PDF

Vibrating String
Introduction
In the following example you compute the natural frequencies of a pretensioned string using the 2D Truss interface. This is an example of “stress stiffening”. In fact the transverse stiffness of truss elements is directly proportional to the tensile force.
Strings made of piano wire have an extremely high yield limit, thus enabling a wide range of pretension forces.
The results are compared with the analytical solution.
Model Definition
The finite element idealization consists of a single line. The diameter of the wire is irrelevant for the solution of this particular problem, but it must still be given.
GEOMETRY
String length, 0.5 m
Cross section diameter 1.0 mm; 0.785 mm2
Material
Young’s modulus, E = 210 GPa
Mass density, ρ = 7850 kg/m3
Constraints
Both ends of the wire are fixed.
Load
The wire is pretensioned to σni = 1520 MPa.
Results and Discussion
The analytical solution for the natural frequencies of the vibrating string (Ref. 1) is
(1)
The pretensioning stress σni in this example is tuned so that the first natural frequency is Concert A; 440 Hz.
In Table 1 the computed results are compared with the results from Equation 1. The agreement is very good. The accuracy decreases with increasing complexity of the mode shape, because the possibility for the relatively coarse mesh to describe such a shape is limited. The mode shapes for the first three modes are shown in Figure 1 through Figure 3.
Figure 1: First eigenmode.
Figure 2: Second eigenmode.
Figure 3: Third eigenmode.
Notes About the COMSOL Implementation
In this example, the stresses are known in advance, so it is possible to use an initial stress condition. This is shown in the first study.
In a general case, the prestress is given by some external loading. The structural response of to this loading needs to be calculated and incorporated into the structure before the eigenfrequency can be computed. Such a study therefore consists of two steps: One stationary step for computing the prestressed state, and one step for the eigenfrequency. The special study type Prestressed Analysis, Eigenfrequency can be used to set up such a sequence. This is shown in the second study in this example.
Since an unstressed string has no stiffness in the transverse direction, it is generally difficult to get an analysis to converge without taking special measures. One such method is shown in the second study: A spring foundation is added during initial loading, and is then removed.
You must switch on geometrical nonlinearity in the study in order to capture effects of prestress. This is done automatically when a study of the type Prestressed Analysis, Eigenfrequency is used.
Reference
1. R. Knobel, An Introduction to the Mathematical Theory of Waves, The American Mathematical Society, 2000.
Application Library path: Structural_Mechanics_Module/Verification_Examples/vibrating_string
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  2D.
2
In the Select Physics tree, select Structural Mechanics>Truss (truss).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select General Studies>Eigenfrequency.
6
Geometry 1
Polygon 1 (pol1)
1
In the Geometry toolbar, click  Polygon.
2
In the Settings window for Polygon, locate the Coordinates section.
3
4
Click  Build All Objects.
Materials
Material 1 (mat1)
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
2
In the Settings window for Material, locate the Material Contents section.
3
Truss (truss)
Cross-Section Data 1
1
In the Model Builder window, under Component 1 (comp1)>Truss (truss) click Cross-Section Data 1.
2
In the Settings window for Cross-Section Data, locate the Cross-Section Data section.
3
In the A text field, type pi/4*0.001^2.
Pinned 1
1
In the Physics toolbar, click  Points and choose Pinned.
2
In the Settings window for Pinned, locate the Point Selection section.
3
From the Selection list, choose All points.
The straight edge constraint must be removed because the vibration gives the string a curved shape.
Linear Elastic Material 1
In the Model Builder window, click Linear Elastic Material 1.
Initial Stress and Strain 1
1
In the Physics toolbar, click  Attributes and choose Initial Stress and Strain.
2
In the Settings window for Initial Stress and Strain, locate the Initial Stress and Strain section.
3
In the σn0 text field, type 1520e6.
Mesh 1
Edge 1
1
In the Mesh toolbar, click  Edge.
2
In the Settings window for Edge, locate the Boundary Selection section.
3
From the Selection list, choose All boundaries.
Size
1
In the Model Builder window, click Size.
2
In the Settings window for Size, locate the Element Size section.
3
Click the Custom button.
4
Locate the Element Size Parameters section. In the Maximum element size text field, type 0.01.
This setting results in a mesh with 50 elements, which COMSOL Multiphysics generates when you solve the model.
The stiffness caused by the prestress is a nonlinear effect, so geometric nonlinearity must be switched on.
Study 1
Step 1: Eigenfrequency
1
In the Model Builder window, under Study 1 click Step 1: Eigenfrequency.
2
In the Settings window for Eigenfrequency, locate the Study Settings section.
3
Find the Values of linearization point subsection. Select the Include geometric nonlinearity check box.
4
In the Home toolbar, click  Compute.
Results
Mode Shape (truss)
1
Click the  Zoom Extents button in the Graphics toolbar.
The default plot shows the displacement for the first eigenmode.
Line 1
1
In the Model Builder window, expand the Mode Shape (truss) node, then click Line 1.
2
In the Settings window for Line, locate the Coloring and Style section.
3
In the Radius scale factor text field, type 2.
Mode Shape (truss)
1
Click the  Zoom Extents button in the Graphics toolbar.
2
In the Model Builder window, click Mode Shape (truss).
3
In the Settings window for 2D Plot Group, locate the Data section.
4
From the Eigenfrequency (Hz) list, choose 880.65.
This corresponds to the second eigenmode.
5
In the Mode Shape (truss) toolbar, click  Plot.
6
Click the  Zoom Extents button in the Graphics toolbar.
7
From the Eigenfrequency (Hz) list, choose 1322.1.
This is the third eigenmode.
8
In the Mode Shape (truss) toolbar, click  Plot.
9
Click the  Zoom Extents button in the Graphics toolbar.
Now, prepare a second study where the prestress is instead computed from an external load. The pinned condition at the right end must then be replaced by a force.
Truss (truss)
Pinned 2
1
In the Physics toolbar, click  Points and choose Pinned.
2
Prescribed Displacement 1
1
In the Physics toolbar, click  Points and choose Prescribed Displacement.
2
3
In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.
4
Select the Prescribed in y direction check box.
Point Load 1
1
In the Physics toolbar, click  Points and choose Point Load.
2
3
In the Settings window for Point Load, locate the Force section.
4
Specify the FP vector as
Add a spring with an arbitrary, small stiffness in order to suppress the out-of-plane singularity of the unstressed wire.
Spring Foundation 1
1
In the Physics toolbar, click  Boundaries and choose Spring Foundation.
2
3
In the Settings window for Spring Foundation, locate the Spring section.
4
5
In the kL table, enter the following settings:
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Eigenfrequency, Prestressed.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 2
Step 1: Stationary
Switch off the initial stress and double-sided pinned condition, which should not be part of the second study. In the eigenfrequency step, the stabilizing spring support must also be removed.
1
In the Settings window for Stationary, locate the Physics and Variables Selection section.
2
Select the Modify model configuration for study step check box.
3
In the tree, select Component 1 (Comp1)>Truss (Truss)>Linear Elastic Material 1>Initial Stress and Strain 1 and Component 1 (Comp1)>Truss (Truss)>Pinned 1.
4
Click  Disable.
Step 2: Eigenfrequency
1
In the Model Builder window, click Step 2: Eigenfrequency.
2
In the Settings window for Eigenfrequency, locate the Physics and Variables Selection section.
3
Select the Modify model configuration for study step check box.
4
In the tree, select Component 1 (Comp1)>Truss (Truss)>Linear Elastic Material 1>Initial Stress and Strain 1, Component 1 (Comp1)>Truss (Truss)>Pinned 1, and Component 1 (Comp1)>Truss (Truss)>Spring Foundation 1.
5
Click  Disable.
6
In the Home toolbar, click  Compute.
Results
Mode Shape (truss) 1
The eigenfrequencies computed using this more general approach are close to those computed in the previous step.
Line 1
1
In the Model Builder window, expand the Mode Shape (truss) 1 node, then click Line 1.
2
In the Settings window for Line, locate the Coloring and Style section.
3
In the Radius scale factor text field, type 2.
To make Study 1 behave as when it was first created, the features added for Study 2 must be disabled.
Study 1
Step 1: Eigenfrequency
1
In the Model Builder window, under Study 1 click Step 1: Eigenfrequency.
2
In the Settings window for Eigenfrequency, locate the Physics and Variables Selection section.
3
Select the Modify model configuration for study step check box.
4
In the tree, select Component 1 (Comp1)>Truss (Truss)>Pinned 2, Component 1 (Comp1)>Truss (Truss)>Prescribed Displacement 1, Component 1 (Comp1)>Truss (Truss)>Point Load 1, and Component 1 (Comp1)>Truss (Truss)>Spring Foundation 1.
5
Click  Disable.