

Uncertainty Quantification of the Ishigami Function

This model is licensed under the [COMSOL Software License Agreement 6.0.](http://www.comsol.com/sla) All trademarks are the property of their respective owners. See www.comsol.com/trademarks.

Introduction

This example demonstrates how to perform uncertainty quantification analysis of the Ishigami function. This random function of three variables is a well-known benchmark used to test global sensitivity analysis and uncertainty quantification algorithms. The mean, standard deviation, maximum, and mininum values as well as Sobol indices of the Ishigami function can be calculated analytically for the input distributions used here.

For this test problem, the Ishigami function is

$$
f(X_1,X_2,X_3)\,=\,\sin(X_1)+a(\sin(X_2))^2+bX_3^4\sin(X_1)
$$

where X_1, X_2 , and X_3 are independent uniformly distributed random variables in [$-\pi, +\pi$] with $a = 7$ and $b = 0.1$.

The function can be visualized in 3D by using, for example, a slice plot as in [Figure 1](#page-1-0).

ishigami(x1,x2,x3)

Figure 1: Slice plot of the Ishigami function.

The analytically computed values are according to [Table 1.](#page-2-0)

TABLE 1: ANALYTICAL BENCHMARK VALUES.

QUANTITY	EXPRESSION	NUMERICAL VALUE (ROUNDED)
Mean value	a/2	3.5
Variance (V)	$(a^2)/8+b^*(pi^4)/5+b^2*(pi^8)/$ $18+1/2$	13.845
Maximum	$8+(pi^4)/10$	17.741
Minimum	$-1-(pi^2/4)/10$	-10.741
Standard deviation	sqrt(V)	3.7208
First-order Sobol index X_1	$(0.5*(1+b*(pi^2/4)/5)^2)$	0.31391
First-order Sobol index X_2	$((a^2)(8)/V)$	0.44241
First-order Sobol index X_3	0	0
Total Sobol index X_1	$((1/2) * (1+b * (pi^2) / 5) * 2 + (8 *$ b^2 *pi^8)/225)/V	0.55759
Total Sobol index X_2	$((a^2)/8)$	0.44241
Total Sobol index X_3	$((8 * b^2 * pi^8)/225/V)$	0.24368

For reference, these values are entered as global parameters in the model.

Model Definition

The model runs through 3 uncertainty quantification studies: **Screening**, **Sensitivity analysis**, and **Uncertainty Propagation** using the Ishigami function as the quantity of interest. In order to perform the uncertainty quantification analysis, the three random variables need to be defined as global parameters using arbitrary values. The actual values for these variables will, during the simulation, be randomized by the uncertainty quantification algorithms. All the global parameters in the model are shown in [Figure 2.](#page-3-0)

Figure 2: The model parameters.

The Ishigami function is defined as an analytic function with three input arguments as shown in [Figure 3.](#page-3-1)

Figure 3: The Ishigami function entered as an Analytic function, ishigami*.*

Results and Discussion

The sensitivity analysis shows that the computed Sobol indices are consistent with the true analytical values, as shown in [Figure 4](#page-4-0) below.

	Progress Log Sobol \times Messages \times	
	目 855 nm 55 59 0.85 画 ● \ 面 囲 ■ ⑨	曘
	ishigami(X1,X2,X3), First order	ishigami(X1,X2,X3), Total
X1	0.31363	0.55131
X ₂	0.44844	0.44870
X ₃	8.2735F-5	0.23785

Figure 4: The computed Sobol indices.

Similarly, the values for mean, standard deviation (STD), minimum, and maximum are consistent with the analytical values, as shown in [Figure 5](#page-4-1).

Figure 5: The computed values for mean, standard deviation, minimum, maximum, and confidence intervals.

The accuracy of the results can be increased by lowering tolerances or increasing the number of sample input points.

The computed kernel density estimation is displayed in [Figure 6](#page-5-0).

Figure 6: The KDE plot for the Ishigami function.

These uncertainty quantification results can be compared not only with the analytical values but also with that of the direct Monte Carlo simulation performed in the model Direct Monte Carlo Simulation of the Ishigami Function.

Reference

1. T. Ishigami and T. Homma, "An importance quantification technique in uncertainty analysis for computer models," *Proc. First Int'l Symp. Uncertainty Modeling and Analysis*, IEEE, pp. 398-403, 1990.

Application Library path: Uncertainty_Quantification_Module/Tutorials/ ishigami_function_uncertainty_quantification

From the **File** menu, choose **New**.

NEW

In the **New** window, click **Blank Model**.

ADD STUDY

- **1** In the **Home** toolbar, click \bigcirc **Add Study** to open the **Add Study** window.
- **2** Go to the **Add Study** window.
- **3** Find the **Studies** subsection. In the **Select Study** tree, select

Preset Studies for Selected Physics Interfaces>Stationary.

- **4** Click **Add Study** in the window toolbar.
- **5** In the **Home** toolbar, click \bigcirc **Add Study** to close the **Add Study** window.

GLOBAL DEFINITIONS

Parameters 1

- **1** In the **Model Builder** window, under **Global Definitions** click **Parameters 1**.
- **2** In the **Settings** window for **Parameters**, locate the **Parameters** section.
- **3** In the table, enter the following settings:

Ishigami Function

- **1** In the **Home** toolbar, click $f(x)$ **Functions** and choose **Global>Analytic**.
- **2** In the **Settings** window for **Analytic**, type ishigami in the **Function name** text field.
- **3** Locate the **Definition** section. In the **Expression** text field, type sin(x1)+a* $(sin(x2))^2+b*x3^4*sin(x1)$.
- **4** In the **Arguments** text field, type x1,x2,x3.
- **5** In the **Label** text field, type Ishigami Function.
- **6** Locate the **Plot Parameters** section. In the table, enter the following settings:

7 Click **Create Plot**.

RESULTS

3D Plot Group 1

STUDY 1

Uncertainty Quantification

- **1** In the **Model Builder** window, right-click **Study 1** and choose **Uncertainty Quantification> Uncertainty Quantification**.
- **2** In the **Settings** window for **Uncertainty Quantification**, locate the **Quantities of Interest** section.
- **3** Click $+$ **Add**.
- **4** In the table, enter the following settings:

5 Locate the **Input Parameters** section. Find the **Input parameters table** subsection. Click **Add** three times.

6 In the table, enter the following settings:

7 In the **Home** toolbar, click **Compute**.

RESULTS

MOAT, ishigami(X1,X2,X3)

The Screening study shows that all parameters are influential and that the parameter X3 has a nonlinear influence on the Ishigami function, or that it is interacting with the other input parameters, or both.

STUDY 1

Uncertainty Quantification

In the **Model Builder** window, under **Study 1** right-click **Uncertainty Quantification** and choose **Add New Uncertainty Quantification Study For>Sensitivity Analysis**.

STUDY 2

Uncertainty Quantification

To achive a high level of accuracy, change from the default **Compute type**, which is **Improve and analyze**, to **Compute and analyze**. This option will not reuse any results from previous model evaluations but instead start from scratch.

- **1** In the **Model Builder** window, under **Study 2** click **Uncertainty Quantification**.
- **2** In the **Settings** window for **Uncertainty Quantification**, locate the **Uncertainty Quantification Settings** section.
- **3** From the **Compute action** list, choose **Compute and analyze**.

4 In the **Home** toolbar, click **Compute**.

The Sensitivity analysis study computes Sobol indices that are consistent with the analytical values.

5 Right-click **Study 2>Uncertainty Quantification** and choose **Add New Uncertainty Quantification Study For>Uncertainty Propagation**.

STUDY 3

Uncertainty Quantification

Now, change the **Surrogate model** to **Adaptive sparse polynomial chaos expansion**. For the Ishigami function, the polynomical chaos expansion surrogate model turns out to be much more efficient than the default **Adaptive Gaussian process** option.

- **1** In the **Model Builder** window, under **Study 3** click **Uncertainty Quantification**.
- **2** In the **Settings** window for **Uncertainty Quantification**, locate the **Uncertainty Quantification Settings** section.
- **3** Find the **Surrogate model settings** subsection. From the **Surrogate model** list, choose **Adaptive sparse polynomial chaos expansion**.

Again, to achive a high level of accuracy, change to **Compute and analyze**. This option will not reuse any results from previous model evaluations but instead start from scratch.

- **4** From the **Compute action** list, choose **Compute and analyze**.
- **5** In the **Home** toolbar, click **Compute**.

