PDF

Vivaldi Antenna
Introduction
A tapered slot antenna, also known as a Vivaldi antenna, is useful for wideband applications. Here, an exponential function is used for the taper profile. The objective of this example is to compute the far-field pattern and to compute the impedance of the structure. Good matching is observed over a wide frequency band.
Figure 1: The Vivaldi antenna is realized on a thin dielectric substrate. The entire domain is bounded by a perfectly matched layer.
Model Definition
In this Vivaldi antenna model, the tapered slot is patterned with a perfect electric conductor (PEC) ground plane on the top of the dielectric substrate. A simple exponential function, e0.044x is used to create the tapered slot curves. One end of the slot is open to air and the other end is finished with a circular slot. On the bottom of the substrate, the shorted 50 Ω microstrip feed line is modeled as PEC surfaces. The entire modeling domain is bounded by a perfectly matched layer (PML) which acts like an anechoic chamber absorbing all radiated energy. To excite the antenna, a lumped port is used. The model is meshed using a tetrahedral mesh with approximately five elements per wavelength in each material and simulation frequency.
Results and Discussion
The simulated SWR plot, Figure 2, shows good wideband matching properties. A Vivaldi antenna utilizes traveling waves generating a directive radiation pattern toward the open end of the tapered slot. The 3D far-field pattern in Figure 3 shows a directive radiation pattern.
Figure 2: The frequency response SWR of the Vivaldi antenna shows wideband impedance matching, better than 2:1 in most of the simulated frequency range.
Figure 3: 3D far-field pattern at 5.5 GHz shows a directional radiation pattern.
Application Library path: RF_Module/Antennas/vivaldi_antenna
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Radio Frequency>Electromagnetic Waves, Frequency Domain (emw).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select General Studies>Frequency Domain.
6
Study 1
Step 1: Frequency Domain
1
In the Model Builder window, under Study 1 click Step 1: Frequency Domain.
2
In the Settings window for Frequency Domain, locate the Study Settings section.
3
In the Frequencies text field, type range(2[GHz],0.5[GHz],6.5[GHz]).
Geometry 1
1
In the Model Builder window, under Component 1 (comp1) click Geometry 1.
2
In the Settings window for Geometry, locate the Units section.
3
From the Length unit list, choose mm.
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Here, mil refers to the unit milliinch.
Geometry 1
Create a block for the antenna substrate.
Substrate
1
In the Geometry toolbar, click  Block.
2
In the Settings window for Block, type Substrate in the Label text field.
3
Locate the Size and Shape section. In the Width text field, type 110.
4
In the Depth text field, type 80.
5
In the Height text field, type thickness.
6
Locate the Position section. From the Base list, choose Center.
Next, add a block for the 50Ω microstrip feed line.
Feed line
1
In the Geometry toolbar, click  Block.
2
In the Settings window for Block, type Feed line in the Label text field.
3
Locate the Size and Shape section. In the Width text field, type 3.2.
4
In the Depth text field, type 40+w_slot/2.
5
In the Height text field, type thickness.
6
Locate the Position section. From the Base list, choose Center.
7
In the x text field, type -26.
8
In the y text field, type -20+w_slot/4.
Next, create a work plane where you will draw the Vivaldi antenna pattern. Use two parametric curves for the tapered slot.
Work Plane 1 (wp1)
1
In the Geometry toolbar, click  Work Plane.
2
In the Settings window for Work Plane, locate the Plane Definition section.
3
In the z-coordinate text field, type thickness/2.
4
Click  Show Work Plane.
Work Plane 1 (wp1)>Plane Geometry
Click the  Zoom Extents button in the Graphics toolbar.
Add a parametric curve using the exponential profile.
Work Plane 1 (wp1)>Parametric Curve 1 (pc1)
1
In the Work Plane toolbar, click  More Primitives and choose Parametric Curve.
2
In the Settings window for Parametric Curve, locate the Parameter section.
3
In the Maximum text field, type 70.
4
Locate the Expressions section. In the xw text field, type s-15.
5
In the yw text field, type exp(0.044*s)-1+w_slot/2.
Generate the other parametric curve by mirroring the first one.
Work Plane 1 (wp1)>Mirror 1 (mir1)
1
In the Work Plane toolbar, click  Transforms and choose Mirror.
2
In the Settings window for Mirror, locate the Normal Vector to Line of Reflection section.
3
In the yw text field, type 1.
4
In the xw text field, type 0.
5
Locate the Input section. Select the Keep input objects check box.
6
7
Click  Build Selected.
Add a rectangle describing the thin slot connected to the tapered slot.
Work Plane 1 (wp1)>Rectangle 1 (r1)
1
In the Work Plane toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type 20.
4
In the Height text field, type w_slot.
5
Locate the Position section. In the xw text field, type -35.
6
In the yw text field, type -w_slot/2.
Add a circle attached to the end of the slot.
Work Plane 1 (wp1)>Circle 1 (c1)
1
In the Work Plane toolbar, click  Circle.
2
In the Settings window for Circle, locate the Size and Shape section.
3
In the Radius text field, type 12.
4
Locate the Position section. In the xw text field, type -40.5.
Create a union of the circle and the rectangle to remove unnecessary boundaries.
Work Plane 1 (wp1)>Union 1 (uni1)
1
In the Work Plane toolbar, click  Booleans and Partitions and choose Union.
2
Select the objects c1 and r1 only.
3
In the Settings window for Union, locate the Union section.
4
Clear the Keep interior boundaries check box.
5
In the Work Plane toolbar, click  Build All.
Add a sphere for the PMLs. Use a layer definition to create a shell-type structure.
PML
1
In the Model Builder window, right-click Geometry 1 and choose Sphere.
2
In the Settings window for Sphere, type PML in the Label text field.
3
Locate the Size section. In the Radius text field, type 110.
4
Click to expand the Layers section. In the table, enter the following settings:
5
Click  Build All Objects.
6
Click the  Zoom Extents button in the Graphics toolbar.
Choose wireframe rendering to get a better view of the interior parts.
7
Click the  Wireframe Rendering button in the Graphics toolbar.
Definitions
Add a perfectly matched layer.
Perfectly Matched Layer 1 (pml1)
1
In the Definitions toolbar, click  Perfectly Matched Layer.
2
3
In the Settings window for Perfectly Matched Layer, locate the Geometry section.
4
From the Type list, choose Spherical.
View 1
Hide some domains to get a better view of the interior parts when setting up the physics and reviewing the mesh.
Hide for Physics 1
1
In the Model Builder window, right-click View 1 and choose Hide for Physics.
2
Hide for Physics 2
1
Right-click View 1 and choose Hide for Physics.
2
In the Settings window for Hide for Physics, locate the Geometric Entity Selection section.
3
From the Geometric entity level list, choose Boundary.
4
Electromagnetic Waves, Frequency Domain (emw)
Now set up the physics. Use the selections already defined when assigning boundary conditions.
Perfect Electric Conductor 2
1
In the Model Builder window, under Component 1 (comp1) right-click Electromagnetic Waves, Frequency Domain (emw) and choose Perfect Electric Conductor.
2
Far-Field Domain 1
In the Physics toolbar, click  Domains and choose Far-Field Domain.
Lumped Port 1
1
In the Physics toolbar, click  Boundaries and choose Lumped Port.
2
Click the  Zoom In button in the Graphics toolbar, a couple of times to get a better view.
3
For the first port, wave excitation is on by default.
Materials
Assign material properties for the model. First, use air for all domains.
Add Material
1
In the Home toolbar, click  Add Material to open the Add Material window.
2
Go to the Add Material window.
3
4
Click Add to Component in the window toolbar.
5
In the Home toolbar, click  Add Material to close the Add Material window.
Materials
Air (mat1)
Override the substrate with a dielectric material of εr = 3.38.
Substrate
1
In the Model Builder window, right-click Materials and choose Blank Material.
2
In the Settings window for Material, type Substrate in the Label text field.
3
4
Locate the Material Contents section. In the table, enter the following settings:
Mesh 1
1
In the Model Builder window, under Component 1 (comp1) click Mesh 1.
2
In the Settings window for Mesh, locate the Physics-Controlled Mesh section.
3
From the Element size list, choose Coarse.
4
Click  Build All.
Study 1
In the Home toolbar, click  Compute.
Results
Multislice
1
In the Model Builder window, expand the Results>Electric Field (emw) node, then click Multislice.
2
In the Settings window for Multislice, locate the Expression section.
3
In the Expression text field, type emw.Ey.
4
Locate the Multiplane Data section. Find the X-planes subsection. In the Planes text field, type 0.
5
Find the Y-planes subsection. In the Planes text field, type 0.
6
Find the Z-planes subsection. From the Entry method list, choose Coordinates.
7
In the Coordinates text field, type thickness/2.
8
Click to expand the Range section. Select the Manual color range check box.
9
In the Minimum text field, type -400.
10
In the Maximum text field, type 400.
11
Locate the Coloring and Style section. From the Color table list, choose Wave.
Selection 1
1
Right-click Multislice and choose Selection.
2
3
In the Electric Field (emw) toolbar, click  Plot.
Electric fields are guided along the tapered slot.
S-parameter (emw)
Smith Plot (emw)
Radiation Pattern 1
1
In the Model Builder window, expand the Results>2D Far Field (emw) node, then click Radiation Pattern 1.
2
In the Settings window for Radiation Pattern, locate the Evaluation section.
3
Find the Angles subsection. In the Number of angles text field, type 100.
4
In the 2D Far Field (emw) toolbar, click  Plot.
2D far-field radiation patterns in the /[xy/]-plane plotted for all frequencies.
3D Far Field, Gain (emw)
1
In the Model Builder window, under Results click 3D Far Field, Gain (emw).
2
In the Settings window for 3D Plot Group, locate the Data section.
3
From the Parameter value (freq (GHz)) list, choose 5.5.
Radiation Pattern 1
1
In the Model Builder window, expand the 3D Far Field, Gain (emw) node, then click Radiation Pattern 1.
2
In the Settings window for Radiation Pattern, locate the Evaluation section.
3
Find the Angles subsection. In the Number of elevation angles text field, type 90.
4
In the Number of azimuth angles text field, type 90.
5
In the 3D Far Field, Gain (emw) toolbar, click  Plot.
Table
1
Go to the Table window.
Compare the resulting 3D radiation pattern plot with Figure 3.
Results
1D Plot Group 6
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
Global 1
1
Right-click 1D Plot Group 6 and choose Global.
2
In the Settings window for Global, click Add Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Electromagnetic Waves, Frequency Domain>Ports>emw.VSWR_1 - Voltage standing wave ratio.
3
Click to expand the Legends section. Clear the Show legends check box.
4
In the 1D Plot Group 6 toolbar, click  Plot.
This VSWR plot replicates the wideband frequency response shown in Figure 2.
3D Plot Group 7
In the Home toolbar, click  Add Plot Group and choose 3D Plot Group.
Isosurface 1
1
Right-click 3D Plot Group 7 and choose Isosurface.
2
In the Settings window for Isosurface, locate the Expression section.
3
In the Expression text field, type 20*log10(emw.normE+0.1).
4
Locate the Levels section. In the Total levels text field, type 20.
Selection 1
1
Right-click Isosurface 1 and choose Selection.
2
Filter 1
1
In the Model Builder window, right-click Isosurface 1 and choose Filter.
2
In the Settings window for Filter, locate the Element Selection section.
3
In the Logical expression for inclusion text field, type y>0 && z<0.
4
In the 3D Plot Group 7 toolbar, click  Plot.