

Flow in a Fractured Reservoir

Introduction

This model shows how to set up a simulation of flow through a fractured reservoir. The reservoir includes a discrete fracture network (DFN), where the fractures have a randomized distribution of position, size, orientation and aperture. The model uses the Discrete Fracture Network add-in to create randomized fractures in an existing geometry.

Model Definition

The model geometry is depicted in Figure 1.

Figure 1: Model geometry.

The fracture network in the middle layer is created using the Discrete Fracture Network — 3D add-in. It serves as an example of how to use the add-in. The fracture positions follow a uniform random distribution function, their sizes follow a power-law distribution function, and their orientations follow a Fisher distribution. Details about these distribution functions can be found in the documentation of the add-in. The model is designed in such a way that the results are always identical provided that you follow the instructions. The DFN is reproducible because the same random seed is used for all distributions. The individual steps can nevertheless be applied to basically any DFN. Since

the add-in can be used to create fracture networks of any complexity, which places high demands on the processing of the geometry, it is recommended to use the CAD kernel.

Beside the geometry, the add-in also generates variables for the aperture $d_f(m)$ of the fractures and uses them in a fracture flow feature according to the cubic law. It defines the fracture permeability as

$$\kappa_{\rm f} = \frac{d_{\rm f}^2}{12f_{\rm f}}$$

with f_f being the fracture's friction factor. The flow is driven by the gradient of the pressure p (Pa) only, which is described by Darcy's law

$$\mathbf{u} = -\frac{\kappa}{\mu} (\nabla p + \rho \mathbf{g})$$

together with mass conservation

$$\nabla \cdot (\rho \mathbf{u}) = 0$$

with $\kappa\,(m^2)$ being the porous matrix permeability, and μ (Pa·s) and ρ (kg/m³) the dynamic viscosity and density of water, respectively. In the fractures, the tangential form of Darcy's Law is the governing equation.

From above, the reservoir is fed by a precipitation rate and in the lower layer there is a slow flow through a slight gradient in the hydraulic head.

Results and Discussion

The resulting velocity distribution is shown in Figure 2. Comparing the velocity inside the porous matrix with the velocity field inside the fractures shows that the flow mainly occurs through the fractures.

Figure 2: Velocity distribution in the reservoir.

Application Library path: Subsurface_Flow_Module/Fluid_Flow/ fractured_reservoir_flow

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click 🔗 Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click 间 3D.
- 2 In the Select Physics tree, select Fluid Flow>Porous Media and Subsurface Flow> Darcy's Law (dl).
- 3 Click Add.
- 4 Click 🔿 Study.
- 5 In the Select Study tree, select General Studies>Stationary.
- 6 Click **M** Done.

GEOMETRY I

Using the CAD kernel is recommended for modeling 3D discrete fracture networks, especially with increasing complexity of the network. A note appears at the bottom of the add-in's settings window if it is not activated.

- I In the Geometry toolbar, click Insert Sequence and choose Insert Sequence.
- 2 Browse to the model's Application Libraries folder and double-click the file fractured_reservoir_flow_geom_sequence.mph.
- 3 In the Geometry toolbar, click 🟢 Build All.

For generating a fracture network consisting of fractures that use randomized distribution functions for size, position and orientation, import the Discrete Fracture Network - 3D add-in.

In the Home toolbar, click 📑 Windows and choose Add-in Libraries.

ADD-IN LIBRARIES

- I In the Model Builder window, under Component I (compl) click Geometry I.
- 2 In the Add-in Libraries window, in the tree, select the check box for the node Subsurface Flow Module>discrete_fracture_network_3d (if it is not already selected).
- 3 Click 🗹 Done.
- 4 In the Developer toolbar, click Add-ins and choose Discrete Fracture Network 3D> Discrete Fracture Network 3D.

GLOBAL DEFINITIONS

Discrete Fracture Network — 3D I

In the Model Builder window, under Global Definitions click Discrete Fracture Network —
 3D I.

- 2 In the Settings window for Discrete Fracture Network 3D, locate the General section.
- 3 In the Number of Fractures text field type 10.

Because a geometry is present, the add-in determines the bounding box of this geometry and also detects if domain selections are available.

- **4** From the **Selection** menu choose **Middle** which is a selection already defined in the geometry sequence.
- 5 In the Settings window for Discrete Fracture Network 3D, locate the Size section.
- **6** Enter the following settings:

Parameter	Value
Minimum axis length	200
Maximum axis length	500
Power law exponent	2.2

- 7 Click the **Use random seed** check box to get a reproducible size distribution. Whenever the add-in uses these size parameters and this random seed the size distribution and position is identical.
- 8 In the Settings window for Discrete Fracture Network 3D, locate the Orientation section.
- **9** Enter the following settings:

Parameter	Value
Strike	30
Dip	85
Dispersion coefficient	50

The dispersion coefficient determines the variance around the strike and dip angle. The larger the value, the smaller the deviation from the given angles.

- 10 Click the Use random seed check box to get a reproducible orientation distribution.
- II In the Settings window for Discrete Fracture Network 3D, locate the Properties section.
- 12 In the Proportionality factor text field enter 1e-5.
- I3 Click Add.
- **14** Click the **Wireframe Rendering** button in the **Graphics** toolbar to get a better view. Add another fracture set with different values.
- IS In the Settings window for Discrete Fracture Network 3D, locate the General section.
- **I6** In the **Number of Fractures** text field type 6.

17 In the Settings window for Discrete Fracture Network - 3D, locate the Size section.

18 Enter 19820308 for the random seed to create a new size distribution.

19 In the Settings window for Discrete Fracture Network - 3D, locate the Orientation section.

20 Enter the following settings:

Parameter	Value
Strike	125
Dip	70

2 Enter 19820308 for the random seed.

22 Click Add to add a second fracture set.

GEOMETRY I

I Click the **Graphics** toolbar and compare with the image below.

2 Click the for to Default View button in the Graphics toolbar to return to the default view.

Next, add the materials. The top and bottom layers consist of a permeable material, whereas the center layer has a comparatively low permeability. The values are specified later after the physics is set up.

ADD MATERIAL

- I In the Home toolbar, click 🙀 Add Material to open the Add Material window.
- 2 Go to the Add Material window.
- 3 In the tree, select Built-in>Water, liquid.
- 4 Click Add to Global Materials in the window toolbar.
- 5 In the Home toolbar, click 🙀 Add Material to close the Add Material window.

DEFINITIONS

The surface is exposed to the environment. Create ambient conditions and define a precipitation rate.

Ambient Properties 1 (ampr1)

- I In the Model Builder window, expand the Component I (compl)>Definitions node.
- 2 Right-click Definitions and choose Shared Properties>Ambient Properties.
- 3 In the Settings window for Ambient Properties, locate the Ambient Conditions section.
- **4** In the $P_{0,\text{amb}}$ text field, type 550[mm/a].

DARCY'S LAW (DL)

Next, set up the physics. Start with activating gravity. Define the reference position as the lowest point of the reservoir.

- I In the Model Builder window, under Component I (compl) click Darcy's Law (dl).
- 2 In the Settings window for Darcy's Law, locate the Gravity Effects section.
- **3** Select the **Include gravity** check box.

Gravity I

- I In the Model Builder window, under Component I (compl)>Darcy's Law (dl) click Gravity I.
- 2 In the Settings window for Gravity, locate the Gravity section.
- **3** Select the **Specify reference position** check box.
- **4** Specify the \mathbf{r}_{ref} vector as

0	x
0	у
-300	z

Fluid and Fracture Properties 1

- I In the Model Builder window, expand the Fracture Flow I node, then click Fluid and Fracture Properties I.
- **2** In the **Settings** window for **Fluid and Fracture Properties**, locate the **Fluid Properties** section.
- **3** From the Fluid material list, choose Water, liquid (mat I).

Fluid and Fracture Properties 1

- In the Model Builder window, expand the Component I (compl)>Darcy's Law (dl)> Fracture Flow 2 node, then click Fluid and Fracture Properties I.
- **2** In the **Settings** window for **Fluid and Fracture Properties**, locate the **Fluid Properties** section.
- 3 From the Fluid material list, choose Water, liquid (mat I).

The add-in automatically created aperture variables under the **Definitions** node, which are used by the cubic law.

MATERIALS

It remains to set up the missing material properties.

High permable

- I In the Model Builder window, under Component I (compl) right-click Materials and choose More Materials>Porous Material.
- 2 In the Settings window for Porous Material, type High permable in the Label text field.
- $3\,$ Locate the Porosity section. In the ϵ_p text field, type 0.25.
- 4 Locate the Homogenized Properties section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Permeability	kappa_iso ; kappaii = kappa_iso, kappaij = 0	1000[mD]	m²	Basic

5 Locate the Phase-Specific Properties section. Click 🙀 Add Required Phase Nodes.

Low permeable

- I Right-click Materials and choose More Materials>Porous Material.
- 2 Select Domain 2 only.

- 3 In the Settings window for Porous Material, locate the Geometric Entity Selection section.
- 4 From the Selection list, choose Middle.
- 5 In the Label text field, type Low permeable.
- **6** Locate the **Porosity** section. In the ε_p text field, type 0.1.
- 7 Locate the Homogenized Properties section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Permeability	kappa_iso ; kappaii = kappa_iso, kappaij = 0	20[mD]	m²	Basic

8 Locate the Phase-Specific Properties section. Click 🙀 Add Required Phase Nodes.

DARCY'S LAW (DL)

Next, define the boundary conditions.

Precipitation 1

- I In the Physics toolbar, click 📄 Boundaries and choose Precipitation.
- **2** Select Boundary 10 only.
- 3 In the Settings window for Precipitation, locate the Precipitation section.
- **4** From the P_0 list, choose **Ambient precipitation rate (amprl)**.
- **5** Select the **Slope correction** check box.

Hydraulic Head 1

- I In the Physics toolbar, click 🔚 Boundaries and choose Hydraulic Head.
- 2 Select Boundaries 1, 2, 25, and 80 only.
- 3 In the Settings window for Hydraulic Head, locate the Hydraulic Head section.
- 4 In the H_0 text field, type $0.5[m/km] \times x$.

MESH I

Next, set up the mesh. For discrete fracture networks the mesh may require manual modifications due to the complexity of the geometry. Start by meshing the domain where the fractures are located.

- I In the Model Builder window, under Component I (compl) click Mesh I.
- 2 In the Settings window for Mesh, locate the Physics-Controlled Mesh section.

- 3 From the Element size list, choose Finer.
- 4 Locate the Sequence Type section. From the list, choose User-controlled mesh.

Free Tetrahedral I

- I In the Model Builder window, under Component I (compl)>Mesh I click Free Tetrahedral I.
- 2 In the Settings window for Free Tetrahedral, locate the Domain Selection section.
- 3 From the Geometric entity level list, choose Domain.
- 4 From the Selection list, choose Middle.

Size 1

- I Right-click Free Tetrahedral I and choose Size.
- 2 In the Settings window for Size, locate the Element Size section.
- 3 From the Predefined list, choose Extra fine.

Free Tetrahedral 2

- I In the Mesh toolbar, click \land Free Tetrahedral.
- 2 In the Settings window for Free Tetrahedral, click 📗 Build All.

The fractures create fine details in the geometry that are difficult to handle for the mesh. Where these details are located is indicated in an information node below the feature. With a mesh fine enough, you can resolve these details well, but for the overall model, such a fine mesh is not necessary.

STUDY I

- I In the Model Builder window, click Study I.
- 2 In the Settings window for Study, locate the Study Settings section.
- **3** Clear the **Generate default plots** check box.
- **4** In the **Home** toolbar, click **= Compute**.

DEFINITIONS (COMPI)

Create a new selection including all fractures.

Fractures

- I In the **Definitions** toolbar, click **H Union**.
- 2 In the Settings window for Union, locate the Geometric Entity Level section.
- **3** From the Level list, choose **Boundary**.
- 4 Locate the Input Entities section. Under Selections to add, click + Add.
- 5 In the Add dialog box, in the Selections to add list, choose
 Fracture network (3D Fracture Network 1 1) and
 Fracture network (3D Fracture Network 2 1).
- 6 Click OK.
- 7 In the Settings window for Union, type Fractures in the Label text field.

RESULTS

Volume Average 1

- I In the Model Builder window, expand the Results node.
- 2 Right-click Results>Derived Values and choose Average>Volume Average.
- 3 In the Settings window for Volume Average, locate the Selection section.
- 4 From the Selection list, choose Middle.
- 5 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
dl.U	m/s	Darcy's velocity magnitude

6 Click **= Evaluate**.

The velocity is around 2e-9 m/s.

Surface Average 2

- I In the Results toolbar, click ^{8.85}_{e-12} More Derived Values and choose Average> Surface Average.
- 2 In the Settings window for Surface Average, locate the Selection section.
- **3** From the Selection list, choose Fractures.
- **4** Locate the **Expressions** section. In the table, enter the following settings:

Expression	Unit	Description
dl.U	m/s	Darcy's velocity magnitude

5 Click **•** next to **= Evaluate**, then choose **Table I - Volume Average I**.

TABLE

I Go to the Table window.

The velocity in the fractures is around 1.7mm/s and thus orders of magnitudes larger than in the matrix.

RESULTS

Create the plot of the Darcy velocity field (Figure 2).

Velocity

- I In the **Results** toolbar, click **i 3D Plot Group**.
- 2 In the Settings window for 3D Plot Group, type Velocity in the Label text field.
- 3 Locate the Plot Settings section. Clear the Plot dataset edges check box.
- 4 Click to expand the Title section. From the Title type list, choose Manual.
- 5 In the Title text area, type Darcy's velocity magnitude (m/s) .

Surface 1

- I Right-click Velocity and choose Surface.
- 2 In the Settings window for Surface, locate the Expression section.
- 3 In the **Expression** text field, type dl.U.
- 4 Locate the Coloring and Style section. From the Color table list, choose AuroraAustralis.
- 5 Click to expand the Range section. Select the Manual color range check box.
- 6 In the Maximum text field, type 3e-3.

Selection 1

I Right-click Surface I and choose Selection.

- 2 In the Settings window for Selection, locate the Selection section.
- **3** From the **Selection** list, choose **Fractures**.

Volume 1

- I In the Model Builder window, right-click Velocity and choose Volume.
- 2 In the Settings window for Volume, locate the Expression section.
- 3 In the Expression text field, type dl.U.
- 4 Click to expand the Inherit Style section. From the Plot list, choose Surface I.

Selection 1

- I Right-click Volume I and choose Selection.
- 2 In the Settings window for Selection, locate the Selection section.
- **3** From the **Selection** list, choose **Bottom**.

Volume 2

In the Model Builder window, under Results>Velocity right-click Volume I and choose Duplicate.

Selection 1

- I In the Model Builder window, expand the Volume 2 node, then click Selection I.
- 2 In the Settings window for Selection, locate the Selection section.
- **3** From the **Selection** list, choose **Top**.

Transparency I

- I In the Model Builder window, right-click Volume 2 and choose Transparency.
- 2 In the Settings window for Transparency, locate the Transparency section.
- 3 In the **Transparency** text field, type 0.8.

Arrow Surface 1

In the Model Builder window, right-click Velocity and choose Arrow Surface.

Selection 1

- I In the Model Builder window, right-click Arrow Surface I and choose Selection.
- 2 In the Settings window for Selection, locate the Selection section.
- 3 From the Selection list, choose Fractures.

Arrow Surface 1

- I In the Model Builder window, click Arrow Surface I.
- 2 In the Settings window for Arrow Surface, locate the Coloring and Style section.

- **3** From the **Arrow length** list, choose **Logarithmic**.
- **4** Select the **Scale factor** check box.
- **5** In the associated text field, type **3000**.
- **6** From the **Color** list, choose **White**.