PDF

Thermal Actuator
Introduction
For a description of this model, see Thermal Actuator — Parameterized, which describes a version of the same model (called thermal_actuator_tem_parameterized) that only differs in the way the geometry is created; while the modeling instructions below describe how you can import the finished geometry from an MPHBIN-file, the instructions in the above referenced model detail the steps required to create the geometry in the COMSOL Desktop.
Reference
1. D.M. Burns and V.M. Bright, “Design and performance of a double hot arm polysilicon thermal actuator,” Proc. SPIE 3224, Micromachined Devices and Components III, 1997; doi: 10.1117/12.284528.
Application Library path: Structural_Mechanics_Module/Thermal-Structure_Interaction/thermal_actuator_tem
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Structural Mechanics>Thermal-Structure Interaction>Joule Heating and Thermal Expansion.
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select General Studies>Stationary.
6
Thermal Actuator
1
In the Model Builder window, right-click Component 1 (comp1) and choose Rename.
2
In the Rename Component dialog box, type Thermal Actuator in the New label text field.
3
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Geometry 1
Import 1 (imp1)
1
In the Home toolbar, click  Import.
2
In the Settings window for Import, locate the Import section.
3
Click  Browse.
4
5
Click  Build All Objects.
6
Click the  Go to Default View button in the Graphics toolbar.
Definitions
substrate contact
1
In the Definitions toolbar, click  Explicit.
2
In the Settings window for Explicit, locate the Input Entities section.
3
From the Geometric entity level list, choose Boundary.
4
5
Right-click Explicit 1 and choose Rename.
6
In the Rename Explicit dialog box, type substrate contact in the New label text field.
7
Add Material
1
In the Home toolbar, click  Add Material to open the Add Material window.
2
Go to the Add Material window.
3
In the tree, select MEMS>Semiconductors>Si - Polycrystalline silicon.
4
Click Add to Component in the window toolbar.
5
In the Home toolbar, click  Add Material to close the Add Material window.
Materials
Si - Polycrystalline silicon (mat1)
By default, the first material you add applies on all domains so you can keep the Geometric Entity Selection settings.
1
In the Settings window for Material, locate the Material Contents section.
2
Solid Mechanics (solid)
Fixed Constraint 1
1
In the Model Builder window, under Thermal Actuator (comp1) right-click Solid Mechanics (solid) and choose Fixed Constraint.
2
Roller 1
1
In the Physics toolbar, click  Boundaries and choose Roller.
2
Heat Transfer in Solids (ht)
In the Model Builder window, under Thermal Actuator (comp1) click Heat Transfer in Solids (ht).
Heat Flux 1
1
In the Physics toolbar, click  Boundaries and choose Heat Flux.
This boundary condition applies to all boundaries except the top-surface boundary and those in contact with the substrate. A Temperature condition on the substrate contact boundaries will override this Heat Flux condition so you do not explicitly need to exclude those boundaries. In contrast, because the Heat Flux boundary condition is additive, you must explicitly exclude the top-surface boundary from the selection. Implement this selection as follows:
2
In the Settings window for Heat Flux, locate the Boundary Selection section.
3
From the Selection list, choose All boundaries.
4
In the Graphics window, click on the top surface to remove it from the selection.
A convective heat flux is used to model the heat flux through a thin air layer. The heat transfer coefficient, htc_s is defined as the ratio of the air thermal conductivity to the gap thickness.
5
Locate the Heat Flux section. From the Flux type list, choose Convective heat flux.
6
In the h text field, type htc_s.
Heat Flux 2
1
In the Physics toolbar, click  Boundaries and choose Heat Flux.
2
A convective heat flux is used to model the heat flux through a thin air layer. The heat transfer coefficient, htc_us is defined as the ratio of the air thermal conductivity to the gap thickness.
3
In the Settings window for Heat Flux, locate the Heat Flux section.
4
From the Flux type list, choose Convective heat flux.
5
In the h text field, type htc_us.
Temperature 1
1
In the Physics toolbar, click  Boundaries and choose Temperature.
2
In the Settings window for Temperature, locate the Boundary Selection section.
3
From the Selection list, choose substrate contact.
Electric Currents (ec)
In the Model Builder window, under Thermal Actuator (comp1) click Electric Currents (ec).
Ground 1
1
In the Physics toolbar, click  Boundaries and choose Ground.
2
Electric Potential 1
1
In the Physics toolbar, click  Boundaries and choose Electric Potential.
2
3
In the Settings window for Electric Potential, locate the Electric Potential section.
4
In the V0 text field, type DV.
Mesh 1
Free Tetrahedral 1
In the Mesh toolbar, click  Free Tetrahedral.
Size
1
In the Model Builder window, click Size.
2
In the Settings window for Size, locate the Element Size section.
3
From the Predefined list, choose Fine.
Size 1
1
In the Model Builder window, right-click Free Tetrahedral 1 and choose Size.
2
In the Settings window for Size, locate the Element Size section.
3
From the Predefined list, choose Finer.
4
Locate the Geometric Entity Selection section. From the Geometric entity level list, choose Boundary.
5
6
In the Model Builder window, right-click Mesh 1 and choose Build All.
Study 1
Step 1: Stationary
1
In the Model Builder window, under Study 1 click Step 1: Stationary.
2
In the Settings window for Stationary, locate the Study Settings section.
3
Select the Include geometric nonlinearity check box.
4
In the Home toolbar, click  Compute.
The first default plot show the von Mises stress.
Results
Volume 1
1
In the Model Builder window, expand the Stress (solid) node, then click Volume 1.
2
In the Settings window for Volume, locate the Expression section.
3
From the Unit list, choose MPa.
4
In the Stress (solid) toolbar, click  Plot.
5
Click the  Zoom Extents button in the Graphics toolbar.
Temperature (ht)
1
Click the  Go to Default View button in the Graphics toolbar.
The second default plot shows the temperature field.
Create a new plot for displacement.
Displacement
1
In the Home toolbar, click  Add Plot Group and choose 3D Plot Group.
2
In the Settings window for 3D Plot Group, type Displacement in the Label text field.
Surface 1
1
Right-click Displacement and choose Surface.
2
In the Settings window for Surface, locate the Expression section.
3
From the Unit list, choose µm.
4
Locate the Coloring and Style section. From the Color table list, choose SpectrumLight.
Deformation 1
1
Right-click Surface 1 and choose Deformation.
2
In the Displacement toolbar, click  Plot.