PDF

Argon Boltzmann Analysis
Introduction
The electron energy distribution function (EEDF) plays an important role in the overall behavior of discharges. Analytic forms of the EEDF exist such as Maxwellian or Druyvesteyn, but in some cases they fail to fit the discharge physics. Factors such as ionization degree (ne/Nn), mole fraction of excited species, and reduced angular frequency of the electromagnetic field can all influence the shape of the EEDF. This can lead to differences in the magnitude of electron impact rate coefficients which are in turn used in a fluid model to solve for the electron density and mean electron energy. This tutorial model shows how these factors influence the EEDF and the rate coefficients for argon.
Model Definition
This tutorial is based on the results obtained in Ref. 1. The Two-term Boltzmann equation is solved which computes the EEDF rather than assuming a specific form. The Boltzmann equation in the two-term approximation can be written as
where f is the EEDF (eV3/2) and
(1)
and
(2)
For definitions of the quantities in the equations Equation 1 and Equation 2, see the chapter The Boltzmann Equation, Two-Term Approximation Interface in the Plasma Module User’s Guide.
At zero energy, the condition that energy flux is zero must hold:
and as ε → ∞, f → 0.
The EEDF is defined by how electrons gain energy from the electric field and lose (or gain) their energy in collisions with the background gas. The electron collisions are characterized by cross sections that need to be provided by the user. In this model, the background gas is argon and the electron impact collisions listed in Table 1 below are considered (electron impact cross-sections are obtained from Ref. 2).
Δε (eV)
Results and Discussion
In this section it is studied how the EEDF and the ionization rate coefficient are influenced by electron-electron collisions, superelastic collisions, and excitation frequency.
Electron-electron collisions tend to make the shape of the EEDF closer to a Maxwellian distribution function. The influence of these collisions depend mostly on the ionization degree. Figure 1 shows computed EEDFs for several ionization degrees for an electron density of 1018 m3 and for a reduced electric field of 10 Td. As the ionization degree increases, the EEDF tends to become more Maxwellian (which would be represented by a linear line on a log scale).
The electron-electron collisions tend to push the electrons at the tail to higher energies, which has an effect on the rate coefficients for electron impact reactions with a high threshold energy. The effect on the ionization rate coefficient can be seen in Figure 2. In the low mean energy range the ionization rate coefficient increases considerable with the ionization degree.
Electrons can collide with neutrals in an excited state and cause them to de-excite to a low energy state. In this type of collisions the electrons can take the energy excess and immediately populate the tail of the EEDF. This effect on the EEDF is presented in Figure 3 for different mole fractions of the excited state of argon. The population of the high energy tail makes the magnitude of the ionization rate coefficients increase in the low energy range as shown in Figure 4.
Finally, the influence of a high frequency oscillating field on the EEDF and the ionization rate coefficients is studied by applying different excitation frequencies at a constant mean electron energy. The results are plotted in Figure 5 and Figure 6.
Figure 1: EEDF for 10 Td and for different ionization degrees.
Figure 2: Ionization rate coefficient as a function of the mean electron energy for different ionization degrees.
Figure 3: EEDF for 10 Td and for different mole fractions of the argon excited state.
Figure 4: Ionization rate coefficient as a function of the mean electron energy for different mole fractions of the argon excited state.
Figure 5: EEDF for oscillating electric fields with different amplitudes and different reduced frequencies. All EEDFs have the same mean electron energy of 2.15 eV.
Figure 6: Ionization rate coefficient as a function of the mean electron energy for different reduced frequencies.
Reference
1. G.J.M. Hagelaar and L.C. Pitchford, “Solving the Boltzmann Equation to Obtain Electron Transport Coefficients and Rate Coefficients for Fluid Models”, Plasma Sources Science and Technology, vol. 14, pp. 722–733, 2005.
2. Phelps database, www.lxcat.net, retrieved 2017.
Application Library path: Plasma_Module/Two-Term_Boltzmann_Equation/boltzmann_argon
Modeling Instructions
From the File menu, choose New.
New
In the New window, click  Model Wizard.
Model Wizard
1
In the Model Wizard window, Select the Boltzmann Equation, Two-Term Approximation (be) interface and the Reduced Electric Fields study.
2
3
In the Select Physics tree, select Plasma>Boltzmann Equation, Two-Term Approximation (be).
4
Click Add.
5
Click  Study.
6
In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Reduced Electric Fields.
7
Boltzmann Equation, Two-Term Approximation (be)
Select to solve the Boltzmann equation in the two-term approximation.
1
In the Model Builder window, under Component 1 (comp1) click Boltzmann Equation, Two-Term Approximation (be).
2
In the Settings window for Boltzmann Equation, Two-Term Approximation, locate the Electron Energy Distribution Function Settings section.
3
From the Electron energy distribution function list, choose Boltzmann equation, two-term approximation (linear).
4
Select the Electron-electron collisions check box.
Define parameters for the ionization degree, Argon excited state mole fraction, and reduced oscillating frequency.
Global Definitions
Parameters 1
1
In the Model Builder window, under Global Definitions click Parameters 1.
2
In the Settings window for Parameters, locate the Parameters section.
3
Import a cross section set for Argon.
Boltzmann Equation, Two-Term Approximation (be)
Cross Section Import 1
1
In the Physics toolbar, click  Global and choose Cross Section Import.
2
In the Settings window for Cross Section Import, locate the Cross Section Import section.
3
Click  Browse.
4
5
Click  Import.
In the first two studies the effect of the electron-electron collisions on the eedf and the ionization rate coefficient are analyzed.
In the first study, compute the eedf for a constant reduced electric field for several ionization degrees.
In the second study, use the parametric sweep feature to compute the rate coefficients over a wide range of mean electron energies for different degrees of ionization.
Boltzmann Model 1
1
In the Model Builder window, click Boltzmann Model 1.
2
In the Settings window for Boltzmann Model, locate the Boltzmann Settings section.
3
In the ne text field, type 1E18[1/m^3].
4
In the β text field, type Beta.
5
Locate the Results section. Find the Generate the following default plots subsection. Clear the Rate coefficients check box.
6
Clear the Transport properties check box.
7
Clear the Mean electron energy check box.
Initial Values 1
1
In the Model Builder window, click Initial Values 1.
2
In the Settings window for Initial Values, locate the Initial Values section.
3
In the ε0 text field, type 5[V].
4
In the E/N0 text field, type 10[Td].
eedf e-e
1
In the Model Builder window, click Study 1.
2
In the Settings window for Study, type eedf e-e in the Label text field.
Step 1: Reduced Electric Fields
1
In the Model Builder window, under eedf e-e click Step 1: Reduced Electric Fields.
2
In the Settings window for Reduced Electric Fields, locate the Study Settings section.
3
In the Reduced electric fields text field, type 10[Td].
4
Click to expand the Study Extensions section. Select the Auxiliary sweep check box.
5
6
7
From the Run continuation for list, choose Last parameter.
8
In the Home toolbar, click  Compute.
Results
EEDF e-e
1
In the Settings window for 1D Plot Group, type EEDF e-e in the Label text field.
2
Locate the Axis section. Select the Manual axis limits check box.
3
In the x minimum text field, type 0.
4
In the x maximum text field, type 35.
5
In the y minimum text field, type 1e-9.
6
In the y maximum text field, type 1.
Line Graph 1
1
In the Model Builder window, expand the EEDF e-e node, then click Line Graph 1.
2
In the Settings window for Line Graph, click to expand the Legends section.
3
From the Legends list, choose Evaluated.
4
In the Legend text field, type Beta = eval(Beta).
5
In the EEDF e-e toolbar, click  Plot.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Mean Energies.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 2
Step 1: Mean Energies
1
In the Settings window for Mean Energies, locate the Study Settings section.
2
Click  Range.
3
In the Range dialog box, type 2 in the Start text field.
4
In the Step text field, type 0.2.
5
In the Stop text field, type 10.
6
Click Replace.
7
In the Model Builder window, click Study 2.
8
In the Settings window for Study, type Rion e-e in the Label text field.
9
Locate the Study Settings section. Clear the Generate default plots check box.
10
Clear the Generate convergence plots check box.
Parametric Sweep
1
In the Study toolbar, click  Parametric Sweep.
2
In the Settings window for Parametric Sweep, locate the Study Settings section.
3
4
5
In the Study toolbar, click  Compute.
Results
Ionization vs. electron mean energy e-e
1
In the Home toolbar, click  Add Plot Group and choose 1D Plot Group.
2
In the Settings window for 1D Plot Group, type Ionization vs. electron mean energy e-e in the Label text field.
3
Locate the Data section. From the Dataset list, choose Rion e-e/Parametric Solutions 1 (sol3).
4
Locate the Plot Settings section. Select the x-axis label check box.
5
In the associated text field, type Mean electron energy (eV).
6
Select the y-axis label check box.
7
In the associated text field, type Ionization rate coefficient (m<sup>3</sup>/s).
8
Locate the Axis section. Select the Manual axis limits check box.
9
In the x minimum text field, type 2.
10
In the x maximum text field, type 10.
11
In the y minimum text field, type 1e-21.
12
In the y maximum text field, type 1e-14.
13
Select the y-axis log scale check box.
14
Locate the Legend section. From the Position list, choose Lower right.
Global 1
1
Right-click Ionization vs. electron mean energy e-e and choose Global.
2
In the Settings window for Global, locate the y-Axis Data section.
3
4
Click to expand the Legends section. From the Legends list, choose Automatic.
5
Find the Include subsection. Clear the Description check box.
6
In the Ionization vs. electron mean energy e-e toolbar, click  Plot.
In the following, the effects of the Ars state mole fraction in the eedf are studied. Do not include electron-electron collisions and set the model fraction of xArs.
Boltzmann Equation, Two-Term Approximation (be)
1
In the Model Builder window, under Component 1 (comp1) click Boltzmann Equation, Two-Term Approximation (be).
2
In the Settings window for Boltzmann Equation, Two-Term Approximation, locate the Electron Energy Distribution Function Settings section.
3
Clear the Electron-electron collisions check box.
Boltzmann Model 1
1
In the Model Builder window, under Component 1 (comp1)>Boltzmann Equation, Two-Term Approximation (be) click Boltzmann Model 1.
2
In the Settings window for Boltzmann Model, locate the Mole Fraction Settings section.
3
From the Mole constrained species list, choose Ar.
4
As before two studies are made. The first study, parameterizes over the Ars mole fraction and serves to analyze the effects of superelastic reactions on the eedf.
The second study, parameterizes over the Ars mole fraction over a wide range of mean electron energies and serves to analyze the effects of superelastic reactions on the ionization rate coefficient.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Reduced Electric Fields.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 3
Step 1: Reduced Electric Fields
1
In the Settings window for Reduced Electric Fields, locate the Study Settings section.
2
In the Reduced electric fields text field, type 10[Td].
3
From the Reuse solution from previous step list, choose No.
4
Locate the Study Extensions section. Select the Auxiliary sweep check box.
5
6
7
In the Model Builder window, click Study 3.
8
In the Settings window for Study, locate the Study Settings section.
9
Clear the Generate convergence plots check box.
10
Clear the Generate default plots check box.
11
In the Label text field, type eedf xArs.
12
In the Home toolbar, click  Compute.
Results
EEDF xArs
1
In the Model Builder window, right-click EEDF e-e and choose Duplicate.
2
In the Settings window for 1D Plot Group, type EEDF xArs in the Label text field.
3
Locate the Data section. From the Dataset list, choose eedf xArs/Solution 10 (sol10).
Line Graph 1
1
In the Model Builder window, expand the EEDF xArs node, then click Line Graph 1.
2
In the Settings window for Line Graph, locate the Legends section.
3
From the Legends list, choose Evaluated.
4
In the Legend text field, type xArs= eval(xArs).
5
In the EEDF xArs toolbar, click  Plot.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Mean Energies.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 4
Step 1: Mean Energies
1
In the Settings window for Mean Energies, locate the Study Settings section.
2
Click  Range.
3
In the Range dialog box, type 2 in the Start text field.
4
In the Step text field, type 0.2.
5
In the Stop text field, type 10.
6
Click Replace.
7
In the Model Builder window, click Study 4.
8
In the Settings window for Study, type Rion xArs in the Label text field.
9
Locate the Study Settings section. Clear the Generate default plots check box.
10
Clear the Generate convergence plots check box.
Parametric Sweep
1
In the Study toolbar, click  Parametric Sweep.
2
In the Settings window for Parametric Sweep, locate the Study Settings section.
3
4
5
In the Study toolbar, click  Compute.
Results
Ionization vs. electron mean energy xArs
1
In the Model Builder window, right-click Ionization vs. electron mean energy e-e and choose Duplicate.
2
In the Settings window for 1D Plot Group, type Ionization vs. electron mean energy xArs in the Label text field.
3
Locate the Data section. From the Dataset list, choose Rion xArs/Parametric Solutions 2 (sol12).
Global 1
1
In the Model Builder window, expand the Ionization vs. electron mean energy xArs node, then click Global 1.
2
In the Settings window for Global, locate the Legends section.
3
From the Legends list, choose Automatic.
4
Find the Include subsection. Clear the Description check box.
5
In the Ionization vs. electron mean energy xArs toolbar, click  Plot.
Boltzmann Equation, Two-Term Approximation (be)
1
In the Model Builder window, under Component 1 (comp1) click Boltzmann Equation, Two-Term Approximation (be).
2
In the Settings window for Boltzmann Equation, Two-Term Approximation, locate the Electron Energy Distribution Function Settings section.
3
Select the Oscillating field check box.
4
In the ω/N text field, type wN.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Reduced Electric Fields.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 5
Step 1: Reduced Electric Fields
In the following 3 EEDFs, all with the same mean electron energy of 2.15 eV, are computed for different reduced fields and reduced oscillating frequencies.
1
In the Settings window for Reduced Electric Fields, locate the Study Settings section.
2
In the Reduced electric fields text field, type 0.76[Td].
3
In the Model Builder window, click Study 5.
4
In the Settings window for Study, type 0.76Td w/N=0 in the Label text field.
5
Locate the Study Settings section. Clear the Generate default plots check box.
6
Clear the Generate convergence plots check box.
7
In the Home toolbar, click  Compute.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Reduced Electric Fields.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 6
Step 1: Reduced Electric Fields
1
In the Settings window for Reduced Electric Fields, locate the Study Settings section.
2
In the Reduced electric fields text field, type 3.83[Td].
3
Locate the Study Extensions section. Select the Auxiliary sweep check box.
4
5
6
In the Model Builder window, click Study 6.
7
In the Settings window for Study, type 3.83Td w/N=2e-13 in the Label text field.
8
Locate the Study Settings section. Clear the Generate default plots check box.
9
Clear the Generate convergence plots check box.
10
In the Home toolbar, click  Compute.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Reduced Electric Fields.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 7
Step 1: Reduced Electric Fields
1
In the Settings window for Reduced Electric Fields, locate the Study Settings section.
2
In the Reduced electric fields text field, type 69.8[Td].
3
Locate the Study Extensions section. Select the Auxiliary sweep check box.
4
5
6
In the Model Builder window, click Study 7.
7
In the Settings window for Study, type 69.8Td w/N=1e-12 in the Label text field.
8
Locate the Study Settings section. Clear the Generate default plots check box.
9
Clear the Generate convergence plots check box.
10
In the Home toolbar, click  Compute.
Results
EEDF w/N
1
In the Model Builder window, right-click EEDF e-e and choose Duplicate.
2
In the Settings window for 1D Plot Group, locate the Data section.
3
From the Dataset list, choose 0.76Td w/N=0/Solution 17 (sol17).
4
Locate the Axis section. In the x maximum text field, type 20.
5
In the y minimum text field, type 1e-8.
6
In the y maximum text field, type 10.
7
In the Label text field, type EEDF w/N.
Line Graph 1
1
In the Model Builder window, expand the EEDF e-e 1 node, then click Results>EEDF w/N>Line Graph 1.
2
In the Settings window for Line Graph, locate the Legends section.
3
From the Legends list, choose Evaluated.
4
In the Legend text field, type E/N=eval(be.EN,Td,3) Td, w/N=eval(wN).
5
In the EEDF w/N toolbar, click  Plot.
Line Graph 2
1
Right-click Results>EEDF w/N>Line Graph 1 and choose Duplicate.
2
In the Settings window for Line Graph, locate the Data section.
3
From the Dataset list, choose 3.83Td w/N=2e-13/Solution 18 (sol18).
Line Graph 3
1
Right-click Line Graph 2 and choose Duplicate.
2
In the Settings window for Line Graph, locate the Data section.
3
From the Dataset list, choose 69.8Td w/N=1e-12/Solution 19 (sol19).
4
In the EEDF w/N toolbar, click  Plot.
The last study parameterizes over the reduced oscillating frequency over a wide range of reduced electric fields.
Add Study
1
In the Home toolbar, click  Add Study to open the Add Study window.
2
Go to the Add Study window.
3
Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Reduced Electric Fields.
4
Click Add Study in the window toolbar.
5
In the Home toolbar, click  Add Study to close the Add Study window.
Study 8
Step 1: Reduced Electric Fields
1
In the Settings window for Reduced Electric Fields, locate the Study Settings section.
2
Click  Range.
3
In the Range dialog box, type 10 in the Start text field.
4
In the Step text field, type 5.
5
In the Stop text field, type 2500.
6
Click Replace.
7
In the Settings window for Reduced Electric Fields, locate the Study Settings section.
8
In the Reduced electric fields text field, type range(10,2,2500)[Td].
9
From the Reuse solution from previous step list, choose Yes.
10
In the Model Builder window, click Study 8.
11
In the Settings window for Study, type Rion w/N in the Label text field.
12
Locate the Study Settings section. Clear the Generate default plots check box.
13
Clear the Generate convergence plots check box.
Parametric Sweep
1
In the Study toolbar, click  Parametric Sweep.
2
In the Settings window for Parametric Sweep, locate the Study Settings section.
3
4
5
In the Study toolbar, click  Compute.
Results
Ionization vs. electron mean energy w/N
1
In the Model Builder window, right-click Ionization vs. electron mean energy xArs and choose Duplicate.
2
In the Settings window for 1D Plot Group, type Ionization vs. electron mean energy w/N in the Label text field.
3
Locate the Data section. From the Dataset list, choose Rion w/N/Parametric Solutions 3 (sol21).
Global 1
1
In the Model Builder window, expand the Ionization vs. electron mean energy w/N node, then click Global 1.
2
In the Settings window for Global, locate the x-Axis Data section.
3
From the Parameter list, choose Expression.
4
In the Expression text field, type be.ebar.
5
Locate the Legends section. From the Legends list, choose Automatic.
6
Find the Include subsection. Clear the Description check box.
7
In the Ionization vs. electron mean energy w/N toolbar, click  Plot.