθ. Select the 
Translational-rotational coupling check box, and enter cuθ and cθu values to include the 
translational-rotational coupling in the damping constants. Default values for the 
rotational stiffness and damping constants are provided as functions of the translational 
counterparts. It is assumed that the translational stiffness and damping constants are 
uniformly distributed on the given selection. The equivalent moment experienced at 
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the center of the bearing due to this distribution is considered as the moment from the 
bearing. The variables <phys>.<feat>.E11 and <phys>.<feat>.area appearing the 
default expression are the 11 component of the Euler tensor, and the area of the 
journal, respectively. The 1 direction represents the axial direction of the bearing.

Total Force and Moment
Enter the Total force, F, and Total Moment, M, as a function of journal displacement 
and rotation. To help specifying the input as functions of journal displacement and 
rotation, default expressions are provided for these inputs. These expressions contain 
variables of the type <phys>.<feat>.{du2_c,du3_c,dth2,dth3}, which are lateral 
components of the relative displacement and rotation of the journal with respect to the 
bearing at the center, expressed in the local bearing directions.

Force per Unit Area
Enter the Force per unit area, FA, in the matrix. This option is useful if the distributed 
force on the journal surface is known. To help specifying inputs as a function of journal 
displacement a default expression is provided. This expression contains variables of the 
type <phys>.<feat>.{du2,du3}, which are lateral components of the relative surface 
displacement of the journal with respect to the bearing, in the local bearing directions.

Clear the Constrain axial motion check box (selected by default) if you want to use a 
separate Thrust Bearing node to restrict the axial motion.

F O U N D A T I O N  P R O P E R T I E S

Select one of the Fixed, Moving, Flexible, or Squeeze film damper foundation options. If 
the model component also contains other structural physics interfaces such as Solid 

Mechanics, Multibody Dynamics, or Shell that have Attachment or Rigid Domain features, 
the above list is extended with the attachments and rigid domains available in these 
physics interfaces. In the Moving, Flexible, and Squeeze film damper cases, the subnodes 
Moving Foundation, Flexible Foundation, or Squeeze Film Damper are automatically 
added. If any of the attachments or rigid domains is selected, displacement and 
rotation of the selected feature are used as foundation motion. Attachments and rigid 
domains provide an easy way of coupling the rotor with the stator.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Bearings>Journal Bearing

Solid Rotor, Fixed Frame>Bearings>Journal Bearing
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Ribbon
Physics tab with Solid Rotor or Solid Rotor, Fixed Frame selected:

Boundaries>Bearings>Journal Bearing

Thrust Bearing

Add a Thrust Bearing node to model a cross section where a thrust bearing is acting. 
The selected boundaries should form a circular surface representing the cross section 
of the rotor.

If clearance is incorporated, you can also study the effect of misalignment by adding a 
Misalignment subnode.

B E A R I N G  O R I E N T A T I O N

Use the settings in this section to define the local y direction of the bearing. 
Subsequent vector and matrix inputs are specified in the local directions specified here.

Enter the Bearing orientation vector defining the local y direction. The direction given 
will be adjusted so that it is orthogonal to the rotor axis. The default value is the global 
y-axis.

You can further modify the y-axis orientation by entering an angle for the Rotation of 

the orientation vector around the bearing axis. The direction inferred from the previous 
setting will be rotated counterclockwise around the rotor axis.

B E A R I N G  P R O P E R T I E S

Select a Bearing Model — No clearance, Total spring and damping constant, Total force 

and moment, or Force per unit area. Then go to the relevant section below to continue 
defining the properties.

Total Spring and Damping Constant
Enter the axial and bending stiffness, ku and kθ. Select the 
Translational-rotational coupling check box to also model the coupling between the 
axial and rotational motion of the collar. Enter expressions for the additional inputs, 
kuθ and kθu in this case. If you want to perform dynamic analysis, you can also provide 
nonzero axial and bending damping constants cu and cθ. Select the 
Translational-rotational coupling check box and enter cuθ and cθu values to include the 
translational-rotational coupling in the damping constants. Default values for the 
rotational stiffness and damping constants are provided as functions of the axial 
stiffness. It is assumed that the axial stiffness and damping constants are uniformly 
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distributed on the given selection. The equivalent moment experienced at the center 
of the collar due to this distribution is considered as the moment from the bearing. 
The variables <phys>.<feat>.E{22,33,23,32} and <phys>.<feat>.area 
appearing in the default expression are the components of the Euler tensor and area of 
the collar, respectively. Component indices in the variable E represent the respective 
components of the Euler tensor in the local bearing directions.

Total Force and Moment
Enter the Total force, Fax, and Total moment, M, as functions of collar displacement 
and rotation. To help specifying the force and moment as functions of collar 
displacement and rotation, default expressions are provided for these inputs. These 
expressions contain variables of the type <phys>.<feat>.{du1c,dth2,dth3}, which 
are relative axial displacement and lateral components of the relative rotation of the 
collar with respect to the bearing at the center, in the local bearing directions.

Force per Unit Area
Enter the axial force per unit area, Fax,A, in the matrix. This option is useful if the 
distributed force on the collar surface is known. To help specifying the input as a 
function of collar axial displacement a default expression is provided. This expression 
contains the variable <phys>.<feat>.du1, which is the axial component of the 
relative surface displacement of the collar with respect to the bearing.

Select the Constrain lateral motion check box (cleared by default) if you do not want to 
use a separate Journal Bearing node to restrict the lateral motion.

F O U N D A T I O N  P R O P E R T I E S

Select one of the Fixed, Moving, or Flexible foundation options. If the model component 
also contains other structural physics interfaces such as Solid Mechanics, Multibody 

Dynamics, or Shell that have Attachment or Rigid Domain features, the above list is 
extended with the attachments and rigid domains available in these physics interfaces. 
In the Moving and Flexible cases, the subnodes Moving Foundation or Flexible 
Foundation are automatically added. If any of the attachments or rigid domains is 
selected, displacement and rotation of the selected feature are used as foundation 
motion. Attachments and rigid domains provide an easy way of coupling the rotor with 
the stator.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Bearings>Thrust Bearing
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Solid Rotor, Fixed Frame>Bearings>Thrust Bearing

Ribbon
Physics tab with Solid Rotor or Solid Rotor, Fixed Frame selected:

Boundaries>Bearings>Thrust Bearing

Radial Roller Bearing

Add a Radial Roller Bearing node to model a surface on the rotor supported by a roller 
bearing. The selected boundaries should form a cylindrical surface representing the 
surface connected with the inner race of the bearing. The forces on the rollers are 
computed using the Hertz contact theory. The built-in variables for the roller force 
distribution has the form <physicsName>.<RollerBearingTag>.fb[x,y,z], for 
example rotsld.rrb1.fbx.

You can also study the effect of misalignment by adding a Misalignment subnode.

B E A R I N G  O R I E N T A T I O N

Use the settings in this section to define the local y direction of the bearing. 
Subsequent vector and matrix inputs are specified in the local directions specified here.

Enter the Bearing orientation vector defining the local y direction. The direction given 
will be adjusted so that it is orthogonal to the rotor axis. The default value is the global 
y-axis.

You can further modify the y-axis orientation by entering an angle for the Rotation of 

the orientation vector around the bearing axis. The direction inferred from the previous 
setting will be rotated counterclockwise around the rotor axis.

G E O M E T R I C  P R O P E R T I E S

Select a Bearing Type — Deep groove ball bearing, Angular contact ball bearing, Self 
aligning ball bearing, Spherical roller bearing, Cylindrical roller bearing, or Tapered roller 

bearing. Then go to the relevant section below to continue defining the properties.

Deep Groove Ball Bearing
• Select either Single row or Double row to specify if the bearing consists of single or 

double rows of rollers.
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• For a Double row bearing, enter the Axial distance between the roller centers.

• Enter the remaining geometric properties Number of balls; Ball diameter; Pitch 

diameter; Contour radius, inner race; and Contour radius, outer race to define the 
bearing geometry.

Angular Contact Ball Bearing
• Select either Single row or Double row to specify if the bearing consists of single or 

double rows of rollers.

• For a Double row bearing, enter the Axial distance between the roller centers. 

• Enter the remaining geometric properties Number of balls; Ball diameter; Pitch 

diameter; Contour radius, inner race; Contour radius, outer race; and Initial contact 

angle to define the bearing geometry.

Self Aligning Ball Bearing
• Select either Single row or Double row to specify if the bearing consists of single or 

double rows of rollers. 

• Enter the geometric properties Number of balls; Ball diameter; Pitch diameter; 
Contour radius, inner race; and Contour radius, outer race.

• For a Double row bearing, enter also Initial contact angle.

Spherical Roller Bearing
• Select either Single row or Double row to specify if the bearing consists of single or 

double rows of rollers.

• For a Double row bearing, enter the Axial distance between the roller centers and 
Initial contact angle.

• Enter the remaining geometric properties Number of rollers; Roller diameter; Pitch 

diameter; Contour radius, inner race; and Contour radius, outer race to define the 
bearing geometry.

Cylindrical Roller Bearing
• Select either of Single row or Double row to specify if the bearing consists of single or 

double rows of rollers.

• For a Double row bearing, enter the Axial distance between the roller centers.

• Enter the remaining geometric properties Number of rollers, Roller diameter, Effective 

length of the roller, and Pitch diameter to define the bearing geometry.

Tapered Roller Bearing
• Select either of Single row or Double row to specify if the bearing consists of single or 

double rows of rollers.
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• For Single row bearing, enter the Axial offset of roller center.

• For Double row bearing enter the Axial distance between the roller centers.

• Enter the remaining geometric properties Number of rollers, Roller diameter, Effective 

length of the roller, Pitch diameter, Cap radius, Semi cone angle, Roller axis orientation, 
Cap angle, and Flange contact angle to define the bearing geometry.

C L E A R A N C E  A N D  P R E L O A D

• Enter a Radial clearance for all bearings except a Tapered roller bearing. For the 
Tapered roller bearing, enter values for the Inner race clearance, the Outer race 

clearance and the Flange clearance.

• Select the Include preload check box to specify the preload in the bearings. For the 
Deep groove ball bearing and Cylindrical roller bearing, specify a Radial preload. For 
the Angular contact ball Bearing and Tapered roller bearing, specify an Axial preload. 
For the Self aligning ball bearing and Spherical roller bearing, specify a Radial preload 
for single row and an Axial preload for the double row bearings.

M A T E R I A L  P R O P E R T I E S

• Enter the material properties Young’s modulus, inner race and Poisson’s ratio, inner 

race to define the elastic properties of the inner race in the bearing.

• Select Outer race material — Same as inner race or User defined. If User defined is 
selected, enter the values of Young’s modulus, outer race and Poisson’s ratio, outer 

race.

• Finally select Roller material — Same as inner race or User defined. If User defined is 
selected, enter the values of the Young’s modulus, roller/ball and Poisson’s ratio, roller/

ball.

F O U N D A T I O N  P R O P E R T I E S

Select one of the Fixed, Moving, Flexible, or Squeeze film damper foundation options. If 
the model component also contains other structural physics interfaces such as Solid 

Mechanics, Multibody Dynamics, or Shell that have Attachment or Rigid Domain features, 
the above list is extended with the attachments and rigid domains available in these 
physics interfaces. In the Moving, Flexible, and Squeeze film damper cases, the subnodes 
Moving Foundation, Flexible Foundation, or Squeeze Film Damper are automatically 
added. If any of the attachments or rigid domains is selected, displacement and 
rotation of the selected feature are used as foundation motion. Attachments and rigid 
domains provide an easy way of coupling the rotor with the stator.
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L O C A T I O N  I N  U S E R  I N T E R F A C E  

Context Menus
Solid Rotor>Bearings>Radial Roller Bearing

Solid Rotor, Fixed Frame>Bearings>Radial Roller Bearing

Ribbon
Physics tab with Solid Rotor or Solid Rotor, Fixed Frame selected:

Boundaries>Bearings>Radial Roller Bearing

Active Magnetic Bearing

Add an Active Magnetic Bearing node to model a radial magnetic bearing together with 
a PID controller. The controller determines the current in the coils of the bearing 
though a feedback mechanism by sensing the vibration levels at the bearing location. 
When added in Solid Rotor interface, the selection of the node corresponds to the 
cylindrical surface of the journal, whereas for a Beam Rotor, it is a point corresponding 
to the bearing location.

For a time-dependent analysis, the behavior of the bearing is nonlinear and control 
forces are nonlinear functions of both displacement and control current. In a stationary 
analysis, only a proportional controller is considered with a linearized 
force-displacement relation. In a frequency domain or eigenfrequency analysis, a 
linearized expression for the force as function of displacement and control current is 
considered. In this case also, a PID controller is used with control current now 
depending on both displacement and frequency. As a result, an active magnetic bearing 
in a frequency or eigenfrequency analysis works as an effective impedance that is a 
function of frequency. In this node, you specify the magnetic bearing parameters 
together with values for the controller gains. 

B E A R I N G  O R I E N T A T I O N

Use the settings in this section to define the local y direction of the bearing. 
Subsequent vector and matrix inputs are specified in the local directions specified here.

Enter the Bearing orientation vector defining the local y direction. The direction given 
will be adjusted so that it is orthogonal to the rotor axis. The default value is the global 
y-axis.

You can further modify the orientation of local y-axis by entering an angle for the 
Rotation of the orientation vector around the bearing axis. The direction inferred from 
the previous setting will be rotated counterclockwise around the rotor axis.
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A I R  G A P

Enter the Air gap, h, in the local y and z direction.

C O N T R O L  P A R A M E T E R S

Enter the values of the Proportional gain, Kp, Integral gain, Ki, Derivative gain, Kd, and 
Force constant, Fc, in the local y and z directions.

C U R R E N T S

Bias currents in the magnetic bearings are used to support the static load of the rotor. 
If you use the same bias current in the positive and negative axes, the bearing will not 
support any static load. Enter the values of the bias currents in local directions for both 
positive and negative axes using the inputs Bias current, positive axis, ib,p and Bias 

current, negative axis, ib,n. The current in the coils is restricted not to go beyond a 
cutoff value for safety reasons. Enter the maximum allowed current in the coil in the 
Maximum current, imax, field.

F O U N D A T I O N  P R O P E R T I E S

Select one of the Fixed, Moving, Flexible, or Squeeze film damper foundation options. If 
the model component also contains other structural physics interfaces such as Solid 

Mechanics, Multibody Dynamics, or Shell that have Attachment or Rigid Domain features, 
the above list is extended with the attachments and rigid domains available in these 
physics interfaces. In the Moving, Flexible, and Squeeze film damper cases, the subnodes 
Moving Foundation, Flexible Foundation, or Squeeze Film Damper are automatically 
added. If any of the attachments or rigid domains is selected, displacement and 
rotation of the selected feature are used as foundation motion. Attachments and rigid 
domains provide an easy way of coupling the rotor with the stator.

L O C A T I O N  I N  U S E R  I N T E R F A C E  

Context Menus
Solid Rotor>Bearings>Active Magnetic Bearing

Solid Rotor, Fixed Frame>Bearings>Active Magnetic Bearing

Beam Rotor>Bearings>Active Magnetic Bearing

Ribbon
Physics tab with Solid Rotor or Solid Rotor, Fixed Frame selected:

Boundaries>Bearings>Active Magnetic Bearing

Physics tab with Beam Rotor selected:
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Points>Bearings>Active Magnetic Bearing

Flexible Foundation

The Flexible Foundation node is added automatically when you set Foundation properties 

to Flexible on the parent Journal Bearing, Thrust Bearing, Radial Roller Bearing, or Active 

Magnetic Bearing node. In this node, you describe the flexibility of the foundation on 
which the bearing is mounted.

F O U N D A T I O N  P R O P E R T I E S

Enter the values of the translational and rotational stiffness ku and kθ of the 
foundation. Select the Translational-rotational coupling check box to also incorporate 
the effect of coupled stiffness between the translational and rotational motion of the 
foundation. If selected, enter the values of the coupling stiffnesses, kuθ and kθu.

If you want to perform a dynamic analysis, you can optionally also enter the values of 
the translational and rotational damping, cu and cθ, of the foundation. Select the 
Translational-rotational coupling check box to also incorporate the effect of coupled 
damping constants between the translational and angular velocity of the foundation. If 
selected, enter the values of the coupling damping constants cuθ and cθu.

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically added when Foundation Properties is Flexible in the parent 
bearing node. It cannot be added or removed manually.

Moving Foundation

The Moving Foundation node is added automatically when you set Foundation properties 

to Moving on the parent Journal Bearing, Thrust Bearing, Radial Roller Bearing, or Active 

Magnetic Bearing node. In this node, you prescribe the motion of the foundation on 
which the bearing is mounted.

F O U N D A T I O N  P R O P E R T I E S

Enter the values of the Foundation displacement, uf, and Foundation rotation, θf, at the 
center of the bearing.

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically added when Foundation Properties is Moving in the parent 
bearing node. It cannot be added or removed manually.
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Squeeze Film Damper

The Squeeze Film Damper node is added automatically when you set Foundation 

properties to Squeeze film damper in the parent Journal Bearing, Radial Roller Bearing, or 
Active Magnetic Bearing node. In this node, you specify the damper dimensions and 
lubricant properties to compute the equivalent damping coefficient based on a short 
bearing length approximation.

D A M P E R  P R O P E R T I E S

Select Bulk viscosity — From material or User defined. If User defined, enter the value of 
the Bulk viscosity, μ. Enter the values of Clearance, C, and Journal length, L.

C E N T E R I N G  S P R I N G

Centering springs are used in squeeze film dampers to allow them to support static 
loads. Enter the values of Spring constant, kcs, and Damping constant, ccs, for the 
centering spring.

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically added when Foundation Properties is set to Squeeze Film 

Damper in the parent bearing node. It cannot be added or removed manually.

Misalignment

Use the Misalignment node to model the effect of the misalignment of bearings or 
couplings on the shaft. It can be added to all nodes describing bearings in the Solid 
Rotor and Beam Rotor interfaces, as well as to the Rotor Coupling node.

To model misalignment, you specify the parallel or angular misalignment values. For 
the stiffness-based bearing models such as Radial Roller Bearing, Journal Bearing, and 
Thrust Bearing, misalignment works similar to predeformation in springs. For the 
Hydrodynamic Bearings, the misalignment affects the film thickness distribution in the 
bearing which governs the pressure distribution in the film.

M I S A L I G N M E N T

Enter the values of the parallel misalignment u20 and u30 (for radial or journal bearing 
only) and angular misalignment θ20 and θ30.

Under Journal Bearing and Thrust Bearing, you cannot add Misalignment if 
No clearance selected as Bearing Model.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Journal Bearing>Misalignment

Solid Rotor>Thrust Bearing>Misalignment

Solid Rotor>Radial Roller Bearing>Misalignment

Solid Rotor>Multi-Spool Bearing>Misalignment

Solid Rotor>Rotor Coupling>Misalignment

Solid Rotor, Fixed Frame>Journal Bearing>Misalignment

Solid Rotor, Fixed Frame>Thrust Bearing>Misalignment

Solid Rotor, Fixed Frame>Radial Roller Bearing>Misalignment

Solid Rotor, Fixed Frame>Multi-Spool Bearing>Misalignment

Solid Rotor, Fixed Frame>Rotor Coupling>Misalignment

Beam Rotor>Journal Bearing>Misalignment

Beam Rotor>Thrust Bearing>Misalignment

Beam Rotor>Radial Roller Bearing>Misalignment

Beam Rotor>Multi-Spool Bearing>Misalignment

Beam Rotor>Rotor Coupling>Misalignment

Hydrodynamic Bearing>Hydrodynamic Journal Bearing>Misalignment

Hydrodynamics Bearing>Hydrodynamic Thrust Bearing>Misalignment

Hydrodynamic Bearing>Floating Ring Bearing>Misalignment

Ribbon
Physics tab with Radial Roller Bearing, Journal Bearing, Thrust Bearing, Multi-Spool 

Bearing, or Rotor Coupling selected in the Solid Rotor, Solid Rotor, Fixed Frame or Beam 

Rotor interfaces:

Attributes>Misalignment

Physics tab with Hydrodynamic Journal Bearing, Hydrodynamic Thrust Bearing, or Floating 

Ring Bearing selected in the Hydrodynamic Bearing interface:

Attributes>Misalignment

Multi-Spool Bearing

Add a Multi-Spool Bearing node to model an intershaft bearing between two rotors 
running at different speeds. The journal surface of the shaft should be selected in the 
Boundary Selection section (Beam Rotor: Point Selection). Surfaces on the other shaft 
connected to the bearing bushing should be selected in the Destination Boundary 

Selection Beam Rotor: Destination Point Selection).
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B E A R I N G  O R I E N T A T I O N

Use the settings in this section to define the local y direction of the bearing. 
Subsequent vector and matrix inputs are specified in the local directions specified here.

Enter the Bearing orientation vector defining the local y direction. The direction given 
will be adjusted so that it is orthogonal to the rotor axis. The default value is the global 
y-axis.

You can further modify the y-axis orientation by entering an angle for the Rotation of 

the orientation vector around the bearing axis. The direction inferred from the previous 
setting will be rotated counterclockwise around the rotor axis.

B E A R I N G  P R O P E R T I E S

Use the settings in this section to specify the bearing stiffness and damping coefficients 
between the two shafts. 

Select Displacement connection — Rigid or Flexible. If Rigid is selected, the bearing acts 
as an infinite stiffness bearing for the relative translation motion between the two 
shafts. For the Flexible case, enter the values of the Translational stiffness (2x2 matrix) 
and Translational damping coefficient (2x2 matrix). A zero stiffness will make both shafts 
free for relative translational motion.

Select Rotation connection — Rigid or Flexible. If Rigid is selected, the bearing acts as an 
infinite stiffness bearing for the relative tilting motion between the two shafts. For the 
Flexible case, enter the values of the Bending stiffness (2x2 matrix) and Bending damping 

coefficient (2x2 matrix). A zero stiffness will make both shafts free for relative tilting 
motion.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Bearings>Multi-Spool Bearing

Solid Rotor, Fixed Frame>Bearings>Multi-Spool Bearing

Beam Rotor>Bearings>Multi-Spool Bearing

Ribbon
Physics tab with Solid Rotor or Solid Rotor, Fixed Frame selected:

Boundaries>Bearings>Multi-Spool Bearing

Physics tab with Beam Rotor selected:

Points>Bearings>Multi-Spool Bearing
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Liquid Annular Seal

Add a Liquid Annular Seal node to model the effective stiffness, damping and mass due 
to the flow in seals.

S E A L  O R I E N T A T I O N

Use the settings in this section to define the local y direction of the seal. Subsequent 
vector and matrix inputs are specified in the local directions specified here.

Enter the Orientation vector defining the local y direction. The direction given will be 
adjusted so that it is orthogonal to the rotor axis. The default value is the global y-axis

You can further modify the y-axis orientation by entering an angle for the Rotation of 

the orientation vector around seal axis. The direction inferred from the previous setting 
will be rotated counterclockwise around the rotor axis.

S E A L  M O D E L

Select between Black and Jenssen and Childs model to model the seal dynamic 
properties. The Black and Jenssen model does not account for inlet swirl in the flow but 
is valid for finite length seals. The Childs model accounts for the inlet swirl in the flow 
but is valid only for short seals.

G E O M E T R I C  P R O P E R T I E S

Enter the values of Radial distance, R, Seal length, Ls, and Seal clearance, C.

F L U I D  P R O P E R T I E S

The default Dynamic viscosity μ is taken From material. For User defined, enter a 
different value or expression.

With the default options, the Density ρ is taken From material. For User defined enter a 
different value or expression.

F L O W  P R O P E R T I E S

Enter values for Pressure difference, ΔP, Initial flow velocity, V0, Entrance loss coefficient, 
ξ. Seals require nonzero values for the angular speed of the rotor and the initial flow 
velocity.

For the Childs model, also enter a value for the Inlet swirl ratio, α. A default value 0.5 
corresponds to swirl speed equal to the half of the rotor angular speed.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Liquid Annular Seal

Solid Rotor, Fixed Frame>Liquid Annular Seal

Beam Rotor>Liquid Annular Seal

Ribbon
Physics tab with Solid Rotor selected:

Boundaries>Solid Rotor>Liquid Annular Seal

Physics tab with Solid Rotor, Fixed Frame selected:

Boundaries>Solid Rotor, Fixed Frame>Liquid Annular Seal

Physics tab with Beam Rotor selected:

Points>Beam Rotor>Liquid Annular Seal

Rotor Coupling

Add a Rotor Coupling node to model the coupling characteristics between two rotors. 
The selection for this feature should be a cross section of the rotor.

C O U P L I N G  P R O P E R T I E S

Select Coupling type — Spline, Torsional, or User defined. Then, go to the relevant 
section below to continue defining the properties.

Spline
No extra input in needed. This coupling type connects the displacement and axial 
rotation across the two rotors, while keeping the tilting of the rotors uncoupled on 
interior boundaries. On exterior boundaries, only the axial rotation is fixed.

Torsional
Enter the value of the Torsional stiffness, kθ,ax. This coupling type connects 
displacement and tilting rotations across the two rotors on interior boundaries. The 
axial rotations of both rotors are connected by a spring of stiffness kθ,ax. On an exterior 
boundary, displacement and tilting rotations are free, while the axial rotation is 
connected by a spring of stiffness kθ,ax relative to an imaginary fixed boundary.

User Defined
Select Displacement connection — Rigid or Flexible. In the Flexible case, enter the 
Translational stiffness, ku. The displacements across the two rotors will be connected 
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through a spring with the given stiffness. In the Rigid case, the displacements of both 
rotors are rigidly connected. On an exterior boundary, the other rotor is assumed to 
be fixed.

Select Axial rotation connection — Flexible or Rigid. In the Flexible case, enter the 
Torsional stiffness, kθ,ax. The axial rotation across the two rotors is connected by a 
torsional spring of the given stiffness. In the Rigid case, the axial rotations of both 
rotors are rigidly connected. On an exterior boundary, the other rotor is assumed to 
be fixed.

Select the Bending rotation connection — Flexible or Rigid. In the Flexible case, enter the 
Bending stiffness, kθb. The bending rotation across the two rotors is connected by a 
spring of the given stiffness. In the Rigid case, tilting rotations of both the rotors are 
rigidly connected. On an exterior boundary, the other rotor is assumed to be fixed.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Rotor Coupling

Solid Rotor, Fixed Frame>Rotor Coupling

Ribbon
Physics tab with Solid Rotor selected:

Boundaries>Solid Rotor>Rotor Coupling

Physics tab with Solid Rotor, Fixed Frame selected:

Boundaries>Solid Rotor, Fixed Frame>Rotor Coupling

Body Load

Add a Body Load to domains for modeling volumetric loads.
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F R A M E  T Y P E

Select a Frame type — Spatial or Corotating to specify the load in the appropriate frame.

F O R C E

Select a Load type — Load defined as force per unit volume, or Total force.

Then enter values or expressions for the force components based on the selection.

• Since the rotor is modeled in a rotating frame in a Solid Rotor 
interface, a stationary load in a Corotating frame works as a stationary 
load in the model. A stationary load in the Spatial frame will, however, 
change its direction with the angular velocity of the rotor, and 
therefore acts as a time-dependent load in the model.

• In the Solid Rotor, Fixed Frame interface the above behavior of the 
loads in different frames is interchanged.

• For a frequency domain analysis, a load in the Spatial frame is shifted 
with the rotor’s phase to give the effect of the rotation in the Solid 
Rotor interface.

• Similarly, a load in the Corotating frame is shifted with the rotor’s phase 
for a frequency domain analysis to give the effect of rotation in the 
Solid Rotor, Fixed Frame interface.

• For a stationary analysis, Frame type has no influence on the analysis. 

• After selecting a Load type, the Load list normally only contains User 

defined. When combined with another physics interface that can 
provide this type of load, it is also possible to choose a predefined load 
from this list.

• For Total force, COMSOL Multiphysics divides the total force by the 
volume of the domains where the load is active. 

LOAD TYPE VARIABLE SI UNIT

Load defined as force per 
unit volume

FV N/m3

Total force Ftot N
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Body Load

Solid Rotor, Fixed Frame>Body Load

Ribbon
Physics tab with Solid Rotor selected:

Domains>Solid Rotor>Body Load

Physics tab with Solid Rotor, Fixed Frame selected:

Domains>Solid Rotor, Fixed Frame>Body Load

Gravity

When you add a Gravity node, gravity forces are applied to all selected features in the 
physics interface with a density, mass, or mass distribution. Here, you select domains, 
and all objects with a lower dimensionality that belong to the selection are also 
automatically included.

The gravitational load acts in a fixed spatial direction. The load intensity is g = ρgeg, 
where g as a default is the acceleration of gravity (a predefined physical constant). 
Therefore, in the frame of the rotor, it appears as a rotating load and is modeled as so. 
In stationary analysis, only the component of the gravity along the axis of the rotor is 
used. The action of gravity can also be seen as a linearly accelerated frame of reference.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes. It can be used when 
prescribing the direction of the gravitational forces.

G R A V I T Y

Enter the components of the Gravity g. The default value is g_const, which is the 
physical constant with a value of 9.8066 m/s2.

You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.
T H E  S O L I D  R O T O R  I N T E R F A C E  |  185



186 |  C H A P T E
L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Gravity

Solid Rotor, Fixed Frame>Gravity

Ribbon
Physics tab with Solid Rotor selected:

Domains>Solid Rotor>Gravity

Physics tab with Solid Rotor, Fixed Frame selected:

Domains>Solid Rotor, Fixed Frame>Gravity

Boundary Load

Use a Boundary Load to apply traction or pressure to boundaries.

F R A M E  T Y P E

Select a Frame type — Spatial, or Corotating to specify the load in the appropriate frame.

• Since the rotor is modeled in a rotating frame in a Solid Rotor 
interface, a stationary load in a Corotating frame works as a stationary 
load in the model. A stationary load in the Spatial frame will, however, 
change its direction with the angular velocity of the rotor, and 
therefore acts as a time-dependent load in the model.

• In the Solid Rotor, Fixed Frame interface the above behavior of the 
loads in different frames is interchanged.

• For a frequency domain analysis, a load in the Spatial frame is shifted 
with the rotor’s phase to give the effect of rotation in the Solid Rotor 
interface.

• Similarly, a load in the Corotating frame is shifted with the rotor’s phase 
for a frequency domain analysis to give the effect of rotation in the 
Solid Rotor, Fixed Frame interface.

• For a stationary analysis, Frame type has no influence on the analysis.
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F O R C E

Select a Load type — Load defined as force per unit area, Pressure, or Total force. Then 
enter values or expressions for the load components based on the selection.

• For Load defined as force per unit area, you can define a distributed force over the 
selected boundary.

• For Total force, COMSOL Multiphysics then divides the total force by the area of 
the surfaces where the load is active.

• For Pressure, a scalar input is given, and the orientation of the load is given by the 
normal to the boundary. The pressure is positive when directed toward the solid.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Boundary Load

Solid Rotor, Fixed Frame>Boundary Load

Ribbon
Physics tab with Solid Rotor selected:

Boundaries>Solid Rotor>Boundary Load

Physics tab with Solid Rotor, Fixed Frame selected:

Boundaries>Solid Rotor, Fixed Frame>Boundary Load

After selecting a Load type, the Load list normally only contains User 

defined. When combined with another physics interface that can provide 
this type of load, it is also possible to choose a predefined load from this 
list.

LOAD TYPE VARIABLE SI UNIT

Load defined as force per 
unit area

FA N/m2

Total force Ftot N

Pressure p Pa

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.
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Applied Torque

Add an Applied Torque node to prescribe a torque acting on a cross section of the rotor. 
The selection should be a set of boundaries representing a cross section.

T O R Q U E

Enter the torque around the rotor axis, Tax. The positive orientation is the same as the 
rotor axis.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Applied Torque

Solid Rotor, Fixed Frame>Applied Torque

Ribbon
Physics tab with Solid Rotor selected:

Boundaries>Solid Rotor>Applied Torque

Physics tab with Solid Rotor, Fixed Frame selected:

Boundaries>Solid Rotor, Fixed Frame>Applied Torque

Added Mass

The Added Mass node is available on domains and boundaries and can be used to supply 
inertia that is not part of the rotor itself but is attached to the rotor. Therefore, inertial 
forces from this feature also take the effect of the rotation about the rotor axis into 
account. Such inertia does not need to be isotropic, in the sense that the inertial effects 
are not the same in all directions. It also adds the effect of acceleration due to gravity 
if the gravity feature is added in the current domain for the domain feature or in the 
neighboring domains for the boundary feature.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The added mass values are given with respect to the selected coordinate directions.

A D D E D  M A S S

Select a Mass type using Table 4-1 as a guide. The default option is the type for the 
geometric entity. The added mass matrix can be entered as Isotropic, Diagonal, or 
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Symmetric. For Isotropic, the same mass is used in all the diagonal elements of the mass 
matrix.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Added Mass (Domain, Boundary)
Solid Rotor, Fixed Frame>Added Mass (Domain, Boundary)

Ribbon
Physics tab with Solid Rotor selected:

Domains>Solid Rotor>Added Mass

Boundaries>Solid Rotor>Added Mass

Physics tab with Solid Rotor, Fixed Frame selected:

Domains>Solid Rotor, Fixed Frame>Added Mass

Boundaries>Solid Rotor, Fixed Frame>Added Mass

Spur Gear

Use the Spur Gear node to model a spur gear. The gear is assumed to be rigid. Select 
one or more domains to make them a part of the gear.

A spur gear can be connected to another Spur Gear, or a Helical Gear through the Gear 
Pair node. Two gears can be connected to each other only if they satisfy the Gear Pair 
Compatibility Criteria.

TABLE 4-1:  AVAILABLE MASS TYPES BASED ON GEOMETRIC ENTITY

MASS TYPE VARIABLE SI UNITS GEOMETRIC ENTITY LEVEL

Mass per unit volume pV kg/m3 domains

Mass per unit area pA kg/m2 boundaries

Total mass m kg domains, boundaries
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The gear has the following subnodes to constraint the displacement and rotation, to 
apply forces and moments, and to add mass and moment of inertia:

S K E T C H

This section shows a sketch of a spur gear. Some of the inputs are also highlighted in 
the sketch.

G E A R  P R O P E R T I E S

Specify the properties of a spur gear in this section.

• Select the Gear mesh — External or Internal.

• Enter Number of teeth n.

• Enter Pitch diameter dp.

• Enter Pressure angle α.

G E A R  A X I S

The gear axis is defined as the axis of rotation of the gear. The gear axis is defined as 
the axis of rotation of the gear. To define the axis, choose Specify direction or Select a 
parallel edge.

• For Specify direction, enter a value or expression for eg. The default is (0, 0, 1). The 
direction is specified in the selected coordinate system.

• For Select a parallel edge, an edge can be selected on the Gear Axis subnode, which 
is added automatically. The vector from the first to last end of the edge is used to 
define the gear axis. Any edge in the model can be used. Select the Reverse direction 
check box to reverse the direction of the gear axis.

These subnodes are described in the Structural Mechanics Module 
User’s Guide:

• Fixed Constraint (Rigid Domain)

• Prescribed Displacement/Rotation

• Applied Force (Rigid Domain)

• Applied Moment (Rigid Domain)

• Mass and Moment of Inertia (Rigid Domain)
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D E N S I T Y

The default Density ρ is taken From material. In this case, the material assignment for 
the domain supplies the mass density. For User defined enter another value or 
expression.

C E N T E R  O F  R O T A T I O N

The center of rotation is the point about which the rotation of the gear is interpreted. 
Select an option from the list — Center of mass, Centroid of selected entities, or User 

defined.

• For User defined, enter the coordinates of center of rotation Xc in the global 
coordinate system.

• For Centroid of selected entities, select an Entity level — Boundary, Edge (3D 
components), or Point.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Gears>Spur Gear

Solid Rotor, Fixed Frame>Gears>Spur Gear

Ribbon
Physics tab with Solid Rotor or Solid Rotor, Fixed Frame selected:

Domains>Gears>Spur Gear

The density is needed for dynamic analysis. It is also used when computing 
mass forces for gravitational or rotating frame loads, and when computing 
mass properties (Computing Mass Properties).

Once chosen, a default Center of Rotation: Boundary, Center of Rotation: 

Edge, or Center of Rotation: Point subnode is added.

Spur Gear Theory
T H E  S O L I D  R O T O R  I N T E R F A C E  |  191



192 |  C H A P T E
Helical Gear

Use the Helical Gear node to model a helical gear. The gear is assumed to be rigid. 
Select one or more domains to make them a part of the gear.

A helical gear can be connected to another Helical Gear, or a Spur Gear through the 
Gear Pair node. Two gears can be connected to each other only if they satisfy the Gear 
Pair Compatibility Criteria.

G E A R  P R O P E R T I E S

Specify the properties of a helical gear in this section.

• Select the Gear mesh — External or Internal.

• Enter Number of teeth n.

• Enter Pitch diameter dp.

• Enter Pressure angle α.

• Enter Helix angle β.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Gears>Helical Gear

Solid Rotor, Fixed Frame>Gears>Helical Gear

Ribbon
Physics tab with Solid Rotor or Solid Rotor, Fixed Frame selected:

Domains>Gears>Helical Gear

Bevel Gear

Use the Bevel Gear node to model a bevel gear. The gear is assumed to be rigid. Select 
one or more domains to make them a part of the gear.

See Spur Gear for the list of subnodes and the following settings — 
Sketch, Gear Axis, Density, Center of Rotation, and Initial Values.

Helical Gear Theory
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A bevel gear can be connected to another Bevel Gear through the Gear Pair node. Two 
bevel gears can be connected to each other only if they satisfy the Gear Pair 
Compatibility Criteria.

G E A R  P R O P E R T I E S

Specify the properties of a bevel gear in this section.

• Enter Number of teeth n.

• Enter Pitch diameter dp.

• Enter Pressure angle α.

• Enter Cone angle γ.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Gears>Bevel Gear

Solid Rotor, Fixed Frame>Gears>Bevel Gear

Ribbon
Physics tab with Solid Rotor or Solid Rotor, Fixed Frame selected:

Domains>Gears>Bevel Gear

Gear Axis

Use the Gear Axis node to select any edge in the geometry that is parallel to the axis of 
rotation of the gear.

This setting is available for the Spur Gear, Helical Gear, and Bevel Gear nodes.

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically added when Select a parallel edge is selected in the parent 
gear node. It cannot be added or removed manually.

See Spur Gear for the list of subnodes and the following settings — 

Sketch, Gear Axis, Density, Center of Rotation, and Initial Values.

Bevel Gear Theory
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Initial Values (Gear)

The Initial Values subnode is automatically added to the Spur Gear, Helical Gear, and 
Bevel Gear nodes.

You can enter initial values for the rigid body displacement, rotation, and velocities, 
which can serve as an initial condition for a transient simulation or as an initial guess 
for a nonlinear analysis. The initial values that you specify are interpreted in the selected 
coordinate system.

C E N T E R  O F  R O T A T I O N

Select an option from the list — From Parent, or Centroid of selected entities, or User 

defined.

• For Centroid of selected entities, select an Entity level — Boundary, Edge, or Point.

• For User defined, in the table, enter the Global coordinates of center of rotation Xc.

I N I T I A L  V A L U E S :  T R A N S L A T I O N A L

• Displacement at center of rotation u.

• Velocity at center of rotation ∂u/∂t.

I N I T I A L  V A L U E S :  R O T A T I O N A L

• Axis of rotation Ω

• Angle of rotation φ.

• Angular velocity ω.

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically added to the Spur Gear, Helical Gear, and Bevel Gear 
nodes. It cannot be added or removed manually.

Once chosen, a default Center of Rotation: Boundary, Center of 
Rotation: Edge, or Center of Rotation: Point subnode is added.

See the Rigid Domain Model section in the Structural Mechanics 
Module User’s Guide for more information.
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Gear Pair

Use the Gear Pair node to create a connection between gears of the types Spur Gear, 
Helical Gear, or Bevel Gear in such a way that, at the contact point, they have no 
relative motion along the line of action. The remaining displacements and rotations of 
both the gears are independent of each other.

If the Line contact option is chosen in the Contact model, one additional constraint is 
added at the contact point to restrict the relative rotation about a line joining the two 
gear centers.

When Friction is included for a gear pair, frictional forces in the plane perpendicular to 
the line of action are added on both the gears.

S K E T C H

This section shows a sketch of a gear pair. The sketch highlights the coordinate system 
attached to both the gears, the coordinate system attached to the gear tooth, the line 
of action, and other relevant input parameters.

G E A R  S E L E C T I O N

Select Wheel and Pinion from the list of gears. You can select any Spur Gear, Helical 
Gear, or Bevel Gear node that is defined for the model.

L I N E  O F  A C T I O N

Define the line of action by specifying Obtained by rotation of tangent in — Clockwise 

direction, or Counterclockwise direction.

Select the Clockwise direction option in the following cases:

• Wheel is the driver and the Wheel has positive rotation about its own axis. 

• Pinion is the driver and the Wheel has negative rotation about its own axis.

Select the Counterclockwise direction option in the following cases:

• Pinion is the driver and the Wheel has positive rotation about its own axis.

• Wheel is the driver and the Wheel has negative rotation about its own axis. 

The gear pair sketch in the Sketch section is updated based on the selection and shows 
the line of action for both cases.
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C O N T A C T  M O D E L

Define the contact model for a gear pair in this section.

• Select the Configuration — Parallel or intersecting or Neither parallel nor intersecting. 
The Configuration is always set to Parallel or intersecting for spur and bevel gears. For 
helical gears, you can select the Configuration as Parallel or intersecting (for parallel 
axis helical gears) or Neither parallel nor intersecting (for crossed axis helical gears). 

• For Parallel or intersecting, select the Contact model — Point contact, or Line contact. 
For Neither parallel nor intersecting the Contact model is always set to Point contact.

• For Parallel or intersecting, enter Contact point offset from pinion center zpn. For 
Neither parallel nor intersecting it is automatically computed.

• For Line contact, enter Working width of pinion wpn.

G E A R  P A I R  P R O P E R T I E S

Define the advanced properties for a gear pair in this section.

• Select Include gear elasticity to enter the gear mesh stiffness, mesh damping, and the 
contact ratio. These properties can be entered in the Gear Elasticity subnode, which 
is added automatically. By default, this option is not selected.

• Select Include transmission error to enter the static transmission error for individual 
gears or for the gear pair. These can be entered in the Transmission Error subnode, 
which is added automatically. By default, this option is not selected.

• Select Include backlash to enter backlash in a gear pair. This can be entered in the 
Backlash subnode, which is added automatically. By default, this option is not 
selected.

• Select Include friction to add friction at the contact point. Enter frictional properties 
in the Friction (Gear) subnode, which is added automatically. By default, this option 
is not selected.

C O N T A C T  F O R C E  C O M P U T A T I O N

Select an option from the list to use the method of computation for the forces at the 
contact point — Computed using weak constraints, or Computed using penalty method. 
Alternatively, you can also choose Do not compute.
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For Computed using penalty method, enter Penalty factor pc. The default value is 
((1[1/ms])^2)*rotsld.grp1.me. The exact naming of the variable depends on the 
tags of the nodes in the model tree.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Solid Rotor>Gear Pair

Solid Rotor, Fixed Frame>Gear Pair

Ribbon
Physics tab with Solid Rotor selected:

Global>Solid Rotor>Gear Pair

Physics tab with Solid Rotor, Fixed Frame selected:

Global>Solid Rotor, Fixed Frame>Gear Pair

Gear Elasticity

The Gear Elasticity subnode is automatically added to a Gear Pair node when Include 

gear elasticity is selected under Gear Properties. In this node, you can enter the elastic 
properties of a gear pair, such as gear mesh stiffness, mesh damping, and contact ratio.

The contents of the Gear Elasticity settings adapt to the type of gear pair where it is 
used.

S K E T C H

This section shows a sketch of the contact point of gear pair in the gear tooth normal 
plane. The sketch highlights the line of action along which stiffness and damping are 
interpreted.

M E S H  S T I F F N E S S

Select the mesh stiffness method Specify — Tooth stiffness of individual gears, or Total 

stiffness of gear pair.

Theory for Gear Pairs
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For Tooth stiffness of individual gears, enter the following: 

• Enter Wheel tooth stiffness as function of mesh cycle, kt,wh, and Pinion tooth stiffness 

as function of mesh cycle, kt,pn. The default expressions are
(0[N/m])*rotsld.grp1.thm_wh and (0[N/m])*mbd.rotsld.thm_pn 
respectively. The exact naming of the variables depends on the tags of the nodes in 
the model tree.

• Specify Contact ratio in mesh cycle — Constant or Varying.

• For Constant contact ratio, select Contact ratio — 1, 2, or 3.

• For Varying contact ratio, select Maximum contact ratio — 2, or 3. Also enter the Next 

tooth engagement position in mesh cycle, ζ. The value of ζ must vary between 1/2 and 
1 when Maximum contact ratio is set to 2 and between 1/3 to 1/2 when Maximum 

contact ratio is set to 3. 

For Total stiffness of gear pair, enter the following:

• Select the Total stiffness as function of — Wheel mesh cycle, Wheel full revolution, 
Pinion mesh cycle, or Pinion full revolution.

• Enter Total stiffness, kg. The default expression of total stiffness depends on the 
selection in previous input (for example. it is (0[N/m])*rotsld.grp1.thm_wh 
when Wheel mesh cycle is selected). The exact naming of the variable depends on the 
tags of the nodes in the model tree.

M E S H  D A M P I N G

Enter Mesh damping, cg. The mesh damping can be specified as proportional to the 
mesh stiffness. The default expression is (0[s])*rotsld.grp1.kg. The exact naming 
of the variable depends on the tags of the nodes in the model tree.

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically added when Include gear elasticity is selected in the parent 
Gear Pair nodes. It cannot be added or removed manually.

Theory for Gear Elasticity
R  4 :  S O L I D  R O T O R



Transmission Error

The Transmission Error subnode is automatically added to a Gear Pair node when 
Include transmission error is selected under Gear Properties. The static transmission 
error for individual gears or for a gear pair can be entered in this node.

S K E T C H

This section shows a sketch of the contact point of a gear pair in the gear tooth normal 
plane. The sketch highlights the line of action along which transmission error is 
interpreted.

T R A N S M I S S I O N  E R R O R

Select the transmission error method Specify — Transmission error of individual gears, 
or Transmission error of gear pair.

For Transmission error of individual gears, enter the following:

Select the Wheel transmission error as function of — Mesh cycle, or Full revolution and 
enter Wheel transmission error ewh. Similarly, select the Pinion transmission error as 

function of — Mesh cycle, or Full revolution and enter Pinion transmission error epn.

The default expressions for the transmission errors depend on the selection in previous 
input (for example, the default expression of Wheel transmission error is 
(0[m])*rotsld.grp1.thm_wh when Mesh cycle is selected). The exact naming of the 
variable depends on the tags of the nodes in the model tree.

For Transmission error of gear pair, enter the following:

Select the Transmission error as function of — Wheel mesh cycle, Wheel full revolution, 
Pinion mesh cycle, or Pinion full revolution.

Enter a Total transmission error, et. The default expression of total transmission error 
depends on the selection in previous input (for example, it is 
(0[m])*rotsld.grp1.thm_wh when Wheel mesh cycle is selected). The exact naming 
of the variable depends on the tags of the nodes in the model tree.

Theory for Transmission Error
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L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically added when Include transmission error is selected in the 
parent Gear Pair node. It cannot be added or removed manually.

Backlash

The Backlash subnode is automatically added to a Gear Pair node when Include backlash 
is selected under Gear Properties.

S K E T C H

This section shows a sketch of the contact point of gear pair in the gear tooth normal 
plane. The sketch highlights the direction in which backlash is interpreted.

B A C K L A S H

• Enter Backlash bl.

• Enter Penalty factor pb. The default expression is ((1[1/
ms])^2)*rotsld.grp1.Ie. The exact naming of the variable depends on the tags 
of the nodes in the model tree.

A D V A N C E D

• Select Manual control on time stepping to restrict the maximum time step taken by 
the solver when there is finite penetration.

• Enter Maximum allowable time step Δtmax. The default expression is (pi/
30)*(sqrt(rotsld.grp1.Ie/rotsld.grp1.pb). The exact naming of the 
variables depends on the tags of the nodes in the model tree.

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically added when Include backlash is selected in the parent Gear 
Pair node. It cannot be added or removed manually.

Backlash can only be specified on a gear pair in a time-dependent analysis.

Theory for Backlash
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Friction (Gear)

The Friction subnode is automatically added to a Gear Pair node when Include friction 
is selected under Gear Properties. Use this node to model friction losses on a gear pair.

F R I C T I O N

• Enter a Frictional coefficient μ. 

• Enter a Characteristic slip velocity v0. The default is mbd.diag*(1e-3[1/s]), where 
the mbd.diag variable contains the diagonal of the bounding box of the geometry. 
The characteristic slip velocity should be small when compared to the actual slip 
velocity at the contact point. It is the velocity with which the contact surfaces slide, 
even under sticking conditions.

N O R M A L  F O R C E

• Specify Normal force defined through — Contact force or User defined force. For 
Contact force option, it is required that contact force is computed on the parent Gear 

Pair node.

• For the User defined force option, enter Normal force N.

A D V A N C E D

Enter values or expressions for the:

• Additional sliding resistance Ff,r.

• Maximum friction force Ff,max. The default is Inf, which means that no upper limit 
is imposed on the friction force.

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically added when Include friction is selected in the parent Gear 
Pair node. It cannot be added or removed manually.

Friction can only be applied to a gear pair in a time-dependent analysis.

Theory for Gear Friction
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 5
S o l i d  R o t o r ,  F i x e d  F r a m e
This chapter describes the Solid Rotor, Fixed Frame interface ( ) and its 
functionality, which is found under the Structural Mechanics>Rotordynamics branch 
( ) when adding a physics interface.
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Th e  S o l i d  Ro t o r ,  F i x e d  F r ame 
I n t e r f a c e

The Solid Rotor, Fixed Frame (srotf) interface ( ) is found under the Structural 

Mechanics>Rotordynamics branch ( ) when adding a physics interface. It is intended 
for the analysis of rotating 3D structural components that are symmetric about their 
axis. As opposed to the Solid Rotor interface, the quantities are defined as seen by an 
observer sitting in a space-fixed frame. With this interface, you can compute 
displacements, velocities, accelerations, and stresses. The journal and thrust bearing 
features provided in this interface can be used to model different type of bearings. You 
can also model the effect of a bearing mounted on a foundation.

The Linear Elastic Material is the default material model. It adds the equations for the 
displacements in a linear elastic rotor and has a Settings window to define the elastic 
and inertia properties of a material. The equations in this feature also account for the 
frame acceleration forces, for example ccentrifugal, Coriolis and Euler accelerations, 
which arise due to the rotation of the rotor.

When the Solid Rotor interface is added, the following default nodes are added to the 
Model Builder — Linear Elastic Material; Rotor Axis (a domain feature to specify the axis 
of the rotor); Free (a boundary condition where boundaries are free, with no loads or 
constraints); Initial Values; and Fixed Axial Rotation (a reference surface where axial 
rotation relative to the rigid rotation of the rotor is zero). From the Physics toolbar, 
you can add additional features to your model in order to implement other rotor 
properties. You can also right-click the Solid Rotor, Fixed Frame interface to select 
physics features from the context menu.

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is srotf.
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R O T O R  S P E E D

Enter the Rotor speed as revolutions per time or the angular velocity (variable Ov). This 
speed, together with the rotor axis, is used to compute the frame acceleration forces 
due to the rotation of the rotor.

R E F E R E N C E  P O I N T  F O R  M O M E N T  C O M P U T A T I O N

Enter the coordinates for the Reference point for moment computation xref, (variable 
refpnt). The resulting moments (applied or as reactions) are then computed relative 
to this reference point. During the results and analysis stage, the coordinates can be 
changed in the Parameters section in the result nodes. The point is given as a material 
coordinate, that is in the rotating frame.

D E P E N D E N T  V A R I A B L E S

The physics interface uses the global spatial components of the Displacement field u as 
dependent variables in the rotor domain. The default names for the components are 
(u, v, w).

You can change both the field name and the individual component names. If a new 
field name coincides with the name of another displacement field, the two fields (and 
the interfaces that define them) share degrees of freedom and dependent variable 
component names.

A new field name must not coincide with the name of a field of another type (that is, 
it must contain a displacement field), or with a component name belonging to some 
other field. Component names must be unique within a model except when two 
interfaces share a common field name.

The Flexible Foundation node adds two dependent vector variables, one for translation 
and one for rotation.

D I S C R E T I Z A T I O N

The discretization order applies to flexible bodies. The default is to use Quadratic shape 
functions for the Displacement field.

• Domain, Boundary, and Pair Nodes for the Solid Rotor, Fixed Frame 
Interface

• Rotordynamics Theory
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Domain, Boundary, and Pair Nodes for the Solid Rotor, Fixed Frame 
Interface

The Solid Rotor, Fixed Frame Interface has domain, boundary, and pair nodes (and 
subnodes), listed in alphabetical order below, available from the Physics ribbon toolbar 
(Windows users), Physics context menu (Mac or Linux users), or by right-clicking the 
main physics interface node to access the context menu (all users).

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.

In the COMSOL Multiphysics Reference Manual, see Table 2-4 for links 
to common sections and Table 2-5 for common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.

The links to the nodes described in external guides, such as the Structural 
Mechanics Module User’s Guide, do not work in the PDF, only from the 
online help in COMSOL Multiphysics.
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The following list contains links to the documentation for the domain and boundary 
nodes specific to the Solid Rotor, Fixed Frame interface and are described in detail for 
the Solid Rotor interface:

These subnodes are available from the main parent nodes as indicated in the 
documentation. These nodes are described in detail for the Solid Rotor interface: 

These nodes are described in detail for the Solid Mechanics interface:

• Active Magnetic Bearing

• Added Mass

• Applied Torque

• Bevel Gear

• Body Load

• Boundary Load

• Change Rotor Speed

• Fixed Axial Rotation

• Gear Pair

• Gravity

• Helical Gear

• Initial Values

• Journal Bearing

• Linear Elastic Material

• Liquid Annular Seal

• Multi-Spool Bearing

• Radial Roller Bearing

• Rotor Axis

• Rotor Coupling

• Spur Gear

• Thrust Bearing

• Axis

• First Support

• Flexible Foundation

• Initial Values (Gear)

• Misalignment

• Moving Foundation

• Second Support

• Squeeze Film Damper

• Average Rotation

• Damping

• External Strain

• External Stress

• Initial Stress and Strain

• Linear Elastic Material

• Phase

• Rigid Domain

• Thermal Expansion (for Materials)
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 6
B e a m  R o t o r
This chapter describes the Beam Rotor interface ( ) and its functionality, which 
is found under the Structural Mechanics>Rotordynamics branch ( ) when adding 
a physics interface.

In this chapter:

• Beam Rotor Theory

• The Beam Rotor Interface
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Beam Ro t o r  T h eo r y

The first sections of this chapter introduce you to theory that is specific to the Beam 
Rotor interface features:

• Displacement, Velocity, and Acceleration

• Implementation

• Disk
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D i s p l a c emen t ,  V e l o c i t y ,  a nd 
A c c e l e r a t i o n

This section aims at defining the displacement, the rotation field, and corresponding 
velocity and acceleration of a point on the rotor. Since a line geometry is used to 
represent the rotor in the Beam Rotor interface, this line itself represents the axis of 
the rotor. Each point on the line represents the centroid of the cross section as shown 
in Figure 6-1.

Figure 6-1: Geometric representation of the rotor.

Assume that u and θ are the displacement and deformational rotations of the centroid 
of the rotor cross section in the spatial frame. Let X be the material position of a point 
on the centroid of the rotor. Then, the current position of a point on the rotor can be 
written as

 (6-1)

where Rθ is the rotation matrix due to the rotor deformation and R is the rotation 
matrix corresponding to the axial rotation of the rotor. The sequence of the rotations 
is such that first the cross section of the rotor rotates with the rigid rotation 
corresponding to the axial rotation of the rotor, followed by the deformational 

x X u Rθ Rr( )+ +=
D I S P L A C E M E N T ,  V E L O C I T Y ,  A N D  A C C E L E R A T I O N  |  211



212 |  C H A P T E
rotation due to bending and twisting of the rotor. Therefore, components of the 
rotation vector corresponding to deformational rotation of the rotor are observed in 
the fixed frame. In the corotating frame, r is the radial vector from the centroid to an 
arbitrary point in the cross section. The velocity of the point can be obtained by taking 
the time derivative of Equation 6-1:

where is the skew-symmetric tensor corresponding to the angular velocity vector 
 of Rθ, and  is the skew-symmetric tensor corresponding to the angular velocity 

vector Ω of R. Here, since Ω is premultiplied with the rotation matrix to get the time 
derivative of the rotation matrix, it is the spin tensor observed in the spatial frame.

The acceleration is then

 (6-2)

The term combining whirl velocity tensor  and spin tensor  in the above 
expression is a gyroscopic acceleration term.
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Imp l emen t a t i o n

Due to the frame acceleration in the rotor, inertial contributions to the virtual work 
are obtained by considering:

The variation of the position using Equation 6-1is

Using this equation and the acceleration from Equation 6-2, the inertial contribution 
to the virtual work is 

The integration over volume can be split into an integration over the cross-sectional 
area followed by integration over the length. By using the fact that 

,

the contribution to the virtual work is simplified to
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and 

For a geometrically linear formulation, , and higher-order terms in θ can be 
dropped. Then, the inertial contribution to the virtual work can be further simplified 
to
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Due to the rotation of the rotor, the principal directions of the rotor cross 
section change orientation in the spatial frame. Therefore, all the strain 
and stress components are defined in the current principal directions of 
the cross sections.

For details about stresses, strains, and strain energy contributions to the 
virtual work, see

• Strain-Displacement/Rotation Relation

• Stress-Strain Relation

• Implementation

in the Theory for the Beam Interface chapter of the Structural 
Mechanics Module User’s Guide.
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D i s k

Disk features represent different types of mounting on the main rotor and are mainly 
used to provide inertial information of these mountings. These features will affect the 
dynamics of the rotor. Typical examples of mountings include flywheels, pulleys, gears, 
impellers, and rotor-blade assemblies. Mounting offset is also accounted for in 
modeling the inertial effects. Therefore, mass, moment of inertia, and offset are the 
inputs for this feature. If the moment of inertia is specified about the center of mass of 
the mounting, which has an offset from the mounting point, then the moment of 
inertia tensor about the mounting point is given by

where roff is the vector from the centroid of the mounting to the mounting point on 
the rotor, and I is the identity tensor. The center of mass of the mounting can be 
specified using two methods: relative to the mounting point or by absolute position.

The offset of the mounting point from the center of mass is

,

for relative position or 

for absolute position.

The contribution to the virtual work, including the frame acceleration and offset 
effect, is

where Is is the moment of inertia about the mounting point in the spatial frame and is 
given by
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Th e  Beam Ro t o r  I n t e r f a c e

The Beam Rotor (rotbm) interface ( ), found under the 
Structural Mechanics>Rotordynamics branch ( ) when adding a physics interface, is 
intended for analysis of rotating structural components in 3D modeled using a line 
geometry. With this interface, you can compute are displacements, velocities, 
accelerations, and stresses. The Journal Bearing and Thrust Bearing features provided in 
this interface can be used to model different types of bearings. You can also model the 
effect of a bearing mounted on a foundation.

The Linear Elastic Material model is the default material model. It adds the equations 
for the displacements in a linear elastic rotor and has a Settings window to define the 
elastic and inertia properties of a material. The equations in this feature also account 
for the frame acceleration forces due to the rotation of the rotor.

When the Beam Rotor interface is added, these default nodes are also added to the 
Model Builder — Linear Elastic Material; Rotor Cross Section (cross-sectional properties 
of the Rotor domain); Free (a boundary condition where boundaries are free, with no 
loads or constraints); and Initial Values. The Fixed Axial Rotation (a reference point 
where the axial rotation relative to the rigid rotation of the rotor is zero), is the default 
node and is only added when the No torsion check box is not selected in the interface’s 
Axial and Torsional Vibration section.

From the Physics toolbar, you can add features that implement other rotor properties. 
You can also right-click Beam Rotor to select physics features from the context menu.

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is rotbm.
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R O T O R  S P E E D

Enter the Rotor speed as revolutions per time or angular velocity (variable Ov). This 
speed, together with the rotor axis, is then used to compute the frame acceleration 
forces due to rotation of the rotor.

A X I A L  A N D  T O R S I O N A L  V I B R A T I O N

Clear the No torsion check box (selected by default) to include the torsional vibration 
in the rotor. Similarly, clear the No axial vibration check box (selected by default) to also 
include the axial vibration in the rotor model.

R E S U L T S

Clear the Include the undeformed geometry in stress/whirl plot (selected by default) to 
avoid plotting the undeformed geometry in the stress and whirl plots.

R E F E R E N C E  P O I N T  F O R  M O M E N T  C O M P U T A T I O N

Enter the coordinates for the Reference point for moment computation xref (variable 
refpnt). The resulting moments (applied or as reactions) are then computed relative 
to this reference point. During the results and analysis stage, the coordinates can be 
changed in the Parameters section in the result nodes.

D E P E N D E N T  V A R I A B L E S

The Beam Rotor interface includes the following dependent variables (fields):

• The displacement field u, which has three components (u, v, and w).

• The rotation angle θ, which also has three components (thx, thy, and thz).

The names can be changed, but the names of fields and dependent variables must be 
unique within a model.

D I S C R E T I Z A T I O N

The discretization cannot be changed. The element has different shape functions for 
the axial and transversal degrees of freedom. The axial displacement and twist are 
represented by linear shape functions, while the bending is represented by a cubic 
shape function (Hermitian element).

• Domain, Boundary, and Pair Nodes for the Beam Rotor Interface

• Beam Rotor Theory
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Domain, Boundary, and Pair Nodes for the Beam Rotor Interface

The Beam Rotor Interface has the following edge, point, and pair nodes (and 
subnodes), listed in alphabetical order, and available from the Physics ribbon toolbar 
(Windows users), Physics context menu (Mac or Linux users), or by right-clicking the 
main physics interface node to access the context menu (all users).

F E A T U R E S  A V A I L A B L E  F R O M  S U B M E N U S

Many features for the Beam Rotor interface are added from submenus in the Physics 
toolbar groups or context menu (when you right-click the node). The submenu name 
is the same in both cases.

The submenu at the Edge level (3D) is:

• Line Constraints.

The submenus at the Point level are

• More Constraints

• Pairs

L I N K S  T O  F E A T U R E  N O D E  I N F O R M A T I O N

These nodes (and subnodes) are described in the following section (listed in 
alphabetical order):

These nodes are described for the Beam and Solid Mechanics Interfaces:

• Disk

• Edge Load

• Fixed Axial Rotation

• Journal Bearing

• Point Load

• Radial Roller Bearing

• Rotor Coupling

• Rotor Cross Section

• Squeeze Film Damper

• Thrust Bearing

• Edge Load

• Gravity

• External Stress

• Initial Stress and Strain

• Initial Values

• Linear Elastic Material

• Point Load

• Thermal Expansion (for Materials)
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These nodes are described for the Solid Rotor interface:.

Initial Values

The Initial Values node adds initial values for the displacement field, the velocity field, 
the rotations, and the angular velocity. These values serve as initial conditions for a 
transient simulation or as an initial guess for a nonlinear analysis. In addition to the 
default Initial Values node always present in the interface, you can add more Initial 

Values nodes as needed.

I N I T I A L  V A L U E S

Enter values or expressions for the following based on space dimension:

• Displacement field u

• Velocity field 

• Rotation field θ

• Angular velocity 

Context Menus
Beam Rotor>Initial Values

• Damping

• Flexible Foundation

• Misalignment

• Moving Foundation

In the COMSOL Multiphysics Reference Manual see Table 2-4 for links 
to common sections and Table 2-5 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.

The links to the nodes described in external guides, such as the Structural 
Mechanics Module User’s Guide, do not work in the PDF, only from the 
online help in COMSOL Multiphysics.

td
du

td
dθ
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Beam Rotor>Edges>Initial Values

Ribbon
Physics tab with Beam Rotor selected:

Edges>Beam Rotor>Initial Values

Rotor Cross Section

In the Rotor Cross Section node, you specify the geometric properties of the rotor’s 
cross section. In addition, some stress evaluation properties can be defined.

S E C T I O N  O R I E N T A T I O N

In this section, you specify the orientation of the principal axes of the section. Enter 
the Orientation vector defining local y direction in the matrix. 

C R O S S  S E C T I O N  D E F I N I T I O N

The default cross section definition is Common section, with the Section type set to 
Circular. You can also choose a Pipe section. Select User defined if the rotor cross section 
does not match any of the predefined section types, or if the cross-section data is 
directly known.

For User defined, go to Basic Section Properties and Stress Evaluation Properties to 
continue defining the cross section.

This is required input data.

• Common Cross Sections

• Cross-Section Data
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For Common sections select a Section type — Circular, or Pipe. Then go to the relevant 
section below to continue defining the section. Each Section type also has a figure 
showing the section and its defining dimensions.

Circular
Enter a value or expression for the Diameter do.

Pipe
Enter values or expressions for the following. 

• Outer diameter do

• Inner diameter di

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam Rotor>Rotor Cross Section

Ribbon
Physics tab with Beam Rotor selected:

Edges>Beam Rotor>Rotor Cross Section

Fixed Axial Rotation

Use the default Fixed Axial Rotation node to select a point on the rotor that can be 
treated as a reference for the axial rotation of the rotor. This rotation is the twisting 
rotation of the rotor due to the torsional load.

For equations and a figure see:

• Circular Section

• Pipe Section

• Cross-Section Data in the Beam Interface chapter in the Structural 
Mechanics Module User’s Guide.
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L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam Rotor>Fixed Axial Rotation

Ribbon
Physics tab with Beam Rotor selected:

Points>Beam Rotor>Fixed Axial Rotation

Disk

Add a Disk node to a point on a rotor to model the inertial effects of components 
attached to the rotor. These components are considered to be rotating with the rotor. 

D I S K  P R O P E R T I E S

Select Center of mass — Selected points, Offset from the selected points, or User defined. 
This section specifies the location of the center of mass relative to the selected points. 
Then, go to the relevant section below to continue defining the section.

Selected Points
Select Disk type — Circular or Noncircular.

When the disk type is Circular, select Specified by — Mass and moment of inertia or 
Geometric dimensions. For Mass and moment of inertia, enter the mass, m, polar and 
diametral moment of inertia Ip and Id of the disk. For Geometric dimensions, enter the 
density, ρ, diameter, d, and thickness, h, of the disk.

When the disk type is Noncircular, enter the full moment of inertia tensor about the 
center of gravity Icg.

Offset from Selected Points
Enter the following offset information:

• Radial offset, zr

• Offset angle from local y direction, φ

• Axial offset, za

Subsequently, enter the inertial properties as in the Selected points case. The only 
exception is that in this case, the moment of inertia for the noncircular case can be 
specified either about Center of mass (Icg) or Selected points (I).
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User Defined Node
Enter the Position of the center of mass, rcm. Subsequently, enter the inertial properties 
as in the Offset from selected points case.

Journal Bearing

Add a Journal Bearing to points corresponding to the journal bearing location for 
modeling the effect of the bearing. You can select multiple points to add identical 
bearings at several locations.

If clearance is incorporated, you can also study the effect of misalignment by adding a 
Misalignment subnode.Radial Roller Bearing

B E A R I N G  O R I E N T A T I O N

Use the settings in this section to define the local y direction of the bearing. 
Subsequent vector and matrix inputs are specified in the local directions specified here.

Enter the Bearing orientation vector defining the local y direction. The direction given 
will be adjusted so that it is orthogonal to the rotor axis. The default value is the global 
y-axis.

You can further modify the y-axis orientation by entering an angle for the Rotation of 

the orientation vector around the bearing axis. The direction inferred from the previous 
setting will be rotated counterclockwise around the rotor axis.

B E A R I N G  P R O P E R T I E S

Select a Bearing Model — No clearance, Plain hydrodynamic, Total spring and damping 

constant, or Total force and moment. Then, go to the relevant section below to continue 
defining the section.

No Clearance
Clear the Constrain bending rotation check box (selected by default) to allow the 
bending rotation of the rotor at the bearing location.

Plain Hydrodynamic
Enter the Bulk Viscosity, μ, of the lubricant; Clearance, C, between the journal and 
bushing; the Journal radius, R; and the Journal length, L. For the Bulk viscosity, select 

Forces caused by the disk eccentricity rotate with the rotor. In a frequency 
domain analysis, this is phase shifted to give the effect of rotation.
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From material to use data from a material assigned to the selected journal boundaries, 
or select User defined to enter a value or expression.

These values are used to calculate the stiffness and damping constants by linearization 
of the total forces and moments obtained with a short bearing approximation in the 
Reynolds equation.

Clear the Include bending stiffness check box to ignore the resistance of the bearing to 
the bending rotation of the journal.

Total Spring and Damping Constant
Enter the translational and bending stiffness, ku and kθ. Select the 
Translational-rotational coupling check box to also model the coupling between the 
translational and rotational motion of the journal. Enter the values of the additional 
inputs, kuθ and kθu in this case. If you want to perform dynamic analysis, you can also 
enter nonzero translational and bending damping constants cu and cθ. Select the 
Translational-rotational coupling check box and enter the cuθ and cθu values to include 
the translational-rotational coupling in damping constants.

Total Force and Moment
Enter the Total force, F and Total moment, M, as a function of journal displacement 
and rotation. Default expressions are provided as an example of how to specify the 
forces and moments as a function of journal displacement and rotation. These 
expressions contain variables of the type <phys>.<feat>.{du2, du3, dth2, dth3}, 
which are the lateral components of the journal displacement and rotation of the 
journal in the local bearing directions.

If the No axial vibration check box in the Axial and Torsional Vibration section of the 
interface settings is not selected, the Constrain axial motion check box will be visible. 
Clear this check box if you want to use the Thrust Bearing node to restrict the axial 
motion.

F O U N D A T I O N  P R O P E R T I E S

Select one of the Fixed, Moving, Flexible, or Squeeze film damper foundation options. If 
the model component also contains other structural physics interfaces such as Solid 

Mechanics, Multibody Dynamics and Shell that have Attachment or Rigid Domain features, 
the above list is extended with the list of the attachments and rigid domains available 
in these physics interfaces. In the Moving, Flexible, and Squeeze film damper cases, the 
subnodes Moving Foundation, Flexible Foundation, or Squeeze Film Damper are 
automatically added. If any of the attachments or rigid domains is selected, 
displacement and rotation of the selected feature are used as foundation motion. 
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Attachments and rigid domains provide an easy way of coupling the rotor with the 
stator.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam Rotor>Bearings>Journal Bearing

Ribbon
Physics tab with Beam Rotor selected:

Points>Bearings>Journal Bearing

Thrust Bearing

Add a Thrust Bearing node and select a point representing the locations of the thrust 
bearing.

If clearance is incorporated, you can also study the effect of misalignment by adding a 
Misalignment subnode.

B E A R I N G  O R I E N T A T I O N

Use the settings in this section to define the local y direction of the bearing. 
Subsequent vector and matrix inputs are specified in the local directions specified here.

Enter the Bearing orientation vector defining the local y direction. The direction given 
will be adjusted so that it is orthogonal to the rotor axis. The default value is the global 
y-axis.

You can further modify the y-axis orientation by entering an angle for the Rotation of 

the orientation vector around the bearing axis. The direction inferred from the previous 
setting will be rotated counterclockwise around the rotor axis.

B E A R I N G  P R O P E R T I E S

Select a Bearing Model — No clearance, Total spring and damping constant, or Total force 

and moment. Then, go to the relevant section below to continue defining the 
properties.

Total Spring and Damping Constant
Enter the axial and bending stiffness, ku and kθ. Select the 
Translational-rotational coupling check box to also model the coupling between the 
axial and rotational motion of the collar. Enter expressions for the additional inputs, 
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kuθ and kθu in this case. If you want to perform dynamic analysis, you can also enter 
the values of the axial and bending damping constants cu and cθ. Select the 
Translational-rotational coupling check box and enter cuθ and cθu values to include the 
translational-rotational coupling in damping constants.

Total Force and Moment
Enter the Total force, Fax and Total moment, M, as functions of collar displacement and 
rotation.

Select the Constrain lateral motion check box (cleared by default) if you do not want to 
use the Journal Bearing node to restrict the lateral motion. Default expressions are 
provided as an example of how to specify the forces and moments as a function of collar 
displacement and rotation. These expressions contain variables of the type 
<phys>.<feat>.{du1, dth2, dth3}, which are the axial component of the collar 
displacement and lateral components of the collar rotation, respectively, in the local 
bearing directions.

F O U N D A T I O N  P R O P E R T I E S

Select one of the Fixed, Moving, or Flexible foundation options. If the model component 
also contains other structural physics interfaces such as Solid Mechanics, Multibody 

Dynamics and Shell that have Attachment or Rigid Domain features, the above list is 
extended with the list of the attachments and rigid domains available in these physics 
interfaces. In the Moving and Flexible cases, the subnodes Moving Foundation or 
Flexible Foundation are automatically added. If any of the attachments or rigid 
domains is selected, displacement and rotation of the selected feature are used as 
foundation motion. Attachments and rigid domains provide an easy way of coupling 
the rotor with the stator.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam Rotor>Bearings>Thrust Bearing

Ribbon
Physics tab with Beam Rotor selected:

Points>Bearings>Thrust Bearing
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Radial Roller Bearing

Add a Radial Roller Bearing node and select a point representing the location of the 
roller bearing.

You can also study the effect of misalignment by adding a Misalignment subnode.

B E A R I N G  O R I E N T A T I O N

Use the settings in this section to define the local y direction of the bearing. 
Subsequent vector and matrix inputs are specified in the local directions specified here.

Enter the Bearing orientation vector defining the local y direction. The direction given 
will be adjusted so that it is orthogonal to the rotor axis. The default value is the global 
y-axis.

You can further modify the y-axis orientation by entering an angle for the Rotation of 

the orientation vector around the bearing axis. The direction inferred from the previous 
setting will be rotated counterclockwise around the rotor axis.

G E O M E T R I C  P R O P E R T I E S

Select a Bearing Type — Deep groove ball bearing, Angular contact ball bearing, Self 

aligning ball bearing, Spherical roller bearing, Cylindrical roller bearing, or Tapered roller 

bearing. Then go to the relevant section below to continue defining the properties.

Deep Groove Ball Bearing
Select either of Single row or Double row to specify if the bearing consists of single or 
double rows of rollers. For Double row bearing, enter the Axial distance between the 

roller centers. Enter the geometric properties Number of balls; Ball diameter; Pitch 

diameter; Contour radius, inner race; and Contour radius, outer race to define the bearing 
geometry.

Angular Contact Ball Bearing
Select either of Single row or Double row to specify if the bearing consists of single or 
double rows of rollers. For Double row bearing, enter the Axial distance between the 

roller centers. Enter the other geometric properties Number of balls; Ball diameter; Pitch 

diameter; Contour radius, inner race; Contour radius, outer race; and Initial contact angle 
to define the bearing geometry.

Self Aligning Ball Bearing
Select either of Single row or Double row to specify if the bearing consists of single or 
double rows of rollers. Enter the other geometric properties Number of balls, Ball 
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diameter, Pitch diameter, Contour radius, inner race, Contour radius, outer race and Initial 

contact angle (only for Double row bearing) to define the bearing geometry.

Spherical Roller Bearing
Select either of Single row or Double row to specify if the bearing consists of single or 
double rows of rollers. For Double row bearing, enter the Axial distance between the 

roller centers and Initial contact angle. Enter the other geometric properties Number of 

rollers, Roller diameter, Pitch diameter, Contour radius, inner race, and Contour radius, 

outer race to define the bearing geometry.

Cylindrical Roller Bearing
Select either of Single row or Double row to specify if the bearing consists of single or 
double rows of rollers. For Double row bearing, enter the Axial distance between the 

roller centers. Enter the other geometric properties Number of rollers, Roller diameter, 

Effective length of the roller, and Pitch diameter to define the bearing geometry.

Tapered Roller Bearing
Select either of Single row or Double row to specify if the bearing consists of single or 
double rows of rollers. For Single row bearing, enter the Axial offset of roller center. For 
Double row bearing enter the Axial distance between the roller centers. Enter the other 
geometric properties Number of rollers, Roller diameter, Effective length of the roller, 
Pitch diameter, Cap radius, Semi cone angle, Roller axis orientation, Cap angle, and Flange 

contact angle to define the bearing geometry.

C L E A R A N C E  A N D  P R E L O A D

• Enter the value of Radial clearance for all bearings except Tapered roller bearing. For 
Tapered roller bearing, enter the values of Inner race clearance, Outer race clearance 
and Flange clearance.

• Select the Include preload check box to specify the preload in the bearings. For Deep 

groove ball bearing and Cylindrical roller bearing specify a Radial preload. For Angular 

contact ball Bearing and Tapered roller bearing specify an Axial preload. For Self 
aligning ball bearing and Spherical roller bearing specify a Radial preload for single row 
and an Axial preload for the double row bearings.

M A T E R I A L  P R O P E R T I E S

Enter the material properties Young’s modulus, inner race and Poisson’s ratio, inner race 
to define the elastic properties of the inner race in the bearing. Select Outer race 

material — Same as inner race or User defined. If User defined is selected, enter the values 
of Young’s modulus, outer race and Poisson’s ratio, outer race. Finally select Roller 
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material — Same as inner race or User defined. If User defined is selected, enter the values 
of the Young’s modulus, roller/ball and Poisson’s ratio, roller/ball.

F O U N D A T I O N  P R O P E R T I E S

Select one of the Fixed, Moving, Flexible, or Squeeze film damper foundation options. If 
the model component also contains other structural physics interfaces such as Solid 

Mechanics, Multibody Dynamics and Shell that have Attachment or Rigid Domain features, 
the above list is extended with the list of the attachments and rigid domains available 
in these physics interfaces. In the Moving, Flexible, and Squeeze film damper cases, the 
subnodes Moving Foundation, Flexible Foundation, or Squeeze Film Damper are 
automatically added. If any of the attachments or rigid domains is selected, 
displacement and rotation of the selected feature are used as foundation motion. 
Attachments and rigid domains provide an easy way of coupling the rotor with the 
stator.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam Rotor>Bearings>Radial Roller Bearing

Ribbon
Physics tab with Beam Rotor selected:

Points>Bearings>Radial Roller Bearing

Squeeze Film Damper

The Squeeze Film Damper node is added automatically when you set Foundation 

properties to Squeeze Film Damper in the parent Journal Bearing, or Radial Roller Bearing 
node. In this node, you specify the damper dimensions and lubricant properties to 
compute the equivalent damping coefficient based on a short bearing length 
approximation.

D A M P E R  P R O P E R T I E S

Select Bulk viscosity —From material or User defined. If User defined, enter the value of 
the Bulk viscosity, μ. Enter the values of Clearance, C, Journal Radius, R, and Journal 

length, L. Clear the check box Include tilting (selected by default) to exclude the effect 
of the tilting of the journal in the damper.
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C E N T E R I N G  S P R I N G

Centering springs are used in squeeze film dampers to allow them to support static 
loads. Enter the values of Spring constant, kcs, and Damping constant, ccs, for the 
centering spring.

L O C A T I O N  I N  U S E R  I N T E R F A C E

This node is automatically added when Foundation Properties is set to Squeeze Film 

Damper in the parent bearing node. It cannot be added or removed manually.

Rotor Coupling

Add a Rotor Coupling node to model the coupling characteristics between two rotors. 
The selection for this feature is a point on the rotor where the coupling is located.

C O U P L I N G  P R O P E R T I E S

Select Coupling type — Spline, Torsional, or User defined. Then, go to the relevant 
section below to continue defining the properties.

Spline
No extra input in needed. This coupling type connects the displacement and axial 
rotation across the two rotors, while keeping the tilting of the rotors uncoupled on 
interior points. On exterior points, only the axial rotation is fixed.

Torsional
Enter the value of the Torsional stiffness, kθ,ax. This coupling type connects 
displacement and tilting rotations across the two rotors on interior points and axial 
rotation of both rotors are connected by a spring of stiffness kθ,ax. On exterior points, 
displacement and tilting rotations are free. The axial rotation is connected by a spring 
of stiffness kθ,ax relative to an imaginary fixed point.

User Defined
Select Displacement connection — Rigid or Flexible. In the Flexible case, enter the 
Translational stiffness, ku. The displacements in the two rotors are connected by a 
spring with the specified stiffness. In the Rigid case, the displacements in both rotors 
are rigidly connected. On an exterior point, the other rotor is assumed to be fixed.

Select Axial rotation connection — Flexible or Rigid. In the Flexible case, enter the 
Torsional stiffness, kθ,ax. The axial rotation in the two rotors is connected by a torsional 
spring with the specified stiffness. In the Rigid case, the axial rotations in both rotors 
are rigidly connected. On an exterior point, the other rotor is assumed to be fixed.
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Select the Bending rotation connection — Flexible or Rigid. In the Flexible case, enter the 
Bending stiffness, kθb. The bending rotations in the two rotors are connected by a 
spring with the specified stiffness. In the Rigid case, tilting rotations in both rotors are 
rigidly connected. On an exterior point, the other rotor is assumed to be fixed.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam Rotor>Rotor Coupling

Ribbon
Physics tab with Beam Rotor selected:

Points>Beam Rotor>Rotor Coupling

Edge Load

Use an Edge Load node to apply an edge or body load on the rotor.

F R A M E  T Y P E

Select a Frame type — Spatial, or Corotating to specify the load in the appropriate frame.

F O R C E

Select a Load type — Load defined as force per unit volume, force per unit length, or Total 

force. Then enter values or expressions for the load components based on the selection.

• For Load defined as force per unit volume, you can define a distributed force over the 
volume. In this case the load is scaled by cross section area of the rotor to provide 
the force per unit length over the selected edges.

• For Load defined as force per unit length, you can define a distributed force over the 
selected edge.

• Since the beam rotor is modeled in the spatial frame, a stationary load 
in a Corotating frame works as a rotating load in the model. This load 
changes its direction with the angular velocity of the rotor. A stationary 
load in the Spatial frame is a true static load for beam rotor.

• For a frequency domain analysis, a load in the Corotating frame is phase 
shifted to give the effect of rotation.

• For a stationary analysis, Frame type has no influence on the analysis.
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• For Total force, the total force is divided by the length of the edges where the load 
is active in order to obtain the distributed load.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam Rotor>Edge Load

Ribbon
Physics tab with Beam Rotor selected:

Edges>Beam Rotor>Edge Load

Point Load

Use a Point Load node to apply point load on the rotor.

After selecting a Load type, the Load list normally only contains User 

defined. When combined with another physics interface that can provide 
this type of load, it is also possible to choose a predefined load from this 
list.

LOAD TYPE VARIABLE SI UNIT

Load defined as force per unit volume FV N/m3

Load defined as force per unit length FL N/m

Total force Ftot N

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.
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F R A M E  T Y P E

Select a Frame type — Spatial, or Corotating to specify the load in the appropriate frame.

F O R C E

Enter values or expressions for the force, Fp, and moment, Mp.

L O C A T I O N  I N  U S E R  I N T E R F A C E

Context Menus
Beam Rotor>Point Load

Ribbon
Physics tab with Beam Rotor selected:

Points>Beam Rotor>Point Load

• Since the beam rotor is modeled in the spatial frame, a stationary load 
in a Corotating frame works as a rotating load in the model. This load 
changes its direction with the angular velocity of the rotor. A stationary 
load in the Spatial frame is a true static load for beam rotor.

• For a frequency domain analysis, load in the Corotating frame is phase 
shifted to give the effect of rotation. 

• For a stationary analysis, Frame type has no influence on the analysis.

The Load list normally only contains User defined. When combined with 
another physics interface that can provide this type of load, it is also 
possible to choose a predefined load from this list.

• You can add the Phase subnode to specify the phase of this load in a 
frequency domain analysis.
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 7
H y d r o d y n a m i c  B e a r i n g
This chapter describes the Hydrodynamic Bearing interface ( ) and its 
functionality, which is found under the Structural Mechanics>Rotordynamics branch 
( ) when adding a physics interface.

In this chapter:

• Hydrodynamic Bearing Theory

• The Hydrodynamic Bearing Interface
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Hyd r od ynam i c  B e a r i n g  Th eo r y

The following sections introduce you to the theory that is specific to the 
Hydrodynamic Bearing interface features:

• Reynolds Equation

• Bearing Dynamic Coefficients Calculation

• Modeling Turbulence Effect

• Initial Film Thickness in Journal Bearing

• Floating Ring Bearing

• Initial Film Thickness in Thrust Bearings
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Re yno l d s  Equa t i o n

Thin-Film Flow in Bearings

Figure 7-1 shows a typical configuration for the flow of fluid in a bearing. The upper 
boundary is referred to as the journal, and the lower boundary is referred to as the 
bearing. Damping or lubrication forces act on both surfaces.

In many cases, the gap is sufficiently small for the flow in the thin film to be isothermal. 
Usually, the gap thickness, h, is much smaller than the lateral dimensions of the 
geometry, L. If this is the case, it is possible to neglect inertial effects in the fluid in 
comparison to viscous effects. Additionally, the curvature of the reference surface can 
be ignored when h/L«1. Under these assumptions, the Reynolds equation applies. 
For gas flows under the same conditions, it is possible to derive a modified form of the 
Reynolds equation, which uses the ideal gas law to eliminate the density from the 
equation system. Such a modified Reynolds equation can even be adapted to model 
the flow of rarefied gases.

Figure 7-1: An example illustrating a typical configuration for thin-film flow. A 
reference surface with normal nref sits in a narrow gap between a journal and bearing. 
In COMSOL Multiphysics.

the vector nref points into the bearing and out of the journal. The journal moves with 
a displacement uj and velocity vj from its initial position. Similarly, the bearing moves 
from its initial position with displacement ub and velocity vb. The compression of the 
R E Y N O L D S  E Q U A T I O N  |  237



238 |  C H A P T E
fluid results in an excess pressure, pf, above the reference pressure, pref, and a fluid 
velocity in the gap. At a point on the reference surface, the average value of the fluid 
velocity along a line perpendicular to the surface is given by the in-plane vector vave. 
The motion of the fluid results in forces on the journal (Fj) and on the bearing (Fb). 
The distance to the journal above the reference surface is hj, while the bearing resides 
a distance hb below the reference surface. The total size of the gap is h=hj+hb. At a 
given time, hj=hj1−nref ⋅uj and hb=hb1−nref ⋅ub, where hj1 and hb1 are the initial 
distances to the journal and bearing, respectively.

The Reynolds Equation

The equations of fluid flow in thin films are usually formulated on a reference surface 
in the Eulerian frame. Consider a cylinder, fixed with respect to a stationary reference 
surface, as shown in Figure 7-2.

Figure 7-2: A reference cylinder, fixed with respect to the stationary reference surface, in 
a small gap between two surfaces (the journal and the bearing). The cylinder has an 
outward normal, nc. Its area, projected onto the reference surface, is dA.

The cylinder is fixed with respect to the reference surface, but its height can change 
due to changes in the position of the bearing and journal. Considering the flow in the 
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reference plane, the rate at which mass accumulates within the reference cylinder is 
determined by the divergence of the mass flow field in the reference plane:

 (7-1)

where h = hj + hb and the tangential velocity, vav represents the mean velocity of the 
flow in the reference plane. 

Particular care must be taken with respect to the definition of h. The above equation 
applies if h is measured with respect to a fixed point on the reference surface as a 
function of time. The reference surface itself must be fixed in space and obviously 
cannot deform as time progresses. Equations represented on the reference surface are 
described as Eulerian; that is, they are defined in a frame that is fixed with respect to 
the motion of the fluid or body. Fluid flow problems are usually formulated in the 
Eulerian frame and COMSOL Multiphysics adopts this convention in most of its fluid 
flow interfaces. The Eulerian frame is usually called the spatial frame within the 
COMSOL Multiphysics interface.

The journal and the bearing can, and often do, move with respect to the reference 
surface. The journal and bearing are usually the surfaces of bearing components that 
are deforming as a result of the pressure building up within the region of fluid flow. 
When describing the physics of a deforming solid, it is often convenient to work in the 
Lagrangian frame, which is fixed with respect to a small control volume of the solid. 
As the solid deforms, the Lagrangian frame moves along with the material contained 
within the control volume. Using the Lagrangian frame for describing structural 
deformation means that changes in the local density and material orientation as a result 
of the distortion of the control volume do not need to be accounted for by 
complicated transformations. In COMSOL Multiphysics, the Lagrangian frame, 
usually referred to as the material frame, is used for describing structural deformations. 
When a structure deforms in COMSOL Multiphysics, the material frame remains in 
the original configuration of the structure, and the deformation is accounted for by the 
underlying equations.

Because of the mixed Eulerian-Lagrangian approach adopted within COMSOL 
Multiphysics, particular care must be taken with the formulation of the Reynolds 
equations. Typically, it is not desirable to represent the geometry of the thin film 
directly, because it is often much smaller than the other components in the model. The 
equations apply on a single surface in the model, the reference surface. Since the 
reference surface should not deform, the equations are added on the material frame 
(even though this frame is normally used in a Lagrangian approach) and manual 

td
d ρh( ) ∇– t ρhvav( )⋅=
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transformations are added to the system to account for the fact that the structural 
equations also exist on the material frame, and employ a truly Lagrangian approach.

The situation encountered when both the journal and the bearing undergo a 
displacement is depicted in Figure 7-3. The Eulerian journal height changes from an 
initial value hj1 to a final value hj. Similarly, the bearing height changes from an initial 
value hb1 to hb.

Figure 7-3: Diagram showing the displacement of the journal and the bearing with respect 
to the reference surface, and the corresponding change in the height of the channel.

From the figure, it is clear that:

 (7-2)

Similar corrections should be applied to the velocity of the journal if it is computed 
from the structural displacement. That is, the velocity should be modified by a term 
proportional to its spatial gradient. However, this correction term is a second-order 
term, and consequently it is usually negligible in practical circumstances. It is neglected 
in the Hydrodynamic Bearing interface.
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Consequently, provided that the definitions of the journal and bearing height from 
Equation 7-2 are used, the Reynolds equation takes the form:

 (7-3)

Flow Models

The Navier–Stokes equations can be nondimensionalized for a domain whose width 
(h0) is much smaller than its lateral dimension(s) (l0) (see Ref. 1 for a detailed 
discussion). When Re(h0/l0)2<<1, and terms of order (h0/l0)2 are neglected, the 
Navier–Stokes equations reduce to a modified form of the Stokes equation, which 
must be considered in conjunction with the continuity relation. 

Figure 7-4: The coordinate system employed for the derivation of the average flow velocity.

The equations are most conveniently expressed by considering a local coordinate 
system in which x’ and y’ are tangent to the plane of the reference surface, and z’ is 
perpendicular to the surface, as illustrated in Figure 7-4. Using this coordinate system:

t∂
∂ ρh( ) ∇t hρvav( )⋅+ 0=

journal

reference
surface

bearing
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Here pf is the pressure resulting from the fluid flow, μ is the fluid viscosity, and (vx’,vy’) 
is the fluid velocity in the reference plane (which varies in the z’ direction). 

These equations can be integrated directly, yielding the in-plane velocity distributions, 
by making the assumption that the viscosity represents the mean viscosity through the 
film thickness. The following equations are derived:

 (7-4)

 (7-5)

The constants C1x’, C2x’, C1y’, and C2y’ are determined by the boundary conditions. 
Equation 7-4 shows that the flow is a linear combination of laminar Poiseuille and 
Couette flows. The velocity profile is quadratic in form, as shown in Equation 7-5.

The average flow rate in the reference plane, vav , is given by:

The forces acting on the journal are determined by the normal component of the 
viscous stress tensor, τ, at the journal and bearing walls (τn - where n is the normal 
that points out of the fluid domain). The viscous stress tensor takes the form:
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Neglecting the gradient terms, which are of order h0/l0, results in the following form 
for the stress tensor:

 (7-6)

The components of the stress tensor can be expressed in terms of the velocity and 
pressure gradients using Equation 7-4. Note that the normals to both the journal and 
the bearing are parallel to the z’ direction, to zeroth order in h0/l0. The forces acting 
on the bearing and the journal are therefore given by:

G E N E R A L  S L I P  B O U N D A R Y  C O N D I T I O N

Assuming a slip length of Lsj at the journal, and a slip length of Lsb at the bearing, the 
general slip boundary conditions are given by:
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For non-identical slip lengths, the constants C1x’, C2x’, C1y’, and C2y’ take the 
following values:

The average flow rate becomes:

which can be expressed in vector notation as:
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The above equation can be written on the form:

 (7-7)

where vav,c is a term associated with Couette flow, and vav,p is a coefficient associated 
with Poiseuille flow (see Table 7-1 below).

The forces acting on the two boundaries are given by:

 (7-8)

Note that the z’ direction corresponds to the −nr direction. The x’ and y’ directions 
correspond to the two tangent vectors in the plane. Using vector notation, the forces 
become:

In Equation 7-8 it is assumed that nj=−nr and nb=nr. In COMSOL Multiphysics the 
accuracy of the force terms is improved slightly over the usual approximation (which 
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neglects the slope of the journal and bearing as it is of order h0/l0) by using the 
following equations for nj and nb:

These definitions are derived from Equation 7-4 and Equation 7-5 and include the 
additional area that the pressure acts on as a result of the slopes of journal and bearing 
surfaces.

Once again, the force terms can be written on the form:

 (7-9)

where fj,p is the Poiseuille coefficient for the force on the journal, and fj,c incorporates 
the Couette and normal forces (due to the pressure) on the journal. Similarly, fb,p is 
the Poiseuille coefficient for the force on the bearing, and fb,c incorporates the Couette 
and normal forces (due to the pressure) on the bearing.

The cases of identical slip length and non-slip are limiting cases of the formulas derived 
above. The main results are summarized in Table 7-1, where the constants defined in 
Equation 7-7 and Equation 7-9 are used.
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TABLE 7-1:  EQUATION VARIABLES FOR VARIOUS FLOW MODELS

VARIABLE DEFINITION

General Slip Flow Model

Equal Slip Lengths Flow Model Lsj=Lsb=L

Non-Slip Flow Model Lsj=Lsb=0

vav c, 1
2 h Lsj Lsb+ +( )
------------------------------------------- I nrnr

T
– 

  h 2Lsb+( )vj h 2Lsj+( )vb+( )

vav p, h h2 4h Lsj Lsb+( ) 12LsbLsj+ +( )
12μ h Lsj Lsb+ +( )

-------------------------------------------------------------------------------------------

fj c, μ
h Lsj Lsb+ +
---------------------------------- I nrnr

T
– 

  vb vj
–( ) pfnj+

fj p, h h 2Lsb+( )
2 h Lsj Lsb+ +( )
-------------------------------------------

fb c, μ
h Lsj Lsb+ +
---------------------------------- I nrnr

T
– 

  vj vb
–( ) pfnb+

fb p, h h 2Lsj+( )
2 h Lsj Lsb+ +( )
-------------------------------------------

vav c, 1
2
--- I nrnr

T
– 

  vj vb+( )

vav p, h2 6Lsh+( ) 12μ( )⁄

fj c, μ
h 2Ls+
-------------------- I nrnr

T
– 

  vb vj
–( ) pfnj+

fj p, h 2⁄

fb c, μ
h 2Ls+
-------------------- I nrnr

T
– 

  vj vb
–( ) pfnb+

fb p, h 2⁄

vav c, 1
2
--- I nrnr

T
– 

  vj vb+( )

vav p, h2 12μ( )⁄

fj c, μ
h
--- I nrnr

T
– 

  vb vj
–( ) pfnj+

fj p, h 2⁄
R E Y N O L D S  E Q U A T I O N  |  247



248 |  C H A P T E
The Modified Reynolds Equation — Gas Flows

Thin-film gas flows are often isothermal, and in many cases the ideal gas law can be 
assumed. Under these circumstances, the ideal gas law can be written on the form:

where T0 is the (constant) temperature of the gas, Mn is the molar mass of the gas, and 
R is the universal gas constant. Here, the total gas pressure is pA = pref+pf, where pA 
is the absolute pressure and pf is the pressure developed as a result of the flow. 
Substituting this relation into Equation 7-3 and dividing by the constant Mn/RT0 
results in a modified form of the Reynolds equation:

 (7-10)

This equation can be used to model isothermal flows of ideal gases. The average flow 
rate and the forces acting on the bearings are computed in the same manner as for the 
standard Reynolds equation.

S L I P  B O U N D A R Y  C O N D I T I O N S  F O R  G A S E S

For a gas, the slip length is often expressed using the mean free path, λ, and a tangential 
momentum accommodation coefficient, α. For compatibility with the existing 
literature on thin-film gas flow, the following definition of the mean free path is used 
by COMSOL Multiphysics in the Hydrodynamic Bearing interface:

The slip length is then defined as:

TABLE 7-1:  EQUATION VARIABLES FOR VARIOUS FLOW MODELS

VARIABLE DEFINITION
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Values for the tangential momentum accommodation coefficients for various gas 
surface combinations are given in Ref. 2.

Boundary Conditions

Most of the boundary conditions either constrain the flow into the system by 
prescribing a fluid velocity or constrain the pressure at the boundary. The border flow 
condition is slightly more complex, requiring the gradient of the pressure to be set by 
specifying the value of the gradient of the pressure in the antinormal direction such 
that:

The Border flow type selection list enables four ways that the value of Γ can be specified:

• The User defined option allows the value of Γ to be directly entered as an expression 
in a user input box. This allows for arbitrary normal pressure gradients.

• The two Acoustic elongation options assume a linear gradient in the pressure outside 
the domain away from the boundary. The pressure gradient is calculated by dividing 
the pressure at the boundary, pf, by an elongation length, ΔL. The elongation 
length can either be specified as an absolute length or as a fraction of the domain 
width, such that:

• The Out-of-plane motion option calculates the pressure gradient at the boundary 
using a model detailed in Ref. 8. This model is suitable for including the effects of 
gas damping when fluid in a thin gap is subjected to out-of-plane motion of the 
journal or bearing, for example when a microbeam is oscillating above an extended 
surface. When this option is selected, input fields are provided to specify the 
required coefficients (ζ,η,χ) and the pressure gradient is defined according to

where U is the out-of-plane velocity, Λ is the slip length at the walls, and p∞ is the 
ambient pressure far from the boundary and away from the domain.
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Cavitation

Several types of cavitation can occur in thin-film flow. When the flow pressure drops 
below the ambient pressure, the air and other gases dissolved within the fluid are 
released. This phenomenon, characteristic of loaded bearings, is known as cavitation 
or gaseous cavitation. In some cases involving high-frequency varying loads, as in 
internal combustion engines, the pressure might drop below the fluid vapor pressure, 
which is lower than the ambient pressure. In this case, bubbles are formed by rapid 
evaporation or boiling of the fluid. This phenomenon is known as vapor cavitation. 
The cavitation feature in COMSOL Multiphysics is designed to address gaseous 
cavitation.

The implementation of the cavitation feature is based on a modified version of the 
Elrod algorithm (Ref. 9 and Ref. 10). This algorithm automatically predicts film 
rupture and reformation in bearings and offers a reasonable compromise between 
accuracy and practicality. It is applicable to heavily and moderately loaded bearings but 
it is not suitable when surface tension plays an important role.

Elrod and Adams’ algorithm is based on the JFO cavitation theory, a widely accepted 
and adopted theory developed by Jakobson (Ref. 11), Floberg (Ref. 12 and Ref. 13), 
and Olsson (Ref. 14). The JFO theory divides the flow in two regions:

• A full-film region where the pressure varies but is limited from below by the 
cavitation pressure.

• A cavitation region where only part of the volume is occupied by the fluid. Because 
of the presence of the gas in the void fraction, the pressure in this region is assumed 
to be constant and equal to the cavitation pressure.

Elrod and Adams derived a general form of the Reynolds equation, Equation 7-1, by 
introducing a switch function, g, equal to 1 in the full-film region and 0 in the 
cavitation region. This switch function allows for solving a single equation for both the 
full-film and cavitation regions and leads to a modified equation for the average 
velocity.

vav vav c, gvav p, pft∇–=
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where the second and third terms on the left-hand side correspond to the average 
Couette and average Poiseuille velocities, respectively. This switch function sets the 
average Poiseuille velocity to zero in the cavitation region.

A variable θ can be defined, given by:

In the cavitation region (θ < 1), θ represents the fractional film content.

R E S U L T  P R E S E N T A T I O N

While the pressure is constant and equal to the cavitation pressure in the cavitation 
region, the computed pressure is negative in this region. The value of this negative 
pressure can physically be interpreted as the volume fraction of fluid in the cavitation 
region. The actual or physical pressure, available in the postprocessing section as 
tffs.p, is equal to the computed pressure in the full-film region (θ ≥ 1) and equal to 
the cavitation pressure in the cavitation region (θ < 1).

Dissipation

Due to the viscous friction, heat will be produced in the lubricating film. In some cases, 
it may be important to couple the flow in the bearing to a heat transfer analysis. In the 
Hydrodynamic Bearing interface, the dissipated energy per volume is computed. It is 
available in a variable named hdb.Qvd, which you can use as a heat source in a thermal 
analysis.

Viscous dissipation per unit volume in a flow can be calculated in terms of the rate of 
deformation and stress tensors:

Because the average Poiseuille velocity is set to zero in the cavitation 
region, the density needs to be a function of the pressure variable and is 
defined as

where β is the compressibility and ρc is the density at the cavitation 
pressure. A density that is not pressure dependent would lead to empty 
equations in the cavitation region, since the pressure variable pf would no 
longer be present in the governing equations.

ρ ρce
βpf=

θ ρ
ρc
-----=
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with 

and

For a thin film flow approximation (neglecting higher orders of h/l) the rate of 
deformation and stress tensor in the local system are approximated as

and

Therefore, in a thin film flow the viscous dissipation is approximately given by

Substituting the velocity expression in terms of the pressure in the film and integrating 
across the film thickness the heat dissipation per unit area of the film is given by
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where 

Here, hb is the height of the bearing from the reference surface and hj is the height of 
the journal from the reference surface. Lsj and Lsb are the slip lengths at the journal 
and bearing surfaces, respectively. (vj-vb)t is the tangential velocity component of the 
relative journal velocity with respect to the bearing in the film plane.

Therefore, viscous dissipation per unit volume will be approximately given by

Misalignment

Misalignment in bearings can occur due to improper mounting. Misalignment often 
results in metal to metal contact in the bearing components with high contact forces. 
This gives rise to noise and high temperatures in the bearing. The misalignment is 
broadly classified in the following categories:

• Parallel misalignment: The axes of the bearings are parallel to each other but the 
bearing centers are offset in the lateral direction (see Figure 7-5).

• Angular misalignment: The axes of the bearings are not perfectly parallel. Rather, 
they are slightly inclined relative to each other (see Figure 7-6). Bearing centers are 
still aligned in the direction of the rotor axis.

• A combination of the above two.
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Figure 7-5: Parallel misalignment.

Figure 7-6: Angular misalignment.

The film thickness in a hydrodynamic bearing changes as an effect of its misalignment 
with the rotor axis. As a result, the pressure distribution in the bearing also gets 
affected. Let u0 and θ0 be the parallel and angular misalignments, respectively. Then 
the net change in the film thickness due to misalignment can be calculated by

X is the coordinate on the journal/collar surface, Xc is the center of the bearing and 
nref is the material normal of the journal/collar surface. Therefore, the height of the 
bearing from the reference surface will be given by

where h0 is the film thickness without the misalignment in the bearing.
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Bea r i n g  Dynam i c  Co e f f i c i e n t s  
C a l c u l a t i o n

Bearing dynamic coefficients are the effective stiffness and damping coefficients of the 
bearing when the rotor is at its equilibrium position. For a sufficiently loaded bearing, 
the rotor will in steady state take an eccentric equilibrium position in the bearing to 
support the static loads. It then does a small amplitude whirl about this equilibrium 
position due to the dynamic loads on the rotor such as eccentricity, misalignment etc. 
A dynamic coefficient approximation works well if the static load on the rotor is much 
larger than the dynamic loads. If dynamic load is comparable to the static load or the 
bearing is lightly loaded, the rotor undergoes a large amplitude whirl without any 
well-defined equilibrium position. In such a case, the nonlinearity of the bearing forces 
must be accounted for in order to accurately predict the dynamics of the rotor.

Determination of the dynamic coefficients of the bearing is done at the equilibrium 
position of the journal for the given static load. The change in the net bearing reaction 
forces as the bearing equilibrium position is disturbed is then obtained. There are two 
fundamentally different approaches that can be used: infinitesimal perturbation and 
finite perturbation.

I N F I N I T E S I M A L  P E R T U R B A T I O N

Perturbed differential equations in terms of new pressure perturbation degrees of 
freedom are obtained by considering the derivative of the Reynolds equation with 
respect to the equilibrium position perturbation. Bearing dynamic coefficients are 
expressed in terms of the new pressure perturbation degrees of freedom.

This is the method used in the Rotordynamics Module.

F I N I T E  P E R T U R B A T I O N

Reynolds equation is solved for two conditions, first at the equilibrium state and then 
by considering a finite perturbation to the equilibrium position. The difference in the 
net reaction force in the bearing with respect to the perturbation gives the 
corresponding coefficients. In this approach, perturbation amplitudes should be small 
enough to get the accurate results. Typical perturbation values used are 0.01C for 
displacement and 0.01ΩC for velocity.
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Perturbation Equations

R E Y N O L D S  E Q U A T I O N

Consider the Reynolds equation describing the flow in the thin channels:

with

Let uj0 and ub0 be the equilibrium states with vj0 = vb0 = 0. Introduce infinitesimal 
perturbations in journal position duj and velocity dvj, respectively. The bearing 
position and velocity are not perturbed. Taking the derivative of Reynolds equation 
with respect to uj and vj gives the perturbation equation.

Performing this derivative using the expressions for h and vave gives

where pu represents derivative of p with respect to uj. In equilibrium

Substituting this in the perturbation equation gives

Similarly, a derivative with respect to vj results in 

t∂
∂ ρh( ) t∇+ ρhvave( )⋅ 0=

h h= b1 ub nref ub hb1t∇⋅( )– uj nref⋅–⋅+

vave
1
2
--- vj t, vb t,+( ) h2
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⋅+=
R  7 :  H Y D R O D Y N A M I C  B E A R I N G



where pv represents derivative of p with respect to vj. The pressure and film thickness 
profile in the right-hand side of these equations are determined from the static 
equilibrium position given by the static load on the bearing.

The pressure distribution must balance the external load so that

where fj is the force on the journal due to the lubricant pressure and shear and W is 
the load vector acting on the bearing. This forms a system of equations for the pressure 
perturbations pu and pv for a liquid bearing.

M O D I F I E D  R E Y N O L D S  E Q U A T I O N

Consider now the modified Reynolds equation describing the gas flow in the thin 
channels:

with

Let uj0 and ub0 be the equilibrium states with vj0 = vb0 = 0. Introduce infinitesimal 
perturbations in the journal position duj and velocity dvj, respectively. If we introduce 
the new positions and velocities, including the perturbations, in the modified Reynolds 
equation and collect the coefficients for the displacement and velocity perturbations 
together, terms containing the unperturbed variables alone is simply the equilibrium 
equation in the unperturbed displacement and velocity. The coefficient for the 

t∇ ρh3

12μ
---------- pvt∇ 
 ⋅ ρnref– t∇ ρh

2
------- I nref nref⊗–( )⋅+=

t∇ ρh3

12μ
---------- pt∇ 
 ⋅

t∂
∂ ρh t∇ ρh

2
------- Ω X Xc–( )×( )⋅+=

fj Ad
A
 W=

t∂
∂ pAh( ) t∇+ pAhvave( )⋅ 0=

h h= b1 ub nref ub hb1t∇⋅( )– uj nref⋅–⋅+

vave
1
2
--- vj t, vb t,+( ) h2

12μ
---------- pt∇– 

 =

t∂
∂h vb nref⋅ vb hb1t∇⋅( )– vj nref⋅–=
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perturbed displacement should be zero to satisfy the equilibrium equation because the 
perturbation is arbitrary. This results in the following equation

where pu represents the derivative of p with respect to uj. Note, that there is also an 
additional term containing the whirl speed, ω, that comes from the acceleration effect 
due to whirling. This term plays an important role in determining the dynamic 
coefficients for gas bearings and cannot be neglected. Similarly, the coefficient for the 
velocity perturbation should also be zero. This results in

where pv represents the derivative of p with respect to vj. The pressure and film 
thickness profile in the right-hand side of these equations are determined from the 
static equilibrium position given by the static load on the bearing.

The pressure distribution must balance the external load so that

where fj is the force on the journal due to the lubricant pressure and shear, and W is 
the load vector acting on the bearing. This forms a system of equations for the pressure 
perturbations pu and pv of a gas bearing.

Boundary Conditions

The boundary conditions for the perturbation degrees of freedom pu and pv are 
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on the boundary.

Stiffness and Damping Coefficients

The component of the stiffness coefficients in the local bearing directions are given in 
term of the perturbed degrees of freedom as follows:

where ei are the local bearing direction, and the integration is performed over the 
bearing surface. Similarly, the components of the damping coefficients in the local 
bearing directions are given by:

Critical Journal Mass and Critical Whirl Speed

Usually, the bearing damping coefficients are symmetric whereas stiffness coefficients 
lack the symmetry because k23 is not equal to k32. This asymmetry of the stiffness 
coefficients causes an unstable behavior of the rotor in the bearing. At a particular 
speed, the static equilibrium position of the journal is no longer dynamically stable, and 
rotor starts to whirl in a small orbit around the equilibrium position. The whirl 
frequency usually coincides with the lowest natural frequency of the system, and the 
ratio of the whirl frequency to rotational frequency is typically around 0.5. 

Linearized coefficients cannot be used for predicting the behavior of the system 
beyond the threshold speed. But due to a rapid growth of the whirl speed, a threshold 
speed based on the linearized coefficients can be considered as the limiting speed for a 
safe operation. The threshold speed also depends on the rotor properties and its 
connection to the bearing. Thus, an analysis of the full system is needed to calculate 
the actual threshold speed of a system. However, to get some basic ideas and to 
compare the bearings with each other, a threshold speed based on a symmetric and 
rigid rotor is very useful. A critical journal mass based on this assumption is given by

pu 0=

pv 0=

kij pu ej⋅( ) nref ei⋅( ) p 0>( ) Ad
A
=

cij pv ej⋅( ) nref ei⋅( ) p 0>( ) Ad
A
=
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where

and

where ω is the instability whirl speed. Subscripts 2 and 3 denote the local y direction 
and the local z direction, respectively. Since the dynamic coefficients are functions of 
the journal speed, a threshold speed for the instability is the speed at which the critical 
journal mass becomes equal to the actual journal mass. Th critical whirl speed and the 
critical journal mass are available as <phys>.<feat>.omega_c and 
<phys>.<feat>.m_c, respectively.

Mcrit
k

ω2
------=

k
k22c33 k33c22 k23c32– k32c23–+

c22 c33+
---------------------------------------------------------------------------------------=

ω2 k22 k–( ) k33 k–( ) k23k32–

c22c33 c23c32–
----------------------------------------------------------------------=
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Mode l i n g  Tu r bu l e n c e  E f f e c t

Turbulence in the lubricant film flow can occur due to various reasons. In high-speed 
rotors, inertial effects of the flow become significant. Thus, flow no longer remains 
laminar and also gives rise to turbulent shear stresses. These effects, in turn, 
significantly change the behavior of the bearing as compared to a laminar 
approximation. Surface roughness of the journal and bushing surfaces can also induce 
turbulence in the flow even at moderate speeds. A detailed modeling of the flow 
pattern in the film, including turbulence effects, makes the problem very complicated. 
However, with the help of homogenization techniques, the problem can still be solved 
in a simplified manner by slightly modifying the Reynolds equation by introducing 
flow factors and shear stress factors that account for turbulence effects in the flow.

Consider two rough surfaces pressing against each other and supported by a lubricant 
film between them. The surfaces are in a relative sliding motion with each other with 
velocity vJ and vB, respectively. When the lubricant film between them is thick 
enough, asperities in the surfaces do not come in contact with each other. This is 
usually the case for when the contact load is small. Such a lubrication is referred to as 
full film lubrication. When the contact load is very high, the surfaces can come close 
to each other by squeezing the film. In such a scenario, the gap between the surfaces 
can be of the same order as the height of the asperities. Therefore, asperities can come 
in contact at various locations. As a result, the contact load is not only supported by 
the pressure in the lubricant film but also by the contact pressure between asperities. 
Such a lubrication is referred to as mixed lubrication.

Figure 7-7: Rough surfaces in contact.

Turbulence Modeling in Thin Film Flow

Let us consider a reference frame z = 0 from which the height of various points on the 
surface is measured. Because the surfaces are rough, the height of the points can be 
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decomposed into two components, a mean height and a height variation due to 
roughness in the following way

where hmJ and hmB are the mean heights, while  and  are the height variations 
due to asperities. Then mean gap between the two surfaces is then

The local gap between both the surfaces is

We define the local film thickness as

The regions defined by hl<0 denote the contact regions. Similar to the film thickness, 
we can decompose the pressure p in the film into a part corresponding to the mean 
film thickness, pm, and another part corresponding to variation in the film thickness 
due to asperities, . If we use local surface averaging to homogenize the Reynolds 
equation in total pressure, the space averaged Reynolds equation takes the form

with

where K is the effective permeability tensor and C is the shear flow tensor. These are 
defined in terms of a set of variables b and c as

hJ hmJ ĥJ+=

hB hmB ĥB+=

ĥJ ĥB

hm hmJ hmB–=

hl hJ hB– hm ĥJ ĥB–+= =

h
hl if hl 0≥

0 if hl 0≤






=

p̂

t∂
∂ ρhm( ) ρqm⋅t∇+ 0=

qm
K

12μ
---------- pmt  ∇–

vJ t, vB t,+

2
---------------------------- C

vJ t, v– B t,
2

-------------------------+ +=

K h3 I h3 bt∇ +=

C h3 ct ∇ =
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The operator < > above refers to the local surface average. This average is taken over 
an area which is much smaller than the overall dimensions of the contacting surface but 
is large enough to include many asperities. Variables b and c are closure variables that 
can be obtained by the solution of the following boundary value problems:

and

Here x is the position vector of a point on the surface and l is the length of the unit 
cell. The vector ei refers to the local directions on the averaging surface.

When turbulence effects are neglected, b and c are zero so that

and we recover the original Reynolds equation. The spatially averaged shear stress is 
given by

We can convert the averaged Reynolds equation into a form similar to the original 
Reynolds equation by introducing certain factors in the following way

and

∇t ĥ
3
I h3 bt∇+( )⋅ 0=

b x lei+( ) b x( ) i 1 2,=,=

b  0=

∇t h3 ct∇( )⋅ hJ hB+( )t∇=

c x lei+( ) c x( )  i 1 2,=,=
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2
--- pt ∇± μ
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h
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μ 1
h
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12μ
----------Φ pt ∇
 
 
 

⋅
vJ t, vB t,+

2
---------------------------- hmt∇⋅ σ
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where Φ and Φs are the pressure flow factor and shear flow factor, respectively. 
Moreover, Φf and Φfs are the shear stress factors for a Couette flow, and Φfp is the shear 
stress factor for a Poiseuille flow. Th variables hm and pm are the average gap and the 
average pressure in the film obtained by the surface averaging procedure. Thus,

The pressure flow factor and shear stress factors are defined in the following way:

From these definitions, it can clearly be seen that when turbulence effects are 
neglected, we recover the original Reynolds equation.

Now, before we use the averaged Reynolds equation, the main task is to first determine 
the factors defined above for the flow. One obvious way of determining these factors 
is to first solve for the closure variables b and c on a representative surface unit cell 
with the actual roughness pattern. Once the solution is obtained, perform the required 
averages over the surface to get the values of the different factors in the averaged 
equation. For a very general roughness pattern, the solution of the closure variables 
can only be obtained numerically. If we make certain assumptions on the roughness 
pattern, it is possible to solve the closure equations analytically. Then it is just a matter 
of computing the statistical averages of certain quantities based on the known pattern. 
Often, empirical relations are used to evaluate the flow factors. These relations are 
usually functions of the statistical properties of the surface. For example, one of the 
relations proposed by Patir and Cheng to compute the flow factors is

τ μ Φf Φfs±( )
vJ t, vB t,–

hm
----------------------------⋅

hm
2
-------- Φfp pmt  ∇⋅( )±=

hm h =

pm p =

Φ K

hm
3
--------=
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C
σ
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Φf hm
1
h
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Φfs 3hm h ct∇– =

Φfp
1

hm
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where H is the normalized gap height, hm/σ, with σ being the equivalent surface 
roughness of the contacting surfaces. The constants in the above equation depend on 
the orientation of the structure in the surface roughness relative to the flow direction. 
This orientation is defined by Pecklenik factor γ, which is the ratio of the correlation 
lengths along the flow and perpendicular to the flow

A value γ > 1 corresponds to the roughness pattern so that the ridges and valleys are 
oriented along the flow direction, while a value less than one corresponds to ridges and 
valleys perpendicular to the flow.

For smooth surfaces, the empirical relations for the flow factors are

Forces on the journal and bearing from the fluid film are given by

and
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Φs A1H
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0.96

+
------------------------------------------------=

Φf 1=

Φfsθ 0.0012Re
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=
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----------------------------------------------Φfp pmt ∇– +=
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hm Lsj Lsb+ +
-------------------------------------- Φf Φfs+( ) vB t, vJ t,–( ) pmnj+
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See the theory of the Reynolds Equation for details of the computation of journal and 
bearing forces.

Asperity Contact Forces

In the previous section, we considered the effect of asperities on the film flow. If the 
gap between the surfaces reaches the order of the height of the asperities, it is no longer 
possible to avoid the contact between these. This scenario is called a mixed lubrication 
condition. In this case, the total reaction force of the bearing is a combination of the 
reaction due to the film pressure and the pressure due to the contact between 
asperities.

Figure 7-8: Asperity contact.

Based on statistical considerations for the asperity contact, the contact force as a 
function of mean film thickness and other statistical parameters for the asperity 
distribution is given as:

where

• P(w,r): Contact pressure due to single asperity contact

• η: Surface asperity density on the contacting surfaces

• r: Offset between asperity peaks on both surfaces

• z1, z2: Asperity peak heights above the respective reference surfaces

fb
hm hm 2Lsj+( )

2 hm Lsj Lsb+ +( )
----------------------------------------------Φfp pmt ∇– +=

μ
hm Lsj Lsb+ +
-------------------------------------- Φf Φfs–( ) vJ t, vB t,–( ) pmnb+
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r


z2


z1

=
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• hm: Mean gap between the contacting surfaces

• w = z1+z2-hm−2f(r/2): Interference of the asperity contact

• A: Apparent area of contact

• φ1, φ2: Distribution of asperity heights on respective surfaces

Since, the force between the pair of asperities will be a function of the combined height 
z = z1+z2 rather than the individual heights z1 and z2, we can combine the individual 
distributions to give the sum of the distributions as φ0(z). The expected total force can 
then be written as

Let us introduce wp = z-hm and define the integration over r in the above expression as

Then total force can now be expressed as

In the same way

and

If the asperities are assumed to be paraboloidal f(r)=r2/2r0, and 2f(r/2)=r2/4r0. 
Here r0 is the radius of curvature at the peak of the asperity. The Hertzian solution for 
a paraboloidal surface in contact is
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and

If we substitute these in the average force-displacement relation, we get

where the square brackets in the above equation are the Macauley brackets, indicating 
a positive parts operator. After performing the integration

and the total force is given by

Let us introduce z = sσ and a standardized height distribution

Then

where 

Similarly, we find the contact area 
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and the expected number of contacts

The nominal pressure on the contact surface due to the contact of asperities can then 
be obtained by dividing the total contact force by the apparent area, which gives

with

In order to evaluate the contact pressure and contact area, we need to evaluate the 
functions Fn. This requires the knowledge of the distribution φ0. Experimental 
investigations have shown that a Gaussian distribution is a close approximation. For a 
Gaussian distribution, Fn is defined as

When h is large and positive, it can be approximated as

and if h is large but negative as

The following recurrence relation can be used to obtain the higher values of Fn:
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The following table summarizes the values of Fn:

TABLE 7-2:  VALUES OF FN

H F0(H) F1/2(H) F1(H) F3/2(H) F2(H) F5/2(H)

0 0.50000 0.41109 0.39894 0.43002 0.50000 0.61664

0.5 0.30854 0.22534 0.19780 0.19520 0.20964 0.24040

1.0 0.15865 0.10415 0.08332 0.07567 0.07534 0.08056

1.5 0.06681 0.03988 0.02931 0.02464 0.02285 0.02286

2.0 0.02275 0.01248 0.00849 0.00665 0.00577 0.00542

2.5 0.00621 0.00316 0.00200 0.00147 0.00120 0.00106

3.0 0.00135 0.00064 0.00038 0.00026 0.00020 0.00017

3.5 0.00023 0.00010 0.00006 0.00004 0.00003 0.00002

4.0 0.00003 0.00001 0.00001 0.00000 0.00000 0.00000
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I n i t i a l  F i lm Th i c k n e s s  i n  J o u r n a l  
B e a r i n g

The initial film thickness is calculated by assuming that the reference surface is the 
initial journal surface itself. Therefore, the height of the bearing surface from the 
reference surface (journal) gives the initial film thickness. Initially, both the journal and 
bearing are concentric. The following sections describe the initial film thickness in 
different type of bearings.

Plain

A sketch of the plain journal bearing is given in Figure 7-9 below: 

Figure 7-9: Plain journal bearing.

In this case, the initial film thickness does not depend on the polar coordinate, Θ, and 
is equal to the difference between the bearing and journal radius:

hb1 C=
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Elliptic

In an elliptic journal bearing, the bearing surface has an elliptical shape. A sketch of the 
elliptic journal bearing is shown in Figure 7-10:

Figure 7-10: Elliptic journal bearing.

In this case, the initial film thickness depends on the polar coordinate Θ and is given by:

Here, Cmin and Cmax are the minimum and maximum clearance values in the bearing, 
occurring along the minor and major axis of the ellipse. The variable Θ is the polar 
angle of a point on the journal surface measured from the local y direction to local 
z direction and is given by

hb1 Cmin Cmax Cmin–( ) Θcos( )2
+=

Θ
n e3⋅
n e2⋅
-------------- 
 atan=
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Split Halves

In a split halves journal bearing, the bearing surface consists of two separate circular 
halves that are offset by a distance 2d in the local y direction. A sketch of such a bearing 
is shown in Figure 7-11: 

Figure 7-11: Split halves journal bearing.

The initial film thickness for the split halves bearing is given by:

C is the difference between the radius of the bushing and the journal, and d is the 
distance by which the center of the upper and lower halves are offset from the journal 
center.

hb1
C d Θ 0 Θ π<≤;cos+

C d Θ π Θ 2π<≤;cos–



=
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Multilobe

In a multilobe journal bearing, the bearing surface consists of many small pads. 
Therefore, in this case the film thickness is discontinuous in the polar coordinate Θ. A 
sketch for the multilobe bearing is shown in Figure 7-12: 

Figure 7-12: Multilobe journal bearing.

The initial film thickness for the multilobe bearing is given by

where αm is the mid-pad angle. For an N-pad bearing, it is given by

and d is the distance between the center of the pad and center of the journal in the 
initial configuration. The line joining the center of the pad and center of the journal 
bisect the pad sector.

Tilted Pad

In a tilted pad journal bearing, the bearing surface is described by multiple pads, similar 
to the multilobe bearings. The difference is that the pads in this case are free to tilt. 
Tilting of the pad can occur either about an axis parallel to the bearing axis, called a 
line pivot configuration, or about both axial and circumferential directions of the 
bearing. The latter is called a point pivot configuration. Therefore, the film thickness 

hb1 C d Θ αm–( )cos+=

αm
π
N
---- 1 2 int NΘ

2π
--------- 
 +=
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in this case is also a function of the pad tilt angle. A sketch of the tilted pad bearing is 
shown in Figure 7-13: 

Figure 7-13: Tilted pad journal bearing.

Figure 7-14: Pad geometry.
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As an effect of the loading, the bearing pads tilt by angles δi
a and δi

c about the axial 
and circumferential directions, respectively. The film thickness for the tilted pad 
bearing including the effect of the pad tilting is given by:

where Θi
p is the pivot point angle of the ith pad from the local y direction. It is 

approximately given by

Here, Θi
m is the angle of the bisector line of the ith pad from the local y direction and 

is given by 

Other parameters used in the film thickness expression are:

• Cp = Rp - RJ -tp

• Cb = Rb - RJ

• r1 = Axial coordinate of the bearing from center

• βa = Axial offset factor of the pivot point from one end of the pad

• βc = Circumferential offset factor of the pivot point from the leading edge the pad

• Rp = Pad outer radius

• tp = Pad thickness

• L = Bearing length

• γ = Pad sector angle

• Rb = Bearing radius

• RJ = Journal radius

For the line pivot case, terms containing δi
c are ignored in the thickness expression.

If the pad tilt angle is already known, it can directly be specified. In many cases, the 
tilting is not known a priori, but rather depends on the bearing load. Moment balance 

hb1
i Cp Cp Cb–( ) Θ Θm

i
–( )cos–=

δ– a
i Cp Cb–( ) Θ Θm

i
–( )sin Rp tp+( ) Θ Θp

i
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i r1 βa 0.5–( )L–[ ] Θ Θp

i
–( )cos

Θp
i i 1–( )2π

N
------ βcγ+=

Θm
i i 1–( )2π

N
------ γ

2
---+=
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for each pad due the pressure distribution of the film decides the tilt angle of the pad. 
The moment about the pivot point of the pad due to the film pressure is given by 

After simplification, this results into the following moment balance equations for the 
tilt about the axial and circumferential directions:

In the above moment balance equation, pad inertia is ignored. If pad inertia is also 
included, the moment balance equation is modified to

where 

are the components of the moment of inertia tensor of the pad about the pivot point 
expressed along local directions.
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In the above expression, m is the mass of the pad given by

and 

Expressions for the moment of inertia are derived by assuming that the shape of the 
pad is a sector of a hollow cylinder.

Sometimes the pads in the bearing are not completely free to tilt, but are spring loaded. 
In such a case, the equation of motion of the pad changes to

m ργL
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User Defined

You can also enter your own expression for the initial film thickness, if the bearing type 
does not match any of the predefined bearings.

Figure 7-15: Definition of variables for a user-defined journal bearing.
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F l o a t i n g  R i n g  Bea r i n g

The floating ring bearing (FRB) is an extension of the plain journal bearing. An FRB 
typically consists of a journal, a bushing and a ring inserted between the journal and 
the bushing. As opposed to the plain journal bearing, in floating ring bearings there 
are two oil films formed in the bearing, the first between the journal and the ring 
(called inner film) and the second between the ring and the bushing (called outer film). 
The ring could be full-floating or semi-floating. In the full-floating case, the ring is free 
to rotate about the bearing axis due to the hydrodynamic shear forces on the ring. In 
semi-floating case, the axial rotation of the ring is suppressed, while it is free to perform 
in-plane motion between the journal and bushing. In the semi-floating case, the outer 
film does not have any significant spring action, but it provides damping to the ring 
motion.

Figure 7-16: Sketch of a floating ring bearing.

A complete description of the floating ring bearing requires the pressure distribution 
in both inner and outer films. It can be obtained by solving Reynolds equations for 
both films using the motion of journal, ring and bushing. However, the pressure 
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distribution in these films cannot be treated independently. The inner and outer films 
are generally connected through oil channels in the ring. The location of the oil 
channels relative to the inner and outer film keeps changing due to axial rotation of the 
ring. Specifying this connection for the pressure distribution in both the films in the 
stationary reference frame is difficult due to the changing locations of the channels. 
Therefore, for time-dependent calculations in the FRBs, the pressure distribution 
equations are formulated in a reference frame fixed to the ring. The advantage of such 
a description is that locations of the oil channels do not change in this reference frame. 
In the ring reference frame, the bushing rotates with an angular velocity -Ωr, and the 
shaft rotates with an angular velocity Ω-Ωr. Ωr is the angular velocity of the ring and 
Ω is the angular velocity of the journal in the stationary reference frame.

Reynolds Equation for the floating ring bearing takes the following form in the ring 
reference frame:

where h is the film thickness and vavg is the average velocity in the film. Expressions 
for film thickness and average velocity in both films are given below.

Inner film:

Outer film:

t∂
∂ ρh( ) ρhvavg( )t∇+ 0=

h hj hr in,+=

hj uj– nref⋅=

hr in, hr0 ur nref ur hr0t∇⋅–⋅+=

hr0 Cin=

vavg
1
2
--- vj t, vr t,+( ) h2

12μ
---------- pt∇–=
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ρ and μ are the density and viscosity of the lubricant, respectively. vj, vr and vb are the 
velocities of the journal, ring and bushing, respectively, measured in the ring reference 
frame and are given by

Similarly, the displacement of the journal, ring, and bushing has to be referred to the 
ring frame of reference. In general, the relation between the displacement in the 
stationary and ring frames of reference is given by

where subscript s denotes the quantity in the stationary frame.

Equations of Motion for the Ring

Let fr,in and fr,out be the distributed forces on the ring from the inner and outer films, 
respectively. Then total force and moment on the ring are

Let uc and θc be the displacement and rotations at the center of the ring. Then, the 
equations of motion can be written as
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Connection Between Inner and Outer Film

The flows in the inner and outer films are connected through the channels in the rings. 
The oil that enters the channel from the outer film has to emerge in the inner film, 
assuming no accumulation in the oil channel. This gives the required condition for 
connecting the flow across both channels. In addition, correction pressure term are 
needed to account for the centrifugal forces. This results into the following conditions:

Here, the subscript m denotes the channel number. It is assumed that the mass 
transport through the channel is instantaneous. The feed pressure Po,m can be 
determined iteratively to satisfy the flow balance. The flow rate at the inner film and 
outer film sides in the channel is determined by

Here, Li,m and Lo,m denote the outer edges of the ring hole in the inner and outer 
film respectively. nin and nout are the normals to the outer edges of the ring hole in 
the plane of the inner and outer films, respectively.

td
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2
------- Ri
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I n i t i a l  F i lm Th i c k n e s s  i n  Th r u s t  
B e a r i n g s

A Thrust bearing is used to support the axial load on the rotor. It consists of a collar 
surface attached to the rotor, bearing pads and bearing base. Bearing pads can be 
rigidly connected to the bearing base or can be allowed to undergo certain motion 
relative to it. A lubricant is supplied between the collar and pads to avoid dry friction 
conditions and to reduce the frictional losses. Generally, the pads are arranged in such 
a way that there is a converging gap between the pad and the collar surface. This helps 
in generating the pressure in the fluid film due to the relative motion between the pad 
and collar. The pressure essentially keeps these surfaces separated. If the pressure is not 
high enough, the surfaces will come in direct contact with each other. Due to the 
different requirements in different applications there are many types of thrust bearings 
in common use. The initial film thickness profiles for some of the commonly used 
thrust bearings are discussed below:

Tilted Pad Bearing

Figure 7-17: Tilted pad thrust bearing geometry.
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A tilting pad bearing is a type of thrust bearing in which the oil wedge is created by the 
natural tilting of the pads due to the lubricant pressure. The tilting of the pad can occur 
about a radial axis in the line pivot configuration or about both radial and 
circumferential axis in the point pivot configuration. Tilting of the pad also provides 
the freedom to adjust for the misalignment of the rotor within the bearings. A typical 
bearing and pad geometry is shown in Figure 7-17.

Oil grooves are provided between the pads to supply the lubricant. Therefore, sets of 
a pad and a groove are repeated in the circumferential direction making the bearing 
sector symmetric with the sector angle 2π/N, where N is the number of the pads in 
the bearing. Let us consider a local y direction passing through the leading edge of one 
of the pads and let rc be the coordinate of the center of the bearing. Then for a point 
at position r on the bearing pad, its radial and azimuthal coordinates are:

where e2 and e3 are the local directions in the bearing. The first pad on the bearing is 
then located between

The ith pad will therefore be located between

The groove sector angle can be obtained as

.

The location of the pivot is specified by the circumferential offset, βc, and the radial 
offset, βr, with
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The location of the pivot point for the ith pad from the bearing center is, in polar 
coordinates, given by

Denote the tilt angles of the ith pad about the radial and circumferential directions by 
δi

r and δi
c, respectively. Assuming that these tilt angles are small, the tilt vector can be 

written as

where

are the radial and circumferential directions on the ith pad. Due to tilting of the pad, 
the displacement at a point X on the pad surface is

Here Xi
p is the position vector of the pivot point of the ith pad with respect to bearing 

center,

The axial component of the displacement due to the tilting at a point on the pad will 
change the film thickness at that location, and is given by 
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If the film thickness at the pivot point is hp then the film thickness due to tilting at a 
point X on the pad due to tilting will be

where plus sign is used when the pad is along the positive axial direction from the collar 
surface and negative sign when the pad is along the negative axial direction from the 
collar surface.

Therefore, the film thickness variation in the ith sector of symmetry is

In this expression for the film thickness, the tilt angles of the pad are unknown. They 
can be determined by balancing the moment on the pad caused by the pressure 
distribution. The moment balance on the pad has to be treated differently depending 
on the study type. For a stationary analysis, inertial effects are ignored, and thus the 
tilt angles are obtained by setting the net moment on each pad about the pivot point 
to zero.

The reference surface normal is parallel to the axial direction but the direction of the 
normal could be either along or opposite to the axial direction. Using this fact, the 
moment equation reduces to 

where a plus sign is used if the reference surface normal is along the axial direction and 
a negative sign is used otherwise. This approach results in two equations, one along 
the radial direction and other along the circumferential direction. These equations 
basically determine the tilts δi

r and δi
c, respectively. In the line pivot case, only the 

radial direction equation is used.

In a time-dependent analysis, the inertia of the pads also plays a role in the tilting 
motion. Including the pad inertia, the moment balance equations are modified to
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For the pad with sector angle γ, inner radius ri, outer radius ro, and thickness tp, and 
the pivot locations specified as above, the mass moment of inertia components about 
the pivot point are given by

S P R I N G  L O A D E D  P A D

Sometimes instead of pads being freely pivoted, they are mounted on springs. Then 
the external moment due to pressure distribution in the film is balanced by the spring 
moment. In the stationary case, this moment balance is

In a time-dependent analysis pad inertia is also included, giving
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Tapered Land Bearing

Tapered land bearings, unlike the tilted pad bearings, have the pad fixed to the bearing 
base. The pad is tapered in order to create the natural oil wedge. Because of the fixed 
thickness profile, these bearings are designed for specific conditions. A typical pad of a 
tapered land bearing is shown in the Figure 7-18.

Figure 7-18: Geometry of a tapered land bearing.

The hatched area in the figure is the tapered area and rest of the area is flat. The flat 
areas near the inner and outer diameter edges are called inner and outer dam. The 
width of the inner and outer dams are d1 and d2, respectively. The arc angle for the 
tapered area is γt. ri and ro are the inner and outer radius of the pad, respectively. Two 
types of grooves are usually used in the tapered bearings: one in which the groove 
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makes a constant arc angle about the center as shown in the Figure 7-18 and the 
second in which the groove is of constant width as shown in Figure 7-19. On the 
tapered area, a linear variation of the thickness is assumed.

Figure 7-19: Geometry of the constant groove width tapered land bearing.

C O N S T A N T  A R C  G R O O V E

The local y direction in the constant arc groove bearing is considered to be passing 
through the leading edge of the pad. If the initial clearance at the outer diameter side 
of the trailing edge is hte, and the tapered depth on inner and outer diameter side is hi 
and ho, respectively, then the film thickness in the tapered area can be approximated as

where Θi
t,te is the azimuthal angle of the trailing edge side of the tapered area of the 

ith pad from the local y direction, defined as

hi hte ho
Θt te,
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In the tapered land bearing, part of the area near the inner diameter and outer diameter 
is in general used as dam. Also, the complete area in the circumferential direction is not 
tapered, rather some area near the trailing edge is left flat. Therefore, the film thickness 
variation on the ith sector of symmetry can be given as

Here, hg is the depth of the groove.

C O N S T A N T  W I D T H  G R O O V E

Determination of the film thickness profile in a constant width groove bearing requires 
the determination of the coordinates of various points on the pad surface. Figure 7-20 
shows the geometry of the pad in a constant width groove bearing in more detail.

h hi
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Figure 7-20: Geometry of the pad in a constant width groove bearing.

The local y direction is in this case considered to pass from the center of the groove as 
opposed to the leading edge of the pad in other cases.

From the triangle formed by the radial directions rp and r

which gives

In the above expression, r can vary from the inner radius ri to outer radius ro. Since 
the pad depths at trailing edge outer diameter, and the relative depth of the pad from 
this location to the leading edge outer and inner diameter are known, the film 
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thickness variation in the tapered area can be calculated by assuming a linear variation 
in radial and circumferential directions:

The thicknesses h0, hr, and hθ are yet unknown. They can be determined by the 
following information:

where

Using this information, the height variation in the tapered area of the ith pad is 
calculated as

Therefore, the film thickness profile within a sector of symmetry for the constant width 
groove tapered pad bearing is given by
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Th e  Hyd r od ynam i c  B e a r i n g  I n t e r f a c e

The Hydrodynamic Bearing (hdb) interface ( ), found under the Structural 

Mechanics>Rotordynamics branch ( ) when adding a physics interface, is intended for 
analysis of fluid film bearings in 3D, modeled using a surface geometry. It is assumed 
that the thickness of the film is very small. Different types of journal bearings, such as 
plain, elliptic, split halves, multilobe, and tilted pad bearings, can be modeled using the 
Hydrodynamic Journal Bearing feature in this interface. You can also model a bearing 
mounted on a foundation.

On one side of the boundary there is a journal surface and on the other a bearing 
surface, neither of which is represented in the geometry. The journal and bearing 
surfaces are orientated with respect to the reference surface normal, as shown in 
Figure 7-21. Fluid flows in the gap between the journal and the bearing surfaces.

Figure 7-21: Diagram illustrating the orientation of the journal and the bearing surfaces 
with respect to the reference surface in the Hydrodynamic Bearing interface. A vector from 
the reference surface to the corresponding point on the journal always points in the −nref 
direction, where nref is the reference surface normal. Similarly, a vector from the reference 
surface to the corresponding point on the bearing points in the +nref direction. The height 
of the journal above the reference surface (hj) and the height of the bearing below the 
reference surface (hb) are also shown in the figure.

Using equations on the reference surface, the Hydrodynamic Bearing interface 
computes the pressure in a narrow gap between the journal and the bearing. When 
modeling the flow, it is assumed that the total gap height, h = hj + hb, is much smaller 
T H E  H Y D R O D Y N A M I C  B E A R I N G  I N T E R F A C E  |  297



298 |  C H A P T E
than the typical lateral dimension L of the reference surface. This physics interface is 
used to model laminar flow in thin gaps or channels in, for example, a lubricating oil 
between two rotating cylinders.

The Hydrodynamic Journal Bearing node is always added, with the Plain bearing as the 
default. This node adds the Reynolds equations for the pressure distribution on the 
film surface and has a Settings window to define the bearing properties. The equations 
in this feature also account for the velocity due to the axial rotation of the rotor.

When the Hydrodynamic Bearing interface is added, these default nodes are also added 
to the Model Builder — Bearing Orientation (the orientation of the bearing in the spatial 
frame), Border (a boundary condition where lubricant is assumed to flow out into a 
space filled with the same fluid), and Initial Values. Then, from the Physics toolbar, you 
can add features that implement other boundary conditions and bearing properties. 
You can also right-click Hydrodynamic Bearing to select physics features from the 
context menu.

S E T T I N G S

The Label is the default physics interface name.

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is hdb.

P H Y S I C A L  M O D E L

Select an Equation Type — Reynolds Equation or Modified Reynolds Equation.

D Y N A M I C  C O E F F I C I E N T S

Select the Calculate dynamic coefficients check box to enable computation of the 
equivalent stiffness and the damping coefficients for the bearing.

C A V I T A T I O N

To display this section, click the Show More Options button ( ) and select Show 

Advanced Physics Options in the Show More Options dialog box. Select the Cavitation 
check box to use when modeling bearings and then enter Cavitation transition width. 
This section is only available when the Reynolds Equation model is selected in the 
Physical Model section.
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Under normal operating conditions, the gases dissolved in the lubricant cause 
cavitation in the diverging clearance between the journal and the bearing. This 
happens because the pressure in the lubricant drops below the saturation pressure.

See the theory for Cavitation for more information.

I N C O N S I S T E N T  S T A B I L I Z A T I O N

To display this section, click on Show More Options button ( ) and select Stabilization 
in the Show More Options dialog box. Select the Isotropic diffusion check box to include 
the stabilization of the Reynolds equation with cavitation and then enter a Tuning 

parameter value. A larger value of the tuning parameter increases the amount of 
isotropic diffusion in the system. This section is only available when Cavitation is 
selected in the Cavitation section.

R E F E R E N C E  P R E S S U R E

Enter a Reference pressure level pref. The default value is 1[atm]. This pressure 
represents the ambient pressure, which is not accounted for when computing fluid 
loads.

D E P E N D E N T  V A R I A B L E S

The dependent variable (field variable) is the Pressure pf. The name can be changed 
but the names of fields and dependent variables must be unique within a component.

D I S C R E T I Z A T I O N

Select the Pressure discretization — Linear, Quadratic, Cubic, or Quartic to change the 
order of the shape functions for the pressure.

Domain, Boundary, and Pair Nodes for the Hydrodynamic Bearing 
Interface

The Hydrodynamic Bearing Interface has boundary, edge, and pair nodes (and 
subnodes), listed in alphabetical order, available from the Physics ribbon toolbar 
(Windows users), Physics context menu (Mac or Linux users), or by right-clicking the 
main physics interface node to access the context menu (all users).
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L I N K S  T O  F E A T U R E  N O D E  I N F O R M A T I O N

These nodes (and subnodes) are described in this section (listed in alphabetical order):

Hydrodynamic Journal Bearing

In the Hydrodynamic Journal Bearing node you specify the geometric dimensions, 
journal and foundation motion and lubricant properties necessary to model the 
fluid-film journal bearing.

R E F E R E N C E  S U R F A C E  P R O P E R T I E S

The journal surface is considered as the reference surface. Select Reference normal 

orientation — Same direction as geometry normal or Opposite direction to geometry 

normal to specify the normal of the journal that points toward the lubricant film.

• Bearing Orientation

• Border

• Floating Ring Bearing

• Hydrodynamic Journal Bearing

• Hydrodynamic Thrust Bearing

• Initial Values

• Inlet

• Inner Film Properties

• Inner-Outer Film Connection

• Outer Film Properties

• Outlet

• Squeeze Film Damper

• Symmetry

• Wall

In the COMSOL Multiphysics Reference Manual see Table 2-4 for links 
to common sections and Table 2-5 to common feature nodes. You can 
also search for information: press F1 to open the Help window or Ctrl+F1 
to open the Documentation window.

In general, to add a node, go to the Physics toolbar, no matter what 
operating system you are using. Subnodes are available by clicking the 
parent node and selecting it from the Attributes menu.

The links to the nodes described in external guides, such as the Structural 
Mechanics Module User’s Guide, do not work in the PDF, only from the 
online help in COMSOL Multiphysics.
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B E A R I N G  P R O P E R T I E S

Select Bearing type — Plain, Elliptic, Split halves, Multilobe, Tilted pad, or User defined. 
Then, go to the relevant section below to continue defining the properties.

Plain
Enter the Clearance, C, between the journal and bearing when the centers of the 
journal and bearing coincide.

Elliptic
Enter the Minimum clearance, Cmin, and Maximum clearance, Cmax, when the centers 
of the journal and bearing coincide.

Split Halves
Enter a Clearance, C, and select the Preload factor — Specify or Compute from offset.

• Specify: enter a value of the preload factor mp between 0 and 1.

• Compute from offset: enter the Pad center offset, d.

Multilobe
Enter a Clearance, C, and select the Preload factor — Specify or Compute from offset.

• Specify: enter the value of the preload factor mp between 0 and 1.

• Compute from offset: enter the Pad center offset, d.

Finally, enter the Number of pads, N. 

Tilted Pad
Enter a Clearance, C, and select the Preload factor — Specify or Compute from pad 

clearance.

• Specify: enter the value of the preload factor mp between 0 and 1.

• Compute from pad clearance: enter the Pad clearance, Cp.

Finally, enter the Number of pads, N; Pad outer radius, Rp; Pad tilt angle, δ; and Pivot 

offset factor, f.

User Defined
Enter the Height of the bearing above reference plane as a function of the polar 
coordinates. The default expression contains variables <phys>.r_e1 and <phys>.Th, 
which are the axial and azimuthal coordinates of the reference surface. <phys>.r_e1 
is the coordinate of a point on the bearing surface along the bearing axis. <phys>.Th 
is the azimuth angle of a point on the bearing surface with respect to the local 
y direction of the bearing.
T H E  H Y D R O D Y N A M I C  B E A R I N G  I N T E R F A C E  |  301



302 |  C H A P T E
Select one of the Moving or Flexible foundation options. In both the cases, respective 
subnodes Moving Foundation or Flexible Foundation are automatically added.

J O U R N A L  P R O P E R T I E S

Select Specify — Displacement, Eccentricity and direction, or Load. If Displacement is 
selected, select Journal displacement — User defined and enter the displacement values.

If Eccentricity and direction is selected, enter values for the Eccentricity, e, and the 
Attitude angle relative to local y direction, φy.

If Load is selected, select Journal Load — User defined and enter the load values.

Enter the value for Mass of the journal. Also enter the value for the Initial journal 

displacement. Both are generally needed for a time-dependent study. In a stationary 
study, Initial journal displacement is used as an initial guess for the journal displacement. 

Select Velocity of the journal — Angular speed or Velocity field. In the Angular speed case, 
select User defined, and enter the angular speed.

In the Velocity field case, select User defined, and enter the velocity field of the journal.

The Journal displacement list normally only contains User defined. When 
combined with another physics interface that can provide this type of 
displacement, it is also possible to choose a predefined displacement from 
this list.

The Journal load list normally only contains User defined. When combined 
with another physics interface that can provide this type of force, it is also 
possible to choose a predefined load from this list.

The Angular speed list normally only contains User defined. When 
combined with another physics interface that can provide this type of 
data, for example Solid Rotor and Beam Rotor interfaces, it is also possible 
to choose a predefined angular speed from this list.

The Velocity field list normally only contains User defined. When 
combined with another physics interface that can provide this type of 
data, it is also possible to choose a predefined velocity field from this list.
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F I L M  B O U N D A R Y  C O N D I T I O N

This section is only available when Equation type is Reynolds equation in the Physical 

Model section and Cavitation is not selected in the Cavitation section at the physics node.

Select the Film type — Sommerfeld or Gümbel. In the Sommerfeld case, a complete 2π 
film is considered in the net force calculation in the bearing. In the Gümbel case, only 
half of the film where the pressure is positive (π film) is used for computing the net 
force in the bearing.

C O N T A C T  S U R F A C E  P R O P E R T I E S

This section is only available when Reynolds equation is selected in Equation type in the 
Physical Model section at the physics node.

Select Contact surfaces — Smooth (the default) or Rough. Then, go to the relevant 
section below to continue defining the surface properties.

Smooth
Select Flow type — Laminar (the default) or Turbulent. In the Laminar case no further 
input is needed. In the Turbulent case, select Flow factors — Automatic (the default) or 
User defined. In the Automatic case, flow factors for smooth surfaces are used by default. 
In the User defined case, enter values for the Pressure flow factor, axial direction, Φ1; the 
Pressure flow factor, circumferential direction, Φθ; and the Shear stress factor, 

circumferential direction, Φfθ. The default values correspond to the flow factors for 
smooth surfaces.

Rough
Enter a value for the Surface roughness, σ. Select the Flow factors — Patir and Cheng (the 
default) or User defined. If Patir and Cheng is selected, enter values of the constants k1, 
γ1, kθ and γθ for the pressure flow factors, and the constants A1, α1,1, α2,1, α3,1, Aθ, 
α1,θ, α2,θ and α3,θ for the shear flow factors. Subscripts 1 and θ refer to the axial and 
circumferential directions, respectively. If User defined is selected, enter values for the 
flow factors matrices Φl, Φsl, Φfl, Φfsl, Φfpl. Note that the components of the matrices 
are in local directions with the first index referring to the axial direction and the second 
index referring to the circumferential direction.

Select the Include asperity contact pressure check box to include the pressure 
contribution due to metal to metal contact between the asperities in the bearing 
reaction. This refers to a mixed lubrication condition where the total pressure in the 
bearing is a summation of the contribution from the fluid film pressure and the metal 
to metal contact pressure. Enter values for the Surface asperity density, η; the Radius of 

curvature at peak, r0; and the Effective modulus, Ee.
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F L U I D  P R O P E R T I E S

The default Dynamic viscosity μ is taken From material. For User defined, enter a 
different value or expression.

With the default options, the Density ρ is taken From material. For User defined enter a 
different value or expression. If the Modified Reynolds Equation is being solved, the 
density is determined automatically by the ideal gas law. If cavitation is enabled, the 
density is assumed to take the form ρ=ρc exp(βpf), where pf is the fluid pressure, ρc is 
the density at the cavitation pressure, and β is the compressibility. In this case, enter 
the values for the Density at cavitation pressure, ρc, and the Compressibility, β.

F I L M  F L O W  M O D E L

Select a Film flow model — No-slip walls, Slip at walls, User defined-relative flow function, 
or User defined-general. The film flow model is used to compute the mean fluid velocity 
as a function of the pressure gradient, the journal velocity, and the bearing velocity. 
Within the gap, the fluid velocity profile is a linear combination of the Poiseuille and 
Couette velocity profiles.

No-slip walls
This flow model assumes no slip at the journal and bearing surfaces. Thus, the average 
fluid velocity is computed by assuming that the fluid velocity at the journal and bearing 
is equal to the journal and bearing velocity, respectively.

Slip at walls
Use Slip at walls when slip occurs at the journal or bearing. In this case, the difference 
between the journal or bearing velocity and the fluid velocity is proportional to the 
tangential part of the normal stress tensor component. The slip length divided by the 
fluid viscosity is the constant of proportionality in this relationship. The mean fluid 
velocity is computed using this assumption, given the pressure gradient and the journal 
and bearing velocities.

Enter a Slip length, journal, Lsj. Select the Use different slip length for bearing check box 
to enter a Slip length, bearing, Lsb.

For the Modified Reynolds Equation, it is possible to use the gas mean free path to specify 
the slip length. Change the Type of slip setting (which defaults to Slip length with the 
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settings described above) to Mean free path and same accommodation coefficients or to 
Mean free path and different accommodation coefficients.

• For Mean free path and same accommodation coefficients, enter a value for the Journal 

and bearing accommodation coefficient, α.

• For Mean free path and different accommodation coefficients, enter values for the 
Journal accommodation coefficient, αj, and the Bearing accommodation coefficient, αb.

Select an option to define the Mean free path — Compute from material properties, User 

defined expression, or User defined with reference pressure.

• For User defined expression, enter an expression for the Mean free path, λ. The default 
expression is ((70[nm])*(1[atm]))/(hdb.ptot).

• For User defined with reference pressure, enter values for the Mean free path at 

reference pressure, λ0, and for the Mean free path reference pressure, pλ0.

Rarefied-total accommodation (Modified Reynolds Equation Only)
The Rarefied-total accommodation option provides a rarefied gas model that assumes 
total accommodation at the journal and the bearing. This model is accurate to within 
5% over the range 0 < Kn < 880 (here Kn is the Knudsen number, which is the ratio 
of the film thickness to the mean free path). An empirical function, fitted to stationary 
solutions of the Boltzmann equation, is used to define the Poiseuille component of the 
flow.

Select an option to define the Mean free path — Compute from material properties, 
User-defined expression, or User defined with reference pressure. 

• For User-defined expression, enter an expression for the Mean free path, λ. The 
default expression is ((70[nm])*(1[atm]))/(hdb.ptot).

• For User defined with reference pressure, enter values for the Mean free path at 

reference pressure, λ0, and for the Mean free path reference pressure, pλ0.

To select a Force model, choose:

• Normal (pressure) forces only to include only the normal pressure forces in the 
model. 

• Couette (slide film) forces only to include only the shear forces generated from an 
empirical model of the rarefied flow developed for pure Couette flows.

• Shear and normal forces to include both the shear and pressure forces, combining the 
other two force models.
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Rarefied-general accommodation (Modified Reynolds Equation Only)
The Rarefied-general accommodation option provides a rarefied gas model that assumes 
the same accommodation coefficient, α, at the journal and bearing. This model is 
accurate to within 1% over the ranges 0.7 < α < 1 and 0.01 < Kn < 100 (here, Kn is 
the Knudsen number, which is the ratio of the film thickness to the mean free path). 
An empirical function, fitted to stationary solutions of the Boltzmann equation, is used 
to define the Poiseuille component of the flow.

Select an option to define the Mean free path — Compute from material properties, 
User-defined expression, or User defined with reference pressure.

• For User-defined expression, enter an expression for the Mean free path, λ. The 
default expression is 70[nm]*1[atm]/hdb.ptot.

• For User defined with reference pressure, enter values for the Mean free path at 

reference pressure, λ0, and for the Mean free path reference pressure, pλ0.

To select a Force model, choose:

• Normal (pressure) forces only to include only the normal pressure forces in the 
model. 

• Couette (slide film) forces only to include only the shear forces generated from an 
empirical model of the rarefied flow developed for pure Couette flows.

• Shear and normal forces to include both the shear and pressure forces, combining the 
other two force models.

User defined-relative flow function
The User defined-relative flow function option enables user-defined models in which an 
effective fluid viscosity is employed. The fluid viscosity is divided by an additional 
factor Qch, which can be defined as an arbitrary expression in the user interface. It is 
also possible to define the expressions for the fluid forces on the journal and on the 
bearing (these are included as feature inputs in other physics interfaces).

Enter values or expressions for:

• Relative flow rate function, Qc

• Fluid load on journal, fj

• Fluid load on bearing, fb

User defined-general
The User defined-general option enables you to define arbitrary flow models. Both the 
Poiseuille and Couette terms in the mean velocity can be defined arbitrarily. It is also 
R  7 :  H Y D R O D Y N A M I C  B E A R I N G



possible to define the expressions for the fluid forces on the journal and on the bearing, 
(these are included as feature inputs in other physics interfaces).

Enter values or expressions for:

• Poiseuille mean fluid velocity coefficient, vave,P.

• Couette mean fluid velocity component, vave,C.

• Fluid load on journal, fj.

• Fluid load on bearing, fb.

W H I R L  S P E E D

This section is only used for calculating the dynamic coefficients for a gas bearing. 
Thus, this section only appears when all of the following are true:

• Equation type is set to Modified Reynolds equation in the Physical Model section of the 
physics node. 

• Calculate dynamic coefficients is selected in the Dynamic Coefficients section of the 
physics node.

• Velocity of the journal is set to Angular speed in the Journal Properties section of the 
feature.

• Advanced Physics Options is selected in the Show More Options menu. 

Enter the value of whirl speed ratio. The default value 1 corresponds to a synchronous 
whirl. Most of the time dynamic coefficients are calculated for the synchronous whirl 
thus this value should only be changed if the dynamic coefficients are needed for a 
nonsynchronous whirl.

Floating Ring Bearing

In the Floating Ring Bearing node you specify the journal and foundation motion, ring 
properties and lubricant properties necessary to model a floating ring bearing.

B E A R I N G  P R O P E R T I E S

Select Ring type — Full floating or Semi floating. In the Full floating case, the ring is 
allowed to axially rotate under the viscous drag force from the lubricant film in 
addition to the in plane translation and tilting rotation. In the Semi floating case, axial 
rotation of the ring is not allowed. The ring is, however, still free to move in-plane and 
to tilt about the lateral axes. Select Ring position and orientation — Automatic or User 

defined. In the Automatic case, enter the value of Mass, mring and Moment of inertia, 
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Iring of the ring. The motion of the ring is then computed by momentum and angular 
momentum balance. In the User defined case, enter the values of the displacement ur,y 
and ur,z, as well as tilting rotation θr,y and θr,z. In Full floating case, also select Ring 

speed — Automatic or User defined. If Automatic is selected, enter the value of Polar 

moment of inertia, Ip,ring (only if Ring position and orientation is User defined). In the 
User defined case, enter the value of Ring to journal speed ratio, νr. 

Select one of the Moving or Flexible foundation options. In these cases, one of the 
subnodes Moving Foundation or Flexible Foundation is automatically added.

J O U R N A L  P R O P E R T I E S

Select Specify — Displacement, Eccentricity and direction or Load. Then, go to the 
relevant section below to continue defining the properties.

Displacement
Select Journal displacement — User defined and enter the displacement values, uj.

Eccentricity and direction
Enter values for the Eccentricity, e, and the Attitude angle relative to local y direction, φy.

Load
Select Journal Load — User defined and enter the load values, Wj.

Enter the values for the Mass of the journal, mJ. Also enter the value for the Initial 

journal displacement, uJ0. Both are generally needed for a time-dependent study. In a 
stationary study, Initial journal displacement is taken as an initial guess for the journal 
displacement.

The Journal displacement list normally only contains User defined. When 
combined with another physics interface that can provide this type of 
displacement, it is also possible to choose a predefined displacement from 
this list.

The Journal load list normally only contains User defined. When combined 
with another physics interface that can provide this type of force, it is also 
possible to choose a predefined load from this list.
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Select Velocity of the journal — Angular speed or Velocity field. In the Angular speed case, 
select User defined, and enter the angular speed.

In the Velocity field case, select User defined, and enter the velocity field of the journal.

F I L M  B O U N D A R Y  C O N D I T I O N

This section is only available when Equation type is Reynolds equation in the Physical 

Model section and Cavitation is not selected in the Cavitation section at the physics node.

Select the Film type — Sommerfeld or Gümbel. In the Sommerfeld case, a complete 2π 
film is considered in the net force calculation in the bearing. In the Gümbel case, only 
half of the film where the pressure is positive (π film) is used for computing the net 
force in the bearing.

F L U I D  P R O P E R T I E S

The default Dynamic viscosity, μ, is taken From material. For User defined, enter a 
different value or expression.

With the default options, the Density ρ is taken From material. For User defined enter a 
different value or expression. If the Modified Reynolds Equation is being solved, the 
density is determined automatically by the ideal gas law. If cavitation is enabled, the 
density is assumed to take the form ρ=ρc exp(βpf), where pf is the fluid pressure, ρc is 
the density at the cavitation pressure, and β is the compressibility. In this case, enter 
the values for the Density at cavitation pressure, ρc, and the Compressibility β.

The Angular speed list normally only contains User defined. When 
combined with another physics interface that can provide this type of 
data, for example Solid Rotor and Beam Rotor interfaces, it is also possible 
to choose a predefined angular speed from this list.

The Velocity field list normally only contains User defined. When 
combined with another physics interface that can provide this type of 
data, it is also possible to choose a predefined velocity field from this list.
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W H I R L  S P E E D

This section is only used for calculating the dynamic coefficients for a gas bearing. 
Thus, this section only available when all of the following are true:

• Equation type is set to Modified Reynolds equation in the Physical Model section of the 
physics node. 

• Calculate dynamic coefficients is selected in the Dynamic Coefficients section of the 
physics node.

• Velocity of the journal is set to Angular speed in the Journal Properties section of the 
feature.

• Advanced Physics Options is selected in the Show More Options menu. 

Enter the value of whirl speed ratio. The default value 1 corresponds to a synchronous 
whirl. Most of the time dynamic coefficients are calculated for the synchronous whirl 
thus this value should only be changed if the dynamic coefficients are needed for a 
nonsynchronous whirl.

Inner Film Properties

The Inner Film Properties node can be used to specify the clearance and slip models for 
the inner film.

R E F E R E N C E  S U R F A C E  P R O P E R T I E S

The journal surface in the inner film is considered as reference surface. Select Reference 

normal orientation — Same direction as geometry normal or Opposite direction to 

geometry normal to specify the normal of the reference surface toward the lubricant 
film.

C L E A R A N C E

Enter the value of the Clearance, C.

F I L M  F L O W  M O D E L

Select Film flow model — No-slip walls or Slip at walls. In the Slip at walls case, enter the 
values of Slip length, journal, Lsj and Slip length, ring, Lsr. 

Two default subnodes Inner Film Properties and Outer Film Properties are 
automatically added below the Floating Ring Bearing feature to specify the 
clearance and flow models of the respective films.
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Outer Film Properties

The Outer Film Properties node can be used to specify the clearance and slip models for 
the outer film.

R E F E R E N C E  S U R F A C E  P R O P E R T I E S

The ring surface in the outer film is considered as reference surface. Select Reference 

normal orientation — Same direction as geometry normal or Opposite direction to 

geometry normal to specify the normal of the reference surface toward the lubricant 
film.

C L E A R A N C E

Enter the value of the Clearance, C.

F I L M  F L O W  M O D E L

Select Film flow model — No-slip walls or Slip at walls. In the Slip at walls case, enter the 
values of Slip length, ring, Lsr and Slip length, bearing, Lsb. 

Inner-Outer Film Connection

The Inner-Outer Film Connection node is optional, and can be used to connect the flow 
in the inner and outer film through the oil channels present in the ring. This requires 
the channel hole location in the inner and outer film and their relative circumferential 
offset to establish the connection.

C H A N N E L ,  I N N E R  F I L M

Select the surfaces representing the channel hole in the inner film.

C H A N N E L ,  O U T E R  F I L M

Select the surfaces representing the channel hole in the outer film.

C H A N N E L  H O L E  O F F S E T

Enter the Channel hole offset angle, Θoff to specify the relative circumferential offset 
between the channel hole location in inner and outer film.
T H E  H Y D R O D Y N A M I C  B E A R I N G  I N T E R F A C E  |  311



312 |  C H A P T E
Hydrodynamic Thrust Bearing

In the Hydrodynamic Thrust Bearing node you specify the geometric dimensions, collar 
and foundation motion and lubricant properties necessary to model a fluid-film thrust 
bearing.

R E F E R E N C E  S U R F A C E  P R O P E R T I E S

The collar surface is considered as reference surface. Select Reference normal orientation 
— Same direction as geometry normal or Opposite direction to geometry normal to 
specify the normal of the collar toward the lubricant film.

B E A R I N G  P R O P E R T I E S

Select Bearing type — Tilted pad, Tapered, or User defined. Then, go to the relevant 
section below to continue defining the properties.

Tilted pad
Enter the Number of pads, N, Pad arc, γp, Inner diameter, di, and Outer diameter, do to 
define the pad geometry. Select the Include pad inertia check box to model the effect 
of pad inertia when determining the film thickness. Inertial effects are important only 
in a time-dependent study. If selected, enter the Pad thickness, tp and Density, ρ to 
determine the moment of inertia of the pad. Finally enter the Groove depth, hg which 
is used to determine the film thickness in the groove.

Tapered 
Enter the Number of pads, N; Pad arc, γp; Inner diameter, di; Outer diameter, do; and 
Groove depth, hg, to define the pad geometry. Finally select Groove type — Constant 

width or Constant arc. 

User defined
Enter the Initial clearance as a function of the polar coordinates. The default expression 
contains variables <phys>.rd and <phys>.Th, which are the radial and azimuthal 
coordinates of the reference surface. <phys>.rd is the radial coordinate of a point on 
the bearing surface with respect to bearing center. <phys>.Th is the azimuthal angle 
of a point on the bearing surface with respect to the local y direction of the bearing.

Select one of the Moving or Flexible foundation options. A subnode Moving 
Foundation or Flexible Foundation is automatically added.
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C O L L A R  P R O P E R T I E S

Select Collar displacement — User defined and enter the displacement values.

Select Velocity of the collar — Angular speed or Velocity field. In the Angular speed case, 
select User defined, and enter the angular speed.

In the Velocity field case, select User defined, and enter the velocity field of the journal.

F I L M  B O U N D A R Y  C O N D I T I O N

This section is only available when Equation type is Reynolds equation in the Physical 

Model section and Cavitation is not selected in the Cavitation section in the 
Hydrodynamic Bearing interface.

Select the Film type — Sommerfeld or Gümbel. In the Sommerfeld case, a complete 2π 
film is considered in the net force calculation in the bearing. In the Gümbel case, only 
half of the film where the pressure is positive (π film) is used for computing the net 
force in the bearing.

C O N T A C T  S U R F A C E  P R O P E R T I E S

This section is only available when Equation type is Reynolds equation in the Physical 

Model section at the physics node.

Select Contact surfaces — Smooth (the default) or Rough. Then, go to relevant section 
below to continue defining the surface properties.

The Collar displacement list normally only contains User defined. When 
combined with another physics interface that can provide this type of 
displacement, it is also possible to choose a predefined displacement from 
this list.

The Angular speed list normally only contains User defined. When 
combined with another physics interface that can provide this type of 
data, for example Solid Rotor and Beam Rotor interfaces, it is also possible 
to choose a predefined angular speed from this list.

The Velocity field list normally only contains User defined. When 
combined with another physics interface that can provide this type of 
data, it is also possible to choose a predefined velocity field from this list.
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Smooth
Select Flow type — Laminar (the default) or Turbulent. In the Laminar case no further 
input is needed. In the Turbulent case, select Flow factors — Automatic (the default) or 
User defined. In the Automatic case, flow factors for smooth surfaces are used by default. 
In the User defined case, enter values for the Pressure flow factor, radial direction, Φr; 
the Pressure flow factor, circumferential direction, Φθ; and the Shear stress factor, 

circumferential direction, Φfθ. The default values correspond to the flow factors for 
smooth surfaces.

Rough
Enter a value for the Surface roughness, σ. Select the Flow factors — Patir and Cheng (the 
default) or User defined. If Patir and Cheng is selected, enter values of the constants kr, 
γr, kθ and γθ for the pressure flow factors, and the constants Ar, α1,r, α2,r, α3,r, Aθ, α1,θ, 
α2,θ and α3,θ for the shear flow factors. Subscripts r and θ refer to the radial and 
circumferential directions, respectively. If User defined is selected, enter values of the 
flow factors matrices Φl, Φsl, Φfl, Φfsl, Φfpl. Note that the components of the matrices 
are in local directions with the first index referring to the radial direction and the 
second index referring to the circumferential direction.

Select the Include asperity contact pressure check box to include the pressure 
contribution due to metal to metal contact between the asperities in the bearing 
reaction. This refers to a mixed lubrication condition where the total pressure in the 
bearing is a summation of the contribution from the fluid film pressure and the metal 
to metal contact pressure. Enter values for the Surface asperity density, η; the Radius of 

curvature at peak, r0; and the Effective modulus, Ee.

F L U I D  P R O P E R T I E S

The default Dynamic viscosity μ is taken From material. For User defined, enter a 
different value or expression.

With the default options, the Density, ρ, is taken From material. For User defined enter 
a different value or expression. If the Modified Reynolds Equation is being solved, the 
density is determined automatically by the ideal gas law. If cavitation is enabled, the 
density is assumed to take the form ρ=ρc exp(βpf), where pf is the fluid pressure, ρc is 
the density at the cavitation pressure, and β is the compressibility. In this case, enter 
the values for the Density at cavitation pressure, ρc, and the Compressibility β.

F I L M  F L O W  M O D E L

Select a Film flow model — No-slip walls, Slip at walls, User defined-relative flow function, 
or User defined-general. The film flow model is used to compute the mean fluid velocity 
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as a function of the pressure gradient, the collar velocity, and the bearing velocity. 
Within the gap, the fluid velocity profile is a linear combination of the Poiseuille and 
Couette velocity profiles.

No-slip walls
This flow model assumes no slip at both the collar and bearing surfaces. Thus, the 
average fluid velocity is computed by assuming that the fluid velocity at the collar and 
bearing is equal to the collar and bearing velocity, respectively.

Slip at walls
Use Slip at walls when slip occurs at the collar or bearing. In this case, the difference 
between the collar or bearing velocity and the fluid velocity is proportional to the 
tangential part of the normal stress tensor component. The slip length divided by the 
fluid viscosity is the constant of proportionality in this relationship. The mean fluid 
velocity is computed using this assumption, given the pressure gradient and the collar 
and bearing velocities.

Enter a Slip length, collar, Lsc. Select the Use different slip length for bearing check box 
to enter a Slip length, bearing, Lsb.

For the Modified Reynolds Equation it is possible to use the gas mean free path to specify 
the slip length. Change the Type of slip setting (which defaults to Slip length with the 
settings described above) to Mean free path and same accommodation coefficients or to 
Mean free path and different accommodation coefficients.

• For Mean free path and same accommodation coefficients, enter a value for the Collar 

and bearing accommodation coefficient, α.

• For Mean free path and different accommodation coefficients, enter values for the 
Collar accommodation coefficient, αc, and the Bearing accommodation coefficient, αb.

Select an option to define the Mean free path — Compute from material properties, User 

defined expression, or User defined with reference pressure.

• For User defined expression, enter an expression for the Mean free path, λ. The default 
expression is ((70[nm])*(1[atm]))/(hdb.ptot).

• For User defined with reference pressure, enter values for the Mean free path at 

reference pressure, λ0, and for the Mean free path reference pressure, pλ0.

Rarefied-total accommodation (Modified Reynolds Equation Only)
The Rarefied-total accommodation option provides a rarefied gas model that assumes 
total accommodation at the collar and the bearing. This model is accurate to within 5% 
over the range 0 < Kn < 880 (here Kn is the Knudsen number, which is the ratio of 
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the film thickness to the mean free path). An empirical function, fitted to stationary 
solutions of the Boltzmann equation, is used to define the Poiseuille component of the 
flow.

Select an option to define the Mean free path — Compute from material properties, 
User-defined expression, or User defined with reference pressure.

• For User-defined expression, enter an expression for the Mean free path, λ. The 
default expression is ((70[nm])*(1[atm]))/(hdb.ptot).

• For User defined with reference pressure, enter values for the Mean free path at 

reference pressure, λ0, and for the Mean free path reference pressure, pλ0.

To select a Force model, choose:

• Normal (pressure) forces only to include only the normal pressure forces in the 
model. 

• Couette (slide film) forces only to include only the shear forces generated from an 
empirical model of the rarefied flow developed for pure Couette flows.

• Shear and normal forces to include both the shear and pressure forces, combining the 
other two force models.

Rarefied-general accommodation (Modified Reynolds Equation Only)
The Rarefied-general accommodation option provides a rarefied gas model that assumes 
the same accommodation coefficient, α, at the journal and bearing. This model is 
accurate to within 1% over the ranges 0.7 < α < 1 and 0.01 < Kn < 100 (here, Kn is 
the Knudsen number, which is the ratio of the film thickness to the mean free path). 
An empirical function, fitted to stationary solutions of the Boltzmann equation, is used 
to define the Poiseuille component of the flow.

Select an option to define the Mean free path — Compute from material properties, 
User-defined expression, or User defined with reference pressure.

• For User-defined expression, enter an expression for the Mean free path, λ. The 
default expression is 70[nm]*1[atm]/hdb.ptot.

• For User defined with reference pressure, enter values for the Mean free path at 

reference pressure, λ0, and for the Mean free path reference pressure, pλ0.

To select a Force model, choose:

• Normal (pressure) forces only to include only the normal pressure forces in the 
model. 
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• Couette (slide film) forces only to include only the shear forces generated from an 
empirical model of the rarefied flow developed for pure Couette flows.

• Shear and normal forces to include both the shear and pressure forces, combining the 
other two force models.

User defined-relative flow function
The User defined-relative flow function option enables user-defined models in which an 
effective fluid viscosity is employed. The fluid viscosity is divided by an additional 
factor Qch, which can be defined as an arbitrary expression in the user interface. It is 
also possible to define the expressions for the fluid forces on the collar and on the 
bearing (these are included as feature inputs in other physics interfaces).

Enter values or expressions for:

• Relative flow rate function, Qc

• Fluid load on collar, fc

• Fluid load on bearing, fb

User defined-general
The User defined-general option enables you to define arbitrary flow models. Both the 
Poiseuille and Couette terms in the mean velocity can be defined arbitrarily. It is also 
possible to define the expressions for the fluid forces on the collar and on the bearing, 
(these are included as feature inputs in other physics interfaces).

Enter values or expressions for:

• Poiseuille mean fluid velocity coefficient, vave,P.

• Couette mean fluid velocity component, vave,C.

• Fluid load on collar, fc.

• Fluid load on bearing, fb.

Squeeze Film Damper

In the Squeeze Film Damper node, you specify the geometric dimensions, as well as 
journal and lubricant properties necessary to model a squeeze film damper.

D A M P E R  P R O P E R T I E S

Enter the value of the Clearance, C.
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J O U R N A L  P R O P E R T I E S

Select Specify — Displacement, or Eccentricity and direction. If Displacement is selected, 
select Journal displacement — User defined and enter the displacement values.

If Eccentricity and direction is selected, enter values for the Eccentricity, e, and the 
Attitude angle relative to local y direction, φy.

Select Velocity of the journal — Whirl speed or Velocity field. In the Whirl speed case, 
select User defined, and enter the whirl speed value. This speed is the angular speed for 
the circular orbital motion of the journal.

When the journal motion is not circular, velocity of the journal can be defined as a 
velocity field. In the Velocity field case, select User defined, and enter the velocity field 
of the journal.

F I L M  B O U N D A R Y  C O N D I T I O N

This section is only available when Equation type is Reynolds equation in the Physical 

Model section and Cavitation is not selected in the Cavitation section in the settings for 
Hydrodynamic Bearing interface.

Select the Film type — Sommerfeld or Gümbel. In the Sommerfeld case, a complete 2π 
film is considered in the net force calculation in the bearing. In the Gümbel case, only 
half of the film where the pressure is positive (π film) is used for computing the net 
force in the bearing.

The Journal displacement list normally only contains User defined. When 
combined with another physics interface that can provide this type of 
displacement, it is also possible to choose a predefined displacement from 
this list.

The Whirl speed list normally only contains User defined. When combined 
with another physics interface that can provide this type of data, it is also 
possible to choose a predefined angular speed from this list.

The Velocity field list normally only contains User defined. When 
combined with another physics interface that can provide this type of 
data, it is also possible to choose a predefined velocity field from this list.
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C E N T E R I N G  S P R I N G

Squeeze film dampers themselves are not capable of supporting any static load. 
Centering springs are provided in the dampers to support the static load. Enter the 
values of Spring constant, kcs, and Damping constant, ccs, of the centering spring.

F L U I D  P R O P E R T I E S

The default Dynamic viscosity, μ, is taken From material. For User defined, enter a 
different value or expression.

With the default options, the Density, ρ, is taken From material. For User defined enter 
a different value or expression. If the Modified Reynolds Equation is being solved, the 
density is determined automatically by the ideal gas law. If cavitation is enabled, the 
density is assumed to take the form ρ=ρc exp(βpf), where pf is the fluid pressure, ρc is 
the density at the cavitation pressure, and β is the compressibility. In this case, enter 
the values for the Density at cavitation pressure, ρc, and the Compressibility, β.

F I L M  F L O W  M O D E L

Select Film flow model — No-slip walls or Slip at walls. In the Slip at walls case, enter the 
values of Slip length, journal, Lsj, and Slip length, bearing, Lsb. 

Bearing Orientation

In the Bearing Orientation node, you specify the orientation of the bearing with respect 
to spatial directions. 

B E A R I N G  O R I E N T A T I O N

Select an Axis — x-Axis, y-Axis, z-Axis, or User defined — to specify the axis of the 
bearing. Except for the User defined case, the axis passes through the origin. In the User 

defined case, also select Center — Automatic or User defined.

• Automatic: The centroid of the bearing surface is the base point the bearing axis.

• User defined: Enter the coordinates of the Base point on bearing axis.

Enter the Bearing orientation vector defining local y direction. The direction given will 
be adjusted so that it is orthogonal to the rotor axis. The default value is the global 
y-axis.
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You can further modify the y-axis orientation by entering an angle for the Rotation of 

orientation vector around bearing axis. The direction inferred from the previous setting 
will be rotated counterclockwise around the rotor axis. 

Border

Use the Border node to set a pressure condition at the border and the border flow type.

The Border flow condition is used to account for the pressure drop caused by the flow 
converging into the gap, outside the thin layer. The acoustic elongation option does 
this by adding additional thickness to the thin layer beyond the edge of the geometry 
(assuming a pressure gradient in this layer equal to that at the boundary). The 
out-of-plane motion calculates the pressure gradient due to circulation of the fluid 
caused by motion of the journal or bearing surfaces using a predefined model. 
Alternatively, the pressure gradient at the boundary can be specified using an arbitrary 
expression, which allows for more sophisticated, user-defined models.

B O R D E R  S E T T I N G S

Select a Border condition — Zero pressure, Pressure, or Border flow.

When the Cavitation check box is selected for the physics interface, Starvation is also 
available.

For Pressure, enter a Pressure pf0 to define pf = pf0 on the edge. If the reference 
pressure pref, defined at the physics interface level, is 0, pf0 is the absolute pressure. 
Otherwise, pf0 is the relative pressure.

For Border flow, select a Border flow type — Acoustic boundary condition-absolute 

elongation, Acoustic boundary condition-relative elongation, Out-of-plane motion, or User 

defined.

• For Acoustic Boundary condition-absolute elongation, enter a Border elongation ΔL.

• For Acoustic boundary condition-relative elongation, enter a Relative border elongation 
ΔLr.

• For Out-of-plane motion, enter the Model coefficients η, ζ, and χ with defaults 0, 0, 
and 1, respectively. Also enter the Slip length, L. The default slip length uses an if 
condition to set the slip length equal to that defined in the Hydrodynamic Journal 

This is required input data.
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Bearing node if a suitable Film flow model is selected. If the Slip length is not defined 
in the Hydrodynamic Journal Bearing node, it defaults to 0.1 μm.

Note that the coefficients can be specified according to the results given in the paper 
by Gallis and Torczynski (M. A. Gallis and J. R. Torczynski, “An Improved 
Reynolds-Equation Model for Gas Damping of Microbeam Motion”, Journal of 
Microelectromechanical Systems, vol. 13, pp. 653–659, 2004). The following 
values are recommended:

where h is the gap height. The above equations are valid in the range 0 ≤ Λ/h ≤ 1.

• For User defined enter a Normal pressure gradient. For Starvation enter a value for the 
Fluid fraction θ0.

Initial Values

The Initial Values node adds an initial value for the pressure that can serve as an initial 
condition for a transient simulation or as an initial guess for a nonlinear solver. If more 
than one set of initial values is required, add additional Initial Values nodes from the 
Physics toolbar.

I N I T I A L  V A L U E S

Enter a value or an expression for the initial value of the Pressure pf.

Inlet

Use the Inlet node to define an edge or a part of the boundary where fluid enters the 
gap.
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T H E  H Y D R O D Y N A M I C  B E A R I N G  I N T E R F A C E  |  321



322 |  C H A P T E
I N L E T  S E T T I N G S

For the Inlet node with edge selection, select an Inlet condition — Zero pressure, 
Pressure, or Normal inflow velocity.

When the Cavitation check box is selected for the physics interface (see Cavitation), 
Starvation is also available.

• For Zero pressure, pf = 0 applies on the edge. 

• For Pressure, enter a Pressure pf0 to impose pf = pf0 on the edge. If the reference 
pressure pref, defined at the physics interface level, is 0, pf0 is the absolute pressure. 
Otherwise, pf0 is the relative pressure.

• For Normal inflow velocity, enter a Normal inflow velocity U0.

• For Starvation, enter a value for the Fluid fraction θ0.

For the Inlet node with boundary selection, specify the Pressure at the inlet.

Outlet

The Outlet node defines an edge or a part of boundary where fluid leaves the gap.

O U T L E T  S E T T I N G S

For the Outlet node with edge selection, select an Outlet condition — Zero pressure, 
Pressure, or Normal outflow velocity.

• When the Cavitation check box is selected for the physics interface (see Cavitation), 
Starvation is also available. For Zero pressure pf = 0 applies on the edge.

• For Pressure, enter a Pressure pf0 to impose pf = pf0 on the edge. If the reference 
pressure pref, defined at the physics interface level, is 0, pf0 is the absolute pressure. 
Otherwise, pf0 is the relative pressure.

• For Normal outflow velocity, enter a Normal outflow velocity U0.

• For Starvation, enter a value for the Fluid fraction θ0. 

For the Outlet node with boundary selection, Outlet condition is set to Pressure by 
default. Enter a Pressure pf0 to impose pf = pf0 on the boundary.

When the Cavitation check box is selected for the physics interface (see Cavitation), 
Starvation is also available. For Starvation, enter a value for the Fluid fraction θ0. 
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Wall

The Wall node prevents fluid flow in the direction perpendicular to the boundary.

Symmetry

The Symmetry node sets the perpendicular component of the average velocity in the 
gap to zero.
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 8
M u l t i p h y s i c s  I n t e r f a c e s  a n d  C o u p l i n g s
The Rotordynamics Module contains predefined multiphysics interfaces to 
facilitate easy setup of couplings between journals and bearings. The physics 
interfaces are found under the Rotordynamics branch ( ) when adding a physics 
interface — Solid Rotor with Hydrodynamic Bearing and Beam Rotor with 

Hydrodynamic Bearing.

In this chapter:

• The Solid Rotor with Hydrodynamic Bearing Interface

• The Beam Rotor with Hydrodynamic Bearing Interface

• Solid-Bearing Coupling

• Theory for the Solid Rotor Bearing Coupling

• Theory for the Beam Rotor Bearing Coupling

• Theory for Solid-Bearing Coupling
 325



326 |  C H A P T E
Th e  S o l i d  Ro t o r  w i t h  Hyd r od ynam i c  
B e a r i n g  I n t e r f a c e

The Solid Rotor with Hydrodynamic Bearing interface ( ) combines a Solid Rotor 
interface with a Hydrodynamic Bearing interface. The coupling occurs on the 
boundary level, where the displacement and velocity from the Solid Rotor interface 
governs the fluid-film thickness in the Hydrodynamic Bearing interface, and the 
pressure distribution on the journal surface from the Hydrodynamic Bearing interface 
acts as an external load on the Solid Rotor interface.

When a predefined Solid Rotor with Hydrodynamic Bearing interface is added from the 
Structural Mechanics>Rotordynamics branch ( ) of the Model Wizard or Add Physics 
windows, Solid Rotor and Hydrodynamic Bearing interfaces are added to the Model 
Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Solid Rotor Bearing Coupling.

On the Constituent Physics Interfaces
The Solid Rotor interface is intended for general rotordynamics analysis of rotors 
modeled using 3D geometries. The Solid Rotor interface is based on solving Navier’s 
equations. The interface also includes the effect of the frame acceleration due to 
rotation and computes results such as displacements, stresses, and strains.

The Hydrodynamic Bearing interface provides features for modeling the flow in thin 
fluid films such as Journal Bearings. A Hydrodynamic Journal Bearing model is active 
by default on all boundaries. You should select only those boundaries that correspond 
to the bearing. The pressure equation used in the fluid film is the Reynolds equation.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, specific settings are 
included with the physics interfaces and the coupling features.

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included.
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For example, if single Solid Rotor and Hydrodynamic Bearing interfaces are added, an 
empty Multiphysics node appears in the model tree. You can choose from the available 
coupling features, but the settings in the constituent interfaces are not modified.

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Solid Rotor Bearing Coupling node is described in this section.

Solid Rotor Bearing Coupling

The Solid Rotor Bearing Coupling ( ) transfers the velocity and displacement 
information from the Solid Rotor interface to the Hydrodynamic Bearing interface 
and at the same time applies the pressure on the fluid film from the Hydrodynamic 
Bearing interface as an external load in Solid Rotor interface.

S E T T I N G S

The Label is the default multiphysics coupling feature name. 

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is srbc.

B O U N D A R Y  S E L E C T I O N

When nodes are added from the context menu, common boundaries between the Solid 
Rotor and Hydrodynamic Bearing interfaces are selected by default. You can optionally 
remove any unwanted boundaries from the selection.

C O U P L E D  I N T E R F A C E S

This section defines the physics involved in the multiphysics coupling. The Rotor and 
Bearing lists include all applicable physics interfaces.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics menu.
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The default values depend on how the coupling node is created. 

• If it is added from the Physics ribbon (Windows users), Physics contextual toolbar 
(Mac and Linux users), or context menu (all users), then the first physics interface 
of each type in the component is selected as the default.

• If it is added automatically when a multiphysics interface is selected in the Model 

Wizard or Add Physics window, then the two participating physics interfaces are 
selected.

You can also select None from either list to uncouple the Solid Rotor Bearing Coupling 
node from a physics interface. If one of the participating physics interfaces is removed 
from the Model Builder, the corresponding entry is set to None as there is nothing to 
couple to.

If a physics interface is deleted and then added to the model again, then 
in order to reestablish the coupling, you need to choose the physics 
interface again from the Rotor or Bearing lists. This is applicable to all 
multiphysics coupling nodes that would normally default to the 
once-present interface. See Multiphysics Modeling Workflow in the 
COMSOL Multiphysics Reference Manual.
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Th e  Beam Ro t o r  w i t h  Hyd r od ynam i c  
B e a r i n g  I n t e r f a c e

The Beam Rotor with Hydrodynamic Bearing ( ) interface combines a Beam Rotor 
interface with a Hydrodynamic Bearing interface. The coupling occurs on the 
boundary level on the Hydrodynamic Bearing selection. The displacement and velocity 
from the Beam Rotor interface are mapped to the bearing surface, thus governing the 
fluid-film thickness in the Hydrodynamic Bearing interface. The pressure distribution 
on the journal surface from the Hydrodynamic Bearing interface acts as an external 
load in the Beam Rotor interface.

When a predefined Beam Rotor with Hydrodynamic Bearing interface is added from the 
Structural Mechanics>Rotordynamics branch ( ) of the Model Wizard or Add Physics 
windows, Beam Rotor and Hydrodynamic Bearing interfaces are added to the Model 
Builder.

In addition, the Multiphysics node is added, which automatically includes the 
multiphysics coupling feature Beam Rotor Bearing Coupling.

On the Constituent Physics Interfaces
The Beam Rotor interface is intended for general rotordynamics analysis of rotors 
modeled using line geometries. The Beam Rotor interface is based on the Timoshenko 
beam theory. The interface also includes the effect of the frame acceleration due to 
rotation and computes results such as displacements, stresses, and strains.

The Hydrodynamic Bearing interface provides features for modeling the flow in thin 
fluid-films such as journal bearings. A Hydrodynamic Journal Bearing model is active 
by default on all boundaries. You should select only those boundaries that correspond 
to the bearing. The pressure equation defined on the fluid film is the Reynolds 
equation.

S E T T I N G S  F O R  P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

When physics interfaces are added using the predefined couplings, specific settings are 
included with the physics interfaces and coupling features. 

However, if physics interfaces are added one at a time, followed by the coupling 
features, these modified settings are not automatically included. 
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For example, if single Beam Rotor and Hydrodynamic Bearing interfaces are added, an 
empty Multiphysics node appears in the model tree. You can choose from the available 
coupling features but the settings in the constituent interfaces are not modified. 

P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G  F E A T U R E S

Coupling Features
The Beam Rotor Bearing Coupling feature node is described in this section.

Beam Rotor Bearing Coupling

The Beam Rotor Bearing Coupling ( ) transfers the velocity and displacement 
information of the journal from the Beam Rotor interface to the Hydrodynamic 
Bearing interface and at the same time applies the pressure on the fluid film from the 
Hydrodynamic Bearing interface as an external load in the Beam Rotor interface.

S E T T I N G S

The Label is the default multiphysics coupling feature name. 

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is brbc.

B O U N D A R Y  S E L E C T I O N

When nodes are added from the context menu, all the boundaries selected in the 
Hydrodynamic Bearing interfaces are selected by default. You can optionally remove 
the unwanted boundaries from the selection.

C O U P L E D  I N T E R F A C E S

This section defines the physics involved in the multiphysics coupling. The Rotor and 
Bearing lists include all applicable physics interfaces.

Coupling features are available from the context menu (right-click the 
Multiphysics node) or from the Physics toolbar, Multiphysics menu.
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The default values depend on how the coupling node is created.

• If the node is added from the Physics ribbon (Windows users), Physics contextual 
toolbar (Mac and Linux users), or context menu (all users), then the first physics 
interface of each type in the component is selected as the default.

• If it the node added automatically when a multiphysics interface is selected in the 
Model Wizard or Add Physics window, then the two participating physics interfaces 
are selected.

You can also select None from either list to uncouple the Beam Rotor Bearing Coupling 
node from a physics interface. If one of the participating physics interfaces is removed 
from the Model Builder, the corresponding entry is set to None as there is nothing to 
couple to.

If a physics interface is deleted and then added to the model again, then 
in order to reestablish the coupling, you need to choose the physics 
interface again from the Rotor or Bearing lists. This is applicable to all 
multiphysics coupling nodes that would normally default to the once- 
present interface. See Multiphysics Modeling Workflow in the COMSOL 
Multiphysics Reference Manual.
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S o l i d - B e a r i n g  Coup l i n g

The Solid-Bearing Coupling ( ) transfers the velocity and displacement information 
from the Solid Mechanics or Multibody Dynamics interfaces to the Hydrodynamic 
Bearing interface and at the same time applies the pressure on the fluid film from the 
Hydrodynamic Bearing interface as an external load in a Solid Mechanics or Multibody 
Dynamics interface.

S E T T I N G S

The Label is the default multiphysics coupling feature name. 

The Name is used primarily as a scope prefix for variables defined by the coupling node. 
Refer to such variables in expressions using the pattern <name>.<variable_name>. In 
order to distinguish between variables belonging to different coupling nodes or physics 
interfaces, the name string must be unique. Only letters, numbers, and underscores (_) 
are permitted in the Name field. The first character must be a letter.

The default Name (for the first multiphysics coupling feature in the model) is sbco.

B O U N D A R Y  S E L E C T I O N

When nodes are added from the context menu, common boundaries between the Solid 
Mechanics or Multibody Dynamics interface and the Hydrodynamic Bearing interface 
are selected by default. You can optionally remove any unwanted boundaries from the 
selection.

F O U N D A T I O N

Select the Include foundation check box to include the effect of the foundation motion. 
If selected, a selection input Foundation Selection appears. Boundaries not common to 
Bearing and Solid can be selected in the Foundation Selection.

C O U P L E D  I N T E R F A C E S

This section defines the physics involved in the multiphysics coupling. The Solid and 
Bearing lists include all applicable physics interfaces.

The first physics interface of each type in the component is selected as the default. You 
can also select None from either list to uncouple the Solid-Bearing Coupling node from 
a physics interface. If one of the participating physics interfaces is removed from the 
Model Builder, the corresponding entry is set to None as there is nothing to couple to.
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If a physics interface is deleted and then added to the model again, then 
in order to reestablish the coupling, you need to choose the physics 
interface again from the Solid or Bearing lists. This is applicable to all 
multiphysics coupling nodes that would normally default to the 
once-present interface. See Multiphysics Modeling Workflow in the 
COMSOL Multiphysics Reference Manual.

See also Theory for the Solid Rotor Bearing Coupling.
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Th eo r y  f o r  t h e  S o l i d  Ro t o r  B e a r i n g  
Coup l i n g

The fluid pressure in the bearing depends on the thickness of the lubricant, which 
strongly depends on the motion of the journal in the bearing. The thickness of the 
fluid film can be obtained by calculating the gap between the journal and bearing 
surfaces. In the Hydrodynamic Bearing interface, the initial journal surface is 
considered as the reference surface for the analysis. Therefore, the height of the journal 
surface from the reference surface deformation can be determined by considering a 
material point Xr,j on the journal surface in the direction er,r(x1,Θ) from the center of 
the bearing in the corotating frame:

In general, XC is a function of the axial coordinate x1 and RJ can be a function of both 
Θ and x1. After deformation, the current position of this point in the corotating frame 
is 

Note that the current position is no longer aligned with the radial direction er,r(x1,Θ). 
The position of the point on the journal surface that is aligned with the radial direction 
er,r(x1,Θ) can be approximated by

The coordinates of this point in the spatial frame are:

Similarly, the coordinates of the material point Xr,j without the deformation, in the 
spatial frame are:

Then, the height of the journal surface from the reference surface in the radial 
direction er(x1,Θ) in the spatial frame, corresponding to the radial direction er,r(x1,Θ) 
in a corotating frame, is

Xr j, XC Rjer r, x1 Θ,( )+=

xr j, Xr j, ur Xr j,( )+=

x'r j, xr j, xr j,t∇ ur⋅( )–=

xj XC R x'r j, XC–( )+=

Xj XC R Xr j, XC–( )+=
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If the reference surface is a cylindrical surface, then Rj is independent of both Θ and 
x1, and er,r is only a function of Θ. Then

Therefore, the height of the journal surface from the reference surface in the radial 
direction neglecting the higher-order terms in displacement is

Now, to determine the height of the bearing surface from the reference surface, 
consider a radially aligned material point Xb on the bearing corresponding to the point 
Xj in the spatial frame. Then

C is the initial clearance between the journal and bearing. After the deformation, the 
current position of this point in the spatial frame is

Note that the current position is no longer aligned with the radial direction er. The 
position of the point on the bearing surface that is aligned with the radial direction er 
can be approximated as

Then, the height of the bearing surface from the reference surface in the radial 
direction er in the spatial frame is:

For a cylindrical reference surface, Rj is independent of both Θ and x1, and er is only 
a function of Θ. Then

hj xj Xj–( ) er⋅ x'r j, Xr j,–( ) er r,⋅ ur xr j,t∇ ur⋅( )–( ) er r,⋅= = =

xr j,t∇ 1
Rj
------

Θ∂
∂xr j, er Θ, x1∂

∂xr j, er 1,⊗+⊗= =

er Θ, er Θ,
1
Rj
------

Θ∂
∂ur er Θ, x1∂

∂ur er 1,⊗+⊗+⊗ er Θ, er Θ, urt∇+⊗=

hj ur Xr j,( ) er r,⋅ Rur Xr j,( ) er⋅= =

Xb Xj C x1 Θ,( )er+=

xb Xb u Xb( )+=

x'B xB xBt∇ u⋅( )–=

hb x'b Xb–( ) er⋅ Cer u xbt∇ u⋅–+( ) er⋅= =
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Therefore, the height of the bearing surface from the reference surface in the radial 
direction, neglecting the higher-order terms in displacement, is:

The fluid-film thickness between the journal and the bearing is thus given by:

If a point X on the reference surface corresponds to the point Xj on the journal surface 
and Xb on the bearing surface, then

The spatial component of the velocity of the journal at the point X on the reference 
surface is given by

Similarly, the spatial component of the velocity of the bearing at the point X on the 
reference surface is given by

Therefore, from the Solid Rotor interface, the variables ur,j and Ω are supplied to the 
Hydrodynamic Bearing interface to compute the film thickness and average velocity of 
the fluid, which is then used for determining the distribution of the fluid pressure in 
the bearing. Distributed forces per unit area fjA on the journal and fbA on the bearing 
as a function of the point X on the reference surface can be calculated using the 

xbt∇ 1
Rj
------

Θ∂
∂xb eΘ x1∂

∂xb e1⊗+⊗= =

er Ct∇⊗ C
Rj
------eΘ+ eΘ urt∇+⊗

hb C u er u Ct∇⋅+⋅+=

h hb hj– C ub Xb( ) Rur j, Xr j,( )–{ } er ub Xb( ) Ct∇⋅+⋅+= =

ub Xb( ) ub X( )=

ur j, Xr j,( ) ur j, XC RT X XC–( )+( )=

vj t∂
∂xj

t∂
∂R Xr j, ur j, Xr j,( ) XC–+( ) R

t∂
∂ur j,+= = =

Ω xj XC–( )× R
t∂

∂ur j,+

vb t∂
∂ub=
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pressure distribution in the bearing. This is implemented in the weak form by writing 
the contribution to the virtual work due to the pressure loads. The contribution to the 
virtual work on the journal due to the force applied by the fluid film is:

and the contribution to the virtual work on the bearing is

Note the use of body-fixed coordinates in the rotating frame in the virtual work 
expression on the journal.

δWj fjA X( ) δxj⋅{ } Ad
A
 fjA X( ) Rδur j, Xr j,( )⋅{ } Ad

A
= ==

RTfjA XC R Xr j, XC–( )+( ) δur j, Xr j,( )⋅{ } Ad
A


δWb fbA X( ) δub X( )⋅{ } Ad
A
=
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Th eo r y  f o r  t h e  Beam Ro t o r  B ea r i n g  
Coup l i n g

The fluid pressure in the bearing depends on the thickness of the lubricant, which 
strongly depends on the motion of the journal in the bearing. The thickness of the 
fluid film can be obtained by calculating the gap between the journal and bearing 
surfaces. In the Hydrodynamic Bearing interface, the initial journal surface is 
considered as the reference surface for the analysis. In the Beam Rotor interface, all the 
degrees of freedom are defined to have components in the spatial frame. Therefore, the 
current position of the point on the journal surface corresponding to a point X on the 
reference surface is given as:

where Xbm, ubm, and θbm are the position, displacement, and rotation of a point on 
the beam rotor nearest to the point X on the reference surface. The height of the 
journal surface from the reference surface is the normal component of the relative 
position of the point on the journal surface relative to the point X on the reference 
surface, and is given by

Similarly, the current position on a point on the bearing surface corresponding to a 
point X on the reference surface is

Here, hb1 is the initial height of the bearing with respect to the reference surface and 
is called initial clearance. However, this point on the bearing surface is not aligned with 
the original reference normal nref. The position of the point that is aligned with the 
original reference normal can be obtained approximately by the following:

Then the height of the bearing surface with respect to reference surface along the 
reference normal nref is given by

xj X ubm θbm X Xbm–( )×+ + X uj+= =

hj uj nref⋅=

xb Xb ub+ X hb1nref ub+ += =

xb' xb xbt∇ ub⋅( ) =–=

X hb1nref ub Xt∇ nref hb1t∇⊗ hb1 nreft∇+ +( ) ub⋅–+ +
R  8 :  M U L T I P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G S



Here, the fact that the tangential gradients of X and nref are in the plane of the 
reference surface and hence are perpendicular to nref has been used.

Therefore, the film thickness in the reference normal direction is given by the 
difference of the height of the bearing surface and the height of the journal surface 
from the reference surface:

The spatial component of the velocity of the journal at the point X on the reference 
surface has a component due to journal rotation and is given by 

Similarly, the spatial component of the velocity of the bearing at the point X on the 
reference surface is given by

Therefore, from the Beam Rotor interface, the variables uj and Ω are supplied to the 
Hydrodynamic Bearing interface to compute the film thickness and average velocity of 
the fluid, which are then used for determining the distribution of the fluid pressure in 
the bearing. The distributed force per unit area fjA on the journal and fbA on the 
bearing as a function of the point X on the reference surface can be calculated using 
the pressure distribution in the bearing. This is implemented in the weak form by 
writing the contribution to the virtual work from these loads. The contribution to the 
virtual work on the journal due to the force applied by the fluid film is

and the contribution to the virtual work on the bearing is

hb xb' X–( ) nref⋅ hb1 ub nref hb1t∇ ub⋅( )–⋅+= =

h hb hj– hb1 ub uj–( ) nref hb1t∇ ub⋅( )–⋅+= =

vj t∂
∂xj Ω X Xc–( )×+

t∂
∂uj Ω X Xc–( )×+= =

vb t∂
∂ub=

δWj fjA X( ) δuj⋅ Ad
A
=

δWB fbA X( ) δub X( )⋅ Ad
A
=
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Th eo r y  f o r  S o l i d - B e a r i n g  Coup l i n g

Coupling of any structural component with the Hydrodynamic Bearing interface 
requires a correct evaluation of the change in film thickness due to the relative motion 
of the solid component and bearing surfaces. This relative motion can be split into two 
components: sliding and squeezing. Sliding motion does not change the film 
thickness, provided that there is a natural geometrically wedge in which the lubricant 
is trapped. Squeezing motion, however, directly affects the film thickness. Therefore, 
the motion of the structural components has to be split into these two components to 
evaluate the change in the film thickness.

Consider the structure and bearing arrangement shown in Figure 8-1

Figure 8-1: Structure moving in bearing. The initial position of the structure is dashed.

Initially, both structure and bearing are concentric to each other with the common 
center located at Xc. During operation they move relative to each other. Let the centers 
of the structure and bearing now be located at xc

s and xc
b, respectively. The film 
R  8 :  M U L T I P H Y S I C S  I N T E R F A C E S  A N D  C O U P L I N G S



thickness is obtained by calculating the height of the bearing surfaces from the 
structure surface. To evaluate the film thickness, consider a radial line from the current 
center of the structure xc

s at an angle Θ from the local y-axis. This line intersects the 
bearing and the structural surfaces at points B and S, respectively. The radial line from 
the new center of the bearing xc

b to B makes an angle Θb from the local y-axis. Let 
the normalized radial vectors from structure and bearing surfaces be er(Θ) and er(Θ

b), 
respectively. The position vector of the point B is given by 

Similarly, the position vector of the point S is given by 

Here xb and xs are the position vectors of the points B and S, respectively. Rb(Θb) and 
Rs(Θ) are the radial positions of the bearing and structure surfaces from their 
respective centers. Since the points B and S are located along the radial vector er(Θ):

In the local bearing coordinate system:

 (8-1)

Here, e1 is the bearing axis direction, and e2 and e3 are the two transverse directions. 

Substituting the expressions for xb, xs, er(Θ), er(Θ
b), and eθ(Θ) in Equation 8-1 and 

simplifying gives

Since the centers of both the bearing and the structural surfaces were initially at the 
reference surface center, we have xc

b = Xc + uc
b and xc

s = Xc + uc
s. Therefore, 

xb xc
b Rb Θb( )er Θb( )+=

xs xc
s Rs Θ( )er Θ( )+=

h Θ( ) xb xs
–( ) er Θ( )⋅=

0 xb xs
–( ) eθ Θ( )⋅=

er Θ( ) Θcos( )e2 Θsin( )e3+=

er Θb( ) Θbcos( )e2 Θbsin( )e3+=

eθ Θ( ) e1 er× Θ( ) Θsin( )e2– Θcos( )e3+= =

h Θ( ) xc
b xc

s
–( ) er Θ( ) Rb Θb( ) Θb Θ–( )cos+⋅ Rs Θ( )–=

0 xc
b xc

s
–( ) eθ Θ( ) Rb Θb( ) Θb Θ–( )sin+⋅=
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 (8-2)

and 

Given that

the film thickness can be approximated as 

This requires an evaluation of the radial position of the bearing with angular 
coordinate Θb. If the difference between Θb and Θ is assumed to be small, 
Equation 8-2 gives:

A Taylor series expansion gives:

This can be generalized to include the change in Rb in the axial direction too in the 
following way:

Substituting this in the film thickness expression: 

If the surface of the structure is flat or cylindrical, the tangential gradient of the radial 
position on the structure surface will be zero. Using C = Rb - Rs the film thickness is 
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Effect of Deformation

The thickness expression obtained in the previous section only considered the motion 
at the center of the structure and bearing surfaces. In addition to this, both structure 
and bearing can tilt, bend and radially expand. Such motion will also affect the film 
thickness. Therefore, the film thickness in general is a function of the axial and 
azimuthal coordinates. The effect of the radial expansion can be accounted for by 
updating the initial clearance profile including the effect of radial deformation of both 
the structure and the bearing. However, such radial expansions are going to be small, 
except for the case of thermal expansion. Here, thickness changes due to radial 
expansion or contraction is neglected. Also, a rotation of the flat or cylindrical 
structural surface about the bearing axis will not change the film thickness and should 
be excluded while calculating the film thickness. These considerations require the 
motion of the both the structure and the bearing to be split into three components:

• Motion of the centerline of the structure

• Axial rotation

• Radial deformation

The film thickness calculation will only include the effect of the relative motion of the 
centerline of the structure and the bearing. The motion of the centerline is determined 
by splitting the total displacement into the following components:

• Displacement at the center: uc

• Axial rotation: θ

• Tilting about local y and z axes: α and β

• Bending deformation about local y and z axes: κy and κz

The total displacement can then be approximated in terms of these quantities as

The total rotation matrix is the combination of axial rotation followed by tilting 
rotation R = RαβRθ. Axial rotation can be finite but tilting rotations are small. The 
components of these matrices given in the local bearing direction are:

h Θ( ) C uc
b uc

s
–( )+ er Θ( ) Ct∇–( )⋅≈

ua uc R I–( ) X Xc–( ) ub+ +=
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and

Bending deformation is assumed to have a quadratic variation in local coordinates:

with 

Parameters in the approximated expressions are obtained by minimizing the 
least-squares error between the approximated and actual displacement over the bearing 
surface.

Once the quantities uc, θ, α, β, κy, and κz are known, the part of the displacement 
which changes the film thickness can be written by removing the axial rotation:

Therefore, the film thickness expression should use the approximated displacement 
instead of the displacement only at the center:

The total velocity field of the structure and foundation is used as an input for the 
journal or collar velocity in the bearing.

The net force and moment due to the pressure distribution in the film then acts as a 
load on both the structure and the bearing surfaces.
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