PDF

Microlithography Lens
Introduction
Microlithography is the process of imprinting small patterns (feature sizes less than 10 μm) onto a surface. It is an invaluable method in the production of integrated circuits due to the constantly increasing demand for smaller feature sizes and greater transistor density.
In photolithography, a wafer is first coated with a layer of photoresist, a special material that becomes more soluble in a certain liquid (called the developer) when exposed to radiation. The photoresist is then illuminated with a beam that has been sent through a photomask, a plate that selectively obstructs light in a specific pattern. The image of the mask is projected onto the surface of the photoresist. Thus, when the developer solution is applied to the photoresist, only the illuminated parts of the photoresist layer are washed away. The exposed parts of the underlying wafer can then be etched while the photoresist shields other parts of the wafer. Finally, the remaining photoresist is washed off.
An image of the photomask is thus etched into the surface of the wafer. Usually the light from the photomask is focused by a lens system with a magnification less than unity, so the projected image of the circuit pattern is smaller than it appears on the mask.
In order to manufacture devices with ever-decreasing feature size, the wavelengths of radiation used in photolithography have decreased over time. Krypton fluoride (KrF, 248 nm wavelength) and argon fluoride (ArF, 193 nm) lasers have been successfully used in photolithography for the production of microchips. Since these wavelengths are in the ultraviolet part of the electromagnetic spectrum, photolithography at these wavelengths is sometimes called UV photolithography, DUV (deep ultraviolet) photolithography, UV microlithography, or DUV microlithography.
The choice of material in a microlithography lens system is more limited than in camera or telescope lenses, because many optical glasses have reduced transmittance to UV light compared to visible light. DUV systems often use glasses composed of fused silica (quartz) or calcium fluoride (CaF) which have high transmittance in this wavelength range.
Lens systems for UV microlithography tend to have a rather large number of elements, each of which can be quite heavy and must be machined and positioned very accurately, so these lens systems can become quite expensive.
This tutorial demonstrates how to perform geometrical optics simulation in a 21-element fused silica microlithography lens with a numerical aperture (NA) of 0.56, to be used at a wavelength of 248 nm (KrF laser). The lens, which has a total length of 1 meter, has a magnification of -0.25 with excellent image quality over a 23.4 mm image circle.
Model Definition
The optical prescription of the UV microlithography lens consists of 21 spherical lens elements. For each element, the radii of curvature of the two surfaces, the center thickness, and the lens diameter must be defined, as well as the spacing between successive elements. The distance to the object plane and the image plane must also be specified. Altogether the optical prescription includes 2 × 21 + 2 or 44 rows of data.
The detailed optical prescription, given in Ref. 1, is shown in Table 1.
The geometry is constructed using parts from the Ray Optics Module Part Library. All of the lenses were constructed using the Spherical Lens 3D part. The object and image planes are instances of the Circular Planar Annulus part with an inner radius of zero.
When constructing a geometry in COMSOL to be used in a Geometrical Optics ray trace, it is important to appreciate that the order in which optical elements are placed in a geometry sequence does not affect the results of the trace. However, it is convenient to place optical elements relative to one another. This can be achieved by taking one of the built-in work planes in a Part Instance as the reference for the placement of the next Part Instance. The resulting lens geometry sequence is shown in Figure 1. Detailed instructions for creating the geometry can be found in Appendix — Geometry Instructions.
Figure 1: Microlithography lens geometry sequence. The rays propagate from left to right.
Results and Discussion
The ray diagram of the microlithography lens for three different field angles is shown in Figure 2. For each of the three field angles, the average ray position in the image plane is computed, and then the distance from each ray’s final position to this average position is computed, forming the color expression along the rays.
A spot diagram of rays in the image plane is shown in Figure 3. Here the color expression indicates the angle of incidence of each ray at the image plane.
References
1. J. Brian Caldwell. “All-fused silica 248-nm lithographic projection lens.” Optics and Photonics News, vol. 9, no. 11, pp. 40-41, 1998.
2. W. Smith, Modern Lens Design, 2nd ed., McGraw-Hill, 2005.
Figure 2: Ray diagram of the microlithography lens.
Figure 3: Spot diagram of the microlithography lens.
Application Library path: Ray_Optics_Module/Lenses_Cameras_and_Telescopes/microlithography_lens
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Optics>Ray Optics>Geometrical Optics (gop).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Ray Tracing.
6
Component 1 (comp1)
1
In the Model Builder window, click Component 1 (comp1).
2
In the Settings window for Component, locate the Curved Mesh Elements section.
3
From the Geometry shape function list, choose Cubic Lagrange. The ray tracing algorithm used by the Geometrical Optics interface computes the refracted ray direction based on a discretized geometry via the underlying finite element mesh. A cubic geometry shape order usually introduces less discretization error compared to the default, which uses linear and quadratic polynomials.
Global Definitions
Parameters 2
1
In the Home toolbar, click  Parameters and choose Add>Parameters.
2
In the Settings window for Parameters, locate the Parameters section.
3
Microlithography Lens Geometry Sequence
Insert the prepared geometry sequence from file. You can read the instructions for creating the geometry in the appendix. Following insertion, the lens definitions will be available in the Parameters node.
1
In the Model Builder window, under Component 1 (comp1) click Geometry 1.
2
In the Settings window for Geometry, locate the Units section.
3
From the Length unit list, choose mm.
4
In the Label text field, type Microlithography Lens Geometry Sequence.
5
In the Geometry toolbar, click Insert Sequence and choose Insert Sequence.
6
7
In the Geometry toolbar, click  Build All.
8
Click the  Orthographic Projection button in the Graphics toolbar.
9
In the Graphics window toolbar, clicknext to  Go to Default View, then choose Go to ZY View. This will orient the view to place the optical axis (z-axis) horizontal and the y-axis vertical. Compare the resulting geometry to Figure 1.
Geometrical Optics (gop)
1
In the Model Builder window, under Component 1 (comp1) click Geometrical Optics (gop).
2
In the Settings window for Geometrical Optics, locate the Ray Release and Propagation section.
3
In the Maximum number of secondary rays text field, type 0.
4
Select the Use geometry normals for ray-boundary interactions check box.
5
Locate the Material Properties of Exterior and Unmeshed Domains section. From the Optical dispersion model list, choose Absolute vacuum.
6
Locate the Additional Variables section. Select the Compute optical path length check box.
Medium Properties 1
1
In the Model Builder window, under Component 1 (comp1)>Geometrical Optics (gop) click Medium Properties 1.
2
In the Settings window for Medium Properties, locate the Medium Properties section.
3
From the n list, choose User defined. In the associated text field, type 1.5084.
Material Discontinuity 1
1
In the Model Builder window, click Material Discontinuity 1.
2
In the Settings window for Material Discontinuity, locate the Rays to Release section.
3
From the Release reflected rays list, choose Never.
Ray Properties 1
1
In the Model Builder window, click Ray Properties 1.
2
In the Settings window for Ray Properties, locate the Ray Properties section.
3
In the λ0 text field, type 248[nm].
Obstructions
1
In the Physics toolbar, click  Boundaries and choose Wall.
2
In the Settings window for Wall, type Obstructions in the Label text field.
3
Locate the Boundary Selection section. From the Selection list, choose Obstructions.
4
Locate the Wall Condition section. From the Wall condition list, choose Disappear.
Image
1
In the Physics toolbar, click  Boundaries and choose Wall.
2
In the Settings window for Wall, type Image in the Label text field.
3
Locate the Boundary Selection section. From the Selection list, choose All (Image).
Release from Grid 1
1
In the Physics toolbar, click  Global and choose Release from Grid.
2
In the Settings window for Release from Grid, locate the Ray Direction Vector section.
3
From the Ray direction vector list, choose Conical.
4
From the Conical distribution list, choose Hexapolar.
5
In the Nθ text field, type nhex.
6
Specify the r vector as
7
In the α text field, type alpha.
Release from Grid 2
1
Right-click Release from Grid 1 and choose Duplicate.
2
In the Settings window for Release from Grid, locate the Initial Coordinates section.
3
In the qy,0 text field, type D_0/4.
Release from Grid 3
1
Right-click Release from Grid 2 and choose Duplicate.
2
In the Settings window for Release from Grid, locate the Initial Coordinates section.
3
In the qy,0 text field, type D_0/2.
Mesh 1
Size 1
1
In the Mesh toolbar, click  Sizing and choose Size.
2
In the Settings window for Size, locate the Geometric Entity Selection section.
3
From the Geometric entity level list, choose Boundary.
4
From the Selection list, choose Clear Apertures.
5
Locate the Element Size section. Click the Custom button.
6
Locate the Element Size Parameters section. Select the Maximum element size check box.
7
Size 2
1
In the Mesh toolbar, click  Sizing and choose Size.
2
In the Settings window for Size, locate the Geometric Entity Selection section.
3
From the Geometric entity level list, choose Boundary.
4
From the Selection list, choose Obstructions.
5
Locate the Element Size section. From the Predefined list, choose Extra fine.
Free Tetrahedral 1
1
In the Mesh toolbar, click  Free Tetrahedral.
2
In the Settings window for Free Tetrahedral, click  Build All.
Study 1
Step 1: Ray Tracing
1
In the Model Builder window, under Study 1 click Step 1: Ray Tracing.
2
In the Settings window for Ray Tracing, locate the Study Settings section.
3
From the Time-step specification list, choose Specify maximum path length.
4
In the Lengths text field, type 0 1.5.
5
In the Home toolbar, click  Compute.
Results
Ray Trajectories (gop)
1
In the Settings window for 3D Plot Group, locate the Color Legend section.
2
From the Position list, choose Bottom.
3
Select the Show units check box.
Surface 1
1
In the Ray Trajectories (gop) toolbar, click  Surface.
2
In the Settings window for Surface, locate the Coloring and Style section.
3
From the Coloring list, choose Uniform.
4
From the Color list, choose Blue.
Transparency 1
In the Ray Trajectories (gop) toolbar, click  Transparency.
Color Expression 1
1
In the Model Builder window, expand the Results>Ray Trajectories (gop)>Ray Trajectories 1 node, then click Color Expression 1.
2
In the Settings window for Color Expression, locate the Expression section.
3
In the Expression text field, type at('last',gop.rrel).
4
From the Unit list, choose µm.
5
Locate the Coloring and Style section. From the Color table list, choose HeatCameraLight.
6
From the Color table transformation list, choose Reverse.
7
In the Ray Trajectories (gop) toolbar, click  Plot. Compare the resulting image to Figure 2.
Spot Diagram
1
In the Home toolbar, click  Add Plot Group and choose 2D Plot Group.
2
In the Settings window for 2D Plot Group, type Spot Diagram in the Label text field.
3
Locate the Color Legend section. Select the Show maximum and minimum values check box.
4
Select the Show units check box.
Spot Diagram 1
1
In the Spot Diagram toolbar, click  More Plots and choose Spot Diagram.
2
In the Settings window for Spot Diagram, click to expand the Annotations section.
3
Select the Show spot coordinates check box.
4
From the Coordinate system list, choose Global.
5
In the Display precision text field, type 7.
6
In the Spot Diagram toolbar, click  Plot.
Color Expression 1
1
In the Spot Diagram toolbar, click  Color Expression.
2
In the Settings window for Color Expression, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component 1 (comp1)>Geometrical Optics>Ray properties>gop.phii - Acute angle of incidence - rad.
3
Locate the Expression section. From the Unit list, choose °.
4
In the Spot Diagram toolbar, click  Plot. Compare the resulting image to Figure 3.
Appendix — Geometry Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
Microlithography Lens Geometry Sequence
1
In the Model Builder window, under Component 1 (comp1) click Geometry 1.
2
In the Settings window for Geometry, type Microlithography Lens Geometry Sequence in the Label text field.
3
Locate the Units section. From the Length unit list, choose mm.
Global Definitions
Parameters 1: Thicknesses
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, type Parameters 1: Thicknesses in the Label text field.
3
Locate the Parameters section. Click  Load from File.
4
Parameters 2: Radii
1
In the Home toolbar, click  Parameters and choose Add>Parameters.
2
In the Settings window for Parameters, type Parameters 2: Radii in the Label text field.
3
Locate the Parameters section. Click  Load from File.
4
Parameters 3: Diameters
1
In the Home toolbar, click  Parameters and choose Add>Parameters.
2
In the Settings window for Parameters, type Parameters 3: Diameters in the Label text field.
3
Locate the Parameters section. Click  Load from File.
4
Part Libraries
1
In the Home toolbar, click  Windows and choose Part Libraries.
2
In the Model Builder window, under Component 1 (comp1) click Microlithography Lens Geometry Sequence.
3
In the Part Libraries window, select Ray Optics Module>3D>Apertures and Obstructions>circular_planar_annulus in the tree.
4
Click  Add to Geometry.
Microlithography Lens Geometry Sequence
Object
1
In the Model Builder window, under Component 1 (comp1)>Microlithography Lens Geometry Sequence click Circular Planar Annulus 1 (pi1).
2
In the Settings window for Part Instance, type Object in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Click to expand the Boundary Selections section. In the table, select the Keep check box for All.
5
Click  Build All Objects.
6
Click the  Orthographic Projection button in the Graphics toolbar.
7
In the Graphics window toolbar, clicknext to  Go to Default View, then choose Go to ZY View.
8
Click the  Zoom Extents button in the Graphics toolbar.
9
In the Graphics window toolbar, clicknext to  Clipping, then choose Add Clip Plane.
10
In the Graphics window toolbar, clicknext to  Clipping Active, then choose Show Gizmos.
11
In the Graphics window toolbar, clicknext to  Clipping Active, then choose Show Frames.
Part Libraries
1
In the Home toolbar, click  Windows and choose Part Libraries.
2
In the Model Builder window, click Microlithography Lens Geometry Sequence.
3
In the Part Libraries window, select Ray Optics Module>3D>Spherical Lenses>spherical_lens_3d in the tree.
4
Click  Add to Geometry.
5
In the Select Part Variant dialog box, select Specify clear aperture diameter in the Select part variant list.
6
Microlithography Lens Geometry Sequence
Lens 1 (Surfaces 1 and 2)
1
In the Model Builder window, under Component 1 (comp1)>Microlithography Lens Geometry Sequence click Spherical Lens 3D 1 (pi2).
2
In the Settings window for Part Instance, type Lens 1 (Surfaces 1 and 2) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Object (pi1).
5
From the Work plane list, choose Surface (wp1).
6
Find the Displacement subsection. In the zw text field, type T_0.
7
Locate the Boundary Selections section. Click to select row number 2 in the table.
8
Click New Cumulative Selection.
9
In the New Cumulative Selection dialog box, type Clear Apertures in the Name text field.
10
11
In the Settings window for Part Instance, locate the Boundary Selections section.
12
13
14
Click New Cumulative Selection.
15
In the New Cumulative Selection dialog box, type Obstructions in the Name text field.
16
17
In the Settings window for Part Instance, locate the Boundary Selections section.
18
19
Click  Build Selected.
20
Click the  Zoom Extents button in the Graphics toolbar.
Lens 2 (Surfaces 3 and 4)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 2 (Surfaces 3 and 4) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 1 (Surfaces 1 and 2) (pi2).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_2.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 3 (Surfaces 5 and 6)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 3 (Surfaces 5 and 6) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 2 (Surfaces 3 and 4) (pi3).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_4.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 4 (Surfaces 7 and 8)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 4 (Surfaces 7 and 8) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 3 (Surfaces 5 and 6) (pi4).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_6.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 5 (Surfaces 9 and 10)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 5 (Surfaces 9 and 10) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 4 (Surfaces 7 and 8) (pi5).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_8.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 6 (Surfaces 11 and 12)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 6 (Surfaces 11 and 12) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 5 (Surfaces 9 and 10) (pi6).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_10.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 7 (Surfaces 13 and 14)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 7 (Surfaces 13 and 14) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 6 (Surfaces 11 and 12) (pi7).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_12.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 8 (Surfaces 15 and 16)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 8 (Surfaces 15 and 16) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 7 (Surfaces 13 and 14) (pi8).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_14.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 9 (Surfaces 17 and 18)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 9 (Surfaces 17 and 18) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 8 (Surfaces 15 and 16) (pi9).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_16.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 10 (Surfaces 19 and 20)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 10 (Surfaces 19 and 20) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 9 (Surfaces 17 and 18) (pi10).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_18.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 11 (Surfaces 21 and 22)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 11 (Surfaces 21 and 22) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 10 (Surfaces 19 and 20) (pi11).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_20.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 12 (Surfaces 23 and 24)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 12 (Surfaces 23 and 24) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 11 (Surfaces 21 and 22) (pi12).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_22.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 13 (Surfaces 25 and 26)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 13 (Surfaces 25 and 26) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 12 (Surfaces 23 and 24) (pi13).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_24.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 14 (Surfaces 27 and 28)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 14 (Surfaces 27 and 28) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 13 (Surfaces 25 and 26) (pi14).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_26.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 15 (Surfaces 29 and 30)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 15 (Surfaces 29 and 30) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 14 (Surfaces 27 and 28) (pi15).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_28.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 16 (Surfaces 31 and 32)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 16 (Surfaces 31 and 32) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 15 (Surfaces 29 and 30) (pi16).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_30.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 17 (Surfaces 33 and 34)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 17 (Surfaces 33 and 34) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 16 (Surfaces 31 and 32) (pi17).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_32.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 18 (Surfaces 35 and 36)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 18 (Surfaces 35 and 36) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 17 (Surfaces 33 and 34) (pi18).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_34.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 19 (Surfaces 37 and 38)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 19 (Surfaces 37 and 38) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 18 (Surfaces 35 and 36) (pi19).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_36.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 20 (Surfaces 39 and 40)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 20 (Surfaces 39 and 40) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 19 (Surfaces 37 and 38) (pi20).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_38.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Lens 21 (Surfaces 41 and 42)
1
In the Geometry toolbar, click  Parts and choose Spherical Lens 3D.
2
In the Settings window for Part Instance, type Lens 21 (Surfaces 41 and 42) in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 20 (Surfaces 39 and 40) (pi21).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_40.
7
Locate the Boundary Selections section. In the table, enter the following settings:
8
Click  Build Selected.
9
Click the  Zoom Extents button in the Graphics toolbar.
Image
1
In the Geometry toolbar, click  Parts and choose Circular Planar Annulus.
2
In the Settings window for Part Instance, type Image in the Label text field.
3
Locate the Input Parameters section. In the table, enter the following settings:
4
Locate the Position and Orientation of Output section. Find the Coordinate system to match subsection. From the Take work plane from list, choose Lens 21 (Surfaces 41 and 42) (pi22).
5
From the Work plane list, choose Surface 2 vertex intersection (wp2).
6
Find the Displacement subsection. In the zw text field, type T_42.
7
Locate the Boundary Selections section. In the table, select the Keep check box for All.
8
Click  Build All Objects.
9
Click the  Zoom Extents button in the Graphics toolbar.