PDF

Modeling of a CPW Using Numeric TEM Ports
Introduction
This tutorial example shows how to set up port features in a physics interface when designing a coplanar waveguide (CPW) circuit that is useful for mmWave applications.
Figure 1: Coplanar waveguide (CPW) simulation model.
Model Definition
There are multiple ways to excite and terminate a CPW using ports or lumped ports. In this tutorial, a basic CPW circuit is modeled using Numeric type ports with the Analyze as a TEM field option. This configuration requires you to add a Boundary Mode Analysis in the study and add an Integration Line for Voltage subfeature under a port feature to calculate the TEM mode characteristic impedance. The TEM mode characteristic impedance is calculated based on the power on port boundaries and voltage obtained from the user-defined integration through the abovementioned subfeature. The computed impedance scales the mode field, the solution of a boundary mode analysis, mapped to the port boundaries to excite or terminate the end cross section of the circuit.
All conductive boundaries representing metalized or plated surfaces are defined as perfect electric conductors to simplify the modeling steps. If the loss due to the finite conductivity is assumed to be nonnegligible, these boundaries can be replaced by a transition boundary condition to take the loss in the model into account.
A scattering boundary condition is used to finish the outermost boundaries. That is a first-order absorbing boundary condition that by default absorb any possible radiation from the circuit. So, it will not reflect back and does not disturb the performance of, for instance, S-parameters, of the circuit.
Results and Discussion
The computed S-parameters indicate that the reflection due to the impedance mismatch is marginal (below 30 dB) and that the insertion loss is below 0.05 dB. When the computation is completed, three defaults plots are automatically generated. From the electric field norm plot, it is possible to see where the strong electric fields are confined; that is along the conductive edges around slots between the center conductor and a pair of ground planes. When a boundary mode analysis is performed for each port, it also generates the mode field plot with an annotation of the computed impedance value. See the Modeling Instruction section for more details.
Application Library path: RF_Module/Transmission_Lines_and_Waveguides/cpw_numeric_tem_port
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, click  3D.
2
In the Select Physics tree, select Radio Frequency>Electromagnetic Waves, Frequency Domain (emw).
3
Click Add.
4
Click  Study.
5
In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Boundary Mode Analysis.
6
Study 1
Step 1: Boundary Mode Analysis
1
In the Model Builder window, under Study 1 click Step 1: Boundary Mode Analysis.
2
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
3
In the Mode analysis frequency text field, type 10[GHz].
4
Select the Search for modes around check box.
5
Step 3: Boundary Mode Analysis 1
1
Right-click Study 1>Step 1: Boundary Mode Analysis and choose Duplicate.
2
Drag and drop Step 3: Boundary Mode Analysis 1 below Step 1: Boundary Mode Analysis.
3
In the Settings window for Boundary Mode Analysis, locate the Study Settings section.
4
In the Port name text field, type 2.
Step 3: Frequency Domain
1
In the Model Builder window, click Step 3: Frequency Domain.
2
In the Settings window for Frequency Domain, locate the Study Settings section.
3
In the Frequencies text field, type 10[GHz].
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Geometry 1
1
In the Model Builder window, under Component 1 (comp1) click Geometry 1.
2
In the Settings window for Geometry, locate the Units section.
3
From the Length unit list, choose µm.
Block 1 (blk1)
1
In the Geometry toolbar, click  Block.
2
In the Settings window for Block, locate the Size and Shape section.
3
In the Width text field, type 6000.
4
In the Depth text field, type 4000.
5
In the Height text field, type 2000.
6
Locate the Position section. In the y text field, type -500.
Block 2 (blk2)
1
In the Geometry toolbar, click  Block.
2
In the Settings window for Block, locate the Size and Shape section.
3
In the Width text field, type 6000.
4
In the Depth text field, type 3000.
5
In the Height text field, type thickness.
6
Locate the Position section. In the z text field, type 1000-thickness.
7
Click  Build Selected.
8
Click the  Wireframe Rendering button in the Graphics toolbar.
Work Plane 1 (wp1)
1
In the Geometry toolbar, click  Work Plane.
2
In the Settings window for Work Plane, locate the Plane Definition section.
3
From the Plane type list, choose Face parallel.
4
On the object blk2, select Boundary 4 only.
Work Plane 1 (wp1)>Plane Geometry
In the Model Builder window, click Plane Geometry.
Work Plane 1 (wp1)>Rectangle 1 (r1)
1
In the Work Plane toolbar, click  Rectangle.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Width text field, type 6000.
4
In the Height text field, type w_c.
5
Locate the Position section. From the Base list, choose Center.
Work Plane 1 (wp1)>Rectangle 2 (r2)
1
Right-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Rectangle 1 (r1) and choose Duplicate.
2
In the Settings window for Rectangle, locate the Size and Shape section.
3
In the Height text field, type w_s.
Work Plane 1 (wp1)>Difference 1 (dif1)
1
In the Work Plane toolbar, click  Booleans and Partitions and choose Difference.
2
3
In the Settings window for Difference, locate the Difference section.
4
Find the Objects to subtract subsection. Click to select the  Activate Selection toggle button.
5
6
Right-click Difference 1 (dif1) and choose Build All Objects.
Materials
Material 1 (mat1)
1
In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.
2
In the Settings window for Material, locate the Material Contents section.
3
Material 2 (mat2)
1
Right-click Materials and choose Blank Material.
2
3
In the Settings window for Material, locate the Material Contents section.
4
Electromagnetic Waves, Frequency Domain (emw)
Perfect Electric Conductor 2
1
In the Model Builder window, under Component 1 (comp1) right-click Electromagnetic Waves, Frequency Domain (emw) and choose Perfect Electric Conductor.
2
Scattering Boundary Condition 1
1
In the Physics toolbar, click  Boundaries and choose Scattering Boundary Condition.
2
Port 1
1
In the Physics toolbar, click  Boundaries and choose Port.
2
3
In the Settings window for Port, locate the Port Properties section.
4
From the Type of port list, choose Numeric.
5
Select the Analyze as a TEM field check box.
Integration Line for Voltage 1
1
In the Physics toolbar, click  Attributes and choose Integration Line for Voltage.
2
In the Settings window for Integration Line for Voltage, locate the Edge Selection section.
3
Click  Clear Selection.
4
Port 2
1
In the Physics toolbar, click  Boundaries and choose Port.
2
3
In the Settings window for Port, locate the Port Properties section.
4
From the Type of port list, choose Numeric.
5
Select the Analyze as a TEM field check box.
Integration Line for Voltage 1
1
In the Physics toolbar, click  Attributes and choose Integration Line for Voltage.
2
In the Settings window for Integration Line for Voltage, locate the Edge Selection section.
3
Click  Clear Selection.
4
5
Locate the Settings section. Click Toggle Voltage Drop Direction.
Mesh 1
1
In the Model Builder window, under Component 1 (comp1) right-click Mesh 1 and choose Build All.
2
In the Graphics window toolbar, clicknext to  Select Edges, then choose Select Boundaries.
3
Click the  Click and Hide button in the Graphics toolbar.
4
5
Click the  Click and Hide button in the Graphics toolbar.
6
In the Settings window for Mesh, locate the Electromagnetic Waves, Frequency Domain (emw) section.
7
Select the Refine conductive edges check box.
8
In the Relative size to default mesh text field, type 0.02/sqrt(12.9).
9
Click  Build All.
10
In the Home toolbar, click  Compute.
Results
Multislice
1
In the Model Builder window, expand the Electric Field (emw) node, then click Multislice.
2
In the Settings window for Multislice, locate the Multiplane Data section.
3
Find the X-planes subsection. In the Planes text field, type 0.
4
Find the Y-planes subsection. In the Planes text field, type 0.
5
Locate the Coloring and Style section. From the Color table list, choose HeatCameraLight.
Electric Mode Field, Port 1 (emw)
Electric Mode Field, Port 2 (emw)