PDF

Bracket — General Periodic Dynamic Analysis
Introduction
The steady-state response of a system subjected to a non-harmonic periodic excitation can be computed using two different approaches:
In this example, you learn how to compute the Fourier series coefficients of the periodic forcing function, and how to use them to perform a frequency response analysis. The results from the frequency response analysis is used as input to an inverse FFT analysis to get the steady-state time-varying response for a complete period. In order to validate the results from this approach, a time-dependent analysis is performed.
In both cases, a full or a modal solution scheme can be used. Compared to full time- dependent or frequency-domain methods, modal methods offer advantages with a reduced problem size if a limited number of eigenmode is excited. By representing the dynamics of the system by a few significant eigenmodes, the modal method reduces the size of problem. In this example, modal solution methods are used in both cases.
It is recommended that you review the Introduction to the Structural Mechanics Module, which includes background information and discusses the bracket_basic.mph model relevant to this example.
Model Definition
This model is an extension of the model example described in the section “The Fundamentals: A Static Linear Analysis” in the Introduction to the Structural Mechanics Module.
The geometry is shown in Figure 1.
Figure 1: Bracket geometry
The time varying periodic load is a force applied in the X direction at the bracket holes. It consists of a triangular pulse with an amplitude of 750 N amplitude and zero mean, varying with 40 Hz frequency as shown in Figure 2.
Figure 2: The load history
Rayleigh damping is chosen since it is applicable both in frequency and time domains. The relative damping is set to 0.03 at the frequencies 100 Hz and 300 Hz.
An eigenfrequency analysis of this structure is performed in the tutorial example Bracket — Eigenfrequency Analysis. It shows that the first resonance frequency is about 115 Hz. The fundamental frequency of the load, having the frequency 40 Hz, will thus mainly excite the first mode of the bracket.
Fourier Series
A periodic function F(t) with period T0 (and corresponding angular frequency ω0) can be decomposed into a discrete Fourier series of the form
(1)
where
(2)
The periodic load in this model is a triangular function which is an odd function with zero mean. The Fourier series coefficients can be shown to be
(3)
Here A is the amplitude of the triangular function. For even values of n, the coefficients Fbn are zero.
Alternatively, the trigonometric functions and Fourier coefficients can be expressed on complex form:
(4)
where Fn are complex valued. This is the notation used in COMSOL Multiphysics. The relation between the Fourier series coefficients in the two formulations are
(5)
Results and Discussion
Since the Fourier coefficients for the given load can be determined analytically, the accuracy of the computed values can be investigated. In Figure 3, the Fourier series coefficients are plotted against the frequency.
Figure 3: Numerical and analytical values of Fourier series coefficients.
As can be seen, the computed values match the values given by Equation 3 very well.
Another way of investigating the accuracy of the computed Fourier series coefficients is to compare the real and imaginary values. Since, for this loading function, all coefficients are purely imaginary, the real parts should be small. This comparison is shown in Figure 4. It can be seen that the error increases with the order of the term, but the accuracy is still good up to 2000–3000 Hz. The accuracy is improved by computing a higher number of terms, that is the setting Maximum output frequency in the Time to Frequency FFT study step.
Figure 4: Real and imaginary parts of the Fourier series coefficients.
In Figure 5 and Figure 6, the von Mises stress at a certain time in the period is plotted for the two different solution methods. The results are very similar. There are two different possible sources of inaccuracy:
In most cases, the time-stepping algorithm will be the larger source of error.
.
Figure 5: Equivalent stress at t=0.022 using the general periodic approach.
.
Figure 6: Equivalent stress at t=0.022 using a time-dependent modal approach.
In Figure 7, the contributions to the displacement from each harmonic is plotted. This is the amplitude for each frequency in the frequency sweep. It can be seen that it is mainly the Fourier terms at 40 Hz and 120 Hz that contribute. Thus, it is only some of the few terms with the very best accuracy that are dominating.
Figure 7: Amplitude contribution from each harmonic to the displacement in the X-direction at the tip of the bracket.
In Figure 8, the displacement at the tip of the bracket is shown for one period. The two different solution methods are compared, and the results are almost indistinguishable.
In Figure 9, a similar graph for the σxx stress component at a point in the highly stressed fillet is shown.
In both graphs the effect of the two dominating frequencies 40 Hz and 120 Hz is clearly visible. The frequency content of the excitation is filtered by the dynamics properties of the structure, giving a response that bears little similarity with the excitation.
.
Figure 8: Displacement in the X-direction at the tip of the bracket.
Figure 9: Stress in the critical region in the fillet.
Notes About the COMSOL Implementation
Frequency-domain analysis in COMSOL Multiphysics is performed using a complex-valued representation. The complex-valued Fourier series coefficients can then be directly used as loads. In order to assign the correct coefficient to the corresponding frequency, a withsol() operator is used.
As the load is periodic, either a discrete Fourier transform (DFT) or continuous Fourier transform (CFT) can be used. In the CFT, the Fourier series coefficients are scaled in a more natural way, so it is used to compute the Fourier series coefficients. When transforming back into the time domain, a DFT is used. The unscaled version is suitable for performing a direct superposition of the computed frequency response.
In the modal time-dependent procedure, all loads must have the same variation in time, specified in the study step. This means that you should not enter any time-dependent loads (that is, loads with an explicit dependency on the time variable t). In this example, the amplitude of the periodic load is entered in the Boundary Load node, while the periodic part of the load is entered at the Modal Solver node.
Application Library path: Structural_Mechanics_Module/Tutorials/bracket_general_periodic
Modeling Instructions
Application Libraries
1
From the File menu, choose Application Libraries.
2
In the Application Libraries window, select Structural Mechanics Module>Tutorials>bracket_basic in the tree.
3
Describe the periodic load using interpolation and analytical functions.
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Interpolation 1 (int1)
1
In the Home toolbar, click  Functions and choose Global>Interpolation.
2
In the Settings window for Interpolation, locate the Definition section.
3
4
Locate the Units section. In the Argument table, enter the following settings:
5
In the Function table, enter the following settings:
Analytic 1 (an1)
1
In the Home toolbar, click  Functions and choose Global>Analytic.
2
In the Settings window for Analytic, type loadHistory in the Function name text field.
3
Locate the Definition section. In the Expression text field, type int1(x).
4
Click to expand the Periodic Extension section. Select the Make periodic check box.
5
In the Upper limit text field, type T0.
6
Locate the Units section. In the table, enter the following settings:
7
In the Function text field, type N.
8
Locate the Plot Parameters section. In the table, enter the following settings:
9
Analytic 2 (loadHistory2)
1
Right-click Analytic 1 (an1) and choose Duplicate.
2
In the Settings window for Analytic, type Periodic in the Function name text field.
3
Locate the Definition section. In the Expression text field, type int1(x)/A0.
4
Locate the Units section. In the Function text field, type 1.
In order to find the Fourier series coefficients of the periodic function, add a zero-dimensional component with a Global ODEs and DAEs mathematical interface.
Add Component
In the Model Builder window, right-click the root node and choose Add Component>0D.
Add Physics
1
In the Home toolbar, click  Add Physics to open the Add Physics window.
2
Go to the Add Physics window.
3
In the tree, select Mathematics>ODE and DAE Interfaces>Global ODEs and DAEs (ge).
4
Click Add to Component 2 in the window toolbar.
5
In the Home toolbar, click  Add Physics to close the Add Physics window.
Global ODEs and DAEs (ge)
Global Equations 1
1
In the Model Builder window, under Component 2 (comp2)>Global ODEs and DAEs (ge) click Global Equations 1.
2
In the Settings window for Global Equations, locate the Global Equations section.
3
4
Locate the Units section. Click  Select Dependent Variable Quantity.
5
In the Physical Quantity dialog box, type force in the text field.
6
Click  Filter.
7
In the tree, select General>Force (N).
8
9
In the Settings window for Global Equations, locate the Units section.
10
Click  Select Source Term Quantity.
11
In the Physical Quantity dialog box, select General>Force (N) in the tree.
12
Add Time Dependent and Time to Frequency FFT study steps to generate Fourier coefficients.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select General Studies>Time Dependent.
4
5
In the Model Builder window, click the root node.
6
In the Home toolbar, click  Add Study to close the Add Study window.
Study 1: Fourier Coefficient Generation
1
In the Settings window for Study, type Study 1: Fourier Coefficient Generation in the Label text field.
2
Locate the Study Settings section. Clear the Generate default plots check box.
Step 1: Time Dependent
1
In the Model Builder window, under Study 1: Fourier Coefficient Generation click Step 1: Time Dependent.
2
In the Settings window for Time Dependent, locate the Study Settings section.
3
In the Output times text field, type range(0,T0/1000,T0).
4
Locate the Physics and Variables Selection section. In the table, clear the Solve for check box for Solid Mechanics (solid).
Time to Frequency FFT
1
In the Study toolbar, click  Study Steps and choose Frequency Domain>Time to Frequency FFT.
2
In the Settings window for Time to Frequency FFT, locate the Study Settings section.
3
In the End time text field, type T0.
By setting a high upper frequency, the accuracy of the Fourier coefficients for the lower frequencies will be improved.
4
In the Maximum output frequency text field, type 10000.
5
Locate the Physics and Variables Selection section. In the table, clear the Solve for check box for Solid Mechanics (solid).
Solution 1 (sol1)
1
In the Study toolbar, click  Show Default Solver.
2
In the Model Builder window, expand the Study 1: Fourier Coefficient Generation node.
Solver Configurations
In the Model Builder window, expand the Study 1: Fourier Coefficient Generation>Solver Configurations node.
Solution 1 (sol1)
1
In the Model Builder window, expand the Study 1: Fourier Coefficient Generation>Solver Configurations>Solution 1 (sol1) node.
2
In the Model Builder window, click Time-Dependent Solver 1.
3
In the Settings window for Time-Dependent Solver, click to expand the Time Stepping section.
4
From the Steps taken by solver list, choose Strict.
5
In the Study toolbar, click  Compute.
Results
Fourier Coefficients, Computed vs. Analytical
1
In the Model Builder window, expand the Results node.
2
Right-click Results and choose 1D Plot Group.
3
In the Settings window for 1D Plot Group, type Fourier Coefficients, Computed vs. Analytical in the Label text field.
4
Locate the Data section. From the Parameter selection (freq) list, choose Manual.
5
In the Parameter indices (1-251) text field, type range(1,1,100).
6
Click to expand the Title section. From the Title type list, choose Label.
7
Locate the Plot Settings section. Select the x-axis label check box.
8
9
Select the y-axis label check box.
10
In the associated text field, type Fourier Coefficients (N).
11
Locate the Axis section. Select the y-axis log scale check box.
Global 1
1
Right-click Fourier Coefficients, Computed vs. Analytical and choose Global.
2
In the Settings window for Global, locate the y-Axis Data section.
3
4
Click to expand the Coloring and Style section. Find the Line style subsection. From the Line list, choose None.
5
Find the Line markers subsection. From the Marker list, choose Circle.
6
From the Positioning list, choose In data points.
7
Set the Width value to 4.
8
Click to expand the Legends section. From the Legends list, choose Manual.
9
Global 2
1
Right-click Global 1 and choose Duplicate.
2
In the Settings window for Global, locate the y-Axis Data section.
3
4
Locate the Data section. From the Dataset list, choose Study 1: Fourier Coefficient Generation/Solution 1 (sol1).
5
From the Parameter selection (freq) list, choose Manual.
6
In the Parameter indices (1-251) text field, type range(2,2,100).
7
Locate the Coloring and Style section. Find the Line markers subsection. From the Marker list, choose Plus sign.
8
Locate the Legends section. In the table, enter the following settings:
9
In the Fourier Coefficients, Computed vs. Analytical toolbar, click  Plot.
Fourier Coefficients; Real and Imaginary
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Fourier Coefficients; Real and Imaginary in the Label text field.
3
Locate the Title section. From the Title type list, choose Label.
4
Locate the Data section. From the Parameter selection (freq) list, choose Manual.
5
In the Parameter indices (1-251) text field, type range(2,2,100).
6
Locate the Axis section. Select the x-axis log scale check box.
7
Select the y-axis log scale check box.
8
Locate the Plot Settings section. Select the x-axis label check box.
9
10
Select the y-axis label check box.
11
In the associated text field, type Fourier Coefficients (N).
Global 1
1
Right-click Fourier Coefficients; Real and Imaginary and choose Global.
2
In the Settings window for Global, locate the y-Axis Data section.
3
4
Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose None.
5
Find the Line markers subsection. From the Marker list, choose Circle.
6
From the Positioning list, choose In data points.
7
Set the Width value to 4.
8
Locate the Legends section. From the Legends list, choose Manual.
9
10
In the Fourier Coefficients; Real and Imaginary toolbar, click  Plot.
Now, set up the Solid Mechanics physics interface in order to find the response of the bracket to the periodic load.
Definitions (comp1)
In the Model Builder window, expand the Component 1 (comp1)>Definitions>Selections node.
Solid Mechanics (solid)
Linear Elastic Material 1
In the Model Builder window, expand the Component 1 (comp1)>Solid Mechanics (solid) node, then click Linear Elastic Material 1.
Damping 1
1
In the Physics toolbar, click  Attributes and choose Damping.
Rayleigh damping is used for this example since it is applicable both in frequency and time domain analysis.
2
In the Settings window for Damping, locate the Damping Settings section.
3
From the Input parameters list, choose Damping ratios.
4
In the f1 text field, type 100.
5
In the ζ1 text field, type 0.03.
6
In the f2 text field, type 300.
7
In the ζ2 text field, type 0.03.
You can now apply an external harmonic load in terms of the Fourier Series coefficients to the bracket arms.
Boundary Load, Harmonic
1
In the Physics toolbar, click  Boundaries and choose Boundary Load.
2
In the Settings window for Boundary Load, type Boundary Load, Harmonic in the Label text field.
3
Locate the Boundary Selection section. From the Selection list, choose Pin Holes.
4
Locate the Force section. From the Load type list, choose Total force.
5
Specify the Ftot vector as
To define a harmonic load in the frequency domain modal analysis, you need to mark the load as being a harmonic perturbation.
6
Right-click Boundary Load, Harmonic and choose Harmonic Perturbation.
Add the Frequency Domain, Modal study along with the Time to Frequency FFT study step.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Solid Mechanics>Frequency Domain, Modal.
4
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 2: Frequency Domain Modal + FFT
In the Settings window for Study, type Study 2: Frequency Domain Modal + FFT in the Label text field.
Step 1: Eigenfrequency
1
In the Model Builder window, under Study 2: Frequency Domain Modal + FFT click Step 1: Eigenfrequency.
2
In the Settings window for Eigenfrequency, locate the Study Settings section.
3
Select the Desired number of eigenfrequencies check box.
4
5
Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.
6
In the tree, select Component 1 (Comp1)>Solid Mechanics (Solid)>Linear Elastic Material 1>Damping 1.
7
8
In the tree, select Component 2 (Comp2)>Global ODEs and DAEs (Ge).
9
Right-click and choose Disable in Solvers.
Step 2: Frequency Domain, Modal
1
In the Model Builder window, click Step 2: Frequency Domain, Modal.
2
In the Settings window for Frequency Domain, Modal, locate the Study Settings section.
3
In the Frequencies text field, type range(f0,f0,40*f0).
4
Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.
5
In the tree, select Component 2 (Comp2)>Global ODEs and DAEs (Ge).
6
Right-click and choose Disable in Solvers.
Frequency to Time FFT
1
In the Study toolbar, click  Study Steps and choose Time Dependent>Frequency to Time FFT.
2
In the Settings window for Frequency to Time FFT, locate the Study Settings section.
3
In the Times text field, type range(0,T0/100,T0).
The purpose of the inverse FFT study step is just to superimpose the results from the different harmonics, so the unscaled discrete FFT is suitable.
4
From the Scaling list, choose Discrete Fourier transform.
5
Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.
6
In the tree, select Component 2 (Comp2)>Global ODEs and DAEs (Ge).
7
Right-click and choose Disable in Solvers.
8
In the Study toolbar, click  Compute.
Results
Stress: Frequency Domain Modal + FFT
1
In the Settings window for 3D Plot Group, locate the Data section.
2
From the Time (s) list, choose 0.022.
3
Locate the Color Legend section. Select the Show maximum and minimum values check box.
4
In the Label text field, type Stress: Frequency Domain Modal + FFT.
Volume 1
1
In the Model Builder window, expand the Stress: Frequency Domain Modal + FFT node, then click Volume 1.
2
In the Settings window for Volume, locate the Expression section.
3
From the Unit list, choose MPa.
4
In the Stress: Frequency Domain Modal + FFT toolbar, click  Plot.
Displacement Amplitude [Frequency Response]
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Displacement Amplitude [Frequency Response] in the Label text field.
3
Locate the Title section. From the Title type list, choose Label.
4
Locate the Data section. From the Dataset list, choose Study 2: Frequency Domain Modal + FFT/Solution Store 3 (sol5).
5
From the Parameter selection (freq) list, choose Manual.
6
In the Parameter indices (1-40) text field, type range(1,1,10).
Point Graph 1
1
Right-click Displacement Amplitude [Frequency Response] and choose Point Graph.
2
3
In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Solid Mechanics>Displacement>Displacement amplitude (material and geometry frames) - m>solid.uAmpX - Displacement amplitude, X component.
4
Locate the y-Axis Data section. From the Unit list, choose mm.
5
Click to expand the Coloring and Style section. Find the Line style subsection. From the Line list, choose None.
6
Find the Line markers subsection. From the Marker list, choose Diamond.
7
From the Positioning list, choose In data points.
8
In the Displacement Amplitude [Frequency Response] toolbar, click  Plot.
For verification, solve the problem also in time domain. To provide the time-domain load, enter its amplitude in a Boundary Load node, and its time dependency in the solver settings for the Time Dependent, Modal study step.
Solid Mechanics (solid)
Boundary Load, Time Domain Amplitude
1
In the Physics toolbar, click  Boundaries and choose Boundary Load.
2
In the Settings window for Boundary Load, type Boundary Load, Time Domain Amplitude in the Label text field.
3
Locate the Boundary Selection section. From the Selection list, choose Pin Holes.
4
Locate the Force section. From the Load type list, choose Total force.
5
Specify the Ftot vector as
Disable the transient boundary load in the second study. While not necessary, since it is a harmonic perturbation load, it makes the modeling easier to follow.
Study 2: Frequency Domain Modal + FFT
Step 2: Frequency Domain, Modal
1
In the Model Builder window, under Study 2: Frequency Domain Modal + FFT click Step 2: Frequency Domain, Modal.
2
In the Settings window for Frequency Domain, Modal, locate the Physics and Variables Selection section.
3
In the tree, select Component 1 (Comp1)>Solid Mechanics (Solid)>Boundary Load, Time Domain Amplitude.
4
Step 3: Frequency to Time FFT
1
In the Model Builder window, click Step 3: Frequency to Time FFT.
2
In the Settings window for Frequency to Time FFT, locate the Physics and Variables Selection section.
3
In the tree, select Component 1 (Comp1)>Solid Mechanics (Solid)>Boundary Load, Time Domain Amplitude.
4
Add the Time-Dependent, Modal study.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Solid Mechanics>Time Dependent, Modal.
4
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 3: Time-Dependent Modal [Verification]
1
In the Settings window for Study, type Study 3: Time-Dependent Modal [Verification] in the Label text field.
Since the eigenfrequencies are already computed in a previous study, it is possible to remove the eigenfrequency study step here.
Step 1: Eigenfrequency
In the Model Builder window, under Study 3: Time-Dependent Modal [Verification] right-click Step 1: Eigenfrequency and choose Delete.
Step 1: Time Dependent, Modal
In order for any startup transients to fade away, a significant number of cycles need to be analyzed, but only the results from the last cycle need to be stored. Here, 20 periods will pass before results are stored.
1
In the Model Builder window, under Study 3: Time-Dependent Modal [Verification] click Step 1: Time Dependent, Modal.
2
In the Settings window for Time Dependent, Modal, locate the Study Settings section.
3
In the Output times text field, type -20*T0 range(0,T0/100,T0).
4
Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.
5
In the tree, select Component 1 (Comp1)>Solid Mechanics (Solid)>Boundary Load, Harmonic.
6
7
In the tree, select Component 2 (Comp2)>Global ODEs and DAEs (Ge).
8
Right-click and choose Disable in Solvers.
For a Time Dependent, Modal study step, the time-dependent part of the load needs to be entered in the Advanced section of the Modal Solver node. Generate the solver configuration first.
Solution 6 (sol6)
1
In the Study toolbar, click  Show Default Solver.
Enforce small time steps.
2
In the Model Builder window, expand the Solution 6 (sol6) node, then click Modal Solver 1.
3
In the Settings window for Modal Solver, locate the General section.
4
From the Maximum step constraint list, choose Constant.
5
In the Maximum step text field, type 5e-5.
6
Click to expand the Advanced section. In the Load factor text field, type Periodic(t).
Since the eigenfrequency study step has been removed from this study, it is necessary to point to the study step that provides the eigenvalue solution.
7
Locate the Eigenpairs section. From the Solution list, choose Solution 3 (sol3).
8
From the Use list, choose Solution Store 2 (sol4).
9
In the Study toolbar, click  Compute.
Results
Stress: Time-Dependent Modal
1
In the Settings window for 3D Plot Group, locate the Data section.
2
From the Time (s) list, choose 0.022.
3
Locate the Color Legend section. Select the Show maximum and minimum values check box.
4
In the Label text field, type Stress: Time-Dependent Modal.
Volume 1
1
In the Model Builder window, expand the Stress: Time-Dependent Modal node, then click Volume 1.
2
In the Settings window for Volume, locate the Expression section.
3
From the Unit list, choose MPa.
4
In the Stress: Time-Dependent Modal toolbar, click  Plot.
Applied Loads (solid)
In the Model Builder window, under Results right-click Applied Loads (solid) and choose Ungroup.
Boundary Loads (solid)
1
In the Model Builder window, under Results click Boundary Loads (solid).
2
In the Boundary Loads (solid) toolbar, click  Plot.
The maximum displacement occurs at the tip of the bracket, and the maximum stress occurs in the fillet near the bolt holes. Generate 1D plots of displacement and stress in order to visualize the transient response of the bracket. Plot the response from Study 3 along with Study 2 in order to validate the results.
Tip Displacement
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, locate the Data section.
3
From the Dataset list, choose Study 2: Frequency Domain Modal + FFT/Solution 3 (sol3).
4
In the Label text field, type Tip Displacement.
5
Locate the Title section. From the Title type list, choose None.
Point Graph 1
1
Right-click Tip Displacement and choose Point Graph.
2
3
In the Settings window for Point Graph, locate the y-Axis Data section.
4
In the Expression text field, type u.
5
From the Unit list, choose mm.
6
In the Tip Displacement toolbar, click  Plot.
7
Click to expand the Legends section. Select the Show legends check box.
8
From the Legends list, choose Manual.
9
Point Graph 2
1
Right-click Point Graph 1 and choose Duplicate.
2
In the Settings window for Point Graph, locate the Data section.
3
From the Dataset list, choose Study 3: Time-Dependent Modal [Verification]/Solution 6 (sol6).
4
From the Time selection list, choose Manual.
5
In the Time indices (1-102) text field, type range(2,102).
6
Locate the Legends section. In the table, enter the following settings:
7
In the Tip Displacement toolbar, click  Plot.
Fillet Stress
1
In the Model Builder window, right-click Tip Displacement and choose Duplicate.
2
In the Settings window for 1D Plot Group, type Fillet Stress in the Label text field.
Point Graph 1
1
In the Model Builder window, expand the Fillet Stress node, then click Point Graph 1.
2
In the Settings window for Point Graph, locate the Selection section.
3
Click to select the  Activate Selection toggle button.
4
Click  Clear Selection.
5
6
Locate the y-Axis Data section. In the Expression text field, type solid.sx.
7
From the Unit list, choose MPa.
Point Graph 2
1
In the Model Builder window, click Point Graph 2.
2
In the Settings window for Point Graph, locate the Selection section.
3
Click to select the  Activate Selection toggle button.
4
Click  Clear Selection.
5
6
Locate the y-Axis Data section. In the Expression text field, type solid.sx.
7
From the Unit list, choose MPa.
8
In the Fillet Stress toolbar, click  Plot.